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Chapter 1 Introduction

Picture this: bustling markets, sacks of grains being measured and
exchanged, or officers calculating how to divide harvests equitably. This was
real-life mathematics for ancient traders and scholars, dealing with
functional relationships (Li, 1987; Martzloff, 2007). A concrete example is
captured in the ‘Sumi problem’ (Figure 1.1), which portrays a proportional
conversion process. It details how to convert between different types of

grain measured in consistent units. The functional relationship can nowadays
millet X 3 X 10

5
equation ensures precision by accounting for measurement units

(2} and 7 ). By framing the problem as in the text, scholars could help
traders and officers standardize conversions, ensuring consistency and
accuracy across different scenarios. In practice, increasing the amount of
millet by a factor k results in husked rice increasing by the same factor k, as
expected from a direct proportionality. This functional approach also allowed
for scalability and application of the same reasoning to different grain
quantities. The underlying proportional reasoning shown here forms a
foundation of what we now call functional thinking: identifying functional
relationships between quantities and expressing them systematically.

be expressed mathematically as husked rice = , where the

1.1  Functional Thinking

Functional Thinking (FT) is a way of seeing the world. It manifests in specific
aspects, including input-output thinking, covariation, correspondence, and
mathematical object views. Input-output thinking helps students identify and
apply functional rules in everyday contexts, such as calculating the total cost
of cell phone bills with an input—output chain. Mathematical tools, e.g., the
Algebra Arrows applet (Doorman et al., 2012) may support this. Covariation
thinking supports understanding in physics, where concepts like velocity and
acceleration depend on the simultaneous variation of time and position
(Confrey & Smith, 1995). Correspondence thinking enables students to map
functional relationships across multiple representations, such as graphs,
tables, and formulas (Doorman et al., 2012; Pittalis et al., 2020).
Mathematical object thinking views functions as objects with distinct
representations and properties. These representations, e.g., nomograms,
tables, graphs, formulas, or natural language, offer unique perspectives on a
function’s character. Recognizing functions as mathematical objects enables
students to perform higher-order operations such as composition,
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transposition, and differentiation. Given the target education level of this
thesis, the aspect of object formation is minimally emphasized.

Figure 1.1  Sumi problem: Grain distribution

In a world increasingly driven by data and mathematical models, the ability
to think functionally is an important life skill. From understanding the slope
of a line to modeling complex real-world phenomena, FT forms the
foundation of many modern scientific and technological advances. For
example, functional relationships underlie complex models for the spread of
diseases. Such models rely on understanding how variables like infection
rates, recovery rates, and population size interact dynamically over time
(Brauer et al.,, 2009). Moreover, FT is also important for fostering other
mathematical thinking skills, such as pattern recognition, dynamic reasoning,
and the ability to generalize mathematical concepts. Pattern recognition
helps students discern consistent relationships between variables (Cobb &
Steffe, 1983). Dynamic reasoning builds on this by emphasizing how changes
in one variable affect another (Thompson & Carlson, 2017), especially when
time is involved as a parameter to reason both quantitatively and
qualitatively (Keene, 2007). FT also acts as a prerequisite for generalization
in some cases and lays the foundation for algebraic reasoning even in early
grades (Blanton & Kaput, 2011). For instance, recognizing that doubling one
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quantity results in doubling another within proportional relationships (e.g., if
f(x) = 3x, and x doubles from 2 to 4, y doubles from 6 to 12) supports the
ability to generalize this pattern to all linear functions f(x) = k - x. This early
exposure to functional relationships fosters an intuitive grasp of algebraic
structures. In this sense, FT provides the conceptual framework to analyze
specific cases and abstract general rules.

Developing FT presents significant challenges. A common barrier is
students’ limited understanding of functions, often restricting them to
proportional or linear relationships. This restricted view may prevent them
from grasping more complex relationships such as exponential or quadratic
models, which are fundamental to modeling real-world phenomena (Ellis et
al., 2016). Furthermore, research shows that students often fail to connect
different representations of functions, such as graphs, tables, and equations
(Panasuk & Beyranevand, 2010). This difficulty limits their ability to flexibly
interpret functional relationships and apply mathematical reasoning in
different scenarios. Moreover, traditional teaching methods tend to focus on
static representations, such as paper-based graphs or symbolic equations.
While these representations are valuable, they lack the dynamic, interactive
qualities that help students build robust, flexible understandings (Glinster &
Weigand, 2020). The rise of digital tools has made it possible to provide
students with dynamic explorations of functional relationships. For instance,
seeing how the graph of a function changes in real-time as one adjusts its
parameters can illuminate the concept of trigonometric function in ways that
static graphs cannot (Shvarts & van Helden, 2021). The role of digital
technology in supporting FT will be discussed in detail in section 1.4.

1.2. Nomograms

There are many different ways to present functions, including natural
language, equations, graphs, tables, and, slightly less common, nomograms.
Nomograms, also referred to as arrow graphs or parallel axis representation,
have been used as a visualization tool in mathematics to represent functions.
A nomogram consists of two parallel number lines connected by arrows that
represent a functional relationship. Specifically, these arrows map values on
the input axis (x) to corresponding values on the output axis (f (x)), usually
at regular intervals (Figure 1.2).

The history of this approach traces back to the mid-20™ century, with
significant contributions from various mathematicians and educators.
Richmond (1963) used arrow graphs as a means to illustrate fundamental
calculus concepts, such as continuity, derivatives, and composition of
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functions, using two parallel lines to represent the domain and range. He
emphasized the pedagogical advantages of this representation, noting how it
simplifies complex ideas like the chain rule and derivatives through visual
intuition. Building on Richmond’s work, Brieske (1978) expanded the use of
mapping diagrams to demonstrate properties of continuous functions and
derivatives. He highlighted their potential in helping students visualize the
concepts that traditional Cartesian graphs struggle to convey, such as
composition and continuity of composite functions. In 1996, Bridger refined
mapping diagrams further, advocating for their use in fostering a dynamic
perspective of functions. He introduced animated mapping diagrams, which
allow users to interactively explore the relationship between input and
output values, which innovatively introduced a process-oriented view of
functions as associations rather than static graphs.

Figure 1.2 Nomogram representing the function f:x — x?

Note. This nomogram was created in GeoGebra by Rogier Bos
(https://www.geogebra.org/m/sngnbnzz).

Closer to the field of secondary education, similar uses of nomograms like
Parallel Axes Representations (Nachmias & Arcavi, 1990), and DynaGraphs
(Goldenberg et al., 1992; Sinclair et al., 2009) have gained attention as fruitful
methods for teaching and learning functions. These representations enable
students to experience functions as processes rather than static entities. For
example, students can manipulate one variable and immediately observe its
effect on the output through DynaGraphs. Figure 1.3 shows how nomograms
can be used to visualize relationships between variables. Figure 1.3a shows

10
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two different nomograms. The top one represents an increasing function
with two convergent arrows, such as f;(x) = ; Here, if x; > x,, then
f1(x1) > fi(x3). The bottom nomogram represents a decreasing function
with two intersecting arrows, such as f,(x) = —g. If x3 > x4, fo(x3) <

f2(x4). Figure 1.3b compares two nomograms to their corresponding
Cartesian graphs: f3(x) = |x|, and f,(x) = —2x + 2.

Figure 1.3 Nomograms representing different functions

In the context of this thesis, nomograms play a central role in exploring FT.
This explicit visualization allows students to observe how input values are
transformed into outputs through the function. As shown in Figure 1.4, a
nomogram in a digital-embodied learning environment highlights this
mapping process. Students can drag the two points vertically to adjust their
values on the respective number lines and plot the target function. When the
two points are placed correctly on the respective number lines according to
the target function, the connecting arrow turns green, and its trace remains
visible. However, if the placement of the two points does not accurately
represent the target function, the arrow between them will turn red. In all,
the use of nomograms provides students with a hands-on, interactive way to
explore functions.

11
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Figure 1.4  Adigital-embodied nomogram representing f: x = —x

1.3 Embodied learning

One of the challenges in mathematics education is helping students connect
abstract concepts—often represented by symbolic notation—and the
tangible experiences that give these concepts meaning. Embodied design
provides a potential solution to these challenges by integrating physical
actions with cognitive processes (Barsalou, 1999; Lakoff & Nufiez, 2000;
Abrahamson & Lindgren, 2014). According to this perspective, the body is not
just a vessel for the brain; instead, cognition emerges through interactions
between the mind, the body, and the artifact (Shvarts et al., 2021). Rather
than treating perception, action, and reasoning as isolated processes,
embodied cognition emphasizes the seamless integration of these elements.
When students use their bodies to explore mathematical relationships (e.g.,
moving objects, gesturing, or physically enacting patterns), they create
sensorimotor experiences that support their understanding of abstract
concepts.

Building on these theoretical underpinnings, embodied design involves
creating learning experiences that intentionally incorporate action and
perception as central components of conceptual development (Abrahamson
& Lindgren, 2014; Shvarts & Abrahamson, 2021). Embodied design involves
creating learning experiences that intentionally incorporate action and
perception as central components of conceptual development (Abrahamson
& Lindgren, 2014). Instead of viewing abstract mathematical concepts as
purely symbolic, embodied design situates learning in tasks that include

12
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students’ bodily engagement, such as gesture, whole-body movement, or
tangible manipulation. For example, in an augmented reality sandbox (Figure
1.5a), students adjust the steepness of planes while observing a rolling
marble’s trajectory, deepening their understanding of gradients and rate of
change (Bos et al., 2022). Additionally, gesture-based learning, such as using
hand movements to represent the sides of geometric shapes, facilitates
comprehension of properties like symmetry and congruence. Similarly,
whole-body movement activities, like walking along a number line taped on
the floor (Vollmuller et al., 2023), help students grasp numerical relationships
and operations through physical enactment. These embodied interactions
create iterative loops between perception and action and further support the
development of body potentialities for the designed tasks. For example,
research suggests that two-hand movements can assist in understanding sine
graphs. The movements clarify the connection between the arc length of a
unit circle and the x-coordinate of the corresponding point on the emerging
sine graph (see Figure 1.5b, Shvarts et al., 2021). While embodied tasks do
not necessarily lead to full comprehension of these concepts, they provide
students with sensorimotor experiences that can support their
understanding and reasoning.

Figure 1.5 Embodied tasks (Bos et al., 2022; Shvarts et al., 2021)

13
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1.4 Digital technology in the classroom

In recent years, the rapid integration of digital technologies in education has
opened up new ways for exploring abstract mathematical ideas like
functions. In today’s classrooms, interactive, multi-touch screens and
motion-sensing tools provide new opportunities for students to engage
physically with mathematical concepts. These tools enable real-time
feedback, foster collaborative learning, and help students visualize abstract
ideas in a dynamic and intuitive way (Drijvers & Sinclair, 2024; Engelbrecht &
Borba, 2024; Moreno-Armella et al., 2008). For example, students can use
digital environments, such as GeoGebra or Numworx, to manipulate graphs
dynamically, observing real-time changes as they adjust parameters or
variables (Brown, 2015; Falcade et al., 2007; Lindenbauer, 2019; Rolfes et al.,
2020; Shvarts & van Helden, 2023). This not only replicates but also amplifies
the tangible experience of traditional physical instruments: students actively
pull, drag, and transform mathematical objects on screen, embodying the
relationships in a dynamic way.

Similarly, motion-sensing tools, like hand trackers or controllers
integrated into AR and VR environments, allow students to map their physical
movements to coordinate points on a graph (Malaspina & Malaspina, 2020).
For instance, an AR application can generate a function graph based on the
algebraic expressions, two-dimensional designs, or oral descriptions,
allowing students to observe slopes at different points, rotate or flip the
whole graph, or experiment with scaling (del Cerro Velazquez et al., 2021;
Schutera et al., 2021). In an AR sandbox study (Bos et al., 2022), students
were invited to roll a marble down a plane, while adjusting the plane’s
orientation and steepness. The AR sandbox can project real-time height lines
onto the plane with the marble’s trajectory perpendicular to these lines.
Studies suggest that such embodied, spatial experiences can strengthen
students’ conceptual understanding by connecting abstract representations
to real-world movement and observation (Bujak et al., 2013). By designing
tasks that integrate digital and physical interactions, we can make the
abstract nature of functions more accessible and intuitive. Students can
therefore see, feel, and experiment with abstract concepts. Tools like the
nomogram provided a tangible bridge between the physical and abstract
when we embedded it in a digital-embodied learning environment.

Much has been achieved in using digital technology and embodied
methods to make mathematical concepts more accessible, yet gaps remain—
particularly around the process of “abstracting” the mathematical structures
from these embodied experiences. Existing research emphasizes that

14
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although physical engagement can anchor conceptual understanding,
students may struggle to identify which aspects of their bodily actions or
spatial manipulations correspond to algebraic symbols and geometric
features (Abrahamson et al., 2020; Bartolini & Martignone, 2020; Wittmann
etal., 2012; Alibali & Nathan, 2013). In the context of covariational reasoning,
for instance, embodied experiences can provide a concrete foundation for
understanding how variables vary together. However, students may find it
difficult to generalize these experiences into a broader understanding of
functional relationships that can be expressed symbolically. This transition
involves shifting from a procedural understanding—where concepts like
functions or geometric figures are experienced through actions or
measurements—to a more structural understanding, where these concepts
can be represented and manipulated within formal symbolic systems.

Therefore, my PhD journey seeks to address this challenge by
leveraging the potential of digital-embodied learning environments, which
provides the rich intuitions generated by sensorimotor experience while
systematically guiding students toward abstract mathematical reasoning. In
doing so, | stand on the shoulders of giants, drawing connections between
past innovations and future possibilities.

1.5 Overview of the thesis

This study addressed the research question: How does hands-on work with
nomogram tasks foster students’ FT development in a digital-embodied
learning environment? By designing and implementing nomogram tasks in
the digital-embodied learning environment, we aimed to uncover the
mechanisms through which these interactive experiences support the
growth of students’ FT. To achieve this aim, four sub-studies form the body
of the thesis (Figure 1.6).

15
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Figure 1.6  An overview of the chapters

Chapter 2: Systematic Literature Review

The first sub-study involved a systematic review of the existing literature on
embodied approaches to fostering FT using digital technology. The review
was conducted using databases such as Scopus, ERIC, and Web of Science, to
answer the following research question and sub-questions:

RQ1 How does research literature inform an embodied approach to FT
using digital technology that invites abstraction?

RQ 1.1 Which role of technology is widely used in developing functional
thinking?
RQ 1.2 Whatis known about different abstraction stages of functional
thinking?
RQ 1.3 Which embodied approaches can be identified in the literature on
developing functional thinking?
This study included a detailed analysis of 51 studies, categorizing them based
on the types of embodied design (action-based, perception-based, and
pseudo-embodiment) and their applications in fostering different aspects of
FT (input-output, covariation and correspondence). The findings provide a
comprehensive understanding of the current state of research and highlight
gaps that this PhD project aims to address, such as the lack of empirical
studies on the effectiveness of embodied designs in secondary school
settings, limited exploration of how specific types of embodied tasks foster
different aspects of functional thinking, and the need for frameworks that
link embodied cognition to digital technology integration.

16
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Chapter 3: Design of Learning Environments and Laboratory Pilot

The second sub-study focused on the iterative design and development of a
digital-embodied learning environment. Drawing on theoretical frameworks
such as embodied cognition and emergent modeling, tasks were designed to
address three key aspects of FT: input-output, covariation, and
correspondence. The study centered on the research question and sub-
guestions:

RQ 2 How can an embodied design using nomograms foster functional
thinking?

RQ2.1 How does a light ray context foster the students’ meaning making
of nomograms?

RQ 2.2 How do bimanual movement tasks foster covariational thinking?

RQ 2.3 How do different function representations and their conversions
support a correspondence view on functions?

The design process followed a three-stage embodied design framework and
involves creating hypothetical learning trajectories (HLTs), which outline the
hypothetical learning processes and conceptualizations for each task. These
HLTs are refined through iterative cycles of implementation, analysis, and
redesign, using students’ exploration, and interview data are analyzed to
ensure alignment with the learning goals. Two main types of embodied tasks
were developed: action-based tasks, which emphasize physical manipulation
to ground mathematical concepts, and perception-based tasks, which
leverage visual and sensory experiences to support learning. A laboratory-
based experiment was conducted with two pairs of Grade 9 students to pilot
the digital-embodied learning environment. The study involved a 90-minute
intervention, followed by a 15-minute interview to gather students’
reflections, which further informed subsequent redesigns.

Chapter 4: Classroom Implementation and Impact

The third sub-study investigated the implementation and impact of the
digital-embodied learning environment in a classroom setting. The research
guestion and sub-questions for this study were:

RQ3 How can an embodied design using nomograms foster functional
thinking in a classroom setting?

RQ 3.1 How does a digital-embodied design using nomograms affect the
various aspects of functional thinking among students within a
classroom setting?

RQ 3.2 How do the design features contribute to the development of
functional thinking??

17
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Conducted as a teaching experiment, this study included three 1-hour
sessions with Grade 9 students from an international school in the
Netherlands. Each session targeted specific aspects of FT: the first focused
on input-output, the second on covariation, and the third on
correspondence. Each session began with a brief introduction to the day’s
concept (5 minutes), followed by interactive tasks using tablets (45 minutes),
and concluded with a whole-class discussion to consolidate learning (10
minutes). Pretests assessed baseline FT levels, while posttests measured
learning gains after the final session. The classrooms, equipped with tablets,
supported both individual and collaborative task exploration. This setup
fostered active discussion and teamwork as students explored embodied
tasks with real-time feedback. Data sources include pre and posttests,
classroom observations, and mini interviews to assess improvements in
students’ FT levels.

Chapter 5: Hand-Tracking and Learning Outcome Study

The final sub-study zoomed in at the most noticeable aspect of FT,
covariational reasoning (CR). This study investigated the following research
question:

RQ 4 How do bimanual movements within a digital-embodied
environment support students’ covariational reasoning?

Two hypotheses guide the analysis:

Hypothesis 1 Higher levels of CR correlate with a shorter Time to fluency.

Hypothesis 2 Higher levels of learning gains in CR correlate with a longer
Fluency Time Sum.

This study used hand-tracking technology to explore the relationship
between students’ hand movements and their CR. Both quantitative metrics
(e.g., time to fluency, which measures how quickly students achieve smooth,
coordinated hand movements, and fluency time sum, which reflects the total
time spent in fluent coordination phases) and qualitative insights from hand-
tracking trace analysis and post-task probes were analyzed. This mixed-
method approach combined pre and posttests, hand-tracking data, and
student reflections to comprehensively analyze how embodied interactions
support CR development. The analysis framework of hand-tracking data was
based on Thompson and Carlson’s CR taxonomy, operationalized for the case
of bimanual movement. It categorized students’ CR levels from no
coordination (LO) to smooth continuous covariation (L5). Students’ bimanual
movement patterns, reflected by trace continuity, coordination, and green
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feedback, were examined within this framework to reveal how perception-
action loops and attentional anchors contribute to their improvementsin CR.

Chapter 6: General conclusion and discussion

This final chapter synthesized the findings from the four sub-studies,
providing a comprehensive overview of how the research contributes to the
understanding and development of FT in mathematics education. By
reconsidering the role of bodily movement through epistemological,
ontological, and affective-cognitive lenses, the discussion highlighted both
the affordances and challenges of embodied design for fostering FT.
Additionally, the implications of these findings for pedagogy, digital learning
artifacts, and future research directions were explored.
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Chapter 2 An embodied approach to abstract
functional thinking using digital technology:
A systematic literature review

Abstract Embodied cognition has recently gained increasing attention in
mathematics education research. However, little is known about ways to use an
embodied approach to reach for mathematical abstraction. In this study, we
investigate this topic, for the case of functional thinking (FT) using digital technology
(DT), through a systematic literature study. We searched four databases, resulting in
a corpus of 51 papers. As a result, we found that action-based and perception-based
embodied approaches to contextual/situational abstraction are more prevalent in
literature than pseudo-embodied approaches. In addition, the covariation and
correspondence views on function are more frequently addressed compared to
input-output and mathematical object views. We conclude with a discussion on the
interplay of embodied approaches and abstraction in FT. For future research, we
suggest investigating embodied approaches using digital technology for developing
FT concerning different types of mathematical abstraction.

Keywords Functional thinking; Embodied cognition; Digital technology;
Mathematical abstraction

This chapter is based on:

Wei, H., Bos, R., & Drijvers, P. (2023). An embodied approach to abstract functional
thinking using digital technology: A systematic literature review. The
International Journal for Technology in Mathematics Education, 20(2), 75-92.
https://doi.org/10.1564/tme_v30.2.2
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An embodied approach to abstract functional thinking

2.1 Introduction

Since the beginning of the twentieth century, developing functional thinking
(FT) skills is considered a central area of mathematics throughout primary,
secondary, and tertiary education (Vollrath, 1986). Students need functional
thinking—thinking in terms of relationships, interdependencies, and
changes—for both later professional and daily life. FT includes understanding
relations between real-world quantities, in the form of various mathematical
functions. For example, public understanding of exponential growth turns
out to be important to create support for measures during a pandemic, like
the recent COVID-19 outbreak. In this regard, FT has received considerable
attention from educators and researchers in past decades.

Technological advances have led researchers to explore novel ways to
address FT in mathematics teaching and learning. A challenge in
incorporating technology in mathematics classrooms is to identify and utilize
various didactical functionalities of the digital technology (DT) (Drijvers et al.,
2011), which will be detailed in the theoretical background section. Some
more recent technologies, like touch screens, virtual/augmented reality and
motion sensors, enable whole-body involvement in mathematics education.
To meet the need for embodied design, Drijvers (2019) proposed an
embodied instrumentation approach, offering design heuristics for embodied
activities in a technology-rich environment. However, the extent to which
embodiment has been explored for teaching functional thinking remains
unclear. We are interested in studying the role of technology and
embodiment in the teaching and learning of FT.

The development of FT progresses from concrete to more abstract
notions of functional relationships. Researchers have theorized different
layers and stages of abstraction in both general mathematics education and
functional thinking (El Mouhayar & Jurdak, 2015; Ellis et al., 2016; Glinster &
Weigand, 2020; Tanisli, 2011). Treffers (1987) put forward horizontal
mathematization and vertical mathematization, which can be viewed as
stages of abstraction. We would like to study how students can be provided
with an efficient and effective learning environment that fosters various
abstraction stages of FT. In particular, we are interested to see how embodied
learning environments facilitate the process of abstraction in the case of FT.

Overall, this systematic literature review addresses the following main
research question: How does research literature inform an embodied
approach to FT using DT that invites abstraction?
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2.2  Theoretical background
This section presents four perspectives related to the literature review and
ends with theoretical frameworks for this study.

Functional Thinking

The concept of FT can be traced back to the investigation of children's
understanding of proportionality in functions (Inhelder & Piaget, 1958). The
term "Functional thinking" was first used at the Meran Conference in 1905
(Vollrath, 1986). Researchers regard FT as a mathematical ability
characterized by the following descriptions: (1) FT is a fundamental activity
for working on functions (Vollrath, 1986); (2) FT is the ability to state,
postulate, produce, and reproduce dependencies between variables
(Freudenthal, 1983); and (3) FT is mathematical thinking on assumptions
about dependency, that can be tested and, if necessary, revised (Burton,
1984).

With the development of mathematics education research, the
definition of FT has diversified. For instance, an action/operational view
stresses the operational and computational character of the function
concept, considering a function as an input-output assignment. A dynamic
view emphasizes the covariation of the dependent variable with the
independent variable, or two variables depending on another one. A more
static view, including the mapping view, leads to a more formal definition of
function as a set of ordered pairs. Moreover, definitions of a function vary at
different educational levels.

As described above, FT encompasses the process of describing,
building, and reasoning about/with functions (Pittalis et al., 2020; Stephens
et al., 2017). Specifically, three often-mentioned aspects of FT are (Confrey &
Smith, 1995; Doorman et al., 2012; Vollrath, 1986):

1. Input-output thinking. Concerning input-output thinking, a function
is regarded as an input-output assignment that helps to organize and
to carry out a calculation process, in which pattern recognition
related to pre-algebraic thinking is regarded as a first step.

2. Covariation and correspondence thinking. This aspect emphasizes
that the dependent variable co-varies with the independent. The
independent variable, while running through the domain set, causes
the dependent variable to run through a range set, which includes
the mapping view.
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3. Mathematical object thinking. In this aspect, a function is a
mathematical object which can be represented in different ways,
such as arrow chains, tables, graphs, formulas, and phrases, each
providing a different view of the same object.

Digital Technology

In this study, we focus on digital technologies that facilitate learning
materials for FT or supports FT learning processes. Commonly used types of
DT for FT include calculators or calculation software, dynamic geometry
software (DGS), and computer algebra system (CAS).

Some of these technologies allow interaction of a more dynamic,
interactive nature, such as dragging sliders and manipulating objects with a
mouse. Studies point out that the action of dragging in DGS can potentially
assist students in understanding dependencies in constructions through the
recognition of mathematical invariances (Monaghan & Trouche, 2016). The
most common draggable objects are sliders and (representations of)
geometric objects (e.g., lines and points). When a slider is provided for a
variable, the action of dragging can result in a continual reshaping of the
figure according to the corresponding variable value (Lagrange & Psycharis,
2014).

Aside from dragging with a mouse, DT has evolved to be much more
body-oriented: multi-touch screens, augmented and virtual reality platforms,
motion sensors, and gesture-recognition systems offer students rich
opportunities for embodied interactions (Shvarts et al., 2021). For example,
motion detectors and object detection can be employed in the classroom to
learn about the graphs of functions (Ferrara & Ferrari, 2020; Nemirovsky et
al., 2013).

When utilizing DT for teaching FT, a challenge lies in combining the
different mathematical functionalities and didactical functionalities of the DT
(Drijvers et al.,, 2011). Drijvers (2018) identified five mathematical
functionalities of DT: algebraic work, graphing tasks, statistical analyses,
calculus procedures, and geometric jobs. Clearly, the mathematical
functionality of a tool is intrinsically linked to mathematics itself. Some tools
can serve multiple mathematical functionalities, such as GeoGebra, which
can be used for algebraic work, graphing tasks and geometric tasks. In the
context of FT, we restrict our attention in this study to four mathematical
functionalities of DT: Number and Algebra, Graphing, Geometry and Calculus.
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Drijvers et al. (2011) proposed three main didactical functionalities of
DT in mathematics education: (1) doing mathematics, (2) practicing skills, and
(3) developing conceptual understanding. These didactical functionalities are
major factors influencing students' mathematics achievements (Gray et al.,
2010). The three didactical functionalities of DT are not mutually exclusive
but are intertwined. Based on the viewpoint of Drijvers et al., Young (2017)
adapted these didactical functionalities and put forward three broad
categories: (1) computation enhancement technologies; (2) instructional
delivery enhancement technologies; and (3) presentation and modelling
enhancement technologies. Concerning the domain of the function, Giinster
& Weigand (2020) provided a category system 'digital technologies (DT)
usage'. This system encompasses six usages of DT in terms of function
learning: (1) Variation within the learning arrangement, (2) Feedback through
the learning arrangement, (3) Use of sliders, (4) Creating objects, and (5)
Adjusting existing objects and (6) Zooming in and out.

Figure 2.1  The mathematical and didactical roles of digital technology for FT

For the purpose of this study, we adapted both the mathematical
functionalities and didactical functionalities to align with the particular types
of digital technology. Instead of using the term “functionality”, we use
“mathematical role” and the “didactical role” of DT in the following text. The
result of these adaptations can be found in Figure 2.1, which illustrates how
this study combines the types of mathematical roles and didactical roles for
our analysis.
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An embodied approach to mathematics education

Several theories concern the role of the body in cognition and learning. Based
on Conceptual Metaphor Theory in cognitive linguistics (Lakoff & Johnson,
1980), Lakoff and Nufiez (2002) analysed the cognitive structure of
mathematics, arguing that the kinds of everyday conceptual mechanisms,
image schemas, aspectual schemas, conceptual metaphors, and conceptual
blends are central to mathematics. Barsalou (1999) frames embodiment
through grounding experiences. The role of sensorimotor experiences—
perceptions, motor action, like gestures—in mathematics education has
been stressed in many studies on embodied design (e.g., Abrahamson, 2016;
Shvarts et al., 2021).

Abrahamson (2009) introduced a precise description of embodied
design (a term first coined by Rompay and Hekkert (2001)) as a systematic
and procedural design method. Initially, embodied design consisted of two
types: perception-based design and action-based design (Abrahamson, 2009;
Abrahamson & Lindgren, 2014). Action-based designs aim to ground
mathematical concepts in students' natural capacity to adaptively solve
sensorimotor problems. Perception-based designs aim to ground
mathematical concepts in students' natural perceptual ability in their naive
perceptions of a situation. Like the action-based genre, it is followed by a
phase of reflection in which these views are developed. Additionally, Bos et
al. (2022) propose another type of embodied design, incorporation-based
design, in which a DT functionality is deliberately removed from the learning
environment, inviting students to perform this functionality with their
bodies.

For classification purposes, this paper suggests another type of
embodied design—pseudo embodiment (Wei et al., 2022)—to capture
embodied elements from existing studies, even if these studies do not
explicitly use or mention embodied design (in Abrahamson's precise sense).
In all, action-based and perception-based embodiments are relatively well
established, while the incorporation-based embodiment is still at a
rudimentary stage. In this study, we investigate how these four types of
embodied approaches—action-based embodiment, perception-based
embodiment, incorporation-based embodiment and pseudo embodiment—
are involved in studies on the teaching of FT.

We focus on the following three aspects of embodied approaches: (1)
Providing sensorimotor/gestural experiences, (2) Providing real-time or
delayed feedback and (3) Mathematizing action-perception loops. With
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respect to aspect (2), we note that an embodied approach is often facilitated
by feedback from DT. This often takes the form of continuous motion
feedback, allowing students to discover and practice a new way of moving to
provoke mathematical concepts (Alberto et al., 2021; Duijzer et al., 2019).
Concerning aspect (3), we recall how Shvarts et al. (2021) theorize that
mathematical knowledge emerges as part of a complex dynamic behavioral
system that is constituted through multiple perception-action loops.
Mathematical knowledge and meaning are then developed from those
perception-action loops.

Mathematical abstraction

Piaget et al. (1966; 1977) distinguished two types of abstraction, which are
empirical abstraction and reflective (or reflecting) abstraction. Empirical and
reflective abstraction are contrasting but not completely exhaustive
(Moessinger & Poulin-Dubois, 1981). In empirical abstraction, the processes
are embedded in reality: shape, length, angle and so on. In comparison,
reflective abstraction is drawn not from the object that is acted upon, but
from the action itself.

To connect general abstraction with mathematical abstraction, we
introduce horizontal mathematization and vertical mathematization (Treffers,
1987). Horizontal mathematization refers to the transformation from realistic
problems to mathematical problems, which is the process of expressing
contextual problems as mathematical problems. This process can be further
divided into two types of abstraction: contextual/situational abstraction and
referential abstraction (Gray & Tall, 2007; Mitchelmore & White, 2007;
Gravemeijer & Stephan, 2002). Vertical mathematization refers to the
mathematization after horizontal mathematization, which is the
transformation process from specific mathematical problems to abstract
concepts and methods. Vertical mathematization can be regarded as a
reflective abstraction that requires the reconstruction of learners'
mathematical concepts. This is completely different from empirical
abstraction and can be further classified into two types of abstraction:
particular abstraction and general abstraction (Blanton et al., 2005; Gray &
Tall, 2007; Mitchelmore & White, 2007; Stephens et al., 2016).

Drawing from these theories, in this study, we set up a Function-
Abstraction-Matrix (Table 2.1) consisting of two main dimensions:
Abstraction stages and functional thinking. One dimension outlines the major
abstraction stages that students may follow when abstracting in
mathematics. The other dimension emerges from the three often-mentioned
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aspects of FT: Input-output, Covariation and correspondence, Mathematical
object. We distinguish the following four stages of abstraction:

1.

Contextual and situational abstraction: recognize properties of
functions in real-life experience/contexts/situation. For example,
recognize the linear relationship between the height of a plant and
growth time in plant growth situations.

Referential abstraction: extract the properties of a function by
abstracting from real-life situations, or their representations (e.g.,
ratio table), but not yet completely separated from the situation.
Students refer to a situation by means of a given mathematical
representation or using non-mathematical utterances. For example,
students can use given function formulas/graphs to represent and
model a distance-time relationship.

Particular abstraction: use graphs, symbols, and formulas to
represent one particular decontextualized function/functional
relationship. So, using mathematics as the new context rather than
the real-life context, the mathematical representations are the
"world in which we are" and as such, replace the initial
context/situation. For example, identify one particular linear
functional relationship using a formula, without a very general
mathematical scope attached to it yet.

General abstraction: vertically mathematises general
functions/functional relationships and constructs new structures.
More on classes of mathematical objects and their properties and
relations. For example, construct a composite function 'find f(2x) if
fx)=x*+1.

Table 2.1 The function-abstraction-matrix

Functional thinking

Abstraction stages Input-output

Covariationand  Mathematical
correspondence object

Contextual and
situational
abstraction
Referential
abstraction

Particular abstraction

General abstraction
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The theoretical perspectives in this section enable us to present an
integrated framework to study our overall research question. To thoroughly
investigate this topic, we will focus on three research questions, each
examining different aspects of the main question. First, we will determine
the prevalent role of technology in fostering functional thinking:

2.3

RQ1

RQ 2

RQ3

Which role of technology is widely used in developing
functional thinking? By understanding which mathematical
and didactical roles are prevalent, we aim to uncover the
potential relationships between these roles and their
potential effective use within an embodied approach to
functional thinking using digital technology.

What is known about different abstraction stages of
functional thinking? Understanding the various abstraction
stages associated with functional thinking enables us to
recognize how an embodied approach might influence them.
This understanding can help us tailor the embodied approach
to effectively facilitate the progression through different
abstraction stages, ultimately promoting a deeper and more
nuanced grasp of FT.

Which embodied approaches can be identified in the
literature on developing functional thinking? Exploring the
embodied approaches found in the literature allows us to
identify effective strategies and best practices for integrating
embodiment and functional thinking in a DT-based learning
environment. This knowledge can guide the design of an
embodied approach that not only effectively supports
functional thinking but also encourages abstraction, ensuring
a comprehensive and engaging learning experience.

Method

To address the research questions, we carried out a systematic literature
search, followed by a content analysis.

Systematic literature search

The literature search was conducted in four databases: ERIC, PsycINFO,
Scopus, and Web of Science, and we searched for relevant studies published
in peer-reviewed journals and written in English. Duijzer et al. (2019)
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mentioned that some articles may not (yet) mention embodied cognition as
the main or related theory but still apply its core characteristics. This
reminded us that an arbitrary date limitation would reduce the available
articles, so we did not restrict the publication dates of the articles. Also,
qualitative studies, quantitative studies and mixed-method studies were
collected simultaneously, and the qualitative data provided a main and
supportive role by providing details of learning designs, and records of the
analysis. In the course of our ongoing search attempts, we defined a query
including the four key notions in our research question: Functional Thinking
x (Embodiment OR Abstraction/Reification OR Digital Technology). See
Appendix 1 for the full query. Our initial search, conducted on December 7,
2020, vyielded 397 journal articles. After deduplication, 333 unique
publications remained.

Screening for articles

The article screening phase was conducted within the FunThink Erasmus+
project and consisted of three rounds (Figure 2.2): The first round started
with a quick scan of the detailed information, such as the title, abstract and
keywords of the article, to judge each article's relevance to each of the four
aspects: Functional Thinking (FT), Embodiment (EM), Digital Technology (DT)
and Abstraction (AB). At the end of this round, 177 papers—empirical as well
as theoretical papers—were initially collected with the help of ten coders
from the FunThink Erasmus+ project. The second round was carried out in a
more rigorous manner. Fifteen coders participated in the literature appraisal
round, during which each coder read the full texts and finished a spreadsheet
containing the core ideas and overall appraisal of each article. This resulted
in the exclusion of eighty-four articles and the final selection of ninety-three
articles for our review. Finally, we directly eliminated the articles coded 0 to
2 as they were deemed less relevant to our review study (n=42). As a result,
fifty-one articles are included in the final corpus. To ensure rigor in the coding
and appraisal process, each article was evaluated by at least three coders
using the established criteria.

Content analysis

As a method to conduct literature reviews in a transparent, systematic, and
rule-governed way, content analysis requires rigorously collecting, filtering,
and classifying the existing research context (Mayring, 2004). During the
analysis process, all fifty-one articles from the final corpus were included.
These studies were categorized into three main classes based on the coding
result: (1) digital technology and functionality; (2) embodied approach and
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cognitive contribution; and (3) abstraction stage and functional thinking. We
classified the articles in each class based on different structural dimensions
and related analytic categories provided in the theoretical background
section. Triangulating the bibliometric findings with expert content analysis
helped to reveal the role of different aspects in FT. The classification of
studies into different aspects forms the basis and structure for the
presentation of results in the following section.

Figure 2.2 Flowchart of the literature selection

2.4 Results

This section starts with a descriptive analysis of the reviewed literature. To
address our research questions, we first describe the results of the content
analysis on functional thinking and the role of digital technology, its relation
to abstraction and embodied approaches. Finally, we address the main topic,
the interplay between embodiment and abstraction.

Descriptive analysis

The main goal of the descriptive analysis conducted in this study is to identify
the occurrence distribution of each aspect (digital technology, mathematical
abstraction, and embodied approach) as well as the current research trends.
As evident from Figure 2.3, DT is the most frequent category, with
embodiment being relatively new in its applications, and the category of
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abstraction the least, as not many studies explicitly mention both FT and
abstraction.

Figure 2.3  Venn diagram of the reviewed articles

The distribution of these fifty-one reviewed articles over publication year is
shown in Figure 2.4, which shows that there has been an upward trend in the

number of studies on the development of FT.
IIIIIIII”I Illhll
P A a0 b

o b O W o & o
*\‘35'3\9&'@ﬁw@ﬁ@w@m@"ﬁ@@@@@@@@@m

Figure 2.4  Distribution of publication year of the reviewed articles
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With respect to the FT dimension, Figure 2.5 reveals that the reviewed
studies tend to present only one aspect of functional thinking in one article.
Only twelve (out of fifty-one) studies provide overlaps between different
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aspects of functional thinking. Among these overlaps, the
covariation/correspondence thinking aspect and the mathematics object
thinking aspect appears to be linked together, while the input-output
thinking aspect seems more detached from the other two aspects.

Figure 2.5  The relationship of functional thinking aspects

Functional Thinking and the role of digital technology

The mathematical and didactical roles of digital technology are analyzed in
this section for the case of Functional Thinking. Figure 2.6 shows the heatmap
of didactical and mathematical roles of DT. Among the four mathematical
roles, the role of graphing has been widely used to develop FT. Algebra
accounts for a substantial part of the mathematical role. As for the roles of
geometry and calculus for FT, only a limited number of studies have
mentioned and discussed this. Regarding the didactic role, the majority of
studies encompass exploration and construction roles. The algebra role
provides the opportunity to outsource computation but has not been
thoroughly investigated in terms of the potentials offered by mouse or hand-
dragging. This issue will be further explored in relation to the use of
embodied approaches. Excluding the role of outsourcing computation, the
graphing role appears in a relatively balanced distribution across the other
didactic roles in the reviewed papers, suggesting a strong connection
between FT development and graphing designs.

34



An embodied approach to abstract functional thinking

From the didactical role dimension, Turtleworlds allows Exploration
through mouse clicking and dragging. From the mathematical role
dimension, this software can provide the opportunity for Geometry for FT. In
addition, Ferrara & Ferrari (2020) used WiiGraph software to engage pairs of
students with functions through graphing motion, and one of their tasks,
named Line option for a+b. The role of this technology can be classified as
Exploration and Construction using Graphing for functional thinking. The
graphing motion technology, which allows working with pairs of “positions
over time”-graphs, provides students with the opportunity to observe in real-
time the graph of the sum of two functions on the screen. So, in this case, in
the task WiiGraph the roles of technology are Graphing for FT, Exploration
and Construction of mathematical representations.

