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Understanding how things change together is an important skill, both in 
mathematics and everyday life, from personal finance to public health. 
Learning about these relationships, in mathematics usually modeled as 

functions, can be challenging for students because the ideas may feel abstract 
and disconnected from their experience. Regular teaching with static formulas 
and graphs often fails to help students make sense of how the values of variables 
co-vary dynamically. This thesis explores an innovative way to make the learning 
of functional thinking, and of covariation in particular, more concrete and 
interactive. To do so, we designed a digital learning environment that uses a visual 
representation called a nomogram. Our key innovation was to get students to 
use both hands to explore these mathematical relationships. By moving points 
on two parallel lines on a screen, students experience directly how changes in 
one variable affect another variable, based on the function rule. The learning 
environment provides real-time feedback: a green arrow appears for a correct 
pairing, and a red one for an incorrect match. This feedback helps students adjust 
their movement and develop an understanding of covariation. Through a series 
of studies, from initial design pilots to trials in regular classrooms, we found 
this hands-on approach helped students grasp complex mathematical ideas in 
an embodied way. The action of moving the two hands and the perception of 
the feedback allowed students to develop a strong feeling for how functions 
work. By connecting physical action with abstract thinking through the use of 
digital technology, this research demonstrates that sometimes the best way to 
understand an abstract concept is to get your hands on it.
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Chapter 1 Introduction 
Picture this: bustling markets, sacks of grains being measured and 
exchanged, or officers calculating how to divide harvests equitably. This was 
real-life mathematics for ancient traders and scholars, dealing with 
functional relationships (Li, 1987; Martzloff, 2007). A concrete example is 
captured in the ‘Sumi problem’ (Figure 1.1), which portrays a proportional 
conversion process. It details how to convert between different types of 
grain measured in consistent units. The functional relationship can nowadays 
be expressed mathematically as husked rice = millet × 3 × 10

5
, where the 

equation ensures precision by accounting for measurement units 
( 斗 and 升 ). By framing the problem as in the text, scholars could help 
traders and officers standardize conversions, ensuring consistency and 
accuracy across different scenarios. In practice, increasing the amount of 
millet by a factor 𝑘𝑘 results in husked rice increasing by the same factor 𝑘𝑘, as 
expected from a direct proportionality. This functional approach also allowed 
for scalability and application of the same reasoning to different grain 
quantities. The underlying proportional reasoning shown here forms a 
foundation of what we now call functional thinking: identifying functional 
relationships between quantities and expressing them systematically. 

1.1 Functional Thinking 
Functional Thinking (FT) is a way of seeing the world. It manifests in specific 
aspects, including input-output thinking, covariation, correspondence, and 
mathematical object views. Input-output thinking helps students identify and 
apply functional rules in everyday contexts, such as calculating the total cost 
of cell phone bills with an input–output chain. Mathematical tools, e.g., the 
Algebra Arrows applet (Doorman et al., 2012) may support this. Covariation 
thinking supports understanding in physics, where concepts like velocity and 
acceleration depend on the simultaneous variation of time and position 
(Confrey & Smith, 1995). Correspondence thinking enables students to map 
functional relationships across multiple representations, such as graphs, 
tables, and formulas (Doorman et al., 2012; Pittalis et al., 2020). 
Mathematical object thinking views functions as objects with distinct 
representations and properties. These representations, e.g., nomograms, 
tables, graphs, formulas, or natural language, offer unique perspectives on a 
function’s character. Recognizing functions as mathematical objects enables 
students to perform higher-order operations such as composition, 
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transposition, and differentiation. Given the target education level of this 
thesis, the aspect of object formation is minimally emphasized. 

Figure 1.1 Sumi problem: Grain distribution  

In a world increasingly driven by data and mathematical models, the ability 
to think functionally is an important life skill. From understanding the slope 
of a line to modeling complex real-world phenomena, FT forms the 
foundation of many modern scientific and technological advances. For 
example, functional relationships underlie complex models for the spread of 
diseases. Such models rely on understanding how variables like infection 
rates, recovery rates, and population size interact dynamically over time 
(Brauer et al., 2009). Moreover, FT is also important for fostering other 
mathematical thinking skills, such as pattern recognition, dynamic reasoning, 
and the ability to generalize mathematical concepts. Pattern recognition 
helps students discern consistent relationships between variables (Cobb & 
Steffe, 1983). Dynamic reasoning builds on this by emphasizing how changes 
in one variable affect another (Thompson & Carlson, 2017), especially when 
time is involved as a parameter to reason both quantitatively and 
qualitatively (Keene, 2007). FT also acts as a prerequisite for generalization 
in some cases and lays the foundation for algebraic reasoning even in early 
grades (Blanton & Kaput, 2011). For instance, recognizing that doubling one 
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quantity results in doubling another within proportional relationships (e.g., if 
𝑓𝑓(𝑥𝑥) = 3𝑥𝑥, and 𝑥𝑥 doubles from 2 to 4, 𝑦𝑦 doubles from 6 to 12) supports the 
ability to generalize this pattern to all linear functions 𝑓𝑓(𝑥𝑥) = 𝑘𝑘 ∙ 𝑥𝑥. This early 
exposure to functional relationships fosters an intuitive grasp of algebraic 
structures. In this sense, FT provides the conceptual framework to analyze 
specific cases and abstract general rules. 

Developing FT presents significant challenges. A common barrier is 
students’ limited understanding of functions, often restricting them to 
proportional or linear relationships. This restricted view may prevent them 
from grasping more complex relationships such as exponential or quadratic 
models, which are fundamental to modeling real-world phenomena (Ellis et 
al., 2016). Furthermore, research shows that students often fail to connect 
different representations of functions, such as graphs, tables, and equations 
(Panasuk & Beyranevand, 2010). This difficulty limits their ability to flexibly 
interpret functional relationships and apply mathematical reasoning in 
different scenarios. Moreover, traditional teaching methods tend to focus on 
static representations, such as paper-based graphs or symbolic equations. 
While these representations are valuable, they lack the dynamic, interactive 
qualities that help students build robust, flexible understandings (Günster & 
Weigand, 2020). The rise of digital tools has made it possible to provide 
students with dynamic explorations of functional relationships. For instance, 
seeing how the graph of a function changes in real-time as one adjusts its 
parameters can illuminate the concept of trigonometric function in ways that 
static graphs cannot (Shvarts & van Helden, 2021). The role of digital 
technology in supporting FT will be discussed in detail in section 1.4. 

1.2. Nomograms 
There are many different ways to present functions, including natural 
language, equations, graphs, tables, and, slightly less common, nomograms. 
Nomograms, also referred to as arrow graphs or parallel axis representation, 
have been used as a visualization tool in mathematics to represent functions. 
A nomogram consists of two parallel number lines connected by arrows that 
represent a functional relationship. Specifically, these arrows map values on 
the input axis (𝑥𝑥) to corresponding values on the output axis (𝑓𝑓(𝑥𝑥)), usually 
at regular intervals (Figure 1.2).  

The history of this approach traces back to the mid-20th century, with 
significant contributions from various mathematicians and educators. 
Richmond (1963) used arrow graphs as a means to illustrate fundamental 
calculus concepts, such as continuity, derivatives, and composition of 



Chapter 1 

10  

functions, using two parallel lines to represent the domain and range. He 
emphasized the pedagogical advantages of this representation, noting how it 
simplifies complex ideas like the chain rule and derivatives through visual 
intuition. Building on Richmond’s work, Brieske (1978) expanded the use of 
mapping diagrams to demonstrate properties of continuous functions and 
derivatives. He highlighted their potential in helping students visualize the 
concepts that traditional Cartesian graphs struggle to convey, such as 
composition and continuity of composite functions. In 1996, Bridger refined 
mapping diagrams further, advocating for their use in fostering a dynamic 
perspective of functions. He introduced animated mapping diagrams, which 
allow users to interactively explore the relationship between input and 
output values, which innovatively introduced a process-oriented view of 
functions as associations rather than static graphs.  

Figure 1.2 Nomogram representing the function 𝑓𝑓:𝑥𝑥 → 𝑥𝑥2 

Note. This nomogram was created in GeoGebra by Rogier Bos 
(https://www.geogebra.org/m/snqnbnzz). 
 

Closer to the field of secondary education, similar uses of nomograms like 
Parallel Axes Representations (Nachmias & Arcavi, 1990), and DynaGraphs 
(Goldenberg et al., 1992; Sinclair et al., 2009) have gained attention as fruitful 
methods for teaching and learning functions. These representations enable 
students to experience functions as processes rather than static entities. For 
example, students can manipulate one variable and immediately observe its 
effect on the output through DynaGraphs. Figure 1.3 shows how nomograms 
can be used to visualize relationships between variables. Figure 1.3a shows 

https://www.geogebra.org/m/snqnbnzz
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two different nomograms. The top one represents an increasing function 
with two convergent arrows, such as 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥

2
.  Here, if 𝑥𝑥1 >  𝑥𝑥2, then 

𝑓𝑓1(𝑥𝑥1) >  𝑓𝑓1(𝑥𝑥2). The bottom nomogram represents a decreasing function 
with two intersecting arrows, such as 𝑓𝑓2(𝑥𝑥) = −𝑥𝑥

2
. If 𝑥𝑥3 >  𝑥𝑥4, 𝑓𝑓2(𝑥𝑥3) <

 𝑓𝑓2(𝑥𝑥4). Figure 1.3b compares two nomograms to their corresponding 
Cartesian graphs: 𝑓𝑓3(𝑥𝑥) = |𝑥𝑥|, and 𝑓𝑓4(𝑥𝑥) = −2𝑥𝑥 + 2.  

Figure 1.3 Nomograms representing different functions  

In the context of this thesis, nomograms play a central role in exploring FT. 
This explicit visualization allows students to observe how input values are 
transformed into outputs through the function. As shown in Figure 1.4, a 
nomogram in a digital-embodied learning environment highlights this 
mapping process. Students can drag the two points vertically to adjust their 
values on the respective number lines and plot the target function. When the 
two points are placed correctly on the respective number lines according to 
the target function, the connecting arrow turns green, and its trace remains 
visible. However, if the placement of the two points does not accurately 
represent the target function, the arrow between them will turn red. In all, 
the use of nomograms provides students with a hands-on, interactive way to 
explore functions. 
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Figure 1.4  A digital-embodied nomogram representing 𝑓𝑓: 𝑥𝑥 → −𝑥𝑥 

1.3 Embodied learning  
One of the challenges in mathematics education is helping students connect 
abstract concepts—often represented by symbolic notation—and the 
tangible experiences that give these concepts meaning. Embodied design 
provides a potential solution to these challenges by integrating physical 
actions with cognitive processes (Barsalou, 1999; Lakoff & Núñez, 2000; 
Abrahamson & Lindgren, 2014). According to this perspective, the body is not 
just a vessel for the brain; instead, cognition emerges through interactions 
between the mind, the body, and the artifact (Shvarts et al., 2021). Rather 
than treating perception, action, and reasoning as isolated processes, 
embodied cognition emphasizes the seamless integration of these elements. 
When students use their bodies to explore mathematical relationships (e.g., 
moving objects, gesturing, or physically enacting patterns), they create 
sensorimotor experiences that support their understanding of abstract 
concepts. 

Building on these theoretical underpinnings, embodied design involves 
creating learning experiences that intentionally incorporate action and 
perception as central components of conceptual development (Abrahamson 
& Lindgren, 2014; Shvarts & Abrahamson, 2021). Embodied design involves 
creating learning experiences that intentionally incorporate action and 
perception as central components of conceptual development (Abrahamson 
& Lindgren, 2014). Instead of viewing abstract mathematical concepts as 
purely symbolic, embodied design situates learning in tasks that include 
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students’ bodily engagement, such as gesture, whole-body movement, or 
tangible manipulation. For example, in an augmented reality sandbox (Figure 
1.5a), students adjust the steepness of planes while observing a rolling 
marble’s trajectory, deepening their understanding of gradients and rate of 
change (Bos et al., 2022). Additionally, gesture-based learning, such as using 
hand movements to represent the sides of geometric shapes, facilitates 
comprehension of properties like symmetry and congruence. Similarly, 
whole-body movement activities, like walking along a number line taped on 
the floor (Vollmuller et al., 2023), help students grasp numerical relationships 
and operations through physical enactment. These embodied interactions 
create iterative loops between perception and action and further support the 
development of body potentialities for the designed tasks. For example, 
research suggests that two-hand movements can assist in understanding sine 
graphs. The movements clarify the connection between the arc length of a 
unit circle and the 𝑥𝑥-coordinate of the corresponding point on the emerging 
sine graph (see Figure 1.5b, Shvarts et al., 2021). While embodied tasks do 
not necessarily lead to full comprehension of these concepts, they provide 
students with sensorimotor experiences that can support their 
understanding and reasoning. 

Figure 1.5 Embodied tasks (Bos et al., 2022; Shvarts et al., 2021) 
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1.4 Digital technology in the classroom 
In recent years, the rapid integration of digital technologies in education has 
opened up new ways for exploring abstract mathematical ideas like 
functions. In today’s classrooms, interactive, multi-touch screens and 
motion-sensing tools provide new opportunities for students to engage 
physically with mathematical concepts. These tools enable real-time 
feedback, foster collaborative learning, and help students visualize abstract 
ideas in a dynamic and intuitive way (Drijvers & Sinclair, 2024; Engelbrecht & 
Borba, 2024; Moreno-Armella et al., 2008). For example, students can use 
digital environments, such as GeoGebra or Numworx, to manipulate graphs 
dynamically, observing real-time changes as they adjust parameters or 
variables (Brown, 2015; Falcade et al., 2007; Lindenbauer, 2019; Rolfes et al., 
2020; Shvarts & van Helden, 2023). This not only replicates but also amplifies 
the tangible experience of traditional physical instruments: students actively 
pull, drag, and transform mathematical objects on screen, embodying the 
relationships in a dynamic way.  

Similarly, motion-sensing tools, like hand trackers or controllers 
integrated into AR and VR environments, allow students to map their physical 
movements to coordinate points on a graph (Malaspina & Malaspina, 2020). 
For instance, an AR application can generate a function graph based on the 
algebraic expressions, two-dimensional designs, or oral descriptions, 
allowing students to observe slopes at different points, rotate or flip the 
whole graph, or experiment with scaling (del Cerro Velázquez et al., 2021; 
Schutera et al., 2021). In an AR sandbox study (Bos et al., 2022), students 
were invited to roll a marble down a plane, while adjusting the plane’s 
orientation and steepness. The AR sandbox can project real-time height lines 
onto the plane with the marble’s trajectory perpendicular to these lines. 
Studies suggest that such embodied, spatial experiences can strengthen 
students’ conceptual understanding by connecting abstract representations 
to real-world movement and observation (Bujak et al., 2013). By designing 
tasks that integrate digital and physical interactions, we can make the 
abstract nature of functions more accessible and intuitive. Students can 
therefore see, feel, and experiment with abstract concepts. Tools like the 
nomogram provided a tangible bridge between the physical and abstract 
when we embedded it in a digital-embodied learning environment. 

Much has been achieved in using digital technology and embodied 
methods to make mathematical concepts more accessible, yet gaps remain—
particularly around the process of “abstracting” the mathematical structures 
from these embodied experiences. Existing research emphasizes that 
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although physical engagement can anchor conceptual understanding, 
students may struggle to identify which aspects of their bodily actions or 
spatial manipulations correspond to algebraic symbols and geometric 
features (Abrahamson et al., 2020; Bartolini & Martignone, 2020; Wittmann 
et al., 2012; Alibali & Nathan, 2013). In the context of covariational reasoning, 
for instance, embodied experiences can provide a concrete foundation for 
understanding how variables vary together. However, students may find it 
difficult to generalize these experiences into a broader understanding of 
functional relationships that can be expressed symbolically. This transition 
involves shifting from a procedural understanding—where concepts like 
functions or geometric figures are experienced through actions or 
measurements—to a more structural understanding, where these concepts 
can be represented and manipulated within formal symbolic systems.  

Therefore, my PhD journey seeks to address this challenge by 
leveraging the potential of digital-embodied learning environments, which 
provides the rich intuitions generated by sensorimotor experience while 
systematically guiding students toward abstract mathematical reasoning. In 
doing so, I stand on the shoulders of giants, drawing connections between 
past innovations and future possibilities. 

1.5 Overview of the thesis 
This study addressed the research question: How does hands-on work with 
nomogram tasks foster students’ FT development in a digital‐embodied 
learning environment? By designing and implementing nomogram tasks in 
the digital-embodied learning environment, we aimed to uncover the 
mechanisms through which these interactive experiences support the 
growth of students’ FT. To achieve this aim, four sub-studies form the body 
of the thesis (Figure 1.6).  
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Figure 1.6 An overview of the chapters 

Chapter 2: Systematic Literature Review 
The first sub-study involved a systematic review of the existing literature on 
embodied approaches to fostering FT using digital technology. The review 
was conducted using databases such as Scopus, ERIC, and Web of Science, to 
answer the following research question and sub-questions:   

RQ 1 How does research literature inform an embodied approach to FT 
using digital technology that invites abstraction? 

RQ 1.1 Which role of technology is widely used in developing functional 
thinking? 

RQ 1.2 What is known about different abstraction stages of functional 
thinking? 

RQ 1.3 Which embodied approaches can be identified in the literature on 
developing functional thinking? 

This study included a detailed analysis of 51 studies, categorizing them based 
on the types of embodied design (action-based, perception-based, and 
pseudo-embodiment) and their applications in fostering different aspects of 
FT (input-output, covariation and correspondence). The findings provide a 
comprehensive understanding of the current state of research and highlight 
gaps that this PhD project aims to address, such as the lack of empirical 
studies on the effectiveness of embodied designs in secondary school 
settings, limited exploration of how specific types of embodied tasks foster 
different aspects of functional thinking, and the need for frameworks that 
link embodied cognition to digital technology integration. 
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Chapter 3: Design of Learning Environments and Laboratory Pilot 
The second sub-study focused on the iterative design and development of a 
digital-embodied learning environment. Drawing on theoretical frameworks 
such as embodied cognition and emergent modeling, tasks were designed to 
address three key aspects of FT: input-output, covariation, and 
correspondence. The study centered on the research question and sub-
questions: 

RQ 2 How can an embodied design using nomograms foster functional 
thinking? 

RQ 2.1 How does a light ray context foster the students’ meaning making 
of nomograms? 

RQ 2.2 How do bimanual movement tasks foster covariational thinking? 
RQ 2.3 How do different function representations and their conversions 

support a correspondence view on functions? 

The design process followed a three-stage embodied design framework and 
involves creating hypothetical learning trajectories (HLTs), which outline the 
hypothetical learning processes and conceptualizations for each task. These 
HLTs are refined through iterative cycles of implementation, analysis, and 
redesign, using students’ exploration, and interview data are analyzed to 
ensure alignment with the learning goals. Two main types of embodied tasks 
were developed: action-based tasks, which emphasize physical manipulation 
to ground mathematical concepts, and perception-based tasks, which 
leverage visual and sensory experiences to support learning. A laboratory-
based experiment was conducted with two pairs of Grade 9 students to pilot 
the digital-embodied learning environment. The study involved a 90-minute 
intervention, followed by a 15-minute interview to gather students’ 
reflections, which further informed subsequent redesigns. 

Chapter 4: Classroom Implementation and Impact 
The third sub-study investigated the implementation and impact of the 
digital-embodied learning environment in a classroom setting. The research 
question and sub-questions for this study were: 

RQ 3 How can an embodied design using nomograms foster functional 
thinking in a classroom setting? 

RQ 3.1 How does a digital-embodied design using nomograms affect the 
various aspects of functional thinking among students within a 
classroom setting? 

RQ 3.2 How do the design features contribute to the development of 
functional thinking?? 
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Conducted as a teaching experiment, this study included three 1-hour 
sessions with Grade 9 students from an international school in the 
Netherlands. Each session targeted specific aspects of FT: the first focused 
on input-output, the second on covariation, and the third on 
correspondence. Each session began with a brief introduction to the day’s 
concept (5 minutes), followed by interactive tasks using tablets (45 minutes), 
and concluded with a whole-class discussion to consolidate learning (10 
minutes). Pretests assessed baseline FT levels, while posttests measured 
learning gains after the final session. The classrooms, equipped with tablets, 
supported both individual and collaborative task exploration. This setup 
fostered active discussion and teamwork as students explored embodied 
tasks with real-time feedback. Data sources include pre and posttests, 
classroom observations, and mini interviews to assess improvements in 
students’ FT levels. 

Chapter 5: Hand-Tracking and Learning Outcome Study 
The final sub-study zoomed in at the most noticeable aspect of FT, 
covariational reasoning (CR). This study investigated the following research 
question: 

RQ 4 How do bimanual movements within a digital-embodied 
environment support students’ covariational reasoning? 

Two hypotheses guide the analysis: 

Hypothesis 1 Higher levels of CR correlate with a shorter Time to fluency. 
Hypothesis 2 Higher levels of learning gains in CR correlate with a longer 

Fluency Time Sum. 

This study used hand-tracking technology to explore the relationship 
between students’ hand movements and their CR. Both quantitative metrics 
(e.g., time to fluency, which measures how quickly students achieve smooth, 
coordinated hand movements, and fluency time sum, which reflects the total 
time spent in fluent coordination phases) and qualitative insights from hand-
tracking trace analysis and post-task probes were analyzed. This mixed-
method approach combined pre and posttests, hand-tracking data, and 
student reflections to comprehensively analyze how embodied interactions 
support CR development. The analysis framework of hand-tracking data was 
based on Thompson and Carlson’s CR taxonomy, operationalized for the case 
of bimanual movement. It categorized students’ CR levels from no 
coordination (L0) to smooth continuous covariation (L5). Students’ bimanual 
movement patterns, reflected by trace continuity, coordination, and green 
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feedback, were examined within this framework to reveal how perception-
action loops and attentional anchors contribute to their improvements in CR. 

Chapter 6: General conclusion and discussion 
This final chapter synthesized the findings from the four sub-studies, 
providing a comprehensive overview of how the research contributes to the 
understanding and development of FT in mathematics education. By 
reconsidering the role of bodily movement through epistemological, 
ontological, and affective-cognitive lenses, the discussion highlighted both 
the affordances and challenges of embodied design for fostering FT. 
Additionally, the implications of these findings for pedagogy, digital learning 
artifacts, and future research directions were explored. 
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Chapter 2 An embodied approach to abstract 
functional thinking using digital technology:  
A systematic literature review 
 

Abstract Embodied cognition has recently gained increasing attention in 
mathematics education research. However, little is known about ways to use an 
embodied approach to reach for mathematical abstraction. In this study, we 
investigate this topic, for the case of functional thinking (FT) using digital technology 
(DT), through a systematic literature study. We searched four databases, resulting in 
a corpus of 51 papers. As a result, we found that action-based and perception-based 
embodied approaches to contextual/situational abstraction are more prevalent in 
literature than pseudo-embodied approaches. In addition, the covariation and 
correspondence views on function are more frequently addressed compared to 
input-output and mathematical object views. We conclude with a discussion on the 
interplay of embodied approaches and abstraction in FT. For future research, we 
suggest investigating embodied approaches using digital technology for developing 
FT concerning different types of mathematical abstraction. 

Keywords Functional thinking; Embodied cognition; Digital technology; 
Mathematical abstraction 
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2.1 Introduction  
Since the beginning of the twentieth century, developing functional thinking 
(FT) skills is considered a central area of mathematics throughout primary, 
secondary, and tertiary education (Vollrath, 1986). Students need functional 
thinking—thinking in terms of relationships, interdependencies, and 
changes—for both later professional and daily life. FT includes understanding 
relations between real-world quantities, in the form of various mathematical 
functions. For example, public understanding of exponential growth turns 
out to be important to create support for measures during a pandemic, like 
the recent COVID-19 outbreak. In this regard, FT has received considerable 
attention from educators and researchers in past decades. 

Technological advances have led researchers to explore novel ways to 
address FT in mathematics teaching and learning. A challenge in 
incorporating technology in mathematics classrooms is to identify and utilize 
various didactical functionalities of the digital technology (DT) (Drijvers et al., 
2011), which will be detailed in the theoretical background section. Some 
more recent technologies, like touch screens, virtual/augmented reality and 
motion sensors, enable whole-body involvement in mathematics education. 
To meet the need for embodied design, Drijvers (2019) proposed an 
embodied instrumentation approach, offering design heuristics for embodied 
activities in a technology-rich environment. However, the extent to which 
embodiment has been explored for teaching functional thinking remains 
unclear. We are interested in studying the role of technology and 
embodiment in the teaching and learning of FT.  

The development of FT progresses from concrete to more abstract 
notions of functional relationships. Researchers have theorized different 
layers and stages of abstraction in both general mathematics education and 
functional thinking (El Mouhayar & Jurdak, 2015; Ellis et al., 2016; Günster & 
Weigand, 2020; Tanişli, 2011). Treffers (1987) put forward horizontal 
mathematization and vertical mathematization, which can be viewed as 
stages of abstraction. We would like to study how students can be provided 
with an efficient and effective learning environment that fosters various 
abstraction stages of FT. In particular, we are interested to see how embodied 
learning environments facilitate the process of abstraction in the case of FT.  

Overall, this systematic literature review addresses the following main 
research question: How does research literature inform an embodied 
approach to FT using DT that invites abstraction? 
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2.2 Theoretical background 
This section presents four perspectives related to the literature review and 
ends with theoretical frameworks for this study. 

Functional Thinking 
The concept of FT can be traced back to the investigation of children's 
understanding of proportionality in functions (Inhelder & Piaget, 1958). The 
term "Functional thinking" was first used at the Meran Conference in 1905 
(Vollrath, 1986). Researchers regard FT as a mathematical ability 
characterized by the following descriptions: (1) FT is a fundamental activity 
for working on functions (Vollrath, 1986); (2) FT is the ability to state, 
postulate, produce, and reproduce dependencies between variables 
(Freudenthal, 1983); and (3) FT is mathematical thinking on assumptions 
about dependency, that can be tested and, if necessary, revised (Burton, 
1984). 

With the development of mathematics education research, the 
definition of FT has diversified. For instance, an action/operational view 
stresses the operational and computational character of the function 
concept, considering a function as an input-output assignment. A dynamic 
view emphasizes the covariation of the dependent variable with the 
independent variable, or two variables depending on another one. A more 
static view, including the mapping view, leads to a more formal definition of 
function as a set of ordered pairs. Moreover, definitions of a function vary at 
different educational levels. 

As described above, FT encompasses the process of describing, 
building, and reasoning about/with functions (Pittalis et al., 2020; Stephens 
et al., 2017). Specifically, three often-mentioned aspects of FT are (Confrey & 
Smith, 1995; Doorman et al., 2012; Vollrath, 1986):  

1. Input-output thinking. Concerning input-output thinking, a function 
is regarded as an input-output assignment that helps to organize and 
to carry out a calculation process, in which pattern recognition 
related to pre-algebraic thinking is regarded as a first step.  

2. Covariation and correspondence thinking. This aspect emphasizes 
that the dependent variable co-varies with the independent. The 
independent variable, while running through the domain set, causes 
the dependent variable to run through a range set, which includes 
the mapping view.  
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3. Mathematical object thinking. In this aspect, a function is a 
mathematical object which can be represented in different ways, 
such as arrow chains, tables, graphs, formulas, and phrases, each 
providing a different view of the same object. 

Digital Technology 
In this study, we focus on digital technologies that facilitate learning 
materials for FT or supports FT learning processes. Commonly used types of 
DT for FT include calculators or calculation software, dynamic geometry 
software (DGS), and computer algebra system (CAS).  

Some of these technologies allow interaction of a more dynamic, 
interactive nature, such as dragging sliders and manipulating objects with a 
mouse. Studies point out that the action of dragging in DGS can potentially 
assist students in understanding dependencies in constructions through the 
recognition of mathematical invariances (Monaghan & Trouche, 2016). The 
most common draggable objects are sliders and (representations of) 
geometric objects (e.g., lines and points). When a slider is provided for a 
variable, the action of dragging can result in a continual reshaping of the 
figure according to the corresponding variable value (Lagrange & Psycharis, 
2014).  

Aside from dragging with a mouse, DT has evolved to be much more 
body-oriented: multi-touch screens, augmented and virtual reality platforms, 
motion sensors, and gesture-recognition systems offer students rich 
opportunities for embodied interactions (Shvarts et al., 2021). For example, 
motion detectors and object detection can be employed in the classroom to 
learn about the graphs of functions (Ferrara & Ferrari, 2020; Nemirovsky et 
al., 2013).  

When utilizing DT for teaching FT, a challenge lies in combining the 
different mathematical functionalities and didactical functionalities of the DT 
(Drijvers et al., 2011). Drijvers (2018) identified five mathematical 
functionalities of DT: algebraic work, graphing tasks, statistical analyses, 
calculus procedures, and geometric jobs. Clearly, the mathematical 
functionality of a tool is intrinsically linked to mathematics itself. Some tools 
can serve multiple mathematical functionalities, such as GeoGebra, which 
can be used for algebraic work, graphing tasks and geometric tasks. In the 
context of FT, we restrict our attention in this study to four mathematical 
functionalities of DT: Number and Algebra, Graphing, Geometry and Calculus. 
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Drijvers et al. (2011) proposed three main didactical functionalities of 
DT in mathematics education: (1) doing mathematics, (2) practicing skills, and 
(3) developing conceptual understanding. These didactical functionalities are
major factors influencing students' mathematics achievements (Gray et al.,
2010). The three didactical functionalities of DT are not mutually exclusive
but are intertwined. Based on the viewpoint of Drijvers et al., Young (2017)
adapted these didactical functionalities and put forward three broad
categories: (1) computation enhancement technologies; (2) instructional
delivery enhancement technologies; and (3) presentation and modelling
enhancement technologies. Concerning the domain of the function, Günster
& Weigand (2020) provided a category system 'digital technologies (DT)
usage'. This system encompasses six usages of DT in terms of function
learning: (1) Variation within the learning arrangement, (2) Feedback through
the learning arrangement, (3) Use of sliders, (4) Creating objects, and (5)
Adjusting existing objects and (6) Zooming in and out.

Figure 2.1 The mathematical and didactical roles of digital technology for FT 

For the purpose of this study, we adapted both the mathematical 
functionalities and didactical functionalities to align with the particular types 
of digital technology. Instead of using the term “functionality”, we use 
“mathematical role” and the “didactical role” of DT in the following text. The 
result of these adaptations can be found in Figure 2.1, which illustrates how 
this study combines the types of mathematical roles and didactical roles for 
our analysis. 
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An embodied approach to mathematics education 
Several theories concern the role of the body in cognition and learning. Based 
on Conceptual Metaphor Theory in cognitive linguistics (Lakoff & Johnson, 
1980), Lakoff and Núñez (2002) analysed the cognitive structure of 
mathematics, arguing that the kinds of everyday conceptual mechanisms, 
image schemas, aspectual schemas, conceptual metaphors, and conceptual 
blends are central to mathematics. Barsalou (1999) frames embodiment 
through grounding experiences. The role of sensorimotor experiences—
perceptions, motor action, like gestures—in mathematics education has 
been stressed in many studies on embodied design (e.g., Abrahamson, 2016; 
Shvarts et al., 2021). 

Abrahamson (2009) introduced a precise description of embodied 
design (a term first coined by Rompay and Hekkert (2001)) as a systematic 
and procedural design method. Initially, embodied design consisted of two 
types: perception-based design and action-based design (Abrahamson, 2009; 
Abrahamson & Lindgren, 2014). Action-based designs aim to ground 
mathematical concepts in students' natural capacity to adaptively solve 
sensorimotor problems. Perception-based designs aim to ground 
mathematical concepts in students' natural perceptual ability in their naive 
perceptions of a situation. Like the action-based genre, it is followed by a 
phase of reflection in which these views are developed. Additionally, Bos et 
al. (2022) propose another type of embodied design, incorporation-based 
design, in which a DT functionality is deliberately removed from the learning 
environment, inviting students to perform this functionality with their 
bodies. 

For classification purposes, this paper suggests another type of 
embodied design—pseudo embodiment (Wei et al., 2022)—to capture 
embodied elements from existing studies, even if these studies do not 
explicitly use or mention embodied design (in Abrahamson's precise sense). 
In all, action-based and perception-based embodiments are relatively well 
established, while the incorporation-based embodiment is still at a 
rudimentary stage. In this study, we investigate how these four types of 
embodied approaches—action-based embodiment, perception-based 
embodiment, incorporation-based embodiment and pseudo embodiment—
are involved in studies on the teaching of FT.  

We focus on the following three aspects of embodied approaches: (1) 
Providing sensorimotor/gestural experiences, (2) Providing real-time or 
delayed feedback and (3) Mathematizing action-perception loops. With 
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respect to aspect (2), we note that an embodied approach is often facilitated 
by feedback from DT. This often takes the form of continuous motion 
feedback, allowing students to discover and practice a new way of moving to 
provoke mathematical concepts (Alberto et al., 2021; Duijzer et al., 2019). 
Concerning aspect (3), we recall how Shvarts et al. (2021) theorize that 
mathematical knowledge emerges as part of a complex dynamic behavioral 
system that is constituted through multiple perception-action loops. 
Mathematical knowledge and meaning are then developed from those 
perception-action loops. 

Mathematical abstraction  
Piaget et al. (1966; 1977) distinguished two types of abstraction, which are 
empirical abstraction and reflective (or reflecting) abstraction. Empirical and 
reflective abstraction are contrasting but not completely exhaustive 
(Moessinger & Poulin-Dubois, 1981). In empirical abstraction, the processes 
are embedded in reality: shape, length, angle and so on. In comparison, 
reflective abstraction is drawn not from the object that is acted upon, but 
from the action itself.  

To connect general abstraction with mathematical abstraction, we 
introduce horizontal mathematization and vertical mathematization (Treffers, 
1987). Horizontal mathematization refers to the transformation from realistic 
problems to mathematical problems, which is the process of expressing 
contextual problems as mathematical problems. This process can be further 
divided into two types of abstraction: contextual/situational abstraction and 
referential abstraction (Gray & Tall, 2007; Mitchelmore & White, 2007; 
Gravemeijer & Stephan, 2002). Vertical mathematization refers to the 
mathematization after horizontal mathematization, which is the 
transformation process from specific mathematical problems to abstract 
concepts and methods. Vertical mathematization can be regarded as a 
reflective abstraction that requires the reconstruction of learners' 
mathematical concepts. This is completely different from empirical 
abstraction and can be further classified into two types of abstraction: 
particular abstraction and general abstraction (Blanton et al., 2005; Gray & 
Tall, 2007; Mitchelmore & White, 2007; Stephens et al., 2016). 

