Kijken met geluid

Presentation at the WND conference Friday 13 Dec 2024 - Noordwijkerhout Eric Verschuur - TU Delft

Eric Verschuur

- 1976-1982 : Chr. Lyceum, Alphen aan den Rijn
- 1986
 : M.Sc. Applied Physics, TU Delft
 Room acoustics (Wigner distributions)
- 1991
 : Ph.D. Applied Physics, TU Delft
 Geophysics: Surface-related multiple elimination
- 1992 1996 : Research fellow at TU Delft
- 1996 1997 : Assistant professor at TU Delft
- 1997 now : Associate professor at TU Delft
- 2023 : from Applied Physics to Applied Earth Sciences
- Since 2016: Direct of Delphi Research Consortium
 www.delphi-consortium.com

Outline

Introduction to acoustic waves

- Part 1: Transmission measurements
 - Basics of tomography
 - Earthquake traveltime tomography
 - Full waveform inversion (FWI)
- Part 2: Reflection measurements
 - Acoustic reflection experiments
 - Applications in seismic, medical, material inspection
 - Full waveform inversion (FWI)
- Concluding remarks

Sound waves

Sound waves are vibrations of the medium (e.g. air, water)

It is caused by (de)compression of the particles of the medium

Humans and animals use it for communication; they can hear it by the pressure changes in the medium that finally make the eardrum ('trommelvlies') vibrate

http://www.dangerousdecibels.org/virtualexhibit/4whatissound.html

Speed of sound (1)

Sound travels with a certain speed through the medium.

In air it is 340 m/s, in water it is 1500 m/s. For comparison: Speed of light is 300.000.000 m/s

Therefore, it takes time for a sound wave to arrive after it was generated

Acoustic waves are longitudinal

Speed of sound (2) Example 1: Passive: calculate distance to lightning t=0 defined by the light(ning)! Example 2: Active: calculate depth of echoing well $d = \frac{1}{2} v \times \Delta t$ d These are all 1D examples, with one unknown

Active acoustic method: Like a bat

Bats send out ultrasonic signals; objects will reflect and the response is detected by the bat

Frequencies from 10 kHz to 120 kHz

Acoustical imaging/inversion applications

10 MHz 1 MHz 100 kHz 10 kHz 1 kHz 100 Hz 10 Hz 1 Hz0.1 Hz Laminated materials (e.g. airplanes) \rightarrow 0.5 cm deep Inspections of welds/constructions \rightarrow 0.5-5 cm deep Medical ultrasound \rightarrow 0.2-20 cm deep Ship wreck detection, geotechnical applications \rightarrow 1-20 m deep Near-surface inspection (a.o. wind farming) \rightarrow 5-500 m deep Oil/gas exploration, geothermal, CO_2 injection \rightarrow 0.5-5 km deep

Tectonic imaging \rightarrow 2-25 km depth

Global seismology (earthquakes) \rightarrow full earth

Outline

- Introduction to acoustic waves
- Part 1: Transmission measurements
 - Basics of tomography
 - Earthquake traveltime tomography
 - Full waveform inversion (FWI)
- Part 2: Reflection measurements
 - Acoustic reflection experiments
 - Applications in seismic, medical, material inspection
 - Full waveform inversion (FWI)
- Concluding remarks

Localizing the lightning...

TUDelft

But also with inhomogeneous medium?

Medium with temperature and/or wind gradient has varying speed-of-sound: sound paths are not straight lines anymore

JDelft

Back-tracing the sound to its source

With **a known medium**, we can back-trace the 'recorded' sound arrival time to its source location

Unknown medium parameters?

With **an unknown medium**, we need to make the medium (speed-of-sound profile) part of the parameters to be estimated → many measurements required, in a parametric inversion process

Farthquake Seismic Waves 6 8 Picture from: Lees, 2007, Journal of Volcanology and Geothermal Research

This is the situation in the earthquake seismology problem:

- Pick the arrival time of earthquake at each station
- Divide the Earth in cells and assign one speed-of-sound value to each cell
- Do forward modelling of arrival times and compare to measured ones
- Adapt these cell values until all arrival times fit (all δt=0)

15

Earthquake tomography

Result of inversion of seismic events around the Klyuchevskoy volcano (Russia)

The color represents the estimated speed-of-sound in each cell

Black dots are earthquake locations

Picture from: Lees, 2007, Journal of Volcanology and Geothermal Research¹⁶

P-waves and S-waves in elastic medium

P-wave: Pressure wave Primary wave

Source mechanism determines type of generated waves;

P-wave speed is larger than S-wave speed

Seismic waves in the Earth's interior

 Anchorage Mosco Compression (P) wave Shear (S) wave Mantic Surface (L) wave Hawaii and pay branes Cairo . Outer core Inner core Mongolia earthquak 20/5/90 magnitude 7.1

Picture: Gilan & Price, 2007, Contemporary Physics 48(2):63-80

Seismic waves in the Earth's interior

Very complex wave paths of the various arrivals around the globe for large earthquakes: travel time picking and inversion is very complex and ambiguous process

Towards Full Waveform Inversion

Complex arrivals, identification of events is difficult

Recording earthquake response along ~16 km cable

Towards Full Waveform Inversion

Full Waveform Inversion result

TUDelft Picture: van Herwaarden et al., 2020, Geoph. Journal International

Full Waveform Inversion result

100 km depth

ŤUDelft

Picture: van Herwaarden et al., 2020, Geoph. Journal International

Outline

- Introduction to acoustic waves
- Part 1: Transmission measurements
 - Basics of tomography
 - Earthquake traveltime tomography
 - Full waveform inversion (FWI)
- Part 2: Reflection measurements
 - Acoustic reflection experiments
 - Applications in seismic, medical, material inspection
 - Full waveform inversion (FWI)
- Concluding remarks

Looking with sound waves ...