Altogether, the results indicate that the most common mathematical
role of digital technology in the study of functional thinking is graphing, and
the most frequent didactical role is allowing for exploration and construction.

Functional Thinking and abstraction

This section aims to provide an extensive overview of the status of research
in the domain of functional thinking and abstraction stages. We classified
major themes and issues in FT research. Besides the fourteen articles in the
abstraction class, we also analyzed and positioned the other thirty-seven
articles in the final corpus based on the Function-Abstraction-Matrix (Table
2.1).

As can be seen in the heatmap (Figure 2.7), the fact that cells near the
diagonal of the matrix have a darker color suggests that there is a correlation
between the abstraction stages and aspects of FT in the selected papers. The
advanced FT aspects come with the advanced abstraction stages. Thirteen
out of fifty papers only focus on one stage of abstraction/one aspect of FT.
The others each cover more than one abstraction stage and/or more than
one aspect of FT. For example, one teaching trajectory that recurs frequently
is Contextual/situational abstraction to Referential abstraction to Particular
abstraction.
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Chapter 2

In the example of Abrahamson et al. (2016), the Mathematical Imagery
Trainer helps students develop an understanding of proportional
equivalence and get an initial insight into a covariation relation. Students are
asked to keep the screen green by moving their hands in a fixed-interval
gesture, from which the asked covariation relationship is presented. Results
show that students discovered, enacted, and stated the relationship
between two constant speeds (e.g., the left hand rises 1 unit per the right
hand's 2-unit rise). Furthermore, students can use the rates of their hand
motions to deduce that a fixed-interval rule is incorrect and that, instead, the
distance between the hands must increase with height. This can lead to a
further understanding of the continuous variation of co-variables. The
understanding of the covariation aspect can derive from the sensorimotor
experience without mathematical representations related to proportion,
which also promotes contextual/situational abstraction. Therefore, this
study is categorized in the cell contextual/situational abstraction —
covariation.

Next, in Davis's study (2013), with the help of TI-Nspire™ CX CAS,
students can develop an understanding of an input-output process with some
input (independent variable), operating on it using some rules, and getting
an output (dependent variable). For example, when exploring a property of
guadratic functions, namely the x-intercept of the top, a parameter is input
as a variable (a), another is input as a constant (b), and the x-intercept of the
top (h) is the output (Figure 2.8). In this investigation, students make changes
to a, which causes changes to h, the x-coordinate of the vertex. In this case,
the task is based on a purely mathematical scenario without any real-life
context, and the goal of this task is to investigate the property of only one
type of function, quadratic. So, it belongs to the particular abstraction —
input-output cell.

Figure 2.8  The parameter machine accepts a variable a and a fixed b and
produces h (Davis, 2013, p. 6)
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Functional Thinking and embodied approaches

In terms of embodied approaches used in reviewed studies, the pseudo-
embodied approach shows considerable potential for providing students
with FT-related sensorimotor experiences and helping to mathematise
action-perception loops (Figure 2.9). Most reviewed studies adopted what
we classify as an action-based approach to foster functional thinking. In
contrast, studies in the genres of perception-based and incorporation-based
approaches concerning FT so far are rare. As for the contributions of
embodied approaches, providing sensorimotor/gestural experiences and
mathematising action-perception loops seem to be more dominantly
present.

We illustrate our classification using the example of Drawing in Motion
(Nemirovsky et al., 2013). The prototype exhibit in this paper requires
physical engagement and collaboration between two people who jointly
produce a graph on a displayed Cartesian coordinate plane through a large
LCD screen. Each participant controls one cartesian coordinate of a point with
a handle. The two participants jointly draw on the screen by moving the
handles. Every movement of the participants is shown on the screen by a
movement of the tracing point, which can be regarded as real-time feedback
to some extent since participants can sense their real-time location and shift
their bodies accordingly. This instrument provides a new perspective of
understanding function using the embodied approach, compared to the
conventional ways of thinking about functions (e.g., dynamic/process and
static/structural conceptions). It also provides the possibility for young
learners to engage in the understanding of mathematical functions with the
help of suitable mathematical instruments and embodied experiences.

In sum, this section shows that many studies adopting pseudo
embodiment provide cognitive contributions to the development of FT,
whereas not many studies have explored the feedback aspect of embodied
approaches.
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Embodied approaches to FT using DT inviting abstraction

Let us now examine the main research question on the ways in which
embodied approaches may invite abstraction for the case of FT using DT.
Figure 2.10 illustrates that different embodied approaches cover the four
abstraction stages of FT. The transition from Particular abstraction to General
abstraction occurs most frequently in the category of pseudo embodiment.
There are only a limited number of designs in the pseudo embodiment
category that contain more than two abstraction stages. Here, we show a
concrete example that covers all four abstraction stages with the support of
a multifunctional applet, AlgebraArrows (Doorman et al., 2012). Students are
invited to develop an understanding of the input-output aspect of FT and
experience the transition from Contextual abstraction to Referential
abstraction by exploring real-life contextual tasks, such as a cell phone offer
task. Next, they are provided with the opportunities to investigate the
relationship between one function and its family of functions (e.g., y = 2x —
3 in the family of y = ax + b), which leads to the transition from Particular
abstraction to General abstraction. Compared to the other three embodied
approaches, few pseudo-embodied designs initiate from the
Contextual/situational abstraction stage. In the case of van den Heuvel-
Panhuizen et al. (2013), Hit the target provides students with sensorimotor
experiences by letting them drag the arrows (using a mouse) to the bow and
hit the target on the screen. As part of this task, students experience how the
scores covary with their movement, and therefore develop covariational
thinking from Contextual/situational abstraction.

It is noteworthy that none of the designs adopting action-based,
perception-based and incorporation-based approaches cover the General
abstraction stage. In these learning designs, students are invited to
experience and explore given structures, but not to construct new
mathematical structures while solving tasks. For instance, when using
WiiGraph, a graphing motion technology, students work with pairs of
positions over time graphs to explore how particular inputs lead to different
outputs. Students' movements become the inputs, and function graphs are
the outputs. During this activity, students can progress from a process of
Contextual/situational abstraction to Referential abstraction and even on to
Particular abstraction. They search for the functional rule and relationship
between their movements and feedback from the software.
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In summary, the interplays between embodied approaches and abstraction
processes suggest that there are differences between the pseudo
embodiment category and the other three categories, such as the initial
stage and end stage of abstraction. For the studies using pseudo
embodiment, Particular abstraction is typically the initial stage, ending up
with the General abstraction stage. As for action-based, perception-based
and incorporation-based embodiments, Contextual/situational abstraction is
the most common initial stage, but the General abstraction stage is not well-
addressed in these three categories.

2.5 Discussion

Overview of the main findings

We carried out a systematic literature search, followed by a content analysis.
In this section, we summarize the results based on three research questions
and discuss the overall research topic.

RQ1 Which role of the technology is widely used in developing functional
thinking?

We distinguished two types of roles of digital technology, mathematical roles
and didactical roles. For functional thinking, mathematical roles include
Algebra for FT, Graphing for FT, Geometry for FT, and Calculus for FT.
Didactical roles include Outsourcing Computation, Exploration (through
type-in/clicking and mouse/hand-dragging), and Construction. From the
literature, we conclude that Graphing and Algebra for FT are the most widely
used mathematical roles, while there has been less attention on Geometry
for FT. Concerning the didactical roles, a remarkable proportion of studies
employ the Exploration and Construction roles for developing FT. The
combination of Algebra role and Exploration through mouse/hand-dragging
has not been investigated as much. Regarding the combination of different
mathematical roles and didactical roles, most studies include more than one
role.

The Mathematical roles of Graphing and Algebra commonly appear in
GeoGebra, Geometer's Sketchpad and other software that support dynamic
visualizations for functions. The tasks presented in this review study invite the
development of students' functional thinking, mainly its covariation and
correspondence aspects (Falcade et al.,, 2007; Lindenbauer, 2019). For
example, some tasks support students in observing and exploring the
influence of parameters on function graphs (Brown, 2015; Falcade et al.,
2007; Davis, 2013; Lindenbauer, 2019). The designers of these tasks argue
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that dynamic visualizations are significantly more beneficial for learning than
static ones. They mention other advantages of dynamic visualizations, such
as the possibility to create more interesting learning environments, and
giving real-time feedback to students (Lindenbauer, 2019; Rolfes et al., 2020;
Roux et al., 2015).

A major trend in theory development and application pertains to
teaching mathematics using DT. The evolution of existing theories highlights
certain approaches, such as the Instrumental Approach, which is particularly
relevant for fostering FT with DT. This approach examines the role of digital
tools in shaping mathematical understanding and problem-solving processes
(Sinclair et al., 2022). Digital technology offers students access to algebraic,
graphical and numerical representations, and facilitates understanding of the
relationship and transitions between different representations (Ginster &
Weigand, 2020). Several of our reviewed studies have highlighted the central
role of DT in facilitating the transition between different representations,
such as from the covariation aspect in the geometrical setting to the symbolic
representation of functions (Brown, 2015; Heid et al., 2013; Lagrange &
Psycharis, 2014; Ogbonnaya, 2010). In addition, DT provides students with
intuitive access to graphical representations (Rolfes et al., 2020; Roux et al.,
2015).

RQ2 Whatis known about different abstraction stages of functional
thinking?

We identified four main stages of abstraction in FT, including
Contextual/situational abstraction, Referential abstraction, Particular
abstraction, and General abstraction. We noticed that addressing advanced
FT aspects comes with reaching for advanced abstraction stages. A
substantial proportion of studies links up the Covariation/correspondence
thinking aspect and the Mathematical object thinking aspect, while the
input-output thinking aspect seems to be more independent of the other two
functional thinking and has been investigated less.

As mentioned previously, there are three main aspects of FT: Input-
output, Covariation and correspondence, and Mathematical object. This
categorization is hierarchical in character, in the sense that we believe the
three aspects also suggest a learning trajectory. Normally, students get their
first introduction to FT from an input-output assignment that stresses the
operational and computational characters, and then they start to engage in
and recognize the dynamic process of covariational/correspondence
reasoning. In the end, students view a function as a mathematical object with
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its own representations and properties (Doorman et al., 2012; Frey et al.,
2022; Glnster & Weigand, 2020; Hoffkamp, 2011). Accordingly, the internal
hierarchy, combined with the evolutionary abstraction stages, suggests that
higher FT levels and more advanced abstraction occur in relation to each
other. Moreover, we note that some teaching trajectories, in accordance with
different abstraction stages, reveal the possible levels of developing FT.
Pittalis et al. (2020) describe students' functional-thinking modes, which
consist of recursive patterning, covariational thinking, correspondence-
particular, and correspondence-general factors. These levels or modes and
our abstraction-function matrix all provide either detailed or concise
descriptions for interpreting abstraction stages.

RQ3 Which embodied approaches can be identified in the literature on
developing functional thinking?

Within embodied design for FT, we distinguished the genres of Action-based
embodiment, Perception-based embodiment, Incorporation-based
embodiment, and Pseudo embodiment. We conclude that action-based
embodiment is the most common approach, while perception-based and
incorporation-based embodiment are rare. Moreover, although studies that
use pseudo embodiment do not rigorously follow embodied design
principles, they do provide perceptual or kinesthetic experiences and action-
perception loops. Considering the cognitive contribution of embodied
approaches, we found that providing sensorimotor/gestural experiences and
mathematising action-perception loops are the most frequent contributions,
while less consideration is given to the feedback aspect.

One notable tool used in the pseudo-embodiment category is the
slider. There are two different settings of sliders: a) continuous slider (free
movement on a bar without restriction), and b) discrete slider (static
selection of particular values). A common use of a slider is to connect it to
parameters controlling a family of functions. For example, students set up
sliders for a, b, and c in the standard formula of a quadratic function, and
manipulate sliders to keep a record of the coordinates of the vertices of the
parabola (Davis, 2013).

The types of feedback from digital technology, real-time feedback and
delayed feedback can influence embodied approaches. The core point of
embodied design is whether there is real-time feedback (with mathematical
meaning) on the movement. In this reviewed study, some tasks with real-time
mathematical feedback support students' understanding of function
concepts. In addition, some studies point out that feedback from
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representations on the screen might help students recognize their
misconceptions and overcome them through additional interactions with the
digital tool. Also, feedback may motivate students and evoke a curiosity that
enables them to learn more effectively when receiving real-time feedback
from the tool (Ogbonnaya, 2010; Ozgiin-Koca, 2016).

The main goal of this study is to investigate the interrelationship
between digital technology, mathematical abstraction and embodied
approaches. Sinclair et al. (2022) highlight that emerging trends in theory
development challenge traditional binaries, such as the mind-body binary. In
the context of teaching mathematics with DT, this shift has led to theoretical
elaborations that attend to embodied ways of knowing, which can be
essential for fostering FT through the use of digital tools.

The review results show some common configurations of task design
in terms of abstraction stages for FT and digital-embodied approaches, such
as the transition from Particular abstraction to General abstraction in the
pseudo embodiment. These transitions in most action-based and perception-
based embodiments cover Contextual/situational abstraction, Referential
abstraction, and Particular abstraction. However, less attention has been paid
to General abstraction in the categories of action-based, perception-based,
and incorporation-based embodiments.

We believe that the transition between different abstraction stages can
be addressed through embodied designs. Moreover, the distinction of
different abstraction stages and different aspects of FT, as shown in the
abstraction-function matrix, can inform the design of learning trajectories.
Some studies report that students have difficulties representing the function
independently from the mathematical context (e.g., a geometrical context)
from which it arises (Hoffkamp, 2011; Miranda & Sanchez, 2019). In this case,
real-life contexts providing Contextual/situational abstraction play a key role
in inspiring students and sparking their imagination through embodied
experiences or other real-life experiences.

As for General abstraction of FT, studies from the pseudo-embodiment
category address it through the transition from Particular abstraction to
General abstraction, such as the transition between different functions and
transition within a family of functions (Ginster & Weigand, 2020). The
process of mathematics learning is intertwined with sensorimotor and
perceptual aspects of using mathematical tools. Students are able to form
abstract concepts through enacting bodily movements and to give meaning
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to mathematical representations (e.g., symbols, formulas, graphs) by
invoking sensorimotor and perceptual patterns (Nemirovsky et al., 2013).

Limitations of the present study

Some limitations of our study are worth noting. Regarding the literature
selection, only articles published in English were selected, and inclusion
criteria in terms of FT may have led to the exclusion of some articles
addressing primary education. Future studies may look at more detailed
aspects of functions from the corpus at different educational levels.
Additionally, the first round of coding was done in a large group, which could
endanger coding uniformity, even if clear instructions were provided.

Implications and future directions

Our systematic literature review led to an Embodiment-Abstraction-Matrix,
which outlines approaches and stages for fostering FT through DT. This
matrix holds relevance for both teaching practices and future research.

In light of our engagement in embodied design, we believe that the
combination of different representations should be conceptually related to
FT. The primary consideration is aligning body movements with learning
content. A major characteristic of embodied design involving DT is providing
immersive interfaces to stimulate sensorimotor activity. When designing
embodied tasks, it is essential to translate complex and abstract learning
content into concrete body movements associated with input-output,
covariation and correspondence, and mathematical object aspects of FT.
Learning content should be presented in a visual, accessible and manipulable
way, enabling students to perceive it through their bodies during the activity.
Furthermore, encouraging students to explain and verbalize their action-
perception experiences can promote understanding to their peers (Flood et
al., 2020). Different learning content may also result in different roles for DT.
DT offers opportunities for interaction and automated feedback, fostering the
covariation and correspondence aspect of FT.

Notably, we posit that the sensorimotor/gestural experiences from
embodied activities can supplement input received from other modalities
(e.g., vision), allowing students to construct richer multimodal
representations and facilitate more complex understanding (Drijvers, 2019).
Studies involving action-based embodiment and perception-based categories
provide students the opportunity to graph functions with their body
movements (Ferrara & Ferrari, 2020; Nemirovsky et al., 2013). Graphing
motion technology can lay the groundwork for mathematising action-
perception loops by offering bodily foundations for mathematical concepts.
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Drawing inspiration from the action-based task for proportion (Alberto et al.,
2021), a nomogram can be used as an additional representation of FT
(Friendly, 2008; Nachmias & Arcavi, 1990). Body movements employed while
exploring nomograms enable students to experience the relationship
between two variables, such as involving two hands or arms representing
changes in two variables.

We also notice that feedback timing in embodied design is a subtle
matter. Cognition is time-pressured and must be understood in terms of its
functionality while interacting with the environment in real time (Wilson,
2002). We suggest that higher-level cognition can be developed with the aid
of continuous real-time feedback from the learning environment. Further
research is necessary for a more elaborated learning environment
incorporating real-time feedback.

This study demonstrates the potential of embodied approaches, with
or without DT, for developing FT in terms of mathematical abstractions. We
hope our insights into the categories of embodied approaches and the main
mathematical abstractions for FT will provide teachers, researchers, and
curriculum designers with a spark of inspiration.
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Appendix 1: Query and Filters

Query and Filters

Functional thinking

Embodiment

Abstraction/Reification

Digital technology

Domain

Filter(s)

("Function thinking" OR "Function reasoning" OR
"Function relation" OR "math Function " OR
"covariation reasoning" OR "Function approach"
OR "thinking function")

AND

(embod OR enactment OR sensorimotor OR kines
OR perception OR action-perception OR "body
motion" OR "physical experience" OR "physical
participa")

OR

(abstracti OR reification OR "math abstract" OR
encapsulation OR "object formation" OR "concept
imag" OR visualization)

OR

("digital technolog" OR "digital tool" OR "physical
tool" OR "ICT tool" OR ICT OR GeoGebra)

AND

(math OR "math education" OR "math instruction’
OR "physical science" OR science OR stem OR
"teaching method" OR education OR learning)
AND

English language

In SCOPUS and Web of Science, the limitations
were set to journal articles and conference
proceedings.

In ERIC, the limitations were set to journal articles
and peer-reviewed articles.
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Supplementary Material

10-Al:

Ellis, 2016: Students' understanding of exponentiation can be developed
from a repeated multiplication model in a scenario that Jactus grew by
doubling its initial height every week. In this example, students can regard
exponential function as an input-output machine, given a number and doing
exponentiation with multiplication model. The plant growth context provides
students with perceptual experience to facilitate contextual/situational
abstraction.

10-A2:

Ferrara & Ferrari, 2020: WiiGraph allows students to work with couples of
positions over time graphs to explore how particular inputs lead to different
outputs. Based on their observation of the 'a+b' activity, two students moved
in front of the sensor with a third line appearing in real-time on the screen,
which is produced by adding the values of a and b over time. Students
recognize that the result of 'a+b' equals 'c', that is, the graph of the third line
is the sum of the movements of two people. Students' movements become
the input and function graphs play as the output. The relationship' a+b=c' is
the input-output machine in this case. And the process that students
recognize and identify the relationship with given algebraic representation
and given graphic representation using perceptual experience is referential
abstraction.

10-A3:

Jon, 2013: With the help of TI-Nspire™ CX CAS, students can get an
understanding of the process involved at the beginning with some input
(independent variable), operating on it through some rule, and producing an
output (dependent variable). For example, when exploring the property of
quadratic function (the x-intercept of the vertex), a parameter is input as a
variable (a), another is input as a constant (b), and the x-intercept of the
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vertex (h) is the output. In this investigation, students are making changes to
a, which causes changes to h, the x-coordinate of the vertex. It is based on a
pure mathematical scenario without any real-life context. And the goal of this
task is to investigate the property of only one type of function, quadratic
functions. So, it belongs to the particular abstraction stage.

(Davis, 2013, p.6)

COs-Al:

Abrahamson et al., 2016: The Mathematical Imagery Trainer helps students
develop an understanding of proportional equivalence and initial insight of
covariation relation. Students are able to make the screen green by putting
their hands in a specific-interval gesture, which is the asked covariation.
Students discovered, enacted, and stated the covariation of two constant
rates (e.g., the left-hand rises 1 unit per the right hand's 2 unit rise).
Furthermore, students can use the differing rates of their hand motions to
deduce that a fixed-interval rule could be incorrect and that, instead, the
distance between the hands must increase with height. That can lead to a
further understanding of the continuous variation of co-variables. The
understanding of the covariation aspect is based on the experience from
action which also promote contextual/situational abstraction.

COs-A2:

Johnson et al., 2017: As a sequence of tasks for engendering covariational
reasoning, Ferris wheels task and filling bottles task can promote transfer of
covariational reasoning. The 'simpler' attributes of function, such as height
and distance from Ferris wheels task, could prepare students more readily
for further attributes, such as volume and height from a filling bottles task.
Both tasks provide students with real-life contexts and the Ferris wheels task
allows students to adjust the point (car) on the Ferris wheels and observe
corresponding changes in the graph of function (width/height vs. distance).
The given dynamic graphs and real-life situations are helpful for doing
referential abstraction.

COs-A3:

Glnster & Weigand, 2020: A linearity task in GeoGebra environment was
designed. The dynamic representations from learning environments help
students to explore the relationship between side length and perimeter of
polygons. When dragging the slider and adjusting the length of sides,
students can observe how much the perimeter changes if the side length
changes by 1 cm. This task uses a pure mathematical context asking students
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to investigate covariation relationship between variables, that is, linear
relationship between side length and perimeter of polygons.

COs-A4:

Lagrange & Psycharis, 2014: The rectangle task in Casyopée lets students
explore the position of a point M so that the area of the triangle is one third
of the area of rectangle. The innovative functionalities in Casyopée,
automatic modeling, allow students to understand key actions in the process
of modeling a geometrical dependency into an algebraic function. Students
can use function as a tool to solve geometrical question by constructing
mathematical model. The process of building an algebraic model for
describing the covariation between y,, (as an independent variable) and the
area of the triangle BMC is general abstraction.

OB-Al:

McCulloch et al., 2020: The vending machine applet draws attention to the
object view of function-each input (domain) should map to one output
(range). It provides a context with which students are familiar. Students are
asked to identify each vending machine as a function or non-function. They
can get an understanding of the concept of function through the mapping
process of using the vending machine applet. Therefore, it belongs to the
contextual/situational abstraction.
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OB-A2:

White, 2009: The Code Breaker applet provides both horizontal and vertical
trace lines stretching from the y-axis x-axis, respectively, intersecting the
candidate curve. These lines can serve as both a code-breaking resource and
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a scaffold to help students capture the object-like properties of function. For
example, some students recognized that each plaintext letter should map to
a single encoded output and creatively utilized this object-like property as
problem-solving resources. The cryptographic context with given graphic
representation develop the referential abstraction for conceptualizing
functions.

(White, 2009, p.27)

OB-A3:

Swidan et al., 2020: The Calculus Integral Sketch (CIS) displays two Cartesian
coordinate systems that are dynamically linked. These two coordinate
systems show the function graph and indefinite integral of the function,
respectively. Students can drag the function graph upward, which leads to an
increase in the inclination of the antiderivative function graph. In this case,
function is regarded as a mathematical object that can be submitted to
higher-order processes, integral. Students investigate the function-derivative
relationship in the mathematical context. The CIS provides a supportive
environment for particular abstraction.

OB-A4:

Doorman et al., 2012 & Drijvers et al., 2013: The AlgebraArrows applet can
support the construction of input-output chains of operations as a model of
a dependency relationship. Students are provided with the opportunities to
explore a family of functions (object view) which lead to the general
abstraction stage. For example, students can investigate a family of functions
representing braking distances for three different vehicles with the help of
collapsed arrow chains. This learning environment supports the transition
from a calculation understanding to an object understanding of functions by
displaying different mathematical representations, such as arrow chains,
tables, and graphs.
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Chapter 3 Developing functional thinking: From
concrete to abstract through an embodied design

Abstract In addressing the challenge of fostering functional thinking (FT) among
secondary school students, our research centered on the question of how an
embodied design can enhance FT's different aspects, including input-output,
covariation and correspondence views. Drawing from embodied cognition theory
and focusing on action- and perception-based task design that uses light ray contexts
and different function representations, we developed a digital-embodied learning
environment, using the nomogram as a central representation. Our pilot study,
involving four eighth-grade students, provided insights into their physical interactions
with these modules through a multi-touch digital interface. Analysis of video and
audio recordings from the pilots, including students' hand gestures and verbal
expressions, was guided by comparing hypothetical learning activities with the actual
learning activities. The results show that (1) a concrete light ray context enables
students to ground the abstract mathematical function concept, (2) the bimanual
coordinating motion tasks, incorporating the covariation aspect of FT, allows students
to connect their bodily experience with function properties, and (3) our embodied
and dragging tasks support insight in the conversion between nomograms and graphs
of functions, encouraging students' correspondence thinking by providing multiple
perspectives to understand, reason about, and manipulate the function. In
conclusion, our findings suggest the potential of digital-embodied tasks in fostering
FT, evident in students' diverse strategies and reasoning.

Keywords Educational technology; Embodied design; Functional thinking;
Mathematics education; Nomogram

This chapter is based on:

Wei, H., Bos, R., & Drijvers, P. (2024). Developing functional thinking: From concrete
to abstract through an embodied design. Digital Experiences in Mathematics
Education, 10(2), 323—-351. https://doi.org/10.1007/s40751-024-00142-z
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3.1 Introduction

A mathematical function is an abstraction—it is an abstract concept
representing a relationship between input and output, irrespective of the
concrete meanings of those inputs and outputs. Still, concrete contexts can
make abstract functions more meaningful to students, providing
opportunities to attach meaning to the mathematical constructs the
students develop (Van den Heuvel-Panhuizen & Drijvers, 2020). Students
need FT—thinking in terms of relationships, interdependencies, and
change—for both later professional and daily life (FunThink team, 2021). One
of the main challenges teachers face is how to foster the different aspects of
FT, especially the abstract ideas of variation and covariation that lay the
epistemological foundation for students to develop robust conceptions of
functions (Thompson & Carlson, 2017).

A specific representation called a nomogram may play an important
role in the development of FT. Nomograms support FT by incorporating
various representations and contexts, and have been emphasized by
Thompson and Carlson (2017) for their importance in incorporating number
lines and uniting two quantities’ values in future study. The initial use of
nomograms within a digital learning environment can be traced back to
Nachmias and Arcavi (1990), who termed it the Parallel Axes Representation
(PAR). Various forms of this function representation exist, such as the
horizontally oriented DynaGraph (Sinclair et al., 2009). In our current
research, and increasingly prevalent in recent studies, we use the term
‘nomogram’ to describe two number lines linked by a bundle of arrows,
which shows how each input number on the left number line corresponds to
an output number on the right (see Figure 3.1). It is a useful tool for
developing FT due to its visual nature and ability to represent functional
relationships using arrows.

The integration of embodied actions within abstract mathematical
thinking enriches meaning-making processes by incorporating various
sensory channels such as perceptual, auditory, tactile, and kinesthetic
(Radford, 2009). Bimanual movement, referring to the coordinated use of
both hands, has been incorporated into mathematical education as a means
to foster an understanding of mathematical concepts, such as proportion
(Abrahamson et al., 2016). The importance of the bimanual movement in
mathematics education originates from Piaget’s work, which proposed that
children’s understanding of their world and the concepts within it is deeply
rooted in their physical interactions with the environment. More recent work
in the field of embodied cognition expands upon Piaget’s theories, arguing
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that our understanding of abstract mathematical concepts is grounded in the
physical and sensorimotor experiences of our bodies (Abrahamson &
Lindgren, 2014; Tall, 2004).

In the context of our digital learning environment that features
nomograms, the multi-touch and real-time feedback capabilities of digital
technology (DT) enable students to investigate and construct nomograms
using bodily movements, specifically a bimanual dragging motion (Figure
3.1). Correctly positioning the two points on respective number lines causes
these arrows to change to green, with their trajectory remaining visible,
allowing for real-time feedback akin to the principles seen in the
Mathematical Imagery Trainer for Proportion (MIT-p) (Abrahamson & Trninic,
2011). By traversing the entire nomogram, the students can visualize the
complete function, which may include intersecting arrows, parallel arrows,
and other distinctive features. However, if the placement of the two points
does not accurately represent an input-output pair, the arrow between them
will turn red. Inspired by the MIT-p, our evolved digital-embodied
nomograms, potentially named MIT-f(x), extends to various functional
relationships, making it a more versatile tool for developing FT. It achieves a
range of instructional strategies, from using number lines and fostering
corresponding quantities’ relationship, to reinforcing the facilitation of
smooth continuous covariational and correspondence reasoning by providing
continuous movements on the two number lines. In this regard, the main
research question guiding our study is: How can an embodied design using
nomograms foster functional thinking? In order to explore the multifaceted
nature of FT, we have formulated the following specific research questions
through the lens of three aspects of FT: Input-output, Covariation, and
Correspondence:

RQ1 How does a light ray context foster the students” meaning-making
of nomograms?

RQ 2 How do bimanual movement tasks foster covariational thinking?

RQ3 How do different function representations and their conversions
support a correspondence view on functions?
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Figure 3.1 Movement on a nomogram

3.2 Theoretical framework

Two theoretical lenses—FT and Embodied Learning—serve as the
foundations for our investigation in this study. By intertwining these
theoretical perspectives, we aim to examine how the interactive, dynamic,
and physically engaging nature of embodied learning can bolster FT.

Functional Thinking

FT, as a process of describing, building, and reasoning about/with functions
(Pittalis et al., 2020; Stephens et al.,, 2017; Thompson & Carlson, 2017),
consists of four main aspects: Input-output thinking, Covariation thinking,
Correspondence thinking, and Mathematical object thinking (Confrey &
Smith, 1995; Doorman et al., 2012; Wei et al., 2023; Vollrath, 1986). These
four aspects indicate how to understand the concept of mathematical
function through different characteristics of functions:

1. Input-output thinking: A function is regarded as an input-output
assignment that helps organize and carry out a calculation process
(Doorman et al.,, 2012). It is considered the initial stage of
understanding function, especially with the help of a special
representation, an arrow chain (Freudenthal, 1983). Moreover,
recognizing patterns and structures are linked to this aspect. For
example, the recursive pattern is seen as how to get a number in a
sequence when the previous number or numbers are given (Frey et
al., 2022; Stephens et al., 2017).
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2. Covariation thinking: This aspect emphasizes the relationship
between two variables, primarily focusing on how changes in the
independent variable cause corresponding shifts in the dependent
variable. The emphasis is on the simultaneous change or movement
of both variables (Confrey & Smith, 1995; Doorman et al., 2012;
Thompson & Carlson, 2017).

3. Correspondence thinking: It is more about the pairing relationship
between the two variables and being able to represent them with
multiple representations, such as arrow chains, tables, graphs,
formulas, and phrases (Doorman et al., 2012). Correspondence
thinking highlights that each value of the independent variable aligns
with a unique value of the dependent variable. Instead of
emphasizing the simultaneous change, as in covariation,
correspondence thinking underscores the direct association or
pairing of values between the two variables (Pittalis et al., 2020;
Smith, 2008). This aspect incorporates the mapping view, facilitating
a holistic understanding of functional relationships (FunThink team,
2021).

4. Mathematical object thinking: A function, in this aspect, is seen as a
mathematical object with its own representations and properties.
Within this aspect, a function is recognized as part of a family of
functions (Sfard, 1994), subject to higher-order operations such as
composition, transposition, and differentiation. Concerning the
scope of our study, this aspect receives minimal emphasis.

In this paper, our focus is specifically on the first three aspects of FT. Various
aspects of FT are embedded in our task based on function representations,
like tables, graphs, and formulas. Some studies argue that dynamic
visualizations could be significantly more beneficial for learning functions
than static representations (Brown, 2015; Falcade et al., 2007; Lindenbauer,
2019, Ten Voorde et al., 2023). For example, some tasks with interactive
dynamic visualizations support students in observing and exploring the
influence of parameters on function graphs. In addition, there are some
other advantages of dynamic visualizations, such as providing the possibility
to create more interesting learning environments, and facilitating
understanding of the relationship and transitions between different
representations (Glinster & Weigand, 2020; Lindenbauer, 2019; Rolfes et al.,
2020; Roux et al., 2015). Therefore, the aforementioned interactive, dynamic
digital-embodied nomogram serves as a central feature.
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In addition, we considered the design heuristic of the emergent model
(Gravemeijer, 1999). The emergent model includes four levels of activity: task
setting, referential, general, and formal. To support the design hierarchy of
our tasks, we work with emergent modelling activity in three levels:
situational, referential, and general, following our previous literature study
(Wei et al., 2023). The use of these three levels will be further discussed in
the Design section with a combination of hypothetical learning trajectories.

Embodied learning

Embodied learning is an educational approach that integrates bodily
movements and physical experiences into the learning process. It operates
on the premise that cognition is not only confined to the mind but involves
the entire body (Barsalou, 1999; Lakoff & Nunez, 2000). The theory of
embodied cognition is foundational to understanding the mechanisms and
efficacy of embodied learning, as it provides the theoretical underpinning for
how bodily engagement can enhance cognitive processes. According to this
perspective, cognitive activities such as problem solving, memory, and
learning are not just abstract mental tasks but are connected to sensory-
motor systems. This connection implies that physical actions and sensory-
motor experiences can shape and facilitate cognitive processes (Barsalou,
2008; Glenberg, 1997). Highlighting the role of the body in cognition and
learning, embodied learning has gained quite some attention in mathematics
education research (Bos et al., 2021; Drijvers, 2019; Lakoff & Nunez, 2000;
Shvarts et al., 2021). The theoretical foundations concerning embodied
learning in our study include the following two aspects: Embodied design and
embodied instrumentation. Embodied Design leverages embodied cognition
to create learning environments and materials that prompt students to
engage physically and perceptually with mathematical concepts. Similarly,
Embodied Instrumentation combines embodied cognition with an
instrumental approach to learning, emphasizing the coupling between the
learner, the physical tools or artifacts, and the tasks at hand (Shvarts et al.,
2021).

Embodied design

Regarding the design and use of embodied cognition in the mathematics
classroom, Abrahamson (2009) introduced a well-defined notion of
embodied design (a term first coined by Van Rompay and Hekkert (2001)) as
a systematic and procedural design method. It consists of two types: action-
based design and perception-based design (Abrahamson, 2009; Abrahamson
& Lindgren, 2014).
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Action-based designs aim to ground mathematical concepts in
students’ natural capacity to adaptively solve sensorimotor problems. In
action-based design, the sense of meaning comes from being able to achieve
a target outcome using both a naive and an instrumented strategy with a
technological system. For example, to teach the concept of a parabola,
learners can be encouraged to manually plot a series of green isosceles
triangles, which collectively form a U-shaped trace (Palatnik et al., 2023;
Shvarts & Abrahamson, 2019). In this case, the sensorimotor coordination
pattern manifesting the parabola concept necessitated preserving the
triangle by equating the distances from a point to the directrix (CB) and focus
(CA) (see Figure 3.2). This task requires students to engage in a physical
exploration of the parabola’s geometric properties, specifically its reflective
symmetry and the definition involving distances to the focus and directrix.
This method allows them to intuitively grasp the parabola shape by acting on,
combining naive (manually tracing) and instrumented (keeping isosceles
triangles equal to learn about the parabola) strategies within a technological
system (the graph and its representation of geometric figures).

Figure 3.2  Sensorimotor coordination patterns of a parabola y = x2 (Palatnik et
al., 2023, p.170)

Perception-based designs aim to ground mathematical concepts in students’
natural perceptual ability in their naive perceptions of a situation. Like the
action-based genre, it is followed by a phase of reflection in which these
views are developed. This approach involves the manipulation of students’
perceptual fields or having them engage in activities where they discern
patterns, identify relationships, or perceive variations. For instance, in a
study on teaching the gradient using an augmented reality sandbox (Bos et
al., 2022), students were invited to roll a marble down a plane, adjusting its
direction and steepness (Figure 3.3). The sandbox projected real-time height
lines onto the plane, with the marble’s trajectory perpendicular to these
lines, indicating the steepest direction. In perception-based design, the sense
of meaning arises when someone can make the same inferences from both
direct and indirect observations of a given phenomenon. From the rolling
marble experience students are invited to make inferences about the fact
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that the height lines and the gradient are perpendicular. Action-based and
perception-based designs help create a richer, multisensory learning
environment where learners can make sense of abstract concepts by
enacting and perceiving them physically.

Figure 3.3  Rolling a marble down a plane in the augmented reality sandbox (Bos
et al., 2022)

Building upon the existing literature on embodied design, our study also
draws on the embodied-design procedure to inform our task design. Three
fundamental steps are emphasized by Abrahamson (2014), namely
Phenomenalization, Concretization, and Dialog. Phenomenalization involves
creating an intuitive situation related to the topic being learned. It starts by
identifying a generic schema or pattern underlying the topic, and then
developing a scenario where applying this schema provides a solution.
Concretization involves creating a visual model of the situation. The goal here
is to decide on a formal disciplinary model related to the problem, devise a
visual version of it, identify symbols that can represent the student’s solution
strategy, and create incentives for the learner to use these symbols to
understand the problem. In the Dialog stage, the learner is guided through
the process of using informal actions to solve the problem situation,
constructing a formal visual solution, and reflecting on the relationship
between their intuitive understanding and the visualization of the situation.
The application of Embodied Design in mathematics education can
profoundly reshape teaching and learning experiences. By weaving these
stages into our task design (see details in the Design section), we aim to offer
a more accessible and engaging learning experience, promoting a deeper
comprehension of FT.
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Embodied Instrumentation

In line with the design views of this study, we considered the Embodied
Instrumentation theory (Drijvers, 2019) for the elaboration of task designs.
As a combination of embodied cognition and an instrumental approach,
Embodied Instrumentation underscores the amalgam between the body,
artifact, and the cognitive scheme involved when DT is used in mathematics
education. The term ‘instrumentation’ here refers to the process through
which an artifact (a tool, technology, etc.) becomes a part of the student’s
conceptual scheme. A scheme is an invariant organization of activity for a
certain type of situation (Vergnaud, 2009). Expanding on this idea, Shvarts et
al. (2021) emphasize the nuanced and complex nature of action regulation,
which occurs through dynamic functional systems involving both the body
and the artifact in perception-action loops (Figure 3.4). Significantly,
perception-action loops are the lynchpin of this body-artifact functional
system. These loops are central to a complex dynamic system of behavior,
with perception and action existing as intertwined processes within the
interaction and coupling with the learning environment. For example, initial
perception emanates from the interaction with and/or observation of the
artifact, guiding the students’ actions at the same time. Concurrently, the
actions reciprocally offer feedback and verification, thereby generating a
new perception or preserving the existing one. Unlike conventional mental
schemes, these functional systems are decentralized and can be expanded
through the inclusion of artifacts. In this context, an artifact is not only an
external tool but becomes a part of the system, contributing to the way
learners interact with and comprehend mathematical concepts.

The aforementioned theories offer a framework to develop FT,
particularly in the context of using digital technologies. The Embodied Design
theory, with its bifocal approach of action-based and perception-based
designs, promotes the grounding of mathematical concepts within students’
sensory-motor coordination. The Embodied Instrumentation theory stresses
the relationship between the body, artifact, and cognitive scheme when
employing DT in mathematics education. These two theoretical perspectives
both centered on the principle of embodied cognition. They emphasize the
need to consider students’ physical interactions and perceptual experiences,
and underscore the role that artifacts play in shaping these experiences. The
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fusion of these theories directs the way of designing a natural and engaging
learning environment for the development of FT.

Figure 3.4 Body-artefact functional system in interaction with the environment
(Shvarts et al., 2021, p.451)

3.3 Methods

To address the research questions, we conducted a design-based study. This
study was structured into two main phases: the initial design phase, where
we developed and refined the digital-embodied learning materials, and the
subsequent case study phase. In the case study phase, we observed and
analyzed the experiences of two pairs of 14-year-old students.

