Reologie is overal (part 2)

WND Conferentie, Noordwijkerhout 16, 17 december 2011

Gerrit W.M. Peters

Technische Universiteit Eindhoven University of Technology

ML BI

1. 3. 1. 1.

Where innovation starts

three cases

- case 1: brain tissue (biomechanics)
- case 2: carnivorous plant (biology)
- case 3: semi-crystalline polymers (polymer physics)

introduction: traumatic brain injury

- Iarge deformation (strain) → Traumatic Brain Injury (TBI)
- often occur during rotational and translational acceleration of the head
- exact mechanism of TBI still incompletely understood

introduction: traumatic brain injury

- Injury assessment (industry):
 - anthropomorphic test devices (ATD)
 - Head Injury Criterion (HIC)

introduction: traumatic brain injury

- Injury assessment (industry):
 - anthropomorphic test devices (ATD)
 - Head Injury Criterion (HIC)

global head load FE head model internal local brain response injury criteria brain damage

brain deformations: experiment

test device (high speed loading)

brain deformations: experiment / simulations

Skull

aCSF

Brain

brain deformations: experiment / simulations

brain deformations: protection design

three cases

- case 1: brain tissue (biomechanics)
- case 2: carnivorous plant (biology)
- case 3: semi-crystalline polymers (polymer physics)

viscoelastic deadly fluid in carnivorous plants

Laurence Gaume (Montpelier) & Yoel Forterre (Marseille)

the Nepenthes rafflesiana.

- Contains a fluid composed of water and polysaccharides

a fly tries to flee

water

fluid

influence of concentration

- it's not a chemical attack (insects recover when removed from the fluid)
- surface tension hardly varies with concentration: surface tension doesn't explain (σ_{fluid} = 0.0726 N.m, σ_{water} = 0.0720 N.m).

drag forces: viscosities of the pure fluid

shear viscosity /shear rate (left) transient extensional viscosity / strain (right)

arrows indicate typical values corresponding to insect motion in the fluid

elongational effects: filament formation

dynamical sequence of a fly in the digestive fluid showing a viscoelastic liquid filament attached to its leg (arrows)

viscosities: influence of concentration

dilution effect on the shear (\circ) and extensional viscosity (\Box) (left)

dilution effect on the characteristic relaxation time (right)

capture rate versus De-number

-trapping efficiency is conditioned by both fluid viscoelasticity and insect dynamics

- tropical plants, often submitted to high rainfalls and thus variations in fluid concentration.

capture rate / Deborah number (flies □, ants ■)

three cases

- case 1: brain tissue (biomechanics)
- case 2: carnivorous plant (biology)
- case 3: semi-crystalline polymers (polymer physics)

injection molding

load-bearing applications of polymers

25

processing of semi-crystalline polymers

• Polymer processing:

high $\dot{\gamma}$, high p and high \dot{T} \rightarrow structure formation

- Mechanical behaviour:
 - Influence of morphology

structure development during flow

in-situ Small Angle X-ray Scattering (SAXS)

in-situ: Small Angle X-ray Scattering (SAXS)

processing-structure-property

processing-structure-property: example (iPP)

Factor 400 in lifetime for different positions/directions!

processing-structure-properties relations

processing conditions: injection molding

typical cross section of semi-crystalline products

modeling flow effects on crystallization

nonlinear viscoelasticity: the eXtended PomPom model

$$\overset{\nabla}{\tau_i} + \lambda(\tau_i)^{-1} \cdot \tau_i - 2G_i D = 0 \qquad \qquad \alpha \neq 0 \to \Psi_2 \neq 0$$

$$\lambda(\tau_i)^{-1} = \frac{1}{\lambda_{b,i}} \left[\frac{\alpha_i}{G_i} \tau_i + F(\tau_i)I + G_i \left(F(\tau_i) - 1 \right) \tau_i^{-1} \right] \qquad \Lambda_i = \sqrt{1 + \frac{\operatorname{tr}(\tau_i)}{3G_i}}$$

$$F(\tau_i) = 2r_i e^{\frac{2}{q_i}(\Lambda_i - 1)} \left(1 - \frac{1}{\Lambda_i^2} \right) + \frac{1}{\Lambda_i^2} \left[1 - \frac{\alpha_i \operatorname{tr}(\tau_i \cdot \tau_i)}{3G_i^2} \right] \quad r_i = \frac{\lambda_{b,i}}{\lambda_{s,i}}$$

non-isothermal quiescent crystallization

flow-induced crystallization

total nucleation density	$N_{tot} = N_q + N_f$	
(flow-induced) nucleation rate	$\dot{N}_{f}=oldsymbol{g}_{n}ig(\Lambda_{hmw}^{4}-1ig)$	
shish length (L) growth	$\dot{L} = \boldsymbol{g}_{l} \left(\Lambda_{avg}^{4} - \boldsymbol{1} ight)$	for $\Lambda > \Lambda_{crit}$
rate equations	$\dot{\psi}_{2} = 4\pi N_{f} \dot{L}$ $\dot{\psi}_{1} = G \psi_{2}$ $\dot{\psi}_{0} = G \psi_{1}$	'length' 'surface' 'undisturbed volume'
Avrami equation	$-\ln(1-\xi) = \phi_0 + \psi_0$	'real volume'

numerical simulation: no flow

numerical simulation: flow

from processing conditions to structure

- use the experimental thermal and pressure history in the model

W.J. O'Kane, R.J. Young, Journal of Materials Science Letters, 14, 433-435 (1995)

so far for the real problems

acknowledgements

Tim van Erp

Martin van Dronge

Dario Cavallo

Luigi Balzano

Zhe Ma

Peter Roozemond

high pressure, in situ X-ray

SAXS

WAXD

