Ultrasound imaging inside and behind bone

Gabrielle Laloy-Borgna Guillaume Renaud

Traditional ultrasound imaging (best image quality but slow)

Line-by-line image formation with focused transmit beams

Any local variation in mass density or compressibility scatters the transmitted ultrasound wave

Traditional ultrasound imaging (best image quality but slow)

Line-by-line image formation with focused transmit beams

Limited to 50 images per second

Modern ultrasound imaging (fast)

Full-image synchronous formation with unfocused transmit beams

Up to thousands of images per second

Modern ultrasound imaging (fast)

Full-image synchronous formation with unfocused transmit beams

Instantaneous velocity and direction of blood flow

Image reconstruction relies on "synthetic" back-propagation

Back-propagation of recorded echo signals, back to each image pixel (high intensity if heterogeneity exists)

Echo arrival time converted to distance based on knowledge of sound speed (wave field extrapolation)

Ultrasound imaging inside bones?

"Ultrasound is not good for imaging bones" website National Institutes of Health (NH)

"Ultrasound cannot penetrate into regions of the body that contain bones" Diagnostic Utrasound, K Kirk Shung, book for engineers, 2005

Why does traditional imaging fail to image inside bone?

- 1. High attenuation of ultrasound
 - State-of-art ultrasound hardware provides excellent signal-to-noise ratio
 - Using low ultrasound frequency reduces attenuation
- 2. Strong phase aberration (sound speed in cortical bone is larger)
 - Mapping sound speed enables accurate image reconstruction
 - Modern hardware enables unfocused beam transmission and synthetic transmit focusing
- 3. Multiple scattering and mode conversion
 - Future work...

	Sound speed [m/s]	Ultrasound attenuation [dB/cm/MHz]
Soft tissues (excluding lungs and tendons)	1400-1700	0.2-2
Cortical bone tissue	2600-4200	3-15

Unlock ultrasound imaging inside bones

Learn the medium (map sound speed) Tissue structural assessment

Accurate

anatomical

image

Accurate blood flow quantification

9

Cortical bone Tibia Ultrasound probe Marrow Transverse section of the lower leg

Estimation of sound speed layer by layer, starting near the ultrasound probe, with **autofocusing**

Learn the medium / map sound speed

Our method:

Medium described with multiple homogeneous layers

- Cutaneous tissue
- Cortical bone 2.
- Marrow 3.
- Cortical bone 4.

Learn the medium / map sound speed Autofocusing - principle

Learn the medium / map sound speed Autofocusing - demonstration

Estimation of sound speed in water

Learn the medium / map sound speed Autofocusing in vivo

Estimation of sound speed in cutaneous tissue

TUDelft

Learn the medium / map sound speed Autofocusing in bone cortex

Estimation of sound speed in **bone cortex**

- 1. Sound speed in first layer (skin) is now known
- 2. Segmentation of outer surface of bone
- 3. Autofocusing in bone cortex

Segmentation:

Dijkstra algorithm finds path with maximum cumulative intensity Raw segmentation approximated by a polynomial function

Two-point ray tracing to account for wave refraction (search for minimum travel time)

Learn the medium / map sound speed Autofocusing in bone cortex - demonstration

Estimation of sound speed in **bone cortex**

- 1. Segmentation of outer surface of bone
- 2. Autofocusing in bone cortex

Learn the medium / map sound speed Autofocusing in bone cortex – In vivo

16

Tissue structural assessment

Sound speed in cortical bone is well correlated with tissue porosity

Tissue structural assessment

Tissue structural organization can be assessed with sound speed **anisotropy** (depends on direction)

Tissue structural assessment

Measurement of sound speed in cortical bone in axial direction with the head wave velocity

Tissue structural assessment Demonstration

Measurement of sound speed in cortical bone in axial direction with the head wave velocity

Accurate anatomical image

Image reconstruction relies on the back-propagation of recorded echoes

It requires to calculate the travel time of ultrasound waves back to each pixel

Once a map of the sound speed is available, accurate image reconstruction is possible

Accurate anatomical image Demonstration

Accurate anatomical image In vivo – Human tibia

Soft-tissue reconstruction

Traditional image reconstruction

23

Accurate anatomical image In vivo – Human tibia

Depth [mm]

Phase aberration correction

Accurate anatomical image In vivo – Human tibia

probe

Long bone

Without phase aberration correction

With phase aberration correction

Accurate anatomical image Sound speed anisotropy - Demonstration

Accurate anatomical image Sound speed anisotropy – In vivo

Human tibia (longitudinal view) - B-mode imaging

Wave-speed anisotropy ignored Anisotropy-corrected reconstruction

27

Accurate blood flow quantification

Fast repetition of image acquisition (400 images per second)

Extraction of blood signal (non-stationary component)

Accurate blood flow quantification Demonstration

Accurate blood flow quantification In vivo - tibia 5 bone cortex blood tissue 0 (dB) 2 4 Emissary vein and arteriole 5 bone cortex 1 (dB) 2 4 Flowing blood volume [dB]

Accurate blood flow quantification In vivo – brain vasculature (transcranial imaging)

David Maresca (TU Delft)

RX

C_{lens}

C_{bone}

C_{brain}

C gel & skin

TUDelft

No skull correction

Skull corrected

Accurate blood flow quantification In vivo – brain vasculature (transcranial imaging)

No skull correction

Skull corrected

Accurate blood flow quantification In vivo – brain vasculature (transcranial imaging)

No skull correction

Skull corrected

Thank you for your attention!

