

IMAGINE

Beeldgestuurde Oncologische Behandelingen

Peter Luijten Vice dean Life Sciences Professor of Functional Medical Imaging Utrecht University

University Medical Center Utrecht

From the golden era of surgery

Billroth, AKH Wenen, 1889

To minimally invasive treatment of vascular diseases

Coronary Angiography – from diagnosis

Mason Sones

1958

To treatment

Charles Dotter 1963

Turf battles and innovation in medicine

University of Or Hospit Radiology	Consultation	GI	0.	URGERY Bidg. MH M. 2N	
Please complete in request. Examination clinical information. ation at the U. of O. Anatomical part 1	full. One examination is based on the are Date of last x-ey ex Med. Center3/9/0 Initial exa to be examined:	table amin H Birthe amin H H H H H H H H H H H H H	18-28-16 11/22/99	esterice	sam
Pertinent Clinit	is occe	and la	Adde	istor	exams.
Specific Informat What Special Pro	on Desilor/S(cautions are Need	HALIZ I	TO FIX	AL	DI

"Angio Suite"

IAT: Intra Arterial Thrombectomy

Intravenenous trombolysis (1995)

Endovascular trombectomy (2015)

Endovascular trombectomy

IAT: Intra Arterial Thrombectomy

Intravenous thrombolys (1995)

Endovascular thrombectomy (2015)

Seldinger

Sones

Before

After

1953 1958

Dotter

From vascular to cancer treatments: Radio embolization

Holmium poly(L-lactic acid) microspheres

Holmium poly(L-lactic acid) microspheres

Liver Malignancy

Holmium-166 T $\frac{1}{2}$ = 1.1 days 1.84 MeV β -max 8 mm tissue range γ -imaging

Liver:

- 70% portal vein
- 30% hepatic artery

Tumor:

99% hepatic artery

Holmium-166 Radioembolization

Clinical case: salvage mCRC patient

Baseline PET/CT

Post-treatment SPECT/CT

3-months CT

3-months PET/CT

6-months CT

Theranostics

A Progression-free Survival

2017

Kwekkeboom et al. J.Clin.Onc. 2008 Strosberg et al. New Engl J Med 2017

Baseline

4 cycles PSA↓ 95%

Prostate cancer: lutetium-177-PSMA-617 treatment

2 cycles

PSA↓ 80%

MR Guided Ultrasound

Fibroids Tumors Tremor Immune Sensitiza

BBB disruption (dementia, brain tumors)

High Intensity Focused Ultrasound (HIFU) Triggers ImmuneSensitizationSensitization of Refractory Murine Neuroblastoma to CheckpointInhibitor TherapyCli.Cancer Research 2020

20XX

Historical situation at department of Radiotherapy at the UMC Utrecht

Research:

Clinic:

Hyperthermia to treat tumors

Conventional Radiotherapy

Traditional Oncology Treatment

	distant	CTV	GTV
Chemo	+	+	-
RT	-	++	+/-
Surgery		-/+	+
	1		

The radiotherapy workflow

1. MRI: superior soft tissue contract

2. Uncertainty in visualization and day to day position

3. MRI guided Radiotherapy, see what you treat

1998 Discussion on optimal Radiotherapy

- Knowing the exact location of the tumour:
 - (Bulky) primary tumour
 - Tumour infiltrations
 - Involved lymph nodes, metastases
- Knowing the tumour characteristics, radiation sensitivity
- Knowing the organs at risk for radiation damage
- Being able to paint the radiation dose accordingly
- Being able to see the treatment response, response assessment

Brahme and Agren, 1987 Webb and Nahum, 1993 Lagendijk and Hofman, 1999

Thames et al., 1992 Goitein et al., 1996 Ling et al. 2000

UMCU solution: Integrating a Philips MRI scanner with a Elekta radiotherapy accelerator

MR linac system: combination 1.5T MRI and 7MV accelerator

Design team MR-linac: UMCU, Elekta, Philips

Active shielding, decoupling MRI and linac

2009 MRL 'proof of principle'

Beam-on – Beam-off

connecting innovators

PHILIPS

MR Linac development timeline

invention

design

Initial exp.

