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Chapter 1

A Brief Introduction to the Topic

1.1 TWO TASKS FOR THE AUDITORY SYSTEM

Whenever a detectable sound wave reaches our ears, the brain will try to assign 
meaning to the acoustic event. In a split second, the auditory system succeeds 
in identifying the nature of the sound source out of a virtually unlimited number 
of possibilities: is it noise (the wind, the rain, the sea, a sigh)? Was it perhaps a 
familiar or an unfamiliar human voice? Was it an animal vocalization? Maybe it 
was a car, some other man-made machine, a musical instrument, or an orches-
tra? Perhaps, the sound was caused by the ticking of an object (a fork?) against 
another object (a dinner plate?), etc.

At the same time, the auditory system localizes the sound source. But just 
like source identification, the seemingly simple localization task could refer to 
multiple possibilities: where is the sound source located in “external space,” that 
is, in the world around us, through which we navigate? Or: where is the sound 
relative to the ears or head? Where is it relative to other landmarks in the envi-
ronment? Surprisingly, as we will see later, the brain seems to be particularly 
interested in determining where the sound source is located relative to your 
eyes! Thus, the auditory system has evolved to perform the following major 
tasks on the acoustic input:

Auditory task It answers

Obviously, the ability to rapidly identify and localize sound sources is vital 
for survival. In any case, it was crucial when in a not too distant past, we as 
hominids, had to struggle fiercely to stay alive, as food sources (good for us) and 
predators (very bad for us) had to be identified and localized as fast as possible. 
It is therefore not surprising that throughout evolution, the auditory systems of 
virtually all the animal species have developed dedicated neural circuits to ef-
ficiently and accurately solve identification and localization tasks.

Although simply formulated, these tasks are in fact astonishingly difficult to 
perform. Current technological advances, despite the tremendous increase in com-
puter speed and memory storage over the last decades, are still not able to  execute 
these tasks with the same accuracy, speed, flexibility, and efficiency as biological 
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Chapter 5

The Cochlea

5.1 INTRODUCTION: FROM ACOUSTIC INPUT 
TO TRAVELING WAVE

The acoustic pressure signal that drives the motion of the tympanic membrane 
and middle-ear bones (see chapter: The Nature of Sound), results in an ampli-
fied vibratory motion of the stapes, which is attached to the oval window at the 
cochlear base. The cochlea is filled with an ionic fluid that can flow between the 
interconnected bony structures of the cochlea and vestibular canals (Fig. 5.1). 
The cochlea is divided into three chambers, separated from each other by bony 
walls, and called Scala Vestibuli, Scala Media, and Scala Tympani,  respectively 
(Fig. 5.4). The partitions are connected at the far end of the cochlea (the apex), 
by an opening, known as helicotrema.

The movements of the stapes exert a time varying–inward outward 
 directed force at the basal end of the Scala Vestibuli (Fig. 5.2). Because fluid 
is incompressible, the resulting pressure is released with an opposite sign at 
the elastic round window at the base of the Scala Tympani. This means that 
across the Scala Media, the absolute pressure difference between Scala Ves-
tibuli and Scala Tympani varies from a maximum value at the cochlear base 
(at oval and round windows), to zero at the helicotrema, which acts as a pres-
sure short-circuit. It is this time-varying pressure difference across the length 
of the central cochlear partition, ∆p(x,t), which acts as the driving force for 
hearing. For a pure tone, that is, a harmonic sound with frequency ω rad/s, the 
pressure from the stapes on the fluid at the base of the Scala Vestibuli (x = 0) 
is described by

p t A tsinbase base ω( ) ( )= (5.1)

with ABase the pressure amplitude at the base. The pressure difference at the 
cochlear base is then given as (Fig. 5.3):

p t A t2 sinbase base ω( ) ( )∆ = (5.2)

Along the cochlear partition (with coordinate, x), this pressure difference 
gradually falls to zero when it reaches the apex (in the human cochlea, at about 



114     

FIGURE 5.2 Anatomy of the ear: outer ear, middle ear, and cochlea. The cochlea is acousti-
cally stimulated by the vibratory movements of the stapes at the oval window. The round window 
moves in antiphase with respect to the oval window. (Source: Wikipedia.)

FIGURE 5.1 The bony structures of the inner ear. It shows the vestibular organs (the three 
semicircular canals, which measure three-dimensional head rotations, and the otoliths: saccule 
and utricle, which respond to linear head accelerations and gravity), and the cochlea, the sensory 
 organ for audition. Output is transmitted to the CNS by auditory and vestibular nerves. (Source: Jon 
 Coulter, with kind permission.)
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xapex = 3.5 cm from the base), making the pressure difference strongly location-
dependent. To give a first, very simple idea, it may appear like:

p x t A a x t, 2 sinbase ω( ) ( ) ( )∆ = (5.3)

with a(x) a function that decays monotonically from one to zero between base 
and apex (see Section 5.3, where we describe a full linear model for the cochlear 
hydro-dynamics). For example, if the pressure difference were to fall exponen-
tially, with a spatial constant of ! cm−1, it would read (Fig. 5.3):

p x t A
e e

e
t, 2

1
sin

x x

xbase

apex

apex
ω( ) ( )∆ = −

−

β β

β

− −

−
 

(5.4)

As the speed of sound in water is 1,500 m/s, the pressure along Scala 
 Vestibuli and Tympani develops virtually instantaneously. However, due to the 
hydrodynamic interactions between the fluid and the acoustic impedance of the 
basilar membrane (BM), it takes about 5–6 ms for the time-varying pressure dif-
ference to develop along the cochlear partition from base to apex (Section 5.3).

The BM (Fig. 5.4) responds to the dynamic pressure difference with a vibra-
tory motion that has the same frequency as the driving acoustic (pure-tone)  input. 
Along the length of the cochlea, the envelope of the BM  vibrations  appears as a 

FIGURE 5.3 The amplitude of the pressure across the BM decays with distance from the 
base at x = 0 [Eq. (5.4)]. The oscillating driving forces at different locations therefore have very 
different amplitudes too (here illustrated to scale for three frequencies at x = 0.2, 1.5, and 2.8 cm 
from the base; here: ! = 0.5 cm−1, and xapex = 3.5 cm).
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traveling wave that propagates from base to apex (Fig. 5.5) with a group  velocity 
that depends on the location along the BM, vg(x), and an  envelope amplitude that 
gradually grows to its peak at a frequency-dependent location, Apeak(x): high-
frequency harmonics peak near the BM base, while low-frequency tones reach 

FIGURE 5.5 A pure-tone sound causes a traveling wave that propagates along the BM from 
base to apex. The wave reaches its peak amplitude at a frequency-dependent location, after which 
it quickly drops to zero. Here the wave is shown at four time points. The red dashed line delineates 
the wave’s envelope. Note the change of the wavelength along the length of the BM, which cooccurs 
with a systematic decrease in the wave’s group velocity, until it comes to a full stop beyond the peak.