TUDelft

Why acoustical imaging?

- Acoustic waves are relatively easy to generate and can penetrate in materials where electro-magnetic waves (i.e. light) don't.
- Propagation velocities are small enough (compared to the wavelength) to measure subsequent reflection arrivals separated in time.
- After digitization, 3D images can be calculated by advanced algorithms in the computer.

Original

Overview of acoustical imaging methods

- Narrow beam (phased array) illumination Image via time/distance conversion (just like radar) or pre-focused arrays
 - Works in homogeneous media
 - Based on a beam/pre-focused source
- Unfocused measurements, focusing in the computer Image created based on scanning all possible reflection points
 - Also works in inhomogeneous media
 - Based on point sources and point receivers

Narrow beam scan

'Echo sounding'

Use diffractive nature of object at high frequencies (just like laser scanning). Applications: imaging the water bottom and shallow sediments \rightarrow or finding fish \downarrow

(source: www.wikipedia.org)

This is how they looked for the 'lost' MH370 plane in Indian Ocean (2014)

As the ship passes over a survey area, fan-shaped sonar beams four times as wide at the depth of the water scan the seabed. It takes many passes to produce a continuous set of images.

Beams bounce off the seabed and return to the ship where the echos are recorded

Britisn Antarctic Survey

NOT TO SCALE

Medical ultrasound transducer

https://en.wikipedia.org/wiki/Ultrasonic_transducer#/media/File:UltrasoundProbe2006a.jpg

Medical ultrasound scanning

modern create real-time image

Ultrasonic source and detectors, focused at 10-20 cm below surface

Also imaging 'from inside out'

A catheter is inserted into coronary arteries and images the tissue of the arterial wall. In this way (vulnerable) plaque caused by atherosclerosis may be detected.

Using non-linear acoustics: harmonics

Nonlinear ultrasound is used, for instance, to image the heart in real-time and 3D.

Array technology is used to focus and steer the beam, while nonlinear acoustics is employed to suppress the effect of grating and side lobes for steered beams.

Movie of heart using nonlinear ultrasound imaging

Overview of acoustical imaging methods

- Narrow beam (phased array) illumination Image via time/distance conversion (just like radar) or pre-focused arrays
 - Works in homogeneous media
 - Based on a beam/pre-focused source
- Unfocused measurements, focusing in the computer Image created based on scanning all possible reflection points
 - Also works in inhomogeneous media
 - Based on point sources and point receivers

Unfocused measurements: seismic imaging

Seismic imaging: Imaging the subsurface

The earth is very inhomogeneous: (P-wave) velocities vary from 1500 m/s to 6000 m/s

Simulating a seismic response

Seismic imaging process

Obtain an image from a medium from acoustic reflection measurements

Seismic measurements at sea

Hydrophone cables

Airgun array

Seismic measurements on land

measurement with 3-component geophone: Vx, Vy, Vz **TUDelft**

Examples of seismic measurements

Multiple reflections

Primary reflection: one upward reflection in the subsurface

Multiple reflections

Multiple reflection: at least one downward reflection

Removal of multiple reflections

Image of input Image after multiple suppression

Difference

⁽image from www.fraunhofer.de)

Cross-fertilization: non-destructive material testing

Cross-fertilization: similar to seismic measurements, but at different scale

Cross-fertilization: non-destructive material testing

Cross-section weld using ultrasound

Cross-section weld using X-ray

(image from applus.com)

Background propagation velocity estimation

Traces Source Receivers overlap a) Source Receivers **Back-propagated** in time

Perturbed region

Make unfocussed measurements with

Imaging via backpropagation using wave equation, including influence velocity profile

Velocity profile unknown, need be estimated -

iterative approach: update

profile until all measurements

are well focused (sharp image)

ŤUDelft

Seismic imaging in 3D

3D image with interpreted geologic layers

Image from: http://www.pdgm.com/

Seismic lines and its aspect ratio

Full Waveform Inversion

Full Waveform Inversion result

Result of traditional seismic imaging workflow

Picture: Schlumberger

Full Waveform Inversion result

Result of FWI process, followed by imaging

Picture: Schlumberger

From imaging to inversion

Cross-fertilization to medical imaging Result of FWI from ultrasound data True brain model with with interpreted anomaly haemorrhage (Dutch 'bloeding') (a) (b) ground-truth segmented FWI-model segmented

Simulation study using full waveform inversion (FWI) to human brain imaging
JDelft Image from Guasch et al, NPJ, 2022

Outline

- Introduction to acoustic waves
- Part 1: Transmission measurements
 - Basics of tomography
 - Earthquake traveltime tomography
 - Full waveform inversion (FWI)
- Part 2: Reflection measurements
 - Acoustic reflection experiments
 - Applications in seismic, medical, material inspection
 - Full waveform inversion (FWI)

Concluding remarks

Concluding remarks

 Acoustic imaging has a wide field with applications across different scales: from mm's to km's

 Advanced inversion methodologies can create a new step in resolution improvement

Thanks for your attention

ŤUDelft

Advertisement

BSc Technische Natuurkunde

In het kort

Voertaal: Nederlands

Numerus fixus: nee

Verplichte studiekeuzecheck: ja

Start: september

UDelft

Vereiste vakken: Natuurkunde / Wiskunde B

Vorm: voltijds (on campus)

BSc Earth, Climate and Technology

In het kort

Voertaal: Engels

Numerus fixus: Nee, geen selectie

Start: September

Vereiste vakken: Wiskunde B, Natuurkunde en Scheikunde

Vorm: Voltijds- on campus

Buitenland: Veldwerk binnen het curriculum