
1. Introduction
Hydrological models are frequently used tools for scientific research. In 2010, about 75% of the hydrological sci-
entific publications related to runoff were based on a model study (Burt & McDonnell, 2015). The bibliometric 
analysis of Addor and Melsen (2019) demonstrates a steady increase in scientific publications based on hydrolog-
ical models over time. Models are thus an accepted method in scientific hydrological research.

Every hydrological model is prone to uncertainty (Oreskes et al., 1994), and in order to draw robust conclusions 
based on models, this uncertainty has to be made transparent (Renard et al., 2010). Transparency of the uncer-
tainty is not only needed for scientific rigor (Gupta et al., 2012), but also to support practical applications based 
on the scientific insights (McMillan et al., 2017). The use of models thus comes with (societal) responsibility 
(Hamilton et al., 2019; Melsen, Vos, et al., 2018). Estimating and quantifying uncertainty in hydrological models 
is a well-established research field—although challenges remain (Liu & Gupta, 2007) and uncertainty can be 
framed in different ways (Guillaume et al., 2017).

Often, this field takes a technical lens: the model is taken as a starting point, and from there the uncertainty is es-
timated, for example, in structure, parameters, and/or data (Wagener et al., 2004), for instance, through sampling. 
However, this notion of uncertainty only comprehends “technical” uncertainty, while models are also prone to 
methodological uncertainty (Funtowicz & Ravetz, 1993). Methodological uncertainty arises from differences in 
approaches and methods that are evaluated as appropriate for the research question. Different modelers evaluate 
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different models as adequate and make different decisions in the many steps that must be taken to set-up and 
configure a model. Some of these steps can be explored with sensitivity analysis (e.g., comparing different spatial 
resolutions), while other steps are taken unconcsiously, cannot be captured easily in a sensitivity analysis, or are 
simply taken for granted.

The first step in a model study is the development of a perceptual model. By definition, this step introduces 
personal preferences, because the perceptual model is “the summary of our perceptions of how the catchment 
responds” (Beven, 2012). Subsequently, the perceptual model is translated into a computational model, or an 
existing hydrological model is selected. Chegwidden et al. (2019) and Melsen, Addor et al. (2018) showed that 
hydrological projections diverge when different hydrological models are used; there can even be a change in the 
direction of the trend. The selection of a model is thus a crucial step for the results of the study. But also decisions 
beyond the model choice may influence the model results (Ceola et al., 2015; Holländer et al., 2014; Melsen 
et al., 2019)(Ceola et al., 2015; Holländer et al., 2014; Melsen et al., 2019), such as decisions related to the em-
ployed spatial resolution of the model or the calibration strategy.

Modeling decisions can have epistemic, ethical, and political dimensions (Beck & Krueger,  2016). Packett 
et al. (2020), for instance, provide several examples of how gender can play a role in hydrological model design 
and configuration. Babel et al. (2019) revealed, based on interviews with modelers from several fields in the Earth 
sciences, that habits play a large role in modeling decisions. Mayer et al. (2017) employed values-informed men-
tal models based on interviews with climate risk scientists, to disclose how their values influence their modeling 
decisions. On top of all that, the technical process of modeling is prone to human errors (Menard et al., 2021). For 
all of these reasons, Elsawah and Jakeman (2020) describe modeling as a socio-technical intervention.

Given that modeling decisions impact model results, and with that the scientific conclusions based on these 
results, it is relevant to investigate the motivations for these decisions. This study is an exploratory empiri-
cal investigation of the motivations for several modeling decisions. It is focused around hydrological modelers: 
Which decisions do hydrological modelers make when selecting and configuring their model? And what is the 
motivation for these decisions? Based on these insights, we can further define how to estimate methodological 
uncertainty in hydrological models, evaluate the legitimacy of hydrological modeling as scientific method, and 
consider methods to enhance transparency and good modeling practice in model studies.

2. Methodology and Data
This research aimed to identify motivations for model decisions. This study was exploratory, and therefore qual-
itative methods were employed. Fourteen hydrological modelers were interviewed using semistructured in-depth 
interviews (Adams, 2015). In this format, the key questions asked to each interviewee are in principal the same, 
but probed toward the particular case of the interviewee, and follow-up why or how questions are asked to achieve 
the required depth. The interviews were held between February and June 2020, partly in real life and partly 
through Skype because of travel restrictions related to the global Covid-19 pandemic. All interviews were held 
in English.

2.1. The Interviewees

The interviewees were recruited in two ways. Two group leaders responded to a call in the AboutHydrology 
mailing list. They agreed to participate in this interview study, and proposed team members, who were contacted 
with an invitation to join the interview study. Everyone accepted this invitation. A third group leader is part of the 
network of the interviewer and was personally approached to participate. This group leader also provided names 
of team members. Four out of five team members accepted the invitation to participate. As such, the interviewees 
come from three different institutes, and the interviewees from the same institute are direct colleagues.

The three institutes are all located in Western Europe. One institute is a university. The department of the inter-
viewees has nine professors, but only one of them was interviewed along with team members that are part of the 
subdepartment of this professor: one postdoctoral researcher and one PhD-candidate. The two other institutes are 
national research centers. One team has 10 permanent staff members, of which three were interviewed, along 
with one postdoctoral researcher and one PhD-candidate. The third team is a modeling-focused subteam of a 
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larger department. From this team, the team leader, a senior researcher, two postdoctoral researchers, and one 
PhD-candidate were interviewed. All three teams have a clear modeling focus.

In total, three PhD-candidates, four postdoctoral researchers, four senior researchers, and three group leaders 
were interviewed, thereby capturing the spread in scientific positions. The sample contained four female model-
ers and 10 male modelers. Model experience varied from several months (recently started PhD-candidates) up to 
over 25 years (group leader). The median number of scientific publications of the interviewees up to and includ-
ing the year 2020 was 19, with a minimum of zero and a maximum of 122 (and a mean of 33).

This study is exploratory. The aim is to in-depth explore certain patterns, which afterward should be tested for 
a larger sample size. Some saturation did occur during the coding of the interviews: very few new labels were 
defined for the last interviews because most motivations were already mentioned in the previous interviews. This 
suggests that the sample size is reasonable.

2.2. Semistructured In-Depth Interviews

The interviews were semistructured: all questions were prepared beforehand, but questions could be adapted in 
response to previous answers. The interview guide was not provided to the interviewees in advance. Before the 
interviews, the interviewees were asked to provide one of their recent scientific publications that describes a study 
for which they employed a hydrological model. In preparation of the interview, the interviewer read this paper 
in detail, and formulated questions specifically related to this study. This thus resulted in 14 interview guides, 
tailored to the study that each interviewee provided. For two PhD-candidates and one postdoctoral researcher, the 
interview was based on a draft manuscript.

The interview protocol is provided in the Supporting Information S1. The protocol was tested with two hydrolog-
ical modelers before the 14 modelers selected for this study were interviewed. Based on this initial test, several 
questions were reformulated for clarity. The test interviews were not considered in the results.