FIGURE 5.4 Cross section of the cochlear partition, showing the organ of Corti within Scala 
Media. Important structures are the BM, the inner hair cell, the three outer hair cells (OHCs) and 
the tectorial membrane to which the OHCs' stereocilia attach. Reissner’s membrane is considered 
acoustically transparent; Scala Media and Scala Vestibuli form a single acoustic compartment. 
(Source: Davis and Associates, 1953, with kind permission).
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their peak amplitude near BM apex. The wave amplitude quickly drops to zero 
beyond the peak.

The time it takes for the traveling wave to reach its peak amplitude varies 
with location too. Relative to the cochlear base, the lowest frequencies near 
the BM apex reach their peak amplitude about 5–6 ms later, which leads 
to substantial dispersion of the acoustic signal when it contains multiple 
frequencies!

These interesting properties of the traveling wave all result from location-
dependent properties of the BM impedance. In first (ie, linear) approximation, 
the BM responds to the local pressure variations as a second-order, damped 
 oscillator (chapter:Linear Systems; see also further, Section 5.5), with a 
 location-dependent elasticity (or: compliance, C): Z(ω) = Z[ω,C(x,ω)].

As a result of these local micromechanics, sound frequencies are mapped 
tonotopically along the BM, from high (base) to low (apex), running (in the 
human inner ear) from fmax ≈ 20 kHz, down to fmin ≈ 50 Hz. The tonotopic 
mapping is not linear, but may be approximated by a logarithmic function, 
in which each doubling (or halving) of the frequency (ie, at an octave in-
terval) occupies a roughly constant spatial extent on the BM of about " ≈ 
4–5 mm. An approximate description for the tonotopy may therefore be 
(Fig. 5.6):

x
f

f
log cmBM 2

max

λ= −
⎛

⎝
⎜

⎞

⎠
⎟

 
(5.5)

FIGURE 5.6 The tonotopy along the BM may be approximated by Eq. (5.5). Here, λ = 0.4 cm, 
and fmax = 20 kHz.
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The BM wave dynamics are quite different from the simple (nondispersive) 
constant-amplitude and constant velocity traveling waves that arise, for example, 
in an elastic spring or a rope under constant tension, or in air with a constant bulk 
modulus (as outlined in chapter: The Nature of Sound), as such mechanical sys-
tems obey the simple homogeneous and nondispersive wave equation, Eq. (2.25).

Perhaps a better way to describe the BM traveling wave would be that 
of a shallow-water wave that breaks on the beach: in such water waves, the 
wave  velocity strongly depends on depth, so that these waves obey a nonlin-
ear dispersion relation. As the wave velocity decreases with decreasing depth 
( impedance), the wave amplitude increases (because of the incompressibility 
of water), until the wave crest topples over and breaks. The properties of water 
waves result from a few basic physical principles that apply to fluids (ie, in eas-
ily deformable, but incompressible media). The next section summarizes some 
of the interesting physics underlying traveling shallow-water waves, as a nice 
metaphor for the BM traveling wave.

5.2 BASIC PHYSICS UNDERLYING WATER WAVES

The tsunamis that devastated South-East Asia on Christmas eve 2004 (Fig. 5.7), 
and more recently on Mar. 11, 2011 near Sendai, in Japan, gave new meaning to 
the concept of “water waves.” In the beginning, the story went that waves of many 
meters high had traveled over the ocean at a tremendous speed. However, the ac-
tual tsunami wave in the middle of the ocean is usually not high at all (typically, 
only several tens of cm, and hardly noticeable if you happen to be on a boat), but 
the wave crest extends over a vast distance (easily extending over a few hundred 
kilometers!). Moreover, the speed of this traveling, pulse-shaped, wave is about 

FIGURE 5.7 The tsunami in the Indian Ocean caused by an extremely strong earthquake on 
the ocean floor at a depth of about 5 km near Sumatra on Christmas eve, 2004. The three con-
secutive shots (taken from NASA satellite observations) show the amplitude of the traveling wave 
(red, positive; blue, negative) at respectively (A) 10 min, (B) 20 min, and (C) 120 min after the onset 
of the earthquake. The speed of this nondispersive “shallow”-water wave is about 1000 km/h, and its 
wavelength is several hundred kilometers long. Note the reflective waves (blue) that bounce off the 
small islands as given in part B. (Source: dr Kenji Satake, Tokyo, with kind permission).
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800–1000 km/h (ie, over 250 m/s!). When such a tsunami  approaches the coast, 
the wave crest becomes higher and higher, while its speed decreases strongly. 
Finally, the wave breaks on the coast, thereby transferring an enormous amount of 
mechanical energy. What are the physical mechanisms behind this type of waves?

Here we spend a brief time on the physics underlying water waves.  Although 
the model will be strongly simplified, it will nevertheless be quite useful to un-
derstand the most important properties of water waves. Some of these properties 
are also relevant for understanding the basic hydrodynamics within the  cochlea 
that are described in the next section, and to appreciate the nondispersive travel-
ing wave described earlier.

Dry water. The first simplification in the physical model of water waves is 
that of so-called “dry,” nonviscous, water, which means that we ignore internal 
friction between the different water layers. We will further limit the description to 
relatively small wave amplitudes, evoked by a harmonic, sinusoidal, perturbation. 
Third, we assume that the water wave propagates essentially in one dimension 
(the x-direction): this allows for a description of a straight wave front, parameter-
ized by a single wavelength, in which the peaks and valleys follow straight, paral-
lel lines, perpendicular to the propagation direction in the (x,z)-plane. We will see 
that despite these simplifications the dispersion relation of the water waves, ω(k), 
with k = 2π/" the wave number, can be nonlinear (Crawford, 1968).

At equilibrium the water surface is flat and horizontal. When a perturbation 
causes a wave, two restoring forces will cause the peaks of the wave to return 
to equilibrium: gravity, g, and the surface tension, T, of the water. Moreover, 
because water is incompressible, the excess of water in the wave’s peak has to 
come from neighboring troughs. As a result, the water particles (here described 
as tiny water volumes, think of infinitesimal “droplets”) will undergo combined 
longitudinal and transversal movements. We will derive the following proper-
ties of water waves:

l when the water depth h ≪ " we speak of shallow-water waves, or tidal 
waves. The particles will move along straight lines, and the wave speed is 
independent of ", only depending on h (nondispersive waves).

l when h ≫ " we have deep-water waves. Now, the particles move in circles 
with a radius that depends on their equilibrium position in depth. Further-
more, the wave speed depends on " (dispersive waves).

Consider an infinitely large reservoir at a uniform depth, h. In equilibrium 
the water surface is horizontal, and lies in the plane y = 0; the bottom is at 
y = −h. Position (x,y) refers to the equilibrium position of a water particle, 
where x ∈ [−∞,+∞] and y ∈ [−h,0]. A water drop is thus conveniently labeled 
by its equilibrium location, irrespective of where it actually is during the wave 
motion. The water wave is a 2D movement of particles within in the (x,y)-plane 
(we may ignore the z-direction), which is described by a wave-vector function:

x y t x y t x x y t y, , , , ˆ , , ˆx y

!
ψ ψ ψ( ) ( ) ( )= + (5.6)
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with x̂  the longitudinal movement direction of the particle, and ŷ  its trans-
versal movement direction. The speed of the water droplet at (x,y) is therefore:

u x y t
x y t

t t
x

t
y vx wy, ,

, ,
ˆ ˆ ˆ ˆx y!