Drawing from these theories, in this study, we set up a Function-
Abstraction-Matrix (Table 2.1) consisting of two main dimensions: 
Abstraction stages and functional thinking. One dimension outlines the major 
abstraction stages that students may follow when abstracting in 
mathematics. The other dimension emerges from the three often-mentioned 
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aspects of FT: Input-output, Covariation and correspondence, Mathematical 
object. We distinguish the following four stages of abstraction: 

1. Contextual and situational abstraction: recognize properties of 
functions in real-life experience/contexts/situation. For example, 
recognize the linear relationship between the height of a plant and 
growth time in plant growth situations. 

2. Referential abstraction: extract the properties of a function by 
abstracting from real-life situations, or their representations (e.g., 
ratio table), but not yet completely separated from the situation. 
Students refer to a situation by means of a given mathematical 
representation or using non-mathematical utterances. For example, 
students can use given function formulas/graphs to represent and 
model a distance-time relationship. 

3. Particular abstraction: use graphs, symbols, and formulas to 
represent one particular decontextualized function/functional 
relationship. So, using mathematics as the new context rather than 
the real-life context, the mathematical representations are the 
"world in which we are" and as such, replace the initial 
context/situation. For example, identify one particular linear 
functional relationship using a formula, without a very general 
mathematical scope attached to it yet. 

4. General abstraction: vertically mathematises general 
functions/functional relationships and constructs new structures. 
More on classes of mathematical objects and their properties and 
relations. For example, construct a composite function 'find 𝑓𝑓(2𝑥𝑥) if 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 1'. 

Table 2.1 The function-abstraction-matrix 

 Functional thinking 

Abstraction stages Input-output Covariation and 
correspondence 

Mathematical 
object 

Contextual and 
situational 
abstraction 

   

Referential 
abstraction  

   

Particular abstraction     

General abstraction    
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The theoretical perspectives in this section enable us to present an 
integrated framework to study our overall research question. To thoroughly 
investigate this topic, we will focus on three research questions, each 
examining different aspects of the main question. First, we will determine 
the prevalent role of technology in fostering functional thinking: 

RQ 1 Which role of technology is widely used in developing 
functional thinking? By understanding which mathematical 
and didactical roles are prevalent, we aim to uncover the 
potential relationships between these roles and their 
potential effective use within an embodied approach to 
functional thinking using digital technology.  

RQ 2 What is known about different abstraction stages of 
functional thinking? Understanding the various abstraction 
stages associated with functional thinking enables us to 
recognize how an embodied approach might influence them. 
This understanding can help us tailor the embodied approach 
to effectively facilitate the progression through different 
abstraction stages, ultimately promoting a deeper and more 
nuanced grasp of FT. 

RQ 3 Which embodied approaches can be identified in the 
literature on developing functional thinking? Exploring the 
embodied approaches found in the literature allows us to 
identify effective strategies and best practices for integrating 
embodiment and functional thinking in a DT-based learning 
environment. This knowledge can guide the design of an 
embodied approach that not only effectively supports 
functional thinking but also encourages abstraction, ensuring 
a comprehensive and engaging learning experience. 

2.3  Method 
To address the research questions, we carried out a systematic literature 
search, followed by a content analysis.  

Systematic literature search 
The literature search was conducted in four databases: ERIC, PsycINFO, 
Scopus, and Web of Science, and we searched for relevant studies published 
in peer-reviewed journals and written in English. Duijzer et al. (2019) 
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mentioned that some articles may not (yet) mention embodied cognition as 
the main or related theory but still apply its core characteristics. This 
reminded us that an arbitrary date limitation would reduce the available 
articles, so we did not restrict the publication dates of the articles. Also, 
qualitative studies, quantitative studies and mixed-method studies were 
collected simultaneously, and the qualitative data provided a main and 
supportive role by providing details of learning designs, and records of the 
analysis. In the course of our ongoing search attempts, we defined a query 
including the four key notions in our research question: Functional Thinking 
× (Embodiment OR Abstraction/Reification OR Digital Technology). See 
Appendix 1 for the full query. Our initial search, conducted on December 7, 
2020, yielded 397 journal articles. After deduplication, 333 unique 
publications remained. 

Screening for articles 
The article screening phase was conducted within the FunThink Erasmus+ 
project and consisted of three rounds (Figure 2.2): The first round started 
with a quick scan of the detailed information, such as the title, abstract and 
keywords of the article, to judge each article's relevance to each of the four 
aspects: Functional Thinking (FT), Embodiment (EM), Digital Technology (DT) 
and Abstraction (AB). At the end of this round, 177 papers—empirical as well 
as theoretical papers—were initially collected with the help of ten coders 
from the FunThink Erasmus+ project. The second round was carried out in a 
more rigorous manner. Fifteen coders participated in the literature appraisal 
round, during which each coder read the full texts and finished a spreadsheet 
containing the core ideas and overall appraisal of each article. This resulted 
in the exclusion of eighty-four articles and the final selection of ninety-three 
articles for our review. Finally, we directly eliminated the articles coded 0 to 
2 as they were deemed less relevant to our review study (n=42). As a result, 
fifty-one articles are included in the final corpus. To ensure rigor in the coding 
and appraisal process, each article was evaluated by at least three coders 
using the established criteria. 

Content analysis 
As a method to conduct literature reviews in a transparent, systematic, and 
rule-governed way, content analysis requires rigorously collecting, filtering, 
and classifying the existing research context (Mayring, 2004). During the 
analysis process, all fifty-one articles from the final corpus were included. 
These studies were categorized into three main classes based on the coding 
result: (1) digital technology and functionality; (2) embodied approach and 
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cognitive contribution; and (3) abstraction stage and functional thinking. We 
classified the articles in each class based on different structural dimensions 
and related analytic categories provided in the theoretical background 
section. Triangulating the bibliometric findings with expert content analysis 
helped to reveal the role of different aspects in FT. The classification of 
studies into different aspects forms the basis and structure for the 
presentation of results in the following section. 

Figure 2.2 Flowchart of the literature selection 

2.4 Results 
This section starts with a descriptive analysis of the reviewed literature. To 
address our research questions, we first describe the results of the content 
analysis on functional thinking and the role of digital technology, its relation 
to abstraction and embodied approaches. Finally, we address the main topic, 
the interplay between embodiment and abstraction. 

Descriptive analysis 
The main goal of the descriptive analysis conducted in this study is to identify 
the occurrence distribution of each aspect (digital technology, mathematical 
abstraction, and embodied approach) as well as the current research trends. 
As evident from Figure 2.3, DT is the most frequent category, with 
embodiment being relatively new in its applications, and the category of 
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abstraction the least, as not many studies explicitly mention both FT and 
abstraction. 

Figure 2.3 Venn diagram of the reviewed articles 
 

The distribution of these fifty-one reviewed articles over publication year is 
shown in Figure 2.4, which shows that there has been an upward trend in the 
number of studies on the development of FT. 

Figure 2.4 Distribution of publication year of the reviewed articles 

With respect to the FT dimension, Figure 2.5 reveals that the reviewed 
studies tend to present only one aspect of functional thinking in one article. 
Only twelve (out of fifty-one) studies provide overlaps between different 
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aspects of functional thinking. Among these overlaps, the 
covariation/correspondence thinking aspect and the mathematics object 
thinking aspect appears to be linked together, while the input-output 
thinking aspect seems more detached from the other two aspects. 

Figure 2.5 The relationship of functional thinking aspects 

Functional Thinking and the role of digital technology 
The mathematical and didactical roles of digital technology are analyzed in 
this section for the case of Functional Thinking. Figure 2.6 shows the heatmap 
of didactical and mathematical roles of DT. Among the four mathematical 
roles, the role of graphing has been widely used to develop FT. Algebra 
accounts for a substantial part of the mathematical role. As for the roles of 
geometry and calculus for FT, only a limited number of studies have 
mentioned and discussed this. Regarding the didactic role, the majority of 
studies encompass exploration and construction roles. The algebra role 
provides the opportunity to outsource computation but has not been 
thoroughly investigated in terms of the potentials offered by mouse or hand-
dragging. This issue will be further explored in relation to the use of 
embodied approaches. Excluding the role of outsourcing computation, the 
graphing role appears in a relatively balanced distribution across the other 
didactic roles in the reviewed papers, suggesting a strong connection 
between FT development and graphing designs. 
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From the didactical role dimension, Turtleworlds allows Exploration 
through mouse clicking and dragging. From the mathematical role 
dimension, this software can provide the opportunity for Geometry for FT. In 
addition, Ferrara & Ferrari (2020) used WiiGraph software to engage pairs of 
students with functions through graphing motion, and one of their tasks, 
named Line option for a+b. The role of this technology can be classified as 
Exploration and Construction using Graphing for functional thinking. The 
graphing motion technology, which allows working with pairs of “positions 
over time”-graphs, provides students with the opportunity to observe in real-
time the graph of the sum of two functions on the screen. So, in this case, in 
the task WiiGraph the roles of technology are Graphing for FT, Exploration 
and Construction of mathematical representations.  

Altogether, the results indicate that the most common mathematical 
role of digital technology in the study of functional thinking is graphing, and 
the most frequent didactical role is allowing for exploration and construction. 

Functional Thinking and abstraction 
This section aims to provide an extensive overview of the status of research 
in the domain of functional thinking and abstraction stages. We classified 
major themes and issues in FT research. Besides the fourteen articles in the 
abstraction class, we also analyzed and positioned the other thirty-seven 
articles in the final corpus based on the Function-Abstraction-Matrix (Table 
2.1).  

As can be seen in the heatmap (Figure 2.7), the fact that cells near the 
diagonal of the matrix have a darker color suggests that there is a correlation 
between the abstraction stages and aspects of FT in the selected papers. The 
advanced FT aspects come with the advanced abstraction stages. Thirteen 
out of fifty papers only focus on one stage of abstraction/one aspect of FT. 
The others each cover more than one abstraction stage and/or more than 
one aspect of FT. For example, one teaching trajectory that recurs frequently 
is Contextual/situational abstraction to Referential abstraction to Particular 
abstraction.
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In the example of Abrahamson et al. (2016), the Mathematical Imagery 
Trainer helps students develop an understanding of proportional 
equivalence and get an initial insight into a covariation relation. Students are 
asked to keep the screen green by moving their hands in a fixed-interval 
gesture, from which the asked covariation relationship is presented. Results 
show that students discovered, enacted, and stated the relationship 
between two constant speeds (e.g., the left hand rises 1 unit per the right 
hand's 2-unit rise). Furthermore, students can use the rates of their hand 
motions to deduce that a fixed-interval rule is incorrect and that, instead, the 
distance between the hands must increase with height. This can lead to a 
further understanding of the continuous variation of co-variables. The 
understanding of the covariation aspect can derive from the sensorimotor 
experience without mathematical representations related to proportion, 
which also promotes contextual/situational abstraction. Therefore, this 
study is categorized in the cell contextual/situational abstraction – 
covariation.  

Next, in Davis's study (2013), with the help of TI-Nspire™ CX CAS, 
students can develop an understanding of an input-output process with some 
input (independent variable), operating on it using some rules, and getting 
an output (dependent variable). For example, when exploring a property of 
quadratic functions, namely the 𝑥𝑥-intercept of the top, a parameter is input 
as a variable (𝑎𝑎), another is input as a constant (𝑏𝑏), and the 𝑥𝑥-intercept of the 
top (ℎ) is the output (Figure 2.8). In this investigation, students make changes 
to 𝑎𝑎, which causes changes to ℎ, the 𝑥𝑥-coordinate of the vertex. In this case, 
the task is based on a purely mathematical scenario without any real-life 
context, and the goal of this task is to investigate the property of only one 
type of function, quadratic. So, it belongs to the particular abstraction – 
input-output cell. 

Figure 2.8 The parameter machine accepts a variable a and a fixed b and 
produces h (Davis, 2013, p. 6) 
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Functional Thinking and embodied approaches 
In terms of embodied approaches used in reviewed studies, the pseudo-
embodied approach shows considerable potential for providing students 
with FT-related sensorimotor experiences and helping to mathematise 
action-perception loops (Figure 2.9). Most reviewed studies adopted what 
we classify as an action-based approach to foster functional thinking. In 
contrast, studies in the genres of perception-based and incorporation-based 
approaches concerning FT so far are rare. As for the contributions of 
embodied approaches, providing sensorimotor/gestural experiences and 
mathematising action-perception loops seem to be more dominantly 
present. 

We illustrate our classification using the example of Drawing in Motion 
(Nemirovsky et al., 2013). The prototype exhibit in this paper requires 
physical engagement and collaboration between two people who jointly 
produce a graph on a displayed Cartesian coordinate plane through a large 
LCD screen. Each participant controls one cartesian coordinate of a point with 
a handle. The two participants jointly draw on the screen by moving the 
handles. Every movement of the participants is shown on the screen by a 
movement of the tracing point, which can be regarded as real-time feedback 
to some extent since participants can sense their real-time location and shift 
their bodies accordingly. This instrument provides a new perspective of 
understanding function using the embodied approach, compared to the 
conventional ways of thinking about functions (e.g., dynamic/process and 
static/structural conceptions). It also provides the possibility for young 
learners to engage in the understanding of mathematical functions with the 
help of suitable mathematical instruments and embodied experiences.  

In sum, this section shows that many studies adopting pseudo 
embodiment provide cognitive contributions to the development of FT, 
whereas not many studies have explored the feedback aspect of embodied 
approaches. 
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Embodied approaches to FT using DT inviting abstraction  
Let us now examine the main research question on the ways in which 
embodied approaches may invite abstraction for the case of FT using DT. 
Figure 2.10 illustrates that different embodied approaches cover the four 
abstraction stages of FT. The transition from Particular abstraction to General 
abstraction occurs most frequently in the category of pseudo embodiment. 
There are only a limited number of designs in the pseudo embodiment 
category that contain more than two abstraction stages. Here, we show a 
concrete example that covers all four abstraction stages with the support of 
a multifunctional applet, AlgebraArrows (Doorman et al., 2012). Students are 
invited to develop an understanding of the input-output aspect of FT and 
experience the transition from Contextual abstraction to Referential 
abstraction by exploring real-life contextual tasks, such as a cell phone offer 
task. Next, they are provided with the opportunities to investigate the 
relationship between one function and its family of functions (e.g., 𝑦𝑦 = 2𝑥𝑥 −
3 in the family of 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏), which leads to the transition from Particular 
abstraction to General abstraction. Compared to the other three embodied 
approaches, few pseudo-embodied designs initiate from the 
Contextual/situational abstraction stage. In the case of van den Heuvel-
Panhuizen et al. (2013), Hit the target provides students with sensorimotor 
experiences by letting them drag the arrows (using a mouse) to the bow and 
hit the target on the screen. As part of this task, students experience how the 
scores covary with their movement, and therefore develop covariational 
thinking from Contextual/situational abstraction. 

It is noteworthy that none of the designs adopting action-based, 
perception-based and incorporation-based approaches cover the General 
abstraction stage. In these learning designs, students are invited to 
experience and explore given structures, but not to construct new 
mathematical structures while solving tasks. For instance, when using 
WiiGraph, a graphing motion technology, students work with pairs of 
positions over time graphs to explore how particular inputs lead to different 
outputs. Students' movements become the inputs, and function graphs are 
the outputs. During this activity, students can progress from a process of 
Contextual/situational abstraction to Referential abstraction and even on to 
Particular abstraction. They search for the functional rule and relationship 
between their movements and feedback from the software.  
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In summary, the interplays between embodied approaches and abstraction 
processes suggest that there are differences between the pseudo 
embodiment category and the other three categories, such as the initial 
stage and end stage of abstraction. For the studies using pseudo 
embodiment, Particular abstraction is typically the initial stage, ending up 
with the General abstraction stage. As for action-based, perception-based 
and incorporation-based embodiments, Contextual/situational abstraction is 
the most common initial stage, but the General abstraction stage is not well-
addressed in these three categories. 

2.5 Discussion 
Overview of the main findings 
We carried out a systematic literature search, followed by a content analysis. 
In this section, we summarize the results based on three research questions 
and discuss the overall research topic. 

RQ 1 Which role of the technology is widely used in developing functional 
thinking? 

We distinguished two types of roles of digital technology, mathematical roles 
and didactical roles. For functional thinking, mathematical roles include 
Algebra for FT, Graphing for FT, Geometry for FT, and Calculus for FT. 
Didactical roles include Outsourcing Computation, Exploration (through 
type-in/clicking and mouse/hand-dragging), and Construction. From the 
literature, we conclude that Graphing and Algebra for FT are the most widely 
used mathematical roles, while there has been less attention on Geometry 
for FT. Concerning the didactical roles, a remarkable proportion of studies 
employ the Exploration and Construction roles for developing FT. The 
combination of Algebra role and Exploration through mouse/hand-dragging 
has not been investigated as much. Regarding the combination of different 
mathematical roles and didactical roles, most studies include more than one 
role.  

The Mathematical roles of Graphing and Algebra commonly appear in 
GeoGebra, Geometer's Sketchpad and other software that support dynamic 
visualizations for functions. The tasks presented in this review study invite the 
development of students' functional thinking, mainly its covariation and 
correspondence aspects (Falcade et al., 2007; Lindenbauer, 2019). For 
example, some tasks support students in observing and exploring the 
influence of parameters on function graphs (Brown, 2015; Falcade et al., 
2007; Davis, 2013; Lindenbauer, 2019). The designers of these tasks argue 
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that dynamic visualizations are significantly more beneficial for learning than 
static ones. They mention other advantages of dynamic visualizations, such 
as the possibility to create more interesting learning environments, and 
giving real-time feedback to students (Lindenbauer, 2019; Rolfes et al., 2020; 
Roux et al., 2015).  

A major trend in theory development and application pertains to 
teaching mathematics using DT. The evolution of existing theories highlights 
certain approaches, such as the Instrumental Approach, which is particularly 
relevant for fostering FT with DT. This approach examines the role of digital 
tools in shaping mathematical understanding and problem-solving processes 
(Sinclair et al., 2022). Digital technology offers students access to algebraic, 
graphical and numerical representations, and facilitates understanding of the 
relationship and transitions between different representations (Günster & 
Weigand, 2020). Several of our reviewed studies have highlighted the central 
role of DT in facilitating the transition between different representations, 
such as from the covariation aspect in the geometrical setting to the symbolic 
representation of functions (Brown, 2015; Heid et al., 2013; Lagrange & 
Psycharis, 2014; Ogbonnaya, 2010). In addition, DT provides students with 
intuitive access to graphical representations (Rolfes et al., 2020; Roux et al., 
2015). 

RQ 2 What is known about different abstraction stages of functional 
thinking? 

 

We identified four main stages of abstraction in FT, including 
Contextual/situational abstraction, Referential abstraction, Particular 
abstraction, and General abstraction. We noticed that addressing advanced 
FT aspects comes with reaching for advanced abstraction stages. A 
substantial proportion of studies links up the Covariation/correspondence 
thinking aspect and the Mathematical object thinking aspect, while the 
input-output thinking aspect seems to be more independent of the other two 
functional thinking and has been investigated less.  

As mentioned previously, there are three main aspects of FT: Input-
output, Covariation and correspondence, and Mathematical object. This 
categorization is hierarchical in character, in the sense that we believe the 
three aspects also suggest a learning trajectory. Normally, students get their 
first introduction to FT from an input-output assignment that stresses the 
operational and computational characters, and then they start to engage in 
and recognize the dynamic process of covariational/correspondence 
reasoning. In the end, students view a function as a mathematical object with 
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its own representations and properties (Doorman et al., 2012; Frey et al., 
2022; Günster & Weigand, 2020; Hoffkamp, 2011). Accordingly, the internal 
hierarchy, combined with the evolutionary abstraction stages, suggests that 
higher FT levels and more advanced abstraction occur in relation to each 
other. Moreover, we note that some teaching trajectories, in accordance with 
different abstraction stages, reveal the possible levels of developing FT. 
Pittalis et al. (2020) describe students' functional-thinking modes, which 
consist of recursive patterning, covariational thinking, correspondence-
particular, and correspondence-general factors. These levels or modes and 
our abstraction-function matrix all provide either detailed or concise 
descriptions for interpreting abstraction stages.   

RQ 3 Which embodied approaches can be identified in the literature on 
developing functional thinking? 

Within embodied design for FT, we distinguished the genres of Action-based 
embodiment, Perception-based embodiment, Incorporation-based 
embodiment, and Pseudo embodiment. We conclude that action-based 
embodiment is the most common approach, while perception-based and 
incorporation-based embodiment are rare. Moreover, although studies that 
use pseudo embodiment do not rigorously follow embodied design 
principles, they do provide perceptual or kinesthetic experiences and action-
perception loops. Considering the cognitive contribution of embodied 
approaches, we found that providing sensorimotor/gestural experiences and 
mathematising action-perception loops are the most frequent contributions, 
while less consideration is given to the feedback aspect.  

One notable tool used in the pseudo-embodiment category is the 
slider. There are two different settings of sliders: a) continuous slider (free 
movement on a bar without restriction), and b) discrete slider (static 
selection of particular values). A common use of a slider is to connect it to 
parameters controlling a family of functions. For example, students set up 
sliders for a, b, and c in the standard formula of a quadratic function, and 
manipulate sliders to keep a record of the coordinates of the vertices of the 
parabola (Davis, 2013).  

The types of feedback from digital technology, real-time feedback and 
delayed feedback can influence embodied approaches. The core point of 
embodied design is whether there is real-time feedback (with mathematical 
meaning) on the movement. In this reviewed study, some tasks with real-time 
mathematical feedback support students' understanding of function 
concepts. In addition, some studies point out that feedback from 
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representations on the screen might help students recognize their 
misconceptions and overcome them through additional interactions with the 
digital tool. Also, feedback may motivate students and evoke a curiosity that 
enables them to learn more effectively when receiving real-time feedback 
from the tool (Ogbonnaya, 2010; Özgün-Koca, 2016). 
 

The main goal of this study is to investigate the interrelationship 
between digital technology, mathematical abstraction and embodied 
approaches. Sinclair et al. (2022) highlight that emerging trends in theory 
development challenge traditional binaries, such as the mind-body binary. In 
the context of teaching mathematics with DT, this shift has led to theoretical 
elaborations that attend to embodied ways of knowing, which can be 
essential for fostering FT through the use of digital tools. 

The review results show some common configurations of task design 
in terms of abstraction stages for FT and digital-embodied approaches, such 
as the transition from Particular abstraction to General abstraction in the 
pseudo embodiment. These transitions in most action-based and perception-
based embodiments cover Contextual/situational abstraction, Referential 
abstraction, and Particular abstraction. However, less attention has been paid 
to General abstraction in the categories of action-based, perception-based, 
and incorporation-based embodiments.  

We believe that the transition between different abstraction stages can 
be addressed through embodied designs. Moreover, the distinction of 
different abstraction stages and different aspects of FT, as shown in the 
abstraction-function matrix, can inform the design of learning trajectories. 
Some studies report that students have difficulties representing the function 
independently from the mathematical context (e.g., a geometrical context) 
from which it arises (Hoffkamp, 2011; Miranda & Sánchez, 2019). In this case, 
real-life contexts providing Contextual/situational abstraction play a key role 
in inspiring students and sparking their imagination through embodied 
experiences or other real-life experiences.  

As for General abstraction of FT, studies from the pseudo-embodiment 
category address it through the transition from Particular abstraction to 
General abstraction, such as the transition between different functions and 
transition within a family of functions (Günster & Weigand, 2020). The 
process of mathematics learning is intertwined with sensorimotor and 
perceptual aspects of using mathematical tools. Students are able to form 
abstract concepts through enacting bodily movements and to give meaning 
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to mathematical representations (e.g., symbols, formulas, graphs) by 
invoking sensorimotor and perceptual patterns (Nemirovsky et al., 2013).  

Limitations of the present study 
Some limitations of our study are worth noting. Regarding the literature 
selection, only articles published in English were selected, and inclusion 
criteria in terms of FT may have led to the exclusion of some articles 
addressing primary education. Future studies may look at more detailed 
aspects of functions from the corpus at different educational levels. 
Additionally, the first round of coding was done in a large group, which could 
endanger coding uniformity, even if clear instructions were provided.  

Implications and future directions 
Our systematic literature review led to an Embodiment-Abstraction-Matrix, 
which outlines approaches and stages for fostering FT through DT. This 
matrix holds relevance for both teaching practices and future research.  

In light of our engagement in embodied design, we believe that the 
combination of different representations should be conceptually related to 
FT. The primary consideration is aligning body movements with learning 
content. A major characteristic of embodied design involving DT is providing 
immersive interfaces to stimulate sensorimotor activity. When designing 
embodied tasks, it is essential to translate complex and abstract learning 
content into concrete body movements associated with input-output, 
covariation and correspondence, and mathematical object aspects of FT. 
Learning content should be presented in a visual, accessible and manipulable 
way, enabling students to perceive it through their bodies during the activity. 
Furthermore, encouraging students to explain and verbalize their action-
perception experiences can promote understanding to their peers (Flood et 
al., 2020). Different learning content may also result in different roles for DT. 
DT offers opportunities for interaction and automated feedback, fostering the 
covariation and correspondence aspect of FT.  

Notably, we posit that the sensorimotor/gestural experiences from 
embodied activities can supplement input received from other modalities 
(e.g., vision), allowing students to construct richer multimodal 
representations and facilitate more complex understanding (Drijvers, 2019). 
Studies involving action-based embodiment and perception-based categories 
provide students the opportunity to graph functions with their body 
movements (Ferrara & Ferrari, 2020; Nemirovsky et al., 2013). Graphing 
motion technology can lay the groundwork for mathematising action-
perception loops by offering bodily foundations for mathematical concepts. 
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Drawing inspiration from the action-based task for proportion (Alberto et al., 
2021), a nomogram can be used as an additional representation of FT 
(Friendly, 2008; Nachmias & Arcavi, 1990). Body movements employed while 
exploring nomograms enable students to experience the relationship 
between two variables, such as involving two hands or arms representing 
changes in two variables. 

We also notice that feedback timing in embodied design is a subtle 
matter. Cognition is time-pressured and must be understood in terms of its 
functionality while interacting with the environment in real time (Wilson, 
2002). We suggest that higher-level cognition can be developed with the aid 
of continuous real-time feedback from the learning environment. Further 
research is necessary for a more elaborated learning environment 
incorporating real-time feedback.  

This study demonstrates the potential of embodied approaches, with 
or without DT, for developing FT in terms of mathematical abstractions. We 
hope our insights into the categories of embodied approaches and the main 
mathematical abstractions for FT will provide teachers, researchers, and 
curriculum designers with a spark of inspiration. 
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Appendix 1: Query and Filters 
Query and Filters 

Functional thinking ("Function thinking" OR "Function reasoning" OR 
"Function relation" OR "math Function " OR 
"covariation reasoning" OR "Function approach" 
OR "thinking function") 

 AND 
Embodiment  (embod OR enactment OR sensorimotor OR kines 

OR perception OR action-perception OR "body 
motion" OR "physical experience" OR "physical 
participa") 

 OR 

Abstraction/Reification 
(abstracti OR reification OR "math abstract" OR 
encapsulation OR "object formation" OR "concept 
imag" OR visualization) 

 OR 
 
Digital technology 

 
("digital technolog" OR "digital tool" OR "physical 
tool" OR "ICT tool" OR ICT OR GeoGebra) 
AND 

Domain (math OR "math education" OR "math instruction" 
OR "physical science" OR science OR stem OR 
"teaching method" OR education OR learning) 

 AND 
Filter(s) English language 

In SCOPUS and Web of Science, the limitations 
were set to journal articles and conference 
proceedings. 
In ERIC, the limitations were set to journal articles 
and peer-reviewed articles. 
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Supplementary Material 
IO-A1:  
Ellis, 2016: Students' understanding of exponentiation can be developed 
from a repeated multiplication model in a scenario that Jactus grew by 
doubling its initial height every week. In this example, students can regard 
exponential function as an input-output machine, given a number and doing 
exponentiation with multiplication model. The plant growth context provides 
students with perceptual experience to facilitate contextual/situational 
abstraction.  

IO-A2:  
Ferrara & Ferrari, 2020: WiiGraph allows students to work with couples of 
positions over time graphs to explore how particular inputs lead to different 
outputs. Based on their observation of the 'a+b' activity, two students moved 
in front of the sensor with a third line appearing in real-time on the screen, 
which is produced by adding the values of a and b over time. Students 
recognize that the result of 'a+b' equals 'c', that is, the graph of the third line 
is the sum of the movements of two people. Students' movements become 
the input and function graphs play as the output. The relationship' a+b=c' is 
the input-output machine in this case. And the process that students 
recognize and identify the relationship with given algebraic representation 
and given graphic representation using perceptual experience is referential 
abstraction.  

IO-A3:  
Jon, 2013: With the help of TI-Nspire™ CX CAS, students can get an 
understanding of the process involved at the beginning with some input 
(independent variable), operating on it through some rule, and producing an 
output (dependent variable). For example, when exploring the property of 
quadratic function (the 𝑥𝑥-intercept of the vertex), a parameter is input as a 
variable (a), another is input as a constant (b), and the 𝑥𝑥-intercept of the 
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vertex (ℎ) is the output. In this investigation, students are making changes to 
a, which causes changes to h, the 𝑥𝑥-coordinate of the vertex. It is based on a 
pure mathematical scenario without any real-life context. And the goal of this 
task is to investigate the property of only one type of function, quadratic 
functions. So, it belongs to the particular abstraction stage. 

(Davis, 2013, p.6) 

COs-A1:  
Abrahamson et al., 2016: The Mathematical Imagery Trainer helps students 
develop an understanding of proportional equivalence and initial insight of 
covariation relation. Students are able to make the screen green by putting 
their hands in a specific-interval gesture, which is the asked covariation. 
Students discovered, enacted, and stated the covariation of two constant 
rates (e.g., the left-hand rises 1 unit per the right hand's 2 unit rise). 
Furthermore, students can use the differing rates of their hand motions to 
deduce that a fixed-interval rule could be incorrect and that, instead, the 
distance between the hands must increase with height. That can lead to a 
further understanding of the continuous variation of co-variables. The 
understanding of the covariation aspect is based on the experience from 
action which also promote contextual/situational abstraction. 

COs-A2:  
Johnson et al., 2017: As a sequence of tasks for engendering covariational 
reasoning, Ferris wheels task and filling bottles task can promote transfer of 
covariational reasoning. The 'simpler' attributes of function, such as height 
and distance from Ferris wheels task, could prepare students more readily 
for further attributes, such as volume and height from a filling bottles task. 
Both tasks provide students with real-life contexts and the Ferris wheels task 
allows students to adjust the point (car) on the Ferris wheels and observe 
corresponding changes in the graph of function (width/height vs. distance). 
The given dynamic graphs and real-life situations are helpful for doing 
referential abstraction. 

COs-A3:  
Günster & Weigand, 2020: A linearity task in GeoGebra environment was 
designed. The dynamic representations from learning environments help 
students to explore the relationship between side length and perimeter of 
polygons. When dragging the slider and adjusting the length of sides, 
students can observe how much the perimeter changes if the side length 
changes by 1 cm. This task uses a pure mathematical context asking students 
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to investigate covariation relationship between variables, that is, linear 
relationship between side length and perimeter of polygons.  

COs-A4:  
Lagrange & Psycharis, 2014: The rectangle task in Casyopée lets students 
explore the position of a point M so that the area of the triangle is one third 
of the area of rectangle. The innovative functionalities in Casyopée, 
automatic modeling, allow students to understand key actions in the process 
of modeling a geometrical dependency into an algebraic function. Students 
can use function as a tool to solve geometrical question by constructing 
mathematical model. The process of building an algebraic model for 
describing the covariation between 𝑦𝑦𝑀𝑀  (as an independent variable) and the 
area of the triangle BMC is general abstraction.  

OB-A1: 
McCulloch et al., 2020: The vending machine applet draws attention to the 
object view of function-each input (domain) should map to one output 
(range). It provides a context with which students are familiar. Students are 
asked to identify each vending machine as a function or non-function. They 
can get an understanding of the concept of function through the mapping 
process of using the vending machine applet. Therefore, it belongs to the 
contextual/situational abstraction. 

OB-A2:  
White, 2009: The Code Breaker applet provides both horizontal and vertical 
trace lines stretching from the 𝑦𝑦-axis 𝑥𝑥-axis, respectively, intersecting the 
candidate curve. These lines can serve as both a code-breaking resource and 
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a scaffold to help students capture the object-like properties of function. For 
example, some students recognized that each plaintext letter should map to 
a single encoded output and creatively utilized this object-like property as 
problem-solving resources. The cryptographic context with given graphic 
representation develop the referential abstraction for conceptualizing 
functions. 

(White, 2009, p.27) 

OB-A3: 
Swidan et al., 2020: The Calculus Integral Sketch (CIS) displays two Cartesian 
coordinate systems that are dynamically linked. These two coordinate 
systems show the function graph and indefinite integral of the function, 
respectively. Students can drag the function graph upward, which leads to an 
increase in the inclination of the  antiderivative function graph. In this case, 
function is regarded as a mathematical object that can be submitted to 
higher-order processes, integral. Students investigate the function-derivative 
relationship in the mathematical context. The CIS provides a supportive 
environment for particular abstraction.  