The interviews always consisted of three parts. The first part of the interview focused on the position, back-
ground, and the experience of the modeler. Question belonging to this part were: How would you describe your 
current academic position? and Can you describe your experience as a hydrological modeler? This part of the 
interview usually took about 10 min.

The second part of the interview was specifically related to modeling decisions, and was based on the paper that 
the interviewee had provided. Questions belonging to this part of the interview were, for example, What made you 
decide to use model [..] for this study? and You used the [..] downscaling technique. What made you decide to use 
this technique? Some questions were asked in every interview, such as the model choice, while other questions 
were specific for the study at hand, such as the example question on the downscaling technique. This part of the 
interview usually lasted about 40 min.

In the third part of the interview, the interviewees were asked about their confidence in the model, and their per-
ception of their influence on the model results. Furthermore, interviewees had the opportunity to add any remarks 
they deemed relevant. This part of the interview took about 10 min.

The shortest interview took 40 min, the longest interview 1 hr and 31 min. The total interview time for the 14 
interviewees was 13.9 hr. All interviews were recorded with the consent of the interviewee, and completely tran-
scribed after the interview. The transcriptions were sent back to the interviewees for approval. Sometimes, small 
additions and clarifications were added at this point. In total, 110,767 words (about 220 pages) of transcriptions 
were obtained.

2.3. Inductive Content Analysis

The transcribed interviews were subject to an inductive content analysis (Kyngäs, 2020; Weber, 1990). Inductive 
content analysis is used when limited prior knowledge is available: Concepts are defined during the analysis. This 
contrasts deductive content analysis, where a theory and the corresponding concepts are predefined and tested 
with the data. Inductive content analysis was chosen because no theories exist yet on how hydrological modelers 
make modeling decisions. The analysis was conducted using Atlas.ti 8 software.
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The first part of the analysis consisted of a topical classification of the data. Because the interviews were semi-
structured, information related to specific topics could occur at multiple places throughout the interview. In the 
topical analysis, different parts of the interview belonging to the same topic were labeled. Topic labels were de-
fined for topics that reoccurred frequently across the different interviews. An example of a topic label is “model 
experience”; this label was applied to all the interview parts that described the experience of the interviewee 
with models. In total, 22 different topic labels were defined (Table 1), but not all topics were covered in all 
interviews  (Table 2).

The second part of the analysis consisted of the thematic classification of the data. Whereas the previous step 
relates to organizing the data, this step is the start of the actual content analysis. The interview transcripts were 
carefully read, and as soon as a motivation for a certain decision was mentioned, this text was labeled. If this 
motivation had been mentioned before, an already existing label was applied to the text. If a new motivation was 
found, a new label was defined. The labels were defined very close to the original text. An example of a response 
from the interviewees was: “Classical decision, that is what is typically used to solve it, to solve this equation, so 
we stick to it.” The label added to this text was “typically used.” Another example is “We knew that this existed 
so that’s why we used that,” which received the label “knew existence.” After evaluating the 14 interviews, 106 
different labels were identified for 727 different pieces of text. This represents an average of 52 thematic labels re-
lated to modeling decisions per interview, with a minimum of 32 and a maximum of 81 across the 14 interviews.

Topic Description #

Confidence model The confidence the modeler has in the model 14

Development of model use How the use of models changed throughout personal career 11

Educational background Educational background of the interviewee 14

Influence modeler How the interviewee perceives own influence on model results 14

Model experience Experience of the interviewee with hydrological models 14

Model use How the interviewee perceives own model use; model user, model developer, etc. 3

Position Professional position of the interviewee 14

Satisfied about model Satisfaction of interviewee with the model 2

Study goal Goal of the study 12

Decision calibration Decisions related to calibration strategy—includes discussions on why no calibration was performed 13

Decision parameter selection Decisions related to which parameters to optimize in calibration 3

Decision data use Decisions related to which data to use—also includes decision on which catchment 14

Decision data use preprocessing Decisions related to preprocessing procedure of data 10

Decision model implementation Decisions related to how to implement model 3

Decision model selection Decisions related to which model to use for the study 14

Decision model settings Decisions related to specific model settings (i.e., turn on/off certain elements) 9

Decision objective function Decisions related to objective function in calibration and evaluation 13

Decision simulation period Decisions related to the period used for simulation 12

Decision spatial resolution Decisions related to the spatial resolution of the model 10

Decision temporal resolution Decisions related to the temporal resolution of the model 11

Evaluation KGE values KGE values that interviewee considers reasonable 8

Evaluation NSE values NSE values that interviewee considers reasonable 2

Evaluation other metrics Other metrics for which interviewee considered reasonable values 1

Note. Topics relate to the background of the interviewee and the background of the study, to modeling decisions, and to estimates of the interviewee of what is 
considered a reasonable model performance. The topic labels were used to further analyze motivations for modeling decisions. Not every topic was covered in every 
interview (i.e., not in every study a KGE value was employed). The third column (#) indicates the number of interviews in which the topic was covered.

Table 1 
The Topics That Were Identified in the Interviews and Used to Organize the Data
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Classified label (total #, # of motivations) Definition #

External party (12, 3)

 Funding agency Funding agency determines/allows/suggests certain decisions 9

 Project end-users End-users had certain research interests that steered direction 2

 Politics Politics played a role (for instance in which data was 
available, e.g., in climate projections)

1

Broader scientific community (131, 15)

 Literature Based on the literature 33

 Data availability The data is available 29

 Data quality The data has good quality 15

 Widely used This is just the common, popular way of doing this 14

 Data accessibility The data is accessible 13

 Data resolution This was done because of the resolution of the input data 7

 Discussion external developer Discussed with the developer of the model/tool (no 
collaborator/coauthor)

4

 Popular in another community This is coming from another research community where it is 
very popular

4

 Typically used This is what is typically used 3

 Best available data This was the best available data set (at that time) 2

 Reviewer asked Something was done because the reviewer asked 2

 School knowledge This is how it is taught at school or common knowledge (e.g., 
specific numbers)

2

 Competition This was done to provide competition with another institute/
project

1

 Good documentation data There is good documentation of these data 1

 Part of community A larger community is working with these data/tools/models 1

Scientific collaborator (38, 6)

 Discussion author team It was discussed in the author team and this was the decision 18

 Experience project partners Decision based on experience of scientific project partners 
that joined the study

6

 Experience external colleague Based on experience from collaborator 5

 Developed there It was developed at the institute of coauthor/collaborator 4

 Modeling protocol It was described in a protocol 3

 Research stay Colleague or modeler did a research stay in or moved to 
another group

2

Institute (32, 5)

 Developed here It was developed here in this team (also “institute” because 
can be more general than team)

10

 Computer power Available computer power/resources—includes memory, 
storage and run-time

6

 Origin data The origin of the data was relevant in relation to origin 
institute—for example, whether it was produced in US or 

in EU

6

 Agreement There is an agreement about access to data 5

 Infrastructure There is infrastructure that facilitates the use of these data/
tools/models