!
ψ ψ ψ( ) ( )=

∂
∂

= ∂
∂

+
∂
∂

≡ +
 

(5.7)

We now impose two important physical boundary conditions on the dry 
water:

1. Conservation of mass, and
2. Absence of turbulent motion (rotation-free water).

The first condition uses the incompressibility of water, and states that the to-
tal amount of water that enters and leaves a certain water-filled volume per unit 
of time should be zero. This constraint leads to the continuity equation, which 
for motion in 2D (the x–y plane) reads:

v
x

w
y

u 0
! !ρ ρ ( )∂

∂
+ ∂

∂
⎡
⎣
⎢

⎤
⎦
⎥ = ∇ =

 
(5.8)

with ρ the density of water, and u v w,
! ( )=  is the velocity of the water particles 

in the x and y directions, respectively. Using Eq. (5.7) yields

t
0 constant 0.

! ! ! !
ρ ψ ψ( )= ∇ ∂

∂
⎛
⎝⎜

⎞
⎠⎟

⇒ ∇ = =
 

(5.9)

The integration constant is zero, because the water volume is assumed to be 
homogeneous (ie, there are no “air bubbles”).

The second condition means that at infinitesimal scale there is no net rota-
tion in the flow field of the liquid, which is mathematically formulated as:

ψ ψ ψ∇ × = ⇒ ∇ × = ∂
∂

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=u
y

x
x

y
z0 0 and in 2D: ˆ 0

! ! ! !

 
(5.10)

The two constraints of Eqs. (5.9) and (5.10) provide the necessary boundary 
conditions to determine solutions for harmonic traveling waves. We therefore 
propose as tryout solutions for the horizontal and vertical components of the 
wave vector:

x y t t kx f y
x y t t kx g y
, , Acos
, , Asin

y

x

ψ ω
ψ ω

( ) ( ) ( )
( ) ( ) ( )

= −
= −

 

(5.11)

where the unknown functions f(y) and g(y) should be determined by imposing 
the constraints of Eqs. (5.9) and (5.10). It is left as an Exercise to the reader to 
show that the full solution then is given by:

x y t t kx e e e

x y t t kx e e e

, , Acos

, , Asin
y

ky kh ky

x
ky kh ky

2

2

ψ ω
ψ ω

( ) ( )
( ) ( )

= − −⎡⎣ ⎤⎦
= − +⎡⎣ ⎤⎦

− −

− −

 

(5.12)
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This wave function predicts elliptic trajectories for the water particles, 
where the longitudinal movement along the wave-propagation direction (x) is 
harmonic, and the transversal movement (y) depends on the location of the par-
ticle, on the wavelength, and on the basin depth (Fig. 5.8). To get more insight 
into the behavior of the water particles, we highlight two extreme cases: very 
short versus very long wavelengths with respect to the depth, h. The former case 
refers to deep-water waves, the latter to shallow-water waves. The general solu-
tion of Eq. (5.12) incorporates these two extremes.

Deep-water waves: When h ≪ k, the factor containing exp(−2kh) ≪ 1 and 
may be neglected. In that case

x y t t kx e

x y t t kx e

, , Acos

, , Asin
y

ky

x
ky

ψ ω
ψ ω

( ) ( )
( ) ( )

= −
= − 

(5.13)

which describes harmonic circular motion of the water particles, with a radius 
that decreases exponentially with y (note that y < 0!). At the top op the wave 
crest the particles move forward, while in a trough they move backward. Note that 

ky yexp exp / λ( )( ) = −  where / 2λ λ π≡  is the reduced wavelength (Fig. 5.8).
Shallow-water waves: In this case y≪ λ  and h≪ λ , which leads to the fol-

lowing solution (see Exercises):

ψ ω
ψ ω

( ) ( ) ( )
( ) ( )

= − ⋅ +
= −

x y t t kx k y h
x y t t kx

, , 2Acos
, , 2Asin

y

x 
(5.14)

This reduces to purely horizontal particle motion on the bottom of the res-
ervoir (where y = − h), and to elliptical motion on the surface (where y = 0).

Dispersion relation: To get at the dispersion relation for water waves we have 
to incorporate the forces that act on the water particles. Two forces play a role in 
dry water waves: gravity, g, and surface tension, T (where we neglect viscosity as 
a third force). We use the fact that for general harmonic motion (be it a pendulum, 
an electric circuit, water, etc.) the following statement holds (Crawford, 1968):

The total restoring force per unit displacement per unit mass = ω2.

FIGURE 5.8 Movement of individual water particles in a deep-water harmonic traveling 
wave at different depths.
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For example, Newton’s second law describes the (linearized) pendulum 
(Eq. 3.4) by:

ML
d
dt

Mg
2

2

ψ ψ= −

from which the harmonic solution yields ω = g L/2 . This can also be  written as:

Mg
L M

restoring force
unit of displacement mass

2ω ψ
ψ( )

= =
×

For a given vibrational mode of the water waves, all particles have the same 
frequency, and hence the same ω2. Thus, we can obtain the dispersion relation 
between the spatial wave mode (k) and the driving frequency (ω), by analyzing 
the movements of a single water particle.

Gravitational waves: In case the gravitational forces dominate the surface 
tension, we have so called gravitational water waves.

The highlighted gray volume of water in Fig. 5.9 undergoes a force that is 
proportional to the pressure difference along x: ∆p(x) = p(x + ∆x) − p(x). This 
pressure gradient is caused by the difference in height (and hence by the vol-
ume) of the water, determined by the wave shape: ψy(x + ∆x) − ψy(x).

In other words:

ρ ψ ψ
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= − ∆
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∂
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The partial derivative is obtained from the general spatial solution 
of the traveling water waves, Eq. (5.12). The restoring force equals the 

FIGURE 5.9 A small volume of water (∆x,∆y,L) at depth y, subjected to the pressure from 
the force of gravity by the water volume above it. The pressure difference is due to the mass of 
the wave crest, and is given by ρg∆ψy .
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acceleration on the mass, ∆M, and for harmonic motion at frequency ω, 
this yields

F M
t

Mx
x

y

x y

2

2
0

2
0

ψ ω ψ ]= ∆ ∂
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⎤
⎦
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=
=
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Combining the results gives the dispersion relation for gravitational waves:

k gk
e
e

gk kh
1
1

tanh
kh

kh
2

2

2
ω ( ) ( )= −

+
=

−

− 
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In the Exercises the reader can show that the phase velocity, v# = ω/k, is then 
given by:

l for deep-water waves:

v g (dispersivewaves)λ=ϕ (5.18)

l for shallow-water waves:

=ϕv gh (nondispersive waves) (5.19)

Deep-water waves are dispersive: when the wave is determined by a super-
position of multiple frequencies, its shape will change as the wave progresses. 
For shallow-water waves the shape is preserved, as the different frequencies all 
travel at the same phase velocity that only depends on (assumed constant) depth. 
The tsunami should therefore be considered a shallow-water wave,  despite the 
fact that the depth at which it originates may be 5 km or more! This explains 
why tsunamis can propagate unchanged over vast distances across the ocean 
(Fig. 5.7), and why they are so rare….