Design

Our aim is to design a digital-embodied learning environment for fostering
FT. As a first step, we drew on the principles of the Embodied Design
framework (Abrahamson, 2014) to construct an overarching architecture for
FT. This architecture, which is grounded in our theoretical foundations,
includes three critical stages: Phenomenalization - light ray context;
Concretisation - embodied nomogram model; Dialog - a series of
guestions/tasks. The core concept is FT, and the implementation of a light
ray context in our embodied design builds upon the historical use of
nomograms, PAR, and DynaGraphs in mathematics education (Nachmias &
Arcavi, 1990; Sinclair et al., 2009).

This series of designs introduces the concept of function through a
real-life context that is familiar to students, namely light rays. The innate
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connection between the light ray context and the nomogram model serves
as the cornerstone of our design. Imagine a scenario with a sun or a light bulb
illuminating an object, casting shadows in varying positions (Figure 3.5)%. We
hypothesize that the students’ existing familiarity with light rays and their
effects, such as shadows, will help them understand the linear patterns that
form the basis of nomograms. Specifically, light travels in straight lines and
objects can obstruct light, creating shadows. Therefore, students’ perceptual
experience that their shadow follows their bodily movement affects
predictable object-shadow positions, and can help them grasp the concept of
predictable relationships between variables in nomograms. Students
mathematize their intuitive perception of the situation using nomograms.
The illustrative diagrams, including Figure 3.5, are intended to support this
foundational experience rather than to provide a comprehensive exploration
of light and shadow geometry (Gravemeijer & Doorman, 1999).

We use the light ray context as the model for Phenomenalization. In
particular, two aspects of the context implicitly convey fundamental
properties of the nomogram. First, the directedness of the light, from hand
to shadow, carries over to the nomogram where arrows go from input
element to image element. Second, in a nomogram one only draws a finite
number of arrows, even though arrows are virtually sprouting from every
point on the input axis. The situation is the same for light rays: we draw only
a finite number, even though we know there are light rays through every
point. As described in the introduction section, digital-embodied nomograms
can offer a tangible, hands-on experience that enables learners to
comprehend the relationship between two variables. This understanding is
facilitated through both visual (perceptual) and tangible (action) modes. And
these nomograms can effectively communicate a learner’s solution strategy
using specific visual cues, such as the trace of an arrow and algebraic symbols.
Hence, digital-embodied nomograms serve as an ideal model for the
Concretization phase of the learning process. The Dialog stage is where the
mathematical concepts are consolidated and where the learners can see the
relationships between their intuitive actions or strategies and the formal
mathematical concepts. It encourages learners to navigate through problem
scenarios using their informal approaches, subsequently guiding them to

! The geometric representations in Figures 3.5 and 3.6 are intentionally simplified for clarity,
despite deviations from shadow shapes in reality. Empirical evidence from our later study
indicates that these simplifications did not detract from student understanding or
engagement, supporting their use for educational purposes.
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craft formal mathematical solutions. Our learning environment is structured
to enhance this experience: students are presented with questions, urging
them to consolidate and articulate their insights. Additionally, the
collaborative design of some tasks stimulates interactive dialogue between
peers. And there is another opportunity for students to seek clarifications
from tutors, which ensures that misconceptions are addressed, thereby
safeguarding a holistic, dialogic learning journey.

Figure 3.5 A hand and its shadow under the sun

Beyond the general design principles discussed above, the specific design
ideas for each task are outlined in an HLT (Bakker, 2018; Simon & Tzur, 2012).
We elaborated the HLT based on the embodied instrumentation theory
(Drijvers, 2019) and emergent modeling (Gravemeijer, 1999). A full
description of the sequence for each learning module, referred to as the HLT,
can be accessed at the provided link: https://bit.ly/FTnomogram. The table
describing the HLT comprises multiple horizontally-arranged components,
which include task numbers, task descriptions, mathematical objectives,
students’ activities (incorporating practices/techniques for utilizing artifacts,
and levels of the adapted emergent mode), and the conceptualization of
various aspects of FT. The arrangement of the three HLTs is sequentially
organized in a vertical manner, reflecting both the aspects of FT and the
levels of the emergent model.

In Module 1, tasks begin with situational activities that incorporate
input-output thinking within a light ray context. Following several varied light
ray tasks, the real-life context faded, and the required movement shifts from
unimanual to bimanual. This gradual shift introduces covariation thinking
through referential activities. To illustrate, Figure 3.6a presents a task built on
the context of a cardboard tree and its shadow on a screen. Here, students
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have the opportunity to delve into the geometric meaning of both additive
and multiplicative terms of the linear relation y = 3x — 2 by manipulating
the input, either moving the tree’s apex/base or the entire tree. When
students modify the tree’s apex or base position, a commensurate change in
the shadow’s magnitude is observable, governed by a specific multiplicative
factor, in this case “3”, which is geometrically an enlargement factor. The
additive factor, in this case “—2”, is the image of the zero on the input axis.

In Module 2, the tasks initiate with referential activities that adopt
semi-nomograms (nomograms without numbers), eventually leading to
general activities. This module emphasizes mathematical contexts,
highlighting covariation thinking and initial correspondence thinking. The
presentation of various representations, such as nomograms and formulas,
lays the foundation for introducing correspondence thinking. An example can
be discerned in Figure 3.1, where a task is based on the function y = —x. In
this activity, students are tasked with acting in a specific bimanual motion—
moving both hands in opposite directions at the same speed. This motion
mirrors the mathematical relationship encapsulated in the function y = —x:
a positive increment in x induces an equal decrement in y, and vice versa.
Such a coordinated movement not only embodies the interrelation between
the two variables but also holds the promise of assisting students in
transitioning from concrete actions to an abstract mathematical
conceptualization of functions. The act of moving both hands in opposite
directions at the same speed embodies covariation thinking. It enables
students to directly perceive that during the act of moving, every position of
the left hand on the input number line corresponds to a right-hand position
on the output line, as a result of an inverse movement. This kinesthetic
experience is expected to reinforce the understanding of functions as
covariational relationships between variables where the change of one
variable directly influences the change of another in a specific manner.

Module 3 comprises general activities centered on covariational
thinking, integrating various representations of functions. The core idea of
this learning module is the conversion between these representations, with
special emphasis on the transition between nomograms and function graphs.
Using both unimanual and bimanual motions, students delve into the
correspondence aspect of FT. Through an action-based design, depicted in
Figure 3.6b, students can adjust arrows on the nomogram, observing the
resulting point on the corresponding function graph: y = x2. The semi-
coordinate system offers a visible and tangible representation of these shifts:
the left hand’s movement directly influences the point’s horizontal position,
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while the right hand dictates its vertical movement. Notably, students are
exposed to the subtleties of their hand movements’ acceleration, which
mirrors the change in the derivative of the function y = x2. As they approach
x = 1, the left hand’s movement needs to decelerate relative to the right
hand. In contrast, distancing from x = 1 necessitates the left hand to
progressively outpace the right. This hands-on experience emphasizes the
covariational relationship between the two variables, demanding both speed
and coordination to align the point accurately on the function graph.
Consequently, students are expected to get insights into the conversions
between nomogram and function graph, all while grounding their
understanding in an intuitive, embodied experience.

Figure 3.6  (a) Cardboard tree and shadow task; (b) Maintaining a point on the
function graph

Case study participants

For our case study, we selected two pairs of students who were in the pre-
university stream of secondary education in the Netherlands, each pair
comprising students aged 14 years, to participate in the intervention. These
students were chosen by their teacher for their collaborative and
communicative abilities, and their willingness to take part.

The starting points and preliminary knowledge of the students were:
experience with number lines; basic algebra to describe relations between
guantities/variables; using algebra for modeling situations; basic skill with
graphs in coordinate systems. This foundational knowledge is essential to
grasp the concepts introduced in the intervention and effectively engage in
the learning modules.Intervention

The intervention was carried out with the two pairs of students, first in
November 2022 and then in January 2023. Each intervention session,
covering three learning modules, took 90 minutes, followed by a 15-minute
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interview to gather the students’ reflections and insights. Students were
given digital-embodied nomogram tasks within a learning environment that
featured a multi-touch screen (Figure 3.7). This setup provided an interactive
platform for the students to explore and engage with the tasks. Throughout
the intervention, the students were encouraged to collaborate and ask
questions from the teacher during their work.

Figure 3.7  Students worked on a multi-touch screen

Data collection and analysis

The two primary data collection methods were video and audio recordings.
The video recordings served a dual purpose: first, they tracked the physical
activities of the students, including their hand motions and gestures, which
are of prime interest in our study. Second, they captured the on-screen
activities and students’ solutions in the answer boxes for each task. This gave
a clear picture of how students were engaging with the digital-embodied
nomogram tasks, and how they manipulated the tools provided within the
digital learning environment. In addition, audio recordings of the post-
intervention interviews were collected. This dataset was then fully
transcribed to facilitate the subsequent analysis.

Central to our data analysis was understanding students’ usage of
digital-embodied nomogram affordances in their conceptualization of FT. We
selected key segments where these affordances were distinctly used for
further exploration. We qualitatively analyzed participants’ actions,
explanations, and discussions, comparing our anticipated outcomes
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(Hypothetical Learning Activities, HLA) with the actual events (Actual
Learning Activities, ALA). This comparative lens provided insights into several
key areas: practices and techniques with artifacts, conceptualizations of FT,
action-perception loops in action-based tasks, and attentional anchors for
action-based tasks. This comparative analysis is important for addressing the
research questions. For instance, comparing conjectured and actual practices
of and techniques for using artifacts helped us to assess the degree to which
the light ray context promotes students’ interpretative capabilities with
respect to nomogrames. Likewise, we could determine how the bimanual tasks
have been a catalyst for fostering covariational thinking by contrasting
hypothetical and actual action-perception loops. Through this comparison
process, enriched with participant quotes, we not only identified patterns in
the students’ interactions but also gained insights in our design’s efficacy and
suggested areas for improvement.

3.4 Results

The result section provides empirical data on how FT can be fostered through
the three digital-embodied learning modules, each corresponding to one
aspect of FT. For each learning module, we present one or two exemplary
tasks and describe participants’ activity. We compare the HLA with the ALA,
highlighting the similarities and discrepancies between them, accompanied
by examples and quotes from participants. The redesign ideas are also
presented.

Learning Module 1: Light ray context and nomogram

Figure 3.8  Students’ hand gestures while exploring the bulb-mosquito task

Example 1: In the bulb and mosquitos’ shadows task (see Figure 3.8),
students can move the positions of two mosquitos and observe how the
positions of their shadows change correspondingly. The relationship
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between the position of the mosquito and its shadow is: height_shadow =
height_mosquito - 2

HLA Hypothetical practices / techniques for using artifacts:
By moving one input (mosquito) once on the number line,
students can recognize and distinguish various patterns of
relationship (light rays). The relationship established between the
mosquito and its corresponding shadow in this instance is a
proportional relationship.
Hypothetical conceptualizations of FT:
During the exploration of the bulb-mosquito context, students
are able to manipulate the mosquito’s position and subsequently
observe the resulting shadow location, thus facilitating an
understanding of the input (mosquito) and output (mosquito’s
shadow) relationship (coordination of input values and output
values), and covariation thinking (output covaries when students
change the input).

ALA Actual practices / techniques for using artifacts:
Student Pair 1: The students adjusted the position of each
mosquito individually and noted the gradient of the light rays
(arrows). After the tutor explained the question, their attention
shifted toward the input-output (mosquito-shadow) relationship.
Student Pair 2: The students manipulated the positions of the two
mosquitos simultaneously, assessing the inter-mosquito distance
and the distance between their shadows. Rather than a point-to-
point relationship, they focused more on the interval-to-interval
relationship (Chunky continuous covariation). They prioritized the
distance between the two mosquitos in relation to the
corresponding distance between their shadows, instead of
observing how the output depends on the input. One of the
students said: “The distance between all the lines is getting
bigger and bigger... Well, | don’t know if I'm saying it right, But the
distance between that line is getting bigger.”
Actual conceptualizations of FT:
Student Pair 1: The students phrased their findings, saying, "The
shadow is at double the height of the mosquito's height." This
description shows their comprehension of the relationship
between input (height of the mosquito) and output (height of the
shadow).
Student Pair 2: The students gave a more descriptive explanation,
focusing on the distance between the two mosquitoes. They
described the rule as "the distance between the light rays
doubles, as the light rays are further away from the light source".
They showed an understanding of chunky covariation (interval-to-
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interval), an advanced level of FT, compared to the input-output
(point-to-point) level.

Comparison

While the actual learning trajectory of Pair 1 closely followed the
hypothetical trajectory, Pair 2 showed an unexpected but
advanced level of FT. In other words, concerning the potential
given by the task, students could prioritize the inter-mosquito
distance and the distance between their shadows, instead of
observing how the output (shadow) depends on the input
(mosquito position). The students may have found the interval-
to-interval relationship more intuitive or engaging to explore
(because there are two mosquitos available), which diverted their
attention from the point-to-point relationship.

Ideas for
Redesign

To prevent the unnecessary
distractions on the screen, we plan to
reduce the complexity by removing
one of the mosquitos. Notably, these
students are relatively high achievers,
and pair 2 invested six times as much
time to solve the task.

Learning Module 2: Bimanual nomogram tasks

Figure 3.9

Students explored nomograms (a) collaboratively, and (b) individually
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Example 2.1: In the ‘Keep the arrow green with your neighbor’ task (see
Figure 3.9a), students can construct the arrows of the semi-nomogram
(without numbers) with their peers by controlling one point per person. The
relationship between the input and output is: output = input — 2

HLA Hypothetical action-perception loops:
During the exploration, students adjust the arrow’s endpoints;
one student moves one end, while the other student adjusts
the opposite end. They aim to maintain the arrow’s green color,
indicating a correct relationship between the heights of the two
ends. If the points misrepresent the function’s nomogram, the
arrow turns red, prompting students to correct their positioning
to maintain the green indication. Initially, students employ
subtle or slight movements in segmented (“chunk”) motion
strategies, which help them get familiar with this new
movement. As students traverse the input axis, they visualize
the function’s complete pattern, observing intersecting and
parallel arrows among other features.
Hypothetical practices / techniques for using artifacts:
Students move two points on two lines vertically with height
differences on both sides and adjust the moving speed (same
speed for both sides) and direction (same direction on both
sides) based on the feedback of the arrow (green = positive, red
= negative).
Hypothetical conceptualizations of FT:
Students’ simultaneous and smooth manipulation of the two
points can foster an understanding of covariation between two
variables based on bimanual movements. This can be achieved
by drawing an analogy between their physical experiences
(heights of hands) and mathematical meaning (dependent and
independent values). In addition, the whole set of arrows, as
shown by their trace, can contribute to the development of
correspondence thinking.

ALA Actual action-perception loops:
Student Pair 1: The students were observed to adjust the
position of one end of the arrow (student 1) and then move the
other end (student 2) until the arrow turned green. After finding
several green arrows, students started to move the two points
together and keep the arrow green all the time. In the end, they
adjusted the arrow smoothly and perceived the relation
between the heights of the two ends of the arrow to meet the
positive feedback, which is a green arrow.
Student Pair 2: The students adopted a strategy similar to pair
1.
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Actual practices / techniques for using artifacts:

Student Pair 1: The students became adept at moving vertically
along two straight lines with both hands, which laid the
foundation for the later tasks.

Student Pair 2: The students followed a practice similar to pair
1. In addition, it was observed that the students focused on the
speed of their movements and came to the insight that the
speed of the two points’ movements must be consistent in
order to maintain parallelism between the arrows in the
nomogram of output = input — 2.

Actual conceptualizations of FT:

Student Pair 1: The students connected their observations to
the previous learning module. They referred to the light-shadow
context, which was not actually present “The sun’s rays come
from one side again, so the green arrows run in one direction.”
This task saw the emergence of situational reasoning since they
used the light-shadow context to explain what they observed
from this new task. But limited covariational thinking was
observed.

Student Pair 2: The students made a connection between their
physical movements and the geometric attributes of the
nomogram, stating, “By trying to both go down/up at the same
speed...make sure you both move your fingers down at the
same speed so that the lines stay parallel all the time”. This
enabled them to comprehend how one variable changed in
relation to another based on their bodily experience.

Comparison

The HLA and ALA are primarily aligned, as students followed the
anticipated process of adjusting the arrow and maintaining the
green color; moving two points on two lines vertically and
adjusting their movement based on the arrow’s feedback. Their
reflection suggests a strong bond between their bodily
experience and the mathematical meaning. The HLA was an
accurate description of the learning process, and the
instructional strategies and materials were successful in guiding
students along the desired learning trajectory.

Ideas for
Redesign

The alighment between the HLA
and ALA indicates that this series of
tasks was successful in facilitating
the desired learning outcomes.
There will be no adaptation.
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Example 2.2: In the task ‘Describe the rule with x and y’ (see Figure 3.9b),
students need to complete the nomogram (with numbers) by moving first
and then describe the rule with x and y. The relationship between the input
and outputis:y = —2 - x.

HLA Hypothetical action-perception loops:
During the exploration, students are expected to move the two
points together while keeping the arrow green to find the
moving patterns based on the numbers on the two lines.
Hypothetical practices / techniques for using artifacts:
Students are expected to move two points on the two number
lines simultaneously and maintain the moving speed (different
speeds for both sides) and direction (opposite direction on both
sides) to hold positive feedback.
Hypothetical attentional anchor: An intersection point of the
traces of the arrow.
Hypothetical conceptualizations of FT:
With the appearance of numbers on both lines, students are
expected to strengthen their understanding of input-output
pairs and covariational quantities with referential reasoning.
Students can develop a connection between a rule that
determines their movement to a more abstract rule/relationship
between two variables, which entails a form of correspondence
thinking.

ALA Actual action-perception loops:
Student Pair 1: The students were found to first move one unit
on the left number line, then adjust the right point until they
observed the arrow getting green. After noticing a pattern in the
traces of the arrows, they adjusted their movement based on
the trace.
Student Pair 2: These students quickly found some green arrows
and subsequently shifted their attention to the point where the
existing arrows intersected. They then moved their hands and
completed the nomogram by aligning the arrows with the
intersection point.
Actual practices / techniques for using artifacts:
Student Pair 1: Students practiced a strategy of moving one unit
by one unit, conjecturing the possible moving pattern, and then
following the traces of the arrow to move two points smoothly.
Student Pair 2: The students noticed that a shortcut to creating
green arrows easily on the nomogram involved ‘rotating’ the
arrow around the intersection point.
Actual attentional anchor: An intersection point of the traces of
the arrow.
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Actual conceptualizations of FT:

Student Pair 1: The students adopted a top-down strategy, first
identifying several input-output pairs, suchas0to 0, 2 to -4, -1
to 2, and then performing calculations to give the rule with x
and y. They primarily focused on the mathematical aspects
rather than the motion aspects of this task, which led them to
covariation thinking.

Student Pair 2: The students connected their movement pattern
and the geometric attributes of the nomogram. Their statement,
“we have to make sure the line stays on this center point
(intersection point) ... and from there, one point (moves) down
and the other (point moves) up.” They quickly recognized that
the opposite motion of their hands corresponds to a -’ symbol
in the formula. Subsequently, by analyzing number pairs on the
nomogram, they deduced the additive factor. This indicates
their realization of the initial covariational relationship between
the coordinated hand movements.

Comparison

In the action-perception loops, the discrepancy lies in the
students’ (pair 1) initial approach to moving one unit on the left
number line and adjusting the right point until the arrow turned
green, instead of moving the two points together while keeping
the arrow green. In the attentional anchor, the students focused
on the intersection point of the traces of the arrow, rather than
the green arrow itself. This shows that this task might not have
been perceived as action-based. The students paid more
attention to the mathematical aspects, viewing the nomogram
as a representation rather than a tool that provides physical
experiences to facilitate mathematization.

Ideas for
Redesign

The step-by-step approach could become an alternative
pathway to understanding the moving patterns. As for students’
focus on the intersection point to complete the nomogram,
future study will consider if it is necessary to redirect students'
focus to the green arrow, for example, make the traces invisible
while students move the two points and reveal the traces when
the movement covers most of the target traces.
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Learning module 3: Transition tasks of multiple representations for
functions

Figure 3.10 Students explored the transition between (a) a nomogram and

corresponding function graph; (b) a function graph and corresponding
nomogram

Example 3.1: In the task ‘Move on the line’ (see Figure 3.10a), students can
adjust the arrow in the nomogram and try to keep the corresponding point

moving on the function graph. The relationship between x and y is: y = x

2

HLA

Hypothetical action-perception loops:

Students are expected to explore the relationship between their
hand movements and the corresponding point in the coordinate
system, observing how the left and right-hand movements affect
the point’s horizontal and vertical positions, respectively.
Hypothetical practices / techniques for using artifacts:

Students should become aware of the relationship between their
hand movements and the corresponding point’s movements to
accurately adjust their actions; left-hand movement controls the
horizontal movement of the point (left/right), while right-hand
movement controls the vertical movement (up/down).
Hypothetical conceptualizations of FT:

Speed and coordination are crucial to keep the point on the
function graph. Students are expected to comprehend how their
hand movements simulate the covariational relationship
between the two variables. They can develop an understanding
of the conversion between representations, such as from an
arrow in a nomogram to a point on the function graph, based on
their physical experience. Additionally, students are expected to
recognize that the vertical axes in both representations remain
consistent. Another crucial observation is the orientation of the
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horizontal axes; they are rotated at a right angle, a geometric
detail can be mirrored in the student’s movement.

ALA

Actual action-perception loops:

Student Pair 1: Initially, students moved the right point on the
nomogram, observing its impact on the vertical movement of the
green point in the Cartesian coordinate system. They then moved
the left point and recognized its influence on the point’s
horizontal movement. After figuring out the effect of each hand'’s
movement on the point’s position in the Cartesian coordinate
system, they started to move the two hands simultaneously on
the nomogram to ensure the point moved along the
corresponding function graph.

Student Pair 2: These students adopted a reverse strategy. They
were observed initially moving both hands together to see the
point's movement in the Cartesian coordinate system. They then
experimented with moving one point at a time to understand the
influence of the left number line on the point's horizontal
movement and the right number line on the vertical movement.
Actual practices / techniques for using artifacts:

Student Pair 1: The students demonstrated the same
understanding as hypothesized, using their left hand to control
the point's horizontal movement (left/right) and their right hand
to control the vertical movement (up/down).

Student Pair 2: Similar to Pair 1.

Actual conceptualizations of FT:

Student Pair 1: The students built the full connection between
the two representations, nomograms and function graphs. They
described the findings of the function y = x? as “you have to
move the x circle up slowly and the y circle you have to move up
faster”, indicating that when x is greater than 1, y changes at a
faster rate than x. This shows their understanding of the
correspondence relationship of x and y for the function y = x2.
They incorporated their bodily experiences to explain the
conversion between different function representations.

Student Pair 2: The students gave a similar statement on the
conversion between nomograms and function graphs.

Comparison

Both HLA and ALA demonstrated similar practices/techniques for
using artifacts and shared similar action-perception loops,
indicating that the hypotheses were effective and accurate in
guiding students' engagement and focus. However, the difference
lies in the initial strategy used by the students in pair 1 and pair
2. Pair 1 started by moving the right point and then the left point,
while pair 2 initially moved both hands together. Concerning the
conceptualization of FT, both pairs were able to build the full
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connection between the two representations and used their
physical experiences to explain the conversion between different
function representations. These findings suggest that different
students may adopt different strategies through exploration, but
either way can lead them to the final learning goal.

Ideas for The HLA and ALA have no conflicts considering the learning goal

Redesign of this task, which is 'Conversion between different
representations of functions, nomogram and function graph'.
There will be no adaptation for this task.

Example 3.2: In the task ‘Graph the rule’ (see Figure 3.10b), students can use
a digital pen on the screen to plot the function graph according to a given
nomogram. There is a colorful arrow in the nomogram showing the position
of the pencil in real time. The functional rule in this task is: y = |x|

HLA Hypothetical action-perception loops:
When completing the function graph, students are expected to
move the digital pen (orange point) in the Cartesian coordinate
system and observe the corresponding color-changing arrow on
the nomogram. Students can use a top-down approach, first
having an overview impression of the nomogram and guessing
the function, and then moving the digital pen to draw the graph,
with the color-change arrow signifying the location of the point
in the Cartesian coordinate system. When the point aligns with
the target function graph, the corresponding arrow in the
nomogram turns green, and the trace of the pen remains visible.
Or students can adopt a trial-and-error method, working in small
steps to keep the green arrow on the given nomogram by loops.
Hypothetical practices / techniques for using artifacts:
Students are expected to first move the pen horizontally or
vertically to determine the effect of the movement, and then
focus on plotting several separate points that fit within the
nomogram. Eventually, they should be able to plot the function
graph. It is plausible they may need to erase and restart the
entire canvas several times before they can smoothly plot the
function graph.
Hypothetical conceptualizations of FT:
It is a reverse task of conversion between nomogram and
function graph. By ‘matching’ the color-changing arrows on the
nomogram and the pen’s position in the Cartesian coordinate
system, students’ comprehension of input-output pairs and their
corresponding locations in the Cartesian coordinate system is
reinforced. The integration of nomogram, function graph and
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formula in this task allows students to experience how different
representations work together to represent one rule/function,
which leads to correspondence thinking.

ALA

Actual action-perception loops:

Student Pair 1: The students first found a point (1,1) that turned
the arrow green. They then began to freely move the pen to
observe its effect on the color-changing arrow on the nomogram.
After discerning the connection between the pen and the color-
changing arrow, they tried to plot the left part (second quadrant)
of the function graph in small steps by loops.

Student Pair 2: The students initially moved the pen in an
unstructured manner, attempting to find number pairs and to
turn the color-changing arrow on the nomogram green. They
found that even with free pen movement, when it reaches a
certain area, the trace of the pen could remain visible. After
being redirected by the tutor, they refocused on the task goal,
which was to plot the function graph based on the given
nomogram, rather than to move the pen freely.

Actual practices / techniques for using artifacts:

Student Pair 1: Initially, students plotted a few points in the
coordinate system while observing the corresponding nomogram
and then lined up these points to complete the function graph.
Student Pair 2: The students first moved the pen randomly and
got some pen traces, which formed part of the accurate function
graph. Then they used a strategy similar to pair 1 to plot the
graph.

Actual conceptualizations of FT:

Student Pair 1: The students identified the connection between
the movement of the pen and the color-changing arrow on the
nomogram, and then further got an understanding of the
conversion between the function graph and the nomogram. Their
use of the number pairs indicates a deep development of the
input-output aspect of FT. When giving the formula of the
function, they described it as “x times -1 (second
quadrant)...Always the same number (first quadrant)”. They have
not learned absolute function, so provided this kind of stepwise
formula, when x < 0,y = —x, and when x > 0,y = x. This
shows a strong ability to transfer between different function
representations, which exemplifies the correspondence aspect of
FT.

Student Pair 2: The students also grasped the conversion
between the function graph and the nomogram. They figured out
the patterns of the number pairs from the given nomogram.
When explaining the findings, they described it as “(in the first
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quadrant) the graph should be a 45-degree straight line,..., it is
also a 45-degree straight line but towards the opposite direction
(in the second quadrant)”. Their explanation suggests that they
have also got an understanding of correspondence thinking.

Comparison The difference in the action-perception loops is the initial
strategy used by both pairs of students. In terms of the use of
artifacts, both pairs demonstrated a grasp of the connection
between pen movement and the color-changing arrows on the
nomogram, and applied similar strategies to plot the function
graph. In conceptualizing FT, both pairs of students recognized
the conversion between the function graph and the nomogram,
and identified patterns from the given nomogram, indicating
developed correspondence thinking.

Ideas for The confusion about the task goal implies a need for clearer task

Redesign instructions. To avoid this confusion, the task goal of graphing the
function in the coordinate system will be explicitly stated at the
beginning to guide student focus, for example, highlighting the
goal in the instruction and the title of the tasks. In addition, the
pen’s traces could potentially cause a misinterpretation of the
task. We will modify this aspect to preserve all traces rather than
exclusively maintaining the correct one.

The results section elucidates how FT can be fostered through three digital-
embodied learning modules, each targeting a different aspect of FT. Through
detailed examples and participant activities, we compared the differences in
HLA and ALA. Moreover, the comparison and redesign ideas presented
suggest ways for refining the design to better align with students’ perceptual
and physical experiences and learning needs. These results set the stage for
a broader research of the implications of digital-embodied learning.

3.5 Conclusion and Discussion

The overarching question addressed in this paper is how an embodied design
can foster abstract FT. To provide more comprehensive insights, we divided
it into three sub-questions, each focusing on a specific aspect of FT. In the
following, we reflect on how the results obtained from each learning module
contribute to answering these sub-questions.

RQ1 How does a light ray context foster the students” meaning-making
of nomograms?

The light ray context, an integral part of our embodied design, served as an
important instrument in facilitating students’ understanding of nomograms
and the input-output aspect of FT. As advocated by Abrahamson & Lindgren
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(2014), students need guidance to take action and move their bodies in
specific ways, simulating key mechanisms and spatial relations. This
approach helps them understand and apply functional analogies in the
targeted knowledge domain. In our scenario, we have embedded numerous
elements within the light ray context that render the nomogram as a function
representation. Firstly, the orientation of the light rays (arrows) underscores
the principle that, with a function, it is the inputs that consistently map onto
the outputs, and not the reverse. Secondly, a single light ray can only
correspond to a unique point in the shadow, similar to the function rule
where input can only determine one specific output. Thirdly, in nomograms,
only a finite number of arrows are drawn, despite every point on the input
axis theoretically having an arrow, similar to how we depict only a limited
number of light rays even though they pass through every point. Lastly, the
visualization of two hands in the hand-shadow tasks offers an analogy for the
subsequent dual-hand motion task on a nomogram. The object placed in
front of the light source symbolizes the input, while the resulting shadow
represents the output. The direction of the arrows offers students clear
guidance regarding the mapping from input to output values.

Though still partial and vague in this learning module, students’
grasping of the mathematical meaning of the nomogram—as a function
representation—was accomplished through and manifested in their bodily
actions, gestures, artifacts (the learning environment), and mathematical
symbols (Radford, 2009). As shown in our observations, students were able
to draw connections between their actions — such as changing the light
source’s type or position — and the resulting changes in the light ray patterns
on the nomogram. While experimenting with two light sources, the sun or a
bulb, the learning environment supports the students in the meaning making
of nomograms for two types of functions. The parallel nomograms are
interpreted as the result of sunlight, which represents adding to or
subtracting from the input values. The divergent nomograms, with a focal
point left of the input lines, are ascribed to a bulb or spotlight, which enlarges
the input values to some extent (see Example 1). In addition, the perceptual
experience provided by the light ray contexts allows students to construct the
mathematical meaning of using nomograms. For instance, the geometric
patterns resulting from different light ray contexts left a deep impression on
the students, enabling them to refer back to these contexts even in
subsequent learning modules (as seen in Example 2.1).

In conclusion, the light ray context has been a productive situational
tool in our embodied design, fostering a deeper understanding of the
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function representation of nomograms through a tactile and sensory-
engaging approach.

RQ 2 How do bimanual movement tasks foster covariational thinking?

In our embodied nomogram tasks, the bimanual movements offer an
opportunity for students to physically explore the relationship between two
variables in a function, with the left hand representing x, and the right hand
y, respectively. This enables students to physically experience the
covariation between the two variables. As prompted by Alberto et al. (2022),
our embodied nomogram tasks also cover two learning phases, a qualitative
stage (homograms without numbers) and a quantitative stage (nomograms
with numbers). In the qualitative stage, by moving both hands to maintain
the green status of the arrow, students understood that these variables were
related and their hands’ movements should be coordinated (see example
2.1). In the quantitative stage, students adopted a more systematic,
guantitative approach to their movement patterns. For example, they used
a strategy of moving one unit at a time on the left number line, and then
adjusting the right point accordingly (see example 2.2). This shows they made
connections between their movement and mathematical reasoning of the
discrete numerical values associated with each point.

Concerning the bimanual movement in the nomogram-function graph
tasks, students used both hands to manipulate the points that represented
the value of the variables in the nomogram and observe the corresponding
changes of the variables in the Cartesian coordinate system. A clear example
of how this facilitated understanding of the covariational relationship can be
seen in a task that involved keeping a point moving along a function graph
(see example 3.1). To keep a point moving along the function graph y = x?2,
students quickly realized they had to move their right hand (controlling y)
faster than their left hand (controlling x) when x was bigger than 1. This
active engagement provided a tactile foundation for their comprehension of
the different function representations. This grasp was evident in their
explanations such as, “the (y) point goes faster than the (x) point” or “when
I move my left hand, the point goes left or right (on the nomogram), and when
I move my right hand the point runs vertically (in the Cartesian coordinate
system)”.

Moreover, in line with continuous feedback used in previous studies in
mathematics education, a notable feature embedded in our tasks was the
continuous real-time feedback provided by the color-changing arrow on
nomograms (Abrahamson, 2014; Alberto et al., 2019; Shvarts et al., 2021).
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Continuous feedback has proven to be a promising tool, promoting new
sensorimotor coordination through students’ exploration and interaction
with the learning environment. This was apparent in our tasks as students
adapted their hand movements in real time to maintain the ‘green’ of the
color-changing arrow. Students could immediately see the impact of their
hand movements on the function and adjust their strategies accordingly. This
loop of action, observation, and reaction has the potential to reinforce
understanding continuous covariation in a dynamic, iterative way. The
continuous feedback provided in these tasks was not only real time but also
visually intuitive, using color changes (i.e., the arrow turning green or red) as
an indication of correctness (Alberto et al., 2022). Such feedback, coupled
with the simultaneous manipulation of the variables, enabled the students to
experience the complex interrelationship between the two variables, thereby
constituting a body-artifact functional system for covariational reasoning
using nomogram.

In this manner, the integration of bimanual movement into the
learning process not only aligns with the properties of functions itself but also
leverages recent advancements in DT to provide a novel, hands-on approach
to the foster of covariation thinking.

RQ3 How do different function representations and their conversions
support a correspondence view on functions?

Various function representations, such as arrow chains, tables, graphs,
formulas, and nomograms, allow for different types of functional reasoning,
fostering a holistic understanding of functions, which is the core of
correspondence thinking. In our tasks, the conversions between different
representations — nomogram, formula, and function graph - were
intentionally designed to help students transfer them smoothly based on
concrete experience. The formula and function graph, a more conventional
representation, helped students further consolidate the functional
relationship in a symbolic and graphical way.

According to previous research (e.g., Ainsworth, 1999; Duval, 2006),
using multiple representations, especially the transitions between them, can
deepen students’ conceptual understanding and encourage more flexible
thinking. When students are trained to transition smoothly between different
function representations, they are better positioned to anticipate and
operate on the function. This anticipatory ability allows students to deduce
implications in one representation based on insights obtained from another.
For instance, during the plotting function graph task (see example 3.2),
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students were given the opportunity to conduct the unimanual movement
on one representation (function graph) while observing the corresponding
changes on another (nomogram). The changes induced by the unimanual
movement were related to the overall shape of the nomogram or slope of
the function graph, encouraging students to anticipate outcomes before
initiating the plotting process.

In summary of the findings on RQ3, the use of different function
representations and conversions between them in our study encouraged
correspondence thinking by providing multiple perspectives to observe,
understand, reason about, and manipulate the function. These tasks boosted
an understanding of the function as a correspondence relationship,
promoting a general understanding towards an object view of function.

In addressing the limitations of this case study, several elements
deserve further consideration. First, the subjects of our study are students
from the pre-university stream, suggesting that these students may have a
solid foundational knowledge, potentially enabling them to better grasp
abstract concepts than their peers. This skews the findings, as the approaches
used might have different effects on students from various learning
backgrounds. Other uncontrolled factors could have influenced the outcomes
as well, like learning perceptual preferences and familiarity with digital tools.
Second, although the students’ performance was closely observed and
analyzed, their strategies and thought processes were inferred from their
behaviors and verbal expressions, possibly introducing some degree of bias.
For instance, although some students employed a top-down strategy yielding
correct responses, their subsequent explanations connected these answers
to our questions, including embodied elements we expected. This could lead
to the misinterpretation that tasks were addressed using a mere embodied
approach. Thirdly, the design intricacies, despite their novelty, might have
been overly complicated for some participants. The confusion evident in
initial tasks emphasizes the need for more explicit instructions in future
designs. Adjustments, such as explicitly stating the task goal and refining the
movement traces to maintain clarity, could help avoid misinterpretations.
Last, the embodied nature of our tasks heavily relies on the nomograms. We
could question if students are truly grasping the mathematical concepts, or if
they are mastering the manipulation of this specific tool.

Adding to our conclusions, we want to emphasize the importance of
design considerations for effective embodied tasks. First, the importance of
providing students with a concrete experience, as exemplified by the light ray
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context in our design. This concrete, situational context served to anchor
abstract mathematical concepts, allowing students to build on their intuitive
understanding of the physical world—such as noticing how the presence of
light sources affects the environment around them—how sunlight creates
shadows that change during movement, or how a flashlight casts a shadow
when its beam is obstructed. We acknowledge that while students might not
have a detailed understanding of the geometric properties of light diffusion,
their general awareness of how light and shadows interact due to movement
is sufficient for the learning goals. And students frequently referred to this
context in subsequent tasks and modules, illustrating the lasting value of such
metaphors in function learning with nomograms. Another crucial design
consideration is the integration of an interactive, dynamic learning
environment that offers real-time feedback (Abrahamson, 2014; Alberto et
al., 2022; Shvarts et al., 2021). The students responded positively to the
interactive nature of our tasks, with both pairs indicating that they enjoyed
engaging with the tasks and observing the changes in a real-time manner.
Notable comments included the rewarding experience of seeing the arrows
turn green, the ease of understanding how the graphs work through the
dynamic lines, and the preference for this interactive learning environment
over traditional textbooks. This immediate, sensory feedback provided by the
tasks fosters a more engaging, intuitive, and satisfying learning experience,
highlighting the potential benefits of integrating such elements into
mathematics learning. At the heart of our embodied design is the intentional
and tight coupling of learning goals with target tasks. We aimed to impart an
understanding of functions as relationships between two variables. To this
end, the two-hand coordinating motion served as an ideal task: it is an
accessible action that affords both stability and dynamism. The stability of
this action—consistent action type across all tasks, regardless of function
type — could facilitate the emergence of body-artifact functional systems
(Shvarts et al.,, 2021), while the dynamics allows for a wide range of
movement patterns, mirroring the various properties of functions. This close
alignment between task and learning goal was crucial in ensuring students
develop new body potentialities and create new affordances under the
embodied learning environment.

In conclusion, this study highlights the advantages of integrating
digital-embodied nomogram tasks to foster FT. Such an approach appears to
deepen students’ grasp of abstract mathematical concepts by providing
concrete experience. Furthermore, these findings offer a robust foundation
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for future research in FT, embodied learning, and the role of DT in
mathematics education.
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Chapter 4 A digital-embodied design for functional
thinking in the classroom

Abstract To address the challenge of teaching functional thinking (FT), this study
proposed to ground mathematical reasoning in tactile experiences and investigated
whether a digital-embodied design using nomograms enhances FT in a classroom
setting. A teaching experiment was conducted with 39 9th- grade students across
three 1-hour sessions, each dedicated to one aspect of FT: Input-Output, Covariation,
and Correspondence. In Module 1, real-life contexts and application of function rules
invite Input-Output thinking. In Module 2, bimanual coordination tasks with
nomograms target Covariation. In Module 3, the transitions between different
function representations focus on Correspondence. Data from pretests, posttests,
classroom observations, and mini interviews demonstrated significant improvements
on all aspects of FT, especially Covariation. Key design features—real-life context,
bimanual coordination movements, real-time feedback, and various function
representations—helped students bodily engage with functions, supporting smooth
transitions from sensorimotor experiences to mathematical reasoning. In conclusion,
integrating digital-embodied tools into classroom may support FT development.

