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Traditional ultrasound imaging (best image quality but slow)

Line-by-line image formation with focused transmit beams
Any local variation in mass density or compressibility scatters the transmitted ultrasound wave
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Traditional ultrasound imaging (best image quality but slow)

Line-by-line image formation with focused transmit beams

Limited to 50 images per second

By convention, ultrasound probe
(transducer) is on top of image

Transmission. |
of a short pulse
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Modern ultrasound imaging (fast)

Full-image synchronous formation with unfocused transmit beams

Up to thousands of images per second

Transmlssmn plane wave (-10 degree)
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Modern ultrasound imaging (fast)

Full-image synchronous formation with unfocused transmit beams

50.0cm/s

Carotid artery
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Image reconstruction relies on “synthetic” back-propagation

Back-propagation of recorded echo signals, back to each image pixel (high intensity if heterogeneity exists)

Echo arrival time converted to distance based on knowledge of sound speed (wave field extrapolation)
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Nyquist—-Shannon sampling theorem
« Spatial sampling period = half ultrasound wavelength
« Temporal sampling period < half ultrasound temporal period
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Ultrasound 1maging inside bones?

“Ultrasound is not good for imaging bones”
website National Institutes of Health (NH

“Ultrasound cannot penetrate into regions of the body that contain bones’
Oiagnastic Utrasound, K Kirk Shung, book for engineers, 2005
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Why does traditional imaging fail to image inside bone?

Demonstration

1. High attenuation of ultrasound
= State-of-art ultrasound hardware provides excellent signal-to-noise ratio

Using low ultrasound frequency reduces attenuation

V 2. Strong phase aberration (sound speed in cortical bone is larger)

Mapping sound speed enables accurate image reconstruction

Modern hardware enables unfocused beam transmission and synthetic transmit focusing

3. Multiple scattering and mode conversion

Future work...

Sound speed Ultrasound attenuation

[m/s] [dB/cm/MHZz]

Soft tissues

(excluding lungs and tendons) 1400-1700 0.2-2

'i';u Delft Cortical bone tissue 2600-4200 3-15



Unlock ultrasound imaging inside bones
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Learn the medium / map sound speed

Our method:

Medium described with multiple homogeneous layers

1.

2
3.
4

Cortical bone

Cutaneous tissue

Cortical bone

Marrow |
Cortical bone Transverse section of the lower leg

Estimation of sound speed layer by layer, starting near the ultrasound probe, with autofocusing
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Learn the medium / map sound speed
Autofocusing - principle

Searching for maximum image intensity/sharpness enables the estimation of sound speed

Testing different values
of sound speed
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Learn the medium / map sound speed
Autofocusing - demonstration

water Estimation of sound speed in water
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Learn the medium / map sound speed
Autofocusing in vivo
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soft tissue image with sound speed = 1400 m/s
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Learn the medium / map sound speed

Autofocusing in bone cortex

Estimation of sound speed in bone cortex

1. Sound speed in first layer (skin) is now known
2. Segmentation of outer surface of bone
3. Autofocusing in bone cortex

Segmentation:
Dijkstra algorithm finds path with maximum cumulative intensity
Raw segmentation approximated by a polynomial function
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Learn the medium / map sound speed
Autofocusing in bone cortex - demonstration

water Estimation of sound speed in bone cortex

1. Segmentation of outer surface of bone
2. Autofocusing in bone cortex
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Learn the medium / map sound speed
Autofocusing in bone cortex — In vivo

image with sound speed in bone = 2800 m/s
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Tissue structural assessment

Sound speed in cortical bone is well correlated with tissue porosity

Porosity = 2-25%
Median pore diameter = 40-100 pm

X-ray Computed Tomography
(10-um voxel size)
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Tissue structural assessment

Tissue structural organization can be assessed with sound speed anisotropy (depends on direction)

cutaneous tissue (1.6 mm/us)
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Tissue structural assessment

Measurement of sound speed in cortical bone in axial direction with the head wave velocity

Source Transducer array (spatiotemporal sampling)
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Tissue structural assessment
Demonstration

Measurement of sound speed in cortical bone in axial direction with the head wave velocity

—p axial direction

1 radial direction
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Accurate anatomical image

Image reconstruction relies on the back-propagation of recorded echoes

It requires to calculate the travel time of ultrasound waves back to each pixel

Once a map of the sound speed is available, accurate image reconstruction is possible
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Accurate anatomical image
Demonstration

water
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Accurate anatomical image
In vivo — Human tibia

Soft-tissue reconstruction Traditional image reconstruction
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Accurate anatomical image
In vivo — Human tibia

Bone-corrected reconstruction
- cutaneous t|§sue
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Accurate anatomical image
In vivo — Human tibia

Without phase aberration correction With phase aberration correction
Soft-tissue reconstruction Bone-corrected reconstruction
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Accurate anatomical image
Sound speed anisotropy - Demonstration
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Accurate anatomical image
Sound speed anisotropy — In vivo

Human tibia (longitudinal view) - B-mode imaging
Wave-speed anlsotropy ignored Anisotropy-corrected reconstruction
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depth [mm]

Accurate blood flow quantification

Fast repetition of image acquisition (400 images per second)

Extraction of blood signal (non-stationary component)

Spatially-averaged intensity

Raw image, 400 frames/s . Filtered image, 400 frames/s " ;‘ filtered image
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Accurate blood flow quantification
Demonstration

Moving wire
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Accurate blood flow quantification missary vein and arteriole
In vivo - tibia _ 3020100
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Accurate blood flow quantification ; ».
In vivo — brain vasculature (transcranial imaging) d
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Accurate blood flow quantification
In vivo — brain vasculature (transcranial imaging)

No skull correction Skull corrected
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Accurate blood flow quantification
In vivo — brain vasculature (transcranial imaging)

No skull correction Skull corrected
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Thank you for your attention!
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