1st prototype

2nd prototype 3rd prototype

Clinical

Jan Lagendijk, Breur Award ESTRO 2022

Volunteer imaging on MRL: Motion robust abdomen T2 TSE MultiVane, SPAIR and DWI

Courtesy Mariëlle Philippens, Eveline Alberts

CE certification and start clinical studies

First regular patient treated August 13, 2018 (five fractions lymph node metastasis prostate cancer, SBRT 5x7Gy)

Werensteijn-Honingh et al. 2019

Status Unity UMC Utrecht

- So far >1500 patients treated
- Three system in the clinic
- Focus on hypo-fractionated treatments (prostate, oligo and rectum)
 - Oligo lymph nodes, single and multiple, SBRT 5x7/3x10Gy
 - Rectal cancer pre-operative, 5x5Gy
 - Esophageal cancer palliation, 5x4Gy
 - Prostate low/intermediate risk, 5x7.25Gy
- All patient on-line treatment planning

International MR-linac consortium

MRI-linac consortium founding members are:

- UMC Utrecht, The Netherlands
- MD Anderson Cancer Center, U.S.A.
- Institute of Cancer Research / Royal Marsden Hospital, U.K.
- Christie NHS, U.K.
- The Froedtert & Medical College Wisconsin, U.S.A.
- Netherlands Cancer Institute AvL, The Netherlands
- Sunnybrook Hospital, Canada

Over 60 New members (a.o):

- Chiba University, Japan
- Edogawa Hospital, Japan
- Memorial Sloan Kettering Cancer Center, USA
- Odense University Hospital, Denmark
- Osaka City University, Japan
- Princess Margaret Cancer Center, Canada
- Tubingen University Hospital, Germany
- William Beaumont Hospital, USA
- Uppsala University Hospital, Sweden

Clinical studies:

- Optimization tumour control and avoidance of surgery
 - Hypo-fractionated prostate
 - Rectal cancer boost
 - Primary breast tumours, ablative
 - Primary lung tumours, ablative
 - Oesophageal tumours
 - Pancreas tumours
 - MEN1 tumours, ablative
 - Head and neck tumours
 - Cervix tumours
 - Oligometastases, ablative
 - Liver tumours, ablative
 - Kidney tumours, ablative

Safety

1795 patients

Lenny Verkooijen

Acute severe toxicity in relation to MRL		N (%)
Grade 3		
	Unrelated	85 (5)
	Possibly related	9 (0.5)
	Related	15 (0.9)
Grade 4		
Unrelated		2
	(Possibly) related	0
Grade 5		
Unrelated to MRL		1
	(Possibly) related	0

Dose (Gy) MR Linac 300 250 Conventional EBRT 200 Patients 150 Prostatectomy 100 Active surveillance Aug-20 Oct-20 Feb-20 Apr-20 Jun-20 Dec-20 Feb-21 Apr-21 Aug-21 Oct-21 Jun-21 Brachytherapy

Erectile function preservation (ERECT trial) ٠ (clinicaltrials.gov)

- Intra-fraction re-optimization (margin • reduction), ATS followed by multiple ATP's intra-fraction. Hypo in subfractions
- Utrecht Prostate Cohort (UPC) study (clinicaltrials.gov)

Example: MRgRT Prostate studies

Dose escalation (Flame) being transferred to the MR-linac (Kerkmeijer et al. J Clin Oncol 2021)

Structures GTV+4 mm PTV

> Rectur NVB IPA

34.4 32.6 30.0 28.0 25.0 20.0 18.0

15.0

10.0

At the UMCU we are developing: Real-time motion tracking & dose accumulation

MR-Linac for metastatic disease: Potential breakthrough technology

• Oligo-metastases (Palma et al. 2019, Lancet)

Development MRI/PET → Unity MR-linac pipeline Wide bore 1.5T MRI/PET RT simulator

- Intrinsic registration between MRI and PET
- Use of MRI based motion registration in the PET reconstruction (search for small tumours)
- Common platform Unity and MRI/PET
- Alternative for the RefleXion system

GE MRI/PET, courtesy Zackrisson, Nyholm, et al. Umeå

Impact MR-linac

Impact on patients:

- Less normal tissue involvement, less toxicity
- Better/higher tumour dose and thus better tumour control
- 'See what you treat' results in treatment optimization
- Dose accumulation, response assessment and functional

• 'Surgery without a knife', less surgery

Acknowledgements UMC Utrecht MR-linac project

Over 70 PhD students

All UMC Utrecht RT staff members

Health~

Holland

connecting innovators

KWF

Innovative Medical Devices Initiative

Special thanks to the Utrecht team

- Jan Lagendijk
- **Bas Raaymakers**
- Lenny Verkooijen
- Nico van den Berg
- Chrit Moonen
- Marnix Lam
- Dennis Klomp
- Willem Mali

and all their collaborators