5

Table 2 
The 83 Labels That Were Used to Identify Different Motivations
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Table 2 
Continued

Classified label (total #, # of motivations) Definition #

Team (223, 19)

 Experience colleagues Based on experience of direct colleagues 67

 Previous work internal This was shown in previous work from inside organization 23

 Discussion author team It was discussed in the author team and this came out 18

 Supervisor Supervisor decided or recommended it (in a pupil-mentor 
context)

17

 Set-up was available already This set-up (or the simulations) was already available from 
earlier work

14

 Default use in the team This is standard use in this team 13

 Default model setting Settings come along with the model set-up (also “Team” 
when developed there)

11

 Developed here It was developed here in this team (model and codes) 10

 Default model tool This tool is default to this model (also “Team” when 
developed there)

9

 Not exactly known Not exactly known how/why colleague made a certain choice 9

 Experience supervisor Based on experience from the supervisor (explicitly 
mentioned supervisor)

6

 Available set-up was starting point The old version was the starting point from where new 
improvements were made

5

 Code availability Codes for preprocessing and postprocessing of the model 
were available

4

 Comparison previous work internal This was done for comparison to earlier work within the 
group

4

 Set-up will be used in follow-up study This set-up will be used in future studies and therefore these 
settings were already chosen

4

 Heritage Heritage in the group from experienced people 3

 Confidence in colleague Confidence/trust in colleague 2

 Script availability A script was available to do this 2

 Team leader Team leader decided it (at a higher general level than 
individual supervisor)

2

Individual (246, 30)

 Individual—Personal (123, 16)

  Personal experience Personal experience with this method/model/code/these data 34

  Personal judgment Personal expert judgment 34

  Model performance was good The model performance was good (enough) 13

  Specific model aspects Certain (conceptual) aspects of the model made that it was 
selected

13

  Not the aim That was not done because it was not the aim of this study 5

  Personal interest Personal interest is more in this direction (e.g., where to focus 
on in model development)

4

  Confidence in model The modeler has confidence in this model 3

  Know the region A region was selected because modeler knows this region 3

  Like it Personal preference, the modeler likes this method/tool/
approach, without any further reason

3
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Table 2 
Continued

Classified label (total #, # of motivations) Definition #

  Data requirements Model/method was used because it had low data requirements 2

  Good documentation model This model is well documented 2

  Good documentation tool There is good documentation of this tool (e.g., calibration 
algorithm)

2

  Method based on a lot of data This method was selected because it is based on many data 
points/most data

2

  Knew existence It was used because modeler knew that it existed 1

  Not well documented Model is not well documented 1

  Open source Something was done because it could be shared/open/made 
available to others

1

 Individual—Interaction model (51, 5)

  Run time Run time was an argument to make a decision (does not incl. 
memory/storage)

21

  Tested Different options were tested and this one was chosen 16

  Method lead to best model performance This method was selected because it leads to higher model 
performance

6

  Trial and error Ad hoc like testing—trial and error 5

  Visual inspection Based on visual inspection 3

 Individual—Pragmatic reasons (57, 7)

  Run time Run time was an argument to make a decision 21

  Lack of time Something is not done because of time constraint 13

  Pragmatism To keep it practical 9

  Time efficiency Motivation for a decision based on efficiency in time; usually 
a trade-off with effort

9

  Effort It was a trade-off with effort 2

  Managed to run Model was used because modeler managed to run it 2

  Not user friendly This was not used because it was difficult to use/not user 
friendly

1

 Individual—Nontraceable (36, 4)

  No real reason Choices were made ad hoc, arbitrarily 17

  Not exactly known Not exactly known how/why colleague made a certain choice 9

  Don't know Not aware of what was exactly done to data/model that was 
used

6

  Can't remember Can't remember the reason for something anymore 4

 Consequential (45, 10)

  Default model setting Settings come along with the model set-up 11

  Default model tool This tool is default to this model (generally, calibration 
algorithm)

9

  Consistency To stay consistent with the model set-up 6

  Available set-up was starting point The old version was the starting point from where new 
improvements were made

5

  Comparison previous work external This was done for comparison to previous work in the 
literature

4

  Comparison previous work internal This was done for comparison to earlier work within the 
group

4
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The next step was to evaluate the 106 different labels and revise and group them. For example, when comparing 
the texts belonging to the label “ad hoc like testing” and the label “trial and error,” it appeared that both labels 
referred to the same motivation and the labels were merged. Other labels were split. For example, the label “for 
comparison to earlier work” was split into “for comparison to earlier work internal,” comparing it to work that 
was done in the same team, and “for comparison to earlier work external”—something was done in a certain way 
to be able to compare it to another method or approach used by others or described in the literature. After the 
evaluation, 83 different labels were left that each represent a different motivation (Table 2).

The final step was a classification of the labels. Labels that relate to each other were grouped in a class and the 
class was named after the overarching theme of the labels. The labels “funding agency,” “politics,” and “project 
end-users” all refer to external parties outside of academia and their class was therefore named “External party.” 
Sometimes, labels related to multiple classes. For example, the label “discussion author team,” that indicates that 
something was decided based on a discussion with the author team, belongs both to the class “Scientific collabo-
rator” and the class “Team,” because it depends on whether the authors of the study were only direct colleagues 
or also colleagues from other institutes.

The classification of the labels is an interpretation of the data. There are, however, also existing frameworks about 
values in science that might be applicable for analyzing the interviews. A relevant theory is the epistemic versus 
contextual values in science approach, introduced by McMullin (1982). This will be further explored in Section 3.4.

2.4. Scientific Stance of the Interviewer

The background of the interviewer can determine the direction of the interview, and therefore the results of the 
interview. This section shortly describes the scientific stance and the scientific background of the interviewer.

The interviewer has a scientific background in hydrological modeling, both with land-surface models and con-
ceptual hydrological models, with a focus on uncertainty estimation. As a result of this focus, the interviewer has 
developed a scientific vision based on constructivism—which led to the initiation of this interview study. The 
technical background of the interviewer can have biased the interview questions. The interviewer, for instance, 
has ample experience with calibration strategies, and therefore, questions and responses to the answers related to 
calibration could be very detailed. On the other hand, the interviewer has little or no experience with (real-time) 
data assimilation. Questions and discussions related to data assimilation might therefore not have reached the 
same depth as questions and discussions related to calibration.

3. Results and Discussion
3.1. Framework of Motivations for Modeling Decisions

The 86 different motivations for modeling decisions across the 14 interviews were grouped into seven classes: 
External party, Broader Scientific Community, Scientific Collaborator, Institute, Team, Individual, and Conse-
quential. Each class includes several motivations, as indicated in Figure 1 and Table 2.