Surface tension: At the transition between water and air, where the water 
molecules lose their tight bonds to each other, and bond to air molecules, the 
water surface behaves somewhat as a stretched elastic membrane. This mem-
brane resists deformation, and hence the restoring force is proportional (by ten-
sion constant, T) to the amount of deformation from a flat surface, which is 
quantified by the surface curvature. For a sinusoidal wave shape, the curvature 
is k2 (to be checked in the Exercises), so that the restoring force due to the sur-
face tension of a sinusoidal shape becomes:

F M
Tk

xx
y

y

2

0ρ
ψ

= −∆
∂
∂

⎤
⎦⎥ = 

(5.20)

Combining both the influence of gravity and surface tension eventually 
leads to a more complete dispersion relation for water waves (see Exercises):
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(5.21)
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Depending on the strength of the tension, T, the shallow-water wave can 
become dispersive, as with the approximation hk ≪ 1 and tanh (kh) ≈ kh:

k ghk
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k k gh
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4

2ω
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(5.22)

The phase- and group velocities thus become:
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In the typical situation, however, the terms containing Thk2 can be neglected, 
so that the phase velocity is independent of the wavelength, only depending on 
the depth, h, and phase- and group velocities are identical. This describes non-
dispersive waves, as long as h = constant. However, if h varies, the propagation 
velocity of the wave will change too.

5.3 THE LINEAR COCHLEAR MODEL (VON BÉKESY 
AND ZWISLOCKI)

To develop a hydrodynamic model of the cochlea, we follow the approach of 
Josef Zwislocki, who incorporated the Nobel Prize-winning experimental work 
of Georg Von Békésy (1961, Nobel Prize in Physiology or Medicine; Fig. 5.10).

FIGURE 5.10 Géorg Von Békésy 1899–1972, (A) and Josef J. Zwislocki (B).
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In this model we imagine the cochlea as a linearly stretched compartment 
(Fig. 5.11). The input signal is the in- and outward movement of the stapes 
plate at the oval window. The cochlea is filled with fluid, and separated (for 
cross section, see Fig. 5.3) by a triangular structure, called the cochlear parti-
tion, or  organ of Corti. In cochlear models this partition is flattened to repre-
sent an elastic, centrally running partition (the BM with supporting structures) 
 between Scala Vestibuli (SV) and Scala Tympani (ST). In other words, Reissner’s 
membrane (RM) does not interact with the acoustic hydrodynamics within the 
cochlea (it is acoustically transparent); as a result, the fluid within Scala Media 
can be incorporated within the compartment of Scala Vestibuli [see, however, 
recent evidence from Reichenbach et al. (2012), implicating RM in oto-acoustic 
emissions]. At the apex, the two compartments are connected by the helicotre-
ma. When the stapes moves inward, the round window at the base of ST moves 
outward. All elastic properties of the central partition are assigned to the BM: a 
high stiffness near the stapes (the base), decreasing gradually toward the heli-
cotrema (apex).

The movements of the BM can be measured with the Mössbauer technique, 
or with laser interferometry. Measured speeds at the threshold of hearing are 
of the order of 0.05 mm/s at a frequency of 20 kHz; this corresponds to BM 
displacements of only 4 Å (check!).

We consider one-dimensional fluid motion, in which the compression wave 
propagates from the oval window in the x-direction toward the helicotrema. Lo-
cally, the fluid particles have velocity v(x). In what follows, we apply continuity 
Eq. (5.9), which describes mass conservation.

FIGURE 5.11 Schematic representation of the physical model of the cochlea. SV, Scala ves-
tibuli; ST, scala tympani. The scalas are separated by the cochlear partition (BM, width b). At the 
apex the scalas are connected by the helicotrema. The highlighted part at location x, has length ∆x, 
width b(x), and scala cross sections SV(x) and ST(x).
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Fig. 5.12 shows a schematic cross section of the Scala Vestibuli at location 
x along the BM. All variables are location-dependent: the width of the BM, 
b = b(x), the cross section SV = SV(x), and ST = ST(x), the (horizontal) velocity of 
the fluid, v(x), and the BM is supposed to move linearly upward and downward 
at velocity, w(x). Note that what happens to the BM in ST is a mirror image of 
what happens in SV.

The mass-inflow per time unit to the volume element in SV at location x is 
equal to the change in volume (velocity times cross section) times the density 
(which is constant because of incompressibility):

m x v x S x xV V ρ( ) ( ) ( )( )∆ = (5.24)

and at location x + ∆x, to which we apply a first-order Taylor expansion:
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The net change in mass resulting from the pressure wave is therefore:

M x m x m x x
x

v S xx
V Vρ( ) ( ) ( ) ( )∆ = − + ∆ = − ∂

∂
∆

 
(5.26)

The volume change as a result of the BM movement equals w(x)b(x)∆x, so 
that the change in mass per unit time for the vertical movement (in Fig. 5.11 the 
membrane moves downward, so a mass increase for SV):

M x w x b x xy ρ( ) ( ) ( )∆ = ∆ (5.27)

FIGURE 5.12 Scheme of the local volume change at x in the scala vestibuli due the up–down 
movement w(x) of the BM. As an approximation, we consider the BM movement as a linear dis-
placement, that is, without a change in shape of the partition.
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According to the continuity equation, the total mass change is zero:
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For Scala Tympani, we obtain a similar condition, with only the BM velocity 
inverted:
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To determine the relation between BM movement, w(x), and the pressure 
wave in the cochlea, we have to analyze the force balance on the volume ele-
ments in SV and ST. The three forces that play a role in this problem are the 
net pressure on the volume element, the inertia (Newton’s second law), and 
the  viscous forces on the fluid. Since the volume element does not accelerate 
through the cochlea, the sum of these forces adds to zero. First, we consider SV:

1. Suppose that the pressure in x is pV(x), then the force at the cross-sections in 
x and x + ∆x is, in first-order Taylor approximation:
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 where the approximation holds when the cross-section varies slowly with x.
2. The impulse of the liquid in the volume element (mass × velocity) is
 I x S x x v xV Vρ( ) ( ) ( )= ∆⎡⎣ ⎤⎦ , so that according to Newton’s law:
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 where the cross section is assumed to vary little over time.
3. In a viscous liquid the frictional force is proportional to the speed of the
 liquid particles:

F x R x S x v x xV V V V
visc ( ) ( ) ( ) ( )= −⎡⎣ ⎤⎦ ∆ (5.32)

 with RVSV is the total resistance per unit length.