OB-A4: 
Doorman et al., 2012 & Drijvers et al., 2013: The AlgebraArrows applet can 
support the construction of input-output chains of operations as a model of 
a dependency relationship. Students are provided with the opportunities to 
explore a family of functions (object view) which lead to the general 
abstraction stage. For example, students can investigate a family of functions 
representing braking distances for three different vehicles with the help of 
collapsed arrow chains. This learning environment supports the transition 
from a calculation understanding to an object understanding of functions by 
displaying different mathematical representations, such as arrow chains, 
tables, and graphs. 
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Chapter 3 Developing functional thinking: From 
concrete to abstract through an embodied design 
 

Abstract In addressing the challenge of fostering functional thinking (FT) among 
secondary school students, our research centered on the question of how an 
embodied design can enhance FT's different aspects, including input-output, 
covariation and correspondence views. Drawing from embodied cognition theory 
and focusing on action- and perception-based task design that uses light ray contexts 
and different function representations, we developed a digital-embodied learning 
environment, using the nomogram as a central representation. Our pilot study, 
involving four eighth-grade students, provided insights into their physical interactions 
with these modules through a multi-touch digital interface. Analysis of video and 
audio recordings from the pilots, including students' hand gestures and verbal 
expressions, was guided by comparing hypothetical learning activities with the actual 
learning activities. The results show that (1) a concrete light ray context enables 
students to ground the abstract mathematical function concept, (2) the bimanual 
coordinating motion tasks, incorporating the covariation aspect of FT, allows students 
to connect their bodily experience with function properties, and (3) our embodied 
and dragging tasks support insight in the conversion between nomograms and graphs 
of functions, encouraging students' correspondence thinking by providing multiple 
perspectives to understand, reason about, and manipulate the function. In 
conclusion, our findings suggest the potential of digital-embodied tasks in fostering 
FT, evident in students' diverse strategies and reasoning.  

Keywords Educational technology; Embodied design; Functional thinking; 
Mathematics education; Nomogram 
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3.1 Introduction 
A mathematical function is an abstraction—it is an abstract concept 
representing a relationship between input and output, irrespective of the 
concrete meanings of those inputs and outputs. Still, concrete contexts can 
make abstract functions more meaningful to students, providing 
opportunities to attach meaning to the mathematical constructs the 
students develop (Van den Heuvel-Panhuizen & Drijvers, 2020). Students 
need FT—thinking in terms of relationships, interdependencies, and 
change—for both later professional and daily life (FunThink team, 2021). One 
of the main challenges teachers face is how to foster the different aspects of 
FT, especially the abstract ideas of variation and covariation that lay the 
epistemological foundation for students to develop robust conceptions of 
functions (Thompson & Carlson, 2017). 

A specific representation called a nomogram may play an important 
role in the development of FT. Nomograms support FT by incorporating 
various representations and contexts, and have been emphasized by 
Thompson and Carlson (2017) for their importance in incorporating number 
lines and uniting two quantities’ values in future study. The initial use of 
nomograms within a digital learning environment can be traced back to 
Nachmias and Arcavi (1990), who termed it the Parallel Axes Representation 
(PAR). Various forms of this function representation exist, such as the 
horizontally oriented DynaGraph (Sinclair et al., 2009). In our current 
research, and increasingly prevalent in recent studies, we use the term 
‘nomogram’ to describe two number lines linked by a bundle of arrows, 
which shows how each input number on the left number line corresponds to 
an output number on the right (see Figure 3.1). It is a useful tool for 
developing FT due to its visual nature and ability to represent functional 
relationships using arrows. 

The integration of embodied actions within abstract mathematical 
thinking enriches meaning-making processes by incorporating various 
sensory channels such as perceptual, auditory, tactile, and kinesthetic 
(Radford, 2009). Bimanual movement, referring to the coordinated use of 
both hands, has been incorporated into mathematical education as a means 
to foster an understanding of mathematical concepts, such as proportion 
(Abrahamson et al., 2016). The importance of the bimanual movement in 
mathematics education originates from Piaget’s work, which proposed that 
children’s understanding of their world and the concepts within it is deeply 
rooted in their physical interactions with the environment. More recent work 
in the field of embodied cognition expands upon Piaget’s theories, arguing 
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that our understanding of abstract mathematical concepts is grounded in the 
physical and sensorimotor experiences of our bodies (Abrahamson & 
Lindgren, 2014; Tall, 2004).  

In the context of our digital learning environment that features 
nomograms, the multi-touch and real-time feedback capabilities of digital 
technology (DT) enable students to investigate and construct nomograms 
using bodily movements, specifically a bimanual dragging motion (Figure 
3.1). Correctly positioning the two points on respective number lines causes 
these arrows to change to green, with their trajectory remaining visible, 
allowing for real-time feedback akin to the principles seen in the 
Mathematical Imagery Trainer for Proportion (MIT-p) (Abrahamson & Trninic, 
2011). By traversing the entire nomogram, the students can visualize the 
complete function, which may include intersecting arrows, parallel arrows, 
and other distinctive features. However, if the placement of the two points 
does not accurately represent an input-output pair, the arrow between them 
will turn red. Inspired by the MIT-p, our evolved digital-embodied 
nomograms, potentially named MIT-𝑓𝑓(𝑥𝑥), extends to various functional 
relationships, making it a more versatile tool for developing FT. It achieves a 
range of instructional strategies, from using number lines and fostering 
corresponding quantities’ relationship, to reinforcing the facilitation of 
smooth continuous covariational and correspondence reasoning by providing 
continuous movements on the two number lines. In this regard, the main 
research question guiding our study is: How can an embodied design using 
nomograms foster functional thinking? In order to explore the multifaceted 
nature of FT, we have formulated the following specific research questions 
through the lens of three aspects of FT: Input-output, Covariation, and 
Correspondence: 

RQ 1 How does a light ray context foster the students’ meaning-making 
of nomograms? 

RQ 2 How do bimanual movement tasks foster covariational thinking? 
RQ 3 How do different function representations and their conversions 

support a correspondence view on functions? 
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Figure 3.1 Movement on a nomogram 

3.2 Theoretical framework 
Two theoretical lenses—FT and Embodied Learning—serve as the 
foundations for our investigation in this study. By intertwining these 
theoretical perspectives, we aim to examine how the interactive, dynamic, 
and physically engaging nature of embodied learning can bolster FT.  

Functional Thinking 
FT, as a process of describing, building, and reasoning about/with functions 
(Pittalis et al., 2020; Stephens et al., 2017; Thompson & Carlson, 2017), 
consists of four main aspects: Input-output thinking, Covariation thinking, 
Correspondence thinking, and Mathematical object thinking (Confrey & 
Smith, 1995; Doorman et al., 2012; Wei et al., 2023; Vollrath, 1986). These 
four aspects indicate how to understand the concept of mathematical 
function through different characteristics of functions: 

1. Input-output thinking: A function is regarded as an input-output 
assignment that helps organize and carry out a calculation process 
(Doorman et al., 2012). It is considered the initial stage of 
understanding function, especially with the help of a special 
representation, an arrow chain (Freudenthal, 1983). Moreover, 
recognizing patterns and structures are linked to this aspect. For 
example, the recursive pattern is seen as how to get a number in a 
sequence when the previous number or numbers are given (Frey et 
al., 2022; Stephens et al., 2017). 
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2. Covariation thinking: This aspect emphasizes the relationship 
between two variables, primarily focusing on how changes in the 
independent variable cause corresponding shifts in the dependent 
variable. The emphasis is on the simultaneous change or movement 
of both variables (Confrey & Smith, 1995; Doorman et al., 2012; 
Thompson & Carlson, 2017).  

3. Correspondence thinking: It is more about the pairing relationship 
between the two variables and being able to represent them with 
multiple representations, such as arrow chains, tables, graphs, 
formulas, and phrases (Doorman et al., 2012). Correspondence 
thinking highlights that each value of the independent variable aligns 
with a unique value of the dependent variable. Instead of 
emphasizing the simultaneous change, as in covariation, 
correspondence thinking underscores the direct association or 
pairing of values between the two variables (Pittalis et al., 2020; 
Smith, 2008). This aspect incorporates the mapping view, facilitating 
a holistic understanding of functional relationships (FunThink team, 
2021). 

4. Mathematical object thinking: A function, in this aspect, is seen as a 
mathematical object with its own representations and properties. 
Within this aspect, a function is recognized as part of a family of 
functions (Sfard, 1994), subject to higher-order operations such as 
composition, transposition, and differentiation. Concerning the 
scope of our study, this aspect receives minimal emphasis. 

In this paper, our focus is specifically on the first three aspects of FT. Various 
aspects of FT are embedded in our task based on function representations, 
like tables, graphs, and formulas. Some studies argue that dynamic 
visualizations could be significantly more beneficial for learning functions 
than static representations (Brown, 2015; Falcade et al., 2007; Lindenbauer, 
2019, Ten Voorde et al., 2023). For example, some tasks with interactive 
dynamic visualizations support students in observing and exploring the 
influence of parameters on function graphs. In addition, there are some 
other advantages of dynamic visualizations, such as providing the possibility 
to create more interesting learning environments, and facilitating 
understanding of the relationship and transitions between different 
representations (Günster & Weigand, 2020; Lindenbauer, 2019; Rolfes et al., 
2020; Roux et al., 2015). Therefore, the aforementioned interactive, dynamic 
digital-embodied nomogram serves as a central feature. 
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In addition, we considered the design heuristic of the emergent model 
(Gravemeijer, 1999). The emergent model includes four levels of activity: task 
setting, referential, general, and formal. To support the design hierarchy of 
our tasks, we work with emergent modelling activity in three levels: 
situational, referential, and general, following our previous literature study 
(Wei et al., 2023). The use of these three levels will be further discussed in 
the Design section with a combination of hypothetical learning trajectories. 

Embodied learning 
Embodied learning is an educational approach that integrates bodily 
movements and physical experiences into the learning process. It operates 
on the premise that cognition is not only confined to the mind but involves 
the entire body (Barsalou, 1999; Lakoff & Nunez, 2000). The theory of 
embodied cognition is foundational to understanding the mechanisms and 
efficacy of embodied learning, as it provides the theoretical underpinning for 
how bodily engagement can enhance cognitive processes. According to this 
perspective, cognitive activities such as problem solving, memory, and 
learning are not just abstract mental tasks but are connected to sensory-
motor systems. This connection implies that physical actions and sensory-
motor experiences can shape and facilitate cognitive processes (Barsalou, 
2008; Glenberg, 1997). Highlighting the role of the body in cognition and 
learning, embodied learning has gained quite some attention in mathematics 
education research (Bos et al., 2021; Drijvers, 2019; Lakoff & Nunez, 2000; 
Shvarts et al., 2021). The theoretical foundations concerning embodied 
learning in our study include the following two aspects: Embodied design and 
embodied instrumentation. Embodied Design leverages embodied cognition 
to create learning environments and materials that prompt students to 
engage physically and perceptually with mathematical concepts. Similarly, 
Embodied Instrumentation combines embodied cognition with an 
instrumental approach to learning, emphasizing the coupling between the 
learner, the physical tools or artifacts, and the tasks at hand (Shvarts et al., 
2021). 

Embodied design 
Regarding the design and use of embodied cognition in the mathematics 
classroom, Abrahamson (2009) introduced a well-defined notion of 
embodied design (a term first coined by Van Rompay and Hekkert (2001)) as 
a systematic and procedural design method. It consists of two types: action-
based design and perception-based design (Abrahamson, 2009; Abrahamson 
& Lindgren, 2014).  
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Action-based designs aim to ground mathematical concepts in 
students’ natural capacity to adaptively solve sensorimotor problems. In 
action-based design, the sense of meaning comes from being able to achieve 
a target outcome using both a naïve and an instrumented strategy with a 
technological system. For example, to teach the concept of a parabola, 
learners can be encouraged to manually plot a series of green isosceles 
triangles, which collectively form a U-shaped trace (Palatnik et al., 2023; 
Shvarts & Abrahamson, 2019). In this case, the sensorimotor coordination 
pattern manifesting the parabola concept necessitated preserving the 
triangle by equating the distances from a point to the directrix (CB) and focus 
(CA) (see Figure 3.2). This task requires students to engage in a physical 
exploration of the parabola’s geometric properties, specifically its reflective 
symmetry and the definition involving distances to the focus and directrix. 
This method allows them to intuitively grasp the parabola shape by acting on, 
combining naïve (manually tracing) and instrumented (keeping isosceles 
triangles equal to learn about the parabola) strategies within a technological 
system (the graph and its representation of geometric figures). 

Figure 3.2 Sensorimotor coordination patterns of a parabola 𝑦𝑦 = 𝑥𝑥2 (Palatnik et 
al., 2023, p.170) 

Perception-based designs aim to ground mathematical concepts in students’ 
natural perceptual ability in their naive perceptions of a situation. Like the 
action-based genre, it is followed by a phase of reflection in which these 
views are developed. This approach involves the manipulation of students’ 
perceptual fields or having them engage in activities where they discern 
patterns, identify relationships, or perceive variations. For instance, in a 
study on teaching the gradient using an augmented reality sandbox (Bos et 
al., 2022), students were invited to roll a marble down a plane, adjusting its 
direction and steepness (Figure 3.3). The sandbox projected real-time height 
lines onto the plane, with the marble’s trajectory perpendicular to these 
lines, indicating the steepest direction. In perception-based design, the sense 
of meaning arises when someone can make the same inferences from both 
direct and indirect observations of a given phenomenon. From the rolling 
marble experience students are invited to make inferences about the fact 
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that the height lines and the gradient are perpendicular. Action-based and 
perception-based designs help create a richer, multisensory learning 
environment where learners can make sense of abstract concepts by 
enacting and perceiving them physically.  

Figure 3.3 Rolling a marble down a plane in the augmented reality sandbox (Bos 
et al., 2022) 

Building upon the existing literature on embodied design, our study also 
draws on the embodied-design procedure to inform our task design. Three 
fundamental steps are emphasized by Abrahamson (2014), namely 
Phenomenalization, Concretization, and Dialog. Phenomenalization involves 
creating an intuitive situation related to the topic being learned. It starts by 
identifying a generic schema or pattern underlying the topic, and then 
developing a scenario where applying this schema provides a solution. 
Concretization involves creating a visual model of the situation. The goal here 
is to decide on a formal disciplinary model related to the problem, devise a 
visual version of it, identify symbols that can represent the student’s solution 
strategy, and create incentives for the learner to use these symbols to 
understand the problem. In the Dialog stage, the learner is guided through 
the process of using informal actions to solve the problem situation, 
constructing a formal visual solution, and reflecting on the relationship 
between their intuitive understanding and the visualization of the situation. 
The application of Embodied Design in mathematics education can 
profoundly reshape teaching and learning experiences. By weaving these 
stages into our task design (see details in the Design section), we aim to offer 
a more accessible and engaging learning experience, promoting a deeper 
comprehension of FT.  
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Embodied Instrumentation  
In line with the design views of this study, we considered the Embodied 
Instrumentation theory (Drijvers, 2019) for the elaboration of task designs. 
As a combination of embodied cognition and an instrumental approach, 
Embodied Instrumentation underscores the amalgam between the body, 
artifact, and the cognitive scheme involved when DT is used in mathematics 
education. The term ‘instrumentation’ here refers to the process through 
which an artifact (a tool, technology, etc.) becomes a part of the student’s 
conceptual scheme. A scheme is an invariant organization of activity for a 
certain type of situation (Vergnaud, 2009). Expanding on this idea, Shvarts et 
al. (2021) emphasize the nuanced and complex nature of action regulation, 
which occurs through dynamic functional systems involving both the body 
and the artifact in perception-action loops (Figure 3.4). Significantly, 
perception-action loops are the lynchpin of this body-artifact functional 
system. These loops are central to a complex dynamic system of behavior, 
with perception and action existing as intertwined processes within the 
interaction and coupling with the learning environment. For example, initial 
perception emanates from the interaction with and/or observation of the 
artifact, guiding the students’ actions at the same time. Concurrently, the 
actions reciprocally offer feedback and verification, thereby generating a 
new perception or preserving the existing one. Unlike conventional mental 
schemes, these functional systems are decentralized and can be expanded 
through the inclusion of artifacts. In this context, an artifact is not only an 
external tool but becomes a part of the system, contributing to the way 
learners interact with and comprehend mathematical concepts. 

The aforementioned theories offer a framework to develop FT, 
particularly in the context of using digital technologies. The Embodied Design 
theory, with its bifocal approach of action-based and perception-based 
designs, promotes the grounding of mathematical concepts within students’ 
sensory-motor coordination. The Embodied Instrumentation theory stresses 
the relationship between the body, artifact, and cognitive scheme when 
employing DT in mathematics education. These two theoretical perspectives 
both centered on the principle of embodied cognition. They emphasize the 
need to consider students’ physical interactions and perceptual experiences, 
and underscore the role that artifacts play in shaping these experiences. The 
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fusion of these theories directs the way of designing a natural and engaging 
learning environment for the development of FT. 

Figure 3.4 Body-artefact functional system in interaction with the environment 
(Shvarts et al., 2021, p.451) 

3.3 Methods 
To address the research questions, we conducted a design-based study. This 
study was structured into two main phases: the initial design phase, where 
we developed and refined the digital-embodied learning materials, and the 
subsequent case study phase. In the case study phase, we observed and 
analyzed the experiences of two pairs of 14-year-old students. 

Design 
Our aim is to design a digital-embodied learning environment for fostering 
FT. As a first step, we drew on the principles of the Embodied Design 
framework (Abrahamson, 2014) to construct an overarching architecture for 
FT. This architecture, which is grounded in our theoretical foundations, 
includes three critical stages: Phenomenalization - light ray context; 
Concretisation - embodied nomogram model; Dialog - a series of 
questions/tasks. The core concept is FT, and the implementation of a light 
ray context in our embodied design builds upon the historical use of 
nomograms, PAR, and DynaGraphs in mathematics education (Nachmias & 
Arcavi, 1990; Sinclair et al., 2009). 

This series of designs introduces the concept of function through a 
real-life context that is familiar to students, namely light rays. The innate 
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connection between the light ray context and the nomogram model serves 
as the cornerstone of our design. Imagine a scenario with a sun or a light bulb 
illuminating an object, casting shadows in varying positions (Figure 3.5)1. We 
hypothesize that the students’ existing familiarity with light rays and their 
effects, such as shadows, will help them understand the linear patterns that 
form the basis of nomograms. Specifically, light travels in straight lines and 
objects can obstruct light, creating shadows. Therefore, students’ perceptual 
experience that their shadow follows their bodily movement affects 
predictable object-shadow positions, and can help them grasp the concept of 
predictable relationships between variables in nomograms. Students 
mathematize their intuitive perception of the situation using nomograms. 
The illustrative diagrams, including Figure 3.5, are intended to support this 
foundational experience rather than to provide a comprehensive exploration 
of light and shadow geometry (Gravemeijer & Doorman, 1999).  

We use the light ray context as the model for Phenomenalization. In 
particular, two aspects of the context implicitly convey fundamental 
properties of the nomogram. First, the directedness of the light, from hand 
to shadow, carries over to the nomogram where arrows go from input 
element to image element. Second, in a nomogram one only draws a finite 
number of arrows, even though arrows are virtually sprouting from every 
point on the input axis. The situation is the same for light rays: we draw only 
a finite number, even though we know there are light rays through every 
point. As described in the introduction section, digital-embodied nomograms 
can offer a tangible, hands-on experience that enables learners to 
comprehend the relationship between two variables. This understanding is 
facilitated through both visual (perceptual) and tangible (action) modes. And 
these nomograms can effectively communicate a learner’s solution strategy 
using specific visual cues, such as the trace of an arrow and algebraic symbols. 
Hence, digital-embodied nomograms serve as an ideal model for the 
Concretization phase of the learning process. The Dialog stage is where the 
mathematical concepts are consolidated and where the learners can see the 
relationships between their intuitive actions or strategies and the formal 
mathematical concepts. It encourages learners to navigate through problem 
scenarios using their informal approaches, subsequently guiding them to 

 
1 The geometric representations in Figures 3.5 and 3.6 are intentionally simplified for clarity, 
despite deviations from shadow shapes in reality. Empirical evidence from our later study 
indicates that these simplifications did not detract from student understanding or 
engagement, supporting their use for educational purposes. 
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craft formal mathematical solutions. Our learning environment is structured 
to enhance this experience: students are presented with questions, urging 
them to consolidate and articulate their insights. Additionally, the 
collaborative design of some tasks stimulates interactive dialogue between 
peers. And there is another opportunity for students to seek clarifications 
from tutors, which ensures that misconceptions are addressed, thereby 
safeguarding a holistic, dialogic learning journey. 

Figure 3.5 A hand and its shadow under the sun 

Beyond the general design principles discussed above, the specific design 
ideas for each task are outlined in an HLT (Bakker, 2018; Simon & Tzur, 2012). 
We elaborated the HLT based on the embodied instrumentation theory 
(Drijvers, 2019) and emergent modeling (Gravemeijer, 1999). A full 
description of the sequence for each learning module, referred to as the HLT, 
can be accessed at the provided link: https://bit.ly/FTnomogram. The table 
describing the HLT comprises multiple horizontally-arranged components, 
which include task numbers, task descriptions, mathematical objectives, 
students’ activities (incorporating practices/techniques for utilizing artifacts, 
and levels of the adapted emergent mode), and the conceptualization of 
various aspects of FT. The arrangement of the three HLTs is sequentially 
organized in a vertical manner, reflecting both the aspects of FT and the 
levels of the emergent model.  

In Module 1, tasks begin with situational activities that incorporate 
input-output thinking within a light ray context. Following several varied light 
ray tasks, the real-life context faded, and the required movement shifts from 
unimanual to bimanual. This gradual shift introduces covariation thinking 
through referential activities. To illustrate, Figure 3.6a presents a task built on 
the context of a cardboard tree and its shadow on a screen. Here, students 

https://bit.ly/FTnomogram
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have the opportunity to delve into the geometric meaning of both additive 
and multiplicative terms of the linear relation 𝑦𝑦 = 3𝑥𝑥 − 2 by manipulating 
the input, either moving the tree’s apex/base or the entire tree. When 
students modify the tree’s apex or base position, a commensurate change in 
the shadow’s magnitude is observable, governed by a specific multiplicative 
factor, in this case “3”, which is geometrically an enlargement factor. The 
additive factor, in this case “–2”, is the image of the zero on the input axis.  

In Module 2, the tasks initiate with referential activities that adopt 
semi-nomograms (nomograms without numbers), eventually leading to 
general activities. This module emphasizes mathematical contexts, 
highlighting covariation thinking and initial correspondence thinking. The 
presentation of various representations, such as nomograms and formulas, 
lays the foundation for introducing correspondence thinking. An example can 
be discerned in Figure 3.1, where a task is based on the function 𝑦𝑦 = −𝑥𝑥. In 
this activity, students are tasked with acting in a specific bimanual motion—
moving both hands in opposite directions at the same speed. This motion 
mirrors the mathematical relationship encapsulated in the function 𝑦𝑦 = −𝑥𝑥: 
a positive increment in 𝑥𝑥 induces an equal decrement in 𝑦𝑦, and vice versa. 
Such a coordinated movement not only embodies the interrelation between 
the two variables but also holds the promise of assisting students in 
transitioning from concrete actions to an abstract mathematical 
conceptualization of functions. The act of moving both hands in opposite 
directions at the same speed embodies covariation thinking. It enables 
students to directly perceive that during the act of moving, every position of 
the left hand on the input number line corresponds to a right-hand position 
on the output line, as a result of an inverse movement. This kinesthetic 
experience is expected to reinforce the understanding of functions as 
covariational relationships between variables where the change of one 
variable directly influences the change of another in a specific manner. 

Module 3 comprises general activities centered on covariational 
thinking, integrating various representations of functions. The core idea of 
this learning module is the conversion between these representations, with 
special emphasis on the transition between nomograms and function graphs. 
Using both unimanual and bimanual motions, students delve into the 
correspondence aspect of FT. Through an action-based design, depicted in 
Figure 3.6b, students can adjust arrows on the nomogram, observing the 
resulting point on the corresponding function graph: 𝑦𝑦 = 𝑥𝑥2. The semi-
coordinate system offers a visible and tangible representation of these shifts: 
the left hand’s movement directly influences the point’s horizontal position, 
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while the right hand dictates its vertical movement. Notably, students are 
exposed to the subtleties of their hand movements’ acceleration, which 
mirrors the change in the derivative of the function 𝑦𝑦 = 𝑥𝑥2. As they approach 
𝑥𝑥 = 1, the left hand’s movement needs to decelerate relative to the right 
hand. In contrast, distancing from 𝑥𝑥 = 1 necessitates the left hand to 
progressively outpace the right. This hands-on experience emphasizes the 
covariational relationship between the two variables, demanding both speed 
and coordination to align the point accurately on the function graph. 
Consequently, students are expected to get insights into the conversions 
between nomogram and function graph, all while grounding their 
understanding in an intuitive, embodied experience. 

  

Figure 3.6 (a) Cardboard tree and shadow task; (b) Maintaining a point on the 
function graph 

Case study participants 
For our case study, we selected two pairs of students who were in the pre-
university stream of secondary education in the Netherlands, each pair 
comprising students aged 14 years, to participate in the intervention. These 
students were chosen by their teacher for their collaborative and 
communicative abilities, and their willingness to take part. 

The starting points and preliminary knowledge of the students were: 
experience with number lines; basic algebra to describe relations between 
quantities/variables; using algebra for modeling situations; basic skill with 
graphs in coordinate systems. This foundational knowledge is essential to 
grasp the concepts introduced in the intervention and effectively engage in 
the learning modules.Intervention  

The intervention was carried out with the two pairs of students, first in 
November 2022 and then in January 2023. Each intervention session, 
covering three learning modules, took 90 minutes, followed by a 15-minute 
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interview to gather the students’ reflections and insights. Students were 
given digital-embodied nomogram tasks within a learning environment that 
featured a multi-touch screen (Figure 3.7). This setup provided an interactive 
platform for the students to explore and engage with the tasks. Throughout 
the intervention, the students were encouraged to collaborate and ask 
questions from the teacher during their work.  

 

Figure 3.7 Students worked on a multi-touch screen 

Data collection and analysis 
The two primary data collection methods were video and audio recordings. 
The video recordings served a dual purpose: first, they tracked the physical 
activities of the students, including their hand motions and gestures, which 
are of prime interest in our study. Second, they captured the on-screen 
activities and students’ solutions in the answer boxes for each task. This gave 
a clear picture of how students were engaging with the digital-embodied 
nomogram tasks, and how they manipulated the tools provided within the 
digital learning environment. In addition, audio recordings of the post-
intervention interviews were collected. This dataset was then fully 
transcribed to facilitate the subsequent analysis. 

Central to our data analysis was understanding students’ usage of 
digital-embodied nomogram affordances in their conceptualization of FT. We 
selected key segments where these affordances were distinctly used for 
further exploration. We qualitatively analyzed participants’ actions, 
explanations, and discussions, comparing our anticipated outcomes 
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(Hypothetical Learning Activities, HLA) with the actual events (Actual 
Learning Activities, ALA). This comparative lens provided insights into several 
key areas: practices and techniques with artifacts, conceptualizations of FT, 
action-perception loops in action-based tasks, and attentional anchors for 
action-based tasks. This comparative analysis is important for addressing the 
research questions. For instance, comparing conjectured and actual practices 
of and techniques for using artifacts helped us to assess the degree to which 
the light ray context promotes students’ interpretative capabilities with 
respect to nomograms. Likewise, we could determine how the bimanual tasks 
have been a catalyst for fostering covariational thinking by contrasting 
hypothetical and actual action-perception loops. Through this comparison 
process, enriched with participant quotes, we not only identified patterns in 
the students’ interactions but also gained insights in our design’s efficacy and 
suggested areas for improvement. 

3.4 Results 
The result section provides empirical data on how FT can be fostered through 
the three digital-embodied learning modules, each corresponding to one 
aspect of FT. For each learning module, we present one or two exemplary 
tasks and describe participants’ activity. We compare the HLA with the ALA, 
highlighting the similarities and discrepancies between them, accompanied 
by examples and quotes from participants. The redesign ideas are also 
presented.  

Learning Module 1: Light ray context and nomogram 

Figure 3.8 Students’ hand gestures while exploring the bulb-mosquito task 

Example 1: In the bulb and mosquitos’ shadows task (see Figure 3.8), 
students can move the positions of two mosquitos and observe how the 
positions of their shadows change correspondingly. The relationship 
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between the position of the mosquito and its shadow is: height_shadow =
height_mosquito ∙ 2 

HLA Hypothetical practices / techniques for using artifacts:   
By moving one input (mosquito) once on the number line, 
students can recognize and distinguish various patterns of 
relationship (light rays). The relationship established between the 
mosquito and its corresponding shadow in this instance is a 
proportional relationship. 
Hypothetical conceptualizations of FT:  
During the exploration of the bulb-mosquito context, students 
are able to manipulate the mosquito’s position and subsequently 
observe the resulting shadow location, thus facilitating an 
understanding of the input (mosquito) and output (mosquito’s 
shadow) relationship (coordination of input values and output 
values), and covariation thinking (output covaries when students 
change the input). 

ALA Actual practices / techniques for using artifacts: 
Student Pair 1: The students adjusted the position of each 
mosquito individually and noted the gradient of the light rays 
(arrows). After the tutor explained the question, their attention 
shifted toward the input-output (mosquito-shadow) relationship.  
Student Pair 2: The students manipulated the positions of the two 
mosquitos simultaneously, assessing the inter-mosquito distance 
and the distance between their shadows. Rather than a point-to-
point relationship, they focused more on the interval-to-interval 
relationship (Chunky continuous covariation). They prioritized the 
distance between the two mosquitos in relation to the 
corresponding distance between their shadows, instead of 
observing how the output depends on the input. One of the 
students said: “The distance between all the lines is getting 
bigger and bigger... Well, I don’t know if I’m saying it right, But the 
distance between that line is getting bigger.” 
Actual conceptualizations of FT: 
Student Pair 1: The students phrased their findings, saying, "The 
shadow is at double the height of the mosquito's height." This 
description shows their comprehension of the relationship 
between input (height of the mosquito) and output (height of the 
shadow).  
Student Pair 2: The students gave a more descriptive explanation, 
focusing on the distance between the two mosquitoes. They 
described the rule as "the distance between the light rays 
doubles, as the light rays are further away from the light source". 
They showed an understanding of chunky covariation (interval-to-
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interval), an advanced level of FT, compared to the input-output 
(point-to-point) level. 

Comparison While the actual learning trajectory of Pair 1 closely followed the 
hypothetical trajectory, Pair 2 showed an unexpected but 
advanced level of FT. In other words, concerning the potential 
given by the task, students could prioritize the inter-mosquito 
distance and the distance between their shadows, instead of 
observing how the output (shadow) depends on the input 
(mosquito position). The students may have found the interval-
to-interval relationship more intuitive or engaging to explore 
(because there are two mosquitos available), which diverted their 
attention from the point-to-point relationship.  

Ideas for 
Redesign 

To prevent the unnecessary 
distractions on the screen, we plan to 
reduce the complexity by removing 
one of the mosquitos. Notably, these 
students are relatively high achievers, 
and pair 2 invested six times as much 
time to solve the task.  

 

Learning Module 2: Bimanual nomogram tasks  

           

Figure 3.9 Students explored nomograms (a) collaboratively, and (b) individually 
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Example 2.1: In the ‘Keep the arrow green with your neighbor’ task (see 
Figure 3.9a), students can construct the arrows of the semi-nomogram 
(without numbers) with their peers by controlling one point per person. The 
relationship between the input and output is: output = input − 2 

HLA Hypothetical action-perception loops:  
During the exploration, students adjust the arrow’s endpoints; 
one student moves one end, while the other student adjusts 
the opposite end. They aim to maintain the arrow’s green color, 
indicating a correct relationship between the heights of the two 
ends. If the points misrepresent the function’s nomogram, the 
arrow turns red, prompting students to correct their positioning 
to maintain the green indication. Initially, students employ 
subtle or slight movements in segmented (“chunk”) motion 
strategies, which help them get familiar with this new 
movement. As students traverse the input axis, they visualize 
the function’s complete pattern, observing intersecting and 
parallel arrows among other features. 
Hypothetical practices / techniques for using artifacts:  
Students move two points on two lines vertically with height 
differences on both sides and adjust the moving speed (same 
speed for both sides) and direction (same direction on both 
sides) based on the feedback of the arrow (green = positive, red 
= negative). 
Hypothetical conceptualizations of FT:  
Students’ simultaneous and smooth manipulation of the two 
points can foster an understanding of covariation between two 
variables based on bimanual movements. This can be achieved 
by drawing an analogy between their physical experiences 
(heights of hands) and mathematical meaning (dependent and 
independent values). In addition, the whole set of arrows, as 
shown by their trace, can contribute to the development of 
correspondence thinking.  

ALA Actual action-perception loops:  
Student Pair 1: The students were observed to adjust the 
position of one end of the arrow (student 1) and then move the 
other end (student 2) until the arrow turned green. After finding 
several green arrows, students started to move the two points 
together and keep the arrow green all the time. In the end, they 
adjusted the arrow smoothly and perceived the relation 
between the heights of the two ends of the arrow to meet the 
positive feedback, which is a green arrow. 
Student Pair 2: The students adopted a strategy similar to pair 
1.  
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Actual practices / techniques for using artifacts: 
Student Pair 1: The students became adept at moving vertically 
along two straight lines with both hands, which laid the 
foundation for the later tasks.  
Student Pair 2: The students followed a practice similar to pair 
1. In addition, it was observed that the students focused on the 
speed of their movements and came to the insight that the 
speed of the two points’ movements must be consistent in 
order to maintain parallelism between the arrows in the 
nomogram of output = input − 2. 
Actual conceptualizations of FT: 
Student Pair 1: The students connected their observations to 
the previous learning module. They referred to the light-shadow 
context, which was not actually present “The sun’s rays come 
from one side again, so the green arrows run in one direction.” 
This task saw the emergence of situational reasoning since they 
used the light-shadow context to explain what they observed 
from this new task. But limited covariational thinking was 
observed. 
Student Pair 2: The students made a connection between their 
physical movements and the geometric attributes of the 
nomogram, stating, “By trying to both go down/up at the same 
speed…make sure you both move your fingers down at the 
same speed so that the lines stay parallel all the time”. This 
enabled them to comprehend how one variable changed in 
relation to another based on their bodily experience.  

Comparison The HLA and ALA are primarily aligned, as students followed the 
anticipated process of adjusting the arrow and maintaining the 
green color; moving two points on two lines vertically and 
adjusting their movement based on the arrow’s feedback. Their 
reflection suggests a strong bond between their bodily 
experience and the mathematical meaning. The HLA was an 
accurate description of the learning process, and the 
instructional strategies and materials were successful in guiding 
students along the desired learning trajectory.  