The class External party contains motivations related to external parties outside of science. Only three motiva-
tions are associated to this class (Figure 1 and Table 2). The funding agency, as external party, can, for, instance 
suggest the use of certain data (I is interviewer, P3 is interviewee number 3):

Table 2 
Continued

Classified label (total #, # of motivations) Definition #

  Comparison between models This was done to fairly compare two models 2

  Default tool setting This is default setting of this tool 2

  Not compatible Other method was not compatible with model 1

  Only option It was the only option modeler had (e.g., given data gaps) 1

Note. The labels have been grouped into seven classes and four subclasses. Labels can be assigned to several classes. The frequency of occurrence of each label is 
indicated in the last column. The total occurrence of the different labels within the class and the number of labels is indicated as well (see also Figures 1 and 2).

 19447973, 2022, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030600 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [22/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

MELSEN

10.1029/2021WR030600

9 of 21

I: “But why not use this one directly then? Why then still use the [data set]?”
P3: “Because the [data set] has to be used.”
I: “Because that's what [funding agency] told you?”
P3: “Well, it was just suggested that we should use it. [..] They say, we have the data but it is incomplete, 
but use as much as you can, okay? Okay.”

The class Broader scientific community contains motivations that can be related to the current paradigms in the 
hydrologic community (e.g., typically used, widely used, school knowledge), the availability of data (e.g., data 

Figure 1. Framework of classified motivations to make modeling decisions. Modeling decisions can be classified as being steered, decided, or prescribed by external 
parties, the scientific community, collaborators, the institute, the team, or made by the modeler themselves (Individual). Consequential decisions demonstrate a path 
dependency: certain decisions are prescribed by, or the consequence of earlier decisions. The circles show the five most frequently mentioned motivations per class, 
with the size proportional to how often this motivation was mentioned in the interviews and their color according to the classes to which they belong. An overview of 
all motivations can be found in Table 2). The bars indicate how often a reason belonging to a certain class was mentioned in the interviews. The first number above 
the bar gives the absolute count (for instance, a reason that belongs to the External party class was mentioned 12 times across all interviews), the number between the 
square brackets gives the number of reasons that were assigned to a class (i.e., three different reasons have been related to the class External party).

Literature

Tested

Agreement 

Available setup 
was starting point

Computer 
power

Consistency

Data
accessibility

Data
availability

Data quality

Default 
model setting

Default 
model tool

Developed 
there

Discussion 
author team

Experience 
colleague

Experience 
external 

colleague

Funding 
agency

Infra-
structure

Modelling
protocol

No real 
reason

Origin data

Personal 
experience

Personal 
judgement

Previous work
internal 

Run
time

Experience 
partners

Supervisor

Widely used

ConsequentialIndividualExternal party Scienti�c 
collaborator

Institute Team

Fr
eq

ue
nc

y

12 [3]

131 [15]

38 [6] 32 [5]

223 [19]
246 [30]

45 [10]

increased personal freedom of choice

Discussion 
author team

Developed 
here

Set-up available

Previous work
in/external

Scienti�c 
community

Project 
end-user

Politics

 19447973, 2022, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030600 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [22/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

MELSEN

10.1029/2021WR030600

10 of 21

availability, data quality), and the literature. Fifteen different motivations were assigned to this class (Table 2). 
From all motivations in this class, literature was most frequently mentioned: 33 times across 12 interviews. For 
instance, in the following quote:

“Of course, we went through the whole literature. We looked into all the possible [functions] that we could 
possibly find, review papers, all that stuff.” [P12]

However, 18 out of 33 times literature is mentioned in combination with other motivations, such as colleagues:

“.. there is an option for what optimization method I want to use, and then I read some papers and I talk 
with some of the colleagues.” [P1]

The class Scientific collaborator refers to motivations that come from collaborations within the scientific field 
but outside the institute where the modeler is working. Six different motivations were assigned to this class 
(Table 2). Most frequently mentioned was Discussion author team (18 times across seven interviews), where a 
modeling decision was based on a discussion with the authors of the paper (this motivation was also assigned to 
class Team because it depends on the composition of the author team). Related to Discussion author team was the 
motivation Research stay: The modeler did a research stay at another institute, which fostered the collaboration 
and led to a joint publication.

The class Institute mainly relates to facilities provided by the institute where the modeler works. Five motiva-
tions are assigned to this class (Table 2). Motivations relate for instance to computer infrastructure, computer 
power (having access to a high-performance cluster), and agreements that the institute might have with certain 
data-providers:

P7: “At least, in [country], [data-provider] puts a lot of restrictions, so we can have it now, but it was not 
the case before.”
I: “You have an agreement now.”
P7: “Yeah, we have an agreement. So data accessibility is also an issue.”

The class Team represents motivations that are related to colleagues, group leaders and supervisors, and to scripts, 
model set-up, and code availability within the team. In total, 19 different motivations were assigned to this class 
(Table 2), and with 223 text labels related to these motivations, this is the second most frequently mentioned class 
after Individual. By far most frequently mentioned across all identified motivations is Experience colleagues, 67 
times in 13 out of 14 interviews. This motivation appears in many different forms and shapes related to many dif-
ferent modeling decisions; for example, programming language, data use, quality control, and modeling vision. 
A few examples are provided below:

“We used [programming language] because, like many people in the team use [programming language] 
and they have developed packages, so.. ” [P6]
“.. when you're not born a modeler, you need other people's support, and it's much easier if the support is 
given by people next door, and I had very experienced modelers at that time in our group when I joined it, 
and they were very keen in bringing support” [P7]
“Yeah, because he has done the calibration in the department for many years, and he has developed lots of 
codes to extract river basin information.” [P2]

Another interesting motivation belonging to the Team class is Set-up was available already. A specific model, 
with a specific set-up, was used simply because it was there already. Many of the decisions related to the configu-
ration of the model, such as the spatial resolution, are then not made by the one doing the study, but by a colleague 
who made the set-up for a previous study. Therefore, this motivation very much relates to Experience colleagues:

“So I don't know, I don't know why my colleagues did that, but they did it. They just, I mean, we had these 
two set-ups, and I was working on this model development study, and so for me it was a great opportunity 
to use both and why they did it… I don't know.” [P5]

This last quote was assigned both to Set-up was available already and Not exactly known.
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For the motivations in the Team class, it is relevant to be aware that the inter-
viewed modelers all work in a team dedicated to modeling. This can enhance 
the frequency of relying on experience of colleagues in the modeling process. 
This is further discussed in Section 4.1.

The class Individual includes motivations that are related to the individual 
modeler. This class contains 30 motivations (Table 2), which can be further 
subdivided into four subclasses (Figure 2): Personal, Pragmatic reasons, In 
interaction with the model, and Nontraceable. Most frequently occurring are 
the Personal motivations, especially personal experience and personal judg-
ment. Personal experience is often used in the same way that experience from 
colleagues is used for modeling decisions:

“It was basically what I used before, a couple of years ago. So it was 
more like, I had the experience with something, I already have the 
code, so it was easy for me to just apply it.” [P1]

Expert judgment was very often related to the modeler's perception that 
something was or was not relevant to consider, such as shown in this quote:

“I don't think that the results of the study do depend on that choice. I 
have no proof for that, haha. But that's how it is.” [P5]

But expert judgment was sometimes also a motivation to make adaptations, for instance to parameter values:

I: “Were these numbers really the average from all the data you had or did you do some spatial correction 
or, again, some expert judgment correction?”
P13: “There was no spatial correction. Definitely not. It was expert judgment based on available data.”