Keywords Functional thinking; Embodied design; Digital technology; Mathematics
education; Classroom implementation; Nomogram; Parallel axes representation
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4.1 Introduction

Embodied cognition represents a paradigm shift in the understanding of how
cognitive processes are rooted in the body’s interactions with its
environment. According to this perspective, cognition is not only a product
of abstract mental functions but is deeply rooted in the physical experiences,
perceptions and actions of the body (Barsalou, 1999; Lakoff & Nufez, 2000;
Varela etal., 1991). In the field of mathematics education, embodied learning
has shown promise in reshaping our perspectives on how students
understand complex and abstract mathematical ideas. Research suggests
that mathematical cognition is tied to sensorimotor experience, as students’
sensemaking of abstract mathematical concepts includes gestures, spatial
reasoning, and bodily movements (Abrahamson & Lindgren, 2014;
Nemirovsky et al., 2013). The integration of digital technologies into this
framework has led to the creation of digital-embodied learning
environments, which allow students to engage with abstract concepts
through interactive digital tools (Georgiou et al., 2021; Pittalis et al., 2024).
These environments, through tools such as virtual manipulatives or motion-
based interfaces, provide tangible and concrete bodily experiences that align
physical actions with mathematical concepts, making these concepts more
accessible (Pittalis & Drijvers, 2023; Shvarts et al., 2021; Wilson, 2002). The
embodied approach using digital technology leads to immersive and
interactive learning experiences. This approach not only enriches the
learning process but also aligns constructivist theories of active knowledge
construction, with the view that knowledge is constructed through abstract
reasoning and tactile interaction with the world.

Since the beginning of the twentieth century, functional thinking (FT)
has emerged as a crucial topic in mathematics education (Thompson, 2008).
FT is essential for modeling real-world problems and engaging in complex
problem solving. Despite the recognized importance of FT in developing
mathematical literacy, students often struggle with the abstract nature of
functions and their representations (Ellis et al., 2016; Tanisli, 2011; Stephens
et al., 2017; Thompson & Carlson, 2017). For example, grasping the dynamic
nature of covariation can be challenging—understanding how two quantities
change in relation to each other—especially when students are required to
visualize or mentally manipulate these relationships (Castillo-Garsow et al.,
2013; Thompson & Carlson, 2017). Recent research suggests that digital-
embodied learning environments offer a promising solution direction. By
bodily interacting with digital representations of functions, students could
better understand covariation and other abstract concepts by grounding their
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learning in sensorimotor activities (Duijzer et al.,, 2019; Shvarts &
Abrahamson, 2019). Thus, the incorporation of digital-embodied learning
environments in teaching FT presents considerable potential.

Transitioning embodied learning from controlled laboratory research
to a real classroom is challenging. The practical issues, including teacher
involvement, varying student abilities, and technical limitations, make the
adoption of embodied learning difficult on a larger scale. Previous studies
also highlight the nuanced relation between technology integration and
learning outcomes, especially on how digital tools like GeoGebra, interactive
whiteboards and tablets may enhance conventional teaching methods (De
Vita et al.,, 2018; Duijzer et al., 2019; Ginster & Weigand, 2020). The
transition from laboratory settings to classroom environments amplifies
these complexities, revealing variations in implementation effectiveness due
to factors such as scaling for larger groups, accommodating diverse student
abilities, and local contextual dynamics (Alberto et al., 2022; Cai et al., 2020;
Kosmas & Zaphiris, 2023). Empirical evidence suggests that the success of
technology-enhanced learning environments depends on how well these
variables are managed. The effectiveness of digital tools in improving learning
outcomes often varies based on how they are integrated into the classroom,
with factors such as class size, teacher preparations, and student diversity
playing key roles (Alberto et al., 2022; Drijvers, 2019). Given these challenges,
this study aims to further investigate the potential of an embodied learning
approach in classroom settings.

4.2 Theoretical Framework

The integration of digital-embodied learning environments into mathematics
education represents a shift toward more interactive and tangible methods
of teaching abstract concepts, such as FT (Abrahamson et al., 2021; Drijvers,
2019). This study is anchored in several key theoretical frameworks including
Embodied Design, Functional Thinking, and the use of Digital Technology. It
specifically explores the role of a digital-embodied design using nomograms
in fostering FT within a classroom setting.

Delving deeper into embodied cognition within a mathematics
classroom, Abrahamson (2009) refined the concept of Embodied Design as a
design methodology. This innovative method involves creating learning
environments and resources that require students to use their bodies in
learning activities, thereby grounding abstract mathematical ideas in physical
experience. The core premise is that cognitive processes are influenced by
bodily interactions, which suggest that physical engagement can enhance
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conceptual understanding (Abrahamson & Lindgren, 2014; Barsalou, 1999).
Embodied design in mathematics education has been shown to improve
students’ grasp of complex subjects, such as FT, by making the abstract nature
of mathematical concepts more accessible and intuitive (Nathan &
Walkington, 2017). For instance, the use of manipulatives, gestures, and
motion-capture technology allow students to internalize mathematical ideas
through physical actions and visual representations (Duijzer et al., 2019;
Pittalis & Drijvers, 2023; Shvarts & Abrahamson, 2019). Embodied design can
be categorized into different strands: action-based, perception-based, and
incorporation-based design (Abrahamson & Lindgren, 2014; Bos et al., 2022;
Wei et al., 2023). Action-based designs ground mathematical concepts in
students’ natural capacity to adaptively solve sensorimotor problems
(Palatnik et al., 2023; Shvarts & Abrahamson, 2019). For example, students
can manipulate a triangle’s vertex to discover its equidistant properties,
tracing a parabola (Shvarts & Abrahamson, 2019), while in a histogram
example, students can move balls and bars to represent data, reinventing the
histogram through actions (Boels & Shvarts, 2023). These designs promote
conceptual understanding by enabling students to discover dynamic
relationships with their sensorimotor experiences. Perception-based designs
emphasize students’ perceptual capacity, supporting the understanding of
mathematical structures through perceptual sensitivity of phenomena (e.g.,
ratios, balance; Abrahamson, 2012; Tancredi at al., 2021). Incorporation-
based designs intentionally remove a digital artifact’s functionality,
prompting students to internalize and perform this functionality through
bodily experience (Bos et al., 2022; Botzer & Yerushalmy, 2008). Across these
embodied design strands, the learning process unfolds through iterative
perception-action loops (Shvarts et al., 2021), where actions generate
perceptual feedback that guides subsequent action.

Functional Thinking is a key component of school mathematics,
emphasizing the understanding of functions as objects, their representations,
and the relationships between those representations (Vollrath, 1986). The
development of FT is crucial for students’ ability to model real-world
situations mathematically and to solve complex problems (Kaput, 1998). In
this study, we focus on three aspects of FT: Input-output (I0) thinking, which
focuses on calculation processes through input-output assignments and
pattern recognition (Doorman et al., 2012; Frey et al., 2022; Stephens et al.,
2017); Covariation (COV) thinking, emphasizing the dynamic relationship
between two variables and their covaried relationships (Carlson et al., 2002;
Confrey & Smith, 1995; Doorman et al., 2012; Thompson & Carlson, 2017);
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and Correspondence (COR) thinking, which delves into the unique pairing of
these variables across multiple representational forms, such as arrow chains,
tables, graphs, formulas, and phrases (Doorman et al., 2012; Pittalis et al.,
2020; Smith, 2008). Another frequently discussed aspect of FT, namely
mathematical object thinking, was excluded from this study due to the
educational level being considered. Within the mathematical object aspect,
a function is recognized as part of a family of functions (Sfard, 1991),
including higher-order operations such as composition, transposition, and
differentiation (Wei et al., 2023). These aspects enable the development of a
holistic understanding of functional relationships, from recognizing
sequences and patterns to interpreting and mapping variable interactions
(Wei et al., 2024).

Additionally, we explore an innovative approach to function
representation in teaching and learning FT, using a graphical calculation tool
known as a nomogram (see Figure 4.1). The idea of using nomograms in
digital learning settings first emerged with the work by Nachmias and Arcavi
(1990), who introduced the Parallel Axes Representation. Nomograms,
including various formats like the horizontal version DynaGraph identified by
Sinclair et al. (2009), are helpful in visualizing functional relationships. A
nomogram comprises two parallel number lines, which represent values of
the input and output variables respectively. Points on the axes are connected
by arrows or lines that illustrate the functional relationship mapping from
input to output. Within our digital-embodied learning environment, each axis
features a movable point, allowing students to simultaneously adjust the x
and y values by moving both their hands. This type of bimanual movement—
coordinated actions involving both hands—can enhance students’
understanding of mathematical concepts by providing a concrete, physical
experience of abstract ideas (Abrahamson et al., 2014; Jaber et al., 2024). As
students manipulate the points, the interface offers real-time feedback:
when the points correctly represent an input-output pair, the arrow between
them changes from red to green, and the green arrows remain visible. If the
points do not correspond to a valid pair, the arrow turns red and leaves no
trace. This real-time feedback is similar to the features in the Mathematical
Imagery Trainer for Proportion (Abrahamson & Trninic, 2011), where color
change provides immediate, intuitive guidance to students. This dynamic,
hands-on interaction aligns with the principles of embodied cognition and
constructivist learning theories. In this way, the digital-embodied nomograms
make the often-challenging abstract concepts of FT more tangible, potentially
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fostering a deeper understanding of functions through interactive, embodied
experiences.

Figure 4.1 A Digital-embodied nomogram for the function x - —x

Advancements in digital technology have transformed educational practices,
allowing for the development of interactive and engaging learning
environments. Research in mathematics education has increasingly focused
on the potential of digital tools to support conceptual understanding and
problem-solving skills (Doorman et al., 2012; Roschelle et al., 2010). Digital-
embodied learning environments, which combine physical interaction with
digital representations, offer a unique platform for students to explore
mathematical concepts in a dynamic and intuitive manner. For example, to
teach the concept of a parabola, learners can manually plot a series of green
isosceles triangles that collectively form a U-shaped trace (Palatnik et al.,
2023; Shvarts & Abrahamson, 2019). This task asks students to physically
explore the parabola’s geometric properties by preserving the equal
distances from a point to the directrix and focus. Through this hands-on
interaction, students intuitively grasp the reflective symmetry and structure
of the parabola by combining both manual tracing and digital feedback.
Additionally, constructivist learning theory emphasizes the importance of
learners constructing their own knowledge through active engagement with
the environment. This theory is also consonant with the use of digital-
embodied learning environments, as it advocates for instructional designs
that allow students to explore, experiment, and to make sense of
mathematical concepts through direct manipulation and interaction. The use
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of digital-embodied nomograms in teaching FT aligns with this theory by
enabling students to visualize and manipulate functional relationships,
thereby developing conceptual understanding that integrates these tools
into their mathematical reasoning.

In summary, the theoretical background of this study integrates
embodied design, the importance of FT in mathematics education, and the
affordances of digital technology. This study aims to address the overarching
research question:

Research Question How can an embodied design using nomograms foster
functional thinking in a classroom setting?

This question is split up into two sub-questions to explore the roles of the
digital-embodied learning environment’s impact on students’ mathematical
reasoning:

Sub-RQ1 How does a digital-embodied design using nomograms affect
the various aspects of functional thinking among students
within a classroom setting?

Sub-RQ2 How do the design features contribute to the development of
functional thinking?

The key design features considered in this study include real-life contexts,
bimanual coordination movement, real-time feedback, and multiple
representations. By exploring these questions, the study aims to contribute
to effective mathematics teaching and learning while offering insights into
how digital-embodied learning environments can be designed to enhance
students’ understanding and application of FT in a classroom setting.

4.3 Method

This study was structured as a teaching experiment conducted in two Grade
9 classes, aimed at exploring the impact of digital-embodied designs on
students’ functional thinking within a classroom setting.

Module Design

The design comprised three learning modules designed around the concept
of digital-embodied design, specifically using nomograms to enhance FT. As
outlined in our previous study (Wei et al., 2024), the design process began
with the development of Hypothetical Learning Trajectories (HLT), including
a detailed hypothetical learning progression (see Appendix 2 for an example).
Each learning module, as shown in Figure 4.2, was structured to progressively
build on students’ understanding and application of FT concepts in varied
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contexts, with both real-life and pure mathematical scenarios. Different
types of functions, such as linear functions, quadratic functions and the
absolute value function, are addressed. For those interested in exploring
these modules further, access is provided through the following link:
https://embodieddesign.sites.uu.nl/activity/functional-thinking/.

In Module 1, the foundational stage, the emphasis on light ray contexts
introduces students to 10 thinking through engaging real-life scenarios. The
light rays from the object to its shadow in the nomogram are reflected by
arrows going from the input to the output element, with only a limited
number of arrows drawn, even though they could originate from every point
on the input axis. This module transitions from unimanual to bimanual
movements, also laying the groundwork for covariational reasoning (Figure
4.2a). In this ‘Bulb and mosquito’s shadow’ task, students can move the
position of the mosquito and observe how the position of its shadow changes
correspondingly. The relationship between the position of the mosquito and
its shadow is: height_shadow = height_mosquito x 1.5.

Module 2 builds upon this by shifting from light ray contexts to purely
mathematical ones, replacing them with semi-nomograms—nomograms
without numbers—and then formal nomograms (Figure 4.2b). This transition
guides students toward a richer perceptual and kinesthetic experience in
mathematical reasoning. Tasks involving bimanual movement reflect COV,
where the coordinated movement of both hands mirrors the covariation
between two variables. In this ‘Keep the arrow green’ task, students aim to
maintain the arrow’s green color, indicating a correct relationship between
the heights of the two ends. The relationship between the input and output
in this task is: output = —2 X input — 4.

Module 3 focuses on COR thinking, inviting students to explore the
transitions between nomograms, function graphs, and formulas through
both unimanual and bimanual activities (Figure 4.2c). This module is pivotal
in enabling students to perceive and act on the dynamic visualization of
various functional relationships, fostering a deep, intuitive understanding of
the connections between action-perception loops and function
representations. In this ‘Find the domain and range’ task, students can first
adjust the arrow in the nomogram and try to keep the corresponding point
moving on the function graph. After that, they can predict the domain and
range by observing the range of the arrow’s traces on the nomogram. The

relationship between x and yis: y = vx + 2.
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Figure 4.2  Examples of tasks from each module: (a) Bulb and mosquito’s
shadow; (b) Keep the arrow green; (c) Find the domain and range.

Instruments

To comprehensively assess students’ FT development and learning
processes, this paper employed three data collection instruments: Pretest
and posttest, Answer boxes in the digital-embodied learning environment,
and Mini interviews.

Pretest and Posttest

The pretest and posttest were administered in a paper-pencil format,
designed in line with the three facets of FT: input-output, covariation, and
correspondence. Each test consisted of 15 items, scored on a 5-point scale to
capture levels of student understanding, resulting in a maximum score of 75
points per test. These tests comprised two types of items: those closely
related to the FT learning module content (“close assessment”, nine items)
and those relevant to the broader curriculum but varying in specific contexts
(“proximal assessment”, six items). This was done to measure both direct
learning outcomes and generalized skill application (Ruiz-Primo et al., 2002).
The posttest was designed to maintain structural and conceptual equivalence
with the pretest. It featured variations in numbers or contextual settings to
prevent rote memorization while keeping the cognitive demand of the tasks.
Of these fifteen items, nine were categorized as close assessments,
incorporating contexts similar to those encountered in the learning modules,
like light and shadow tasks, and comparisons between nomograms and
function graphs. The remaining six items were proximal assessments,
introducing contexts not explicitly covered in the learning modules, such as
scenarios involving a moving walkway and function tables.
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The validity of the assessment tool was established through a
multifaceted approach, including expert reviews from both experienced
mathematics teachers and researchers in mathematics education research.
These experts ensured the assessment items were aligned with the core
aspects of FT, thereby affirming the content validity of the tool. The pilot of
the pretest to 51 students allowed for a classical test analysis, including
calculations of p-value, variance, item reliability index (Rir), and item-total
correlation (Rit), culminating in a Cronbach’s alpha (a) of 0.71. This result
indicates satisfactory internal consistency and thereby affirms the reliability
of the assessment tool. Based on the insights garnered from this pilot study,
several adjustments were made to enhance the assessments’ clarity and
simplicity. These adjustments included the removal of an item deemed overly
simple and modifications to the test instructions to ensure greater clarity.
Such refinements were crucial in enhancing both the validity and reliability
of the assessments. These steps, from pilot testing to statistical analysis and
subsequent adjustments, underscore the thorough process undertaken to
ensure that the assessments accurately and reliably measure students’ FT
(detailed test example available in Appendix 1).

To ensure the reliability of scoring the pretest and posttest, two
independent coders evaluated the work. The second coder reviewed 50% of
the total data. Inter-rater reliability was assessed by calculating Cohen’s
Kappa, which yielded a coefficient of 0.96, indicating an excellent level of
agreement between the coders’ independent assessments. After their
independent assessments, a consensus discussion was conducted to
reconcile any differences. In addition to the reliability checks, the normality
of the distribution of the difference scores between the pre- and posttests
was assessed using the Shapiro-Wilk test, yielding the following statistics:
Woairr (38) = .98, p = .70. These results support the assumption that the
distribution of difference scores can be considered normal. Therefore, a
paired t-test was used to compare the pretest and posttest scores of students,
addressing Sub-RQ1.

Answer Boxes in the Digital-embodied Learning Environment

Students provided written responses in answer boxes within the learning
modules after completing embodied tasks. These responses captured
reasoning processes and FT understanding. A four-level grading system was
built: Integrated reasoning, Basic reasoning, Simple observation, and No
reasoning, where “No reasoning” includes both incorrect reasoning and
blank responses (detailed grading rubric available in Appendix 4). For
example, in task 2.1, where students were required to describe how they
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keep an arrow green through bimanual movement on the nomogram y =
x + 1, the reasoning was classified as follows:

e Integrated Reasoning: Demonstrates comprehensive reasoning by
integrating movement speed, direction, and the maintenance of
geometric relationships (e.g., fixed angles or height differences) in their
explanations.

e Basic Reasoning: Shows reasoning that focuses on one aspect (either
speed or direction) but lacks consideration of geometric relationships or
the simultaneous integration of multiple factors, such as the
angle/height difference. An exemplar response is, ‘Make sure that both
your hands are going the same direction at the same time/speed.’

e Simple Observation: Makes simple observations without engaging with
the concept of bimanual coordination or the deeper FT required to
interpret or manipulate the nomogram. An exemplar response is, ‘It
turns green at a certain angle.’

e No reasoning: Simple statements without focusing on the bimanual
movement. For instance, an example from a student, ‘l move very slowly
one finger at a time.’

To confirm the reliability of grading students’ responses in the answer boxes,
two independent coders reviewed the submissions. The second coder
analyzed 20% of the responses. Following their independent evaluations, a
discussion was held to reconcile any discrepancies. The inter-coder reliability
for these assessments was quantified using Krippendorff's alpha, which
produced high coefficients of 0.80 for the answer box gradings. It signifies a
robust level of agreement between the coders post-discussion and reinforces
the reliability of the grading process.

Mini interviews

The development of the mini interview protocol was derived from the core
tasks identified within the HLT (Wei et al., 2024). This alignment is essential
for gathering detailed information on students’ progression along these
predefined learning paths. The primary objective of the mini interviews is to
encourage students to reflect upon and elaborate on their written responses.
This is achieved through a carefully structured series of open-ended
guestions and follow-up queries based on their initial reactions. This method
is designed as an interactive dialogue that prompts deeper student
engagement with their learning processes, thereby yielding richer, more
detailed insights into their learning progression along the HLT (Drijvers,
2003). The mini interviews were carried out by the research team during the
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teaching experiment. Following the questions from the interview protocol,
the researchers conducted interviews with students, either individually or in
pairs. Most interviews lasted about one to two minutes, were audio-
recorded, and then transcribed.

To guide the qualitative analysis of data collected from mini interviews,
a detailed codebook was developed. This codebook outlines specific
categories and descriptions for coding students’ interactions with the digital-
embodied learning environment, focusing on aspects of FT (Wei et al., 2023)
and embodied learning (Abrahamson & Lindgren, 2014; Shvarts et al., 2021).
It includes codes for input-output thinking, covariation thinking,
correspondence thinking, action interaction, perception interaction, and the
perception-action loop. Additionally, it addresses students’ difficulties,
strategies, and improvements in FT, along with emerging themes that link
embodied experiences to mathematical understanding. To ensure the
reliability of coding the interview quotations, two independent coders
reviewed the transcriptions. The second coder coded 15% of the
transcription. After independently completing the coding, a discussion was
conducted to resolve any discrepancies. The inter-coder reliability was
assessed using Cohen’s Kappa, resulting in a coefficient of 0.73, indicating a
substantial level of agreement between the coders.

Participants

A total of 39 grade-nine students, aged 14 to 15 years, were enrolled in the
study from an international school located in the Netherlands. These
students, all from two classes, were inclusively recruited for the research,
with no selection criteria applied. All students and their parents provided
informed consent, and participation was voluntary. The students were
average to high achievers and had a foundational understanding of functions,
including experience with number lines, basic algebra to describe
relationships between quantities or variables, using algebra for modeling
real-world situations, and basic graphing skills in coordinate systems. They
had not yet studied the formal definition of a function. To ensure uniformity
in the research conditions, all participants received the same instruction and
engaged in identical tasks within the digital-embodied learning environment.

Intervention

The experiment spanned over three sessions for each class, with each session
lasting one hour. These sessions were scheduled to ensure a consistent and
immersive learning experience for the participants. To facilitate this, every
participant was equipped with a tablet (Figure 4.3). Each session was planned

115



Chapter 4

to include a 5-minute introduction or review phase, a 45-minute exploration
period, and a 10-minute recap session (detailed teaching manual example
available in Appendix 3). The introductory phase aimed at setting the stage
for the day’s activities, revisiting key concepts from previous sessions or
introducing new ones relevant to the day’s tasks. During the exploration
period, students engaged with the digital-embodied learning environment in
a self-directed manner. They were encouraged to interact with the tasks,
discuss their findings, and collaborate. There are a few tasks, such as the one
where two students plot a nomogram together, that required collaborative
learning, with each student manipulating a different point. This hands-on
period was crucial for students to discover and apply concepts of FT within
the digital-embodied learning environment. To conclude each session, a 10-
minute recap was conducted to facilitate a whole-class discussion. It was
carried out by the researcher and served to highlight the learning goals of the
session, to address common challenges encountered by students during their
exploration, and to reinforce key concepts.

Figure 4.3  Classroom setup featuring digital-embodied nomogram tasks for FT

Throughout the experiment, researchers acted as tutors, providing guidance
and support to students as they navigated through the learning modules.
Classroom teachers assisted with managing classroom dynamics and
ensuring that the sessions progressed smoothly. This collaboration ensured
that the educational environment was conducive to both exploration and
learning, allowing for an effective investigation into the role of digital-
embodied designs in promoting FT within a classroom setting.
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Data Collection and Analysis

Pretest and Posttest

The pretest and posttest were administered before and after the three-
session teaching experiment. These assessments aimed to measure the
levels of FT among students at two points in time, providing a basis for
evaluating the impact of the teaching intervention. The analysis of these
scores employed a paired t-test to assess the improvement in students’ FT
levels before and after the teaching intervention, addressing Sub-RQ1.

Answer Box in the Digital-Embodied Learning Environment

The data derived from students’ written responses in the answer boxes were
from the digital-embodied learning environment. All student responses in
the answer boxes were saved under each student’s individual account. After
the experiment, the research team downloaded these responses and
evaluated them using the four-level grading system described in the
Instruments section. Beyond assigning scores, the analysis also involved
identifying representative examples of student responses to illustrate typical
reasoning patterns. These examples provide additional insight into the
students’ learning processes, contributing to answering Sub-RQ2.

Mini interview

Data gathered from transcripts of mini interviews conducted with students
during their interaction with the learning modules provided rich insights.
Researchers used the same codebook (outlined in the Instruments section)
to categorize students’ actions, difficulties, and conceptual understandings
of FT. The analysis highlighted typical or noteworthy patterns of student
explanations, showing how the design features influenced their thinking. The
analysis also included selecting representative cases of students’
articulations, which are presented in the Results and Interpretations section.
This method allowed us to collect comprehensive data in addition to task
completion and to gain insights into students’ problem-solving processes and
mathematical reasoning (Lobato et al., 2012), thus addressing Sub-RQ2.

By systematically integrating the three instruments, this study
triangulates quantitative and qualitative data to provide a comprehensive
picture of students’ FT development. Table 4.1 summarizes how each
instrument contributes to addressing the research questions.
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Table 4.1 Summary of instruments and their contributions to the research
questions
Answer Box

Pretest and Posttest Responses Mini interview
Sub-RQ1: Quantitatively Enables analysis of  Clarifies subtle
How does a measures students’ specific reasoning changes or
digital- FT levels before and patterns connected  misunderstandi
embodied after the intervention:  to FT aspects. ngs not visible
design using - Addresses gains in in written
nomograms input-output, responses.
affect the covariation, and
various correspondence
aspects of FT aspects of FT.
among - Paired t-test
students determines
within a overall
classroom improvement in
setting? FT.
Sub-RQ2: Demonstrates how Probes how
How do the design features students
design (real-life context, experience each
features bimanual design feature

contribute to
the

movement, real-
time feedback,

in real time to
uncover their

development multiple strategies,
of functional representations) highlighting the
thinking? shape students’ role of each
written reasoning feature in
and responses. fostering FT.
4.4 Results and Interpretations

This section presents the results derived from three sources of analysis: (1)
pretest and posttest data, including both scores and examples of students’
answers, (2) students’ responses in the answer boxes of the digital-embodied
learning environment, and (3) insights from mini interviews.

Pretest and Posttest Results

Quantitative data analysis indicated a significant improvement in students’
functional thinking levels (Sub-RQ1l). A paired t-test was conducted to
compare the pretest and posttest scores of students. Overall, there was a
statistically significant increase in the posttest scores (M = 50.05, SD = 8.65)
compared to the pretest scores (M = 33.09, SD = 10.76, t(38) = 10.18, p <
.001). The effect size, Cohen’s d = 1.74, indicated a substantial improvement
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in students’ FT levels, as evidenced by an average increase of 16.96 points
between the pretest and posttest scores (Maximum score is 75). Figure 4.4
illustrates the variability in improvement across different pretest scores,
reflecting students’ initial FT levels. The results indicate that students,
regardless of their starting FT levels, showed significant gains following the
intervention. Notably, those with lower initial FT scores tended to
demonstrate greater improvement than students with higher pretest scores.

Figure 4.4 Relationship between students’ pretest scores and their improvement

When diving into the results on functional thinking aspects—Input-Output,
Covariation and Correspondence—the results show improvements across
these facets (as detailed in Table 2). The assessment framework for these FT
aspects comprised a differentiated number of items: three items for the 10
aspect, five items for the COV aspect, and seven items for the COR aspect,
with each item scored on a 5-point scale.

A closer examination of Table 4.2 indicates an improvement in
students’ FT levels. In the COV aspect, the mean score increased from 1.7 to
3.5, reflecting a stronger grasp of the relationship between variables. The
COR aspect’s mean score experienced a rise from 2.0 to 2.8, highlighting a
deepened understanding of pairing relationships and the use of multiple
representations. The |0 score also improved, from 3.5 to 4.5, showing the
teaching intervention’s effectiveness, albeit with a smaller relative gain due
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to the ceiling effect. These improvements affirm the positive impact of the
lesson on all three facets of functional thinking within the classroom setting.

Table 4.2 Pretest vs Posttest for each aspect of FT (Maximum score is 5)
10 cov COR
Pretest 3.5 1.7 2.0
Posttest 4.5 35 2.8
Improvement 1.0 1.8 0.8

The posttest responses revealed students’ enhanced understanding of the
COR aspect of FT—using different representations, such as nomograms, to
depict functional relationships. For instance, in the pretest (Figure 4.5a), a
student adopted simple geometric shapes to illustrate the context provided
by the test item. In contrast, the posttest showed a marked evolution in the
student’s approach: the term ‘nomogram’ was explicitly used, and a correctly
plotted nomogram was employed to accurately address the question (Figure
4.5b). While this adaptation is expected, its significance lies in how students
transitioned from informal and context-based representations to a
structured mathematical tool. This progression was not isolated but
observed across different items, signifying a broader adaptation among
students to use this new representation as a mathematical tool.
Furthermore, this adaptation served as evidence of the development of COR
thinking, as students were able to represent functional relationships through
multiple representations, including nomogram and formula in this case.

Results from Students’ Responses in the Answer Boxes

To assess the extent to which students achieved the learning goals outlined
in our HLT, we coded their responses in the answer boxes using the above-
mentioned four-level grading system: No reasoning, Simple Observation,
Basic reasoning, and Integrated reasoning. All tasks were categorized into
eight groups based on their goals and forms. This allowed us to systematically
measure how different aspects of FT were developed, as relevant for Sub-
RQ1. This section first provides a brief overview of the task groups’
information and how design features were embedded in each group of tasks.
It then presents the coding results, showing the distribution of students'
reasoning levels across different task groups. Finally, two representative
examples are analyzed to further demonstrate how students' responses
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reflect their reasoning levels and how their thinking may have been
influenced by the design features (as questioned in Sub-RQ2).

Figure 4.5 (a) The same student’s response in the pretest and (b) in the posttest

Figure 4.6 shows the percentage distribution of students’ reasoning levels
across eight groups of tasks, offering a quantitative lens through which to
view their learning progression in alignment with the HLT. Tasks 1.1-1.5
introduced the 10 aspect through unimanual tasks embedded in real-life
contexts involving foundational functions like y =x+b and y =k -x. In
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these tasks, students manipulated an object along the input axis, receiving
real-time feedback as they observed corresponding changes on the output
axis. In Tasks 1.6-1.8, a different real-life scenario was introduced with more
complex functional relationships, such as y = k - x + b. Students interacted
with these tasks either by moving an object or adjusting its height along the
input axis to observe changes on the output axis. Task 1.9 served as a
transition point, introducing the nomogram as a mathematical tool to
represent functions. With a shift from real-life contexts to abstract
mathematical representations, Tasks 2.1-2.4 focused on the COV aspect by
requiring students to coordinate bimanual movements on semi-nomograms.
These tasks allow them to synchronize their two-hand movements,
reinforcing the covariation between input and output values. As students
adjusted both hands simultaneously, they also received real-time feedback
by color-changing cues. Then in Tasks 2.5-2.9, nomograms were introduced
with formulas, connecting multiple function representations. The integration
of the Cartesian coordinate system in Tasks 3.1-3.3 requires students to
explore the relationship between nomograms and function graphs. Students
are supposed to convert between these different function representations.
Tasks 3.4-3.7 reversed the process, and asked students to plot function
graphs based on given nomograms. Finally, Tasks 3.8-3.9 formally introduced
the concept of functions, focusing on defining input values, output values,
domain, and range. Students plotted nomograms and used them to
determine the domain and range of functions (detailed group information is
available in Appendix 2).

Since tasks within each group share similar formats but vary only in
functional relationships, percentages for each reasoning level were
calculated as the average across all tasks within a group. Each task group
corresponds to a different stage of the HLT. We excluded the final task of each
module from the analysis since too many students did not complete these
tasks, due to lack of time. These omitted tasks were designed only as extra
challenge exercises intended for students who managed to complete the first
nine tasks within the allotted time.
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Figure 4.6  Student reasoning levels by task group from the three learning
modules

In Module 1, foundational concepts of FT are introduced through the tangible
and context-rich scenarios of light ray contexts, engaging students in 10
thinking. Tasks 1.1-1.5 exhibit a high degree of integrated reasoning
(63.16%), indicative of students successfully navigating initial situational
activities that center on 10 thinking within concrete contexts, such as
manipulating an object and its shadow under light rays. This suggests that
the tangible, context-rich tasks effectively introduced students to the
foundational concepts of FT. As the tasks evolve to require higher abstract
thinking with the shift to complex context (1.6-1.8), a noticeable decrease in
integrated reasoning to 8.77% and an increase in no reasoning, imply a gap
between task complexity and students’ prior knowledge or skill sets. The
resurgence in integrated reasoning (55.26%) in task 1.9, despite being a
conclusive task introducing the nomogram, could be attributed to students
synthesizing earlier concepts with the geometric interpretation of the linear
relation introduced in this task, aiding in the conceptual leap required.

Module 2 advances the trajectory by incorporating semi-nomograms
and formal nomograms, furthering students’ perceptual and kinesthetic
experiences of FT. The balanced distribution of reasoning levels in tasks 2.1-
2.4, with a notable peak in basic reasoning (30.00%), indicates an appropriate
level of challenge that is accessible yet progressively abstract. Nonetheless,
the contrasting integrated reasoning (43.00%) and no reasoning (39.50%) in
tasks 2.5-2.9 suggest a divergence in students’ abilities to apply their
understanding of bimanual coordination to mathematical reasoning,
highlighting the need for nuanced instructional support. For example,
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students with integrated reasoning can provide the correct formulas for the
nomograms while students with no reasoning, although some of them tried
to plot the nomograms, cannot provide the required formulas for the
functions.

In the concluding Module 3, the emphasis is on correspondence
thinking, where students deal with the complexities of transitioning between
multiple representations of functions, including nomograms, function
graphs, and formulas. The majority of basic reasoning (43.59%) in tasks 3.1-
3.3 implies that the students are struggling with the module’s content,
possibly due to the abstract nature of transitioning between nomograms and
function graphs. The variability in comprehension becomes more
pronounced in the latter tasks (3.4-3.7), where simple observation (35.26%)
is prominent, and the most challenging tasks (3.8 and 3.9) result in a majority
displaying no reasoning (69.23%). This could indicate that the tasks may be
too advanced for some students, or that the connection between bimanual
movements and the graphical representations of functions, particularly the
correspondence aspect of FT in the action-based design of the tasks, requires
more explicit instruction or redesign.

Figure 4.7  An integrated reasoning example for task 2.1

An example of Integrated reasoning is demonstrated in Figure 4.7, where a
student articulates the required bimanual movement, stating “move the two
points at the same time” and “maintain a constant angle.” The color-
changing feedback, described by the student as “it will stay green”, provided
real-time perceptual cues. This kind of mechanism allows students to confirm

124



A digital-embodied design for functional thinking

and keep the correct angle of the target nomogram. By continuously
adjusting their bimanual movement based on these visual feedback cues, the
student was able to stabilize their coordination and consolidate the target
action of the nomogram. This interaction with the digital-embodied learning
environment facilitates perception-action loops, that reinforce the
connection between movement and mathematical representation.

Figure 4.8 illustrates an example of Basic reasoning, where a student
wrote “just move your fingers around a lot”, implying simultaneous circular
motion of both fingers. This response, while recognizing the need for vertical
movement in two directions, falls short in detailing the nuances of speed or
height adjustments.

Overall, the distribution of reasoning levels across the tasks suggests
that while the early stages of the HLT align with students’ competencies,
leading to high levels of strong reasoning, as tasks progress in complexity and
abstraction, there is a clear need for additional support. This indicates the
importance of designing teaching interventions that account for the diverse
learning paces and comprehension levels of students, ensuring that the
transition from concrete to abstract mathematical reasoning is accessible and
effectively facilitated.

Figure 4.8 A basic reasoning example for task 2.5
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Results from Mini interviews

The qualitative data from coding reports of the mini interviews provided
depth to these findings. Patterns of understanding evolved from initially
superficial to more conceptually grounded as students progressed through
the learning modules. This section presents students’ expressions in different
types of digital-embodied tasks, focusing on the following design features:
real-life contexts, bimanual coordination movement, real-time feedback, and
multiple function representations (Sub-RQ2). To ensure a comprehensive
interpretation, we distinguish between typical responses, which represent
common reasoning patterns, and best practice examples, which show more
advanced reasoning processes.

The use of Real-life Contexts

This section focuses on the integration of real-life contexts within the
learning modules, specifically, on how real-life contexts enrich students’
learning experiences and FT. Through the lens of real-life contexts, students
encounter mathematical phenomena in settings that are both familiar and
meaningful to them. The insights offered by these students emphasize a
conceptual shift: from concrete observations [perception] to the abstraction
of functional relationships. The following two quotes are typical responses
that were observed in similar forms in multiple mini interviews.

Students 231006 in Task 1.5: So | saw that the bulb on [left of] the
mosquito. It was on different positions. And these different
positions meant different shadows. And | saw that if the mosquito
was on the 1, and then its shadow would have been at 1.5 (See
Figure 4.2a; heightgpaqow = heightysquito X 1.5) ... [when asked
to compare scenarios] because the bulb, it’s like into one direction,
but the sun is circular. So it’s has rays everywhere. And then also
the rays of the sun could be stronger than the bulb. (See Figure
4.93; heightgp,q0w = heightyang — 15)

Student 231016 in Task 1.8: | found that the size of the shadow was
always two times the size of the tree, no matter how big or small
you made the tree, the size of the shadow is always twice the size
of the tree ... if you put the bottom of the tree at 1, the bottom of
the shadow also at 1 ... for example, when | make it 4 units long
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from 1 to 5, you can see that the shadow goes from 1 to 9, which
is 8 units long. (See Figure 4.9b; heights,,q0w = heightiree X 2).

Figure 4.9  Tasks illustrating (a) A hand and its shadow under parallel light rays;
(b) Adjustment of a cardboard tree and its shadow

Analysis: Initially, students grapple with the task of directly mapping inputs
to outputs—a foundational mathematical skill in the field of FT. As they
interact with these real-life contexts, they begin to identify underlying
patterns and relationships. Notably, the emergence of a multiplicative
understanding signifies a key development in their mathematical reasoning.
Students move beyond mere observation, applying their insights to
generalize about proportional relationships. This transition marks a critical
step towards mathematical abstraction and reasoning, where specific
instances serve as a springboard for the derivation of general principles. This
progression indicates their deeper comprehension of linear relationships.
Importantly, this journey is facilitated by their engagement with real-life
contexts using both observation [perception] and movement [action], which
provide a tangible framework for exploring and internalizing abstract
mathematical concepts. However, we also observed examples where
students applied their everyday experiences, leading to misunderstandings
in some cases. For example, when Student 231006 was asked to compare
sunlight and bulb light, he focused on the strength of the light rays rather
than how the shadow’s position is influenced by different light sources. This
highlights the need for clear guidance when shifting from familiar real-life
contexts to more abstract mathematical reasoning.
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Bimanual Coordination Movement

This section explores the reflections of students engaged in tasks requiring
the simultaneous manipulation of two variables, showing how embodied
learning through bimanual coordination movement enhances understanding
of covariational relationships. The following examples show that bimanual
tasks enable students to physically engage with and thus internalize function
concepts by embodying the relationships between variables. The direct
manipulation of points to reflect linear relationships provide a concrete
context through which abstract mathematical principles become tangible.
This physical interaction is crucial in making abstract concepts accessible
through sensorimotor experiences. Student 231010’s response is a typical
response similar to many other students, while Student 231108’s response
can be seen as the best practice response.

Student 231010 in Task 2.4: So the relationship that we found

between the two different points and how to keep them, how to

keep the line green is that you have to move the gray points at the

same speed. So at a constant speed but in the opposite directions.

(See Figure 4.1; output = —input)

Student 231108 in Task 2.7: You have to multiply it with like [there

is] a minus sign. Because when it goes higher it [the other point]

turns into negative. The positive number on the x turns into

negative on the y. So that means there has to be like a negative

number somewhere because it has to bring it down. (See Figure

4.2b; output = —2 X input + 4)
Analysis: Student 231010’s experience illustrates an understanding of
inverse relationships, as the student articulates the necessity of moving two
points at constant but opposite speeds [action] to maintain a specific visual
indicator (a green line), embodying the functional relationship that output
equals the negative of the input. Student 231108’s reflection further delves
into the concept of linear relationship, where the manipulation of one
variable (input) directly influences the other (output) through a specific linear
equation [action], in this case, highlighted by a negative multiplication factor.
This student’s observation about the transition of a positive number on the
input-axis to a negative on the output-axis [perception], facilitated by a
multiplication with a negative number. Moreover, we observed that most of
the students began with relatively static bimanual movements, first adjusting
one point and then the other until the arrow turned green. After several
attempts, they began to recognize a rough pattern in the relationship
between the points and gradually coordinated both hands, resulting in
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smoother, more fluid movements. Although some of them did not grasp the
exact pattern immediately, this iterative process of refining their bimanual
movements helped them move closer to understanding the underlying
functional relationship. However, as tasks became more complex—asking
students to write down the functional rule as a formula—some students
changed their movement habits. They adopted a more static approach, using
discrete bimanual movements to identify integer pairs, which made deducing
the formula easier.