The force balance thus reads:
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and reduces to:
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The force balance and continuity equation for ST gives a very similar result, 
as the only difference is the sign of the movement, w, of the BM:
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These coupled differential equations can be readily uncoupled by applying 
the following trick: differentiate the force equation with respect to x, and the 
continuity equation with respect to t. We further assume that the resistance var-
ies slowly with x, so that its spatial derivative may be neglected. Adding the two 
equations then gives for each of the two compartments (but check):
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If we now take the difference between SV and ST, approximate that RV = RT ≈ 
R, and define the effective cross section (1/S) = (1/SV) + (1/ST), we get:
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where ∆p(x,t) is the instantaneous pressure difference across the BM, and w(x,t) 
is the BM velocity. These two quantities are related through Eq. 2.46:

p x t b x w x t Z x, , ,ω( ) ( ) ( ) ( )= (5.38)

This relation allows us to eliminate the BM velocity, leading to an equation 
that only contains the instantaneous pressure difference:
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This is the central equation of cochlear hydrodynamics, with a minimum of 
approximations and assumptions. Note that Eq. (5.39) a linear differential equa-
tion in the pressure difference, so that it describes essentially a linear cochlear 
model! Despite this apparent oversimplification, the equation is still quite com-
plex, as S, Z, and R are all functions of x. This makes an analytical treatment of 
Eq. (5.39) far from trivial.

Zwislocki’s approximations: To analyze Eq. (5.39), Zwislocki made a num-
ber of simplifying assumptions and substitutions, taken from the experimental 
findings of Von Békésy.

As discussed in chapter: Linear Systems, linear systems can often best be 
dealt with in the frequency (or Laplace) domain. In that case, we assume that 
the sound input is a harmonic signal. In complex notation this is conveniently 
written as:

p x t P x e, i t( ) ( )∆ = ω
 (5.40)

Substitution into Eq. (5.39), and collecting the terms then yields
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and using the impedance relation, Eq. (5.38), gives an equation for the BM 
 velocity:
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To arrive at the total displacement of the BM as function of distance to the 
stapes, y(x), we integrate w(x,t) after taking the inverse FT:

∫ τ τ ω
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ω
( ) ( ) ( ) ( )= =y x w x d Y
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i
, and in the frequency domain:

,
t

0 
(5.43)

Zwislocki proposed a number of physical-realistic descriptions for R(x), 
S(x), and Z(x,ω). For example, Fig. 5.13A suggests that the cochlear cross-
section as function of the distance to the oval window can be reasonably well 
approximated by an exponential function:

S x S e S awith 0.0125 cm and 0.5 cmax
0 0

2 1( ) = ≈ ≈− −
 (5.44)

Analysis of the experimental results of the viscous component led to:

R x R e Rwith 2.24 (g/cm) sax
0 0

3 0.52

ω( ) = ≈− −
 (5.45)

The most general model for the BM impedance proposes that a 
local membrane element has an equivalent mass M(x), an elasticity (or 
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compliance), C(x), and a damping Rm(x). The membrane impedance is then 
described by:
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Following the measurements of Von Békésy, Zwislocki proposed the follow-
ing approximations:
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[for data on C(x), see Fig. 5.13B]. Substitution of these experimentally inspired 
relations in Eq. (5.39) then yields the following, formidable equation:
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Finally, after applying the following approximations (which were supported 
by numerical substitution of the measured values):

l R C 1m 0 ≪ω
l R R Cm0 0 ≪ ρ
l R C R / 1m 0 ≪ω ωρ( )+

Eq. (5.48) then finally reduces to a relatively standard differential equation 
(Exercise):

P
d P
dx

C
S

e
1 h a x

2

2

2
0

0

ω ρ− = ( )+
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FIGURE 5.13 (A) Cross-section of scala vestibuli and scala tympani as a function of x for the 
human cochlea. (B) Static compliance of the BM as function of x.



The Cochlea  Chapter | 5    131

This equation can be transformed into a standard Bessel equation, for which 
analytical solutions are available.

The solution following from Eq. (5.49) (normalized to the pressure at the 
stapes, x = 0), after substituting the measured values, is eventually given by 
(Dallos, 1973):
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where x is in centimeters, and f in Hertz. The pressure amplitude decreases 
monotonically when both f and x increase. At a constant driving frequency, the 
amplitude of the pressure wave decreases in the direction of the helicotrema 
[where it becomes vanishingly small; cf. the highly simplified Eq. (5.3)].

At a fixed position, the pressure decreases with increasing frequency 
(Fig. 5.14). In other words:

l High frequencies give rise to a significant pressure amplitude over only a 
restricted range of the BM.

l Low frequencies cover a wider spatial range (Fig. 5.14A).
l Locations away from the stapes are progressively delayed. This phase-lag is 

strongly frequency-dependent (Fig. 5.14B).

The main quantity of interest, however, is the vertical displacement of the 
BM y(f, x) (see previous sections), which can be obtained from the pressure wave 
by the impedance equation, Eq. (5.38), and subsequent integration, Eq. (5.43). 
 Using the same approximations as above, the amplitude of the impedance yields:
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FIGURE 5.14 Properties of the pressure wave. Calculated according to Eq. (5.50) for five dif-
ferent frequencies: relative amplitude (A) and relative phase (B). Note the strong frequency- and 
location-dependence of both quantities.



132     

The displacement of the BM is then [from Eq. (5.43)]:

y x f
C P x f
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This determines the relative amplitude of the BM traveling wave with re-
spect to the stapes.

y x f y f x f e f e, 0, exp 6.7 10 1 1.84 10 1x x10 2 2.5 3 1.25( ) ( )( ) ( )= − × − − × −⎡⎣ ⎤⎦
− −

 (5.52)

The phase of the BM displacement (with the used approximations) is equal 
to that of the pressure wave, Eq. (5.50). Fig. 5.15 shows that the linear model 
of Eq. (5.52) predicts a nice monotonic relationship between the location of the 
maximum of the traveling wave, and the driving frequency of the stapes. It dem-
onstrates the asymmetry of the wave shape, with its steep roll-off, which has a 
similar appearance as a shallow water wave breaking on the beach (Section 5.2). 
It also accounts for the logarithmic tonotopy of the BM (right).

The cochlea thus functions as a mechanical frequency analyzer that acts as a 
tonotopically organized, parallel set of frequency specific–band pass filters. The 
temporal behavior of the BM vibration along the partition is best described as 
a traveling wave.

Note, however, that the wavelength is not constant along the partition, but 
decreases as a function of x. This behavior requires an analysis of the wave’s 

FIGURE 5.15 Envelope of the traveling wave along the length of the BM for five different 
frequencies, according to Eq. (5.52). Notice that the width of the wave, as well as the location of 
the peak systematically shifts with sound frequency (A). (B) Tonotopy along the BM for the peaks 
of the traveling wave (cf. with Fig. 5.6).
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phase velocity (chapter: The Nature of Sound). The BM oscillates with y(x,t), so 
that the phase velocity is defined by:

v
dx
dt

=ϕ 
(5.53)

The instantaneous phase of the traveling wave is determined by [making use 
of Eq. (5.50)]
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from which the phase velocity is found by differentiation:
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For locations that are precisely one wavelength apart, the phase is con-
stant, so that ∂Φ/∂ t = 0 yields the following important relation for the travel-
ing wave:

= ×ϕ
−v e5.6 10 cm/sx3 (5.56)

This interesting result demonstrates that:

l The propagation speed of the traveling wave toward the helicotrema de-
creases exponentially with distance from the base.

l The speed of the wave is independent of sound frequency.
l The time it takes for the wave to reach a given point, x0, on the cochlea is 

= × −−T e1.8 10 ( 1)x
0

4 0  s, taking about 5.7 ms to reach the helicotrema. This 
is in good agreement with the experimental observations of Von Békésy.