Since the modeler is the one who actually runs the model, there is a specific subclass In interaction with the model. 
This relates to motivations that require that the model is run. For instance, something was tested with the model, 
with trial and error a certain decision was made, or the model run-time appeared to be too long. Run-time was both 
classified in the subclass In interaction with model and subclass Pragmatic reasons. Under pragmatic reasons, 
there are many other motivations related to time constraints (something was done for time efficiency, or not done 
due to a lack of time). The last subclass, Nontraceable, are answers that indicate that the underlying motivation 
cannot be traced back. Five percent of all motivations were non-traceable. This reveals that there are some moti-
vations that are not documented in the paper, and that can also not be traced back by directly asking the modeler.

The final class is Consequential. This relates to choices that are the consequence of decisions that were made 
earlier and demonstrates the path dependency in hydrological modeling (Lahtinen et al., 2017). Consequential 
motivations can again be subdivided into two subclasses. On the one hand, motivations can be rather stringent, 
such as only option and not compatible:

“I cannot say it's justified to use an average value but that's the only option we had.” [P12]

On the other hand, motivations can be consequential but not stringent, for instance related to using default op-
tions (default model setting, default model tool, default tool setting). It is not strictly necessary to use the default 
calibration algorithm that comes with a model, but still this default algorithm will often be used, and depends on 
the model selected earlier.

There was one motivation that could not be classified in this framework, and that is Vision. This is a very broad 
motivation and relates to the modeling vision or modeling philosophy of the modeler. This vision is probably the 
result of personal experience, personal interest, personal judgment, the team and the supervisor, and the broader 
scientific community. This motivation will be further discussed in Section 3.4.

Overall, the classes Team and Individual are by far the most frequently occurring classes off motivations for certain 
modeling decisions (Figure 1). What the presented framework undeniably shows is that modeling is inherently a 

Figure 2. The class Individual can be subdivided into four subclasses. Several 
examples are provided for each subclass. The bars indicate how often a reason 
belonging to a certain subclass was mentioned in the interviews. The first 
number above the bar gives the absolute count, the number between the square 
brackets gives the number of different motivations that were assigned to this 
subclass.
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social process, where many more factors than the expertise of the modelers themselves play a large role. Although 
the modeler has personal freedom, modeling is not a solitary activity, but an activity that is influenced by local 
context. The role of the direct surrounding of the modeler (colleagues and the available facilities and infrastructure) 
and the social embeddedness of modeling decisions demonstrates that it takes a village to run a model.

3.2. Modeling Decisions

In this section, three modeling decisions are analysed in more detail, to demonstrate how different motivations for 
a decision can interact and co-occur. The decisions are: model choice (“What made you decide to use this mod-
el?”), data choice (“What made you decide to use these data?”) and the choice for a certain calibration algorithm 
(“What made you decide to use this calibration algorithm?”). The first two decisions, model and data choice, 
were raised in all interviews. The choice of calibration algorithm was only relevant in 11 out of 14 interviews, in 
the three other studies no calibration was performed.

3.2.1. Model Selection

As demonstrated in the top left panel of Figure 3, Experience colleagues was the most frequently mentioned 
motivation for the decision to use a specific model (in 8 out of 14 interviews). The experience of colleagues with 

Figure 3. The motivations for three model choices: model selection, data selection, and calibration algorithm selection. The bars indicate the frequency that this 
motivation was mentioned. Motivations connected with a solid arrow often cooccurred in the same sentence. Motivations connected through a dashed arrow can be 
connected based on reasoning (see text). Motivations outside the gray panels but connected through a solid line often cooccurred, but not in the context of this specific 
decision.
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a specific model was often related to personal experience with the model, and if a model was selected because 
it was developed “here” (i.e., at the institute or in the group where the modeler works), it can be expected that 
there are colleagues that have experience with this model. Motivations at institute, team, and personal level thus 
come together. Experience seems a very important criterion to select a model, as was hypothesized by Addor and 
Melsen (2019). Outside the context of model selection, Experience colleagues is often mentioned together with 
Time efficiency: it is efficient to use something that colleagues have experience with. Time efficiency was not 
explicitly mentioned in the model selection context, but can implicitly be related.

The second most frequently mentioned motivation for model selection was Specific model aspects (in 5 out of 14 
interviews): The model was selected because it has a certain asset according to the modeler. This asset can for 
instance be that the model has a real-time data-assimilation framework, or that it has a certain scaling concept 
that appeals to the modeler. Very often, these specific model aspects were related to more general vision of the 
modeler on hydrological modeling. An example of a vision is:

“I think we are stepping into a new era of hydrological modeling, which is good because it was not there, 
perhaps ten years ago. It will provide new features that the society can benefit from. And another part is 
very high resolution modeling, which was not available couple of years ago, going up to 1 km.” [P2]

This modeler perceives spatial resolution as very important, and therefore selected a model which can run at very 
high resolution relative to the spatial coverage.

There seems to be a dichotomy between the more pragmatic experience-based motivation and the vision-based or 
model-aspect motivation to select a model. This is, however, not necessarily the case. First, there is a clear role 
for recruitment here. Two modelers from different institutes mentioned in the interview that they applied for a job 
at that institute because they appreciated the modeling approach. Recruitment leads to the alignment of the vision 
between colleagues so that experience of colleagues and vision become intertwined. The modeling vision can 
also be developed while working at a certain institute and can become internalized, as described in Section 3.3. 
The apparent dichotomy between the pragmatic and vision-based motivation thus hides underlying systems, re-
lated to recruitment and internalization, that connect these motivations.

Note that none of the interviewees directly related the model choice to the research question of the study. One of 
the interviewees formulated it this way:

“Yeah, yeah, we have the tools, we have the experience, and then we start asking questions” [P11]

showing that it is not the research question that is driving model selection, but that available tools (models but 
also methods) and experience, that together represent the expertise of the team or institute, determines which 
research questions are addressed.

3.2.2. Data Selection

Data requirements differed substantially between the different model studies of the interviewees. Data require-
ments vary from input forcing data, to land use, soil or other spatial catchment data, to observation data for 
validation. The most frequently mentioned motivations are that data is used because it is accessible and because 
it has good quality (Figure 3). But also here, experience plays a role. Data quality was often related to personal 
experience and personal judgment. Experience plays a role in two different ways: having experience with the data 
itself, and having experience with processing the data.