Real-time Feedback

This section delves into the impact of real-time feedback on student learning,
particularly through the mechanism of color-changing cues that signal
correct or incorrect actions. These cues provide immediate feedback,
allowing students to observe the effects of their actions immediately, adjust
their strategies, and understand the dynamics of covariational relationships.
The immediacy of the feedback ensures that students can quickly correct
misconceptions and refine their embodied misconceptions, leading to a
more engaged and effective learning experience. The following two quotes
are typical responses that were observed in multiple mini interviews.

Student 231101 in Task 2.4: You have to maintain a constant speed.

And we have to maintain it to get the angle right. Otherwise, if you

go, if one goes too fast and one goes too slow and there’s no

coordination in it, then we’re not going to get the right angle and

then there’s not going to be a green color.

Student 231114 in Task 2.7: | first moved the lines until | could find

out. | could see which ones are green. Then | kept moving. Then |

checked how much | got, like the relationship between the left and

the right.
Analysis: Students’ experience from the above quotations exemplifies the
iterative process of learning facilitated by real-time feedback. By
experimenting with different positions and movements until the desired
feedback (green color) is achieved [perception], students engage in a process
of hypothesis testing in action, adjustment, and re-evaluation [action]. This
process not only aids in discovering the underlying functional relationships
but also in automatizing and describing these concepts through repeated,
feedback-informed practice. In addition, real-time feedback acts as a bridge
between action and perception. This kind of action-perception loops
supports the development of a more intuitive grasp of mathematical
concepts, as students learn to anticipate the outcomes of their actions based
on previous feedback.
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Multiple Function Representations

The feature of multiple function representations within learning modules
provides pedagogical value in exposing students to diverse ways of
visualizing and understanding functions. This analysis focuses on how the
digital-embodied tasks involving the manipulation of sliders to adjust a
nomogram and its transformation into a Cartesian coordinate system play a
role in developing students’ FT. Manipulating an object in one place [action],
while simultaneously observing another object moves or changes
accordingly in a different place [perception] fosters the connection between
the objects and invites the student to make sense of the functional
relationships. Student 231002’s response is a typical response similar to
many other students, while Student 231104’s response can be seen as the
best practice response.

Student 231002 in Task 3.7: So like the left side is the x-axis. And

then the right side is the y-axis. Because when I'm like moving with

the slider, when the slider goes to the left, the left side turns into

the x-axis as it like becomes flat [horizontal].

Student 231104 in Task 3.9: | think the domain represents the x-

axis on the graph. And the range presents the y-axis as well.
Analysis: The act of moving a slider [action] and observing the corresponding
transformation of a nomogram into a Cartesian coordinate system
[perception] enables students to concretely understand the transitions
between different function representations (student 231002). This physical
manipulation, coupled with the visual changes observed, supports action-
perception loops, and helps concrete the transition from the nomogram to
the function graph. Specifically, this involves rotating the input axis and
projecting the endpoints of arrows onto the two perpendicular axes in the
coordinate system. And Student 231104’s engagement with the task
demonstrates an attempt to link the graphical characteristics of functions
with their mapping view, specifically noting the relevance of domain and
range within the function graph. Students begin to experience the intricate
ways in which these various representations—graphical, numerical, and
algebraic—intersect and complement each other in depicting the same
functional relationships by directly connecting them visually [perception].

The qualitative insights gathered from the coding reports have
enriched our understanding of students’ FT development. While the mini
interviews reveal diverse experiences, they suggest that the digital-embodied
learning environment can facilitate students’ journey from recognizing simple
patterns to abstracting and applying functional rules. For example, students
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moved from concrete observations, such as mapping inputs (objects) to
outputs (their shadows) using light rays, to exploring more complex contexts,
like controlling a slider to convert a nomogram into the corresponding
function graph in the coordinate system. However, it is more accurate to
describe these instances as specific cases where particular design features—
such as real-life contexts, bimanual coordination, real-time feedback, and
multiple function representations—supported students in recognizing
patterns and linking them to abstract functional rules. This points to the
importance of these features in providing tangible experiences that help with
the transition from concrete to abstract understanding in FT.

4.5 Conclusion and Discussion

In this section, we will first synthesize the results from the previous section
into answers to the research sub-questions. These answers lead to a
conclusion on the main research question. After considering the limitations
of the study, we will reflect on these conclusions from a theoretical and
practical perspective in the discussion section.

Conclusion

This study embarked on an exploration of the impact of a digital-embodied
design using nomograms on fostering FT in a classroom setting. From the
results of both quantitative and qualitative analyses, we conclude that such
a design can enhance students’ understanding of function concepts. The
findings uncovered the dynamics of learning processes, strategies, and the
components within the digital-embodied learning environment that
correlate with improvements in FT.

Building on this main conclusion, we now explore the sub-research
questions in detail. The first one concerned how a digital-embodied design
using nomograms affects the various aspects of FT among students within a
classroom setting. From the quantitative analysis of pretest and posttest
scores, we conclude that students showed a statistically significant
improvement across all three FT aspects. Students with lower initial FT levels
demonstrated greater improvement than higher achievers. The detailed
assessment of COR, COV, and |0 scores highlights the specific areas that
benefited from the use of digital-embodied nomograms. The teaching
intervention particularly improved students’ COV thinking, with a relatively
smaller gain in the 10 aspect due to the ceiling effect. Compared to the gains
observed in other FT aspects, the advancement and average score increase
in the COR aspect are less pronounced, suggesting specific challenges or
limitations in fully grasping or applying correspondence thinking. These
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findings suggest that while the intervention was broadly effective, certain
areas of FT received more noted benefits. From the qualitative analysis of
students’ responses in the digital-embodied learning environment, we
conclude that students’ reasoning levels varied based on the nature of the
tasks and their initial FT levels. Specifically, Module 1’s concrete, tangible
scenarios supported students’ comprehension of the 10 aspect, leading to a
majority demonstrating strong reasoning abilities. However, as tasks became
more abstract in later modules, disparities in reasoning levels became
apparent. The subsequent introduction of semi-nomograms and formal
nomograms in Module 2 aimed to deepen students’ perceptual and
kinesthetic engagement with FT. Yet, this shift also marked a point where the
theoretical underpinnings and practical applications began to diverge for
some students. Module 3 further explored this challenge by focusing on
correspondence thinking and transition between various function
representations, such as nomograms, function graphs, and formulas. The
prevalence of average reasoning and weak reasoning indicates students’
struggles with the abstract nature of these transitions. These findings suggest
that while the digital-embodied design positively impacts FT development,
students’ progress is influenced by their initial FT levels and the nature of the
tasks.

Turning to the second sub-research question on how specific design
features contribute to FT development, we conclude that features such as
real-life contexts, bimanual coordination, real-time feedback, and multiple
representations play an important role in facilitating students’ transition from
concrete sensorimotor experiences to abstract mathematical reasoning.
Real-life contexts, as introduced in Module 1, helped students connect
familiar experiences to mathematical concepts, supporting the development
of the 10 aspect. Students’ vertical movement along the number lines serve
as a simulation of key mechanisms, specifically through the manipulation of
an object (input) and its shadow (output). This simulation guides students to
take action and move their fingers in mathematically relevant ways on digital-
embodied nomograms. As tasks became more abstract in later modules, the
use of bimanual coordination allowed students to physically explore
covariational relationships, supporting a concrete understanding of variable
interdependence. This hands-on approach allowed students to internalize
the concept of covariation through direct manipulation. The integration of
real-time feedback further contributed to students’ learning by providing
immediate cues, such as color changes, to signal correct or incorrect
bimanual movements. This feedback mechanism enabled students to adjust
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their strategies instantly and supported the development of action-
perception loops, the core of deeper engagement within a digital-embodied
learning environment. Additionally, engaging with functions in multiple
representations, such as nomograms, function graphs, and formulas, allowed
students to express ideas in different forms. The successful retrieval of one
representation could activate others, which helps students to integrate these
distinct pieces into a cohesive understanding of functional relationships and
promote the development of correspondence thinking.

Overall, we conclude that the use of digital-embodied nomograms
leads to marked improvements in students’ FT, particularly for those with
lower initial proficiency. By integrating real-life contexts, bimanual
coordination movements, real-time feedback mechanisms, and multiple
function representations, this comprehensive approach fosters a deeper
understanding of function concepts in the classroom setting.

Limitations

This study’s insights into the use of digital-embodied nomograms for
fostering FT are subject to several limitations that could affect the findings’
generalizability and depth. The specificity of the sample may restrict the
generalization of results toward various educational settings. The short-term
nature of the assessment overlooks long-term retention of FT developments,
and the specific use of digital tools may not be feasible in all classrooms due
to technological constraints. Additionally, the potential ceiling effect
observed in the 10 aspect suggests that initial student proficiency could mask
the intervention’s impact, and the study did not thoroughly explore the
variability in instructional support and its effectiveness. The lack of a control
group further limits claims about learning gains and comparisons with
traditional methods. While factors such as classroom dynamics, student
variability in mathematical proficiency, and the role of the teacher may
influence how the intervention translates from a controlled setting to a real
classroom, this study focused on determining whether the learning modules
have a similar positive impact in a classroom environment as predicted in the
HLT. Future research could further investigate these aspects by incorporating
control groups and systematical analyses of student engagement and
learning outcomes. Finally, qualitative insights for Sub-RQ2 are based on
selected examples rather than a systematic trend. Future studies could adopt
a more structured approach to analyzing qualitative data. Addressing these
limitations in future research will be essential for developing a more
comprehensive understanding of digital-embodied learning environments’
role in the development of FT.
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Discussion

How do these findings feedback shed light on our initial theoretical
framework, consisting of notions on embodied design, functional thinking
and digital technology? Grounded in this theoretical framework, our
research emphasizes the efficacy of employing digital-embodied nomograms
to enhance students’ FT in a classroom setting. The results align with the
theoretical underpinnings proposed in studies such as Abrahamson and
Lindgren (2014) and Drijvers (2019), highlighting the transformative
potential of integrating physical engagement and digital representations in
learning abstract mathematical concepts. These findings resonate with the
core principles of embodied cognition, suggesting that cognitive processes
are deeply rooted in by bodily interactions. The perceptual and sensorimotor
experiences students gained within the digital-embodied learning
environment can substantially enhance conceptual understanding (Bos et al.,
2022; Duijzer et al., 2019; Pittalis & Drijvers, 2023; Shvarts & Abrahamson,
2019).

Specifically, the exploration of the design features is noteworthy.
Several studies highlight the importance of using real-life contexts in
mathematics education (Freudenthal, 1971; Gravemeijer & Doorman, 1999;
Laurens et al., 2017; Sembiring et al., 2008). Integrating real-world contexts
into mathematics instruction can enhance students’ engagement and
understanding by making abstract concepts more concrete and relatable. The
light shadow context used in the first learning module exemplifies this
principle by allowing students to discover functional rules through
experimentation and observation in a setting that mirrors their everyday
experiences. Moreover, research emphasizes the importance of connecting
mathematical concepts to student’s potential educational experiences and
intuitive understandings (Freudenthal, 1971; Nemirovsky et al., 1998). By
engaging with the physical world, such as through the light shadow context,
students can connect their informal knowledge with formal mathematical
concepts.

The exploration of covariation through bimanual coordination tasks
serves as an effective method for introducing students to the concept of
variables’ interdependent changes. Fostering covariational thinking has
always been a challenge in mathematics education, especially the abstract
nature of continuous variation and covariation (Carlson et al.,, 2002;
Thompson & Carlson, 2017). We explored bimanual coordination, referring
to the coordinated use of both hands to interact with learning environment,
as a potential method. It has been incorporated into mathematical education
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as a way to foster an understanding of abstract mathematical concepts, such
as proportion for primary school students (Abrahamson et al., 2016). In this
study, as students adjust one variable with one hand and another variable
with the other hand, they can observe in real-time how these variables
covary. The sensorimotor experience with the mathematical content not only
makes the learning experience more engaging but also embeds a concrete,
experiential understanding of covariation. In addition, the kinesthetic
experience provided by bimanual interaction enhances memory retention
and conceptual understanding (Black et al., 2012). As revealed through the
mini interviews, by physically engaging with mathematical concepts, students
can form more concrete understandings of covariation. Through the
bimanual interactions, students often describe covariational relationships in
terms of one variable moving upward (increasing) while another moves
downward (decreasing). It shows how students integrate digital-embodied
nomograms into mathematical reasoning. Moreover, real-time feedback
environment allows students to experiment with inputs and directly observe
and adjust the corresponding outputs. The real-time visual feedback
provided by digital-embodied nomogram tasks complements textual
mathematical explanations, thus catering to a broader range of learning
preferences. By incorporating these design features, the tasks adeptly
present the dynamic relationships between variables, embodying the
principles of covariational thinking and helping with overcoming the
difficulties in covariational reasoning (Carlson et al., 2002; Thompson, 2008;
Thompson & Carlson, 2017). However, as noted in the results section, there
is a noticeable shift in students’ bimanual movement from continuous to
relatively discrete movements. Insights drawn from mini interviews suggest
this shift may be due to a commonly used strategy, where students focus on
identifying specific integer pairs during discrete movements. When asked to
provide a formula, students frequently rely on these integer pairs to identify
patterns. The behavioral transition also signals an important direction for
future research. It calls for further investigation into how bimanual
movements, especially different types of bimanual movement—continuous
versus discrete—influence the development of FT. Future studies could
explore their impact across the various aspects of FT to uncover
understandings of how physical interactions with mathematical content can
support or hinder the learning progression.

Compared to our previous study, which was conducted in a controlled
laboratory setting with only two student pairs (Wei et al., 2024), this study
explores the implementations of employing a digital-embodied design using
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nomograms in a classroom environment. The freedom afforded to students
in this setting allows them to independently explore mathematical concepts
and communicate with peers, while features such as collaborative tasks and
whole-class discussions enhance peer to peer interactions and collaborative
learning processes. By synthesizing these insights, this study shows the
considerable potential of digital-embodied learning environments with their
rich design features to foster FT. It adds valuable perspectives to the discourse
oninstructional design strategies within the realm of mathematics education.

Acknowledgments

This work was supported by the China Scholarship Council (grant number
202006040046). Ethics approval was confirmed by the Utrecht University
Science-Geosciences Ethics Review Board (approval number: Béta S-22893).
The authors thank Peter Boon, Wim van Velthoven for their invaluable
contributions to the Numworx development and technical guidance, and
Rukiye Ayan Civak and Chen Min for assistance with data collection and
coding.

References

Abrahamson, D. (2009). Embodied design: Constructing means for constructing
meaning. Educational Studies in Mathematics, 70(1), 27-47.
https://doi.org/10.1007/s10649-008-9137-1

Abrahamson, D., & Trninic, D. (2011). Toward an embodied-interaction design
framework for mathematical concepts. In P. Blikstein, & P. Marshall (Eds.),
Proceedings of the 10th Annual Interaction Design and Children Conference
(IDC 2011) (Vol. “Full papers,” pp. 1-10). IDC.
https://doi.org/10.1145/1999030.1999031

Abrahamson, D. (2012). Rethinking intensive quantities via guided mediated
abduction. Journal of the Learning Sciences, 21(4), 626—649.
https://doi.org/10.1080/10508406.2011.633838

Abrahamson, D., Lee, R. G., Negrete, A. G., & Gutiérrez, J. F. (2014). Coordinating
visualizations of polysemous action: Values added for grounding
proportion. ZDM — The international Journal on Mathematics Education,
46(1), 79-93. https://doi.org/10.1007/s11858-013-0521-7

Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K.
Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd Edition,
pp. 358-376). Cambridge University Press.
https://doi.org/10.1017/cbo9781139519526.022

Abrahamson, D., Shayan, S., Bakker, A., & van der Schaaf, M. (2016). Eye-tracking
Piaget: Capturing the emergence of attentional anchors in the coordination of
proportional motor action. Human Development, 58(4-5), 218-244.
https://doi.org/10.1159/000443153

136


https://doi.org/10.1007/s10649-008-9137-1
https://doi.org/10.1145/1999030.1999031
https://doi.org/10.1080/10508406.2011.633838
https://doi.org/10.1007/s11858-013-0521-7
https://doi.org/10.1017/cbo9781139519526.022
https://doi.org/10.1159/000443153

A digital-embodied design for functional thinking

Abrahamson, D., Tancredi, S., Chen, R.S. Y., Flood, V. J., & Dutton, E. (2021).
Embodied design of digital resources for mathematics education: Theory,
methodology, and framework of a pedagogical research program. In B. Pepin,
G. Gueude, & J. Choppin (Eds.), Handbook of digital (curriculum) resources in
mathematics education (pp. 1-34). Springer. https://doi.org/10.1007/978-3-
030-95060-6_8-1

Alberto, R., van Helden, G., & Bakker, A. (2022). Action-based embodied design for
proportions: From the laboratory to the classroom. Implementation and
Replication Studies in Mathematics Education, 2(2), 174-207.
https://doi.org/10.1163/26670127-bja10008

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences,
22(4), 577-660. https://doi.org/10.1017/50140525X99002149

Black, J. B., Segal, A., Vitale, J., & Fadjo, C. L. (2012). Embodied cognition and
learning environment design. In D. Jonassen, & S. Land (Eds.), Theoretical
foundations of learning environments (2nd ed., pp. 198-223). Routledge.

Boels, L., Shvarts, A. (2023). Introducing density histograms to grades 10 and 12
students: Design and tryout of an intervention inspired by embodied
instrumentation. In G.F. Burrill, L. de Oliveria Souza, & E. Reston (Eds.),
Research on Reasoning with Data and Statistical Thinking: International
Perspectives (pp. 143—167). Springer. https://doi.org/10.1007/978-3-031-
29459-4 14

Bos, R., Doorman, M., Drijvers, P., & Shvarts, A. (2022). Embodied design using
augmented reality: the case of the gradient. Teaching Mathematics and its
Applications: An International Journal of the IMA, 41(2), 125-141.
https://doi.org/10.1093/teamat/hrab011

Botzer, G., & Yerushalmy, M. (2008). Embodied semiotic activities and their role in
the construction of mathematical meaning of motion graphs. International
Journal of Computers for Mathematical Learning, 13(2), 111-134.
https://doi.org/10.1007/s10758-008-9133-7

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., &
Hiebert, J. (2020). Working across contexts: Scaling up or replicating with
variations. Journal for Research in Mathematics Education, 51(3), 258-267.
https://doi.org/10.5951/jresemtheduc-2020-0007.

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational
reasoning while modeling dynamic events: A framework and a study. Journal
for Research in Mathematics Education, 33(5), 352-378.
https://doi.org/10.2307/4149958

Castillo-Garsow, C., Johnson, H. L., & Moore, K. C. (2013). Chunky and smooth
images of change. For the Learning of Mathematics, 33(3), 31-37.
http://www.jstor.org/stable/43894859

Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the
development of exponential functions. Journal for Research in Mathematics

137


https://doi.org/10.1007/978-3-030-95060-6_8-1
https://doi.org/10.1007/978-3-030-95060-6_8-1
https://doi.org/10.1163/26670127-bja10008
https://doi.org/10.1017/S0140525X99002149
https://doi.org/10.1007/978-3-031-29459-4_14
https://doi.org/10.1007/978-3-031-29459-4_14
https://doi.org/10.1093/teamat/hrab011
https://doi.org/10.1007/s10758-008-9133-7
https://doi.org/10.5951/jresemtheduc-2020-0007
https://doi.org/10.2307/4149958
http://www.jstor.org/stable/43894859

Chapter 4

Education, 26(1), 66—86. https://doi-
org.proxy.library.uu.nl/10.5951/jresematheduc.26.1.0066

De Vita, M., Verschaffel, L., & Elen, J. (2018). The power of interactive whiteboards
for secondary mathematics teaching: Two case studies. Journal of Educational
Technology Systems, 47(1), 50-78.
https://doi.org/10.1177/0047239518767112

Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and
the development of the function concept: From repeated calculations to
functional thinking. International Journal of Science and Mathematics
Education, 10(6), 1243-1267. https://doi.org/10.1007/s10763-012-9329-0

Drijvers, P. (2003). Learning algebra in a computer algebra environment: Design
research on the understanding of the concept of parameter. [Doctoral
dissertation, Utrecht University]. CD- Press.

Drijvers, P. (2019). Embodied instrumentation: Combining different views on using
digital technology in mathematics education. In U. T. Jankvist, M. van den
Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress
of the European Society for Research in Mathematics Education (pp. 8-28).
Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.
https://hal.science/hal-02436279v1

Duijzer, C., van den Heuvel-Panhuizen, M., Veldhuis, M., Doorman, M., & Leseman,
P. (2019). Embodied learning environments for graphing motion: A systematic
literature review. Educational Psychology Review, 31, 597-629.
https://doi.org/10.1007/s10648-019-09471-7

Ellis, A. B., Ozgur, Z., Kulow, T., Dogan, M. F., & Amidon, J. (2016). An exponential
growth learning trajectory: Students’ emerging understanding of exponential
growth through covariation. Mathematical Thinking and Learning, 18(3), 151—
181. https://doi.org/10.1080/10986065.2016.1183090

Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational
Studies in Mathematics, 3(3/4), 413-435.

Frey, K., Sproesser, U., & Veldhuis, M. (2022). What is functional thinking?
Theoretical considerations and first results of an international interview study.
In Hodgen, J., Geraniou, E., Bolondi, G. & Ferretti, F. (Eds.), Proceedings of the
Twelfth Congress of the European Society for Research in Mathematics
Education (pp. 497-504). Free University of Bozen-Bolzano and ERME.
https://hal.science/hal-03744607/document

Georgiou, Y., loannou, A., & Kosmas, P. (2021). Comparing a digital and a non-digital
embodied learning intervention in geometry: Can technology facilitate?
Technology, Pedagogy and Education, 30(2), 345-363.
https://doi.org/10.1080/1475939X.2021.1874501

Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics
education: A calculus course as an example. Educational Studies in
Mathematics, 39, 111-129. https://doi.org/10.1023/A:1003749919816

138


https://doi-org.proxy.library.uu.nl/10.5951/jresematheduc.26.1.0066
https://doi-org.proxy.library.uu.nl/10.5951/jresematheduc.26.1.0066
https://doi.org/10.1177/0047239518767112
https://doi.org/10.1007/s10763-012-9329-0
https://hal.science/hal-02436279v1
https://hal.science/hal-02436279v1
https://doi.org/10.1007/s10648-019-09471-7
https://doi.org/10.1080/10986065.2016.1183090
https://hal.science/hal-03744607/document
https://doi.org/10.1080/1475939X.2021.1874501
https://doi.org/10.1023/A:1003749919816

A digital-embodied design for functional thinking

Gunster, S. M., & Weigand, H. G. (2020). Designing digital technology tasks for the
development of functional thinking. ZDM — Mathematics Education, 52(7),
1259-1274. https://doi.org/10.1007/s11858-020-01179-1

Jaber, 0., Bagossi, S., Fried, M. N., & Swidan, O. (2024). Conceptualizing functional
relationships in an augmented reality environment: Connecting real and
virtual worlds. ZDM — Mathematics Education, 56(4), 1-19.
https://doi.org/10.1007/s11858-024-01594-8

Kaput, J. J. (1998). Representations, inscriptions, descriptions and learning: A
kaleidoscope of windows. Journal of Mathematical Behavior, 17(2), 265—-281.
https://doi.org/10.1016/50364-0213(99)80062-7

Kosmas, P., & Zaphiris, P. (2023). Improving students’ learning performance through
Technology-Enhanced Embodied Learning: A four-year investigation in
classrooms. Education and Information Technologies, 28(9), 11051-11074.
https://doi.org/10.1007/s10639-022-11466-x

Lakoff, G., & Nufiez, R. (2000). Where mathematics comes from: How the embodied
mind brings mathematics into being. Basic books.

Laurens, T., Batlolona, F. A., Batlolona, J. R., & Leasa, M. (2017). How does realistic
mathematics education (RME) improve students’ mathematics cognitive
achievement? Eurasia Journal of Mathematics, Science and Technology
Education, 14(2), 569-578. https://doi.org/10.12973/ejmste/76959

Lobato, J., Hohensee, C., Rhodehamel, B., & Diamond, J. (2012). Using student
reasoning to inform the development of conceptual learning goals: The case
of quadratic functions. Mathematical Thinking and Learning, 14(2), 85-119.
https://doi.org/10.1080/10986065.2012.656362

Nachmias, R., & Arcavi, A. (1990). A parallel representation of linear functions using
a microcomputer-based environment. Journal of Computers in Mathematics
and Science Teaching, 9(4), 79—-88.

Nathan, M. J., & Walkington, C. (2017). Grounded and embodied mathematical
cognition: Promoting mathematical insight and proof using action and
language. Cognitive Research: Principles and Implications, 2, 1-20.
https://doi.org/10.1186/s41235-016-0040-5

Nemirovsky, R., Tierney, C., & Wright, T. (1998). Body motion and graphing.
Cognition and Instruction, 16(2), 119-172.
https://doi.org/10.1207/s1532690xci1602_1

Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical
instruments: Emerging perceptuomotor integration with an interactive
mathematics exhibit. Journal for Research in Mathematics Education, 44(2),
372-415. https://doi.org/10.5951/jresematheduc.44.2.0372

Palatnik, A., Abrahamson, D., Baccaglini-Frank, A., Ng, O. L., Shvarts, A., & Swidan,
0. (2023). Theory and practice of designing embodied mathematics learning.
In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of

139


https://doi.org/10.1007/s11858-020-01179-1
https://doi.org/10.1007/s11858-024-01594-8
https://doi.org/10.1016/S0364-0213(99)80062-7
https://doi.org/10.1007/s10639-022-11466-x
https://doi.org/10.12973/ejmste/76959
https://doi.org/10.1080/10986065.2012.656362
https://doi.org/10.1186/s41235-016-0040-5
https://doi.org/10.1207/s1532690xci1602_1
https://doi.org/10.5951/jresematheduc.44.2.0372

Chapter 4

the 46th Conference of the International Group for the Psychology of
Mathematics Education (Vol. 1, pp. 159—-189). University of Haifa.

Pittalis, M., Pitta-Pantazi, D., & Christou, C. (2020). Young students’ functional
thinking modes: The relation between recursive patterning, covariational
thinking, and correspondence relations. Journal for Research in Mathematics
Education, 51(5), 631-674. https://doi.org/10.5951/jresematheduc-2020-
0164

Pittalis, M., & Drijvers, P. (2023). Embodied instrumentation in a dynamic geometry
environment: Eleven-year-old students’ dragging schemes. Educational
Studies in Mathematics, 113(2), 181-205. https://doi.org/10.1007/s10649-
023-10222-3

Pittalis, M., Sproesser, U., & Demosthenous, E. (2024). Graphically representing
covariational functional situations in an interactive embodied digital learning
environment. International Journal of Mathematical Education in Science and
Technology, 1-31. https://doi.org/10.1080/0020739X.2024.2327552

Roschelle, J., Shechtman, N., Tatar, D., Hegedus, S., Hopkins, B., Empson, S.,
Knudsen, J., & Gallagher, L. P. (2010). Integration of technology, curriculum,
and professional development for advancing middle school mathematics:
Three large-scale studies. American Educational Research Journal, 47(4), 833—
878. https://doi.org/10.3102/0002831210367426

Ruiz-Primo, M. A., Shavelson, R. J., Hamilton, L., & Klein, S. (2002). On the
evaluation of systemic science education reform: Searching for instructional
sensitivity. Journal of Research in Science Teaching: The Official Journal of the
National Association for Research in Science Teaching, 39(5), 369-393.
https://doi.org/10.1002/tea.10027

Sembiring, R. K., Hadi, S., & Dolk, M. (2008). Reforming mathematics learning in
Indonesian classrooms through RME. ZDM — Mathematics Education, 40,
927-939. https://doi.org/10.1007/s11858-008-0125-9

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on
processes and objects as different sides of the same coin. Educational Studies
in Mathematics, 22(1), 1-36. https://doi.org/10.1007/BF00302715

Shvarts, A., & Abrahamson, D. (2019). Dual-eye-tracking Vygotsky: A microgenetic
account of a teaching/learning collaboration in an embodied-interaction
technological tutorial for mathematics. Learning, Culture and Social
Interaction, 22, 100316. https://doi.org/10.1016/].1csi.2019.05.003

Shvarts, A., Alberto, R., Bakker, A., Doorman, M., & Drijvers, P. (2021). Embodied
instrumentation in learning mathematics as the genesis of a body-artifact
functional system. Educational Studies in Mathematics, 107(3), 447—-469.
https://doi.org/10.1007/s10649-021-10053-0

Sinclair, N., Healy, L., & Sales, C. O. R. (2009). Time for telling stories: Narrative
thinking with dynamic geometry. ZDM — Mathematics Education, 41, 441—
452. https://doi.org/10.1007/s11858-009-0180-x

140


https://doi.org/10.5951/jresematheduc-2020-0164
https://doi.org/10.5951/jresematheduc-2020-0164
https://doi.org/10.1007/s10649-023-10222-3
https://doi.org/10.1007/s10649-023-10222-3
https://doi.org/10.1080/0020739X.2024.2327552
https://doi.org/10.3102/0002831210367426
https://doi.org/10.1002/tea.10027
https://doi.org/10.1007/s11858-008-0125-9
https://doi.org/10.1007/BF00302715
https://doi.org/10.1016/j.lcsi.2019.05.003
https://doi.org/10.1007/s10649-021-10053-0
https://doi.org/10.1007/s11858-009-0180-x

A digital-embodied design for functional thinking

Smith, E. (2008). 5 Representational thinking as a framework for introducing
functions in the elementary curriculum. In J. J. Kaput, D. W. Carraher, & M. L.
Blanton (Eds.), Algebra in the early grades (pp. 133-160). LEA.
https://doi.org/10.4324/9781315097435

Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Murphy
Gardiner, A. (2017). A learning progression for elementary students’
functional thinking. Mathematical Thinking and Learning, 19(3), 143-166.
https://doi.org/10.1080/10986065.2017.1328636

Tancredi, S., Chen, R. S., Krause, C., Abrahamson, D., & Gomez, F. (2021). Getting up
to SpEED: Special education embodied design for sensorially equitable
inclusion. Education Sciences and Society, (2021/1).
https://doi.org/10.3280/ess1-20210a11818

Tanigh, D. (2011). Functional thinking ways in relation to linear function tables of
elementary school students. The Journal of Mathematical Behavior, 30(3),
206-223. https://doi.org/10.1016/j.jmathb.2011.08.001

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some
spadework at the foundations of mathematics education. In O. Figueras, J. L.
Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of The
Annual Meeting of the International Group for the Psychology of Mathematics
Education (Vol. 1, pp. 31-49). PME.

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions:
Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for
research in mathematics education (pp. 421-456). National Council of
Teachers of Mathematics.

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science
and human experience. MIT Press.

Vollrath, H. J. (1986). Search strategies as indicators of functional thinking.
Educational Studies in Mathematics, 17(4), 387-400.
https://doi.org/10.1007/BF00311326

Wei, H., Bos, R., & Drijvers, P. (2023). An embodied approach to abstract functional
thinking using digital technology: A systematic literature review. The
International Journal for Technology in Mathematics Education, 20(2), 75-92.
https://doi.org/10.1564/tme_v30.2.2

Wei, H., Bos, R., & Drijvers, P. (2024). Developing functional thinking: From concrete
to abstract through an embodied design. Digital Experiences in Mathematics
Education. 10(3), 323—-351. https://doi.org/10.1007/s40751-024-00142-z

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review,
9, 625-636. https://doi.org/10.3758/BF03196322

141


https://doi.org/10.4324/9781315097435
https://doi.org/10.1080/10986065.2017.1328636
https://doi.org/10.3280/ess1-2021oa11818
https://doi.org/10.1016/j.jmathb.2011.08.001
https://doi.org/10.1007/BF00311326
https://doi.org/10.1564/tme_v30.2.2
https://doi.org/10.1007/s40751-024-00142-z
https://doi.org/10.3758/BF03196322

Chapter 4

Appendix 1: Pretest and posttest examples

142



A digital-embodied design for functional thinking

143



Chapter 4

Appendix 2: HLT of module 2

144



A digital-embodied design for functional thinking

Appendix 3: A teaching instruction of module 2

Lesson 2: Introduction to nomogram
¢ S-minute review: Recap the previous lesson and introduce Module 2.
Example:

In our previous lesson, we explored the input-output relationship from nomograms. And
specifically, two different light sources. You all worked on creating and manipulating the
nomograms and saw how changing the input atfected the output.

Now that we have a solid understanding of the input-output relationship, we're ready to build on
that knowledge in today's lesson. Today, we'll be exploring another relationship, again using
nomogram tasks.

During today's lesson, we'll engage in hands-on activities that will help you visualize and explore
the covariational relationship. You'll be working to plot nomograms and analyze how the
variables covary.

e 45-minute work in pairs: Students work on Module 2 tasks using the DME platform.
Conducting two rounds of mini-interview, task 2.5 and 2.7

e 10-minute recap: Hold a whole-class discussion on the salient tasks during the exploration and |
recap the session. (plot nomogram y=2x-1)

Example:

Let’s go over the tasks quick. First half of the tasks are two-hands movements on different
nomograms. And then rest ask for more mathematical reasoning, like using formula to describe
the rule you found from the nomograms.

Questionl: how do you see from the nomogram that the relation is linear?
Question 2: For example, if we have y=ax+b, how do you find a and b from the nomogram?

Question 3: Does anyone want to share their insights about the covariational relationship of a
rule/relation? Can someone explain how to write a formula to represent a relation or rule given a
corresponding nomogram?

(back up) Question 4: we also worked on a task for non-linear relations, if now I give you this
relation y=x”2. Can you plot its nomogram? anyone would like to give it a try?
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Chapter 5 An embodied approach to covariational
reasoning: A hand-tracking study

Abstract Covariational reasoning is critical for understanding functional relationships
in mathematics. Yet, many students struggle to understand varying quantities and to
conceptualize covariation. This study explores the research question of how
bimanual movements within a digital-embodied learning environment can support
students’ covariational reasoning, appropriating Thompson and Carlson’s (2017)
covariational reasoning taxonomy. The intervention consisted of three lessons
involving seventy-six Grade 9 students. Data included hand tracking data, post-task
probes, and pretest and posttest results. We examined the relationship between
students’ bimanual coordination and their covariational reasoning levels, addressing
two hypotheses: (H1) Higher levels of covariational reasoning correlate with a shorter
time to reach fluency in the bimanual coordination, and (H2) higher levels of learning
gains in covariational reasoning correlate with longer time spent on fluently
performing the bimanual coordination. As results, the pretest and posttest scores
demonstrated significant improvements in students’ covariational reasoning after
the experiment. Quantitative analyses of hand-tracking data indicated that students
with higher initial covariational reasoning levels achieved fluent bimanual movement
more quickly than others (supporting H1), while those with greater learning gains
spent more time consolidating their understanding in fluency phases (supporting
H2). Qualitative findings showed how the interplay of perception-action loops,
attentional anchors, and real-time feedback facilitated the internalization of
covariational relationships. This study highlights the potential of an embodied
approach to fostering covariational reasoning and introduces a framework for
analyzing embodied learning through the integration of hand tracking, probes, and
assessments.

Keywords Covariational reasoning, Embodied design, Hand tracking, Digital-
embodied learning, Mathematics education

This chapter is based on:

Wei, H., Bos, R., & Drijvers, P. (Under review). An embodied approach to
covariational reasoning: A hand tracking study. Educational Studies in
Mathematics.
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5.1 Introduction

Covariational reasoning is important for understanding relationships
between variables in dynamic contexts. Covariational reasoning is defined as
“the cognitive activities involved in coordinating two varying quantities while
attending to the ways in which they change in relation to each other”
(Carlson et al., 2002; p. 354). Insight in covariation is a prerequisite for the
interpretation of functional relationships and the modeling of real-world
phenomena. Research highlights the need for teaching approaches that
support students’ transition from asynchronous interpretations to
simultaneous reasoning within covariational reasoning (Carlson et al., 2002;
Johnson, 2012; Paoletti & Moore, 2017). Such supportive teaching
approaches may involve tasks that explicitly link physical actions to symbolic
abstract outcomes. For example, tasks might include dynamic feedback (e.g.,
color changes or animations) that visually represent covariational
relationships (Abrahamson & Trninic, 2011). These features serve as
resources for students to manifest their covariational reasoning through
gesture, coordination, and symbolic expression.

Digital-embodied learning environments have emerged as powerful
platforms for fostering conceptualization of mathematical concepts through
embodied interaction (Abrahamson et al., 2011; Abrahamson et al., 2023;
Flood et al., 2020; Georgiou & loannou, 2019; Jaber et al., 2024, Pittalis et al.,
2024, Pittalis & Drijvers, 2023). These environments allow students to explore
functional relationships by directly manipulating variables or graphical
representations with real-time feedback. Such approaches align with theories
of embodied cognition, which suggest that learning is deeply rooted in the
body’s interactions with the environment (Lakoff & Nufiez, 2000; Varela et al.,
1991). In particular, Abrahamson et al. (2014) demonstrated how primary
school students’ understanding of proportions emerged and improved
through bimanual tasks that required them to manipulate objects with two
hands simultaneously. Students need to discover a correct movement
strategy guided by perceptual feedback, that is screen turning green. This
intuitive strategy prompted students to qualitatively articulate their
strategies and later quantitatively describe them. This approach initiated
broader research on mathematics embodied design: that bodily experience
can support formal conceptualization when tasks are specifically designed to
connect sensorimotor coordination with symbolic outcomes (Abrahamson et
al., 2011; Alibali & Nathan, 2012; Turgut, 2022).

Despite the potential of these environments, gaps remain in our
understanding of how specific tools or tasks contribute to the development
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of covariational reasoning. While digital and embodied tools such as sliders,
dynamic graphs, and gesture-based controls are designed to support such
reasoning, more research is needed to test hypotheses about how these tools
foster covariational reasoning. First gap lies in understanding the mechanisms
by which embodied learning tools facilitate the transition from physical
interaction to mathematical reasoning, a process where initial sensorimotor
discoveries enable the articulation and formalization of mathematical
concepts. As Abrahamson et al. (2020) note: “Participants in embodied-
design activities discover and develop concept-grounding enactive processes,
even when they are not aware that or what they are learning” (p. 18). A
second gap involves understanding how different design features, such as
real-time feedback or the level of immersion, impact students’ mathematical
reasoning processes (Christopoulos et al.,, 2024; Hulse et al.,, 2019). To
address these gaps, some studies point out the importance of analyzing
learning activities and mathematical reasoning from different lenses, for
example, through the lens of embodied learning processes, which ground
reasoning within the symbolic semiotic register (Abrahamson & Sanchez-
Garcia, 2016; Nathan & Alibali, 2021). Advances in hand-tracking technology,
such as the Geometry Touch app (Sepp et al., 2023), and tools leveraging
virtual reality, gesture-based interaction modes, and delayed feedback
mechanisms (Chatain et al., 2022), offer new opportunities to explore
embodied learning processes. Moreover, these tools together with data
analysis methodologies like recurrence quantification analysis (Abdu et al.,
2025; Tancredi et al., 2021) provide quantitative evidence that mathematical
learning is a process of sensorimotor reorganization. The third gap lies in
explicitly connecting these dynamic, process-oriented findings to the
established cognitive frameworks (e.g., Thompson & Carlson’s covariational
reasoning taxonomy) and outcome-based measures of mathematics
education research.