Note that according to the linear model, the traveling wave along the BM 
is entirely due to the interaction of independent BM elements with the local 
pressure difference in the fluid. The wave does not arise  because BM elements 
transfer elastic energy in the longitudinal direction from one location to the next 
(like in a spring, in coupled oscillators, or in a rope); instead, the exchange of 
mechanical energy is with the local fluid only. Clearly, this description is an 
approximation of the real cochlear mechanics, as the membrane elements are 
connected to each other, and therefore must transfer mechanical energy. Yet,  
the simple linear model already yields realistic cochlear behavior, which is quite 
remarkable, and far from trivial. Moreover, it has important consequences for 
hearing. For example, if a certain portion of the BM cannot be set into motion, 
it will not affect the traveling wave!
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Also a local rupture of the membrane, or ossification, leaves the traveling 
wave untouched. As a result, hearing of frequencies beyond the damage is un-
affected! This has also been confirmed experimentally (eg, the “disco dip” at 
around 4 kHz).

5.4 THE ACTIVE, NONLINEAR COCHLEA: ROLE OF OUTER 
HAIR CELLS

Despite the apparent success of the linear cochlear model it cannot deal with 
some real fundamental problems. For example, Fig. 5.15 indicates that the ex-
tent of the traveling wave around the maximum of the BM vibration occupies 
about 1/3 of the total cochlear partition, which suggests that

1. fibers in the auditory nerve should be very broadly tuned, and
2. frequency selectivity of the auditory system is quite poor.

However, the frequency resolution of the human auditory system is actually 
very high (better than 0.5% over the full frequency range from 50 to 20 000 Hz). 
To measure the frequency selectivity of a given BM location one can determine 
its tuning curves, which quantify how the local amplitude of the vibration de-
pends on the (relative) frequency.

Fig. 5.16 shows the normalized mechanical tuning curves, measured at five 
different BM locations by Von Békésy (apical data), and with the Mössbauer 
technique by Johnstone and Boyle (1967; at 18 kHz). The tuning curves clear-
ly appear as band-pass filters, whereby their widths decrease with increasing 
frequency.

FIGURE 5.16 Normalized mechanical tuning curves for different cochlear positions as 
 reported by Johnstone and Boyle (1967).
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The effective bandwidth of a filter is quantified by its Q-factor, which is 
defined by:

Q
f

BW10dB
max

10dB

≡
 

(5.57)

with BW10 dB the bandwidth at 10 dB below the maximum response. The lin-
ear model predicts Q-factors between 1.0 and 2.5; the measured BM data in 
Fig. 5.16 suggest Q-factors up to 3.5.

However, when comparing the (passive) BM filters to the tuning curves of au-
ditory nerve fibers (Q10 dB∼8.5), a dramatic difference is evident (Fig. 5.17A). In 
particular, the low-frequency slope of the BM filter is far too low, and nerve fiber 
tuning curves are much sharper than predicted from the BM tuning characteristics.

A second feature that cannot be explained by the linear model concerns the 
extreme sensitivity of the auditory system, especially for stimuli at very low in-
tensities. Moreover, responses saturate when the stimulus levels become too high.

FIGURE 5.17 (A) Stylized tuning curves of four primary auditory nerve fibers, compared to 
the BM tuning curves (dotted line at the bottom). (B) Normalized gain functions of the BM for a 
18.5 kHz tone presented at four different sound levels, between 20 and 80 dB SPL. The gain is de-
fined as the BM velocity divided by the stapes input velocity. Note strong sharpening of the tuning 
curves at the lowest sound levels, indicative of nonlinear behavior. Note also the systematic shift of 
the peak to a higher best frequency, that is, to a more basal BM location, suggesting that the nonlin-
earity boosts the BM vibration at about 1/3–1/2 octave closer to the cochlear base than the passive 
tuning curve. (Source: After Johnstone et al., 1986, with kind permission).
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These properties suggest the presence of a profound nonlinearity, as lin-
ear models do not produce different sensitivities for different sound levels, as 
the output scales linearly with the input strength (chapter: Linear Systems). 
 Moreover, the nonlinearity appears to betray an active mechanism, as the highly 
increased sensitivity (high gain, in combination with sharpening of the BM tun-
ing curve) may not be achievable by passive, dissipative, mechanisms without 
adding extra energy.

Indeed, measurements of the BM movements in the living cochlea with the 
Mössbauer technique demonstrated the existence of a spectacularly increased 
sensitivity for low sound levels, and saturation (stimulus-independent sensitiv-
ity, hence a linear response) for high levels (Fig. 5.17B). In the dead cochlea, 
however, these different response regimes disappear: in that case the BM again 
behaves as a linear system.

These important observations call for an essential modification of the lin-
ear Von Békésy–Zwislocki model. A crucial element in the nonlinear response 
behavior of the living cochlea is the involvement of outer hair cells (OHCs). 
Fig. 5.18B shows a magnified cross section of the organ of Corti with the inner 
(IHC) and OHCs.

The human cochlea contains about 12,000 OHCs and 3,500 IHCs. Against 
each IHC there are three OHCs. The flat top of the hair cells is covered with hair 

FIGURE 5.18 (A) Detailed cross section of the cochlear partition arrows indicate longitudinal 
and transversal movement directions of tectorial membrane, OHCs, and BM, respectively. (B) Dif-
ferent transduction mechanisms could underlie the OHC's somatic motor response: movement of 
the stereocilia, in combination with a rapid configuration change of prestin molecules. The resulting 
potential change across the cell length induces a motor response (length change) of the cell which 
in turn provides mechanical feedback (force) to the scala vestibuli/tympani.
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bundles (cilia), which are made of sturdy filaments. On the OHC the cilia are ar-
ranged according to a wedge-shaped V or W form. Due to the fluid motion, the 
hair cell bundles can pivot around their pedestal. The resulting mechanical change 
of angle of the stereocilia causes a change of the internal potential of the hair cell. 
In the IHC this potential change can lead to the production of action potentials in 
the primary auditory nerve, according to the Hodgkin–Huxley spike-generation 
mechanism.

However, in the OHC the bending of the cilia induces a length change of the 
cell (Fig. 5.18B). This so-called electro-motility of the OHC has the same fre-
quency as the acoustic signal that caused the cilia to bend, and it has in in vitro 
recordings that been established the motility responses can exceed well over 
20 kHz (Scherer and Gummer, 2004)! As a result, the fast motion of the OHC 
can have an immediate effect on the vibratory motion of the BM, which was 
primarily induced by the traveling wave. In other words, the OHCs could pro-
vide a selective, local mechano-acoustic feedback to the BM, which is strongly 
frequency-selective (and could thus embody the long-sought active filter).

A further remarkable observation is that the rest length of the OHC is unique-
ly related to the resonance frequency of its mechanical response. Long OHCs 
are found near the apex, they have long cilia, and are mechanically tuned to low 
frequencies. At the base, the OHCs are short, are tuned to high- frequencies, and 
have short cilia (Brendin et al., 1989; Fig. 5.19A). Interestingly, these relation-
ships, which do not apply to the IHCs, extend across many different species 
(Dannhof et al., 1991; Fig. 5.19C). Whether this relationship has a functional 
role in the OHC feedback mechanism, however, is not known.