“We have used it [these data] repeatedly and we know that it’s quite good.” [P7]

This quote refers to having good experience with the data itself, the quality assessment of the data is based on 
experience. In the following quote, experience in relation to data is relevant for the processing of the data:

“[…] they are easily available in our research team because we are used to use this kind of data for most 
applications, so we can process this kind of data very easily.” [P8]

Many other team-related motivations were mentioned, such as Set-up was available already. This means that a 
model set-up from a previous study was used. The modeler did not make any decisions related to data use, but 
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adopted all the decisions from the previous set-up, thereby relying on the col-
league who made these decisions. The same applies to making use of default 
model settings and default data that are used within the team.

Often cooccurring with Accessibility is Agreement (5 out of 14 interviews). This 
means that there is an agreement between the institute and a certain data-provid-
er about access to the data. Such agreements can determine which data are used.

Similar to model choice, also for data selection two pillars seem to under-
lay the decision: on the one hand experience, and on the other hand data 
accessibility, quality, and availability. These pillars are connected: quality 
assessment can be related to experience, and accessibility can be related to 
agreements of the institute.

3.2.3. Calibration Algorithm

The decision for the calibration algorithm is much more straight forward than 
for the other two decisions: all motivations are classified at the team level and 
can be related (Figure 3). Often co-occurring are Previous work internal and 
Experience colleagues. Previous work internal in this context indicates that 
colleagues investigated different calibration algorithms, which led to a pref-
erence at the team level. This can be the default implementation of a certain 
algorithm in the model ecosystem (Default model tool).

So while one would be expected to think more about run time, efficiency, risk 
of ending in local minima et cetera when selecting a calibration algorithm, 
these kind of trade-offs and evaluations were usually already made earlier by 
colleagues, and this was not reconsidered in new studies:

I: “So you also checked other algorithms?”
P7: “Not for this study, let's say that's part of our old, let's say, base of 
tests, where we did a lot of comparisons.”

This fits in the perspective that science is incremental, and new studies build on the knowledge gained in earlier 
studies. From that perspective it is remarkable, however, that this incremental building of knowledge seems to a 
large extent tight to the research team. The results of the old base of tests on calibration algorithms, referred to in the 
quote, are for instance only published in an internal report. Another comparison that was done within this team and 
that has led to the preference for a specific potential evaporation equation, was published in peer-reviewed scientific 
literature, but this study was not picked up by the other two teams—which can be understood given the large number 
of studies and publications available on this topic. Besides, much of the created knowledge related to model deci-
sions is specific to the modeling ecosystem of the team that did the investigation, that is, given certain forcing prod-
ucts or certain model settings. The result is that each team does its own analyses and sticks to its own preferences.

3.3. Internalization and Institutionalization

The processes of internalization and institutionalization became apparent when evaluating the motivations and 
the decision framework. These processes are depicted in Figure 4 and discussed in more detail in this section.

The process of institutionalization in hydrological modeling context starts with an individual that uses a certain meth-
od or approach, for instance, because this person has experience with it, for example, from another job. Other team 
members make use of the experience of this individual, and as such it can become standard use in the team. If it then 
becomes the default tool in the modeling ecosystem, the method or approach is institutionalized. This process can also 
work the other way around. An individual uses the default tool that is available in the team. Eventually, this individual 
starts to defend this tool as if it were the individuals own decision to use it: The method or approach is internalized.

Several cycles of institutionalization and internalization could be recognized by interviewing members of the 
same team with different positions and experience. An example is the use of a certain downscaling technique:

Figure 4. Visualization of the processes of internalization and 
institutionalization. Modeling decisions imposed by the institute or the 
research team on the individual, for example, through the available modeling 
ecosystem, eventually get internalized by the individual and become a 
personal preference or choice. Vice versa, dependent on the position of the 
individual, personal preferences and choices can become institutionalized. 
The preferences of, for instance, the group leader can become standard use in 
the team. These processes take place in the context of the broader scientific 
community of which the institute, research team, and individual modeler 
are all part of. Common methods in the scientific community can become 
internalized, and strategies of a certain team or institute can become widely 
used in the scientific community.
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P3: “Yes, so, downscaling, how you do that thing? So you can again play with many things, but the [meth-
od] was developed here.”
I: “You developed it here?”
P3: “Yes, we have our own code. I wrote this from my old times in [city 1] and [city 2]. When I came here 
it was the first thing I did because I needed to prepare the data for [model].”

This code has become part of the modeling ecosystem and as such became institutionalized, as noticed by another 
interviewee:

“Most of the preprocessing that is required to run the model was covered by the infrastructure, the scripts 
and the database. So, the flow is there, and then I have to do nothing but to press a few enters and then that 
is done.” [P1]

In internalization, this default option is defended as being the best option (the use of passive voice in the quote of 
P2 suggests that internalization is not completely accomplished yet):

“Yeah, so. It has been decided to use [method] for interpolation. There are other options, but it is assumed 
that adding the [variable] will be more realistic.” [P2]

The cycles of institutionalization and internalization take place at the institute/team/individual level. However, 
the institute, team and the individual are also part of a scientific community. Internalization of common proce-
dures within the scientific community are often referred to as paradigms. Institutionalization at the level of the 
scientific community, that is, the procedure of an individual or a team becomes the new scientific community 
standard, requires a paradigm shift. This is generally harder to achieve than institutionalization of a procedure 
at the institute/team level. It can even become controversial, Lloyd and Oreskes (2018) discuss how the climate 
community responded to the proposal of a new method for climate change attribution, from fraction of attribut-
able risk to storylines. The newly proposed method was accepted by the team of the initiator, but was perceived 
controversial at first by the broader climate community.

The role of internalization and institutionalization could be related to the experience and position of the modeler 
in the team. In that case, it should be visible in the distribution of motivations across the different categories; 
more individually motivated and less team-motivated decisions for more experienced modelers. To test this, the 
percentage of modeling decisions related to a specific class was split out by research position, where position is 
assumed to represent modeling experience (Figure 5).

Especially the role of team-related decisions decreased with increasing experience—from 39% of the motivations 
being team-related for a PhD-candidate to 23% team-related motivations for a group leader. The individually 
motivated decisions increase up to senior researcher, but decrease again for the group leader. The results suggest 
that there is indeed a relation between position, used as a proxy for experience, and the level of team dependency, 
which might be the result of institutionalization processes. This should be studied with a larger sample of inves-
tigated modelers to confirm this hypothesis.

Figure 5. The percentage of motivations across the different classes, split out for the position of the interviewee. Three PhD-
candidates, four postdocs, four senior researchers, and three group leaders were interviewed. Only the classes that represent a 
substantial part of the motivations are displayed.
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3.4. Epistemic Versus Contextual Values

The classes described in Section 3.1 were determined in an inductive manner. There are, however, frameworks 
available for the classification of scientific choices—although not specifically developed for hydrological mode-
ling. A particularly relevant framework is presented by McMullin (1982), and is explored further in this section.