In this study, we explore how digital-embodied learning environments
support the development of covariational reasoning. We apply mixed
methods, including the analysis of hand-tracking data, qualitative insights
from post-task probes, and pretest and posttest performance evaluations.
Our analysis builds on the covariational reasoning (CR) framework developed
by Thompson and Carlson (2017), which we adapt to our research lens of
embodied interaction and its use of hand-tracking data. Detailed information
on these methods will be provided in the subsequent sections. Through this
integration of methods, this study not only evaluates students’ progress in CR
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but also contributes to the broader understanding of how digital-embodied
learning environments support mathematical reasoning.

5.2 Theoretical Background

In this section, we address covariational reasoning, then embodied learning,
and draw on these perspectives to articulate how sensorimotor coordination
can ground covariational reasoning, and then present research questions and
corresponding hypotheses.

Covariational reasoning

Thompson and Carlson’s (2017) taxonomy describes a five-level progression
of covariational reasoning. Lower levels involve recognizing that changes in
one quantity correspond to changes in another (L1: Pre-coordination of
values; L2: Gross coordination of values levels). Higher levels require
coordinating specific values (L3), interpreting simultaneous changes over
fixed intervals (Chunky continuous covariation; L4), and perceiving
continuous and smooth covariation (L5).

Many students face challenges in developing covariational reasoning.
These include difficulties in coordinating simultaneous changes in variables
(Carlson et al., 2002), focusing on discrete values over continuous
relationships (Bagossi, 2024; Thompson & Carlson, 2017; Wilkie, 2020), and
connecting physical experiences to abstract representations (Abrahamson et
al., 2014; Shvarts & Abrahamson, 2019). The first two challenges are often
linked. For instance, a student may adjust one variable at a time, seeing the
relationship as static or sequential. This tendency to focus on discrete values
becomes evident in tasks involving graphs, where students often interpret
individual points without understanding the continuous nature of the curve
(Carlson et al., 2002; Johnson, 2012).

Embodied learning

To foster covariational reasoning, researchers have turned to embodied
learning, an approach suggesting that our thinking and understanding are
connected to our bodily experiences and how we interact with the world
(Barsalou, 2008; Lakoff & Nunez, 2000). A core principle is sensorimotor
coordination, with which students actively manipulate objects or digital
representations to develop mathematical concepts (Abrahamson, 2021;
Abrahamson & Bakker, 2016; Shvarts et al., 2021).

Action-based embodied design, for example, creates learning activities
that challenge students to solve motor problems by coordinating physical
actions in specific ways (Abrahamson & Bakker, 2016; Abrahamson &
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Lindgren, 2014). Abrahamson and Trninic (2011) introduced a task where
primary school students learned about proportion by moving two handheld
controllers simultaneously. To make the screen green (indicating correctness)
with two controllers, students had to discover the specific coordinated way
to position their hands at different relative heights. This feedback-guided
exploration enabled students to first grasp the proportional relationship
intuitively and articulate it qualitatively, before they later formalized this
understanding using grids and numbers. While performing the proportion
task, stable perception-action loops emerge as students act perceive
feedback, and adjust their movements (Abrahamson & Mechsner, 2022). As
these actions stabilize, attentional anchors may emerge—specific perceptual
or spatial configurations (e.g., a diagonal line between hands in the above
proportion task) that facilitate perceptuomotor action (Abrahamson &
Sanchez-Garcia, 2016; Shvarts et al., 2021). Stabilization is identified when a
student’s action becomes fluent, efficient, and consistently aligned with the
emerging attentional anchor. Once stabilized, these anchors not only improve
motor performance but also prepare students for mathematization and
support the transition from enacted movement to symbolic reasoning. In
digital-embodied learning environments, the interactive interface becomes
an integrated part of these loops, creating body-artifact functional systems
where (Shvarts et al., 2021). Students’ actions, digital-feedback, and
emerging attentional anchors collectively develop the understanding of
mathematical concepts (Pittalis et al., 2024, Pittalis & Drijvers, 2023; Shvarts
et al,, 2021).

In sum, this perspective informs our study by shaping both the design
of the digital-embodied learning environment and the interpretation of
students’ bimanual movements as evidence of emerging covariational
reasoning.

An embodied view on covariational reasoning

This study builds on the perspective that covariational reasoning can be
supported—and made observable—through embodied interaction. We
propose that coordinated hand movements within a carefully designed
digital-embodied environment can reflect a student’s coordination of the
underlying mathematical quantities (Flood et al., 2020; Pittalis et al., 2024;
Pittalis & Drijvers, 2023). Specifically, we use action-based embodied design
to engage students in bimanual coordination tasks aimed at fostering and
revealing their covariational reasoning. Our learning environment uses
nomograms (Figure 5.1; Nachmias & Arcavi, 1990; Sinclair et al., 2009)—
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Figure 5.1
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number lines connected by arrows representing functional
relationships—to engage students in tasks requiring bimanual coordination.
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To systematically analyze students’ sensorimotor activity, we developed an
embodied operationalization of Thompson and Carlson’s CR framework to
intertwine covariational reasoning and embodiment (Table 5.1). The original
framework is based on students’ reasoning as inferred primarily from verbal
utterances. Our adaptation, made a priori, maps each level of CR onto
patterns of bimanual coordination observable through hand-tracking data.
For instance, where the original CR taxonomy refers to anticipating how
changes in one variable affect another, our operationalization identifies
corresponding motor behaviors, such as how one hand’s movement affects
the other in a coordinated way. Table 5.1 thus serves as our primary
analytical tool connecting students’ embodied actions to their level of CR.
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Table 5.1

Original vs operational taxonomy of CR levels

Original CR framework
(Thompson & Carlson, 2017)

CR framework in this study on
bimanual movement

LO: At the no coordination level, the
person has no image of variables
varying together. The person focuses
on one or another variable’s variation
with no coordination of values.

L1: At the pre-coordination of values
level, the person envisions two
variables’ values varying, but
asynchronously—one variable
changes, then the second variable
changes, then the first, and so on. The
person does not anticipate creating
pairs of values as multiplicative
objects.

L2: At the gross coordination of values
level, the person forms a gross image
of quantities’ values varying together,
such as “this quantity increases while
that quantity decreases.” The person
does not envision that individual
values of quantities go together.
Instead, the person envisions a loose,
nonmultiplicative link between the
overall changes in two quantities’
values.

L3: At the coordination of values level,
the person coordinates the values of
one variable (x) with values of another
variable (y) with the anticipation of
creating a discrete collection of pairs
(x, y).

LO: At the no coordination level, the
student does not envision the
variables varying together. Bimanual
movements focus on adjusting one
hand or the other independently, with
no coordination between the two
movements.

L1: At the pre-coordination of values
level, the student envisions changes in
the positions of both hands but
asynchronously—one hand moves
first, followed by the other, and so on.
Movements are sequential rather than
simultaneous, and the student does
not anticipate creating pairs of values
through coordinated actions.

L2: At the gross coordination of values
level, the student forms a loose image
of how movements of one hand
correspond to movements of the
other, such as “one hand moves up
while the other moves down.”
However, the coordination is
imprecise, and the relationship is
viewed as a general pattern rather
than a connection between specific
pairs of values.

L3: At the coordination of values level,
the student coordinates specific
positions of one hand with specific
positions of the other, intentionally
creating discrete pairs of values (x, y).
Movements are more deliberate,
reflecting an anticipation of forming
clear pairs, such as distances or
positions along a scale, though still
limited to discrete points.
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L4: At the chunky continuous
covariation level, the person envisions
changes in one variable’s value as
happening simultaneously with
changes in another variable’s value,
and they envision both variables
varying with chunky continuous
variation.

L5: At the smooth continuous
covariation level, the person envisions
increases or decreases (hereafter,
changes) in one quantity’s or variable’s
value (hereafter, variable) as
happening simultaneously with
changes in another variable’s value,

L4: At the chunky continuous
covariation level, the student envisions
simultaneous changes in the
movements of both hands,
representing the two variables varying
together targeting discrete intervals.
Continuous movements occur in
intervals, called “chunks,” and have
not yet been integrated into an
uninterrupted movement.

L5: At the smooth continuous
covariation level, the student achieves
smooth simultaneous bimanual
movements, demonstrating an
advanced understanding of how the
variables vary together in a continuous
manner.

and the person envisions both
variables varying smoothly and
continuously.

The nomogram environment (Figure 5.2) enables students to experience
functions as processes rather than static entities (Wei et al., 2024). Students
can simultaneously adjust two movable points on two number lines, starting
with an otherwise blank canvas. This interaction offers real-time feedback:
an arrow connecting the two points turns green and leaves a trace for correct
input-output pairs or turns red and disappears for incorrect pairs. This real-
time feedback invites students to actively participate in perception-action
loops. For example, color changes steer students’ attention toward achieving
coordination goals. The development of stable perceptual patterns for
organizing movement occurs through the emergence of attentional anchors.
As the anchor stabilizes, it can function as a self-generated, immaterial
artifact (Abrahamson & Bakker, 2016). It is a new cognitive structure that
students begin to notice, reflect upon, and express using symbolic forms such
as number lines or algebraic formulas. In this way, attentional anchors
support reification of covariation.
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Figure 5.2  The accumulated results of exploring the function f : x = 3x on the
nomogram

Hand tracking has been increasingly adopted in educational research as a
tool for analyzing fine-grained motor actions and their role in learning
processes. Lindgren and Johnson-Glenberg (2013) emphasized that hand
tracking can capture embodied cognitive processes by revealing how
students’ real-time motor adjustments reflect their coordination of
perception, action, and emerging conceptual development. This research
tradition has modeled the nonlinear dynamics of discovering and stabilizing
movement strategies in relation to task feedback. For example, Tancredi et
al. (2021) analyzed the discovery and stabilization of bimanual coordination
patterns in an embodied mathematics task. A subsequent study has
integrated eye-tracking data to further detail the perceptual learning
involved (Abdu et al., 2025). Building on this foundation, we integrated post-
task probes with quantitative analysis of hand tracking and pretest and
posttests data. We illustrate how the micro-level process of stabilizing
bimanual coordination corresponds to macro-level learning gains in
covariation reasoning.

The research question guiding the study, with its corresponding hypotheses,
is as follows:

How do bimanual movements within a digital-embodied
environment support students’ covariational reasoning?

We hypothesize that:

H1: Higher levels of CR correlate with a shorter Time To Fluency.
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Students with higher initial CR levels are expected to coordinate their
sensorimotor activity with the nomogram task faster. Previous research
suggests that higher CR involves anticipating how changes in one variable
affect another, reducing cognitive load (Moore & Carlson, 2012). While the
nomogram introduces a new embodied format, students with higher initial
CR are likely to interpret its affordances more efficiently because they
already practice in anticipating and constructing continuous covariation. This
aligns coordination dynamics research, which emphasize that students’
performance is shaped by their intrinsic coordination patterns (Kostrubiec et
al., 2012). Thus, Time To Fluency is defined as the time it takes students to
first achieve smooth continuous movement. Students with higher CR levels
are expected to reach fluency with fewer trial-and-error attempts.

H2: Higher levels of learning gains in CR correlate with a longer Fluency Time
Sum.

This hypothesis assumes that extended time in the fluency phase supports
learning, especially for students with initially weaker CR. For these students,
fluency becomes a space for reasoning through action. As they repeatedly
adjust their movements in response to feedback, they refine their
sensorimotor patterns that may evolve into coordinated dynamical Gestalts
(Alberto et al., 2022), which in turn serve as attentional anchors for symbolic
reasoning and articulation. Thus, students with lower initial CR levels may
benefit more from extended fluency phases, while students with a higher
initial CR level are expected to spend less time in the fluency phase to achieve
similar proficiency. Total fluency time is expected to correlate positively with
learning gains.

5.3 Methods

This study was structured as a 3-hour teaching experiment conducted in four
Grade 9 classes (N = 76) across two countries.

Design of the Digital-Embodied Learning Environment

The design of the three learning modules focuses on the three aspects of
functional thinking: input-output, covariation, and correspondence
(Doorman et al., 2012; Wei et al., 2024). Design features include using real-
life context, bimanual coordination movement, real-time feedback, and
multiple representations (Wei at al., 2025). The modules are embedded in
the Numworx platform (https://www.numworx.nl/), equipped with multi-
touch and real-time feedback capabilities.
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In Module 1, students engage with input-output thinking through tasks
involving light ray contexts, such as finding relationships between an object
and its shadow across different configurations. The module gradually
transitions from unimanual to bimanual interactions, providing an
introduction to covariation. Module 2, the focus of this study, addresses
covariation by progressing to abstract nomograms. Students are asked to
manipulate two points simultaneously, each representing a variable, to
coordinate covarying input and output values along labeled axes and reason
about formulas. The bimanual movements with real-time feedback foster the
development of perception-action loops. In Module 3, students interact with
dynamic transformations between nomograms, function graphs, and
formulas, to foster correspondence thinking by encouraging students to
coordinate physical actions with symbolic and graphical representations. The
modules can be found at:

https://embodieddesign.sites.uu.nl/activity/functional-thinking/.

Study Design

We used a fully mixed, concurrent, quantitative-dominant mixed-methods
approach (Leech & Onwuegbuzie, 2009). Our analysis centers on covariation,
as this aspect showed the most significant improvement (Wei et al., 2025).
Quantitative measures, including hand-tracking data and pretest and
posttest scores, were used to assess CR development and bimanual
coordination. Post-task probes provided real-time qualitative insights into
students’ covariational reasoning and embodied experiences, aligned with
Robinson’s (2023) descriptive and explanatory categories.

The teaching experiment spanned three one-hour sessions. Each
session included a 5-minute introduction, a 45-minute exploration period,
and a 10-minute recap, with each student using a tablet. The introduction
outlined the learning goals and procedures, encouraging students to discover
functional relationships through their bodily experience and connecting to
school mathematics while maintaining an exploratory feeling. During the
exploration period, students interacted with the digital-embodied tasks
independently or collaboratively. The 10-minute recap led by the researcher
facilitated discussion, reinforced key concepts, and addressed common
challenges (Wei et al., 2025). Prior to the first session, all students completed
a pretest, and one week after the final session, they completed a posttest.

Instruments

The pretests and posttests, administered in paper-pencil format, assessed
three aspects of FT: input-output (IO, 3 items), covariation (COV, 5 items),
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and correspondence (COR, 7 items). The tests also included items targeting
input—output and correspondence reasoning—aspects addressed in other
intervention sessions—to provide a comprehensive measure of students’ FT.
By analyzing both the full FT scores and the COV scores separately, we were
able to evaluate general learning outcomes as well as specific gains in
covariational reasoning. The COV scores were used in both the descriptive
and inferential statistical analyses reported in the Results section.

Each test included 15 items, comprising nine “close assessments”
mirroring the learning modules’ contexts (e.g., nomogram plotting) and six
“proximal assessments” testing broader curriculum applications (e.g., moving
walkway scenarios) to measure generalized skills (Ruiz-Primo et al., 2002).
Items were a mix of open-ended and multiple-choice formats, scored on a 6-
point scale (0-5 points for each item; maximum 75 points). The validity of the
pretests and posttests includes expert reviews from both experienced
mathematics teachers and researchers in mathematics education research.
For open-ended items, the scoring rubric assigned 0 points for an incorrect
or irrelevant response, 3 points for a partially correct response that
demonstrated correct reasoning but was incomplete or imprecise, and 5
points for a fully correct response that included clear reasoning and
appropriate mathematical representation. For multiple-choice items, the
rubric assigned 0 points for an incorrect response and 5 points for a correct
response. Figure 5.3 shows some sample items from the pretest. The
complete assessment is available at the following link: https://bit.ly/FTitem

A pilot study involving 51 students, 33 from China and 18 from the
Netherlands (the same two countries where the teaching experiments were
later conducted), was carried out under standard classroom conditions. This
pilot supported a classical test analysis, including calculations of p-value,
variance, item reliability index (Rir), and item-total correlation (Rit). Based on
the results and expert feedback, one overly simple item, for which over 95%
students got full score, was removed. The refined instrument demonstrated
satisfactory internal consistency (Cronbach’s a = 0.71). To ensure scoring
reliability, two independent coders evaluated the work (the second coder
scored a randomly selected 50% of the total dataset). Initial agreement was
excellent (Cohen’s k = 0.91), and all subsequent discrepancies were resolved
through a consensus discussion.
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Figure 5.3 Examples of 10, COV and COR items
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A protocol for the post-task probes was developed based on the Hypothetical
Learning Trajectories, including a detailed hypothetical learning progression
(Weietal., 2024). The aim of the post-task probes was to encourage students
to reflect on and expand upon their written responses through open-ended
questions and follow-up prompts (Drijvers, 2003; Robinson, 2023). The
probes were designed to provide a window into how students were
beginning to make sense of their sensorimotor experiences (e.g., “Can you
explain how you made it green?”). This approach allows researchers to better
trace the emerging conceptual structures that students construct as they
attempt to “language” their embodied experiences.

Participants

Seventy-six Grade 9 students, aged 14 to 15 years, were enrolled in the study
from two international schools in the Netherlands (two classes, 39) and China
(two classes, 37). We employed a convenience sampling strategy, selecting
schools that had existing collaborations with the research team and access
to the necessary technological infrastructure for digital-embodied tasks.
Recruitment was inclusive with no selection criteria, and informed consent
was obtained from all students and parents. The students, who were average
to high achievers, had foundational knowledge of functions (e.g., number
lines, basic algebra, graphing) but had not formally studied functions.

Data Collection

Hand-tracking Technology

Hand-tracking data were collected from Numworx log files that captured the
locations of two draggable points (representing each hand) on the screen
every millisecond. These data allowed us to classify students’ bimanual
movements into two phases: Exploration and Fluency (Tancredi et al., 2021).
During the Exploration phase, students initially explored the movement rule
and made trial attempts to understand it. In the Fluency phase, students’
movements became more consistent and smoother, which could indicate
that they had developed a better practice of the bimanual coordination and
understanding of covariational relationships.

To distinguish these phases, we calculated the moving average of the
differences between the actual and target positions of the right hand,
assuming that the left hand’s position determined the target. The variable Ly
represents the left hand’s movement, while Ry represents the right hand’s
movement. By plotting these hand positions over time on a continuum, we
were able to identify detailed trajectories of the student’s bimanual
movement process, specifically differentiating between the Exploration and

167



Chapter 5

Fluency phases, as discussed in the Result section. These trajectories were
further analyzed to plot each student’s time versus hand position data,
providing insights into their bimanual CR levels based on the operational
taxonomy in Table 5.1.

The target position varied by task, with each task reflecting different
functional relationships. For each task, we set a specific threshold to
distinguish the phases based on task difficulty. Movements with distances
between the actual and the targeted position below this threshold were
classified as Fluency, indicating accuracy in coordinating the two variables.
For example, in a task like f:x — x — 2, which requires parallel hand
movements with a fixed height difference, a threshold of 0.2 units on the
number line was set; when students deviated beyond this threshold, the
system prompted adjustment by turning the arrow red. If the deviation
exceeded three seconds, it was classified as part of the Exploration phase.

Post-task probes

To capture students’ learning progression along the hypothetical learning
trajectories (Wei et al., 2024), we conducted brief, one-to-two-minute post-
task probes during the teaching experiments. Conducted by the research
team, these probes were held individually or in pairs. All probes were audio-
recorded and later transcribed for analysis. While not every student was
asked, there were no predetermined selection criteria. As students
completed tasks, researchers approached them for a short conversation.

Data Analysis

To explore the potential relationship between bimanual task performance
indicators—specifically, time to fluency (TTF) and fluency time sum (FTS)—
and improvement in covariational reasoning (as measured by the COV scores
in pretest and posttest), we conducted a Spearman’s Rank Correlation test.
This non-parametric test was chosen because the bimanual data are not
normally distributed, and the COV item scores in the pretest and posttest are
ordinal.

The module includes ten tasks in total, seven of which are bimanual
tasks relevant to this analysis. First, trials in which a student did not reach the
Fluency phase were excluded, as TTF could not be measured (188 samples
removed). Second, to prevent mislabeling brief moments of fluency, any
fluency period lasting less than three seconds was reassigned to the
Exploration phase. This three-second threshold was informed by prior
research in embodied mathematics education and movement science, which
emphasize the importance of sustained motor patterns for meaningful
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interpretation. (Kelso, 1995; Tancredi et al.,, 2021). Based on these
considerations and pilot observations of typical task durations (Wei et al.,
2024), trials with TTF values above 150 seconds (indicating prolonged
difficulty in achieving initial fluency) and FTS values shorter than 3 seconds
or longer than 400 seconds (indicating unusually extended practice) were
excluded (92 samples removed). After all exclusions, approximately 250 valid
samples (258 samples in TTF, 252 samples in FTS) remained for the final
correlation test.

For the qualitative analysis of hand-tracking data, we used the
operationalization of CR for bimanual movements to systematically observe
and categorize how these movements reflect different levels of CR.

We developed a detailed codebook to analyze the transcriptions of the
post-task probes, focusing on functional thinking aspects (Wei et al., 2023)
and embodied learning (Abrahamson & Lindgren, 2014; Shvarts et al., 2021).
Codes included input-output, covariation, correspondence thinking, and
embodied learning elements like perception-action loops, as well as
students’ challenges, strategies, and progress. The second coder coded 15%
of the transcription, leading to an inter-coder reliability of k = 0.73, which
indicates moderate agreement.

5.4 Results

This section first presents quantitative findings and correlation analyses
conducted to test our hypotheses. These analyses focus on bimanual
performance indicators—TTF and FTS—and their relationship to
covariational reasoning. We then provide qualitative insights from the hand-
tracking data and post-task probes.

Quantitative Results

Overall learning gains

The analysis of pretest and posttest scores revealed significant
improvements in students’ FT, including CR, after the intervention. The
overall FT score (out of 75 points) increased from 38.13 (SD = 12.82) to 50.49
(SD =9.59). A paired t-test confirmed that this improvement was statistically
significant, t (75) = -8.66, p < .001, with a large effect size (Cohen’s d = 1.09).
Table 5.2 shows pretest and posttest scores across all three FT aspects.

To examine the specific COV aspect, we analyzed the subset of five
COV items. The mean score for the COV items increased from 2.08 to 3.59
(out of 5), and a paired t-test again revealed a significant improvement, t (75)
=-9.67, p <.001, with a large effect size (Cohen’s d = 1.11).
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Table 5.2 Mean and standard deviation of pretest and posttest scores (N=76)

Total score M (SD) 10 cov COR
Pretest 38.13 (12.82) 3.65 2.08 2.41
Posttest 50.49 (9.59) 4.28 3.59 2.81

Note. Maximum total score = 75. Maximum sub-score (10, COV, COR) = 5. Sub-score
standard deviations were not reported.

Hand-tracking data

To test the two hypotheses mentioned above, a correlation analysis was
conducted to examine the relationship between students’ CR level (five items
from pre- and posttest, respectively) and two key performance indicators
from hand-tracking data: TTF and FTS.

Figure 5.4  Correlation between pre/post-test scores and bimanual performance
metrics

Note. p < .05*%, p < .01**, p < .001***; ns = not significant.

Based on the above figure, we discuss each correlation test result as follows:

e Pretest scores vs. TTF: A weak negative correlation indicates that higher
pretest scores are associated with slightly shorter TTF. This supports H1
and suggests that higher initial levels of covariational thinking predict
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faster achievement of the fluency phase. Stu-dents who start with higher
CR levels transition to fluency phase faster.

e Pretest scores vs. FTS: A moderate negative correlation suggests that
higher pretest scores are associated with a shorter FTS, supporting H2.
This implies that students with stronger CR before the intervention show
more efficient fluency practices overall.

e Overall improvement vs. TTF: A nonsignificant positive correlation
suggests no meaning-ful relationship between improvement in CR and
TTF. TTF is more reflective of initial CR levels than of learning gains.

e Overall improvement vs. FTS: A moderate positive correlation indicates
that greater im-provement in CR is significantly associated with longer
FTS. This supports H2, as it suggests that students who demonstrated
greater learning gains in CR spent more time in the fluency phase.

Qualitative insights from hand-tracking data

In this section, we first provide exemplary hand traces for each level of the
adapted CR taxonomy, demonstrating how bimanual movement patterns
reflect CR levels. We then present two cases to clarify the interpretation of
the exploration and fluency phases through two students’ entire learning
process.

Exemplary hand traces across CR levels

Table 5.3 presents the application of our bimanual CR taxonomy, outlining
the progression of students’ understanding from no coordination (LO) to
smooth continuous covariation (L5). Each level is illustrated with
representative hand-tracking data, highlighting key features in students’
hand traces, green feedback patterns they received, and their corresponding
CR. By analyzing specific patterns in these hand traces, along with the
corresponding green feedback when values aligned, we highlight the
temporal and embodied aspects of students’ reasoning. These examples
were chosen for their ability to key features, transitions, and variations in
bimanual coordination observed across our broader dataset. By focusing on
these targeted samples, we demonstrate how the CR taxonomy is
operationalized in students’ bimanual movements and how learners develop
increasingly sophisticated understandings of covariation.
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Table 5.3 Exemplary hand-tracking observations and insights across CR levels

CR Level Hand-tracking Example and Observations

LO: No Task: f:x — 3x
coordination Observation: One hand, left,
represented in blue, moves while the
other, right, represented in red,
remains stationary. Student then
moves another hand to test correct
positions for green feedback. We can
only see intermittent traces/lines
instead of a continuous trace/line
without green feedback. No bimanual
coordination movement.
Insight: The student does not yet
show awareness of a covariational relationship; movements
have frequent pauses or sudden changes, suggesting
independent actions between the two hands.

L1: Pre- Task: fix > x —2
coordination Observation: Hands move
of values sequentially in very small

movements around the same place;

one hand adjusts, followed by the

other, creating a “stop-and-go”

pattern. There are some intermittent

and short-lived periods of green

feedback during sequential

movements, but these are lost when

the other hand adjusts with a larger

movement (the orange box

moment).

Insight: Shows initial awareness of covariational relationships,
but no simultaneous coordination or pairing of values.
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CR Level

Hand-tracking Example and Observations

L2: Gross
coordination
of values

Task: f:x - —x

Observation: Hands move in opposite
directions with inconsistent
coordination. A mirrored pattern (one
hand moves up while the other moves
down) arises, but with imprecise
alignment. Green feedback is more
sustained than in earlier level (longer
duration time).

Insight: Indicates an emerging
understanding of general patterns
between variables but lacks precision
in forming specific pairs.

L3:
Coordination
of values

Task: fix - x —2

Observation: The left hand moves in
three separate small intervals around
three separate values and lifts in
between. For each value, the right
hand is moved down until green
feedback occurs. Then both hands
move down together for a while.
Insight: Demonstrates an
understanding of how the variables
relate at specific small intervals around
discrete values, rather than performing
a smooth transition across the entire
domain.
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CR Level

Hand-tracking Example and Observations

L4: Chunky
continuous
covariation

Task: f:x - —2x

Observation: The traces show both
hands stopping at specific positions to
form pairs, and smoother movements
in between (the orange boxes)
compared to the previous level. These
pauses suggest that the student is
focusing on aligning hand movements
to create accurate (x,y) pairs. There is
more sustained green feedback, which
shows that the student successfully
coordinated the bimanual movements
within these chunks.

Insight: Indicates deliberate, accurate
bimanual movements within specific
intervals, or “smooth chunks.” The
absence of smooth transitions between
these intervals shows that the
coordination is not yet globally
continuous.

L5: Smooth
continuous
covariation

Task: f:1x > x+1

Observation: The hand traces exhibit
synchronized, continuous
coordination between the left and
right hands, with the general flow of
movement aligning with the target
covariational relationship (the green
feedback is well-sustained).

Insight: lllustrates the student’s
ability to achieve smooth,
continuous coordination between
variables, signifying an advanced
level of covariational thinking. The
sustained green feedback highlights
the ability to maintain accuracy over
the duration of the task, suggesting
that the student can apply the
bimanual movement fluently in real-
time.
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Cases of two students’ learning processes
The following two cases show how CR levels are related to the exploration
and fluency phases throughout students’ entire learning processes.

Figure 5.5  (a) Bimanual movement for f:x — x — 3; (b) A student’s hand
movements across phases

Case 1: Figure 5.5 presents a student’s hands movement trace for the
function f:x — x — 3. This student moved the right point upward
significantly without getting green feedback, causing a decrease in
movement speed and a slight repositioning of the right point (LO-L1).
Subsequently, the student realized the necessity of moving both points in
parallel, which led to achievement of the fluency phase (L4). As the student
approached the top of the screen, he paused and began exploring different
directions, entering a second exploration phase (L1-L2). Finally, both points
were moved downward smoothly with green feedback (L5).

Figure 5.6  (a) Bimanual movement of f: x — —x; (b) A student’s hand
movements across phases
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Case 2: For the task in Figure 5.6, students were assigned to complete the
nomogram of the function f:x — —x. This student also went through
multiple learning phases. After the initial exploration phase (L1-L2), his hand
movements displayed a pattern: his right hand moved upwards while his left
hand moved downward simultaneously (L5). In the second Exploration
phase, he adopted an inverse approach, moving his right hand downward
while the left hand moved upward (L1-L2). As movement smoothness
improved again, the student achieved fluency, showing a geometrically
symmetrical movement akin to the properties of the target nomogram (L4).
After navigating the entire screen, he described his findings in the answer
box: “To get the green line, | moved the two dots in opposite ways which
created this pattern.” Many students also noted the intersection point as an
attentional anchor to adjust their movements. As one student remarked, “we
can get an intersection point through several green lines,” implying how this
visual feedback supported their coordination strategy.

Qualitative insights from post-task probes

The following quotes from post-task probes illustrate students’ reasoning
process. The analysis reflects individual learning moments, including shifts in
recognizing covariational relationships and the emergence of perception-
action loops.

In the task f:x — x — 2, Student A stated, “Yes, this line [the arrow
connected by the two grey points]. | first make it parallel, and after finding it
turns green, it can go down at a constant speed. This ensures that each line
is parallel to it and can ascend constantly.” Student A observes whether the
line is parallel and whether it turns green [perception]. Based on that, the
student adjusts hand movements to ensure parallelism and a constant rate
of descent [action]. The green color reinforces the correctness of the
coordinated movements. In contrast, Student B noted: “For the third one
[task], they [y and x] increase and decrease together... the angle is constant.
So, the values of y and x should be relatively easy to calculate.” Student B
focuses more on specific pairs of x and y values. The student first notes
change in x and y values [perception] and then identifies the need for
synchronized two-hand movements to maintain a constant angle/slope
[action]. By associating the consistent downward movement of the
arrow/line with a fixed difference [-2], students begin to perceive and enact
the functional relationship between the input and output variables. This
embodied experience supports the emergence of an attentional anchor that
stabilizes the students’ coordination movement.
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In the task f: x = —x, students focus more on the dynamics of speed
and direction. Student C described, “The movement direction of your left and
right hands? Opposite. You need to keep this point here [intersection point] ...
The speed is the same. It can maintain its green color.” This student describes
the directionality (opposite) and synchronization (constant speed) of the
hand movements [action], and perceives the intersection point as an
attentional anchor for correctness using color feedback for verification
[perception]. Student D elaborated on this in more detail: “You have to
maintain a constant speed...if one goes too fast and one goes too slow and
there’s no coordination in it, then we’re not going to get the right angle and
then there’s not going to be a green color.” Student D emphasizes the
importance of maintaining speed and coordination between the hands
[action] to get constant green feedback. This task is designed to build an
understanding of the inverse relationship, where an increase in one variable
results in a corresponding decrease in the other. The necessity of matching
speeds to maintain the angle reinforces the concept of proportional inverse
changes.

For the more complex linear function f: x - —2x + 4, students began
to connect their movements directly to symbolic mathematical properties.
Student E mentioned, “The one number is going down. The other one going
up. Like one [input] is starting from positive to negative. The other one
[output] from negative to positive ... From below zero the input is decreasing
by one and the output is increasing by two. And above zero the input is
increasing by one and the output is decreasing by two.” Student E aligns the
movements with the slope’s meaning: for every unitincrease in x, y decreases
by two units, which shows the understanding of the function’s directional
change and the ability to articulate the relationship using symbolic language.
These utterances reflect a shift from sensorimotor exploration to expressing
covariational structure verbally, suggesting that the student is beginning to
re-describe their sensorimotor pattern in terms of formal mathematical
reasoning.

In summary, through bimanual tasks, students ground their
prospective understanding of covariation concepts in perception-action
loops. These embodied experiences enable students to transform their
interactions with the digital-embodied environment into stabilized
sensorimotor patterns, which they articulate symbolically or verbally as
function concepts, such as slope and rate of change.

177



Chapter 5

5.5 Discussion

To answer the main research question on how bimanual movements within
a digital-embodied environment support students’ covariational thinking,
the results have shown that bimanual coordination tasks prompt
covariational reasoning through evoking perception-action loops. These
loops intertwine kinesthetic dynamics with mathematical reasoning,
corroborating the action-based genre of embodied design. The two cases,
along with the data in Table 5.3, show how students actively use real-time
feedback, in the form of color-change cues, to adjust their hand movements,
thereby transforming sensorimotor experiences into articulated covariation
concepts. Evidence from students’ pretest and posttest performances, as
well as their reasoning during the post-task probes, demonstrates an
improved understanding of functional relationships, and COV aspects in
particular.

The results support hypothesis H1, higher levels of CR correlate with a
shorter time to fluency, suggesting that higher initial CR levels are associated
with shorter TTF. The weak negative correlation between pretest CR levels
and TTF suggests that students with higher initial CR levels achieved fluency
more quickly in bimanual tasks than their peers with lower starting levels.
Interestingly, the correlation between overall improvement in CR and TTF was
not significant. This indicates that the speed of transition to fluency is more
closely tied to students’ initial CR levels than to the extent of their
improvement over time. These results suggest that TTF reflects how
efficiently students can translate their initial understanding into action but
does not necessarily drive the further development of CR, which could
potentially be explained by a ceiling effect.

The findings support H2, higher levels of learning gains in CR correlate
with a longer fluency time sum. The positive correlation between overall
improvement in CR and FTS highlights that student who showed learning
gains engaged more extensively in fluency phases. The finding suggests that
FTS is both an indicator and, to some extent, a potential contributing factor
to covariational reasoning development. The role of FTS appears more
complex than initially hypothesized. A moderate negative and significant
correlation between pretest scores and FTS suggest that students with
stronger initial CR tend to spend less time in the fluency phase. This finding
can support for the claim that higher initial proficiency allows students to
develop efficient coordination strategies and reduce the need for extended
fluency practice. Conversely, longer duration in fluency phases may provide
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students with lower initial CR levels opportunities to refine and solidify their
understanding.

From a theoretical perspective, the analysis of hand tracking data
expanded on Thompson and Carlson’s (2017) taxonomy by operationalizing
the covariational reasoning levels through the embodied bimanual tasks. The
six levels, ranging from no coordination (LO) to continuous covariation (L5),
provided a basis for interpreting embodied learning through observable hand
tracking and qualitative data. While the results show that hand tracking data
can present differences in CR levels, such as trace continuity, coordination,
and green feedback, the interpretation of these patterns needs careful
consideration (see Table 5.3). Lower levels (LO-L2) are characterized by
uncoordinated or loosely coordinated movements (discrete trace; no or
intermittent green feedback), while higher levels (L4-L5) exhibit smoother,
simultaneous bimanual coordination. The sustained green feedback and
smooth trace patterns observed in L5 reflect advanced covariational
reasoning. The patterns of hand tracking traces (intermittent or smooth) and
feedback (continues green bars or intermittent ones) thus reflect students’
embodied learning processes. Importantly, this study extends the original CR
framework by operationalizing its levels through observable movement
patterns in the context of bimanual tasks. This adaptation supports the
broader application of the CR framework in embodied learning research.
Linking specific hand movements to covariational reasoning offers valuable
insights for both researchers and educators. While this alignment shows
potential, it should be noted that using hand-tracking data as a direct means
of assessing CR would require further exploration.

The bimanual data in this study can also be interpreted from a
reification perspective as elaborated by Shvarts et al. (2024). Together with
(Abrahamson, 2021), these scholars identify two steps in reification
processes: (1) developing sensorimotor coordination that brings forth a new
perceptual structure and (2) crystallizing this perceptual structure into a
mathematical artifact. Our findings reflect both stages. As seen in tasks like
f(x)=-x, students in our study developed stable bimanual coordination
strategies, such as maintaining mirror symmetry movement across the
intersection point (Table 5.3 Level 2) guided by real-time feedback. This
aligns with step 1, in which new coordination gives rise to an attentional
anchor, which is the intersection point formed by green lines. Our data also
reflects aspects of the second step described by Shvarts et al. (2024), by
which students began to articulate the functional relationships discovered
through movement, translating their embodied experience into verbal and
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symbolic representations. Our data illustrates how mathematical artifacts—
like the idea of a subtraction sign or directionality—can emerge through
reflection on sensorimotor synergies that have stabilized through actions.
This interpretation is further enriched by Bos’s (2022) perspective on
reification, which describes it as a shift from a series of actions on objects to
a cohesive single process. In Bos’s view, the achievement of smooth bimanual
movements (characteristic of higher CR levels, see Table 5.3, Level 4 and 5)
can itself be interpreted as an embodied manifestation of reification. Unlike
Sfard’s commognitive theory (2008), where reification shows through the
introduction of a noun or pronoun about this process, Bos’s and our approach
interpret smooth bimanual movement as a non-verbal sign of reification.
Reaching bimanual fluency in our task signifies more than motor skill
acquisition; it embodies a grasp of the function as a coherent covariational
artifact. This view also aligns with Kaput et al. (2008), who highlight the
importance of enabling students to create meaning through their interactions
with mathematical representations. By scaffolding students’ sensorimotor
actions and encouraging reflection, digital tools act as reified artifacts that
embody mathematical meaning. For example, the integration of real-time
feedback allowed students to directly perceive the consequences of their
movements, make immediate adjustments, and refine their coordination
strategies. This finding resonates with prior research (Drijvers, 2015; Tall,
2004; Turgut, 2022; Weigand et al., 2024), that argued that digital tools
facilitate the connection between action and thought, supporting students in
transitioning from exploration to reasoning and symbolic representation.

Methodologically, our study integrates two research traditions: the
dynamic systems analysis of embodied interaction and the cognitive analysis
of conceptual development in covariational reasoning. We complement a
growing research program that uses dynamic systems theory and fine-
grained interaction data, such as hand-tracking, to model learning as a
nonlinear process of stabilizing sensorimotor coordination (Abdu et al., 2025;
Tancredi et al., 2021). Our study makes a contribution by investigating what
these stabilized coordinations signify in terms of students’ conceptual
reasoning. We achieved this by integrating two additional data sources: post-
task probes, which enriched the analysis by capturing students’ verbal
reflections on their strategies and reasoning processes (Shvarts et al., 2021),
and pretest and post-test scores, which provided a measure of macro-level
conceptual change. This kind of integration also aligns our work with a trend
in the field to use mixed methods to create a more robust picture of
mathematics learning (Johnson et al., 2024). Our approach allows us to
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demonstrate how the micro-level emergence of sensorimotor fluency
corresponds to macro-level gains in students’ mathematical understanding.
In doing so, we respond to the call to study the “microgenesis of multimodal
conceptual development” (Abdu et al., 2025) by linking specific embodied
actions to measurable learning outcomes.

Limitations and Future Directions

While the findings offer promising insights, we acknowledge two limitations.
First, this study used a convenience sample from two international schools in
the Netherlands and China. This choice was guided by pragmatic factors,
including access to tablets and established partnerships with the research
team. Our goal at this stage was not generalizability, but to explore whether
identifiable patterns of embodied covariational reasoning could emerge in
diverse but comparable contexts. Second, our analysis centered on specific
performance indicators from the hand-tracking data (Time to Fluency and
Fluency Time Sum). While effective, these metrics touch the surface of the
complex sensorimotor processes involved. Other potentially informative
dimensions of movement (e.g., recurrence rate, determinism, trapping time;
Abdu et al., 2025) were not explored.