Ideas for 
Redesign 

The alignment between the HLA 
and ALA indicates that this series of 
tasks was successful in facilitating 
the desired learning outcomes. 
There will be no adaptation. 
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Example 2.2: In the task ‘Describe the rule with 𝑥𝑥 and 𝑦𝑦’ (see Figure 3.9b), 
students need to complete the nomogram (with numbers) by moving first 
and then describe the rule with 𝑥𝑥 and 𝑦𝑦. The relationship between the input 
and output is: 𝑦𝑦 = −2 ∙ 𝑥𝑥. 

HLA Hypothetical action-perception loops:  
During the exploration, students are expected to move the two 
points together while keeping the arrow green to find the 
moving patterns based on the numbers on the two lines.  
Hypothetical practices / techniques for using artifacts:  
Students are expected to move two points on the two number 
lines simultaneously and maintain the moving speed (different 
speeds for both sides) and direction (opposite direction on both 
sides) to hold positive feedback. 
Hypothetical attentional anchor: An intersection point of the 
traces of the arrow. 
Hypothetical conceptualizations of FT:  
With the appearance of numbers on both lines, students are 
expected to strengthen their understanding of input-output 
pairs and covariational quantities with referential reasoning. 
Students can develop a connection between a rule that 
determines their movement to a more abstract rule/relationship 
between two variables, which entails a form of correspondence 
thinking. 

ALA Actual action-perception loops:  
Student Pair 1: The students were found to first move one unit 
on the left number line, then adjust the right point until they 
observed the arrow getting green. After noticing a pattern in the 
traces of the arrows, they adjusted their movement based on 
the trace. 
Student Pair 2: These students quickly found some green arrows 
and subsequently shifted their attention to the point where the 
existing arrows intersected. They then moved their hands and 
completed the nomogram by aligning the arrows with the 
intersection point. 
Actual practices / techniques for using artifacts: 
Student Pair 1: Students practiced a strategy of moving one unit 
by one unit, conjecturing the possible moving pattern, and then 
following the traces of the arrow to move two points smoothly.  
Student Pair 2: The students noticed that a shortcut to creating 
green arrows easily on the nomogram involved ‘rotating’ the 
arrow around the intersection point. 
Actual attentional anchor: An intersection point of the traces of 
the arrow. 
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Actual conceptualizations of FT: 
Student Pair 1: The students adopted a top-down strategy, first 
identifying several input-output pairs, such as 0 to 0, 2 to -4, -1 
to 2, and then performing calculations to give the rule with 𝑥𝑥 
and 𝑦𝑦. They primarily focused on the mathematical aspects 
rather than the motion aspects of this task, which led them to 
covariation thinking. 
Student Pair 2: The students connected their movement pattern 
and the geometric attributes of the nomogram. Their statement, 
“we have to make sure the line stays on this center point 
(intersection point) … and from there, one point (moves) down 
and the other (point moves) up.” They quickly recognized that 
the opposite motion of their hands corresponds to a ‘-’ symbol 
in the formula. Subsequently, by analyzing number pairs on the 
nomogram, they deduced the additive factor. This indicates 
their realization of the initial covariational relationship between 
the coordinated hand movements. 

Comparison In the action-perception loops, the discrepancy lies in the 
students’ (pair 1) initial approach to moving one unit on the left 
number line and adjusting the right point until the arrow turned 
green, instead of moving the two points together while keeping 
the arrow green. In the attentional anchor, the students focused 
on the intersection point of the traces of the arrow, rather than 
the green arrow itself. This shows that this task might not have 
been perceived as action-based. The students paid more 
attention to the mathematical aspects, viewing the nomogram 
as a representation rather than a tool that provides physical 
experiences to facilitate mathematization.  

Ideas for 
Redesign 

The step-by-step approach could become an alternative 
pathway to understanding the moving patterns. As for students’ 
focus on the intersection point to complete the nomogram, 
future study will consider if it is necessary to redirect students' 
focus to the green arrow, for example, make the traces invisible 
while students move the two points and reveal the traces when 
the movement covers most of the target traces.  
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Learning module 3: Transition tasks of multiple representations for 
functions 

        

Figure 3.10 Students explored the transition between (a) a nomogram and 
corresponding function graph; (b) a function graph and corresponding 
nomogram 

Example 3.1: In the task ‘Move on the line’ (see Figure 3.10a), students can 
adjust the arrow in the nomogram and try to keep the corresponding point 
moving on the function graph. The relationship between 𝑥𝑥 and 𝑦𝑦 is: 𝑦𝑦 = 𝑥𝑥2 

HLA Hypothetical action-perception loops:  
Students are expected to explore the relationship between their 
hand movements and the corresponding point in the coordinate 
system, observing how the left and right-hand movements affect 
the point’s horizontal and vertical positions, respectively.  
Hypothetical practices / techniques for using artifacts:  
Students should become aware of the relationship between their 
hand movements and the corresponding point’s movements to 
accurately adjust their actions; left-hand movement controls the 
horizontal movement of the point (left/right), while right-hand 
movement controls the vertical movement (up/down). 
Hypothetical conceptualizations of FT: 
Speed and coordination are crucial to keep the point on the 
function graph. Students are expected to comprehend how their 
hand movements simulate the covariational relationship 
between the two variables. They can develop an understanding 
of the conversion between representations, such as from an 
arrow in a nomogram to a point on the function graph, based on 
their physical experience. Additionally, students are expected to 
recognize that the vertical axes in both representations remain 
consistent. Another crucial observation is the orientation of the 
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horizontal axes; they are rotated at a right angle, a geometric 
detail can be mirrored in the student’s movement. 

ALA Actual action-perception loops:  
Student Pair 1: Initially, students moved the right point on the 
nomogram, observing its impact on the vertical movement of the 
green point in the Cartesian coordinate system. They then moved 
the left point and recognized its influence on the point’s 
horizontal movement. After figuring out the effect of each hand’s 
movement on the point’s position in the Cartesian coordinate 
system, they started to move the two hands simultaneously on 
the nomogram to ensure the point moved along the 
corresponding function graph. 
Student Pair 2: These students adopted a reverse strategy. They 
were observed initially moving both hands together to see the 
point's movement in the Cartesian coordinate system. They then 
experimented with moving one point at a time to understand the 
influence of the left number line on the point's horizontal 
movement and the right number line on the vertical movement. 
Actual practices / techniques for using artifacts: 
Student Pair 1: The students demonstrated the same 
understanding as hypothesized, using their left hand to control 
the point's horizontal movement (left/right) and their right hand 
to control the vertical movement (up/down). 
Student Pair 2: Similar to Pair 1.  
Actual conceptualizations of FT: 
Student Pair 1: The students built the full connection between 
the two representations, nomograms and function graphs. They 
described the findings of the function 𝑦𝑦 = 𝑥𝑥2 as “you have to 
move the 𝑥𝑥 circle up slowly and the 𝑦𝑦 circle you have to move up 
faster”, indicating that when 𝑥𝑥 is greater than 1, 𝑦𝑦 changes at a 
faster rate than 𝑥𝑥. This shows their understanding of the 
correspondence relationship of 𝑥𝑥 and 𝑦𝑦 for the function 𝑦𝑦 = 𝑥𝑥2. 
They incorporated their bodily experiences to explain the 
conversion between different function representations. 
Student Pair 2: The students gave a similar statement on the 
conversion between nomograms and function graphs.  

Comparison Both HLA and ALA demonstrated similar practices/techniques for 
using artifacts and shared similar action-perception loops, 
indicating that the hypotheses were effective and accurate in 
guiding students' engagement and focus. However, the difference 
lies in the initial strategy used by the students in pair 1 and pair 
2. Pair 1 started by moving the right point and then the left point, 
while pair 2 initially moved both hands together. Concerning the 
conceptualization of FT, both pairs were able to build the full 
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connection between the two representations and used their 
physical experiences to explain the conversion between different 
function representations. These findings suggest that different 
students may adopt different strategies through exploration, but 
either way can lead them to the final learning goal.  

Ideas for 
Redesign 

The HLA and ALA have no conflicts considering the learning goal 
of this task, which is 'Conversion between different 
representations of functions, nomogram and function graph'. 
There will be no adaptation for this task. 

 

Example 3.2: In the task ‘Graph the rule’ (see Figure 3.10b), students can use 
a digital pen on the screen to plot the function graph according to a given 
nomogram. There is a colorful arrow in the nomogram showing the position 
of the pencil in real time. The functional rule in this task is: 𝑦𝑦 = |𝑥𝑥| 

HLA Hypothetical action-perception loops:  
When completing the function graph, students are expected to 
move the digital pen (orange point) in the Cartesian coordinate 
system and observe the corresponding color-changing arrow on 
the nomogram. Students can use a top-down approach, first 
having an overview impression of the nomogram and guessing 
the function, and then moving the digital pen to draw the graph, 
with the color-change arrow signifying the location of the point 
in the Cartesian coordinate system. When the point aligns with 
the target function graph, the corresponding arrow in the 
nomogram turns green, and the trace of the pen remains visible. 
Or students can adopt a trial-and-error method, working in small 
steps to keep the green arrow on the given nomogram by loops.   
Hypothetical practices / techniques for using artifacts:  
Students are expected to first move the pen horizontally or 
vertically to determine the effect of the movement, and then 
focus on plotting several separate points that fit within the 
nomogram. Eventually, they should be able to plot the function 
graph. It is plausible they may need to erase and restart the 
entire canvas several times before they can smoothly plot the 
function graph. 
Hypothetical conceptualizations of FT: 
It is a reverse task of conversion between nomogram and 
function graph. By ‘matching’ the color-changing arrows on the 
nomogram and the pen’s position in the Cartesian coordinate 
system, students’ comprehension of input-output pairs and their 
corresponding locations in the Cartesian coordinate system is 
reinforced. The integration of nomogram, function graph and 
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formula in this task allows students to experience how different 
representations work together to represent one rule/function, 
which leads to correspondence thinking.  

ALA Actual action-perception loops:  
Student Pair 1: The students first found a point (1,1) that turned 
the arrow green. They then began to freely move the pen to 
observe its effect on the color-changing arrow on the nomogram. 
After discerning the connection between the pen and the color-
changing arrow, they tried to plot the left part (second quadrant) 
of the function graph in small steps by loops. 
Student Pair 2: The students initially moved the pen in an 
unstructured manner, attempting to find number pairs and to 
turn the color-changing arrow on the nomogram green. They 
found that even with free pen movement, when it reaches a 
certain area, the trace of the pen could remain visible. After 
being redirected by the tutor, they refocused on the task goal, 
which was to plot the function graph based on the given 
nomogram, rather than to move the pen freely.  
Actual practices / techniques for using artifacts: 
Student Pair 1: Initially, students plotted a few points in the 
coordinate system while observing the corresponding nomogram 
and then lined up these points to complete the function graph. 
Student Pair 2: The students first moved the pen randomly and 
got some pen traces, which formed part of the accurate function 
graph. Then they used a strategy similar to pair 1 to plot the 
graph. 
Actual conceptualizations of FT: 
Student Pair 1: The students identified the connection between 
the movement of the pen and the color-changing arrow on the 
nomogram, and then further got an understanding of the 
conversion between the function graph and the nomogram. Their 
use of the number pairs indicates a deep development of the 
input-output aspect of FT. When giving the formula of the 
function, they described it as “𝑥𝑥 times -1 (second 
quadrant)…Always the same number (first quadrant)”. They have 
not learned absolute function, so provided this kind of stepwise 
formula, when 𝑥𝑥 < 0, 𝑦𝑦 = −𝑥𝑥, and when 𝑥𝑥 > 0, 𝑦𝑦 = 𝑥𝑥. This 
shows a strong ability to transfer between different function 
representations, which exemplifies the correspondence aspect of 
FT.  
Student Pair 2: The students also grasped the conversion 
between the function graph and the nomogram. They figured out 
the patterns of the number pairs from the given nomogram. 
When explaining the findings, they described it as “(in the first 
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quadrant) the graph should be a 45-degree straight line,…, it is 
also a 45-degree straight line but towards the opposite direction 
(in the second quadrant)”. Their explanation suggests that they 
have also got an understanding of correspondence thinking. 

Comparison The difference in the action-perception loops is the initial 
strategy used by both pairs of students. In terms of the use of 
artifacts, both pairs demonstrated a grasp of the connection 
between pen movement and the color-changing arrows on the 
nomogram, and applied similar strategies to plot the function 
graph. In conceptualizing FT, both pairs of students recognized 
the conversion between the function graph and the nomogram, 
and identified patterns from the given nomogram, indicating 
developed correspondence thinking.  

Ideas for 
Redesign 

The confusion about the task goal implies a need for clearer task 
instructions. To avoid this confusion, the task goal of graphing the 
function in the coordinate system will be explicitly stated at the 
beginning to guide student focus, for example, highlighting the 
goal in the instruction and the title of the tasks. In addition, the 
pen’s traces could potentially cause a misinterpretation of the 
task. We will modify this aspect to preserve all traces rather than 
exclusively maintaining the correct one. 

 

The results section elucidates how FT can be fostered through three digital-
embodied learning modules, each targeting a different aspect of FT. Through 
detailed examples and participant activities, we compared the differences in 
HLA and ALA. Moreover, the comparison and redesign ideas presented 
suggest ways for refining the design to better align with students’ perceptual 
and physical experiences and learning needs. These results set the stage for 
a broader research of the implications of digital-embodied learning. 

3.5 Conclusion and Discussion 
The overarching question addressed in this paper is how an embodied design 
can foster abstract FT. To provide more comprehensive insights, we divided 
it into three sub-questions, each focusing on a specific aspect of FT. In the 
following, we reflect on how the results obtained from each learning module 
contribute to answering these sub-questions. 

RQ 1 How does a light ray context foster the students’ meaning-making 
of nomograms? 

The light ray context, an integral part of our embodied design, served as an 
important instrument in facilitating students’ understanding of nomograms 
and the input-output aspect of FT. As advocated by Abrahamson & Lindgren 
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(2014), students need guidance to take action and move their bodies in 
specific ways, simulating key mechanisms and spatial relations. This 
approach helps them understand and apply functional analogies in the 
targeted knowledge domain. In our scenario, we have embedded numerous 
elements within the light ray context that render the nomogram as a function 
representation. Firstly, the orientation of the light rays (arrows) underscores 
the principle that, with a function, it is the inputs that consistently map onto 
the outputs, and not the reverse. Secondly, a single light ray can only 
correspond to a unique point in the shadow, similar to the function rule 
where input can only determine one specific output. Thirdly, in nomograms, 
only a finite number of arrows are drawn, despite every point on the input 
axis theoretically having an arrow, similar to how we depict only a limited 
number of light rays even though they pass through every point. Lastly, the 
visualization of two hands in the hand-shadow tasks offers an analogy for the 
subsequent dual-hand motion task on a nomogram. The object placed in 
front of the light source symbolizes the input, while the resulting shadow 
represents the output. The direction of the arrows offers students clear 
guidance regarding the mapping from input to output values.  

Though still partial and vague in this learning module, students’ 
grasping of the mathematical meaning of the nomogram—as a function 
representation—was accomplished through and manifested in their bodily 
actions, gestures, artifacts (the learning environment), and mathematical 
symbols (Radford, 2009). As shown in our observations, students were able 
to draw connections between their actions – such as changing the light 
source’s type or position – and the resulting changes in the light ray patterns 
on the nomogram. While experimenting with two light sources, the sun or a 
bulb, the learning environment supports the students in the meaning making 
of nomograms for two types of functions. The parallel nomograms are 
interpreted as the result of sunlight, which represents adding to or 
subtracting from the input values. The divergent nomograms, with a focal 
point left of the input lines, are ascribed to a bulb or spotlight, which enlarges 
the input values to some extent (see Example 1). In addition, the perceptual 
experience provided by the light ray contexts allows students to construct the 
mathematical meaning of using nomograms. For instance, the geometric 
patterns resulting from different light ray contexts left a deep impression on 
the students, enabling them to refer back to these contexts even in 
subsequent learning modules (as seen in Example 2.1). 

In conclusion, the light ray context has been a productive situational 
tool in our embodied design, fostering a deeper understanding of the 
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function representation of nomograms through a tactile and sensory-
engaging approach. 

RQ 2 How do bimanual movement tasks foster covariational thinking? 
In our embodied nomogram tasks, the bimanual movements offer an 
opportunity for students to physically explore the relationship between two 
variables in a function, with the left hand representing 𝑥𝑥, and the right hand 
𝑦𝑦, respectively. This enables students to physically experience the 
covariation between the two variables. As prompted by Alberto et al. (2022), 
our embodied nomogram tasks also cover two learning phases, a qualitative 
stage (nomograms without numbers) and a quantitative stage (nomograms 
with numbers). In the qualitative stage, by moving both hands to maintain 
the green status of the arrow, students understood that these variables were 
related and their hands’ movements should be coordinated (see example 
2.1). In the quantitative stage, students adopted a more systematic, 
quantitative approach to their movement patterns. For example, they used 
a strategy of moving one unit at a time on the left number line, and then 
adjusting the right point accordingly (see example 2.2). This shows they made 
connections between their movement and mathematical reasoning of the 
discrete numerical values associated with each point.  

Concerning the bimanual movement in the nomogram-function graph 
tasks, students used both hands to manipulate the points that represented 
the value of the variables in the nomogram and observe the corresponding 
changes of the variables in the Cartesian coordinate system. A clear example 
of how this facilitated understanding of the covariational relationship can be 
seen in a task that involved keeping a point moving along a function graph 
(see example 3.1). To keep a point moving along the function graph 𝑦𝑦 = 𝑥𝑥2, 
students quickly realized they had to move their right hand (controlling 𝑦𝑦) 
faster than their left hand (controlling 𝑥𝑥) when 𝑥𝑥 was bigger than 1. This 
active engagement provided a tactile foundation for their comprehension of 
the different function representations. This grasp was evident in their 
explanations such as, “the (𝑦𝑦) point goes faster than the (𝑥𝑥) point” or “when 
I move my left hand, the point goes left or right (on the nomogram), and when 
I move my right hand the point runs vertically (in the Cartesian coordinate 
system)”. 

Moreover, in line with continuous feedback used in previous studies in 
mathematics education, a notable feature embedded in our tasks was the 
continuous real-time feedback provided by the color-changing arrow on 
nomograms (Abrahamson, 2014; Alberto et al., 2019; Shvarts et al., 2021). 
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Continuous feedback has proven to be a promising tool, promoting new 
sensorimotor coordination through students’ exploration and interaction 
with the learning environment. This was apparent in our tasks as students 
adapted their hand movements in real time to maintain the ‘green’ of the 
color-changing arrow. Students could immediately see the impact of their 
hand movements on the function and adjust their strategies accordingly. This 
loop of action, observation, and reaction has the potential to reinforce 
understanding continuous covariation in a dynamic, iterative way. The 
continuous feedback provided in these tasks was not only real time but also 
visually intuitive, using color changes (i.e., the arrow turning green or red) as 
an indication of correctness (Alberto et al., 2022). Such feedback, coupled 
with the simultaneous manipulation of the variables, enabled the students to 
experience the complex interrelationship between the two variables, thereby 
constituting a body-artifact functional system for covariational reasoning 
using nomogram. 

In this manner, the integration of bimanual movement into the 
learning process not only aligns with the properties of functions itself but also 
leverages recent advancements in DT to provide a novel, hands-on approach 
to the foster of covariation thinking. 

RQ 3 How do different function representations and their conversions 
support a correspondence view on functions? 

Various function representations, such as arrow chains, tables, graphs, 
formulas, and nomograms, allow for different types of functional reasoning, 
fostering a holistic understanding of functions, which is the core of 
correspondence thinking. In our tasks, the conversions between different 
representations – nomogram, formula, and function graph – were 
intentionally designed to help students transfer them smoothly based on 
concrete experience. The formula and function graph, a more conventional 
representation, helped students further consolidate the functional 
relationship in a symbolic and graphical way.  

According to previous research (e.g., Ainsworth, 1999; Duval, 2006), 
using multiple representations, especially the transitions between them, can 
deepen students’ conceptual understanding and encourage more flexible 
thinking. When students are trained to transition smoothly between different 
function representations, they are better positioned to anticipate and 
operate on the function. This anticipatory ability allows students to deduce 
implications in one representation based on insights obtained from another. 
For instance, during the plotting function graph task (see example 3.2), 
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students were given the opportunity to conduct the unimanual movement 
on one representation (function graph) while observing the corresponding 
changes on another (nomogram). The changes induced by the unimanual 
movement were related to the overall shape of the nomogram or slope of 
the function graph, encouraging students to anticipate outcomes before 
initiating the plotting process. 

In summary of the findings on RQ3, the use of different function 
representations and conversions between them in our study encouraged 
correspondence thinking by providing multiple perspectives to observe, 
understand, reason about, and manipulate the function. These tasks boosted 
an understanding of the function as a correspondence relationship, 
promoting a general understanding towards an object view of function. 

In addressing the limitations of this case study, several elements 
deserve further consideration. First, the subjects of our study are students 
from the pre-university stream, suggesting that these students may have a 
solid foundational knowledge, potentially enabling them to better grasp 
abstract concepts than their peers. This skews the findings, as the approaches 
used might have different effects on students from various learning 
backgrounds. Other uncontrolled factors could have influenced the outcomes 
as well, like learning perceptual preferences and familiarity with digital tools. 
Second, although the students’ performance was closely observed and 
analyzed, their strategies and thought processes were inferred from their 
behaviors and verbal expressions, possibly introducing some degree of bias. 
For instance, although some students employed a top-down strategy yielding 
correct responses, their subsequent explanations connected these answers 
to our questions, including embodied elements we expected. This could lead 
to the misinterpretation that tasks were addressed using a mere embodied 
approach. Thirdly, the design intricacies, despite their novelty, might have 
been overly complicated for some participants. The confusion evident in 
initial tasks emphasizes the need for more explicit instructions in future 
designs. Adjustments, such as explicitly stating the task goal and refining the 
movement traces to maintain clarity, could help avoid misinterpretations. 
Last, the embodied nature of our tasks heavily relies on the nomograms. We 
could question if students are truly grasping the mathematical concepts, or if 
they are mastering the manipulation of this specific tool. 

Adding to our conclusions, we want to emphasize the importance of 
design considerations for effective embodied tasks. First, the importance of 
providing students with a concrete experience, as exemplified by the light ray 
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context in our design. This concrete, situational context served to anchor 
abstract mathematical concepts, allowing students to build on their intuitive 
understanding of the physical world—such as noticing how the presence of 
light sources affects the environment around them—how sunlight creates 
shadows that change during movement, or how a flashlight casts a shadow 
when its beam is obstructed. We acknowledge that while students might not 
have a detailed understanding of the geometric properties of light diffusion, 
their general awareness of how light and shadows interact due to movement 
is sufficient for the learning goals. And students frequently referred to this 
context in subsequent tasks and modules, illustrating the lasting value of such 
metaphors in function learning with nomograms. Another crucial design 
consideration is the integration of an interactive, dynamic learning 
environment that offers real-time feedback (Abrahamson, 2014; Alberto et 
al., 2022; Shvarts et al., 2021). The students responded positively to the 
interactive nature of our tasks, with both pairs indicating that they enjoyed 
engaging with the tasks and observing the changes in a real-time manner. 
Notable comments included the rewarding experience of seeing the arrows 
turn green, the ease of understanding how the graphs work through the 
dynamic lines, and the preference for this interactive learning environment 
over traditional textbooks. This immediate, sensory feedback provided by the 
tasks fosters a more engaging, intuitive, and satisfying learning experience, 
highlighting the potential benefits of integrating such elements into 
mathematics learning. At the heart of our embodied design is the intentional 
and tight coupling of learning goals with target tasks. We aimed to impart an 
understanding of functions as relationships between two variables. To this 
end, the two-hand coordinating motion served as an ideal task: it is an 
accessible action that affords both stability and dynamism. The stability of 
this action—consistent action type across all tasks, regardless of function 
type — could facilitate the emergence of body-artifact functional systems 
(Shvarts et al., 2021), while the dynamics allows for a wide range of 
movement patterns, mirroring the various properties of functions. This close 
alignment between task and learning goal was crucial in ensuring students 
develop new body potentialities and create new affordances under the 
embodied learning environment. 

In conclusion, this study highlights the advantages of integrating 
digital-embodied nomogram tasks to foster FT. Such an approach appears to 
deepen students’ grasp of abstract mathematical concepts by providing 
concrete experience. Furthermore, these findings offer a robust foundation 



Chapter 3 

98  

for future research in FT, embodied learning, and the role of DT in 
mathematics education. 
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Chapter 4 A digital-embodied design for functional 
thinking in the classroom 
 

Abstract To address the challenge of teaching functional thinking (FT), this study 
proposed to ground mathematical reasoning in tactile experiences and investigated 
whether a digital-embodied design using nomograms enhances FT in a classroom 
setting. A teaching experiment was conducted with 39 9th- grade students across 
three 1-hour sessions, each dedicated to one aspect of FT: Input-Output, Covariation, 
and Correspondence. In Module 1, real-life contexts and application of function rules 
invite Input-Output thinking. In Module 2, bimanual coordination tasks with 
nomograms target Covariation. In Module 3, the transitions between different 
function representations focus on Correspondence. Data from pretests, posttests, 
classroom observations, and mini interviews demonstrated significant improvements 
on all aspects of FT, especially Covariation. Key design features—real-life context, 
bimanual coordination movements, real-time feedback, and various function 
representations—helped students bodily engage with functions, supporting smooth 
transitions from sensorimotor experiences to mathematical reasoning. In conclusion, 
integrating digital-embodied tools into classroom may support FT development. 

Keywords Functional thinking; Embodied design; Digital technology; Mathematics 
education; Classroom implementation; Nomogram; Parallel axes representation 
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4.1 Introduction  
Embodied cognition represents a paradigm shift in the understanding of how 
cognitive processes are rooted in the body’s interactions with its 
environment. According to this perspective, cognition is not only a product 
of abstract mental functions but is deeply rooted in the physical experiences, 
perceptions and actions of the body (Barsalou, 1999; Lakoff & Núñez, 2000; 
Varela et al., 1991). In the field of mathematics education, embodied learning 
has shown promise in reshaping our perspectives on how students 
understand complex and abstract mathematical ideas. Research suggests 
that mathematical cognition is tied to sensorimotor experience, as students’ 
sensemaking of abstract mathematical concepts includes gestures, spatial 
reasoning, and bodily movements (Abrahamson & Lindgren, 2014; 
Nemirovsky et al., 2013). The integration of digital technologies into this 
framework has led to the creation of digital-embodied learning 
environments, which allow students to engage with abstract concepts 
through interactive digital tools (Georgiou et al., 2021; Pittalis et al., 2024). 
These environments, through tools such as virtual manipulatives or motion-
based interfaces, provide tangible and concrete bodily experiences that align 
physical actions with mathematical concepts, making these concepts more 
accessible (Pittalis & Drijvers, 2023; Shvarts et al., 2021; Wilson, 2002). The 
embodied approach using digital technology leads to immersive and 
interactive learning experiences. This approach not only enriches the 
learning process but also aligns constructivist theories of active knowledge 
construction, with the view that knowledge is constructed through abstract 
reasoning and tactile interaction with the world.  

Since the beginning of the twentieth century, functional thinking (FT) 
has emerged as a crucial topic in mathematics education (Thompson, 2008). 
FT is essential for modeling real-world problems and engaging in complex 
problem solving. Despite the recognized importance of FT in developing 
mathematical literacy, students often struggle with the abstract nature of 
functions and their representations (Ellis et al., 2016; Tanışlı, 2011; Stephens 
et al., 2017; Thompson & Carlson, 2017). For example, grasping the dynamic 
nature of covariation can be challenging—understanding how two quantities 
change in relation to each other—especially when students are required to 
visualize or mentally manipulate these relationships (Castillo-Garsow et al., 
2013; Thompson & Carlson, 2017). Recent research suggests that digital-
embodied learning environments offer a promising solution direction. By 
bodily interacting with digital representations of functions, students could 
better understand covariation and other abstract concepts by grounding their 
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learning in sensorimotor activities (Duijzer et al., 2019; Shvarts & 
Abrahamson, 2019). Thus, the incorporation of digital-embodied learning 
environments in teaching FT presents considerable potential. 

Transitioning embodied learning from controlled laboratory research 
to a real classroom is challenging. The practical issues, including teacher 
involvement, varying student abilities, and technical limitations, make the 
adoption of embodied learning difficult on a larger scale. Previous studies 
also highlight the nuanced relation between technology integration and 
learning outcomes, especially on how digital tools like GeoGebra, interactive 
whiteboards and tablets may enhance conventional teaching methods (De 
Vita et al., 2018; Duijzer et al., 2019; Günster & Weigand, 2020). The 
transition from laboratory settings to classroom environments amplifies 
these complexities, revealing variations in implementation effectiveness due 
to factors such as scaling for larger groups, accommodating diverse student 
abilities, and local contextual dynamics (Alberto et al., 2022; Cai et al., 2020; 
Kosmas & Zaphiris, 2023). Empirical evidence suggests that the success of 
technology-enhanced learning environments depends on how well these 
variables are managed. The effectiveness of digital tools in improving learning 
outcomes often varies based on how they are integrated into the classroom, 
with factors such as class size, teacher preparations, and student diversity 
playing key roles (Alberto et al., 2022; Drijvers, 2019). Given these challenges, 
this study aims to further investigate the potential of an embodied learning 
approach in classroom settings. 

4.2 Theoretical Framework 
The integration of digital-embodied learning environments into mathematics 
education represents a shift toward more interactive and tangible methods 
of teaching abstract concepts, such as FT (Abrahamson et al., 2021; Drijvers, 
2019). This study is anchored in several key theoretical frameworks including 
Embodied Design, Functional Thinking, and the use of Digital Technology. It 
specifically explores the role of a digital-embodied design using nomograms 
in fostering FT within a classroom setting. 

Delving deeper into embodied cognition within a mathematics 
classroom, Abrahamson (2009) refined the concept of Embodied Design as a 
design methodology. This innovative method involves creating learning 
environments and resources that require students to use their bodies in 
learning activities, thereby grounding abstract mathematical ideas in physical 
experience. The core premise is that cognitive processes are influenced by 
bodily interactions, which suggest that physical engagement can enhance 
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conceptual understanding (Abrahamson & Lindgren, 2014; Barsalou, 1999). 
Embodied design in mathematics education has been shown to improve 
students’ grasp of complex subjects, such as FT, by making the abstract nature 
of mathematical concepts more accessible and intuitive (Nathan & 
Walkington, 2017). For instance, the use of manipulatives, gestures, and 
motion-capture technology allow students to internalize mathematical ideas 
through physical actions and visual representations (Duijzer et al., 2019; 
Pittalis & Drijvers, 2023; Shvarts & Abrahamson, 2019). Embodied design can 
be categorized into different strands: action-based, perception-based, and 
incorporation-based design (Abrahamson & Lindgren, 2014; Bos et al., 2022; 
Wei et al., 2023). Action-based designs ground mathematical concepts in 
students’ natural capacity to adaptively solve sensorimotor problems 
(Palatnik et al., 2023; Shvarts & Abrahamson, 2019). For example, students 
can manipulate a triangle’s vertex to discover its equidistant properties, 
tracing a parabola (Shvarts & Abrahamson, 2019), while in a histogram 
example, students can move balls and bars to represent data, reinventing the 
histogram through actions (Boels & Shvarts, 2023). These designs promote 
conceptual understanding by enabling students to discover dynamic 
relationships with their sensorimotor experiences. Perception-based designs 
emphasize students’ perceptual capacity, supporting the understanding of 
mathematical structures through perceptual sensitivity of phenomena (e.g., 
ratios, balance; Abrahamson, 2012; Tancredi at al., 2021). Incorporation-
based designs intentionally remove a digital artifact’s functionality, 
prompting students to internalize and perform this functionality through 
bodily experience (Bos et al., 2022; Botzer & Yerushalmy, 2008). Across these 
embodied design strands, the learning process unfolds through iterative 
perception-action loops (Shvarts et al., 2021), where actions generate 
perceptual feedback that guides subsequent action. 

Functional Thinking is a key component of school mathematics, 
emphasizing the understanding of functions as objects, their representations, 
and the relationships between those representations (Vollrath, 1986). The 
development of FT is crucial for students’ ability to model real-world 
situations mathematically and to solve complex problems (Kaput, 1998). In 
this study, we focus on three aspects of FT: Input-output (IO) thinking, which 
focuses on calculation processes through input-output assignments and 
pattern recognition (Doorman et al., 2012; Frey et al., 2022; Stephens et al., 
2017); Covariation (COV) thinking, emphasizing the dynamic relationship 
between two variables and their covaried relationships (Carlson et al., 2002; 
Confrey & Smith, 1995; Doorman et al., 2012; Thompson & Carlson, 2017); 
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and Correspondence (COR) thinking, which delves into the unique pairing of 
these variables across multiple representational forms, such as arrow chains, 
tables, graphs, formulas, and phrases (Doorman et al., 2012; Pittalis et al., 
2020; Smith, 2008). Another frequently discussed aspect of FT, namely 
mathematical object thinking, was excluded from this study due to the 
educational level being considered. Within the mathematical object aspect, 
a function is recognized as part of a family of functions (Sfard, 1991), 
including higher-order operations such as composition, transposition, and 
differentiation (Wei et al., 2023). These aspects enable the development of a 
holistic understanding of functional relationships, from recognizing 
sequences and patterns to interpreting and mapping variable interactions 
(Wei et al., 2024).  