McMullin (1982) acknowledges value-judgment to be an explicit part of science, but makes a distinction between 
two types of values: epistemic values and contextual values. Epistemic values are supposed to support the truth-
like character of science. They relate to the value-judgment of a theory: The theory is assessed based on the 
epistemology of the modeler. This is the motivation Vision, that was not assigned to any class yet. Examples of 
epistemic values in the interviews were:

“The main kind of approach in the [..] developing team is to keep things simple” [P1]
“There is a sentence from Einstein: As simple as possible but not simpler. And I prefer this approach […]” 
[P10]

These two quotes come from interviewees that perceived a simple model as better than a complex model, where 
the second quote also implicitly includes a judgment on performance (“.. but not simpler”; Note that different 
definitions of epistemic values exist, and that “simplicity” is not necessarily recognized as an epistemic value by 
McMullin (2009), but is acknowledged as such by Lycan (1985). Simplicity is thus not generally recognized as 
epistemic value, even though it is a widely applied hydrological modeling philosophy, as also demonstrated by 
the quotes from the interview). A contrasting epistemic value, that was not encountered in the interviews, is that 
all processes should be included in the model: the model should be as complete as possible. A modeler following 
this epistemology might for example, choose to include a certain process in the model, even if it is not exactly un-
derstood yet how this process works, because this modeler believes that this is the best way to discover the truth. 
See also Hrachowitz and Clark (2017) for a discussion on contrasting modeling philosophies.

Contextual values relate to moral, personal, social, political, and cultural values (Reiss & Sprenger, 2017). An 
example is that gender bias can be introduced in hydrological modeling because of a culture in which men are 
more involved in the use and development of models, as described in Packett et al. (2020). In this study, the defi-
nition of contextual values is widened to any local context in which the model is set-up and run. This also includes 
pragmatic project related boundaries, such as time constraints.

All 83 motivations were reclassified as being either epistemic or contextual: 74 motivations were classified as 
contextual, and seven as epistemic. Two motivations (literature and consistency) were classified as both because 
it was not directly clear where they belong. The unequal distribution of motivations over the two types of values 
(Figure 6), combined with the relative frequency of the motivations, demonstrates that contextual values domi-
nate the modeling process. This is not necessarily bad. Without considering feasibility (e.g., run time, computer 
power) it would be hard to finish a model study. Furthermore, experience, both personal and from colleagues, is a 
valuable asset that can improve the quality of the modeling process. Experience can help in identifying spurious 
results and their source, and in fixing bugs in the code:

“I know [model], like, very good. All 40,000 lines of it” [P5]

Experience with a model can also avoid that models are used for goals for which they were not developed. At the 
same time model experience also increases the risk of unintentional model use: Experience with a model may 
cause it to become the default model, so that the question regarding the most appropriate model is no longer asked 
and the model is applied to questions for which it was not developed.

Besides, experience also plays a role in value-judgment, as argued by McMullin (1982): “.. let me recall how the 
skills of epistemic value-judgment are learned. Apprentice scientists learn them not from a method book but from 
watching others exercise them.” And this is where experience from colleagues (classified as contextual) starts to 
intervene with the vision of a modeler (classified as epistemic): Modelers develop a modeling vision over time, 
inspired by their colleagues and surrounding. As such, modeling vision is also influenced by the processes of 
internalization and institutionalization as discussed in the previous section. The value-judgment of young model-
ers will mature over time, and might eventually challenge the practice of colleagues or the scientific community 
(Kuhn, 1962 (reprint 2012); Polanyi, 1958).
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It appears that model studies are to a large extent context dependent, rather than epistemically driven—although 
both are connected through vision development and experience. This does not disqualify the scientific value of 
model studies; many context dependent decisions are simply necessary in order to be able to run a model. But it 
is important to acknowledge that these contextual decisions will steer the model results.

4. Discussion
4.1. Representativeness of the Sample

The goal population of the interviews were scientific hydrological modelers. A geographic focus on western 
Europe was chosen for feasibility and to constrain the total population size. The interviewees were all part of 
modeling-focused research teams, of which two teams, the ones associated with national research institutes, were 
rather large (>10 people, although not all with a permanent position). This might have biased the results. Mod-
eling-focused teams at universities might be smaller, and hydrological modelers can also be the only ones in the 
group or department working on modeling. This gives them less opportunities to rely on, for instance, experience 
from colleagues.

The average number of times that “Experience from colleagues” was mentioned as motivation in the interviews 
with the modelers from the two national research institutes was 7.0 and 5.6, respectively, while from the three 
interviewees working at a university, “Experience from colleagues” was on average only mentioned 1.3 times. 
One of the interviewees who worked at a national research institute at the time of the interview, worked at a small 
university department before. The modeling study to which the interview was related was conducted while the 

Figure 6. Division of the identified model motivations into epistemic and contextual motivations, as defined and discussed in McMullin (1982): epistemic motivations 
relate to the truth-like character of science, while contextual motivations depend on values, biases, and local context. The dot size is proportional to the frequency 
that this motivation was encountered in the interviews. The colors align with the classes presented in Figure 1. The motivation “Vision” did not fit any of the classes, 
“Literature” and “Consistency” are placed in the middle because no clear choice between epistemic and contextual could be made for these motivations.
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interviewee was still working at this department. “Experience from colleagues” was only mentioned once during 
this interview, compared to the 7 times on average over all team members of this interviewee. In contrast, “Per-
sonal judgment” was mentioned 6 times by this person, in comparison to 1.4 times for the team average. These 
examples demonstrate that the team composition and the environment in which the modeler functions influences 
the weight of the different motivations. There may also be motivations that were not identified within the current 
sample. Modelers that are part of smaller modeling groups, individual modelers, or modeling groups that are not 
focused around one specific model(family) are underrepresented in the presented results.

Furthermore, this study took an Eulerian perspective: modelers were interviewed about motivations for modeling 
decisions, given their current scientific viewpoint. As such, this study provides a snapshot of the current situation 
of the interviewees, while modeling vision for instance, is typically something that evolves over time. Using a 
Lagrangian perspective, tracking the development of a modeler over time, could provide more insights into pro-
cesses such as internalization, institutionalization, and vision development.

4.2. Models as Social Constructs

A common scientific stance in hydrology, and in natural sciences in general, is a logical positivist view point. 
The idea behind positivism is that knowledge is obtained from observations, with the goal to determine universal 
laws (Carnap, 1966). This is also how model development is generally perceived: based on observations, we for-
mulate a hypothesis of how the process works (Savenije, 2009), which can be translated into a numerical model. 
The existence of multiple modeling philosophies and approaches (e.g., Best et al., 2015; Bouaziz et al., 2021; 
Hrachowitz & Clark, 2017) already challenges the idea of the identification of universal laws. The existence of 
multiple visions is assigned to the incomplete understanding of processes (Clark et al., 2011), demonstrating 
epistemological uncertainty. This “border with ignorance” (Funtowicz & Ravetz, 1993) gives the modeler much 
freedom to define the perceptual model, that is, based on expert judgment (Krueger et al., 2012), which subse-
quently influences all modeling steps.