It is thought that OHC mechanical feedback to the BM could act as a posi-
tive feedback, by locally amplifying the BM motion (ie, by providing negative 
damping). This mechanism causes increased sensitivity for low-intensity sounds, 
given that the OHC motility also depends on the absolute sound level through an 
additional efferent neural feedback pathway from the superior olive in the brain-
stem. It is therefore generally assumed, albeit still heavily debated (Ashmore 
et al., 2010), that the motor-mechanism of the OHCs forms the basis for the 
extreme sensitivity and selectivity of the cochlea. Fig. 5.20 provides a physical 
representation of the cochlear amplifier, as proposed by Nobili et al. (1998).

To model the role of the OHCs in the living cochlea, Nobili et al. (1998) pro-
posed the following formalism. The idea is that the organ of Corti (BM and sup-
porting structures) forms an uncoupled chain of position-dependent oscillators 
that interact with the surrounded fluid, and undergo a nonlinear local feedback 
from the electro-motility response of OHCs.

We saw in chapter: Linear Systems that the basic equation of motion for 
a second-order damped oscillator (here taken at location xn, and not coupled 
through a medium) is:

m
d y
dt

dy
dt

k y f t G a t .n
n

n
n

n n n n s

2

2
γ ( ) ( )+ + = = −

 
(5.58)
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with mn, $n, and kn the local mass, viscosity, and elasticity of the oscillator at 
(discretized) location n. The external driving force, fn(t), is proportional to the 
(negative) acceleration of the stapes, as(t), which is transmitted through the fluid 
as a local force to the oscillator (it is amplified by a local constant Gn, which is 
reminiscent to the pressure drop shown in Fig. 5.3).

In a more realistic cochlear model, however, the fluid at nearby locations does 
provide additional (passive) forces to the oscillator at n: (1) the resulting lateral 
hydrodynamic forces lead to motion of N oscillators at nearby sites, j, which in 
turn influence the oscillator at site n through (negative) fluid coupling (Fig. 5.21) 
and (2) shear forces that are due to differences in velocity of the fluid particles 
around the BM site. Together, these hydrodamic couplings provide the mecha-
nism for Von Békésy’s traveling wave (developed in Section 5.3), as illustrated in 
Fig. 5.21B.

In addition, the OHCs provide a feedback force, OHCn, which opposes the 
dissipative damping through the electro-motility of the OHC cell body. This 
motility follows the rapid synchronized motion of the cell’s stereocilia that un-
dergo a displacement zn(t). The positive feedback (ie, effective negative damp-
ing) to the BM is mediated via the supporting Deiters’ cells (Fig. 5.20A). Taken 

FIGURE 5.19 (A) The length of OHCs relates to their best frequency. Three examples from three differ-
ent species (bat, rat, and guinea pig), taken from different locations along the BM. (B) The best frequen-
cies of IHCs do not relate in a unique way to their size. (C) For OHCs, however, the same quantitative 
relation is found across species. (Source: After Dannhof et al., 1991, with kind permission.)
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together, the equation of motion of the active cochlear partition at site n thus 
reads:

∑ δ γ ( )
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where n
jδ  is the Kronecker delta (it is 1 for j = n, and 0 otherwise) (Fig. 5.21).

Fig. 5.17B shows how the location of the excitatory peak of an auditory 
nerve fiber systematically shifts in the basal direction (to higher frequencies) 
for lower sound levels. The total shift over an 80 dB intensity range amounts 
to 1/3–1/2 octave, and suggests that the feedback mechanism of the cochlear 

FIGURE 5.20 Physical model of the Organ of Corti (cf. with Figs. 5.4 and 5.18A), describing the 
coupling of OHCs to the BM. (Source: Nobili et al., 1998, with kind permission.)

FIGURE 5.21 (A) A force impulse applied locally at BM site n (red arrow) leads to an instanta-
neous acceleration of the BM element, but also to an oppositely directed hydrodynamically mediated 
force (blue arrows) to nearby sites (downward green arrows). (B) Because of location-dependent 
mechanical properties of the BM (modeled as an exponential decay of its stiffness), the resulting BM 
movement is a traveling wave. The wavelength of the oscillations decreases from base to apex, reach-
ing a critical point at a location that depends on the driving frequency (right). The phase delay (green 
curve) increases with distance from the stapes. (Source: Nobili et al., 1998, with kind permission.)
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 amplifier is in fact generated by a second set of tuned filters. Clearly, these 
filters involve a role for the OHCs, but it has been suggested that the coupling 
occurs between OHCs in combination with the mechanical properties of the 
tectorial membrane (TM). The TM attaches firmly to the long stereocilia of 
OHCs, and is in turn influenced by BM motion through hydrodynamic coupling 
(Fig. 5.22). Further, also the elastic TM can behave as an oscillator (eg, Zwis-
locki and Kletsky, 1979; Russell et al., 2007; see also Fig. 5.18A). Following 
Eq. (5.59), this behavior can thus be described as:

m
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dt
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n
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with Cn a constant local hydrodynamic coupling. Note that at resonance 
= −m d z dt k z( )[( ) / ( )]n n n n

TM 2 2 TM  (Newton’s second law), so that Eq. (5.60) 
 reduces to:
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As a result, at resonance (ie, locally, and driven by the pure tone acoustic 
input) the displacement of the stereocilia can indeed lead to a negative damping 
(ie, amplification) of the BM motion (Fig. 5.23).

Two mechanisms could underlie the remarkable high-frequency mechani-
cal response of the OHC, which could presumably work together: (1) the cell-
body motility induced by prestine proteins, which provides the feedback force 
to the BM, and (2) the stereocilia themselves that could drive the cell contrac-
tions at the correct phase (Ashmore et al., 2010; Fettiplace and Hackney, 2006; 
Hudspeth, 1985; Hudspeth 2014).

Yet, despite the in vitro evidence of high-frequency OHC responses, it still 
remains to be established whether the cochlear amplifier results from an active 
mechanism [that adds energy (negative damping) to the BM; Dallos, 1992; 

FIGURE 5.22 (A) Effect of the cochlear amplifier (OHC gain) on BM motion for a low-intensity 
sound, at high OHC gain (red curve), and at low gain (blue curve). (B) The blue curve shows the lin-
ear BM response (independent of sound level); the red curve shows the result of a level-dependent 
(saturating) gain of OHC feedback. (Source: Nobili et al., 1998, with kind permission.)
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Dallos and Evans, 1995; Ashmore 2008], or, instead, is due to active compres-
sion of the BM response (adding damping, eg, Van der Heijden, 2014). In other 
words: do OHCs provide precise in-phase high-frequency positive feedback to 
the BM, or do they stiffen to attenuate the BM response at high intensities? In 
vivo recordings of OHC motion at high frequencies are needed to settle this 
important issue (Ashmore et al., 2010). 