Additionally, we explore an innovative approach to function 
representation in teaching and learning FT, using a graphical calculation tool 
known as a nomogram (see Figure 4.1). The idea of using nomograms in 
digital learning settings first emerged with the work by Nachmias and Arcavi 
(1990), who introduced the Parallel Axes Representation. Nomograms, 
including various formats like the horizontal version DynaGraph identified by 
Sinclair et al. (2009), are helpful in visualizing functional relationships. A 
nomogram comprises two parallel number lines, which represent values of 
the input and output variables respectively. Points on the axes are connected 
by arrows or lines that illustrate the functional relationship mapping from 
input to output. Within our digital-embodied learning environment, each axis 
features a movable point, allowing students to simultaneously adjust the 𝑥𝑥 
and 𝑦𝑦 values by moving both their hands. This type of bimanual movement—
coordinated actions involving both hands—can enhance students’ 
understanding of mathematical concepts by providing a concrete, physical 
experience of abstract ideas (Abrahamson et al., 2014; Jaber et al., 2024). As 
students manipulate the points, the interface offers real-time feedback: 
when the points correctly represent an input-output pair, the arrow between 
them changes from red to green, and the green arrows remain visible. If the 
points do not correspond to a valid pair, the arrow turns red and leaves no 
trace. This real-time feedback is similar to the features in the Mathematical 
Imagery Trainer for Proportion (Abrahamson & Trninic, 2011), where color 
change provides immediate, intuitive guidance to students. This dynamic, 
hands-on interaction aligns with the principles of embodied cognition and 
constructivist learning theories. In this way, the digital-embodied nomograms 
make the often-challenging abstract concepts of FT more tangible, potentially 
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fostering a deeper understanding of functions through interactive, embodied 
experiences.  

Figure 4.1 A Digital-embodied nomogram for the function 𝑥𝑥 → −𝑥𝑥 

Advancements in digital technology have transformed educational practices, 
allowing for the development of interactive and engaging learning 
environments. Research in mathematics education has increasingly focused 
on the potential of digital tools to support conceptual understanding and 
problem-solving skills (Doorman et al., 2012; Roschelle et al., 2010). Digital-
embodied learning environments, which combine physical interaction with 
digital representations, offer a unique platform for students to explore 
mathematical concepts in a dynamic and intuitive manner. For example, to 
teach the concept of a parabola, learners can manually plot a series of green 
isosceles triangles that collectively form a U-shaped trace (Palatnik et al., 
2023; Shvarts & Abrahamson, 2019). This task asks students to physically 
explore the parabola’s geometric properties by preserving the equal 
distances from a point to the directrix and focus. Through this hands-on 
interaction, students intuitively grasp the reflective symmetry and structure 
of the parabola by combining both manual tracing and digital feedback. 
Additionally, constructivist learning theory emphasizes the importance of 
learners constructing their own knowledge through active engagement with 
the environment. This theory is also consonant with the use of digital-
embodied learning environments, as it advocates for instructional designs 
that allow students to explore, experiment, and to make sense of 
mathematical concepts through direct manipulation and interaction. The use 
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of digital-embodied nomograms in teaching FT aligns with this theory by 
enabling students to visualize and manipulate functional relationships, 
thereby developing conceptual understanding that integrates these tools 
into their mathematical reasoning.  

In summary, the theoretical background of this study integrates 
embodied design, the importance of FT in mathematics education, and the 
affordances of digital technology. This study aims to address the overarching 
research question:  

Research Question How can an embodied design using nomograms foster 
functional thinking in a classroom setting? 

 

This question is split up into two sub-questions to explore the roles of the 
digital-embodied learning environment’s impact on students’ mathematical 
reasoning: 

Sub-RQ1 How does a digital-embodied design using nomograms affect 
the various aspects of functional thinking among students 
within a classroom setting? 

Sub-RQ2 How do the design features contribute to the development of 
functional thinking? 

 

The key design features considered in this study include real-life contexts, 
bimanual coordination movement, real-time feedback, and multiple 
representations. By exploring these questions, the study aims to contribute 
to effective mathematics teaching and learning while offering insights into 
how digital-embodied learning environments can be designed to enhance 
students’ understanding and application of FT in a classroom setting. 

4.3 Method 
This study was structured as a teaching experiment conducted in two Grade 
9 classes, aimed at exploring the impact of digital-embodied designs on 
students’ functional thinking within a classroom setting.  

Module Design 
The design comprised three learning modules designed around the concept 
of digital-embodied design, specifically using nomograms to enhance FT. As 
outlined in our previous study (Wei et al., 2024), the design process began 
with the development of Hypothetical Learning Trajectories (HLT), including 
a detailed hypothetical learning progression (see Appendix 2 for an example). 
Each learning module, as shown in Figure 4.2, was structured to progressively 
build on students’ understanding and application of FT concepts in varied 
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contexts, with both real-life and pure mathematical scenarios. Different 
types of functions, such as linear functions, quadratic functions and the 
absolute value function, are addressed. For those interested in exploring 
these modules further, access is provided through the following link: 
https://embodieddesign.sites.uu.nl/activity/functional-thinking/. 

In Module 1, the foundational stage, the emphasis on light ray contexts 
introduces students to IO thinking through engaging real-life scenarios. The 
light rays from the object to its shadow in the nomogram are reflected by 
arrows going from the input to the output element, with only a limited 
number of arrows drawn, even though they could originate from every point 
on the input axis. This module transitions from unimanual to bimanual 
movements, also laying the groundwork for covariational reasoning (Figure 
4.2a). In this ‘Bulb and mosquito’s shadow’ task, students can move the 
position of the mosquito and observe how the position of its shadow changes 
correspondingly. The relationship between the position of the mosquito and 
its shadow is: height_shadow = height_mosquito × 1.5. 

Module 2 builds upon this by shifting from light ray contexts to purely 
mathematical ones, replacing them with semi-nomograms—nomograms 
without numbers—and then formal nomograms (Figure 4.2b). This transition 
guides students toward a richer perceptual and kinesthetic experience in 
mathematical reasoning. Tasks involving bimanual movement reflect COV, 
where the coordinated movement of both hands mirrors the covariation 
between two variables. In this ‘Keep the arrow green’ task, students aim to 
maintain the arrow’s green color, indicating a correct relationship between 
the heights of the two ends. The relationship between the input and output 
in this task is: output = −2 × input − 4. 

Module 3 focuses on COR thinking, inviting students to explore the 
transitions between nomograms, function graphs, and formulas through 
both unimanual and bimanual activities (Figure 4.2c). This module is pivotal 
in enabling students to perceive and act on the dynamic visualization of 
various functional relationships, fostering a deep, intuitive understanding of 
the connections between action-perception loops and function 
representations. In this ‘Find the domain and range’ task, students can first 
adjust the arrow in the nomogram and try to keep the corresponding point 
moving on the function graph. After that, they can predict the domain and 
range by observing the range of the arrow’s traces on the nomogram. The 
relationship between 𝑥𝑥 and 𝑦𝑦 is: 𝑦𝑦 = √𝑥𝑥 + 2. 

  

https://embodieddesign.sites.uu.nl/activity/functional-thinking/
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Figure 4.2 Examples of tasks from each module: (a) Bulb and mosquito’s 
shadow; (b) Keep the arrow green; (c) Find the domain and range.  

Instruments 
To comprehensively assess students’ FT development and learning 
processes, this paper employed three data collection instruments: Pretest 
and posttest, Answer boxes in the digital-embodied learning environment, 
and Mini interviews. 

Pretest and Posttest 
The pretest and posttest were administered in a paper-pencil format, 
designed in line with the three facets of FT: input-output, covariation, and 
correspondence. Each test consisted of 15 items, scored on a 5-point scale to 
capture levels of student understanding, resulting in a maximum score of 75 
points per test. These tests comprised two types of items: those closely 
related to the FT learning module content (“close assessment”, nine items) 
and those relevant to the broader curriculum but varying in specific contexts 
(“proximal assessment”, six items). This was done to measure both direct 
learning outcomes and generalized skill application (Ruiz‐Primo et al., 2002). 
The posttest was designed to maintain structural and conceptual equivalence 
with the pretest. It featured variations in numbers or contextual settings to 
prevent rote memorization while keeping the cognitive demand of the tasks. 
Of these fifteen items, nine were categorized as close assessments, 
incorporating contexts similar to those encountered in the learning modules, 
like light and shadow tasks, and comparisons between nomograms and 
function graphs. The remaining six items were proximal assessments, 
introducing contexts not explicitly covered in the learning modules, such as 
scenarios involving a moving walkway and function tables. 
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The validity of the assessment tool was established through a 
multifaceted approach, including expert reviews from both experienced 
mathematics teachers and researchers in mathematics education research. 
These experts ensured the assessment items were aligned with the core 
aspects of FT, thereby affirming the content validity of the tool. The pilot of 
the pretest to 51 students allowed for a classical test analysis, including 
calculations of p-value, variance, item reliability index (Rir), and item-total 
correlation (Rit), culminating in a Cronbach’s alpha (α) of 0.71. This result 
indicates satisfactory internal consistency and thereby affirms the reliability 
of the assessment tool. Based on the insights garnered from this pilot study, 
several adjustments were made to enhance the assessments’ clarity and 
simplicity. These adjustments included the removal of an item deemed overly 
simple and modifications to the test instructions to ensure greater clarity. 
Such refinements were crucial in enhancing both the validity and reliability 
of the assessments. These steps, from pilot testing to statistical analysis and 
subsequent adjustments, underscore the thorough process undertaken to 
ensure that the assessments accurately and reliably measure students’ FT 
(detailed test example available in Appendix 1).  

To ensure the reliability of scoring the pretest and posttest, two 
independent coders evaluated the work. The second coder reviewed 50% of 
the total data. Inter-rater reliability was assessed by calculating Cohen’s 
Kappa, which yielded a coefficient of 0.96, indicating an excellent level of 
agreement between the coders’ independent assessments. After their 
independent assessments, a consensus discussion was conducted to 
reconcile any differences. In addition to the reliability checks, the normality 
of the distribution of the difference scores between the pre- and posttests 
was assessed using the Shapiro-Wilk test, yielding the following statistics: 
Wdiff (38) = .98, p = .70. These results support the assumption that the 
distribution of difference scores can be considered normal. Therefore, a 
paired t-test was used to compare the pretest and posttest scores of students, 
addressing Sub-RQ1. 

Answer Boxes in the Digital-embodied Learning Environment 
Students provided written responses in answer boxes within the learning 
modules after completing embodied tasks. These responses captured 
reasoning processes and FT understanding. A four-level grading system was 
built: Integrated reasoning, Basic reasoning, Simple observation, and No 
reasoning, where “No reasoning” includes both incorrect reasoning and 
blank responses (detailed grading rubric available in Appendix 4). For 
example, in task 2.1, where students were required to describe how they 
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keep an arrow green through bimanual movement on the nomogram 𝑦𝑦 =
𝑥𝑥 + 1, the reasoning was classified as follows: 

• Integrated Reasoning: Demonstrates comprehensive reasoning by 
integrating movement speed, direction, and the maintenance of 
geometric relationships (e.g., fixed angles or height differences) in their 
explanations.  

• Basic Reasoning: Shows reasoning that focuses on one aspect (either 
speed or direction) but lacks consideration of geometric relationships or 
the simultaneous integration of multiple factors, such as the 
angle/height difference. An exemplar response is, ‘Make sure that both 
your hands are going the same direction at the same time/speed.’ 

• Simple Observation: Makes simple observations without engaging with 
the concept of bimanual coordination or the deeper FT required to 
interpret or manipulate the nomogram.  An exemplar response is, ‘It 
turns green at a certain angle.’ 

• No reasoning: Simple statements without focusing on the bimanual 
movement. For instance, an example from a student, ‘I move very slowly 
one finger at a time.’ 

To confirm the reliability of grading students’ responses in the answer boxes, 
two independent coders reviewed the submissions. The second coder 
analyzed 20% of the responses. Following their independent evaluations, a 
discussion was held to reconcile any discrepancies. The inter-coder reliability 
for these assessments was quantified using Krippendorff’s alpha, which 
produced high coefficients of 0.80 for the answer box gradings. It signifies a 
robust level of agreement between the coders post-discussion and reinforces 
the reliability of the grading process. 

Mini interviews 
The development of the mini interview protocol was derived from the core 
tasks identified within the HLT (Wei et al., 2024). This alignment is essential 
for gathering detailed information on students’ progression along these 
predefined learning paths. The primary objective of the mini  interviews is to 
encourage students to reflect upon and elaborate on their written responses. 
This is achieved through a carefully structured series of open-ended 
questions and follow-up queries based on their initial reactions. This method 
is designed as an interactive dialogue that prompts deeper student 
engagement with their learning processes, thereby yielding richer, more 
detailed insights into their learning progression along the HLT (Drijvers, 
2003). The mini interviews were carried out by the research team during the 
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teaching experiment. Following the questions from the interview protocol, 
the researchers conducted interviews with students, either individually or in 
pairs. Most interviews lasted about one to two minutes, were audio-
recorded, and then transcribed. 

To guide the qualitative analysis of data collected from mini interviews, 
a detailed codebook was developed. This codebook outlines specific 
categories and descriptions for coding students’ interactions with the digital-
embodied learning environment, focusing on aspects of FT (Wei et al., 2023) 
and embodied learning (Abrahamson & Lindgren, 2014; Shvarts et al., 2021). 
It includes codes for input-output thinking, covariation thinking, 
correspondence thinking, action interaction, perception interaction, and the 
perception-action loop. Additionally, it addresses students’ difficulties, 
strategies, and improvements in FT, along with emerging themes that link 
embodied experiences to mathematical understanding. To ensure the 
reliability of coding the interview quotations, two independent coders 
reviewed the transcriptions. The second coder coded 15% of the 
transcription. After independently completing the coding, a discussion was 
conducted to resolve any discrepancies. The inter-coder reliability was 
assessed using Cohen’s Kappa, resulting in a coefficient of 0.73, indicating a 
substantial level of agreement between the coders. 

Participants 
A total of 39 grade-nine students, aged 14 to 15 years, were enrolled in the 
study from an international school located in the Netherlands. These 
students, all from two classes, were inclusively recruited for the research, 
with no selection criteria applied. All students and their parents provided 
informed consent, and participation was voluntary. The students were 
average to high achievers and had a foundational understanding of functions, 
including experience with number lines, basic algebra to describe 
relationships between quantities or variables, using algebra for modeling 
real-world situations, and basic graphing skills in coordinate systems. They 
had not yet studied the formal definition of a function. To ensure uniformity 
in the research conditions, all participants received the same instruction and 
engaged in identical tasks within the digital-embodied learning environment.  

Intervention 
The experiment spanned over three sessions for each class, with each session 
lasting one hour. These sessions were scheduled to ensure a consistent and 
immersive learning experience for the participants. To facilitate this, every 
participant was equipped with a tablet (Figure 4.3). Each session was planned 



Chapter 4 

116  

to include a 5-minute introduction or review phase, a 45-minute exploration 
period, and a 10-minute recap session (detailed teaching manual example 
available in Appendix 3). The introductory phase aimed at setting the stage 
for the day’s activities, revisiting key concepts from previous sessions or 
introducing new ones relevant to the day’s tasks. During the exploration 
period, students engaged with the digital-embodied learning environment in 
a self-directed manner. They were encouraged to interact with the tasks, 
discuss their findings, and collaborate. There are a few tasks, such as the one 
where two students plot a nomogram together, that required collaborative 
learning, with each student manipulating a different point. This hands-on 
period was crucial for students to discover and apply concepts of FT within 
the digital-embodied learning environment. To conclude each session, a 10-
minute recap was conducted to facilitate a whole-class discussion. It was 
carried out by the researcher and served to highlight the learning goals of the 
session, to address common challenges encountered by students during their 
exploration, and to reinforce key concepts. 

Figure 4.3 Classroom setup featuring digital-embodied nomogram tasks for FT 

Throughout the experiment, researchers acted as tutors, providing guidance 
and support to students as they navigated through the learning modules. 
Classroom teachers assisted with managing classroom dynamics and 
ensuring that the sessions progressed smoothly. This collaboration ensured 
that the educational environment was conducive to both exploration and 
learning, allowing for an effective investigation into the role of digital-
embodied designs in promoting FT within a classroom setting. 



A digital-embodied design for functional thinking 

117 

Data Collection and Analysis 

Pretest and Posttest 
The pretest and posttest were administered before and after the three-
session teaching experiment. These assessments aimed to measure the 
levels of FT among students at two points in time, providing a basis for 
evaluating the impact of the teaching intervention. The analysis of these 
scores employed a paired t-test to assess the improvement in students’ FT 
levels before and after the teaching intervention, addressing Sub-RQ1. 

Answer Box in the Digital-Embodied Learning Environment 
The data derived from students’ written responses in the answer boxes were 
from the digital-embodied learning environment. All student responses in 
the answer boxes were saved under each student’s individual account. After 
the experiment, the research team downloaded these responses and 
evaluated them using the four-level grading system described in the 
Instruments section. Beyond assigning scores, the analysis also involved 
identifying representative examples of student responses to illustrate typical 
reasoning patterns. These examples provide additional insight into the 
students’ learning processes, contributing to answering Sub-RQ2. 

Mini interview 
Data gathered from transcripts of mini interviews conducted with students 
during their interaction with the learning modules provided rich insights. 
Researchers used the same codebook (outlined in the Instruments section) 
to categorize students’ actions, difficulties, and conceptual understandings 
of FT. The analysis highlighted typical or noteworthy patterns of student 
explanations, showing how the design features influenced their thinking. The 
analysis also included selecting representative cases of students’ 
articulations, which are presented in the Results and Interpretations section. 
This method allowed us to collect comprehensive data in addition to task 
completion and to gain insights into students’ problem-solving processes and 
mathematical reasoning (Lobato et al., 2012), thus addressing Sub-RQ2.  

By systematically integrating the three instruments, this study 
triangulates quantitative and qualitative data to provide a comprehensive 
picture of students’ FT development. Table 4.1 summarizes how each 
instrument contributes to addressing the research questions.  
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Table 4.1 Summary of instruments and their contributions to the research 
questions  

 Pretest and Posttest 
Answer Box 
Responses Mini interview 

Sub-RQ1:  
How does a 
digital-
embodied 
design using 
nomograms 
affect the 
various 
aspects of FT 
among 
students 
within a 
classroom 
setting? 

Quantitatively 
measures students’ 
FT levels before and 
after the intervention:  
- Addresses gains in 

input-output, 
covariation, and 
correspondence 
aspects of FT. 

- Paired t-test 
determines 
overall 
improvement in 
FT. 

Enables analysis of 
specific reasoning 
patterns connected 
to FT aspects. 

Clarifies subtle 
changes or 
misunderstandi
ngs not visible 
in written 
responses. 

Sub-RQ2: 
How do the 
design 
features 
contribute to 
the 
development 
of functional 
thinking? 

 Demonstrates how 
design features 
(real-life context, 
bimanual 
movement, real-
time feedback, 
multiple 
representations) 
shape students’ 
written reasoning 
and responses. 

Probes how 
students 
experience each 
design feature 
in real time to 
uncover their 
strategies, 
highlighting the 
role of each 
feature in 
fostering FT. 

 

4.4 Results and Interpretations 
This section presents the results derived from three sources of analysis: (1) 
pretest and posttest data, including both scores and examples of students’ 
answers, (2) students’ responses in the answer boxes of the digital-embodied 
learning environment, and (3) insights from mini interviews. 

Pretest and Posttest Results 
Quantitative data analysis indicated a significant improvement in students’ 
functional thinking levels (Sub-RQ1). A paired t-test was conducted to 
compare the pretest and posttest scores of students. Overall, there was a 
statistically significant increase in the posttest scores (M = 50.05, SD = 8.65) 
compared to the pretest scores (M = 33.09, SD = 10.76, t(38) = 10.18, p < 
.001). The effect size, Cohen’s d = 1.74, indicated a substantial improvement 
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in students’ FT levels, as evidenced by an average increase of 16.96 points 
between the pretest and posttest scores (Maximum score is 75). Figure 4.4 
illustrates the variability in improvement across different pretest scores, 
reflecting students’ initial FT levels. The results indicate that students, 
regardless of their starting FT levels, showed significant gains following the 
intervention. Notably, those with lower initial FT scores tended to 
demonstrate greater improvement than students with higher pretest scores. 

Figure 4.4 Relationship between students’ pretest scores and their improvement 

When diving into the results on functional thinking aspects—Input-Output, 
Covariation and Correspondence—the results show improvements across 
these facets (as detailed in Table 2). The assessment framework for these FT 
aspects comprised a differentiated number of items: three items for the IO 
aspect, five items for the COV aspect, and seven items for the COR aspect, 
with each item scored on a 5-point scale.  

A closer examination of Table 4.2 indicates an improvement in 
students’ FT levels. In the COV aspect, the mean score increased from 1.7 to 
3.5, reflecting a stronger grasp of the relationship between variables. The 
COR aspect’s mean score experienced a rise from 2.0 to 2.8, highlighting a 
deepened understanding of pairing relationships and the use of multiple 
representations. The IO score also improved, from 3.5 to 4.5, showing the 
teaching intervention’s effectiveness, albeit with a smaller relative gain due 
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to the ceiling effect. These improvements affirm the positive impact of the 
lesson on all three facets of functional thinking within the classroom setting.  

Table 4.2 Pretest vs Posttest for each aspect of FT (Maximum score is 5)  

 IO COV COR 
Pretest 3.5 1.7 2.0 
Posttest 4.5 3.5 2.8 
Improvement 1.0 1.8 0.8 

 

The posttest responses revealed students’ enhanced understanding of the 
COR aspect of FT—using different representations, such as nomograms, to 
depict functional relationships. For instance, in the pretest (Figure 4.5a), a 
student adopted simple geometric shapes to illustrate the context provided 
by the test item. In contrast, the posttest showed a marked evolution in the 
student’s approach: the term ‘nomogram’ was explicitly used, and a correctly 
plotted nomogram was employed to accurately address the question (Figure 
4.5b). While this adaptation is expected, its significance lies in how students 
transitioned from informal and context-based representations to a 
structured mathematical tool. This progression was not isolated but 
observed across different items, signifying a broader adaptation among 
students to use this new representation as a mathematical tool. 
Furthermore, this adaptation served as evidence of the development of COR 
thinking, as students were able to represent functional relationships through 
multiple representations, including nomogram and formula in this case. 

Results from Students’ Responses in the Answer Boxes 
To assess the extent to which students achieved the learning goals outlined 
in our HLT, we coded their responses in the answer boxes using the above-
mentioned four-level grading system: No reasoning, Simple Observation, 
Basic reasoning, and Integrated reasoning. All tasks were categorized into 
eight groups based on their goals and forms. This allowed us to systematically 
measure how different aspects of FT were developed, as relevant for Sub-
RQ1. This section first provides a brief overview of the task groups’ 
information and how design features were embedded in each group of tasks. 
It then presents the coding results, showing the distribution of students' 
reasoning levels across different task groups. Finally, two representative 
examples are analyzed to further demonstrate how students' responses 
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reflect their reasoning levels and how their thinking may have been 
influenced by the design features (as questioned in Sub-RQ2). 

Figure 4.5 (a) The same student’s response in the pretest and (b) in the posttest  

Figure 4.6 shows the percentage distribution of students’ reasoning levels 
across eight groups of tasks, offering a quantitative lens through which to 
view their learning progression in alignment with the HLT. Tasks 1.1-1.5 
introduced the IO aspect through unimanual tasks embedded in real-life 
contexts involving foundational functions like 𝑦𝑦 = 𝑥𝑥 + 𝑏𝑏 and 𝑦𝑦 = 𝑘𝑘 ∙ 𝑥𝑥. In 
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these tasks, students manipulated an object along the input axis, receiving 
real-time feedback as they observed corresponding changes on the output 
axis. In Tasks 1.6-1.8, a different real-life scenario was introduced with more 
complex functional relationships, such as 𝑦𝑦 = 𝑘𝑘 ∙ 𝑥𝑥 + 𝑏𝑏. Students interacted 
with these tasks either by moving an object or adjusting its height along the 
input axis to observe changes on the output axis. Task 1.9 served as a 
transition point, introducing the nomogram as a mathematical tool to 
represent functions. With a shift from real-life contexts to abstract 
mathematical representations, Tasks 2.1-2.4 focused on the COV aspect by 
requiring students to coordinate bimanual movements on semi-nomograms. 
These tasks allow them to synchronize their two-hand movements, 
reinforcing the covariation between input and output values. As students 
adjusted both hands simultaneously, they also received real-time feedback 
by color-changing cues. Then in Tasks 2.5-2.9, nomograms were introduced 
with formulas, connecting multiple function representations. The integration 
of the Cartesian coordinate system in Tasks 3.1-3.3 requires students to 
explore the relationship between nomograms and function graphs. Students 
are supposed to convert between these different function representations. 
Tasks 3.4-3.7 reversed the process, and asked students to plot function 
graphs based on given nomograms. Finally, Tasks 3.8-3.9 formally introduced 
the concept of functions, focusing on defining input values, output values, 
domain, and range. Students plotted nomograms and used them to 
determine the domain and range of functions (detailed group information is 
available in Appendix 2). 

Since tasks within each group share similar formats but vary only in 
functional relationships, percentages for each reasoning level were 
calculated as the average across all tasks within a group. Each task group 
corresponds to a different stage of the HLT. We excluded the final task of each 
module from the analysis since too many students did not complete these 
tasks, due to lack of time. These omitted tasks were designed only as extra 
challenge exercises intended for students who managed to complete the first 
nine tasks within the allotted time. 
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Figure 4.6 Student reasoning levels by task group from the three learning 
modules 

In Module 1, foundational concepts of FT are introduced through the tangible 
and context-rich scenarios of light ray contexts, engaging students in IO 
thinking. Tasks 1.1-1.5 exhibit a high degree of integrated reasoning 
(63.16%), indicative of students successfully navigating initial situational 
activities that center on IO thinking within concrete contexts, such as 
manipulating an object and its shadow under light rays. This suggests that 
the tangible, context-rich tasks effectively introduced students to the 
foundational concepts of FT.  As the tasks evolve to require higher abstract 
thinking with the shift to complex context (1.6-1.8), a noticeable decrease in 
integrated reasoning to 8.77% and an increase in no reasoning, imply a gap 
between task complexity and students’ prior knowledge or skill sets. The 
resurgence in integrated reasoning (55.26%) in task 1.9, despite being a 
conclusive task introducing the nomogram, could be attributed to students 
synthesizing earlier concepts with the geometric interpretation of the linear 
relation introduced in this task, aiding in the conceptual leap required. 

Module 2 advances the trajectory by incorporating semi-nomograms 
and formal nomograms, furthering students’ perceptual and kinesthetic 
experiences of FT. The balanced distribution of reasoning levels in tasks 2.1-
2.4, with a notable peak in basic reasoning (30.00%), indicates an appropriate 
level of challenge that is accessible yet progressively abstract. Nonetheless, 
the contrasting integrated reasoning (43.00%) and no reasoning (39.50%) in 
tasks 2.5-2.9 suggest a divergence in students’ abilities to apply their 
understanding of bimanual coordination to mathematical reasoning, 
highlighting the need for nuanced instructional support. For example, 
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students with integrated reasoning can provide the correct formulas for the 
nomograms while students with no reasoning, although some of them tried 
to plot the nomograms, cannot provide the required formulas for the 
functions.  

In the concluding Module 3, the emphasis is on correspondence 
thinking, where students deal with the complexities of transitioning between 
multiple representations of functions, including nomograms, function 
graphs, and formulas. The majority of basic reasoning (43.59%) in tasks 3.1-
3.3 implies that the students are struggling with the module’s content, 
possibly due to the abstract nature of transitioning between nomograms and 
function graphs. The variability in comprehension becomes more 
pronounced in the latter tasks (3.4-3.7), where simple observation (35.26%) 
is prominent, and the most challenging tasks (3.8 and 3.9) result in a majority 
displaying no reasoning (69.23%). This could indicate that the tasks may be 
too advanced for some students, or that the connection between bimanual 
movements and the graphical representations of functions, particularly the 
correspondence aspect of FT in the action-based design of the tasks, requires 
more explicit instruction or redesign. 

Figure 4.7 An integrated reasoning example for task 2.1 
 

An example of Integrated reasoning is demonstrated in Figure 4.7, where a 
student articulates the required bimanual movement, stating “move the two 
points at the same time” and “maintain a constant angle.” The color-
changing feedback, described by the student as “it will stay green”, provided 
real-time perceptual cues. This kind of mechanism allows students to confirm 
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and keep the correct angle of the target nomogram. By continuously 
adjusting their bimanual movement based on these visual feedback cues, the 
student was able to stabilize their coordination and consolidate the target 
action of the nomogram. This interaction with the digital-embodied learning 
environment facilitates perception-action loops, that reinforce the 
connection between movement and mathematical representation.  

Figure 4.8 illustrates an example of Basic reasoning, where a student 
wrote “just move your fingers around a lot”, implying simultaneous circular 
motion of both fingers. This response, while recognizing the need for vertical 
movement in two directions, falls short in detailing the nuances of speed or 
height adjustments. 

Overall, the distribution of reasoning levels across the tasks suggests 
that while the early stages of the HLT align with students’ competencies, 
leading to high levels of strong reasoning, as tasks progress in complexity and 
abstraction, there is a clear need for additional support. This indicates the 
importance of designing teaching interventions that account for the diverse 
learning paces and comprehension levels of students, ensuring that the 
transition from concrete to abstract mathematical reasoning is accessible and 
effectively facilitated.  

Figure 4.8 A basic reasoning example for task 2.5 
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Results from Mini interviews  
The qualitative data from coding reports of the mini interviews provided 
depth to these findings. Patterns of understanding evolved from initially 
superficial to more conceptually grounded as students progressed through 
the learning modules. This section presents students’ expressions in different 
types of digital-embodied tasks, focusing on the following design features: 
real-life contexts, bimanual coordination movement, real-time feedback, and 
multiple function representations (Sub-RQ2). To ensure a comprehensive 
interpretation, we distinguish between typical responses, which represent 
common reasoning patterns, and best practice examples, which show more 
advanced reasoning processes. 

The use of Real-life Contexts 
This section focuses on the integration of real-life contexts within the 
learning modules, specifically, on how real-life contexts enrich students’ 
learning experiences and FT. Through the lens of real-life contexts, students 
encounter mathematical phenomena in settings that are both familiar and 
meaningful to them.  The insights offered by these students emphasize a 
conceptual shift: from concrete observations [perception] to the abstraction 
of functional relationships. The following two quotes are typical responses 
that were observed in similar forms in multiple mini interviews. 

Students 231006 in Task 1.5: So I saw that the bulb on [left of] the 
mosquito. It was on different positions. And these different 
positions meant different shadows. And I saw that if the mosquito 
was on the 1, and then its shadow would have been at 1.5 (See 
Figure 4.2a; heightshadow = heightmosquito × 1.5) … [when asked 
to compare scenarios] because the bulb, it’s like into one direction, 
but the sun is circular. So it’s has rays everywhere. And then also 
the rays of the sun could be stronger than the bulb. (See Figure 
4.9a; heightshadow = heighthand − 15)  
 
Student 231016 in Task 1.8: I found that the size of the shadow was 
always two times the size of the tree, no matter how big or small 
you made the tree, the size of the shadow is always twice the size 
of the tree … if you put the bottom of the tree at 1, the bottom of 
the shadow also at 1 … for example, when I make it 4 units long 
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from 1 to 5, you can see that the shadow goes from 1 to 9, which 
is 8 units long. (See Figure 4.9b; heightshadow = heighttree × 2).  
 

Figure 4.9 Tasks illustrating (a) A hand and its shadow under parallel light rays; 
(b) Adjustment of a cardboard tree and its shadow 

Analysis: Initially, students grapple with the task of directly mapping inputs 
to outputs—a foundational mathematical skill in the field of FT. As they 
interact with these real-life contexts, they begin to identify underlying 
patterns and relationships. Notably, the emergence of a multiplicative 
understanding signifies a key development in their mathematical reasoning. 
Students move beyond mere observation, applying their insights to 
generalize about proportional relationships. This transition marks a critical 
step towards mathematical abstraction and reasoning, where specific 
instances serve as a springboard for the derivation of general principles. This 
progression indicates their deeper comprehension of linear relationships. 
Importantly, this journey is facilitated by their engagement with real-life 
contexts using both observation [perception] and movement [action], which 
provide a tangible framework for exploring and internalizing abstract 
mathematical concepts. However, we also observed examples where 
students applied their everyday experiences, leading to misunderstandings 
in some cases. For example, when Student 231006 was asked to compare 
sunlight and bulb light, he focused on the strength of the light rays rather 
than how the shadow’s position is influenced by different light sources. This 
highlights the need for clear guidance when shifting from familiar real-life 
contexts to more abstract mathematical reasoning. 
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Bimanual Coordination Movement 
This section explores the reflections of students engaged in tasks requiring 
the simultaneous manipulation of two variables, showing how embodied 
learning through bimanual coordination movement enhances understanding 
of covariational relationships. The following examples show that bimanual 
tasks enable students to physically engage with and thus internalize function 
concepts by embodying the relationships between variables. The direct 
manipulation of points to reflect linear relationships provide a concrete 
context through which abstract mathematical principles become tangible. 
This physical interaction is crucial in making abstract concepts accessible 
through sensorimotor experiences. Student 231010’s response is a typical 
response similar to many other students, while Student 231108’s response 
can be seen as the best practice response. 

Student 231010 in Task 2.4: So the relationship that we found 
between the two different points and how to keep them, how to 
keep the line green is that you have to move the gray points at the 
same speed. So at a constant speed but in the opposite directions. 
(See Figure 4.1; output = −input) 
Student 231108 in Task 2.7: You have to multiply it with like [there 
is] a minus sign. Because when it goes higher it [the other point] 
turns into negative. The positive number on the 𝑥𝑥 turns into 
negative on the 𝑦𝑦. So that means there has to be like a negative 
number somewhere because it has to bring it down. (See Figure 
4.2b; output = −2 × input + 4) 

Analysis: Student 231010’s experience illustrates an understanding of 
inverse relationships, as the student articulates the necessity of moving two 
points at constant but opposite speeds [action] to maintain a specific visual 
indicator (a green line), embodying the functional relationship that output 
equals the negative of the input. Student 231108’s reflection further delves 
into the concept of linear relationship, where the manipulation of one 
variable (input) directly influences the other (output) through a specific linear 
equation [action], in this case, highlighted by a negative multiplication factor. 
This student’s observation about the transition of a positive number on the 
input-axis to a negative on the output-axis [perception], facilitated by a 
multiplication with a negative number. Moreover, we observed that most of 
the students began with relatively static bimanual movements, first adjusting 
one point and then the other until the arrow turned green. After several 
attempts, they began to recognize a rough pattern in the relationship 
between the points and gradually coordinated both hands, resulting in 
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smoother, more fluid movements. Although some of them did not grasp the 
exact pattern immediately, this iterative process of refining their bimanual 
movements helped them move closer to understanding the underlying 
functional relationship. However, as tasks became more complex—asking 
students to write down the functional rule as a formula—some students 
changed their movement habits. They adopted a more static approach, using 
discrete bimanual movements to identify integer pairs, which made deducing 
the formula easier.  