Another premise of positivism is that it aims to conduct science in a value-free manner (Reiss & Sprenger, 2017; 
Weber, 1917 (reprint 1988)): Science is perceived as an objective endeavor, not influenced by preferences or 
world views of the scientist. The epistemological uncertainty described above already hampers the objectivity: in-
completely understood parts of the system (where it is also up to discussion which parts are understood and which 
parts are not) are relished with the perception of the modeler. But also beyond the perceptual model, objectivity 
cannot be achieved. The results of this study demonstrate that values and judgment are abundant throughout the 
scientific modeling process. This cannot be blamed on the modelers, many decisions are simply necessary to run 
a model and methodological directives are under-determined.

This leads to the evaluation that models are social constructs (Bijker & Law, 1992; Pinch et al., 1987). Models 
themselves are the product of socially embedded decisions, as demonstrated by this study. This will make model 
results time and place dependent—other results will be obtained with different colleagues, different data agree-
ments, or different personal experience. But also the value or trust one assigns to models is socially embedded, 
as reflected in different modeling visions. One interviewee only trusts models that work across scales, while 
for many other interviewees, this was not a trust criterion. Both in the construction of models and in the value 
assigned to models situatedness is visible: “The dependence of meaning on the specifics of particular soci-
ohistorical, geographical, and cultural contexts, social and power relations, and philosophical and ideological 
frameworks, within which the multiple perspectives of social actors are dynamically constructed, negotiated, 
and contested.” (Oxford Dictionary). The results of this study therefore stress the need to move away from the 
value-free ideal of science and acknowledge that models are social constructs (Melsen, Vos, & Boelens, 2018).

4.3. Moving Forward

The most important implication of acknowledging models as social constructs is that social constructs are not 
neutral. Certain values and world views have materialized in the model (Bijker,  2007; Melsen, Vos, & Boe-
lens, 2018), for example, as a result of personal judgment, experience from colleagues, and modeling vision, 
which biases the model results. This is not something that can be solved—there is no ultimate vision, or ultimate 
personal judgment—but it is something that can be made more visible.
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One step could be the formalization of modeling practices. Several (extensive) guidelines exist for good modeling 
practice and quality assurance (e.g., Jakeman et al., 2006; Refsgaard et al., 2005; van Waveren et al., 1999). They 
for instance require reproducibility, and a substantiation why a certain model was selected. As such, obeying 
these standards requires that some of the context-driven decisions move toward epistemically driven decisions. 
However, epistemically driven decisions are also not universal. Saltelli et al. (2020) discuss the biased narratives 
that models produce in the context of sustainability. They propose six reflexive lenses to stimulate the explora-
tion of different perspectives. Whereas the formalization of good modeling practices can decrease the number of 
context-driven decisions, reflexive modeling through multiple lenses allows the exploration of different visions.

Within the context of this study, science-driven modeling, exploration of different visions and an estimation of 
the methodological uncertainty could also be achieved by having multiple modelers or modeling teams work-
ing on the same question—although this study showed that research question, model and modeling vision are 
intertwined. Also a diversity of modeling visions within the same modeling team could contribute to this, for in-
stance by actively recruiting modelers with another modeling vision. Besides the exploration of different visions, 
whether through taking multiple lenses or by working with several teams on the same question, transparency and 
formalization of epistemically driven choices, for example, through a formal modeling vision (see e.g., Nearing 
et al., 2016), would already be helpful in putting the model results into context.

Given the large share of hydrological scientific studies based on models, it is urgent that the hydrological com-
munity critically reflects on its own modeling procedures and standards (not for the first time, see Klemeš, 1997). 
The large role of local context in model studies leads to the conclusion that model results are time and place 
dependent and therefore each modeling study can only tell a little part of the story. A combination of good 
modeling practice guidelines that stimulate moving from context-driven to epistemically driven decisions, and 
a formal modeling vision that underpins the epistemically driven decisions, can help to clarify the context in 
which the model was developed and run. If we want to capture the actual robustness of model results, we need a 
diversity of opinions, perspectives, and approaches, which can only be achieved if modeling procedures are more 
transparent and explicit. In this way, it will be possible to compare model results of studies that were based on 
different visions.

5. Conclusions
Fourteen modelers from three different institutes were interviewed about a recent hydrological model study they 
conducted. The goal was to identify the motivations regarding decisions related to the selection, configuration 
and execution of the model. Across the interviews, 83 different motivations were identified, which could be 
classified into seven categories: motivations related to external parties, the scientific community, scientific col-
laborators, the institute where the modeler works, the team where the modeler works, individual decisions, and 
consequential decisions. Most motivations were related to the team and individual choices. Especially experience 
from colleagues frequently appeared as a motivation. Many motivations are social embedded and demonstrate 
that modeling is, in general, not an individual endeavor.

Model decisions and approaches can be institutionalized and internalized: a modeler can introduce a concept to 
the team and this can become the team's standard (institutionalization), or a modeler can follow the default team 
approaches and starts defending them as their own choice (internalization). The role of the team decreases with 
increasing model experience: this might be the result of institutionalization and internalization. The role of the 
team was also larger for the modelers working at research institutes than those working in a smaller university 
group.

Several decisions were investigated in more detail. For model selection, two types of motivations were identified: 
experience (from colleagues or the modelers themselves), and model vision (the model has certain assets that 
align with the vision of the modeler). Even though this seems a dichotomy at first, both are related through re-
cruitment (people with a certain vision apply to jobs where they can use models that align with their vision) and 
through internalization: modelers develop an epistemic vision on how modeling should be conducted, inspired by 
colleagues. Eventually, modelers can develop their own vision and challenge the vision of colleagues. It appeared 
that model selection is not driven by the research question, but that available tools and experience, representing 
the expertise of the team, determine which research questions are addressed. It was also shown that contextual 
values, that is, values related to the circumstances and context in which the model was configured and run, play 

 19447973, 2022, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030600 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [22/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

MELSEN

10.1029/2021WR030600

20 of 21

a major role in modeling studies. The vast majority of the motivations for modeling decisions were related to 
specific circumstances, for instance which data were available, experience from colleagues, or just for the sake of 
time. Only a minority of the motivations could be related to the epistemology of the modeler.

The results show that models are not objective tools, but social constructs: they are the product of socially em-
bedded decisions, and also the value or trust one assigns to models is socially embedded as reflected in different 
modeling visions. This leads to the conclusion that model results are time and place dependent, and that every 
modeling study can only tell a small part of the complete story. Acknowledging models as social constructs 
should affect the way that we estimate model uncertainty. It means that we have to account for the context in 
which the model was developed and configured, and that a diversity of opinions, perspectives, and approaches is 
necessary to obtain a fair idea of the robustness of model results. This can only be achieved if modeling proce-
dures become more transparent and if the modeling vision is made explicit for each model study.

Data Availability Statement
For the protection of privacy sensitive information, the interview data are unavailable for public release. The 
interview protocol is attached as Supporting Information S1.
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