This study has implications for future research on covariational
reasoning in digital-embodied environments. First, there is a need to develop
and apply advanced analytical methods to better capture the micro-dynamics
of embodied learning. In particular, techniques such as Recurrence
Quantification Analysis (Tancredi et al., 2021) with multimodal data (Abdu et
al., 2025) can be used to explore the transition between different CR levels
corresponds to shifts in the stability of the eye-hand systems. Second, a
controlled experimental design is needed to systematically examine the
causal relationships between embodied interaction and conceptual
development. Randomized control trials with larger and more diverse
student populations would help validate the observed patterns and enhance
the generalizability of the findings.

In line with other studies that highlight the potential of sensorimotor
engagement for mathematical learning (Abrahamson & Sanchez-Garcia,
2016), this study contributes to the growing evidence emphasizing how
sensorimotor experiences can improve conceptual understanding.
Sensorimotor learning provides an entry point for students with different
prior academic achievements to engage deeply with mathematical concepts.
This study corroborates that claim, demonstrating that embodied tasks
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enable students to access complex ideas through intuitive, action-based
exploration.
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Chapter 6 General conclusion and discussion

In this closing chapter, we first provide an overview of the study as a whole.
Next, we discuss its limitations (Section 6.2) and summarize its scientific and
methodological contributions (Sections 6.3 and 6.4). In section 6.5, we zoom
out and reflect in retrospect on the role of the body in mathematics learning,
the study’s central theoretical paradigm. The chapter concludes with
implications for future research and educational practice.

6.1 Research overview

The overarching aim of the thesis was to explore how to foster students’
functional thinking (FT) within a digital-embodied learning environment. To
achieve this aim, we focused on key aspects of FT, including input-output,
covariation, and correspondence, and identified how specific design features
(e.g., real-life contexts, bimanual movement, and multiple representations)
can support students’ co-emergence of physical action and mathematical
reasoning. Chapter 2 lays the foundation by mapping existing research on
embodied approaches and digital tools in developing FT, foregrounding gaps,
particularly regarding how students move from bodily engagement to
abstract conceptions of function. Chapter 3 concerns designing and piloting
a digital-embodied learning environment. Chapter 4 extends this design to a
classroom context, evaluating its effectiveness with a larger group of
students and exploring how design principles translate into real instructional
practice. Finally, Chapter 5 zooms in on the micro-processes of covariational
thinking using hand-tracking data, through a more detailed analysis of the
sensorimotor patterns that support learning gains. Together, these four sub-
studies form a coherent trajectory from conceptual groundwork to design,
classroom implementation, and in-depth analysis of embodied mathematical
learning.

In Chapter 2, we surveyed the research landscape where FT and
embodied cognition intersect with digital technology. This systematic review
of 51 papers clarified the roles that technology plays from an either didactical
or mathematical angle, the stages of mathematical abstraction embedded in
FT, and the diversity of embodied strategies. Results highlight that most
research uses graphing and algebraic roles of DT, often through dynamic
software like GeoGebra, to promote covariation and correspondence, while
input-output perspectives and geometry-based tasks remain relatively under-
explored. Four main abstraction stages (contextual/situational, referential,
particular, and general) emerge in these studies, suggesting that higher-level
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abstractions typically require dynamic representations and multiple function
views. Although action-based and perception-based embodied tasks are
common, the potential of continuous real-time feedback remains
underutilized. At this point, we recognized that the MIT proportion task could
be generalized to any function and that its mathematized version aligns with
a known mathematical concept: nomogram in a parallel axes system. By
revealing these gaps and opportunities, the systematic review motivates the
design, implementation, and analysis of digital-embodied tasks in the
subsequent sub-studies and guides the thesis toward nomogram-based
interventions that can foster deeper FT.

Building on the insights from the systematic review, we investigated
how an embodied design, centered on nomograms, can help students
develop FT in Chapter 3. Grounded in a light ray context, the designed
learning environment uses input-output mappings as a metaphor: rays (or
arrows) map from an object (input) to its shadow (output), representing
different rules described by functions. By manipulating parameters for
contexts, such as sunlight vs. spotlight (representing additive or multiplicative
relationships), students were observed to interpret nomograms as function
representations. In doing so, they linked everyday intuition (e.g., shadow
patterns) with mathematical structures like parallel or divergent rays. Central
to this design are bimanual movement tasks, which encourage students to
physically coordinate two variables along the nomogram'’s input and output
axes. Real-time color feedback (green/red) cues them to adjust their hands
until the correct relationship is maintained. This tactile process fostered a
deeper grasp of functional relationships. For example, students actively
experienced how one variable must speed up or slow down relative to the
other. In the meantime, the embodied tasks intentionally integrate different
function representations, prompting students to convert between
nomograms, formulas, and function graphs. This conversion practice invites
a correspondence view of functions, helping students anticipate how changes
in one representation affect another. While the approach proved engaging
and conceptually rich for the small group of 14-year-old participants (from
the pre-university stream), the findings also reveal design complexities, such
as the risk of tool-driven rather than concept-driven learning. Overall, by
iteratively comparing Hypothetical Learning Activities to Actual Learning
Activities, Chapter 3 revealed how specific design features—such as light ray
contexts, bimanual coordination, and real-time feedback—can nurture
function concepts when tightly coupled to the targeted mathematical
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content. These outcomes set the stage for broader classroom applications
and refinements in subsequent sub-studies.

Now that we have identified the potential of digital-embodied tasks,
we transported the digital-embodied nomogram designs into authentic
classroom conditions to examine its feasibility on a broader scale of Grade 9
students (N=39) in Chapter 4. In a series of three learning modules, students
interacted with real-life contexts (e.g., light and shadow), performed
bimanual coordination tasks, received real-time feedback (green/red
arrows), and navigated multiple function representations. Quantitative
findings (pretest-posttest gains) demonstrated significant improvements
across the three main aspects of functional thinking: input-output,
covariation, and correspondence. Students initially weak in FT showed
notable gains, while high achievers appeared to reach a performance ceiling
in input-output aspect. However, the progression to more advanced
correspondence thinking is relatively modest, suggesting deeper challenges
in mastering representation conversion tasks (e.g., transitioning between
nomograms, formulas, and function graphs). Qualitative data (answer boxes
within the environment, mini interviews) clarified how key design features
scaffold the transition from concrete sensorimotor experiences to abstract
mathematical reasoning. Real-life contexts anchor students’ early
understanding; bimanual movements strengthen covariation awareness;
continuous color feedback fosters immediate strategy adjustments; and
multiple representations broaden students’ grasp of functions as
correspondences between variables. Chapter 4 affirmed the feasibility and
educational potential of digital-embodied tasks in a classroom setting:
embodied experiences and digital representations, when deliberately
aligned, can drive significant learning gains in FT. These outcomes pave the
way for a deeper, micro-level exploration of how covariational thinking
evolves in Chapter 5.

In Chapter 5, we delved deeper into the micro-processes of FT by
investigating covariational reasoning (CR) in a digital-embodied environment.
Specifically, it examined bimanual hand movements through a hand-tracking
data, aiming to link sensorimotor fluency with conceptual development in CR.
Quantitative analyses showed that students with higher initial CR levels
tended to reach “smooth, coordinated” movements more quickly (shorter
Time to fluency), reflecting how existing conceptual understanding supports
efficient motor coordination. Students who made greater learning gainsin CR
typically spent more time in fluent coordination phases (longer Fluency time
sum), which suggests that prolonged interaction in embodied exploration can
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foster deeper reasoning development. Additionally, hand-tracking data
provided a microlens into perception-action loops, showing how students
relied on real-time color cues to iteratively refine their movements and
conceptualize continuous covariation. Supporting evidence from pre/post
assessments and mini interviews corroborated that bimanual tasks heighten
understanding of relationships between variables. We operationalized
Thompson and Carlson’s (2017) CR taxonomy to an embodied, bimanual task
context, providing a tool to better analyze learning activities and
mathematical reasoning through the lens of embodied learning processes.
This allowed us to analyze patterns in students’ hand-tracking data and
classify their CR levels using the bimanual CR framework, ranging from no
coordination (LO) to smooth continuous covariation (L5). Methodologically,
Chapter 5 showed how combining hand-tracking metrics (time to fluency,
fluency time sum) with qualitative insights can capture both the “how” and
the “why” of students’ reasoning development. These findings reinforced
that digital-embodied environments—especially those featuring coordinated
hand movements and real-time feedback—can foster sensorimotor
interaction with functional relationships in combination with CR.

By tracing this path, the thesis integrated conceptual, design-based,
and empirical angles. It showed how embodied interactions, digital feedback,
and mathematical representations together shape students’ understanding
of functions. The four sub-studies in the chapters thereby converged on the
central conclusion that meaningful bodily engagement, if aligned with
carefully structured nomogram tasks and activities, can serve as a potent way
for students’ FT development.

6.2 Limitations

The generalizability of the findings and the extent to which they capture the
full complexity of students’ learning processes remain open questions. These
limitations are synthesized below, categorized into contextual,
methodological, and theoretical concerns.

Contextual and design limitations

Firstly, the digital-embodied tasks required access to tablets, multi-touch
screens, and specialized software (e.g., Numworx). Such tools may not be
feasible in resource-limited classrooms, restricting broader implementation.
Technical issues during the interventions, such as software glitches or
hardware limitations, could have affected students’ learning experiences.
Investigating how similar embodied learning principles could be adapted to
low-tech or non-digital environments would enhance scalability.
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Secondly, some tasks may be too complex or not optimally designed to
guide students toward the learning goals. For example, in Module 3 (e.g.,
finding domains and ranges for trigonometric functions through nomograms,
Figure 3.6 (Chapter 3), some tasks were perceived as overly abstract or
technically challenging, leading to student disengagement or reliance on trial-
and-error strategies. These issues highlight the need for further refinement
of task sequences and possible extra instructional support to ensure that
tasks effectively guide students toward the expected learning outcomes.

Methodological limitations

Firstly, the empirical studies were conducted with relatively small and
specific samples (e.g., the pilot study with four eighth-grade students;
classroom studies with 76 ninth-grade students). The lack of diversity
restricts the applicability of the findings to other contexts, such as public
schools or different cultural environments and limit generalizability of the
results. Further research with more diverse populations would help evaluate
the broader applicability of these interventions.

Secondly, data collection and analyses mostly concentrated on
immediate outcomes, often measured right after interventions, whether
students would apply their newly formed FT to novel problems remains
unknown. This raises questions about the durability of the learning gains and
whether the embodied approach leads to sustained improvements in
students’ FT over time. Studies investigating how embodied learning might
impact broader reasoning or problem-solving skills over semesters or years
would be informative.

Thirdly, the assessment of students’ learning primarily relied on pre-
/post-tests and qualitative analysis of hand-tracking data. Ceiling effects were
observed on some input-output test items (Chapters 4 & 5). Interpreting hand
movement patterns as direct indicators of cognitive processes is complex. For
instance, distinguishing between different levels of CR based on hand traces
requires careful calibration and relied on researcher interpretation. The
complexity of analyzing hand tracking data and ensuring its accuracy in
reflecting students’ reasoning limits the robustness of conclusions drawn
from these measurements.

Finally, key embodied metrics like movement fluency and coordination
operationalized using task-specific thresholds (Chapter 5). The lack of
standardized embodied metrics makes it difficult to compare findings across
studies. This risks misclassification of exploration vs. fluency phases through
hand-tracking data. Establishing a standardized framework for embodied
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learning metrics, validated across different digital tools and instructional
contexts, would enhance the reliability and generalizability of future research
in this area.

6.3 Scientific contributions

Empirical evidence on how bodily movement shapes functional thinking
A scientific contribution of this thesis is the empirical evidence linking
physical, hand-based coordination to the development of FT.

Findings on hand movement patterns with qualitative data (Chapters 3 & 5)

Hand trace continuity (the consistency of hand movement paths) and
feedback mechanism (the real-time color-changing cues) offer qualitative
perspectives on how movement underpins mathematical cognition. These
data, which record the continuity, speed, and path consistency of hand
movements, reflect students’ iterative adjustments as they coordinate two
variables to achieve fluency. For instance, hand trace continuity—measured
as the smoothness of movement paths—showed students progressing from
irregular exploratory patterns to consistent trajectories. The hand-tracking
data do not merely record movement; they embody the learning process
itself, making visible the micro-adjustments through which students
developed precise CR. Such close connections between bodily motion and
conceptual thinking echo other studies on gesture and learning, which
highlight embodied interactions support students to express mathematical
relationships as grounded cognitive actions, rather than embedding external
artifacts directly into their cognition. (Alibali & Nathan, 2012; Abrahamson &
Sanchez-Garcia, 2016; Goldin-Meadow, 2009).

These findings also align with perception-action loop theories
(Abrahamson & Sanchez-Garcia, 2016; Shvarts et al., 2021), suggesting that
repeated “micro-adjustments” of the body form more stabilized
sensorimotor patterns, which they articulate symbolically or verbally as
function concepts, such as slope, intercept, and directionality. As students
“keep the arrow green,” they continuously reconcile what they see, how they
move, and what they understand about the function’s behavior, gradually
solidifying covariational reasoning. For instance, a student in Task 2.4 noted
that “if one hand goes too fast or too slow, there’s no coordination...and we
don’t get the green color.” This iterative cycle of noticing an error, adjusting
movement, and checking the arrow fosters micro-level perception-action
loops (Shvarts et al., 2021).

194



General conclusion and discussion

Insights from quantitative data (Chapter 5)

By analyzing TTF, the interval students need to achieve smooth, synchronized
hand movements, and FTS, the total duration in that fluent movement state,
we uncovered correlations between embodied performance and CR
development. Higher initial CR levels tended to correlate with shorter TTF:
Students with stronger initial covariational thinking reached fluent bimanual
coordination more quickly. This suggests that pre-existing conceptual
grounding accelerates motor adaptation. Greater CR gains often
accompanied longer FTS: Students who started with lower initial CR spent
more time exploring in a fluent phase and gain more robust improvements.
This extended “hands-on” coordination appears to enable iterative
refinement of functional relationships, which reflects the positive role
bimanual tasks play. Although correlation tests cannot prove direct
causation, the findings show that coordinated bodily interaction and real-
time digital feedback could be levers for CR development.

Overall, researchers have argued that embodied approaches can
accelerate the path from action to symbolic representation by anchoring
abstract concepts in embodied experiences (Lakoff & Nufiez, 2000;
Nemirovsky, 2011; Duijzer et al., 2019). This thesis provides with that
argument to the specific domain of bimanual movements with empirical
evidence.

Contribution to embodied design approaches

A second contribution of this thesis lies in its integration of embodied design
principles with digital technology to foster FT. Building on the theories of
embodied design (Abrahamson & Lindgren, 2014), this thesis uses
Hypothetical Learning Trajectories (HLTs, Bakker, 2018; Simon & Tzur, 2004)
to guide the iterative development of tasks that connect sensorimotor
experience with FT.

Chapter 2 revealed limited empirical work on how secondary students
move from embodied actions toward higher-level abstractions of functions.
It also emphasized a need for embodied tasks that better integrate real-time
feedback and dynamic visualizations of functions. Our learning environment,
grounded in the Embodied Design framework (Abrahamson, 2014), was
deliberately developed to address these gaps. Below, each module is
explained in terms of how it addresses a research gap, what the design is like,
and describes an illustrative example.

Module 1: Transition from light ray contexts to bimanual tasks
Targeted gap: Calls for studies to explore how context-based activities could
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move students beyond a simple “input-output” view toward deeper
functional relationships in real-time, dynamic settings.

Design and example: Students begin by investigating how shadows’
position and size change as an object moves next to different light sources
(Figure 4.9, Chapter 4). Students are placed in a meaningful scenario that
highlights basic function rules (e.g., y = 3x — 2). Following these situational
tasks, students gradually shift from unimanual to bimanual activities, which
is designed to strengthen covariational reasoning. Through coordinating two
hands—one controlling the tree (input) and the other tracking the shadow
(output)—students experience how changes in one variable dynamically
affect the other.

Illustrative outcome: Students who initially described tasks in everyday
language (e.g., “the shadow gets bigger when | move the tree to the right”)
begin to articulate them in function-like terms (e.g., “When | raise the tree by
1 unit, the top of the shadow goes up by about 3 units”). In doing so, Module
1 responds to the systematic review’s call for more robust evidence of how
contextual, embodied actions can ground abstract concepts.

Module 2: Semi-nomograms, covariation, and early correspondence
Targeted gap: Chapter 2 noted the need for using dynamic visualizations to
promote FT, especially the covariation aspect.

Design and example: Module 2 begins with semi-nomograms,
nomograms without labeled numbers, to help students first focus on motion
rather than numeric precision. As students gain fluency, labeled axes are
introduced to connect embodied actions with formal function notation.
Throughout, bimanual coordination and real-time color feedback guide
students from trial-and-error movements to a systematic, smooth
coordination. For instance, maintaining a green arrow in a y = —x task
requires moving both hands at an equal but opposite speed, which quickly
reveals how input increments correspond to output decrements.

Illustrative outcome: Students begin to articulate patterns such as
“when x increases by 1, y decreases by 1” based on physical coordination,
rather than symbolic manipulation. This supports early covariational
reasoning and addresses the systematic review’s gap regarding how to help
students unify bodily experience with dynamic representations.

Module 3: Conversions between nomograms, graphs, and formulas
Targeted gap: Chapter 2 pointed out the need for tasks that integrate
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multiple function representations and support advanced function aspects
like correspondence or mathematical object.

Design and example: The core tasks involve dynamic conversion
practice conversion practice where students transfer between adjusting the
nomogram arrow and predicting its corresponding point on the Cartesian
graph and vice versa. When students move their hands along input-output
axes, they can observe the domain/range constraints: beyond certain input
values, the arrow can no longer stay green nor the point align with the
function graph. Although formulas are not always explicitly given, students
begin to hypothesize how a formula might look when “mapped” onto their
bimanual movements. They infer that valid (x, y) pairs follow a consistent
pattern, sometimes articulating early algebraic ideas based on their bimanual
movements and the observed visual mapping (e.g., “You have to multiply it
with like [there is] a minus sign. Because when it goes higher it [the other
point] turns into negative. The positive number on the x turns into negative
onthey.)

Illustrative outcome: Through these dynamic, real-time tasks and
accompanying dialogues (mini interviews, discussions), students develop a
grasp of a function as a consistent mapping from inputs to outputs, including
analyzing domain and range. This address both aspects highlighted by
Chapter 2: a need for dynamic, real-time tasks and an emphasis on advanced
function aspects.

Overall, the embodied design structure, spanning from a contextual
anchor to formal mathematical dialog, advances the literature by
demonstrating how embodied design principles guide task designs that
suitable for secondary mathematics classrooms.

Insights into technology-integrated mathematics education

A third contribution lies in the insights gained on how digital tools, specifically
multi-touch tablets, digital-embodied nomograms, and hand-tracking
software, can deepen students’ conceptual understanding. These tools also
give researchers a richer window into students’ embodied learning
processes.

By using multi-touch interfaces, students could physically manipulate
multiple variables and experience functions as live, dynamic processes. This
aligns with findings from Chapter 2 (RQ1.1) and Chapter 4 (RQ3.2), both of
which stressed the importance of receiving real-time feedback in developing
a more flexible, coordinated understanding of function concepts. Several
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students mention how they continuously moved or slide objects in order to
immediately see the changes of functional relationships. For example, one of
the students said: “I first moved the lines until | could find out. | could see
which ones are green. Then | kept moving. Then | checked how much | got,
like the relationship between the left and the right.” In a non-digital or
mouse-only setup, the interface typically forces a one-variable-at-a-time
approach and repeatedly testing multiple positions might be cumbersome.
The student’s references to “move,” “see green,” and “check” suggest that
multi-touch gestures and real-time color feedback on the device lowered the
barrier to experimentation.

Real-time feedback (arrow turning green/red) emerged as an effective
mechanism for prompting immediate adjustments in students’ movements
and thinking. The systematic incorporation of color, motion, and number lines
created multimodal cues that continually invited students to reconcile their
physical actions with symbolic or graphical outcomes. Some students
mention “moving points” at a “constant speed” or in “opposite directions,”
referencing how the system turns red or green if their hands move incorrectly
or correctly. These gestures make covariation physically intuitive, as each
hand directly represents an axis of change. Because of the color-changing
feedback, students can correct or refine their speeds/directions in time,
which help to build a solid embodied sense of function relationships. The
real-time feedback illustrates how digital technologies (with instantaneous
color-coded feedback) can amplify the role of sensorimotor interaction
(Drijvers, 2019). This aligns with calls for deeper research into how dynamic
visualizations and bodily gestures together influence understanding (Wilkie,
2020).

In some mini interviews across Modules 2 and 3, students express
curiosity or satisfaction in “turning the arrow green.” For example, one
student commented, “I like it. It’s like an interactive task...you have to find
out...to keep thing green". This kind of spontaneous expression of positivity
is direct evidence that the touchscreen-based nomogram tasks feel more
engaging. Taken together, these comments from the mini interviews point to
the positive impact of tablets and digital-embodied nomograms,
underscoring how a multi-touch screen, real-time feedback environment
motivates students.
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6.4 Methodological Contributions

Integrative use of systematic review, design-based research, and mixed
methods

The thesis is methodologically improved in that it combines a systematic
literature review, design-based research, and a mixed-methods approach:
Chapter 2 systematically mapped the state-of-the-art in embodied cognition
and FT to ensure the design efforts were informed by recognized gaps: e.g.,
minimal empirical work on real-time feedback and bimanual tasks for
secondary school students. Chapter 3 applied DBR principles (Bakker, 2018;
Cobb & Steffe, 2010) through iterative design cycles, guided by embodied
design principles and emergent modeling (Abrahamson & Lindgren, 2014;
Gravemeijer, 1999). Each cycle refined the tasks to better align learning goals
with task features (nomograms, real-time feedback, bimanual movement),
and to adapt interventions for real classroom settings (Alberto et al., 2022;
Boels & Shvarts, 2023).

A mixed method further strengthened the study. Quantitative
instruments (pre/posttests, bimanual movement measures) provided
objective measures of learning gains, while qualitative data (video
observations, answer boxes, mini interviews, hand tracking data) offered rich
insights into students’ strategies, misunderstandings, interactions with digital
tools, and embodied learning process. Triangulating hand movement data
(millisecond-level traces of bimanual motion), dialogue (mini interviews), and
written artifacts (pre/posttests and answer boxes) improved the
trustworthiness of conclusions, revealing why certain embodied design
choices succeeded and how students progressed along hypothetical learning
trajectories. Together, these integrative methods provide a robust framework
for conceptualizing, enacting, and analyzing digital-embodied learning
interventions in mathematics education.

Novel tools and analyses for embodied interaction

A second methodological contribution lies in the analytic approaches for
capturing and interpreting students’ embodied interactions:

Hand-tracking technology in the Numworx software: Numworx records
the x-y coordinates of each “draggable point” (representing the student’s
hands) every millisecond. As learners move their left and right fingers, the
system logs detailed information on locations of the draggable points. We
then calculated direction, velocity, and distance from the target functional
relationship. Because Numworx also supports programming the color-
changing feedback (green arrow for correct alignment, red arrow for
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misalignment), the hand tracking data can be aligned with students’ attempts
and on-screen feedback. This makes it possible to analyze how quickly and
how smoothly students achieve the “green” fluency phase.

Operationalizing Thompson and Carlson’s (2017) taxonomy of CR:
Thompson and Carlson propose a hierarchy of covariational reasoning,
ranging from no coordination of variables (LO) to smooth continuous
covariation (L5). We adapted these descriptors to the case of bimanual
movement (e.g., identifying where students show discontinuous, stepwise
adjustments vs. continuous, synchronized hand movements). Based on that,
we examined trace continuity (how smoothly or discontinuously students
moved) and color changing feedback patterns. For example, LO-L2 levels
might exhibit repeated red-arrow interruptions (no green feedback) and
intermittent hand traces, while L4-L5 levels showed continuous, fluent traces
that always triggered green feedback.

This thesis offers a structured framework to analyze students’
movement patterns in an embodied environment. It can be adopted or
adapted by future researchers interested in sensorimotor learning. For
example, it can be used to observe how specific changes in movement traces
coincide with improvements in test scores or interview data, or to distinguish
when and how many times students shift from discrete, trial-and-error hand
movements (lower CR levels) to smooth, integrated bimanual control (higher
CR levels) within a task in the domain of function.

6.5 Rethinking the role of the body in mathematics learning
Now that we have summarized the study’s results, its limitations and its
scientific and methodological contributions, we turn to a broader
perspective and rethink the role of the body in mathematics learning, a key
paradigm when we started out this thesis’ trajectory.

One of the key contributions of this thesis is providing empirical
evidence that bodily movement can play a role in fostering FT. The findings
suggest that gestures and coordinated bimanual movements help students
make sense of input-output relationships, covariation, and correspondence.
However, movement alone is not sufficient to invite conceptual
development. Mathematical meaning emerges from a complicated interplay
between the body, artifacts, social interactions, and environmental
affordances.

Any theory of learning or teaching is grounded in a particular stance
on how we know the world around us (epistemology) and on the nature of
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reality (ontology). In mathematics education, these philosophical
foundations frame not only our understanding of how students come to
know mathematics but also how we design instructional environments,
interpret students’ actions, and justify methodological decisions.

In the following, we revisit our initial ideas on the role of the body in
mathematics learning from an epistemological, an ontological, and an
affective and cognitive perspective.

Epistemological perspectives: How do action and perception shape
mathematical knowledge?

Traditionally, many have assumed a Platonic or Cartesian view of
mathematics: knowledge exists “out there” in an abstract, infallible realm,
separate from human sense-making. However, both constructivist and
enactivist theories have called this assumption into question. They proposed
that knowing is a dynamic process emerging from the student’s engagement
with the environment (Piaget, 1955; Varela et al., 1991; von Glasersfeld,
1989).

In contrast to these traditional views, the embodied cognition lens —
central in this thesis — addresses the epistemological question—How do we
come to know mathematics?—in a different way (Barsalou, 2008; Glenberg
& Robertson, 2000; Lakoff & Nufiez, 2000; Varela et al., 1991). Rather than
viewing knowledge as discovered in a purely abstract or symbolic form,
embodiment theory challenges the Cartesian dualism of mind and body,
positing that mathematical understanding arises from sensorimotor
engagement with the environment, social interactions, and cultural artifacts.
This perspective emphasizes the role of action and perception, which are
recognized as the driving forces of cognition. Students do not just store and
retrieve static representations of mathematical concepts; instead, they
continuously enact and reconstruct these concepts through repeated cycles
of bodily movement and sensory feedback (Abrahamson & Lindgren, 2014;
Shvarts et al., 2021). For example:

e Action involves physical engagement, such as moving arms with
sensors that control the heights of dots on a screen (Abrahamson &
Trninic, 2011), dragging a series of isosceles triangles to plot a
parabola (Palatnik et al., 2023; Shvarts & Abrahamson, 2019), or
keeping balance on a board to represent changing quantities
(Tancredi at al., 2021).

e Perception includes both visual and tactile feedback, including
observing height difference between height lines (Bos et al., 2022),
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noticing color cues in a situation (Abrahamson, 2012), or feeling the
relative speeds between hand movements (as in bimanual tasks).

The literature claims that epistemologically, then, mathematical ideas (e.g.,
proportionality, covariation, function) emerge through embodied
interaction. This resonates with Piaget’s (1955) constructivist principle that
learners build knowledge structures through active adaptation to, and
organization of, their experiences.

While action and perception facilitate embodied learning, an
epistemological challenge is the gap between experiential knowledge and
formal symbolic representations. Many students successfully perform bodily
or artifact-based tasks but struggle to articulate these strategies in algebraic
or conventional mathematical language. This tension shows the epistemic
leap from tacit, sensorimotor schemas to explicit, universally recognized
symbolic systems.

In this thesis, we build upon these ideas from embodied cognition and
demonstrate how specific design choices can facilitate this emergence and
help connect the experiential-formal gap. We elaborate on this in two main
ways.

First, we illustrate how functional thinking can be actively constructed
through iterative perception-action loops within our embodied nomogram
tasks. For example, in Chapter 4, students explored tasks that involved
manipulating inputs and outputs on a nomogram and observing the
correspondent changes on the cartesian function graph. Interacting with this
transition between different function representations prompted students to
connect their actions (e.g., sliding points) with the perception of dynamic
visual feedback (like points projections). Over time, these repeated cycles
with nomogram tasks enabled students to reify processes of covarying two
variables (e.g., adjusting two variables in tandem) into a more concrete
concept of a functional relationship. Epistemologically, the knowledge of
“function” did not preexist in an abstract domain, the students constructed
this notion through interactive experiences. Additionally, hand-tracking data
from Chapter 5 provided micro-level evidence of this constructive process.
Students adjusted their bimanual movements based on real-time feedback
(e.g., color cues indicating correctness). This suggests they were developing
an internal, predictive sense of the functional rule governing the task, which
helps to anticipate the consequences of their movements, continually
refining this internal forward model through their actions (Shvarts &
Abrahamson, 2023). The real-time feedback allowed students to detect
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discrepancies between their anticipated outcome and the actual sensory
feedback received. Such perception-action loops, driven by this forward
model, reflect and confirm what an embodied epistemology anticipates:
knowledge emerges through repeated loops of acting and perceiving.

As a second means to use and adapt findings from literature, we aim
to addresses the experiential-formal gap through using congruent
representations (Aziz-Zadeh et al., 2006; Segal, 2011). A congruent
representation is one where the structure of the physical action or perceived
phenomenon shares a structural analogy with the formal mathematical
concept. Epistemologically, gesture-based insights can serve as a potential
foundation. For example, in our nomogram tasks, the bimanual action for a
function like y = —x involves moving hands in opposite directions at similar
speeds (As x increases, y decreases at the same rate). This physical
experience of “oppositional, synchronized movement” is congruent with the
mathematical idea of an inverse relationship where an increase in x
corresponds to a proportional decrease in y. The design of the bimanual
nomogram task, therefore, aims to make the physical experience a direct, felt
analogy of the mathematical structure, and thereby grounding the
developing abstract concept in a concrete, sensorimotor way.

Ontological perspectives: What is the nature of mathematical concepts in
a digital-embodied environment?

Ontologically, this thesis aligns with perspectives considering mathematics
as a human practice, in which concepts are not pre-existing entities but
emerge from active, situated interactions within sociocultural and material
contexts (Brown et al., 1989; Lave & Wenger, 1991; De Freitas & Sinclair,
2014). More specifically, we draw on an ecological onto-epistemology where
mathematical objects arise through a body—artifacts functional dynamic
system (FDS) (Shvarts et al., 2021; Shvarts et al., 2024). These FDSs form
when students’ bodily potentialities (e.g., gestures, perceptual structures)
coordinate with the affordances of physical or digital artifacts to fulfill a
functional goal. Therefore, rather than anchoring concepts in mental
representations (internalist approaches) or in external symbolic notations
(externalist approaches), this perspective sees mathematical concepts as
entities that construct by action and perception.

In this thesis we built on these notions in two ways. First, in a digital-
embodied environment, where physical actions (gestures, movements, and
manipulations) intertwine with responsive interfaces, mathematical
concepts take on a dynamic, process-like character. The central concept in
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our case, function, is not an abstract set of ordered pairs. Instead, it arises as
relationships-in-action, taking shape through embodied activities such as
dragging points on a coordinate plane. This ongoing coupling of bodily
movements and visual feedback demonstrates that a concept is not merely
represented but co-enacted in real time. Students’ repetitive actions
gradually stabilize into FDS. As these synergies become fluent, students
develop new ways of perceiving the environment (e.g., “seeing” how a slope
changes). Importantly, these newly stabilized actions are not only left to
bodily memory. They become “crystallized” in artifacts with cultural
meanings, such as an intersection point on the graphs or formulas (Shvarts et
al., 2021).

Our second ontological perspective concerns the bimanual
movements. An enactive ontology highlights that mathematical concepts
become meaningful through doing, especially the iterative, mediated
interplay of actions, reflections, and symbolic artifacts (Varela et al., 1991;
Nemirovsky, 2003). In the thesis, bimanual movements, supported by the
multitouch devices, could serve as a dynamic, pre-symbolic patterns of action
(Abrahamson & Trninic, 2011). These patterns embody aspects of a
mathematical concept (e.g., a specific rate of change) before it is formally
articulated. Over time, these enacted patterns can be reified into more
durable cultural artifacts, e.g., algebraic notations or function graphs. The
digital-embodied tasks do not just reveal students’ preexisting
understanding, they help generate that understanding. This illustrates a view
that the concept emerges from body-artifact synergy (Shvarts et al., 2021).

Reflecting in retrospect on this thesis, a question emerges: how stable
and transferrable are these concept enactments outside the specific
environment? If the concept “lives” in the synergy of action and digital
feedback, does it remain an effective tool for understanding once the digital
support is removed? Drawing on reflective abstraction (Boonstra et al., 2023),
we can see that the process of naming, re-describing and internalizing newly
crystallized artifacts can help students transfer their understandings to
different contexts. In other words, the internalization of action-based
strategies enables students to reactivate these embodied understandings
outside the original environment. In our designed learning environment, this
reflective abstraction is further supported through purposeful reflection (via
an “answer box” in the digital interface), discussion (mini interviews), and re-
notation (conversions among multiple function representations). While the
immediate feedback from multitouch devices sparks realizations, the stability
and portability of these realizations depend on structured opportunities for
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students to formalize, verbalize, and symbolically encode their enacted
experiences. This reflective layer ensures that what begins as situated action
can evolve into a more transportable form of mathematical concept. Through
action, perception, and cultural artifact creation, knowledge, initially
embedded in action, can be transformed into a more generalized
understanding.

Affective and cognitive perspectives: How do emotion, engagement, and
cognition interact in embodied mathematics learning?

Mathematics learning is a multifaceted experience shaped by not only
cognitive, but also emotional, motivational, and embodied dimensions. The
situatedness of embodied learning activities underscores the importance of
understanding how student engagement, emotional responses, and
cognitive processes interrelate (Eynde et al., 2006; Hannula, 2012). In this
section, we reflect on how insights from theories on affect, motivation, and
cognition, have been addressed in this thesis, examining both individual and
social perspectives to illuminate this interaction.

Research suggests that physiological and affective states, such as
interest or frustration, can guide students’ attention, affect how they
approach tasks, and shape their sense-making of mathematical ideas
(Hannula, 2012; Power & Dalgleish, 2015). A key driver of exploration in this
process is curiosity, which sparks divergent inquiry and encourages students
to try different strategies or persist in the face of challenge. Thereby, curiosity
can potentially activate more varied and sustained cognitive engagement
(Goldin, 2000; Hannula et al., 2016). When students are curious, they are
more likely to experiment with new methods or perspectives and even a
broader range of problem-solving skills, prior knowledge, or reflective
thinking than they would if simply following a prescribed procedure.

Beyond individual experiences, socio-constructivist theories highlight
that emotions and motivation are often shaped and coregulated within
socially constructed, such as influenced by classroom interactions and norms
(Eynde et al., 2006). In digital-embodied learning settings, the interplay of
physical interaction, emotional arousal, and cognitive reflection drives
mathematical sense-making (Cross, 2009; Hannula et al., 2016).

Even if in the research process leading to this thesis the affective
perspective has played a minor role, we can in retrospect identify two
aspects: appeal to curiosity, and engagement in social interaction. As for the
first, the color-changing feedback mechanism in this thesis aims at raising
students’ curiosity: the arrow turning green led to sustained engagement as
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the students sought to maintain the desired state. Observations revealed
emotional peaks (e.g., cheering upon success) and sharing of strategies.
Students share these “wins” with peers, sparking discussions about their
strategies. As they strive to maintain the green color despite dynamic
changes tied to their movements, their curiosity persists, motivating further
exploration. Interview data reinforce this: one student described the
nomogram as “Nomogram is amazing, it’s very magical.” Notably, the
immediacy of the color-changing feedback amplified emotional responses
and prompted them to reflect on their current strategy and to consider if
their approach was working and why. As one student reflected, “l found 3 or
4 points, and | tried...thinking if it might be squares, or addition...then realized
only a multiplicative relationship fit all those points.”, a statement showing
how iterative experimentation, fueled by inquisitiveness, led to conceptual
breakthroughs. Such moments highlight the bidirectional relationship
between affect and cognition: while curiosity drives exploration, successful
outcomes reinforce self-efficacy, fostering further cognitive risk-taking
(Bandura & Wessels, 1997; Hannula et al., 2016).

Second, engagement and curiosity have a social dimension. Chapters 4
and 5 of this thesis investigate this in a classroom context, where students
had the chance to collaborate within a digital-embodied environment to
solve tasks. Students faced initial challenges in coordinating their movements
but overcame them through joint effort. One student noted, “It was a little
difficult at first because we couldn’t move it properly. Yeah. But after some
time, it started moving like really smoothly...Once you have the coordination,
it’s easy.” Another described synchronized actions: “My hand would be on
the output line and | would go up; when | went up, her hand was on the input
line going down—the same angle and speed... Once you get the fixed speed,
it’s easy to make all lines come green.” These experiences underscore how
collaboration fosters a shared understanding of the task’s functional
relationships, as students articulate strategies and co-construct knowledge.
This kind of collaborative process also improves emotional safety, which
refers to an environment where students feel secure enough to take
intellectual risks, make mistakes, and express uncertainty without fear of
negative judgment from peers or the teacher. Emotional safety can often be
improved by positive collective efficacy, which is the group’s shared belief in
its capability to succeed (Karau & Williams, 2014; Klassen & Krawchuk, 2009).
In such an environment, students interpret confusion or mistakes as
opportunities for discovery rather than personal shortcomings (Eynde et al.,
2006). Over time, repeated emotional “wins” and productive struggle can
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refine students’ attitudes and identities, even helping them view themselves
as capable problem solvers (Hannula et al., 2016).

6.6 Implications for future research

This thesis opens up avenues for deeper and broader investigations on
embodied learning. Future research may pursue the following directions to
advance both the theoretical and practical applications.

Rethinking Assessment

Traditional assessments may not fully capture the learning outcomes of an
embodied approach to functional thinking. Much of students’ emerging
understanding described in this thesis unfolds through coordinated hand
movements, quick adjustments when an arrow turns red, and spontaneous
discussions of strategies. Therefore, written tests alone would offer an
incomplete picture of the students’ progress. Chapter 5 demonstrates how
hand-tracking technology can complement these traditional measures,
revealing students’ movement patterns, use of feedback, and engagement
over time. Although this approach enriched the research team’s post-hoc
understanding of students’ learning processes, future work could prioritize
dynamic, real-time assessment tools that empower teachers to act during
lessons, for example in the following ways:

¢  Real-time analytics: Develop Al-driven platforms that interpret hand-
tracking/gesture logs or gaze patterns data during tasks to provide
immediate feedback to teachers (Darvishi et al., 2024; Sola et al., 2024).
These platforms would employ machine learning algorithms to process
sensor data (e.g., from tablets or motion-capture systems) and detect
patterns indicative of learning states (Mitra & Acharya, 2007; Pellas et
al., 2020). For example, for hand-tracking data, algorithms could identify
hesitation (e.g., prolonged pauses between movements),
miscoordination (e.g., inconsistent bimanual synchronization), or
fluency (e.g., smooth, continuous adjustments) during tasks like
nomogram manipulation (Pellas et al., 2020). As for gaze patterns, eye-
tracking might reveal whether students focus on critical features (e.g.,
intersection points in a nomogram) (Scheiter et al., 2019; Shvarts &
Abrahamson, 2019; Strohmaier et al., 2020). Such data could prompt
timely intervention or targeted scaffolding, ensuring that students
receive immediate support when their learning trajectory begins to
falter. By transforming these embodied metrics into actionable
classroom intelligence, teachers can respond more precisely to
students’ needs.
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* Post-hoc analysis: In addition, the stored log files would enable
longitudinal analysis to refine teaching and design strategies. The log
data can be used to identify whether students’ movement preferences,
such as discrete adjustments over continuous motion. By aggregating all
students’ data together, it might reveal systemic challenges (e.g.,
difficulty interpreting negative slopes) so as to prompt iterative redesign
of modules to include scaffolding steps (e.g., pre-task warm-ups for
learning goals). Machine learning could also correlate movement
patterns with learning outcomes to recommend individualized task
sequences (e.g., students needing more fluency practice receive
additional bimanual exercises).