Real-time Feedback 
This section delves into the impact of real-time feedback on student learning, 
particularly through the mechanism of color-changing cues that signal 
correct or incorrect actions. These cues provide immediate feedback, 
allowing students to observe the effects of their actions immediately, adjust 
their strategies, and understand the dynamics of covariational relationships. 
The immediacy of the feedback ensures that students can quickly correct 
misconceptions and refine their embodied misconceptions, leading to a 
more engaged and effective learning experience. The following two quotes 
are typical responses that were observed in multiple mini interviews. 

Student 231101 in Task 2.4: You have to maintain a constant speed. 
And we have to maintain it to get the angle right. Otherwise, if you 
go, if one goes too fast and one goes too slow and there’s no 
coordination in it, then we’re not going to get the right angle and 
then there’s not going to be a green color. 
Student 231114 in Task 2.7: I first moved the lines until I could find 
out. I could see which ones are green. Then I kept moving. Then I 
checked how much I got, like the relationship between the left and 
the right. 

Analysis: Students’ experience from the above quotations exemplifies the 
iterative process of learning facilitated by real-time feedback. By 
experimenting with different positions and movements until the desired 
feedback (green color) is achieved [perception], students engage in a process 
of hypothesis testing in action, adjustment, and re-evaluation [action]. This 
process not only aids in discovering the underlying functional relationships 
but also in automatizing and describing these concepts through repeated, 
feedback-informed practice. In addition, real-time feedback acts as a bridge 
between action and perception. This kind of action-perception loops 
supports the development of a more intuitive grasp of mathematical 
concepts, as students learn to anticipate the outcomes of their actions based 
on previous feedback.  



Chapter 4 

130  

Multiple Function Representations 
The feature of multiple function representations within learning modules 
provides pedagogical value in exposing students to diverse ways of 
visualizing and understanding functions. This analysis focuses on how the 
digital-embodied tasks involving the manipulation of sliders to adjust a 
nomogram and its transformation into a Cartesian coordinate system play a 
role in developing students’ FT. Manipulating an object in one place [action], 
while simultaneously observing another object moves or changes 
accordingly in a different place [perception] fosters the connection between 
the objects and invites the student to make sense of the functional 
relationships. Student 231002’s response is a typical response similar to 
many other students, while Student 231104’s response can be seen as the 
best practice response. 

Student 231002 in Task 3.7: So like the left side is the 𝑥𝑥-axis. And 
then the right side is the 𝑦𝑦-axis. Because when I’m like moving with 
the slider, when the slider goes to the left, the left side turns into 
the 𝑥𝑥-axis as it like becomes flat [horizontal].  
Student 231104 in Task 3.9: I think the domain represents the 𝑥𝑥-
axis on the graph. And the range presents the 𝑦𝑦-axis as well. 

Analysis: The act of moving a slider [action] and observing the corresponding 
transformation of a nomogram into a Cartesian coordinate system 
[perception] enables students to concretely understand the transitions 
between different function representations (student 231002). This physical 
manipulation, coupled with the visual changes observed, supports action-
perception loops, and helps concrete the transition from the nomogram to 
the function graph. Specifically, this involves rotating the input axis and 
projecting the endpoints of arrows onto the two perpendicular axes in the 
coordinate system. And Student 231104’s engagement with the task 
demonstrates an attempt to link the graphical characteristics of functions 
with their mapping view, specifically noting the relevance of domain and 
range within the function graph. Students begin to experience the intricate 
ways in which these various representations—graphical, numerical, and 
algebraic—intersect and complement each other in depicting the same 
functional relationships by directly connecting them visually [perception].  

The qualitative insights gathered from the coding reports have 
enriched our understanding of students’ FT development. While the mini 
interviews reveal diverse experiences, they suggest that the digital-embodied 
learning environment can facilitate students’ journey from recognizing simple 
patterns to abstracting and applying functional rules. For example, students 
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moved from concrete observations, such as mapping inputs (objects) to 
outputs (their shadows) using light rays, to exploring more complex contexts, 
like controlling a slider to convert a nomogram into the corresponding 
function graph in the coordinate system. However, it is more accurate to 
describe these instances as specific cases where particular design features—
such as real-life contexts, bimanual coordination, real-time feedback, and 
multiple function representations—supported students in recognizing 
patterns and linking them to abstract functional rules. This points to the 
importance of these features in providing tangible experiences that help with 
the transition from concrete to abstract understanding in FT. 

4.5 Conclusion and Discussion  
In this section, we will first synthesize the results from the previous section 
into answers to the research sub-questions. These answers lead to a 
conclusion on the main research question. After considering the limitations 
of the study, we will reflect on these conclusions from a theoretical and 
practical perspective in the discussion section. 

Conclusion 
This study embarked on an exploration of the impact of a digital-embodied 
design using nomograms on fostering FT in a classroom setting. From the 
results of both quantitative and qualitative analyses, we conclude that such 
a design can enhance students’ understanding of function concepts. The 
findings uncovered the dynamics of learning processes, strategies, and the 
components within the digital-embodied learning environment that 
correlate with improvements in FT.  

Building on this main conclusion, we now explore the sub-research 
questions in detail. The first one concerned how a digital-embodied design 
using nomograms affects the various aspects of FT among students within a 
classroom setting. From the quantitative analysis of pretest and posttest 
scores, we conclude that students showed a statistically significant 
improvement across all three FT aspects. Students with lower initial FT levels 
demonstrated greater improvement than higher achievers. The detailed 
assessment of COR, COV, and IO scores highlights the specific areas that 
benefited from the use of digital-embodied nomograms. The teaching 
intervention particularly improved students’ COV thinking, with a relatively 
smaller gain in the IO aspect due to the ceiling effect. Compared to the gains 
observed in other FT aspects, the advancement and average score increase 
in the COR aspect are less pronounced, suggesting specific challenges or 
limitations in fully grasping or applying correspondence thinking. These 
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findings suggest that while the intervention was broadly effective, certain 
areas of FT received more noted benefits. From the qualitative analysis of 
students’ responses in the digital-embodied learning environment, we 
conclude that students’ reasoning levels varied based on the nature of the 
tasks and their initial FT levels. Specifically, Module 1’s concrete, tangible 
scenarios supported students’ comprehension of the IO aspect, leading to a 
majority demonstrating strong reasoning abilities. However, as tasks became 
more abstract in later modules, disparities in reasoning levels became 
apparent. The subsequent introduction of semi-nomograms and formal 
nomograms in Module 2 aimed to deepen students’ perceptual and 
kinesthetic engagement with FT. Yet, this shift also marked a point where the 
theoretical underpinnings and practical applications began to diverge for 
some students. Module 3 further explored this challenge by focusing on 
correspondence thinking and transition between various function 
representations, such as nomograms, function graphs, and formulas. The 
prevalence of average reasoning and weak reasoning indicates students’ 
struggles with the abstract nature of these transitions. These findings suggest 
that while the digital-embodied design positively impacts FT development, 
students’ progress is influenced by their initial FT levels and the nature of the 
tasks. 

Turning to the second sub-research question on how specific design 
features contribute to FT development, we conclude that features such as 
real-life contexts, bimanual coordination, real-time feedback, and multiple 
representations play an important role in facilitating students’ transition from 
concrete sensorimotor experiences to abstract mathematical reasoning. 
Real-life contexts, as introduced in Module 1, helped students connect 
familiar experiences to mathematical concepts, supporting the development 
of the IO aspect. Students’ vertical movement along the number lines serve 
as a simulation of key mechanisms, specifically through the manipulation of 
an object (input) and its shadow (output). This simulation guides students to 
take action and move their fingers in mathematically relevant ways on digital-
embodied nomograms. As tasks became more abstract in later modules, the 
use of bimanual coordination allowed students to physically explore 
covariational relationships, supporting a concrete understanding of variable 
interdependence. This hands-on approach allowed students to internalize 
the concept of covariation through direct manipulation. The integration of 
real-time feedback further contributed to students’ learning by providing 
immediate cues, such as color changes, to signal correct or incorrect 
bimanual movements. This feedback mechanism enabled students to adjust 
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their strategies instantly and supported the development of action-
perception loops, the core of deeper engagement within a digital-embodied 
learning environment. Additionally, engaging with functions in multiple 
representations, such as nomograms, function graphs, and formulas, allowed 
students to express ideas in different forms. The successful retrieval of one 
representation could activate others, which helps students to integrate these 
distinct pieces into a cohesive understanding of functional relationships and 
promote the development of correspondence thinking. 

Overall, we conclude that the use of digital-embodied nomograms 
leads to marked improvements in students’ FT, particularly for those with 
lower initial proficiency. By integrating real-life contexts, bimanual 
coordination movements, real-time feedback mechanisms, and multiple 
function representations, this comprehensive approach fosters a deeper 
understanding of function concepts in the classroom setting. 

Limitations 
This study’s insights into the use of digital-embodied nomograms for 
fostering FT are subject to several limitations that could affect the findings’ 
generalizability and depth. The specificity of the sample may restrict the 
generalization of results toward various educational settings. The short-term 
nature of the assessment overlooks long-term retention of FT developments, 
and the specific use of digital tools may not be feasible in all classrooms due 
to technological constraints. Additionally, the potential ceiling effect 
observed in the IO aspect suggests that initial student proficiency could mask 
the intervention’s impact, and the study did not thoroughly explore the 
variability in instructional support and its effectiveness. The lack of a control 
group further limits claims about learning gains and comparisons with 
traditional methods. While factors such as classroom dynamics, student 
variability in mathematical proficiency, and the role of the teacher may 
influence how the intervention translates from a controlled setting to a real 
classroom, this study focused on determining whether the learning modules 
have a similar positive impact in a classroom environment as predicted in the 
HLT. Future research could further investigate these aspects by incorporating 
control groups and systematical analyses of student engagement and 
learning outcomes. Finally, qualitative insights for Sub-RQ2 are based on 
selected examples rather than a systematic trend. Future studies could adopt 
a more structured approach to analyzing qualitative data. Addressing these 
limitations in future research will be essential for developing a more 
comprehensive understanding of digital-embodied learning environments’ 
role in the development of FT. 
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Discussion 
How do these findings feedback shed light on our initial theoretical 
framework, consisting of notions on embodied design, functional thinking 
and digital technology? Grounded in this theoretical framework, our 
research emphasizes the efficacy of employing digital-embodied nomograms 
to enhance students’ FT in a classroom setting. The results align with the 
theoretical underpinnings proposed in studies such as Abrahamson and 
Lindgren (2014) and Drijvers (2019), highlighting the transformative 
potential of integrating physical engagement and digital representations in 
learning abstract mathematical concepts. These findings resonate with the 
core principles of embodied cognition, suggesting that cognitive processes 
are deeply rooted in by bodily interactions. The perceptual and sensorimotor 
experiences students gained within the digital-embodied learning 
environment can substantially enhance conceptual understanding (Bos et al., 
2022; Duijzer et al., 2019; Pittalis & Drijvers, 2023; Shvarts & Abrahamson, 
2019).  

Specifically, the exploration of the design features is noteworthy. 
Several studies highlight the importance of using real-life contexts in 
mathematics education (Freudenthal, 1971; Gravemeijer & Doorman, 1999; 
Laurens et al., 2017; Sembiring et al., 2008). Integrating real-world contexts 
into mathematics instruction can enhance students’ engagement and 
understanding by making abstract concepts more concrete and relatable. The 
light shadow context used in the first learning module exemplifies this 
principle by allowing students to discover functional rules through 
experimentation and observation in a setting that mirrors their everyday 
experiences. Moreover, research emphasizes the importance of connecting 
mathematical concepts to student’s potential educational experiences and 
intuitive understandings (Freudenthal, 1971; Nemirovsky et al., 1998). By 
engaging with the physical world, such as through the light shadow context, 
students can connect their informal knowledge with formal mathematical 
concepts.  

The exploration of covariation through bimanual coordination tasks 
serves as an effective method for introducing students to the concept of 
variables’ interdependent changes. Fostering covariational thinking has 
always been a challenge in mathematics education, especially the abstract 
nature of continuous variation and covariation (Carlson et al., 2002; 
Thompson & Carlson, 2017). We explored bimanual coordination, referring 
to the coordinated use of both hands to interact with learning environment, 
as a potential method. It has been incorporated into mathematical education 
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as a way to foster an understanding of abstract mathematical concepts, such 
as proportion for primary school students (Abrahamson et al., 2016). In this 
study, as students adjust one variable with one hand and another variable 
with the other hand, they can observe in real-time how these variables 
covary. The sensorimotor experience with the mathematical content not only 
makes the learning experience more engaging but also embeds a concrete, 
experiential understanding of covariation. In addition, the kinesthetic 
experience provided by bimanual interaction enhances memory retention 
and conceptual understanding (Black et al., 2012). As revealed through the 
mini interviews, by physically engaging with mathematical concepts, students 
can form more concrete understandings of covariation. Through the 
bimanual interactions, students often describe covariational relationships in 
terms of one variable moving upward (increasing) while another moves 
downward (decreasing). It shows how students integrate digital-embodied 
nomograms into mathematical reasoning. Moreover, real-time feedback 
environment allows students to experiment with inputs and directly observe 
and adjust the corresponding outputs. The real-time visual feedback 
provided by digital-embodied nomogram tasks complements textual 
mathematical explanations, thus catering to a broader range of learning 
preferences. By incorporating these design features, the tasks adeptly 
present the dynamic relationships between variables, embodying the 
principles of covariational thinking and helping with overcoming the 
difficulties in covariational reasoning (Carlson et al., 2002; Thompson, 2008; 
Thompson & Carlson, 2017). However, as noted in the results section, there 
is a noticeable shift in students’ bimanual movement from continuous to 
relatively discrete movements. Insights drawn from mini interviews suggest 
this shift may be due to a commonly used strategy, where students focus on 
identifying specific integer pairs during discrete movements. When asked to 
provide a formula, students frequently rely on these integer pairs to identify 
patterns. The behavioral transition also signals an important direction for 
future research. It calls for further investigation into how bimanual 
movements, especially different types of bimanual movement—continuous 
versus discrete—influence the development of FT. Future studies could 
explore their impact across the various aspects of FT to uncover 
understandings of how physical interactions with mathematical content can 
support or hinder the learning progression.  

Compared to our previous study, which was conducted in a controlled 
laboratory setting with only two student pairs (Wei et al., 2024), this study 
explores the implementations of employing a digital-embodied design using 



Chapter 4 

136  

nomograms in a classroom environment. The freedom afforded to students 
in this setting allows them to independently explore mathematical concepts 
and communicate with peers, while features such as collaborative tasks and 
whole-class discussions enhance peer to peer interactions and collaborative 
learning processes. By synthesizing these insights, this study shows the 
considerable potential of digital-embodied learning environments with their 
rich design features to foster FT. It adds valuable perspectives to the discourse 
on instructional design strategies within the realm of mathematics education. 
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Appendix 1: Pretest and posttest examples 
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Appendix 2: HLT of module 2  
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Appendix 3: A teaching instruction of module 2 
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Chapter 5 An embodied approach to covariational 
reasoning: A hand-tracking study 

Abstract Covariational reasoning is critical for understanding functional relationships 
in mathematics. Yet, many students struggle to understand varying quantities and to 
conceptualize covariation. This study explores the research question of how 
bimanual movements within a digital-embodied learning environment can support 
students’ covariational reasoning, appropriating Thompson and Carlson’s (2017) 
covariational reasoning taxonomy. The intervention consisted of three lessons 
involving seventy-six Grade 9 students. Data included hand tracking data, post-task 
probes, and pretest and posttest results. We examined the relationship between 
students’ bimanual coordination and their covariational reasoning levels, addressing 
two hypotheses: (H1) Higher levels of covariational reasoning correlate with a shorter 
time to reach fluency in the bimanual coordination, and (H2) higher levels of learning 
gains in covariational reasoning correlate with longer time spent on fluently 
performing the bimanual coordination. As results, the pretest and posttest scores 
demonstrated significant improvements in students’ covariational reasoning after 
the experiment. Quantitative analyses of hand-tracking data indicated that students 
with higher initial covariational reasoning levels achieved fluent bimanual movement 
more quickly than others (supporting H1), while those with greater learning gains 
spent more time consolidating their understanding in fluency phases (supporting 
H2). Qualitative findings showed how the interplay of perception-action loops, 
attentional anchors, and real-time feedback facilitated the internalization of 
covariational relationships. This study highlights the potential of an embodied 
approach to fostering covariational reasoning and introduces a framework for 
analyzing embodied learning through the integration of hand tracking, probes, and 
assessments. 

Keywords Covariational reasoning, Embodied design, Hand tracking, Digital-
embodied learning, Mathematics education 

This chapter is based on: 
Wei, H., Bos, R., & Drijvers, P. (Under review). An embodied approach to 

covariational reasoning: A hand tracking study. Educational Studies in 
Mathematics. 
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5.1 Introduction 
Covariational reasoning is important for understanding relationships 
between variables in dynamic contexts. Covariational reasoning is defined as 
“the cognitive activities involved in coordinating two varying quantities while 
attending to the ways in which they change in relation to each other” 
(Carlson et al., 2002; p. 354). Insight in covariation is a prerequisite for the 
interpretation of functional relationships and the modeling of real-world 
phenomena. Research highlights the need for teaching approaches that 
support students’ transition from asynchronous interpretations to 
simultaneous reasoning within covariational reasoning (Carlson et al., 2002; 
Johnson, 2012; Paoletti & Moore, 2017). Such supportive teaching 
approaches may involve tasks that explicitly link physical actions to symbolic 
abstract outcomes. For example, tasks might include dynamic feedback (e.g., 
color changes or animations) that visually represent covariational 
relationships (Abrahamson & Trninic, 2011). These features serve as 
resources for students to manifest their covariational reasoning through 
gesture, coordination, and symbolic expression. 

Digital-embodied learning environments have emerged as powerful 
platforms for fostering conceptualization of mathematical concepts through 
embodied interaction (Abrahamson et al., 2011; Abrahamson et al., 2023; 
Flood et al., 2020; Georgiou & Ioannou, 2019; Jaber et al., 2024; Pittalis et al., 
2024; Pittalis & Drijvers, 2023). These environments allow students to explore 
functional relationships by directly manipulating variables or graphical 
representations with real-time feedback. Such approaches align with theories 
of embodied cognition, which suggest that learning is deeply rooted in the 
body’s interactions with the environment (Lakoff & Núñez, 2000; Varela et al., 
1991). In particular, Abrahamson et al. (2014) demonstrated how primary 
school students’ understanding of proportions emerged and improved 
through bimanual tasks that required them to manipulate objects with two 
hands simultaneously. Students need to discover a correct movement 
strategy guided by perceptual feedback, that is screen turning green. This 
intuitive strategy prompted students to qualitatively articulate their 
strategies and later quantitatively describe them. This approach initiated 
broader research on mathematics embodied design: that bodily experience 
can support formal conceptualization when tasks are specifically designed to 
connect sensorimotor coordination with symbolic outcomes (Abrahamson et 
al., 2011; Alibali & Nathan, 2012; Turgut, 2022). 

Despite the potential of these environments, gaps remain in our 
understanding of how specific tools or tasks contribute to the development 
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of covariational reasoning. While digital and embodied tools such as sliders, 
dynamic graphs, and gesture-based controls are designed to support such 
reasoning, more research is needed to test hypotheses about how these tools 
foster covariational reasoning. First gap lies in understanding the mechanisms 
by which embodied learning tools facilitate the transition from physical 
interaction to mathematical reasoning, a process where initial sensorimotor 
discoveries enable the articulation and formalization of mathematical 
concepts. As Abrahamson et al. (2020) note: “Participants in embodied-
design activities discover and develop concept-grounding enactive processes, 
even when they are not aware that or what they are learning” (p. 18). A 
second gap involves understanding how different design features, such as 
real-time feedback or the level of immersion, impact students’ mathematical 
reasoning processes (Christopoulos et al., 2024; Hulse et al., 2019). To 
address these gaps, some studies point out the importance of analyzing 
learning activities and mathematical reasoning from different lenses, for 
example, through the lens of embodied learning processes, which ground 
reasoning within the symbolic semiotic register (Abrahamson & Sánchez-
García, 2016; Nathan & Alibali, 2021). Advances in hand-tracking technology, 
such as the Geometry Touch app (Sepp et al., 2023), and tools leveraging 
virtual reality, gesture-based interaction modes, and delayed feedback 
mechanisms (Chatain et al., 2022), offer new opportunities to explore 
embodied learning processes. Moreover, these tools together with data 
analysis methodologies like recurrence quantification analysis (Abdu et al., 
2025; Tancredi et al., 2021) provide quantitative evidence that mathematical 
learning is a process of sensorimotor reorganization. The third gap lies in 
explicitly connecting these dynamic, process-oriented findings to the 
established cognitive frameworks (e.g., Thompson & Carlson’s covariational 
reasoning taxonomy) and outcome-based measures of mathematics 
education research. 

In this study, we explore how digital-embodied learning environments 
support the development of covariational reasoning. We apply mixed 
methods, including the analysis of hand-tracking data, qualitative insights 
from post-task probes, and pretest and posttest performance evaluations. 
Our analysis builds on the covariational reasoning (CR) framework developed 
by Thompson and Carlson (2017), which we adapt to our research lens of 
embodied interaction and its use of hand-tracking data. Detailed information 
on these methods will be provided in the subsequent sections. Through this 
integration of methods, this study not only evaluates students’ progress in CR 
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but also contributes to the broader understanding of how digital-embodied 
learning environments support mathematical reasoning. 

5.2 Theoretical Background 
In this section, we address covariational reasoning, then embodied learning, 
and draw on these perspectives to articulate how sensorimotor coordination 
can ground covariational reasoning, and then present research questions and 
corresponding hypotheses.  

Covariational reasoning 
Thompson and Carlson’s (2017) taxonomy describes a five-level progression 
of covariational reasoning. Lower levels involve recognizing that changes in 
one quantity correspond to changes in another (L1: Pre-coordination of 
values; L2: Gross coordination of values levels). Higher levels require 
coordinating specific values (L3), interpreting simultaneous changes over 
fixed intervals (Chunky continuous covariation; L4), and perceiving 
continuous and smooth covariation (L5).  

Many students face challenges in developing covariational reasoning. 
These include difficulties in coordinating simultaneous changes in variables 
(Carlson et al., 2002), focusing on discrete values over continuous 
relationships (Bagossi, 2024; Thompson & Carlson, 2017; Wilkie, 2020), and 
connecting physical experiences to abstract representations (Abrahamson et 
al., 2014; Shvarts & Abrahamson, 2019). The first two challenges are often 
linked. For instance, a student may adjust one variable at a time, seeing the 
relationship as static or sequential. This tendency to focus on discrete values 
becomes evident in tasks involving graphs, where students often interpret 
individual points without understanding the continuous nature of the curve 
(Carlson et al., 2002; Johnson, 2012).  

Embodied learning 
To foster covariational reasoning, researchers have turned to embodied 
learning, an approach suggesting that our thinking and understanding are 
connected to our bodily experiences and how we interact with the world 
(Barsalou, 2008; Lakoff & Nunez, 2000). A core principle is sensorimotor 
coordination, with which students actively manipulate objects or digital 
representations to develop mathematical concepts (Abrahamson, 2021; 
Abrahamson & Bakker, 2016; Shvarts et al., 2021).  

Action-based embodied design, for example, creates learning activities 
that challenge students to solve motor problems by coordinating physical 
actions in specific ways (Abrahamson & Bakker, 2016; Abrahamson & 
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Lindgren, 2014). Abrahamson and Trninic (2011) introduced a task where 
primary school students learned about proportion by moving two handheld 
controllers simultaneously. To make the screen green (indicating correctness) 
with two controllers, students had to discover the specific coordinated way 
to position their hands at different relative heights. This feedback-guided 
exploration enabled students to first grasp the proportional relationship 
intuitively and articulate it qualitatively, before they later formalized this 
understanding using grids and numbers. While performing the proportion 
task, stable perception-action loops emerge as students act perceive 
feedback, and adjust their movements (Abrahamson & Mechsner, 2022). As 
these actions stabilize, attentional anchors may emerge—specific perceptual 
or spatial configurations (e.g., a diagonal line between hands in the above 
proportion task) that facilitate perceptuomotor action (Abrahamson & 
Sánchez-García, 2016; Shvarts et al., 2021). Stabilization is identified when a 
student’s action becomes fluent, efficient, and consistently aligned with the 
emerging attentional anchor. Once stabilized, these anchors not only improve 
motor performance but also prepare students for mathematization and 
support the transition from enacted movement to symbolic reasoning. In 
digital-embodied learning environments, the interactive interface becomes 
an integrated part of these loops, creating body-artifact functional systems 
where (Shvarts et al., 2021). Students’ actions, digital-feedback, and 
emerging attentional anchors collectively develop the understanding of 
mathematical concepts (Pittalis et al., 2024; Pittalis & Drijvers, 2023; Shvarts 
et al., 2021). 

In sum, this perspective informs our study by shaping both the design 
of the digital-embodied learning environment and the interpretation of 
students’ bimanual movements as evidence of emerging covariational 
reasoning. 

An embodied view on covariational reasoning 
This study builds on the perspective that covariational reasoning can be 
supported—and made observable—through embodied interaction. We 
propose that coordinated hand movements within a carefully designed 
digital-embodied environment can reflect a student’s coordination of the 
underlying mathematical quantities (Flood et al., 2020; Pittalis et al., 2024; 
Pittalis & Drijvers, 2023). Specifically, we use action-based embodied design 
to engage students in bimanual coordination tasks aimed at fostering and 
revealing their covariational reasoning. Our learning environment uses 
nomograms (Figure 5.1; Nachmias & Arcavi, 1990; Sinclair et al., 2009)—
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parallel number lines connected by arrows representing functional 
relationships—to engage students in tasks requiring bimanual coordination. 

Figure 5.1 Nomogram of the function 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥2 

To systematically analyze students’ sensorimotor activity, we developed an 
embodied operationalization of Thompson and Carlson’s CR framework to 
intertwine covariational reasoning and embodiment (Table 5.1). The original 
framework is based on students’ reasoning as inferred primarily from verbal 
utterances. Our adaptation, made a priori, maps each level of CR onto 
patterns of bimanual coordination observable through hand-tracking data. 
For instance, where the original CR taxonomy refers to anticipating how 
changes in one variable affect another, our operationalization identifies 
corresponding motor behaviors, such as how one hand’s movement affects 
the other in a coordinated way. Table 5.1 thus serves as our primary 
analytical tool connecting students’ embodied actions to their level of CR. 
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Table 5.1 Original vs operational taxonomy of CR levels 

Original CR framework 
 (Thompson & Carlson, 2017) 

 CR framework in this study on 
bimanual movement 

L0: At the no coordination level, the 
person has no image of variables 
varying together. The person focuses 
on one or another variable’s variation 
with no coordination of values. 

L0: At the no coordination level, the 
student does not envision the 
variables varying together. Bimanual 
movements focus on adjusting one 
hand or the other independently, with 
no coordination between the two 
movements. 

L1: At the pre-coordination of values 
level, the person envisions two 
variables’ values varying, but 
asynchronously—one variable 
changes, then the second variable 
changes, then the first, and so on. The 
person does not anticipate creating 
pairs of values as multiplicative 
objects. 

L1: At the pre-coordination of values 
level, the student envisions changes in 
the positions of both hands but 
asynchronously—one hand moves 
first, followed by the other, and so on. 
Movements are sequential rather than 
simultaneous, and the student does 
not anticipate creating pairs of values 
through coordinated actions. 

L2: At the gross coordination of values 
level, the person forms a gross image 
of quantities’ values varying together, 
such as “this quantity increases while 
that quantity decreases.” The person 
does not envision that individual 
values of quantities go together. 
Instead, the person envisions a loose, 
nonmultiplicative link between the 
overall changes in two quantities’ 
values. 

L2: At the gross coordination of values 
level, the student forms a loose image 
of how movements of one hand 
correspond to movements of the 
other, such as “one hand moves up 
while the other moves down.” 
However, the coordination is 
imprecise, and the relationship is 
viewed as a general pattern rather 
than a connection between specific 
pairs of values. 

L3: At the coordination of values level, 
the person coordinates the values of 
one variable (x) with values of another 
variable (y) with the anticipation of 
creating a discrete collection of pairs 
(x, y). 

L3: At the coordination of values level, 
the student coordinates specific 
positions of one hand with specific 
positions of the other, intentionally 
creating discrete pairs of values (x, y). 
Movements are more deliberate, 
reflecting an anticipation of forming 
clear pairs, such as distances or 
positions along a scale, though still 
limited to discrete points. 



An embodied approach to covariational reasoning 

161 

L4: At the chunky continuous 
covariation level, the person envisions 
changes in one variable’s value as 
happening simultaneously with 
changes in another variable’s value, 
and they envision both variables 
varying with chunky continuous 
variation. 

L4: At the chunky continuous 
covariation level, the student envisions 
simultaneous changes in the 
movements of both hands, 
representing the two variables varying 
together targeting discrete intervals. 
Continuous movements occur in 
intervals, called “chunks,” and have 
not yet been integrated into an 
uninterrupted movement. 

L5: At the smooth continuous 
covariation level, the person envisions 
increases or decreases (hereafter, 
changes) in one quantity’s or variable’s 
value (hereafter, variable) as 
happening simultaneously with 
changes in another variable’s value, 
and the person envisions both 
variables varying smoothly and 
continuously. 

L5: At the smooth continuous 
covariation level, the student achieves 
smooth simultaneous bimanual 
movements, demonstrating an 
advanced understanding of how the 
variables vary together in a continuous 
manner. 

 

 

The nomogram environment (Figure 5.2) enables students to experience 
functions as processes rather than static entities (Wei et al., 2024). Students 
can simultaneously adjust two movable points on two number lines, starting 
with an otherwise blank canvas. This interaction offers real-time feedback: 
an arrow connecting the two points turns green and leaves a trace for correct 
input-output pairs or turns red and disappears for incorrect pairs. This real-
time feedback invites students to actively participate in perception-action 
loops. For example, color changes steer students’ attention toward achieving 
coordination goals. The development of stable perceptual patterns for 
organizing movement occurs through the emergence of attentional anchors. 
As the anchor stabilizes, it can function as a self-generated, immaterial 
artifact (Abrahamson & Bakker, 2016). It is a new cognitive structure that 
students begin to notice, reflect upon, and express using symbolic forms such 
as number lines or algebraic formulas. In this way, attentional anchors 
support reification of covariation. 
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Figure 5.2 The accumulated results of exploring the function f : x → 3x on the 
nomogram 

Hand tracking has been increasingly adopted in educational research as a 
tool for analyzing fine-grained motor actions and their role in learning 
processes. Lindgren and Johnson-Glenberg (2013) emphasized that hand 
tracking can capture embodied cognitive processes by revealing how 
students’ real-time motor adjustments reflect their coordination of 
perception, action, and emerging conceptual development. This research 
tradition has modeled the nonlinear dynamics of discovering and stabilizing 
movement strategies in relation to task feedback. For example, Tancredi et 
al. (2021) analyzed the discovery and stabilization of bimanual coordination 
patterns in an embodied mathematics task. A subsequent study has 
integrated eye-tracking data to further detail the perceptual learning 
involved (Abdu et al., 2025). Building on this foundation, we integrated post-
task probes with quantitative analysis of hand tracking and pretest and 
posttests data. We illustrate how the micro-level process of stabilizing 
bimanual coordination corresponds to macro-level learning gains in 
covariation reasoning.  

The research question guiding the study, with its corresponding hypotheses, 
is as follows: 

How do bimanual movements within a digital-embodied 
environment support students’ covariational reasoning? 

 

We hypothesize that:  

H1: Higher levels of CR correlate with a shorter Time To Fluency. 
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Students with higher initial CR levels are expected to coordinate their 
sensorimotor activity with the nomogram task faster. Previous research 
suggests that higher CR involves anticipating how changes in one variable 
affect another, reducing cognitive load (Moore & Carlson, 2012). While the 
nomogram introduces a new embodied format, students with higher initial 
CR are likely to interpret its affordances more efficiently because they 
already practice in anticipating and constructing continuous covariation. This 
aligns coordination dynamics research, which emphasize that students’ 
performance is shaped by their intrinsic coordination patterns (Kostrubiec et 
al., 2012). Thus, Time To Fluency is defined as the time it takes students to 
first achieve smooth continuous movement. Students with higher CR levels 
are expected to reach fluency with fewer trial-and-error attempts. 

H2: Higher levels of learning gains in CR correlate with a longer Fluency Time 
Sum. 

This hypothesis assumes that extended time in the fluency phase supports 
learning, especially for students with initially weaker CR. For these students, 
fluency becomes a space for reasoning through action. As they repeatedly 
adjust their movements in response to feedback, they refine their 
sensorimotor patterns that may evolve into coordinated dynamical Gestalts 
(Alberto et al., 2022), which in turn serve as attentional anchors for symbolic 
reasoning and articulation. Thus, students with lower initial CR levels may 
benefit more from extended fluency phases, while students with a higher 
initial CR level are expected to spend less time in the fluency phase to achieve 
similar proficiency. Total fluency time is expected to correlate positively with 
learning gains.  

5.3 Methods 
This study was structured as a 3-hour teaching experiment conducted in four 
Grade 9 classes (N = 76) across two countries.  

Design of the Digital-Embodied Learning Environment 
The design of the three learning modules focuses on the three aspects of 
functional thinking: input-output, covariation, and correspondence 
(Doorman et al., 2012; Wei et al., 2024). Design features include using real-
life context, bimanual coordination movement, real-time feedback, and 
multiple representations (Wei at al., 2025). The modules are embedded in 
the Numworx platform (https://www.numworx.nl/), equipped with multi-
touch and real-time feedback capabilities. 
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In Module 1, students engage with input-output thinking through tasks 
involving light ray contexts, such as finding relationships between an object 
and its shadow across different configurations. The module gradually 
transitions from unimanual to bimanual interactions, providing an 
introduction to covariation. Module 2, the focus of this study, addresses 
covariation by progressing to abstract nomograms. Students are asked to 
manipulate two points simultaneously, each representing a variable, to 
coordinate covarying input and output values along labeled axes and reason 
about formulas. The bimanual movements with real-time feedback foster the 
development of perception-action loops. In Module 3, students interact with 
dynamic transformations between nomograms, function graphs, and 
formulas, to foster correspondence thinking by encouraging students to 
coordinate physical actions with symbolic and graphical representations. The 
modules can be found at:  
 https://embodieddesign.sites.uu.nl/activity/functional-thinking/. 

