

Characteristic	rs of	University University
PWR and BWR nuclear	power	olants
	PWR	BWR
Fuel	UO ₂	UO ₂
Enrichment (% U-235)	2,6	2,9
Moderator	H₂O	H ₂ O
Cooling medium	H₂O	H ₂ O
Electrical capacity (MW _e)	1150	1200
Temp. cooling medium out (°C)	332	286
Max. fuel temperature (°C)	1788	1829
Conversion efficiency (%)	34	34
Pressure inside reactor vessel (bar)	155	72
Specific capacity (MW _{th} /tonne fuel)	37,8	25,9

				Universiteit Utrec
Re	eacto	rs at Fu	ukusl	nima-1
Reactor	Туре	Net capacity	Utility	Commercial Operation
Fukushima I-1	BWR	439 MWe	TEPCO	March 1971
Fukushima I-2	BWR	760 MWe	TEPCO	July 1974
Fukushima I-3	BWR	760 MWe	TEPCO	March 1976
Fukushima I-4	BWR	760 MWe	TEPCO	October 1978
Fukushima I-5	BWR	760 MWe	TEPCO	April 1978
Fukushima I-6	BWR	1067 MWe	TEPCO	October 1979
		Source:	World Nuclea	ar Association, 24 February 2011
Copernicus Institute				

	Data	on Tsui	nami's in Japan	Universiteit Utr
Wave	Casualties	Date	Location	Magnitude
85 m	13,500	24.04.1771	Japan, Ryukyu Islands	7.4
38 m	26,360	15.06.1855	Japan, Sanriku	7.6
30 m	3,000	02.03.1933	Japan, Sanriku	8.4
28 m	3,000	24.12.1854	Japan, Nankaido	8.4
25 m	5,000	02.12.1611	Japan, Sanriku	8.0
17 m	31,000	20.09.1498	Japan, Nankaido	8.6
14.5 m	103	26.05.1983	Japan, Noshiro	7.7
12 m	2,144	01.09.1923	Japan, Tokaido	7.9
11 m	30,000	28.10.1707	Japan	8.4
10.5 m	5,200	31.12.1703	Japan, Tokaido-Kashima	8.2
10 m	40	07.12.1944	Japan, Off Southeast Coast Kii Peninsula	8.1
8 m	500	04.11.1677	Japan, Kashima	7.4
6.5 m	33	04.03.1952	Japan, Se. Hokkaido Island	8.1
6 m	26	23.08.1856	Japan, Se. Hokkaido Island	7.8
Source: h	nttp://www.tsunami-	alarm-system.com/er	n/phenomenon-tsunami/phenomenon-tsunami-oc	currences.html
Copernicus In	stitute			

	Rea	ctor 1
BEFORE QUAKE	TEPO TEPO	Outer building is damaged and there was a meltdown. Radioactivity has been vented and leaked. 100% of fuel rods melted, partly also through reactor vessel. Operators have trouble cooling down the reactor. Activities to prevent second hydrogen explosion, inside containment. The reactor has (had) 400 fuel assemblies and the spent fuel pool has 292.
March 11:	An earthquake sparks a tsunami. The its fuel continues to produce large am cooling system. Operators shut down tsunami, backup diesel generators for hours after the earthquake	reactor shuts down automatically, though ounts of heat. Due to earthquake probably breakdown emergency cooling system for some time. After running the plant's cooling systems fail. Meltdown 5
March 11: March 12:	An earthquake sparks a tsunami. The its fuel continues to produce large am cooling system. Operators shut down tsunami, backup diesel generators for hours after the earthquake Operators start injecting water into the pressure-suppression pool stops work top walls off the reactor building. Read damaged. Radioactive materials, inclu the reactor with seawater in a desper	reactor shuts down automatically, though ounts of heat. Due to earthquake probably breakdown emergency cooling system for some time. After running the plant's cooling systems fail. Meltdown 5 e reactor to cool it. Melt down of the core. The sing properly. Hydrogen explosion blows the roof and ctor containment vessel seems not significantly uding lodine-131, are detected. Workers start flooding at e effort to cool it
March 11: March 12: March 18:	An earthquake sparks a tsunami. The its fuel continues to produce large am cooling system. Operators shut down tsunami, backup diesel generators for hours after the earthquake Operators start injecting water into the pressure-suppression pool stops work top walls off the reactor building. Read damaged. Radioactive materials, inclu the reactor with seawater in a despen- Japanese authorities raise the assess of 7 on the international nuclear event	reactor shuts down automatically, though ounts of heat. Due to earthquake probably breakdown emergency cooling system for some time. After running the plant's cooling systems fail. Meltdown 5 e reactor to cool it. Melt down of the core. The king properly. Hydrogen explosion blows the roof and ctor containment vessel seems not significantly uding lodine-131, are detected. Workers start flooding ate effort to cool it. sment of severity of the accident to a 5 out t scale INES.
March 11: March 12: March 18: March 19:	An earthquake sparks a tsunami. The its fuel continues to produce large am cooling system. Operators shut down tsunami, backup diesel generators for hours after the earthquake Operators start injecting water into the pressure-suppression pool stops work top walls off the reactor building. Read damaged. Radioactive materials, inclu the reactor with seawater in a desper- Japanese authorities raise the assess of 7 on the international nuclear event Pressure within the reactor containme	reactor shuts down automatically, though ounts of heat. Due to earthquake probably breakdown emergency cooling system for some time. After running the plant's cooling systems fail. Meltdown 5 e reactor to cool it. Melt down of the core. The sing properly. Hydrogen explosion blows the roof and ctor containment vessel seems not significantly uding lodine-131, are detected. Workers start flooding ate effort to cool it. sment of severity of the accident to a 5 out t scale INES. int vessel appears to be stable.

- 1) Restricted Area,
- 2) Deliberate Evacuation Area,
- 3) Evacuation-Prepared Area in case of Emergency,
- 4) Evacuation Recommendation Spots.

<u>Restricted / Evacuation Area</u>: *Area within 20 km.*

<u>Deliberate Evacuation Area</u>: Area in which more than 20 milliSv/year of radiation is detected within 30 km and beyond 20 km.

Evacuation Prepared Area in case of Emergency: Area which is not Evacuation Area or Deliberate Evacuation Area within a 30-kilometer radius.

Specific Spots Recommended for Evacuation: Specific spots estimated to exceed an integral dose of 20mSv over a one year outside 30km radius.

<u>Source</u>: Additional Report of the Japanese Government to the IAEA, September 2011