¢ Reflective tasks: In parallel, structured reflection can deepen students’
metacognitive awareness of how physical actions map onto abstract
mathematical concepts. Asking students to keep a brief journal or digital
log, describing specific bimanual movements, unexpected adjustments,
and links to mathematical ideas. It is important to encourage them to
articulate the embodied processes behind their understanding. This
practice not only helps students internalize concepts but also provides
teachers with evidence of learning that may otherwise remain hidden in
physical action.

*  Performance-based assessments: Performance-based tasks can offer
richer opportunities to demonstrate embodied understanding. For
instance, students might be asked to recreate or extend a function
within the digital-embodied environment, explaining their choices and
describing their movement patterns. Such tasks shift the emphasis from
static symbolic understanding to dynamic mathematical structure
building, which reflects the core of embodied mathematics. By
observing students’ evolving strategies and justifications, teachers and
researchers gain a multidimensional view of students’ conceptual
growth that traditional assessments might overlook.

In summary, broadening assessment methods through including real-time
analytics, post-hoc analytics, reflective tasks, and performance-based
assessments might better align with the embodied nature of students’
learning. These methods not only illuminate students’ developing proficiency
but also guide teachers in delivering timely, personalized support.

Nomograms for advanced function types

Much of this thesis focused on linear, quadratic, or absolute value functions
to build foundational FT. A fruitful extension would be to explore more
complex function families (e.g., exponential, trigonometric, and piecewise-
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defined functions) and advanced calculus content (e.g., function composition
or transformations, derivative and gradient). This extension aims to
investigate whether embodied learning through nomograms continues to
improve students’ abstract understanding across diverse mathematical
content and educational levels.

*  Function composition: Brieske (1978) notes that nomograms excel at
visualizing function composition, where one function’s output becomes
another’s input. The visualization of function composition is less
intuitive in a cartesian coordinate system. Through nomograms,
students could trace arrows from an input through multiple mappings,
concretizing the abstract layering of functions and the chain rule (e.g.,
see a GeoGebra example: https://www.geogebra.org/m/fxhvnnhp).

* Derivatives and instantaneous rate of change: Nomograms can
represent the derivative, sometimes conceptualized as a “local
multiplier,” where the scale factor between input and output intervals
approximates this rate of change. While Richmond (1963) was one of
the first to highlight nomograms in mathematical contexts, recent work
by Bos and Brinks (2024) extends this visual interpretation. They use
nomograms to represent instantaneous rate of change as an
enlargement factor relative to a local focus, which visualizes the
derivative as a scaling effect at a point (e.g., see
https://www.geogebra.org/m/hap8jd4e). This approach mirrors how
the tangent line approximates the graph in traditional calculus but more
engaging (Bos et al., 2019).

* Gradients in multivariable calculus: Brieske (1978) highlights
nomograms’ role in multivariable settings, such as R? — R? functions,
where they can represent linear transformations like stretches along
axes. Similarly, Inselberg’s (2009) parallel coordinates (nomograms)
provide a visual solution related to gradients under certain conditions.
For example, if a scalar function f in RN is such that its partial
derivatives (the components of its gradient Vf) are linear functions of
the variables (e.g., if f is a quadratic function), then setting Vf equal to
a constant vector b yields a system of N linear equations. The solution
to this system could then be found and visualized as the intersection of
these N hyperplanes within the parallel coordinate system. This
provides a specific geometric interpretation for finding points with
particular gradient values.

By pursuing these directions, researchers can uncover nomograms’ full
potential as an embodied representation across different levels of
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mathematics education. Future research should aim to empirically validate
their efficacy and refine their implementation.

Scalability and accessibility considerations

While the thesis shows success in specific contexts, broader adoption of
digital-embodied design requires addressing scalability and accessibility,
particularly in different educational settings, large classrooms, and resource-
limited environments.

* Scalability in large classrooms: Investigate how digital-embodied
learning can be effectively implemented in large classrooms without
compromising student engagement and individualized feedback. This
may involve exploring group-based interactions, teacher-guided
demonstrations, or hybrid digital-paper approaches.

* Low-tech options: To extend the reach of embodied learning, research
could explore low-cost, non-digital alternatives, such as paper-based
nomograms, manipulation with physical artifacts, or classroom-scale
embodied activities. These alternatives could serve as effective options
for digital environments while maintaining embodied learning features.

By addressing these considerations, future research can help bridge the gap
between innovative embodied learning environments and their practical
large-scale implementation. Scaling up the digital-embodied learning
environment requires thoughtful adaptation that ensures that all students
have the opportunity to have a meaningful role in the lesson.

6.7 Implications for educational practice

The journey of this thesis—-from conceptualizing embodied learning
environments to assessing students’ evolving functional thinking—offers a
roadmap for reimagining mathematics education. At its heart lies a simple
yet profound idea: mathematics is not just abstract symbols on a page, but a
dynamic structure of movement, emotion, and discovery. Here, we translate
these insights into actionable strategies for educators, curriculum designers,
and policymakers, weaving together the threads of nomograms, embodied
pedagogy, and classroom innovation.

A new character in the function curriculum: The nomogram

One of the stars of this thesis is the nomogram. Nomograms did not start in
classrooms, they were born out of necessity in the 19th century, before
calculators or computers existed. Engineers, scientists, and mathematicians
needed a way to perform complex calculations quickly and accurately. Their
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brilliance lies in the ability to transform symbolic equations into a visual,
manipulable form. This historical context explains why nomograms
appeared: they were practical tools for a pre-digital world, making complex
math accessible through geometry. Today, this same accessibility makes
them a useful educational tool, turning abstract functions into something
students can see and touch.

In today’s classrooms, functions are typically taught through the lenses
of tables, algebraic formulas, Cartesian graphs, and mapping diagrams. Each
has its strengths, but they often leave students viewing functions as static
objects rather than dynamic relationships. Nomograms step in to fill this gap,
offering a hands-on, kinetic complement that ties these representations
together. Take an algebraic representation like y = 2x + 1. It is precise and
concise, but it is also abstract, it does not show how y changes with x.
Students might memorize the rule without truly grasping the relationship. A
nomogram, however, lets them explore it physically. In the digital-embodied
nomogram of y = 2x + 1, they can move one hand along an x-axis and
another along a y -axis. Through this, they feel the pattern, their y -hand
speed is always doubling the x-hand speed. It is a similar situation for plotting
y = 2x + 1 on a coordinate plane. It is a straight line with a slope of 2 and a
y -intercept of 1. Yet, this standard depiction can feel static. Students see the
line but may struggle to sense the motion of two variables covarying, since a
Cartesian graph merges changes in both x and y into one geometric object.
By contrast, a nomogram enables them to literally move x and y and observe
how they covary along the scales. This “enacted representation” provides
direct experiences of how a change in one variable affects the other,
especially for those who find traditional graphs or formulas abstract.

So, why not include nomograms into the mathematics curriculum? At
the secondary level, where functions often trip up students, nomograms
could join the cast of representations alongside graphs and formulas.
Teachers might weave them into lessons, offering ready-made digital tools
and activities. For students who struggle, nomograms could be the gentle
guide that leads them into the world of FT, turning abstract ideas into
something they can get their hands on. For example, coordinating bimanual
movements to maintain a green arrow taught students to intuit inverse
relationships (y = —x) or proportionality (y = 2x) before they wrote
formulas. The nomogram, with its roots in real-world contexts like light and
shadow, offer a missing link in curricula dominated by static graphs and
equations.
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Bringing nomograms into schools is not without challenges. They
require multi-touch devices (like tablets or interactive whiteboards) that
support bimanual input and real-time feedback. For teachers, the key is
sequencing (see Appendix 3 in Chapter 4 for exemplary lesson plans):

1. Real-Life Context: Start with a relatable scenario, like how shadows
change with light position. It mirrors how one variable depends on
another.

2. Nomogram Exploration: Introduce digital-embodied nomograms
where students manipulate variables and observe outcomes.

3. Linking Representations: Guide students to translate their
nomogram actions into graphs and formulas, highlighting the
connections among these different representations of the same
relationship.

4. Reflection: Use whole-class discussions or short written exercises so
students can solidify their new insights and connect the embodied
experience to formal symbolic language.

Embodied Classrooms

The thesis demonstrates the effectiveness of digital-embodied tasks in
authentic classroom settings (Chapter 4), showing significant learning gains
in FT. These tasks can be implemented using accessible technologies like
multi-touch tablets or interactive whiteboards. This section explores how
teachers can adopt embodied learning to create interactive, student-
centered mathematics lessons.

Embodied learning aligns with contemporary trends in mathematics
education that emphasize active, student-centered approaches. Research
shows that students develop deeper understanding when they actively
construct knowledge rather than passively receive it (Freeman et al., 2014;
Hiebert & Grouws, 2007). Traditional teaching often focuses on rote
procedures, but embodied learning invites students to engage physically with
concepts. In this thesis, students were invited to move their actively interact
with the tasks. This process also mirrors the pedagogical principle of multiple
representations, where students explore mathematical ideas through
different formats (e.g., visual, symbolic, kinesthetic) to build flexibility and
insight (Goldin & Shteingold, 2001). By incorporating movement, embodied
tasks add a kinesthetic dimension that makes abstract notions like covariation
palpable.

Effective classroom activities often follow a progression from inquiry-
based exploration (students freely manipulate variables) to guided reflection
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(students discuss patterns or write brief explanations) to formalization
(students connect their movements to symbolic notations or standard
function graphs) (Artigue & Blomhgj, 2013; Bakker, 2018; Cobb et al., 2003).
It is recommended to start with a context that is meaningful to the students,
for example through being close to real-life:

1. Embodied tasks are effective when grounded in familiar contexts or
phenomena (e.g., shadows and light sources), which students then
link to more abstract representations (Nathan & Walkington, 2017).

2. After physically enacting relationships, teachers can gradually
prompt students to express these relationships in formal
mathematics language (e.g., algebraic formulas and Cartesian
graphs), developing a dynamic-to-formal trajectory of understanding
(Drijvers, 2019).

3. Teachers can also use these embodied tasks to facilitate
mathematically rich discussions. For example, after a group
completes a correct “green arrow” diagram, the teacher might have
them explain their reasoning. Another group might discuss why their
arrow fluctuates between green and red to reveal partial or incorrect
understandings. These moments are critical for bridging
sensorimotor experiences with formal mathematics language.

Overall, this thesis argues that nomograms should be recognized not as a
replacement but as an enhancement in function education. Their embodied,
interactive nature complements static graphs, tables, and algebraic formulas.
Digital-embodied nomograms provide an additional lens through which
students can experience and internalize the dynamic nature of functions.
Structured lesson plans that connect embodied experiences with formal
mathematics notation through inquiry, guided exploration, and reflective
discussion are key to ensuring that nomograms serve as a cohesive
representation in function teaching and learning.
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Summary

Functional thinking (FT)—understanding relationships between variables
through aspects such as input-output, covariation, and correspondence—is
an important skill in mathematics and in everyday life. However, students
often struggle with its abstract nature. Traditional teaching, often relying on
static pictures, does not effectively build dynamic reasoning about how
variables change together. This difficulty is aggravated by the abstract
character of functions, which are frequently taught as fixed rules rather than
as dynamic relationships between changing quantities.

This thesis addresses these challenges through integrating digital
technologies using the lens of embodied cognition, which claims that the
body, environment and artifact work together in shaping learning. The main
innovation is the use of nomograms. A nomogram is a visual tool that maps
functional relationships through parallel axes and arrows (Figure 1). In this
thesis, we reimagine digital nomograms as dynamic, interactive tools that
connect students’ sensorimotor experiences with formal mathematics. The
overarching question guiding the thesis is: How do nomogram tasks foster
students’ FT development in a digital-embodied learning environment?

To answer this question, the thesis comprises six chapters: An
Introduction (Chapter 1), four core sub-studies (Chapters 2-5), and a General
Conclusion & Discussion (Chapter 6). These sub studies progress from
identifying research gaps to designing, piloting and refining digital-embodied
nomogram learning environments, implementing them in regular
classrooms, and finally, to analyzing bimanual movements at a micro-level.
Together, these sub studies provide a holistic view on how nomogram tasks
in a digital-embodied setting develop students’ FT, including theoretical
grounding and practical application.
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Figure 1 Nomogram of the function f:x — x2

Chapter 1 contextualizes FT within broader mathematical practice. It argues
that a digital-embodied learning environment using nomograms could
address challenges in FT teaching and learning. The chapter introduces the
main research question and explains the choice of a design-based approach,
in which iterative cycles of design, piloting, analysis and redesign offer a
systematic method to study students’ understanding of FT. Figure 2 provides
an overview of the sub studies in this thesis.

Figure 2 An overview of the studies and the chapters
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In Chapter 2, we surveyed existing research on FT, embodied cognition, and
digital technology to answer these research questions:

RQ1 How does research literature inform an embodied approach to FT
using digital technology that invites abstraction?

RQ 1.1 Which role of technology is widely used in developing functional
thinking?

RQ 1.2 Whatis known about different abstraction stages of functional
thinking?

RQ 1.3 Which embodied approaches can be identified in the literature on
developing functional thinking?

This systematic review of 51 papers clarified the roles that digital technology
plays from an either didactical or mathematical angle, the stages of
mathematical abstraction embedded in FT, and the diversity of embodied
strategies. Results show that most studies use graphing and algebraic roles
of digital tools, often through dynamic software like GeoGebra, to promote
covariation and correspondence. The input-output aspect of FT and
geometry-based approaches remain relatively under-explored. Four main
abstraction stages (contextual/situational, referential, particular, and
general) emerge in these studies, suggesting that higher-level abstractions
typically require dynamic representations and multiple function
representations. Although action-based and perception-based embodied
tasks are common, the potential of continuous real-time feedback remains
underutilized. At this stage, we recognized that the MIT proportion task
(Abrahamson & Trninic, 2011) could be generalized to any function and that
its mathematized version aligns with an existing mathematical
representation: the nomogram in a parallel axes system. By identifying these
gaps and opportunities, the systematic review motivated the design,
implementation, and analysis of digital-embodied modules in the
subsequent sub-studies.

Building on the insights from the systematic review, we investigated in
Chapter 3 how an embodied design, centered on nomograms, can help
students develop FT. It addresses the following research questions:

RQ 2 How can an embodied design using nomograms foster functional
thinking?

RQ 2.1 How does a light ray context foster the students’ meaning making
of nomograms?

RQ2.2 How do bimanual movement tasks foster covariational thinking?
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RQ 2.3 How do different function representations and their conversions
support a correspondence view on functions?

Grounded in a light ray context, the learning environment uses input-output
mappings as a metaphor: rays (or arrows) map from an object (input) to its
shadow (output), representing different rules described by functions. By
manipulating parameters for contexts, such as sunlight vs. spotlight
(representing additive or multiplicative relationships), students were
observed to interpret nomograms as function representations. In doing so,
they linked everyday intuition (e.g., shadow patterns) with mathematical
structures like parallel or divergent rays. Key to this design are bimanual
movement tasks, which encourage students to physically coordinate two
variables along the nomogram’s input and output axes. Real-time color
feedback (green/red) signals them to adjust their hand positions until the
correct relationship is maintained. This tactile process did indeed foster a
sensorimotor experience of functional relationships. For example, students
actively experienced how one variable must speed up or slow down relative
to the other. In the meantime, the embodied tasks intentionally integrate
different function representations, prompting students to convert between
nomograms, formulas, and Cartesian function graphs. This conversion
practice invited a correspondence view of functions, helping students see
how changes in one representation affect another. While the approach
proved engaging and conceptually rich for the small group of 14-year-old
participants (from the pre-university stream), findings also showed design
issues, like the risk of tool-driven rather than concept-driven learning.
Overall, by iteratively comparing Hypothetical Learning Activities to Actual
Learning Activities, Chapter 3 revealed how specific design features—such as
light ray contexts, bimanual coordination, and real-time feedback—can
nurture function concepts when tightly coupled to the targeted
mathematical content. These results set the stage for design refinements and
broader classroom application in the subsequent sub-studies.

In Chapter 4, we moved the digital-embodied nomogram intervention
to authentic classroom conditions to examine its feasibility on a broader scale
of Grade 9 students (N=39). The research questions for this chapter are:

RQ 3 How can an embodied design using nomograms foster functional
thinking in a classroom setting?

RQ 3.1 How does a digital-embodied design using nomograms affect the
various aspects of functional thinking among students within a
classroom setting?
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RQ 3.2 How do the design features contribute to the development of
functional thinking?

In three digital-embodied learning modules, students interacted with real-
life contexts (e.g., light and shadow), performed bimanual coordination
tasks, received real-time feedback (green/red arrows), and navigated
multiple function representations. Quantitative findings (pretest-posttest
gains) demonstrated significant improvements across all three aspects of
functional thinking: input-output, covariation, and correspondence. Students
initially weak in FT showed especially notable gains, while high achievers
appeared to reach a performance ceiling in the input-output aspect. Overall,
progress in more advanced correspondence thinking was relatively modest,
suggesting challenges in mastering representation conversion tasks (e.g.,
transitioning between nomograms, formulas, and function graphs).
Qualitative data (answer boxes within the digital learning environment, mini
interviews) clarified how key design features scaffolded the transition from
concrete sensorimotor experiences to abstract mathematical reasoning; a
process in which initial sensorimotor experiences enable the articulation and
formalization of mathematical concepts. Real-life contexts anchored
students’ early understanding; bimanual movements strengthened
covariation awareness; continuous color feedback fostered immediate
strategy adjustments; and multiple representations broadened their grasp of
functions in various forms. As such, Chapter 4 confirmed the feasibility and
educational value of digital-embodied modules in a classroom setting,
reinforcing that embodied experiences and digital tools can drive significant
learning gains in FT. These outcomes pave the way for a deeper, micro-level
exploration of how covariational thinking evolves in Chapter 5.

In Chapter 5, we delved deeper into the micro-processes of FT by
investigating covariational reasoning in a digital-embodied environment. The
following research question was investigated:

RQ 4 How do bimanual movements within a digital-embodied
environment support students’ covariational thinking?

Specifically, this chapter examined bimanual movements through hand-
tracking data, aiming to link sensorimotor fluency with conceptual
development in CR. We operationalized Thompson and Carlson’s (2017) CR
taxonomy to an embodied, bimanual task context, providing a tool to better
analyze learning activities and mathematical reasoning through the lens of
embodied learning processes. This allowed us to analyze patterns in
students’ hand-tracking data and classify their CR levels using the bimanual
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CR framework, ranging from no coordination (LO) to smooth continuous
covariation (L5). Quantitative analyses showed that students with higher
initial CR levels tended to reach smooth, coordinated movements more
quickly (shorter Time to fluency), reflecting how existing conceptual
understanding supports efficient motor coordination. Students who made
greater learning gains in CR typically spent more time in fluent coordination
phases (longer Fluency time sum), which suggests that prolonged interaction
in embodied exploration can foster deeper reasoning development.
Additionally, hand-tracking data provided a microlens into perception-action
loops, showing how students relied on real-time color cues to iteratively
refine their movements and conceptualize continuous covariation.
Supporting evidence from pre-post assessments and mini interviews
corroborated that bimanual tasks heighten understanding of relationships
between variables. Methodologically, Chapter 5 showed how combining
hand-tracking metrics (Time to fluency, Fluency time sum) with qualitative
insights can capture both the “how” and the “why” of students’ reasoning
develops. These findings reinforced that digital-embodied environments—
especially those featuring coordinated hand movements and real-time
feedback—can foster sensorimotor interaction with functional relationships
in combination with CR.

Chapter 6 synthesizes the findings from the four sub-studies, revealing
how they collectively address the overarching question. This synthesis leads
to the following conclusions.

* Nomograms can be effective tools to foster input-output thinking,
covariational reasoning, and representation conversion within
correspondence thinking, especially when they are augmented with
real-time feedback and bimanual tasks.

* Embodied design features (particularly coordinated bimanual
movements) create attentional anchors for abstract functional
relationships, helping students “feel” how changes in one variable
correspond to changes in another.

* The design is practically feasible in regular classroom settings, with
empirical evidence of learning gains and positive engagement.

Theoretical implications include a deeper understanding of embodied
cognition in mathematics education: students’ bimanual movement fluency
develops concurrently with mathematical thinking. The findings indicate that
body-artifact functional dynamic systems — involving bimanual coordination,
real-time feedback, and interactive digital representations — facilitate the
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mathematization of functional relationships. Methodologically, this thesis
offers a replicable framework for future design-based research in digital-
embodied learning. Specifically, it combines systematic review, iterative
environment design, classroom testing, and fine-grained sensor data (hand-
tracking) to analyze students’ learning processes.

Limitations of the study include reliance on specific digital tools (e.g.,
multi-touch tablets), the relatively homogeneous student samples, and the
short-term nature of the interventions. Future research is invited to (a)
explore low-tech or mixed reality adaptations of nomograms, (b) conduct
longitudinal studies for sustained improvements in students’ FT, (c) integrate
machine learning or Al-driven analytics for real-time scaffolding, and (d)
extend nomogram-based approaches to more advanced functions across
different educational levels. While limitations suggest caution in generalizing
findings, this thesis offers a robust framework for both future research and
classroom innovation. Specifically, this innovation contributes to
mathematics education by demonstrating how to effectively introduce the
nomogram into the function curriculum as a dynamic, interactive
representation; and by illustrating the principles and practicalities of
establishing embodied classrooms where students actively engage with
mathematical ideas through bodily movement and interaction, fostering a
more active and student-centered learning experience.
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Samenvatting

Functioneel denken (FD) — het begrijpen van relaties tussen variabelen via
aspecten als input-output, covariatie en correspondentie — is een belangrijke
vaardigheid, zowel in de wiskunde als in het dagelijks leven. Leerlingen
worstelen echter vaak met de abstracte aard ervan. In het traditionele
onderwijs, dat veelal steunt op statische afbeeldingen, leren leerlingen
slechts in beperkte mate om dynamisch te redeneren over hoe variabelen
samen veranderen. Dit probleem wordt versterkt doordat functies, die vaak
worden aangeleerd als vaste regels in plaats van dynamische relaties tussen
veranderende hoeveelheden, zelf ook abstract zijn.

Dit proefschrift pakt dit probleem aan door digitale technologieén in
het onderwijs in te zetten vanuit het perspectief van embodied cognition
(belichaamde cognitie), een theorie die stelt dat lichaam, omgeving en
hulpmiddelen samenwerken bij het leren. De belangrijkste innovatie is het
gebruik van nomogrammen. Een nomogram is een visueel hulpmiddel dat
functionele relaties weergeeft met parallelle assen en pijlen. In dit
proefschrift gebruiken we digitale nomogrammen als dynamische,
interactieve tools die de sensomotorische ervaringen van leerlingen
verbinden met formele wiskunde. De overkoepelende onderzoeksvraag van
dit proefschrift is: Hoe bevorderen opdrachten met nomogrammen de
ontwikkeling van FD bij leerlingen in een digitale, belichaamde
leeromgeving?

Figuur 1 Nomogram van de functie f:x — x2
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Deze vraag wordt beantwoord in zes hoofdstukken: een inleiding (Hoofdstuk
1), vier centrale deelstudies (Hoofdstukken 2-5), en een conclusie en
discussie (Hoofdstuk 6). De vier deelstudies richten zich op het identificeren
van hiaten in onderzoek, het ontwerpen, testen en verfijnen van digitale,
belichaamde modules rond nomogrammen, de implementatie ervan in
klaslokalen, en tot slot de analyse van bimanuele (tweehandige) bewegingen
op microniveau. Samen bieden deze deelstudies een holistisch beeld van hoe
nomogram-opdrachten in een digitale, belichaamde setting het FD van
leerlingen bevorderen, inclusief een theoretische onderbouwing en een
toepassing in de onderwijspraktijk.

Hoofdstuk 1 plaatst FD in de context van de bredere wiskundepraktijk.
Er wordt beargumenteerd dat een digitale, belichaamde leeromgeving met
nomogrammen een manier is om uitdagingen in het onderwijzen en leren
van FD aan te pakken. Het hoofdstuk introduceert de centrale
onderzoeksvraag en licht de keuze toe voor een ontwerpgericht onderzoek
(design-based research), waarbij iteratieve cycli van ontwerpen, testen,
analyseren en herontwerpen een systematische methode bieden om het
begrip van FD bij leerlingen te bestuderen. Figuur 2 geeft een overzicht van
de deelstudies in dit proefschrift.

Figuur 2 Overzicht van deelstudies en hoofdstukken

In Hoofdstuk 2 hebben we bestaand onderzoek naar FD, embodied cognition
en digitale technologie geanalyseerd om de volgende
onderzoeks(deel)vragen te beantwoorden:
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1 Hoe kan de onderzoeksliteratuur bijdragen aan een belichaamde
benadering van FD met digitale technologie die abstractie uitlokt?

1.1 Welke rol van technologie wordt veel gebruikt bij de ontwikkeling
van functioneel denken?

1.2 Wat is er bekend over verschillende abstractiefasen van functioneel
denken?

13 Welke belichaamde benaderingen zijn te vinden in de literatuur

over de ontwikkeling van functioneel denken?

Deze systematische review van 51 artikelen verhelderde de rollen die digitale
technologie speelt vanuit een didactisch of wiskundig oogpunt, de stadia van
wiskundige abstractie binnen FD, en de diversiteit aan belichaamde
strategieén. De resultaten tonen aan dat de meeste studies digitale tools
inzetten voor grafische en algebraische toepassingen, vaak via dynamische
software zoals GeoGebra, om covariatie en correspondentie te bevorderen.
Het input-output aspect van FD en geometrische benaderingen blijven
relatief onderbelicht. Vier hoofdfasen van abstractie
(contextueel/situationeel, referentieel, particulier en algemeen) komen naar
voren in deze studies. Dit suggereert dat abstracties op een hoger niveau
doorgaans dynamische representaties en meerdere representaties van
functies vereisen. Hoewel actie- en perceptiegerichte belichaamde
opdrachten gebruikelijk zijn, wordt het potentieel van continue, directe
feedback nog te weinig benut. In dit stadium realiseerden we ons dat de MIT-
verhoudingstaken (Abrahamson & Trninic, 2011) gegeneraliseerd kunnen
worden naar elke functie en dat de gemathematiseerde versie hiervan
overeenkomt met een bestaande wiskundige representatie: het nomogram
in een parallel assenstelsel. Door deze hiaten en mogelijkheden te
identificeren, motiveerde de systematische review het ontwerp, de
implementatie en de analyse van de digitale, belichaamde modules in de
volgende deelstudies.

Voortbouwend op de inzichten uit de systematische review onderzochten we
in hoofdstuk 3 hoe een belichaamd ontwerp, gericht op nomogrammen,
leerlingen kan helpen FD te ontwikkelen. Het behandelt de volgende
onderzoeks(deel)vragen:

2 Hoe kan een belichaamd ontwerp met nomogrammen functioneel
denken bevorderen?

2.1 Hoe bevordert een context met lichtstralen de betekenisgeving van
nomogrammen door leerlingen?

235



Samenvatting

2.2 Hoe bevorderen bimanuele (tweehandige) bewegingstaken
covariationeel denken?

2.3 Hoe ondersteunen verschillende representaties van functies en de
omzetting daartussen een correspondentieperspectief op functies?

De leeromgeving, gebaseerd op een context met lichtstralen, gebruikt input-
outputrelaties als metafoor: stralen (of pijlen) lopen van een object (input)
naar zijn schaduw (output) en representeren zo verschillende regels die door
functies worden beschreven. Door parameters voor contexten te
manipuleren, zoals zonlicht versus spotlight (die additieve of multiplicatieve
relaties vertegenwoordigen), bleken leerlingen nomogrammen te
interpreteren als representaties van functies. Hierbij legden ze verbanden
tussen alledaagse intuitie (bijv. schaduwpatronen) en wiskundige structuren
zoals parallelle of divergerende stralen. Centraal in dit ontwerp staan
bimanuele bewegingstaken, die leerlingen aanmoedigen om fysiek twee
variabelen te codrdineren langs de input- en outputassen van het
nomogram. Directe kleurfeedback (groen/rood) geeft aan dat ze hun
handposities moeten aanpassen om de juiste relatie te behouden. Dit
tactiele proces bevorderde inderdaad een sensomotorische ervaring van
functionele relaties. Leerlingen ervoeren bijvoorbeeld actief hoe de ene
variabele moet versnellen of vertragen ten opzichte van de andere.
Tegelijkertijd integreren de belichaamde opdrachten bewust verschillende
representaties van functies, waardoor leerlingen worden aangezet om te
schakelen tussen nomogrammen, formules en Cartesische functie grafieken.
Deze oefening in omzetting stimuleerde een correspondentieperspectief op
functies en hielp leerlingen inzien hoe veranderingen in de ene representatie
een andere beinvloeden. Hoewel de aanpak boeiend en conceptueel rijk
bleek voor de kleine groep 14-jarige deelnemers (vwo-leerlingen), toonden
de bevindingen ook ontwerpissues, zoals het risico dat het leren meer door
de tool dan door het concept werd gestuurd. Al met al laat hoofdstuk 3 door
het iteratief vergelijken van hypothetische leeractiviteiten met werkelijke
leeractiviteiten zien hoe specifieke ontwerpkenmerken — zoals contexten
met lichtstralen, bimanuele coordinatie en directe feedback -
functieconcepten kunnen voeden wanneer ze nauw gekoppeld zijn aan de
beoogde wiskundige inhoud. Deze resultaten legden de basis voor verfijning
van het ontwerp en bredere klassikale toepassing in de volgende deelstudies.

In hoofdstuk 4 pasten we de interventie met digitale, belichaamde
nomogrammen toe in authentieke klassituaties om de haalbaarheid ervan op
grotere schaal te onderzoeken bij 39 derdeklassers (klas 3 vwo). De
onderzoeksvragen voor dit hoofdstuk zijn:
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3 Hoe kan een belichaamd ontwerp met nomogrammen het
functioneel denken bevorderen in een klassituatie?

3.1 Hoe beinvloedt een digitaal, belichaamd ontwerp met
nomogrammen de verschillende aspecten van functioneel denken
bij leerlingen in een klassituatie?

3.2 Hoe dragen de ontwerpkenmerken bij aan de ontwikkeling van
functioneel denken?

In drie digitale, belichaamde leermodules werkten leerlingen met
levensechte contexten (bijv. licht en schaduw), voerden ze bimanuele
coordinatietaken uit, kregen ze directe feedback (groene/rode pijlen) en
navigeerden ze tussen meerdere representaties van functies. Kwantitatieve
bevindingen (vooruitgang tussen voor- en natoets) toonden significante
verbeteringen aan op alle drie de aspecten van functioneel denken: input-
output, covariatie en correspondentie. Leerlingen die aanvankelijk zwak
scoorden op FD lieten bijzonder opmerkelijke vooruitgang zien, terwijl
hoogpresterende leerlingen een prestatieplafond leken te bereiken op het
input-output aspect. Over het algemeen was de vooruitgang in het meer
geavanceerde correspondentiedenken relatief bescheiden, wat wijst op
uitdagingen bij het beheersen van taken die het omzetten van representaties
vereisen (bijv. de overgang tussen nomogrammen, formules en grafieken van
functies). Kwalitatieve data (antwoordvakken in de digitale leeromgeving,
mini-interviews) verduidelijkten hoe belangrijke ontwerpkenmerken de
overgang van concrete sensomotorische ervaringen naar abstract wiskundig
redeneren ondersteunden; een proces waarbij initiéle sensomotorische
ervaringen de articulatie en formalisering van wiskundige concepten
mogelijk maken. Levensechte contexten verankerden het aanvankelijke
begrip van leerlingen; bimanuele bewegingen versterkten het bewustzijn van
covariatie; continue kleurfeedback stimuleerde onmiddellijke aanpassingen
van strategieén; en meerdere representaties verbreedden hun begrip van
functies in verschillende vormen. Hoofdstuk 4 bevestigde de haalbaarheid en
educatieve waarde van de digitale, belichaamde modules in een klassituatie,
en onderstreepte dat belichaamde ervaringen en digitale tools aanzienlijke
leerwinsten in FD kunnen opleveren. Deze resultaten baanden de weg voor
een diepgaander onderzoek op microniveau naar hoe covariationeel denken
zich ontwikkelt, zoals beschreven in hoofdstuk 5.

In hoofdstuk 5 doken we dieper in de microprocessen van FD door
covariationeel redeneren in een digitale, belichaamde omgeving te
onderzoeken. De volgende onderzoeksvraag stond centraal:
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4 Hoe ondersteunen bimanuele bewegingen binnen een digitale,
belichaamde omgeving het covariationeel denken van leerlingen?

Specifiek onderzocht dit hoofdstuk bimanuele bewegingen via hand-
trackingdata, met als doel sensomotorische vloeiendheid te koppelen aan
conceptuele ontwikkeling in covariationeel redeneren (CR). We hebben de
CR-taxonomie van Thompson en Carlson (2017) geoperationaliseerd voor
een belichaamde, bimanuele taakcontext. Dit leverde een instrument op om
leeractiviteiten en wiskundig redeneren beter te analyseren vanuit het
perspectief van belichaamde leerprocessen. Dit stelde ons in staat patronen
in de hand-trackingdata van leerlingen te analyseren en hun CR-niveaus te
classificeren met behulp van het bimanuele CR-raamwerk, variérend van
geen coordinatie (LO) tot soepele continue covariatie (L5). Kwantitatieve
analyses toonden aan dat leerlingen met een hoger initieel CR-niveau
doorgaans sneller soepele, gecodrdineerde bewegingen bereikten (kortere
'Time to fluency' — tijd tot vloeiendheid), wat weerspiegelt hoe bestaand
conceptueel begrip efficiénte motorische coo6rdinatie ondersteunt.
Leerlingen die grotere leervorderingen maakten in CR, brachten doorgaans
meer tijd door in vloeiende codrdinatiefasen (langere 'Fluency time sum' —
totale vloeiendheidstijd). Dit suggereert dat langdurige interactie bij
belichaamde exploratie de ontwikkeling van dieper redeneren kan
bevorderen. Daarnaast boden hand-trackingdata een gedetailleerd inzicht in
perceptie-actiecycli, waaruit bleek hoe leerlingen vertrouwden op directe
kleurfeedback om hun bewegingen iteratief te verfijnen en continue
covariatie te conceptualiseren. Ondersteunend bewijs uit voor- en natoetsen
en mini-interviews bevestigde dat bimanuele taken het begrip van relaties
tussen variabelen vergroten. Methodologisch toonde hoofdstuk 5 hoe het
combineren van hand-tracking maten (Time to fluency en Fluency time sum)
met kwalitatieve inzichten zowel het 'hoe' als het 'waarom' van de
ontwikkeling van het redeneervermogen van leerlingen kan vastleggen. Deze
bevindingen versterkten het idee dat digitale, belichaamde omgevingen —
vooral die met gecodrdineerde handbewegingen en directe feedback —
sensomotorische interactie met functionele relaties kunnen bevorderen in
combinatie met CR.

Hoofdstuk 6 synthetiseert de bevindingen van de vier deelstudies en laat zien
hoe deze gezamenlijk de overkoepelende onderzoeksvraag beantwoorden.
Deze synthese leidt tot de volgende conclusies.

* Nomogrammen kunnen effectieve hulpmiddelen zijn om input-
outputdenken, covariationeel redeneren en het omzetten van
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representaties binnen correspondentiedenken te bevorderen, vooral
wanneer ze worden uitgebreid met directe feedback en bimanuele
taken.

e Belichaamde ontwerpkenmerken (vooral gecodrdineerde bimanuele
bewegingen) creéren aandachtsankers voor abstracte functionele
relaties, waardoor leerlingen kunnen 'voelen' hoe veranderingen in de
ene variabele overeenkomen met veranderingen in de andere.

* De praktische haalbaarheid van dit ontwerp werd aangetoond in
reguliere klassituaties, met empirisch bewijs van leerwinst en positieve
betrokkenheid.

Theoretische implicaties omvatten een dieper begrip van embodied
cognition in wiskundeonderwijs: de vloeiendheid van bimanuele bewegingen
van leerlingen ontwikkelt zich gelijktijdig met hun wiskundig denken. De
bevindingen wijzen erop dat functioneel-dynamische systemen van lichaam
en hulpmiddel — met bimanuele coodrdinatie, directe feedback en
interactieve digitale representaties — de mathematisering van functionele
relaties vergemakkelijken. Methodologisch biedt dit proefschrift een
repliceerbaar kader voor toekomstig ontwerpgericht onderzoek naar
digitaal, belichaamd leren. Specifiek combineert het een systematische
review, iteratief ontwerp van de leeromgeving, klassikale tests en fijnmazige
hand-tracking data analyse om de leerprocessen van leerlingen te
analyseren.

Beperkingen van het onderzoek betreffen onder meer de
afhankelijkheid van specifieke digitale hulpmiddelen (bijv. multi-touch
tablets), de relatief homogene groepen leerlingen en de korte duur van de
interventies. Toekomstig onderzoek zou zich kunnen richten op (a) het
verkennen van low-tech of mixed reality-aanpassingen van nomogrammen,
(b) het uitvoeren van longitudinale studies naar duurzame verbeteringen in
het FD van leerlingen, (c) het integreren van machine learning of Al-gestuurde
analyses voor directe ondersteuning (scaffolding), en (d) het uitbreiden van
nomogramgebaseerde benaderingen naar meer geavanceerde functies op
verschillende onderwijsniveaus. Hoewel de beperkingen tot voorzichtigheid
manen bij het generaliseren van de bevindingen, biedt dit proefschrift een
robuust kader voor zowel toekomstig onderzoek als innovatie van de
lespraktijk in de klas. Concreet draagt deze innovatie bij aan het
wiskundeonderwijs door te laten zien hoe het nomogram effectief kan
worden geintroduceerd in het curriculum voor functies als een dynamische,
interactieve representatie. Bovendien illustreert het de principes en
praktische aspecten van het creéren van 'belichaamde klaslokalen' waar
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leerlingen actief met wiskundige ideeén aan de slag gaan via lichamelijke
beweging en interactie, wat een actievere en leerlinggerichte leerervaring
bevordert.
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nderstanding how things change together is an important skill, both in

mathematics and everyday life, from personal finance to public health.

Learning about these relationships, in mathematics usually modeled as
functions, can be challenging for students because the ideas may feel abstract
and disconnected from their experience. Regular teaching with static formulas
and graphs often fails to help students make sense of how the values of variables
co-vary dynamically. This thesis explores an innovative way to make the learning
of functional thinking, and of covariation in particular, more concrete and
interactive. To do so, we designed a digital learning environment that uses a visual
representation called a nomogram. Our key innovation was to get students to
use both hands to explore these mathematical relationships. By moving points
on two parallel lines on a screen, students experience directly how changes in
one variable affect another variable, based on the function rule. The learning
environment provides real-time feedback: a green arrow appears for a correct
pairing, and a red one for an incorrect match. This feedback helps students adjust
their movement and develop an understanding of covariation. Through a series
of studies, from initial design pilots to trials in regular classrooms, we found
this hands-on approach helped students grasp complex mathematical ideas in
an embodied way. The action of moving the two hands and the perception of
the feedback allowed students to develop a strong feeling for how functions
work. By connecting physical action with abstract thinking through the use of
digital technology, this research demonstrates that sometimes the best way to
understand an abstract concept is to get your hands on it.
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