Study Design 
We used a fully mixed, concurrent, quantitative-dominant mixed-methods 
approach (Leech & Onwuegbuzie, 2009). Our analysis centers on covariation, 
as this aspect showed the most significant improvement (Wei et al., 2025). 
Quantitative measures, including hand-tracking data and pretest and 
posttest scores, were used to assess CR development and bimanual 
coordination. Post-task probes provided real-time qualitative insights into 
students’ covariational reasoning and embodied experiences, aligned with 
Robinson’s (2023) descriptive and explanatory categories.  

The teaching experiment spanned three one-hour sessions. Each 
session included a 5-minute introduction, a 45-minute exploration period, 
and a 10-minute recap, with each student using a tablet. The introduction 
outlined the learning goals and procedures, encouraging students to discover 
functional relationships through their bodily experience and connecting to 
school mathematics while maintaining an exploratory feeling. During the 
exploration period, students interacted with the digital-embodied tasks 
independently or collaboratively. The 10-minute recap led by the researcher 
facilitated discussion, reinforced key concepts, and addressed common 
challenges (Wei et al., 2025). Prior to the first session, all students completed 
a pretest, and one week after the final session, they completed a posttest.  

Instruments  
The pretests and posttests, administered in paper-pencil format, assessed 
three aspects of FT: input-output (IO, 3 items), covariation (COV, 5 items), 

https://embodieddesign.sites.uu.nl/activity/functional-thinking/
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and correspondence (COR, 7 items). The tests also included items targeting 
input–output and correspondence reasoning—aspects addressed in other 
intervention sessions—to provide a comprehensive measure of students’ FT. 
By analyzing both the full FT scores and the COV scores separately, we were 
able to evaluate general learning outcomes as well as specific gains in 
covariational reasoning. The COV scores were used in both the descriptive 
and inferential statistical analyses reported in the Results section.  

Each test included 15 items, comprising nine “close assessments” 
mirroring the learning modules’ contexts (e.g., nomogram plotting) and six 
“proximal assessments” testing broader curriculum applications (e.g., moving 
walkway scenarios) to measure generalized skills (Ruiz-Primo et al., 2002). 
Items were a mix of open-ended and multiple-choice formats, scored on a 6-
point scale (0-5 points for each item; maximum 75 points). The validity of the 
pretests and posttests includes expert reviews from both experienced 
mathematics teachers and researchers in mathematics education research. 
For open-ended items, the scoring rubric assigned 0 points for an incorrect 
or irrelevant response, 3 points for a partially correct response that 
demonstrated correct reasoning but was incomplete or imprecise, and 5 
points for a fully correct response that included clear reasoning and 
appropriate mathematical representation. For multiple-choice items, the 
rubric assigned 0 points for an incorrect response and 5 points for a correct 
response. Figure 5.3 shows some sample items from the pretest. The 
complete assessment is available at the following link: https://bit.ly/FTitem 

A pilot study involving 51 students, 33 from China and 18 from the 
Netherlands (the same two countries where the teaching experiments were 
later conducted), was carried out under standard classroom conditions. This 
pilot supported a classical test analysis, including calculations of p-value, 
variance, item reliability index (Rir), and item-total correlation (Rit). Based on 
the results and expert feedback, one overly simple item, for which over 95% 
students got full score, was removed. The refined instrument demonstrated 
satisfactory internal consistency (Cronbach’s α = 0.71). To ensure scoring 
reliability, two independent coders evaluated the work (the second coder 
scored a randomly selected 50% of the total dataset). Initial agreement was 
excellent (Cohen’s κ = 0.91), and all subsequent discrepancies were resolved 
through a consensus discussion.  

 

https://bit.ly/FTitem
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Figure 5.3 Examples of IO, COV and COR items 
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A protocol for the post-task probes was developed based on the Hypothetical 
Learning Trajectories, including a detailed hypothetical learning progression 
(Wei et al., 2024). The aim of the post-task probes was to encourage students 
to reflect on and expand upon their written responses through open-ended 
questions and follow-up prompts (Drijvers, 2003; Robinson, 2023). The 
probes were designed to provide a window into how students were 
beginning to make sense of their sensorimotor experiences (e.g., “Can you 
explain how you made it green?”). This approach allows researchers to better 
trace the emerging conceptual structures that students construct as they 
attempt to “language” their embodied experiences. 

Participants 
Seventy-six Grade 9 students, aged 14 to 15 years, were enrolled in the study 
from two international schools in the Netherlands (two classes, 39) and China 
(two classes, 37). We employed a convenience sampling strategy, selecting 
schools that had existing collaborations with the research team and access 
to the necessary technological infrastructure for digital-embodied tasks. 
Recruitment was inclusive with no selection criteria, and informed consent 
was obtained from all students and parents. The students, who were average 
to high achievers, had foundational knowledge of functions (e.g., number 
lines, basic algebra, graphing) but had not formally studied functions.  

Data Collection 

Hand-tracking Technology  
Hand-tracking data were collected from Numworx log files that captured the 
locations of two draggable points (representing each hand) on the screen 
every millisecond. These data allowed us to classify students’ bimanual 
movements into two phases: Exploration and Fluency (Tancredi et al., 2021). 
During the Exploration phase, students initially explored the movement rule 
and made trial attempts to understand it. In the Fluency phase, students’ 
movements became more consistent and smoother, which could indicate 
that they had developed a better practice of the bimanual coordination and 
understanding of covariational relationships.  

To distinguish these phases, we calculated the moving average of the 
differences between the actual and target positions of the right hand, 
assuming that the left hand’s position determined the target. The variable Ly 
represents the left hand’s movement, while Ry represents the right hand’s 
movement. By plotting these hand positions over time on a continuum, we 
were able to identify detailed trajectories of the student’s bimanual 
movement process, specifically differentiating between the Exploration and 
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Fluency phases, as discussed in the Result section. These trajectories were 
further analyzed to plot each student’s time versus hand position data, 
providing insights into their bimanual CR levels based on the operational 
taxonomy in Table 5.1. 

The target position varied by task, with each task reflecting different 
functional relationships. For each task, we set a specific threshold to 
distinguish the phases based on task difficulty. Movements with distances 
between the actual and the targeted position below this threshold were 
classified as Fluency, indicating accuracy in coordinating the two variables. 
For example, in a task like 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥 − 2, which requires parallel hand 
movements with a fixed height difference, a threshold of 0.2 units on the 
number line was set; when students deviated beyond this threshold, the 
system prompted adjustment by turning the arrow red. If the deviation 
exceeded three seconds, it was classified as part of the Exploration phase. 

Post-task probes 
To capture students’ learning progression along the hypothetical learning 
trajectories (Wei et al., 2024), we conducted brief, one-to-two-minute post-
task probes during the teaching experiments. Conducted by the research 
team, these probes were held individually or in pairs. All probes were audio-
recorded and later transcribed for analysis. While not every student was 
asked, there were no predetermined selection criteria. As students 
completed tasks, researchers approached them for a short conversation.  

Data Analysis 
To explore the potential relationship between bimanual task performance 
indicators—specifically, time to fluency (TTF) and fluency time sum (FTS)—
and improvement in covariational reasoning (as measured by the COV scores 
in pretest and posttest), we conducted a Spearman’s Rank Correlation test. 
This non-parametric test was chosen because the bimanual data are not 
normally distributed, and the COV item scores in the pretest and posttest are 
ordinal.  

The module includes ten tasks in total, seven of which are bimanual 
tasks relevant to this analysis. First, trials in which a student did not reach the 
Fluency phase were excluded, as TTF could not be measured (188 samples 
removed). Second, to prevent mislabeling brief moments of fluency, any 
fluency period lasting less than three seconds was reassigned to the 
Exploration phase. This three-second threshold was informed by prior 
research in embodied mathematics education and movement science, which 
emphasize the importance of sustained motor patterns for meaningful 
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interpretation. (Kelso, 1995; Tancredi et al., 2021). Based on these 
considerations and pilot observations of typical task durations (Wei et al., 
2024), trials with TTF values above 150 seconds (indicating prolonged 
difficulty in achieving initial fluency) and FTS values shorter than 3 seconds 
or longer than 400 seconds (indicating unusually extended practice) were 
excluded (92 samples removed). After all exclusions, approximately 250 valid 
samples (258 samples in TTF, 252 samples in FTS) remained for the final 
correlation test. 

For the qualitative analysis of hand-tracking data, we used the 
operationalization of CR for bimanual movements to systematically observe 
and categorize how these movements reflect different levels of CR.  

We developed a detailed codebook to analyze the transcriptions of the 
post-task probes, focusing on functional thinking aspects (Wei et al., 2023) 
and embodied learning (Abrahamson & Lindgren, 2014; Shvarts et al., 2021). 
Codes included input-output, covariation, correspondence thinking, and 
embodied learning elements like perception-action loops, as well as 
students’ challenges, strategies, and progress. The second coder coded 15% 
of the transcription, leading to an inter-coder reliability of κ = 0.73, which 
indicates moderate agreement.  

5.4 Results 
This section first presents quantitative findings and correlation analyses 
conducted to test our hypotheses. These analyses focus on bimanual 
performance indicators—TTF and FTS—and their relationship to 
covariational reasoning. We then provide qualitative insights from the hand-
tracking data and post-task probes. 

Quantitative Results  

Overall learning gains 
The analysis of pretest and posttest scores revealed significant 
improvements in students’ FT, including CR, after the intervention. The 
overall FT score (out of 75 points) increased from 38.13 (SD = 12.82) to 50.49 
(SD = 9.59). A paired t-test confirmed that this improvement was statistically 
significant, t (75) = -8.66, p < .001, with a large effect size (Cohen’s d = 1.09). 
Table 5.2 shows pretest and posttest scores across all three FT aspects. 

To examine the specific COV aspect, we analyzed the subset of five 
COV items. The mean score for the COV items increased from 2.08 to 3.59 
(out of 5), and a paired t-test again revealed a significant improvement, t (75) 
= -9.67, p < .001, with a large effect size (Cohen’s d = 1.11). 
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Table 5.2 Mean and standard deviation of pretest and posttest scores (N=76) 

 Total score M (SD) IO COV  COR  

Pretest  38.13 (12.82) 3.65 2.08 2.41 

Posttest  50.49 (9.59) 4.28 3.59 2.81 

Note. Maximum total score = 75. Maximum sub-score (IO, COV, COR) = 5. Sub-score 
standard deviations were not reported. 

Hand-tracking data 
To test the two hypotheses mentioned above, a correlation analysis was 
conducted to examine the relationship between students’ CR level (five items 
from pre- and posttest, respectively) and two key performance indicators 
from hand-tracking data: TTF and FTS.  

Figure 5.4 Correlation between pre/post-test scores and bimanual performance 
metrics 

Note. p < .05*, p < .01**, p < .001***; ns = not significant. 

Based on the above figure, we discuss each correlation test result as follows:  

• Pretest scores vs. TTF: A weak negative correlation indicates that higher 
pretest scores are associated with slightly shorter TTF. This supports H1 
and suggests that higher initial levels of covariational thinking predict 
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faster achievement of the fluency phase. Stu-dents who start with higher 
CR levels transition to fluency phase faster. 

• Pretest scores vs. FTS: A moderate negative correlation suggests that 
higher pretest scores are associated with a shorter FTS, supporting H2. 
This implies that students with stronger CR before the intervention show 
more efficient fluency practices overall. 

• Overall improvement vs. TTF: A nonsignificant positive correlation 
suggests no meaning-ful relationship between improvement in CR and 
TTF. TTF is more reflective of initial CR levels than of learning gains. 

• Overall improvement vs. FTS: A moderate positive correlation indicates 
that greater im-provement in CR is significantly associated with longer 
FTS. This supports H2, as it suggests that students who demonstrated 
greater learning gains in CR spent more time in the fluency phase.  

Qualitative insights from hand-tracking data  
In this section, we first provide exemplary hand traces for each level of the 
adapted CR taxonomy, demonstrating how bimanual movement patterns 
reflect CR levels. We then present two cases to clarify the interpretation of 
the exploration and fluency phases through two students’ entire learning 
process.  

Exemplary hand traces across CR levels 
Table 5.3 presents the application of our bimanual CR taxonomy, outlining 
the progression of students’ understanding from no coordination (L0) to 
smooth continuous covariation (L5). Each level is illustrated with 
representative hand-tracking data, highlighting key features in students’ 
hand traces, green feedback patterns they received, and their corresponding 
CR. By analyzing specific patterns in these hand traces, along with the 
corresponding green feedback when values aligned, we highlight the 
temporal and embodied aspects of students’ reasoning. These examples 
were chosen for their ability to key features, transitions, and variations in 
bimanual coordination observed across our broader dataset. By focusing on 
these targeted samples, we demonstrate how the CR taxonomy is 
operationalized in students’ bimanual movements and how learners develop 
increasingly sophisticated understandings of covariation. 
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Table 5.3 Exemplary hand-tracking observations and insights across CR levels 

CR Level Hand-tracking Example and Observations 

L0: No 
coordination 

Task: 𝑓𝑓: 𝑥𝑥 → 3𝑥𝑥  
Observation: One hand, left, 
represented in blue, moves while the 
other, right, represented in red, 
remains stationary. Student then 
moves another hand to test correct 
positions for green feedback. We can 
only see intermittent traces/lines 
instead of a continuous trace/line 
without green feedback. No bimanual 
coordination movement. 
Insight: The student does not yet 
show awareness of a covariational relationship; movements 
have frequent pauses or sudden changes, suggesting 
independent actions between the two hands.  

L1: Pre-
coordination 
of values 

Task: 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥 − 2 
Observation: Hands move 
sequentially in very small 
movements around the same place; 
one hand adjusts, followed by the 
other, creating a “stop-and-go” 
pattern. There are some intermittent 
and short-lived periods of green 
feedback during sequential 
movements, but these are lost when 
the other hand adjusts with a larger 
movement (the orange box 
moment). 
Insight: Shows initial awareness of covariational relationships, 
but no simultaneous coordination or pairing of values. 
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CR Level Hand-tracking Example and Observations 

L2: Gross 
coordination 
of values 

Task: 𝑓𝑓: 𝑥𝑥 → −𝑥𝑥  
Observation: Hands move in opposite 
directions with inconsistent 
coordination. A mirrored pattern (one 
hand moves up while the other moves 
down) arises, but with imprecise 
alignment. Green feedback is more 
sustained than in earlier level (longer 
duration time). 
Insight: Indicates an emerging 
understanding of general patterns 
between variables but lacks precision 
in forming specific pairs. 

L3: 
Coordination 
of values 

Task: 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥 − 2 
Observation: The left hand moves in 
three separate small intervals around 
three separate values and lifts in 
between. For each value, the right 
hand is moved down until green 
feedback occurs. Then both hands 
move down together for a while. 
Insight: Demonstrates an 
understanding of how the variables 
relate at specific small intervals around 
discrete values, rather than performing 
a smooth transition across the entire 
domain. 
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CR Level Hand-tracking Example and Observations 

L4: Chunky 
continuous 
covariation 

Task: 𝑓𝑓: 𝑥𝑥 → −2𝑥𝑥  
Observation: The traces show both 
hands stopping at specific positions to 
form pairs, and smoother movements 
in between (the orange boxes) 
compared to the previous level. These 
pauses suggest that the student is 
focusing on aligning hand movements 
to create accurate (x,y)  pairs. There is 
more sustained green feedback, which 
shows that the student successfully 
coordinated the bimanual movements 
within these chunks. 
Insight: Indicates deliberate, accurate 
bimanual movements within specific 
intervals, or “smooth chunks.” The 
absence of smooth transitions between 
these intervals shows that the 
coordination is not yet globally 
continuous. 
 

L5: Smooth 
continuous 
covariation 

Task: 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥 + 1 
Observation: The hand traces exhibit 
synchronized, continuous 
coordination between the left and 
right hands, with the general flow of 
movement aligning with the target 
covariational relationship (the green 
feedback is well-sustained). 
Insight: Illustrates the student’s 
ability to achieve smooth, 
continuous coordination between 
variables, signifying an advanced 
level of covariational thinking. The 
sustained green feedback highlights 
the ability to maintain accuracy over 
the duration of the task, suggesting 
that the student can apply the 
bimanual movement fluently in real-
time. 



An embodied approach to covariational reasoning 

175 

Cases of two students’ learning processes 
The following two cases show how CR levels are related to the exploration 
and fluency phases throughout students’ entire learning processes. 

Figure 5.5 (a) Bimanual movement for 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥 − 3; (b) A student’s hand 
movements across phases 

Case 1: Figure 5.5 presents a student’s hands movement trace for the 
function 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥 − 3. This student moved the right point upward 
significantly without getting green feedback, causing a decrease in 
movement speed and a slight repositioning of the right point (L0-L1). 
Subsequently, the student realized the necessity of moving both points in 
parallel, which led to achievement of the fluency phase (L4). As the student 
approached the top of the screen, he paused and began exploring different 
directions, entering a second exploration phase (L1-L2). Finally, both points 
were moved downward smoothly with green feedback (L5). 

Figure 5.6 (a) Bimanual movement of 𝑓𝑓: 𝑥𝑥 → −𝑥𝑥; (b) A student’s hand 
movements across phases 
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Case 2: For the task in Figure 5.6, students were assigned to complete the 
nomogram of the function 𝑓𝑓: 𝑥𝑥 → −𝑥𝑥. This student also went through 
multiple learning phases. After the initial exploration phase (L1-L2), his hand 
movements displayed a pattern: his right hand moved upwards while his left 
hand moved downward simultaneously (L5). In the second Exploration 
phase, he adopted an inverse approach, moving his right hand downward 
while the left hand moved upward (L1-L2). As movement smoothness 
improved again, the student achieved fluency, showing a geometrically 
symmetrical movement akin to the properties of the target nomogram (L4). 
After navigating the entire screen, he described his findings in the answer 
box: “To get the green line, I moved the two dots in opposite ways which 
created this pattern.” Many students also noted the intersection point as an 
attentional anchor to adjust their movements. As one student remarked, “we 
can get an intersection point through several green lines,” implying how this 
visual feedback supported their coordination strategy.   

Qualitative insights from post-task probes 
The following quotes from post-task probes illustrate students’ reasoning 
process. The analysis reflects individual learning moments, including shifts in 
recognizing covariational relationships and the emergence of perception-
action loops. 

In the task 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥 − 2, Student A stated, “Yes, this line [the arrow 
connected by the two grey points]. I first make it parallel, and after finding it 
turns green, it can go down at a constant speed. This ensures that each line 
is parallel to it and can ascend constantly.” Student A observes whether the 
line is parallel and whether it turns green [perception]. Based on that, the 
student adjusts hand movements to ensure parallelism and a constant rate 
of descent [action]. The green color reinforces the correctness of the 
coordinated movements. In contrast, Student B noted: “For the third one 
[task], they [y and x] increase and decrease together... the angle is constant. 
So, the values of y and x should be relatively easy to calculate.” Student B 
focuses more on specific pairs of x and y values. The student first notes 
change in x and y values [perception] and then identifies the need for 
synchronized two-hand movements to maintain a constant angle/slope 
[action]. By associating the consistent downward movement of the 
arrow/line with a fixed difference [−2], students begin to perceive and enact 
the functional relationship between the input and output variables. This 
embodied experience supports the emergence of an attentional anchor that 
stabilizes the students’ coordination movement. 
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In the task 𝑓𝑓: 𝑥𝑥 → −𝑥𝑥, students focus more on the dynamics of speed 
and direction. Student C described, “The movement direction of your left and 
right hands? Opposite. You need to keep this point here [intersection point] ... 
The speed is the same. It can maintain its green color.” This student describes 
the directionality (opposite) and synchronization (constant speed) of the 
hand movements [action], and perceives the intersection point as an 
attentional anchor for correctness using color feedback for verification 
[perception]. Student D elaborated on this in more detail: “You have to 
maintain a constant speed…if one goes too fast and one goes too slow and 
there’s no coordination in it, then we’re not going to get the right angle and 
then there’s not going to be a green color.” Student D emphasizes the 
importance of maintaining speed and coordination between the hands 
[action] to get constant green feedback. This task is designed to build an 
understanding of the inverse relationship, where an increase in one variable 
results in a corresponding decrease in the other. The necessity of matching 
speeds to maintain the angle reinforces the concept of proportional inverse 
changes. 

For the more complex linear function 𝑓𝑓: 𝑥𝑥 → −2𝑥𝑥 + 4, students began 
to connect their movements directly to symbolic mathematical properties. 
Student E mentioned, “The one number is going down. The other one going 
up. Like one [input] is starting from positive to negative. The other one 
[output] from negative to positive … From below zero the input is decreasing 
by one and the output is increasing by two. And above zero the input is 
increasing by one and the output is decreasing by two.” Student E aligns the 
movements with the slope’s meaning: for every unit increase in x, y decreases 
by two units, which shows the understanding of the function’s directional 
change and the ability to articulate the relationship using symbolic language. 
These utterances reflect a shift from sensorimotor exploration to expressing 
covariational structure verbally, suggesting that the student is beginning to 
re-describe their sensorimotor pattern in terms of formal mathematical 
reasoning.  

In summary, through bimanual tasks, students ground their 
prospective understanding of covariation concepts in perception-action 
loops. These embodied experiences enable students to transform their 
interactions with the digital-embodied environment into stabilized 
sensorimotor patterns, which they articulate symbolically or verbally as 
function concepts, such as slope and rate of change. 
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5.5 Discussion  
To answer the main research question on how bimanual movements within 
a digital-embodied environment support students’ covariational thinking, 
the results have shown that bimanual coordination tasks prompt 
covariational reasoning through evoking perception-action loops. These 
loops intertwine kinesthetic dynamics with mathematical reasoning, 
corroborating the action-based genre of embodied design. The two cases, 
along with the data in Table 5.3, show how students actively use real-time 
feedback, in the form of color-change cues, to adjust their hand movements, 
thereby transforming sensorimotor experiences into articulated covariation 
concepts. Evidence from students’ pretest and posttest performances, as 
well as their reasoning during the post-task probes, demonstrates an 
improved understanding of functional relationships, and COV aspects in 
particular. 

The results support hypothesis H1, higher levels of CR correlate with a 
shorter time to fluency, suggesting that higher initial CR levels are associated 
with shorter TTF. The weak negative correlation between pretest CR levels 
and TTF suggests that students with higher initial CR levels achieved fluency 
more quickly in bimanual tasks than their peers with lower starting levels. 
Interestingly, the correlation between overall improvement in CR and TTF was 
not significant. This indicates that the speed of transition to fluency is more 
closely tied to students’ initial CR levels than to the extent of their 
improvement over time. These results suggest that TTF reflects how 
efficiently students can translate their initial understanding into action but 
does not necessarily drive the further development of CR, which could 
potentially be explained by a ceiling effect. 

The findings support H2, higher levels of learning gains in CR correlate 
with a longer fluency time sum. The positive correlation between overall 
improvement in CR and FTS highlights that student who showed learning 
gains engaged more extensively in fluency phases. The finding suggests that 
FTS is both an indicator and, to some extent, a potential contributing factor 
to covariational reasoning development. The role of FTS appears more 
complex than initially hypothesized. A moderate negative and significant 
correlation between pretest scores and FTS suggest that students with 
stronger initial CR tend to spend less time in the fluency phase. This finding 
can support for the claim that higher initial proficiency allows students to 
develop efficient coordination strategies and reduce the need for extended 
fluency practice. Conversely, longer duration in fluency phases may provide 
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students with lower initial CR levels opportunities to refine and solidify their 
understanding. 

From a theoretical perspective, the analysis of hand tracking data 
expanded on Thompson and Carlson’s (2017) taxonomy by operationalizing 
the covariational reasoning levels through the embodied bimanual tasks. The 
six levels, ranging from no coordination (L0) to continuous covariation (L5), 
provided a basis for interpreting embodied learning through observable hand 
tracking and qualitative data. While the results show that hand tracking data 
can present differences in CR levels, such as trace continuity, coordination, 
and green feedback, the interpretation of these patterns needs careful 
consideration (see Table 5.3). Lower levels (L0-L2) are characterized by 
uncoordinated or loosely coordinated movements (discrete trace; no or 
intermittent green feedback), while higher levels (L4-L5) exhibit smoother, 
simultaneous bimanual coordination. The sustained green feedback and 
smooth trace patterns observed in L5 reflect advanced covariational 
reasoning. The patterns of hand tracking traces (intermittent or smooth) and 
feedback (continues green bars or intermittent ones) thus reflect students’ 
embodied learning processes. Importantly, this study extends the original CR 
framework by operationalizing its levels through observable movement 
patterns in the context of bimanual tasks. This adaptation supports the 
broader application of the CR framework in embodied learning research. 
Linking specific hand movements to covariational reasoning offers valuable 
insights for both researchers and educators. While this alignment shows 
potential, it should be noted that using hand-tracking data as a direct means 
of assessing CR would require further exploration. 

The bimanual data in this study can also be interpreted from a 
reification perspective as elaborated by Shvarts et al. (2024). Together with 
(Abrahamson, 2021), these scholars identify two steps in reification 
processes: (1) developing sensorimotor coordination that brings forth a new 
perceptual structure and (2) crystallizing this perceptual structure into a 
mathematical artifact. Our findings reflect both stages. As seen in tasks like 
f(x)=-x, students in our study developed stable bimanual coordination 
strategies, such as maintaining mirror symmetry movement across the 
intersection point (Table 5.3_Level 2) guided by real-time feedback. This 
aligns with step 1, in which new coordination gives rise to an attentional 
anchor, which is the intersection point formed by green lines. Our data also 
reflects aspects of the second step described by Shvarts et al. (2024), by 
which students began to articulate the functional relationships discovered 
through movement, translating their embodied experience into verbal and 



Chapter 5 

180  

symbolic representations. Our data illustrates how mathematical artifacts—
like the idea of a subtraction sign or directionality—can emerge through 
reflection on sensorimotor synergies that have stabilized through actions. 
This interpretation is further enriched by Bos’s (2022) perspective on 
reification, which describes it as a shift from a series of actions on objects to 
a cohesive single process. In Bos’s view, the achievement of smooth bimanual 
movements (characteristic of higher CR levels, see Table 5.3, Level 4 and 5) 
can itself be interpreted as an embodied manifestation of reification. Unlike 
Sfard’s commognitive theory (2008), where reification shows through the 
introduction of a noun or pronoun about this process, Bos’s and our approach 
interpret smooth bimanual movement as a non-verbal sign of reification. 
Reaching bimanual fluency in our task signifies more than motor skill 
acquisition; it embodies a grasp of the function as a coherent covariational 
artifact. This view also aligns with Kaput et al. (2008), who highlight the 
importance of enabling students to create meaning through their interactions 
with mathematical representations. By scaffolding students’ sensorimotor 
actions and encouraging reflection, digital tools act as reified artifacts that 
embody mathematical meaning. For example, the integration of real-time 
feedback allowed students to directly perceive the consequences of their 
movements, make immediate adjustments, and refine their coordination 
strategies. This finding resonates with prior research (Drijvers, 2015; Tall, 
2004; Turgut, 2022; Weigand et al., 2024), that argued that digital tools 
facilitate the connection between action and thought, supporting students in 
transitioning from exploration to reasoning and symbolic representation.  

Methodologically, our study integrates two research traditions: the 
dynamic systems analysis of embodied interaction and the cognitive analysis 
of conceptual development in covariational reasoning. We complement a 
growing research program that uses dynamic systems theory and fine-
grained interaction data, such as hand-tracking, to model learning as a 
nonlinear process of stabilizing sensorimotor coordination (Abdu et al., 2025; 
Tancredi et al., 2021). Our study makes a contribution by investigating what 
these stabilized coordinations signify in terms of students’ conceptual 
reasoning. We achieved this by integrating two additional data sources: post-
task probes, which enriched the analysis by capturing students’ verbal 
reflections on their strategies and reasoning processes (Shvarts et al., 2021), 
and pretest and post-test scores, which provided a measure of macro-level 
conceptual change. This kind of integration also aligns our work with a trend 
in the field to use mixed methods to create a more robust picture of 
mathematics learning (Johnson et al., 2024). Our approach allows us to 
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demonstrate how the micro-level emergence of sensorimotor fluency 
corresponds to macro-level gains in students’ mathematical understanding. 
In doing so, we respond to the call to study the “microgenesis of multimodal 
conceptual development” (Abdu et al., 2025) by linking specific embodied 
actions to measurable learning outcomes. 

Limitations and Future Directions 
While the findings offer promising insights, we acknowledge two limitations. 
First, this study used a convenience sample from two international schools in 
the Netherlands and China. This choice was guided by pragmatic factors, 
including access to tablets and established partnerships with the research 
team. Our goal at this stage was not generalizability, but to explore whether 
identifiable patterns of embodied covariational reasoning could emerge in 
diverse but comparable contexts. Second, our analysis centered on specific 
performance indicators from the hand-tracking data (Time to Fluency and 
Fluency Time Sum). While effective, these metrics touch the surface of the 
complex sensorimotor processes involved. Other potentially informative 
dimensions of movement (e.g., recurrence rate, determinism, trapping time; 
Abdu et al., 2025) were not explored. 

This study has implications for future research on covariational 
reasoning in digital-embodied environments. First, there is a need to develop 
and apply advanced analytical methods to better capture the micro-dynamics 
of embodied learning. In particular, techniques such as Recurrence 
Quantification Analysis (Tancredi et al., 2021) with multimodal data (Abdu et 
al., 2025) can be used to explore the transition between different CR levels 
corresponds to shifts in the stability of the eye-hand systems. Second, a 
controlled experimental design is needed to systematically examine the 
causal relationships between embodied interaction and conceptual 
development. Randomized control trials with larger and more diverse 
student populations would help validate the observed patterns and enhance 
the generalizability of the findings.  

In line with other studies that highlight the potential of sensorimotor 
engagement for mathematical learning (Abrahamson & Sánchez-García, 
2016), this study contributes to the growing evidence emphasizing how 
sensorimotor experiences can improve conceptual understanding. 
Sensorimotor learning provides an entry point for students with different 
prior academic achievements to engage deeply with mathematical concepts. 
This study corroborates that claim, demonstrating that embodied tasks 
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enable students to access complex ideas through intuitive, action-based 
exploration.  
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Chapter 6 General conclusion and discussion 
In this closing chapter, we first provide an overview of the study as a whole. 
Next, we discuss its limitations (Section 6.2) and summarize its scientific and 
methodological contributions (Sections 6.3 and 6.4). In section 6.5, we zoom 
out and reflect in retrospect on the role of the body in mathematics learning, 
the study’s central theoretical paradigm. The chapter concludes with 
implications for future research and educational practice. 

6.1  Research overview 
The overarching aim of the thesis was to explore how to foster students’ 
functional thinking (FT) within a digital-embodied learning environment. To 
achieve this aim, we focused on key aspects of FT, including input-output, 
covariation, and correspondence, and identified how specific design features 
(e.g., real-life contexts, bimanual movement, and multiple representations) 
can support students’ co-emergence of physical action and mathematical 
reasoning. Chapter 2 lays the foundation by mapping existing research on 
embodied approaches and digital tools in developing FT, foregrounding gaps, 
particularly regarding how students move from bodily engagement to 
abstract conceptions of function. Chapter 3 concerns designing and piloting 
a digital-embodied learning environment. Chapter 4 extends this design to a 
classroom context, evaluating its effectiveness with a larger group of 
students and exploring how design principles translate into real instructional 
practice. Finally, Chapter 5 zooms in on the micro-processes of covariational 
thinking using hand-tracking data, through a more detailed analysis of the 
sensorimotor patterns that support learning gains. Together, these four sub-
studies form a coherent trajectory from conceptual groundwork to design, 
classroom implementation, and in-depth analysis of embodied mathematical 
learning. 

In Chapter 2, we surveyed the research landscape where FT and 
embodied cognition intersect with digital technology. This systematic review 
of 51 papers clarified the roles that technology plays from an either didactical 
or mathematical angle, the stages of mathematical abstraction embedded in 
FT, and the diversity of embodied strategies. Results highlight that most 
research uses graphing and algebraic roles of DT, often through dynamic 
software like GeoGebra, to promote covariation and correspondence, while 
input-output perspectives and geometry-based tasks remain relatively under-
explored. Four main abstraction stages (contextual/situational, referential, 
particular, and general) emerge in these studies, suggesting that higher-level 
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abstractions typically require dynamic representations and multiple function 
views. Although action-based and perception-based embodied tasks are 
common, the potential of continuous real-time feedback remains 
underutilized. At this point, we recognized that the MIT proportion task could 
be generalized to any function and that its mathematized version aligns with 
a known mathematical concept: nomogram in a parallel axes system. By 
revealing these gaps and opportunities, the systematic review motivates the 
design, implementation, and analysis of digital-embodied tasks in the 
subsequent sub-studies and guides the thesis toward nomogram-based 
interventions that can foster deeper FT. 

Building on the insights from the systematic review, we investigated 
how an embodied design, centered on nomograms, can help students 
develop FT in Chapter 3. Grounded in a light ray context, the designed 
learning environment uses input-output mappings as a metaphor: rays (or 
arrows) map from an object (input) to its shadow (output), representing 
different rules described by functions. By manipulating parameters for 
contexts, such as sunlight vs. spotlight (representing additive or multiplicative 
relationships), students were observed to interpret nomograms as function 
representations. In doing so, they linked everyday intuition (e.g., shadow 
patterns) with mathematical structures like parallel or divergent rays. Central 
to this design are bimanual movement tasks, which encourage students to 
physically coordinate two variables along the nomogram’s input and output 
axes. Real-time color feedback (green/red) cues them to adjust their hands 
until the correct relationship is maintained. This tactile process fostered a 
deeper grasp of functional relationships. For example, students actively 
experienced how one variable must speed up or slow down relative to the 
other. In the meantime, the embodied tasks intentionally integrate different 
function representations, prompting students to convert between 
nomograms, formulas, and function graphs. This conversion practice invites 
a correspondence view of functions, helping students anticipate how changes 
in one representation affect another. While the approach proved engaging 
and conceptually rich for the small group of 14-year-old participants (from 
the pre-university stream), the findings also reveal design complexities, such 
as the risk of tool-driven rather than concept-driven learning. Overall, by 
iteratively comparing Hypothetical Learning Activities to Actual Learning 
Activities, Chapter 3 revealed how specific design features—such as light ray 
contexts, bimanual coordination, and real-time feedback—can nurture 
function concepts when tightly coupled to the targeted mathematical 
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content. These outcomes set the stage for broader classroom applications 
and refinements in subsequent sub-studies. 