A critical nonlinear oscillator? Taken together, four nonlinear cochlear phe-
nomena underlie the function of the inner ear: (1) a high amplification increases 
the sensitivity of the system at low sound levels; (2) frequency selectivity in-
creases the spectral resolution of the system; (3) a compressive nonlinearity 
strongly increases the dynamic range for sound input pressure levels. According 
to Hudspeth and coworkers, all three phenomena can be captured by a single 
nonlinear mechanism: a critical oscillator that is tuned to operate closely to a 
so-called Hopf bifurcation; (4) As an epiphenomenon of this critical system, 
spontaneous oscillations may occur, which are indeed recorded as spontaneous 
oto-acoustic emissions (OAEs) by the mammalian (and nonmammalian) ear. 
Interestingly, the dependence of the nonlinear distortion products of so-called 
evoked OAEs on the intensities of pairs of input tones is explained by the same 
Hopf mechanism (Camalet et al., 2000; see also Reichenbach et al., 2012 for 
an additional hydrodynamic mechanism that mediates the wave propagation of 
nonlinear distortion products like 2f1 – f2 frequency components towards the 
middle ear along Reissner’s membrane).

A Hopf bifurcation can occur in a dynamical system that has a cubic nonlin-
earity and is described by the following generic form:
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FIGURE 5.23 Black-box control scheme to summarize the relevant functional elements of 
the active cochlear partition. It includes a DC parametric stiffness regulation, as well as cycle-to-
cycle AC positive feedback from the OHCs to BM at the acoustic frequency. The OHCs in turn are 
controlled by an efferent feedback signal from the CNS that saturates their electro-motility response 
at high sound levels. The passive properties of the cochlea are provided by the hydrodynamic inter-
actions with BM–TM.
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The parameter " is a control variable that tunes the behavior of z(t). If " > 0, 
and % < 0 the system’s solution attains a stable limit cycle (called supercritical 
oscillation), which is described by:

z t e reLIM

i r t i t1 2
0

λ
α

( ) = =β ω( )+

 
(5.63)

When this nonlinear system is near the critical bifurcation point at " = 0, and 
is driven by an oscillatory stimulus at its characteristic frequency:

f t F i texp 0ω( ) ( )= (5.64)

so that
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(5.65)

the response amplitude varies with stimulus amplitude, F, through a compres-
sive power law relation:

z F1/3∝ (5.66)

This compressive nonlinearity nicely corresponds to the amplitude- 
dependent gain of the cochlear amplifier seen in the recordings of Fig. 5.17: a 
high gain for low-intensity sounds, and a low gain for high-intensity sounds, as 
the gain is defined by (Fig. 5.24):
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(5.67)

Note that the discrete nonlinear feedback model of Nobili et al. (1998), de-
scribed by Eq. (5.59), can be rewritten such that the OHC  nonlinearity, OHC(zn), 
in their model contains the cubic nonlinear term that is required for the Hopf 
bifurcation in Eq. (5.62) (Hudspeth et al., 2010).

5.5 EXERCISES

Problem 5.1:

(a) Show that Eq. (5.12) is indeed a solution that obeys the dry-water constraints 
Eqs. (5.9, 5.10).

(b) Make the deep-water wave approximation to show Eq. (5.13).
(c) Same for the shallow-water wave approximation of Eq. (5.14).

Problem 5.2:

(a) Derive the dispersion relation for gravitational water waves, Eq.(5.17).
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(b) Compute the phase velocity for deep-water waves. What is the group 
 velocity?

(c) The same for shallow-water waves.

Problem 5.3:

(a)  Apply the combined effects of gravity and tension to determine the total 
dispersion relation of dry water, Eq. (5.21).

(b) Determine the phase- and group velocity.
(c) Show that there is one particular wave length, for which phase- and group 

velocities are identical (which wave length? How high is this velocity?).

Problem 5.4: Consider an infinite basin of dry water, stretching  
from x ,[ ]∈ −∞ +∞ . Ignore the z-dimension. For x < 0 the depth of the basin 
is h = h1, so that ybottom = − h1. At x = 0, the bottom profile suddenly jumps 
upward to h = h2 < h1. A traveling water wave comes from the left (x < 0) at 
amplitude A, and moves rightward. We consider the deep-water case, that is, 
" ≪ h1,2.

(a) Compute the reflection, R, and transmission, T, at x = 0 (use: impedance).
(b) Same for the shallow-water case, " ≫ h1,2.

Problem 5.5: Negative dynamic feedback with a delay can cause instability 
problems. In this Exercise we analyze the influence of a delay on the transfer 
characteristic of a linear system with feedback (Figs. 5.25 and 5.26).

FIGURE 5.24 Response gain (red line) and output (dashed line) of the driven Hopf bifurca-
tion, as described by Eqs. (5.66 and 5.67).



144     

(a) Determine the Laplace transform of a pure delay: y(t) = x(t − ∆T), and from 
that calculate its transfer characteristic in the frequency domain.

(b) Consider the system shown in Fig. 5.25. Determine the total transfer func-
tion and the loop gain. The system will spontaneously oscillate, and thus 
become unstable, when the loop-gain exceeds the value of 1, and at the same 
time has a phase shift of −180 degrees. Perform a Bode  analysis on this 
system and estimate the frequency ω0 where instability kicks in (Fig. 5.26).

(c) What happens to the system if A is increased/lowered? What if the time 
constant T is increased/lowered?

Problem 5.6: The wave equation of the BM as deduced by Von Békésy and 
Zwislocki is linear, which means that the superposition principle should hold, 
and that the output amplitude of the BM is independent of stimulus amplitude. 
However, when you listen (carefully) to a superposition of two frequencies, say 
f1 = 440 Hz (musical “A”) and f2 = 523 Hz (musical “C”), you can hear the pres-
ence of a third tone with a frequency that is close to the musical “F” (349 Hz)! 
This additional tone is a combination tone, and tends to have a frequency of 
2f1−f2 = 357 Hz. This combination tone is a manifestation of a nonlinearity in 

FIGURE 5.25 Dynamic feedback model of a low-pass filter with a delay.

FIGURE 5.26 Bode plot for the two subsystems.
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the system, and is due to the nonlinear cochlea (note that the effect disappears 
when the two tones are presented to different ears!).

 Suppose, for simplicity, that the output of the BM, q(t), depends on the 
instantaneous pressure, p(t), through the following nonlinear third-order rela-
tion (a third-order Taylor approximation on the nonlinear transfer function):

q t ap t bp t cp t2 3( ) ( ) ( ) ( )= + + (5.68)

(a) By presenting a superposition of two harmonic waves at the input, say

p t t tcos cos1 2ω ω( ) ( ) ( )= +

 show that the output of the system can described by a spectrum that contains 
13 frequencies! Determine also their relative amplitudes. Which nonlinear 
term causes the observed “F” percept?

(b) What happens to the amplitude(s) of the distortion products if the input is
 given by p t A tcos 1ω( ) ( )=

Problem 5.7: Analysis of a Hopf bifurcation. Consider the Hopf bifurcation in 
polar coordinates (with a and & nonzero real-valued parameters):
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(5.69)

 Investigate the stability of the fixed points as function of the parameters.
 When do we see a limit cycle? What determines its amplitude and frequency?
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