Now that we have identified the potential of digital-embodied tasks, 
we transported the digital-embodied nomogram designs into authentic 
classroom conditions to examine its feasibility on a broader scale of Grade 9 
students (N=39) in Chapter 4. In a series of three learning modules, students 
interacted with real-life contexts (e.g., light and shadow), performed 
bimanual coordination tasks, received real-time feedback (green/red 
arrows), and navigated multiple function representations. Quantitative 
findings (pretest-posttest gains) demonstrated significant improvements 
across the three main aspects of functional thinking: input-output, 
covariation, and correspondence. Students initially weak in FT showed 
notable gains, while high achievers appeared to reach a performance ceiling 
in input-output aspect. However, the progression to more advanced 
correspondence thinking is relatively modest, suggesting deeper challenges 
in mastering representation conversion tasks (e.g., transitioning between 
nomograms, formulas, and function graphs). Qualitative data (answer boxes 
within the environment, mini interviews) clarified how key design features 
scaffold the transition from concrete sensorimotor experiences to abstract 
mathematical reasoning. Real-life contexts anchor students’ early 
understanding; bimanual movements strengthen covariation awareness; 
continuous color feedback fosters immediate strategy adjustments; and 
multiple representations broaden students’ grasp of functions as 
correspondences between variables. Chapter 4 affirmed the feasibility and 
educational potential of digital-embodied tasks in a classroom setting: 
embodied experiences and digital representations, when deliberately 
aligned, can drive significant learning gains in FT. These outcomes pave the 
way for a deeper, micro-level exploration of how covariational thinking 
evolves in Chapter 5. 

In Chapter 5, we delved deeper into the micro-processes of FT by 
investigating covariational reasoning (CR) in a digital-embodied environment. 
Specifically, it examined bimanual hand movements through a hand-tracking 
data, aiming to link sensorimotor fluency with conceptual development in CR. 
Quantitative analyses showed that students with higher initial CR levels 
tended to reach “smooth, coordinated” movements more quickly (shorter 
Time to fluency), reflecting how existing conceptual understanding supports 
efficient motor coordination. Students who made greater learning gains in CR 
typically spent more time in fluent coordination phases (longer Fluency time 
sum), which suggests that prolonged interaction in embodied exploration can 
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foster deeper reasoning development. Additionally, hand-tracking data 
provided a microlens into perception-action loops, showing how students 
relied on real-time color cues to iteratively refine their movements and 
conceptualize continuous covariation. Supporting evidence from pre/post 
assessments and mini interviews corroborated that bimanual tasks heighten 
understanding of relationships between variables. We operationalized 
Thompson and Carlson’s (2017) CR taxonomy to an embodied, bimanual task 
context, providing a tool to better analyze learning activities and 
mathematical reasoning through the lens of embodied learning processes. 
This allowed us to analyze patterns in students’ hand-tracking data and 
classify their CR levels using the bimanual CR framework, ranging from no 
coordination (L0) to smooth continuous covariation (L5). Methodologically, 
Chapter 5 showed how combining hand-tracking metrics (time to fluency, 
fluency time sum) with qualitative insights can capture both the “how” and 
the “why” of students’ reasoning development. These findings reinforced 
that digital-embodied environments—especially those featuring coordinated 
hand movements and real-time feedback—can foster sensorimotor 
interaction with functional relationships in combination with CR. 

By tracing this path, the thesis integrated conceptual, design-based, 
and empirical angles. It showed how embodied interactions, digital feedback, 
and mathematical representations together shape students’ understanding 
of functions. The four sub-studies in the chapters thereby converged on the 
central conclusion that meaningful bodily engagement, if aligned with 
carefully structured nomogram tasks and activities, can serve as a potent way 
for students’ FT development. 

6.2  Limitations  
The generalizability of the findings and the extent to which they capture the 
full complexity of students’ learning processes remain open questions. These 
limitations are synthesized below, categorized into contextual, 
methodological, and theoretical concerns. 

Contextual and design limitations 
Firstly, the digital-embodied tasks required access to tablets, multi-touch 
screens, and specialized software (e.g., Numworx). Such tools may not be 
feasible in resource-limited classrooms, restricting broader implementation. 
Technical issues during the interventions, such as software glitches or 
hardware limitations, could have affected students’ learning experiences. 
Investigating how similar embodied learning principles could be adapted to 
low-tech or non-digital environments would enhance scalability. 
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Secondly, some tasks may be too complex or not optimally designed to 
guide students toward the learning goals. For example, in Module 3 (e.g., 
finding domains and ranges for trigonometric functions through nomograms, 
Figure 3.6 (Chapter 3), some tasks were perceived as overly abstract or 
technically challenging, leading to student disengagement or reliance on trial-
and-error strategies. These issues highlight the need for further refinement 
of task sequences and possible extra instructional support to ensure that 
tasks effectively guide students toward the expected learning outcomes. 

Methodological limitations 
Firstly, the empirical studies were conducted with relatively small and 
specific samples (e.g., the pilot study with four eighth-grade students; 
classroom studies with 76 ninth-grade students). The lack of diversity 
restricts the applicability of the findings to other contexts, such as public 
schools or different cultural environments and limit generalizability of the 
results. Further research with more diverse populations would help evaluate 
the broader applicability of these interventions. 

Secondly, data collection and analyses mostly concentrated on 
immediate outcomes, often measured right after interventions, whether 
students would apply their newly formed FT to novel problems remains 
unknown. This raises questions about the durability of the learning gains and 
whether the embodied approach leads to sustained improvements in 
students’ FT over time. Studies investigating how embodied learning might 
impact broader reasoning or problem-solving skills over semesters or years 
would be informative. 

Thirdly, the assessment of students’ learning primarily relied on pre-
/post-tests and qualitative analysis of hand-tracking data. Ceiling effects were 
observed on some input-output test items (Chapters 4 & 5). Interpreting hand 
movement patterns as direct indicators of cognitive processes is complex. For 
instance, distinguishing between different levels of CR based on hand traces 
requires careful calibration and relied on researcher interpretation. The 
complexity of analyzing hand tracking data and ensuring its accuracy in 
reflecting students’ reasoning limits the robustness of conclusions drawn 
from these measurements. 

Finally, key embodied metrics like movement fluency and coordination 
operationalized using task-specific thresholds (Chapter 5). The lack of 
standardized embodied metrics makes it difficult to compare findings across 
studies. This risks misclassification of exploration vs. fluency phases through 
hand-tracking data. Establishing a standardized framework for embodied 
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learning metrics, validated across different digital tools and instructional 
contexts, would enhance the reliability and generalizability of future research 
in this area. 

6.3  Scientific contributions 
Empirical evidence on how bodily movement shapes functional thinking 
A scientific contribution of this thesis is the empirical evidence linking 
physical, hand-based coordination to the development of FT.  

Findings on hand movement patterns with qualitative data (Chapters 3 & 5) 
Hand trace continuity (the consistency of hand movement paths) and 
feedback mechanism (the real-time color-changing cues) offer qualitative 
perspectives on how movement underpins mathematical cognition. These 
data, which record the continuity, speed, and path consistency of hand 
movements, reflect students’ iterative adjustments as they coordinate two 
variables to achieve fluency. For instance, hand trace continuity—measured 
as the smoothness of movement paths—showed students progressing from 
irregular exploratory patterns to consistent trajectories. The hand-tracking 
data do not merely record movement; they embody the learning process 
itself, making visible the micro-adjustments through which students 
developed precise CR. Such close connections between bodily motion and 
conceptual thinking echo other studies on gesture and learning, which 
highlight embodied interactions support students to express mathematical 
relationships as grounded cognitive actions, rather than embedding external 
artifacts directly into their cognition. (Alibali & Nathan, 2012; Abrahamson & 
Sánchez-García, 2016; Goldin-Meadow, 2009).  

These findings also align with perception-action loop theories 
(Abrahamson & Sánchez-García, 2016; Shvarts et al., 2021), suggesting that 
repeated “micro-adjustments” of the body form more stabilized 
sensorimotor patterns, which they articulate symbolically or verbally as 
function concepts, such as slope, intercept, and directionality. As students 
“keep the arrow green,” they continuously reconcile what they see, how they 
move, and what they understand about the function’s behavior, gradually 
solidifying covariational reasoning. For instance, a student in Task 2.4 noted 
that “if one hand goes too fast or too slow, there’s no coordination…and we 
don’t get the green color.” This iterative cycle of noticing an error, adjusting 
movement, and checking the arrow fosters micro-level perception-action 
loops (Shvarts et al., 2021). 
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Insights from quantitative data (Chapter 5) 
By analyzing TTF, the interval students need to achieve smooth, synchronized 
hand movements, and FTS, the total duration in that fluent movement state, 
we uncovered correlations between embodied performance and CR 
development. Higher initial CR levels tended to correlate with shorter TTF: 
Students with stronger initial covariational thinking reached fluent bimanual 
coordination more quickly. This suggests that pre-existing conceptual 
grounding accelerates motor adaptation. Greater CR gains often 
accompanied longer FTS: Students who started with lower initial CR spent 
more time exploring in a fluent phase and gain more robust improvements. 
This extended “hands-on” coordination appears to enable iterative 
refinement of functional relationships, which reflects the positive role 
bimanual tasks play. Although correlation tests cannot prove direct 
causation, the findings show that coordinated bodily interaction and real-
time digital feedback could be levers for CR development. 

Overall, researchers have argued that embodied approaches can 
accelerate the path from action to symbolic representation by anchoring 
abstract concepts in embodied experiences (Lakoff & Núñez, 2000; 
Nemirovsky, 2011; Duijzer et al., 2019). This thesis provides with that 
argument to the specific domain of bimanual movements with empirical 
evidence. 

Contribution to embodied design approaches 
A second contribution of this thesis lies in its integration of embodied design 
principles with digital technology to foster FT. Building on the theories of 
embodied design (Abrahamson & Lindgren, 2014), this thesis uses 
Hypothetical Learning Trajectories (HLTs, Bakker, 2018; Simon & Tzur, 2004) 
to guide the iterative development of tasks that connect sensorimotor 
experience with FT. 

Chapter 2 revealed limited empirical work on how secondary students 
move from embodied actions toward higher-level abstractions of functions. 
It also emphasized a need for embodied tasks that better integrate real-time 
feedback and dynamic visualizations of functions. Our learning environment, 
grounded in the Embodied Design framework (Abrahamson, 2014), was 
deliberately developed to address these gaps. Below, each module is 
explained in terms of how it addresses a research gap, what the design is like, 
and describes an illustrative example. 

Module 1: Transition from light ray contexts to bimanual tasks  
Targeted gap: Calls for studies to explore how context-based activities could 
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move students beyond a simple “input-output” view toward deeper 
functional relationships in real-time, dynamic settings. 

Design and example: Students begin by investigating how shadows’ 
position and size change as an object moves next to different light sources 
(Figure 4.9, Chapter 4). Students are placed in a meaningful scenario that 
highlights basic function rules (e.g., 𝑦𝑦 = 3𝑥𝑥 − 2). Following these situational 
tasks, students gradually shift from unimanual to bimanual activities, which 
is designed to strengthen covariational reasoning. Through coordinating two 
hands—one controlling the tree (input) and the other tracking the shadow 
(output)—students experience how changes in one variable dynamically 
affect the other. 

Illustrative outcome: Students who initially described tasks in everyday 
language (e.g., “the shadow gets bigger when I move the tree to the right”) 
begin to articulate them in function-like terms (e.g., “When I raise the tree by 
1 unit, the top of the shadow goes up by about 3 units”). In doing so, Module 
1 responds to the systematic review’s call for more robust evidence of how 
contextual, embodied actions can ground abstract concepts. 

Module 2: Semi-nomograms, covariation, and early correspondence  
Targeted gap: Chapter 2 noted the need for using dynamic visualizations to 
promote FT, especially the covariation aspect. 

Design and example: Module 2 begins with semi-nomograms, 
nomograms without labeled numbers, to help students first focus on motion 
rather than numeric precision. As students gain fluency, labeled axes are 
introduced to connect embodied actions with formal function notation. 
Throughout, bimanual coordination and real-time color feedback guide 
students from trial-and-error movements to a systematic, smooth 
coordination. For instance, maintaining a green arrow in a 𝑦𝑦 = −𝑥𝑥 task 
requires moving both hands at an equal but opposite speed, which quickly 
reveals how input increments correspond to output decrements. 

Illustrative outcome: Students begin to articulate patterns such as 
“when 𝑥𝑥 increases by 1, 𝑦𝑦 decreases by 1” based on physical coordination, 
rather than symbolic manipulation. This supports early covariational 
reasoning and addresses the systematic review’s gap regarding how to help 
students unify bodily experience with dynamic representations. 

Module 3: Conversions between nomograms, graphs, and formulas  
Targeted gap: Chapter 2 pointed out the need for tasks that integrate 
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multiple function representations and support advanced function aspects 
like correspondence or mathematical object. 

Design and example: The core tasks involve dynamic conversion 
practice conversion practice where students transfer between adjusting the 
nomogram arrow and predicting its corresponding point on the Cartesian 
graph and vice versa. When students move their hands along input-output 
axes, they can observe the domain/range constraints: beyond certain input 
values, the arrow can no longer stay green nor the point align with the 
function graph. Although formulas are not always explicitly given, students 
begin to hypothesize how a formula might look when “mapped” onto their 
bimanual movements. They infer that valid (𝑥𝑥, 𝑦𝑦) pairs follow a consistent 
pattern, sometimes articulating early algebraic ideas based on their bimanual 
movements and the observed visual mapping (e.g., “You have to multiply it 
with like [there is] a minus sign. Because when it goes higher it [the other 
point] turns into negative. The positive number on the 𝑥𝑥 turns into negative 
on the 𝑦𝑦.”) 

Illustrative outcome: Through these dynamic, real-time tasks and 
accompanying dialogues (mini interviews, discussions), students develop a 
grasp of a function as a consistent mapping from inputs to outputs, including 
analyzing domain and range. This address both aspects highlighted by 
Chapter 2: a need for dynamic, real-time tasks and an emphasis on advanced 
function aspects. 

Overall, the embodied design structure, spanning from a contextual 
anchor to formal mathematical dialog, advances the literature by 
demonstrating how embodied design principles guide task designs that 
suitable for secondary mathematics classrooms. 

Insights into technology-integrated mathematics education 
A third contribution lies in the insights gained on how digital tools, specifically 
multi-touch tablets, digital-embodied nomograms, and hand-tracking 
software, can deepen students’ conceptual understanding. These tools also 
give researchers a richer window into students’ embodied learning 
processes. 

By using multi-touch interfaces, students could physically manipulate 
multiple variables and experience functions as live, dynamic processes. This 
aligns with findings from Chapter 2 (RQ1.1) and Chapter 4 (RQ3.2), both of 
which stressed the importance of receiving real-time feedback in developing 
a more flexible, coordinated understanding of function concepts. Several 
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students mention how they continuously moved or slide objects in order to 
immediately see the changes of functional relationships. For example, one of 
the students said: “I first moved the lines until I could find out. I could see 
which ones are green. Then I kept moving. Then I checked how much I got, 
like the relationship between the left and the right.” In a non-digital or 
mouse-only setup, the interface typically forces a one-variable-at-a-time 
approach and repeatedly testing multiple positions might be cumbersome. 
The student’s references to “move,” “see green,” and “check” suggest that 
multi-touch gestures and real-time color feedback on the device lowered the 
barrier to experimentation. 

Real-time feedback (arrow turning green/red) emerged as an effective 
mechanism for prompting immediate adjustments in students’ movements 
and thinking. The systematic incorporation of color, motion, and number lines 
created multimodal cues that continually invited students to reconcile their 
physical actions with symbolic or graphical outcomes. Some students 
mention “moving points” at a “constant speed” or in “opposite directions,” 
referencing how the system turns red or green if their hands move incorrectly 
or correctly. These gestures make covariation physically intuitive, as each 
hand directly represents an axis of change. Because of the color-changing 
feedback, students can correct or refine their speeds/directions in time, 
which help to build a solid embodied sense of function relationships. The 
real-time feedback illustrates how digital technologies (with instantaneous 
color-coded feedback) can amplify the role of sensorimotor interaction 
(Drijvers, 2019). This aligns with calls for deeper research into how dynamic 
visualizations and bodily gestures together influence understanding (Wilkie, 
2020). 

In some mini interviews across Modules 2 and 3, students express 
curiosity or satisfaction in “turning the arrow green.” For example, one 
student commented, “I like it. It’s like an interactive task…you have to find 
out…to keep thing green". This kind of spontaneous expression of positivity 
is direct evidence that the touchscreen-based nomogram tasks feel more 
engaging. Taken together, these comments from the mini interviews point to 
the positive impact of tablets and digital-embodied nomograms, 
underscoring how a multi-touch screen, real-time feedback environment 
motivates students. 
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6.4  Methodological Contributions 
Integrative use of systematic review, design-based research, and mixed 

methods 
The thesis is methodologically improved in that it combines a systematic 
literature review, design-based research, and a mixed-methods approach: 
Chapter 2 systematically mapped the state-of-the-art in embodied cognition 
and FT to ensure the design efforts were informed by recognized gaps: e.g., 
minimal empirical work on real-time feedback and bimanual tasks for 
secondary school students. Chapter 3 applied DBR principles (Bakker, 2018; 
Cobb & Steffe, 2010) through iterative design cycles, guided by embodied 
design principles and emergent modeling (Abrahamson & Lindgren, 2014; 
Gravemeijer, 1999). Each cycle refined the tasks to better align learning goals 
with task features (nomograms, real-time feedback, bimanual movement), 
and to adapt interventions for real classroom settings (Alberto et al., 2022; 
Boels & Shvarts, 2023). 

A mixed method further strengthened the study. Quantitative 
instruments (pre/posttests, bimanual movement measures) provided 
objective measures of learning gains, while qualitative data (video 
observations, answer boxes, mini interviews, hand tracking data) offered rich 
insights into students’ strategies, misunderstandings, interactions with digital 
tools, and embodied learning process. Triangulating hand movement data 
(millisecond-level traces of bimanual motion), dialogue (mini interviews), and 
written artifacts (pre/posttests and answer boxes) improved the 
trustworthiness of conclusions, revealing why certain embodied design 
choices succeeded and how students progressed along hypothetical learning 
trajectories. Together, these integrative methods provide a robust framework 
for conceptualizing, enacting, and analyzing digital-embodied learning 
interventions in mathematics education. 

Novel tools and analyses for embodied interaction 
A second methodological contribution lies in the analytic approaches for 
capturing and interpreting students’ embodied interactions: 

Hand-tracking technology in the Numworx software: Numworx records 
the 𝑥𝑥-y coordinates of each “draggable point” (representing the student’s 
hands) every millisecond. As learners move their left and right fingers, the 
system logs detailed information on locations of the draggable points. We 
then calculated direction, velocity, and distance from the target functional 
relationship. Because Numworx also supports programming the color-
changing feedback (green arrow for correct alignment, red arrow for 
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misalignment), the hand tracking data can be aligned with students’ attempts 
and on-screen feedback. This makes it possible to analyze how quickly and 
how smoothly students achieve the “green” fluency phase. 

Operationalizing Thompson and Carlson’s (2017) taxonomy of CR: 
Thompson and Carlson propose a hierarchy of covariational reasoning, 
ranging from no coordination of variables (L0) to smooth continuous 
covariation (L5). We adapted these descriptors to the case of bimanual 
movement (e.g., identifying where students show discontinuous, stepwise 
adjustments vs. continuous, synchronized hand movements). Based on that, 
we examined trace continuity (how smoothly or discontinuously students 
moved) and color changing feedback patterns. For example, L0-L2 levels 
might exhibit repeated red-arrow interruptions (no green feedback) and 
intermittent hand traces, while L4-L5 levels showed continuous, fluent traces 
that always triggered green feedback. 

This thesis offers a structured framework to analyze students’ 
movement patterns in an embodied environment. It can be adopted or 
adapted by future researchers interested in sensorimotor learning. For 
example, it can be used to observe how specific changes in movement traces 
coincide with improvements in test scores or interview data, or to distinguish 
when and how many times students shift from discrete, trial-and-error hand 
movements (lower CR levels) to smooth, integrated bimanual control (higher 
CR levels) within a task in the domain of function. 

6.5  Rethinking the role of the body in mathematics learning 
Now that we have summarized the study’s results, its limitations and its 
scientific and methodological contributions, we turn to a broader 
perspective and rethink the role of the body in mathematics learning, a key 
paradigm when we started out this thesis’ trajectory.  

One of the key contributions of this thesis is providing empirical 
evidence that bodily movement can play a role in fostering FT. The findings 
suggest that gestures and coordinated bimanual movements help students 
make sense of input-output relationships, covariation, and correspondence. 
However, movement alone is not sufficient to invite conceptual 
development. Mathematical meaning emerges from a complicated interplay 
between the body, artifacts, social interactions, and environmental 
affordances.  

Any theory of learning or teaching is grounded in a particular stance 
on how we know the world around us (epistemology) and on the nature of 
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reality (ontology). In mathematics education, these philosophical 
foundations frame not only our understanding of how students come to 
know mathematics but also how we design instructional environments, 
interpret students’ actions, and justify methodological decisions.  

In the following, we revisit our initial ideas on the role of the body in 
mathematics learning from an epistemological, an ontological, and an 
affective and cognitive perspective.  

Epistemological perspectives: How do action and perception shape 
mathematical knowledge? 

Traditionally, many have assumed a Platonic or Cartesian view of 
mathematics: knowledge exists “out there” in an abstract, infallible realm, 
separate from human sense-making. However, both constructivist and 
enactivist theories have called this assumption into question. They proposed 
that knowing is a dynamic process emerging from the student’s engagement 
with the environment (Piaget, 1955; Varela et al., 1991; von Glasersfeld, 
1989). 

In contrast to these traditional views, the embodied cognition lens – 
central in this thesis – addresses the epistemological question—How do we 
come to know mathematics?—in a different way (Barsalou, 2008; Glenberg 
& Robertson, 2000; Lakoff & Núñez, 2000; Varela et al., 1991). Rather than 
viewing knowledge as discovered in a purely abstract or symbolic form, 
embodiment theory challenges the Cartesian dualism of mind and body, 
positing that mathematical understanding arises from sensorimotor 
engagement with the environment, social interactions, and cultural artifacts. 
This perspective emphasizes the role of action and perception, which are 
recognized as the driving forces of cognition. Students do not just store and 
retrieve static representations of mathematical concepts; instead, they 
continuously enact and reconstruct these concepts through repeated cycles 
of bodily movement and sensory feedback (Abrahamson & Lindgren, 2014; 
Shvarts et al., 2021). For example: 

• Action involves physical engagement, such as moving arms with 
sensors that control the heights of dots on a screen (Abrahamson & 
Trninic, 2011), dragging a series of isosceles triangles to plot a 
parabola (Palatnik et al., 2023; Shvarts & Abrahamson, 2019), or 
keeping balance on a board to represent changing quantities 
(Tancredi at al., 2021). 

• Perception includes both visual and tactile feedback, including 
observing height difference between height lines (Bos et al., 2022), 
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noticing color cues in a situation (Abrahamson, 2012), or feeling the 
relative speeds between hand movements (as in bimanual tasks). 

The literature claims that epistemologically, then, mathematical ideas (e.g., 
proportionality, covariation, function) emerge through embodied 
interaction. This resonates with Piaget’s (1955) constructivist principle that 
learners build knowledge structures through active adaptation to, and 
organization of, their experiences.  

While action and perception facilitate embodied learning, an 
epistemological challenge is the gap between experiential knowledge and 
formal symbolic representations. Many students successfully perform bodily 
or artifact-based tasks but struggle to articulate these strategies in algebraic 
or conventional mathematical language. This tension shows the epistemic 
leap from tacit, sensorimotor schemas to explicit, universally recognized 
symbolic systems.   

In this thesis, we build upon these ideas from embodied cognition and 
demonstrate how specific design choices can facilitate this emergence and 
help connect the experiential-formal gap. We elaborate on this in two main 
ways. 

First, we illustrate how functional thinking can be actively constructed 
through iterative perception-action loops within our embodied nomogram 
tasks. For example, in Chapter 4, students explored tasks that involved 
manipulating inputs and outputs on a nomogram and observing the 
correspondent changes on the cartesian function graph. Interacting with this 
transition between different function representations prompted students to 
connect their actions (e.g., sliding points) with the perception of dynamic 
visual feedback (like points projections). Over time, these repeated cycles 
with nomogram tasks enabled students to reify processes of covarying two 
variables (e.g., adjusting two variables in tandem) into a more concrete 
concept of a functional relationship. Epistemologically, the knowledge of 
“function” did not preexist in an abstract domain, the students constructed 
this notion through interactive experiences. Additionally, hand-tracking data 
from Chapter 5 provided micro-level evidence of this constructive process. 
Students adjusted their bimanual movements based on real-time feedback 
(e.g., color cues indicating correctness). This suggests they were developing 
an internal, predictive sense of the functional rule governing the task, which 
helps to anticipate the consequences of their movements, continually 
refining this internal forward model through their actions (Shvarts & 
Abrahamson, 2023). The real-time feedback allowed students to detect 
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discrepancies between their anticipated outcome and the actual sensory 
feedback received. Such perception-action loops, driven by this forward 
model, reflect and confirm what an embodied epistemology anticipates: 
knowledge emerges through repeated loops of acting and perceiving. 

As a second means to use and adapt findings from literature, we aim 
to addresses the experiential-formal gap through using congruent 
representations (Aziz-Zadeh et al., 2006; Segal, 2011). A congruent 
representation is one where the structure of the physical action or perceived 
phenomenon shares a structural analogy with the formal mathematical 
concept. Epistemologically, gesture-based insights can serve as a potential 
foundation. For example, in our nomogram tasks, the bimanual action for a 
function like 𝑦𝑦 =  −𝑥𝑥 involves moving hands in opposite directions at similar 
speeds (As 𝑥𝑥 increases, 𝑦𝑦 decreases at the same rate). This physical 
experience of “oppositional, synchronized movement” is congruent with the 
mathematical idea of an inverse relationship where an increase in 𝑥𝑥 
corresponds to a proportional decrease in 𝑦𝑦. The design of the bimanual 
nomogram task, therefore, aims to make the physical experience a direct, felt 
analogy of the mathematical structure, and thereby grounding the 
developing abstract concept in a concrete, sensorimotor way. 

Ontological perspectives: What is the nature of mathematical concepts in 
a digital-embodied environment? 

Ontologically, this thesis aligns with perspectives considering mathematics 
as a human practice, in which concepts are not pre-existing entities but 
emerge from active, situated interactions within sociocultural and material 
contexts (Brown et al., 1989; Lave & Wenger, 1991; De Freitas & Sinclair, 
2014). More specifically, we draw on an ecological onto-epistemology where 
mathematical objects arise through a body–artifacts functional dynamic 
system (FDS) (Shvarts et al., 2021; Shvarts et al., 2024). These FDSs form 
when students’ bodily potentialities (e.g., gestures, perceptual structures) 
coordinate with the affordances of physical or digital artifacts to fulfill a 
functional goal. Therefore, rather than anchoring concepts in mental 
representations (internalist approaches) or in external symbolic notations 
(externalist approaches), this perspective sees mathematical concepts as 
entities that construct by action and perception. 

In this thesis we built on these notions in two ways. First, in a digital-
embodied environment, where physical actions (gestures, movements, and 
manipulations) intertwine with responsive interfaces, mathematical 
concepts take on a dynamic, process-like character. The central concept in 
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our case, function, is not an abstract set of ordered pairs. Instead, it arises as 
relationships-in-action, taking shape through embodied activities such as 
dragging points on a coordinate plane. This ongoing coupling of bodily 
movements and visual feedback demonstrates that a concept is not merely 
represented but co-enacted in real time. Students’ repetitive actions 
gradually stabilize into FDS. As these synergies become fluent, students 
develop new ways of perceiving the environment (e.g., “seeing” how a slope 
changes). Importantly, these newly stabilized actions are not only left to 
bodily memory. They become “crystallized” in artifacts with cultural 
meanings, such as an intersection point on the graphs or formulas (Shvarts et 
al., 2021).  

Our second ontological perspective concerns the bimanual 
movements. An enactive ontology highlights that mathematical concepts 
become meaningful through doing, especially the iterative, mediated 
interplay of actions, reflections, and symbolic artifacts (Varela et al., 1991; 
Nemirovsky, 2003). In the thesis, bimanual movements, supported by the 
multitouch devices, could serve as a dynamic, pre-symbolic patterns of action 
(Abrahamson & Trninic, 2011). These patterns embody aspects of a 
mathematical concept (e.g., a specific rate of change) before it is formally 
articulated. Over time, these enacted patterns can be reified into more 
durable cultural artifacts, e.g., algebraic notations or function graphs. The 
digital-embodied tasks do not just reveal students’ preexisting 
understanding, they help generate that understanding. This illustrates a view 
that the concept emerges from body-artifact synergy (Shvarts et al., 2021). 

Reflecting in retrospect on this thesis, a question emerges: how stable 
and transferrable are these concept enactments outside the specific 
environment? If the concept “lives” in the synergy of action and digital 
feedback, does it remain an effective tool for understanding once the digital 
support is removed? Drawing on reflective abstraction (Boonstra et al., 2023), 
we can see that the process of naming, re-describing and internalizing newly 
crystallized artifacts can help students transfer their understandings to 
different contexts. In other words, the internalization of action-based 
strategies enables students to reactivate these embodied understandings 
outside the original environment. In our designed learning environment, this 
reflective abstraction is further supported through purposeful reflection (via 
an “answer box” in the digital interface), discussion (mini interviews), and re-
notation (conversions among multiple function representations). While the 
immediate feedback from multitouch devices sparks realizations, the stability 
and portability of these realizations depend on structured opportunities for 
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students to formalize, verbalize, and symbolically encode their enacted 
experiences. This reflective layer ensures that what begins as situated action 
can evolve into a more transportable form of mathematical concept. Through 
action, perception, and cultural artifact creation, knowledge, initially 
embedded in action, can be transformed into a more generalized 
understanding. 

Affective and cognitive perspectives: How do emotion, engagement, and 
cognition interact in embodied mathematics learning? 

Mathematics learning is a multifaceted experience shaped by not only 
cognitive, but also emotional, motivational, and embodied dimensions. The 
situatedness of embodied learning activities underscores the importance of 
understanding how student engagement, emotional responses, and 
cognitive processes interrelate (Eynde et al., 2006; Hannula, 2012). In this 
section, we reflect on how insights from theories on affect, motivation, and 
cognition, have been addressed in this thesis, examining both individual and 
social perspectives to illuminate this interaction. 

Research suggests that physiological and affective states, such as 
interest or frustration, can guide students’ attention, affect how they 
approach tasks, and shape their sense-making of mathematical ideas 
(Hannula, 2012; Power & Dalgleish, 2015). A key driver of exploration in this 
process is curiosity, which sparks divergent inquiry and encourages students 
to try different strategies or persist in the face of challenge. Thereby, curiosity 
can potentially activate more varied and sustained cognitive engagement 
(Goldin, 2000; Hannula et al., 2016). When students are curious, they are 
more likely to experiment with new methods or perspectives and even a 
broader range of problem-solving skills, prior knowledge, or reflective 
thinking than they would if simply following a prescribed procedure. 

Beyond individual experiences, socio-constructivist theories highlight 
that emotions and motivation are often shaped and coregulated within 
socially constructed, such as influenced by classroom interactions and norms 
(Eynde et al., 2006). In digital-embodied learning settings, the interplay of 
physical interaction, emotional arousal, and cognitive reflection drives 
mathematical sense-making (Cross, 2009; Hannula et al., 2016). 

Even if in the research process leading to this thesis the affective 
perspective has played a minor role, we can in retrospect identify two 
aspects: appeal to curiosity, and engagement in social interaction. As for the 
first, the color-changing feedback mechanism in this thesis aims at raising 
students’ curiosity: the arrow turning green led to sustained engagement as 



Chapter 6 

206  

the students sought to maintain the desired state. Observations revealed 
emotional peaks (e.g., cheering upon success) and sharing of strategies. 
Students share these “wins” with peers, sparking discussions about their 
strategies. As they strive to maintain the green color despite dynamic 
changes tied to their movements, their curiosity persists, motivating further 
exploration. Interview data reinforce this: one student described the 
nomogram as “Nomogram is amazing, it’s very magical.” Notably, the 
immediacy of the color-changing feedback amplified emotional responses 
and prompted them to reflect on their current strategy and to consider if 
their approach was working and why. As one student reflected, “I found 3 or 
4 points, and I tried…thinking if it might be squares, or addition…then realized 
only a multiplicative relationship fit all those points.”, a statement showing 
how iterative experimentation, fueled by inquisitiveness, led to conceptual 
breakthroughs. Such moments highlight the bidirectional relationship 
between affect and cognition: while curiosity drives exploration, successful 
outcomes reinforce self-efficacy, fostering further cognitive risk-taking 
(Bandura & Wessels, 1997; Hannula et al., 2016). 

Second, engagement and curiosity have a social dimension. Chapters 4 
and 5 of this thesis investigate this in a classroom context, where students 
had the chance to collaborate within a digital-embodied environment to 
solve tasks. Students faced initial challenges in coordinating their movements 
but overcame them through joint effort. One student noted, “It was a little 
difficult at first because we couldn’t move it properly. Yeah. But after some 
time, it started moving like really smoothly...Once you have the coordination, 
it’s easy.” Another described synchronized actions: “My hand would be on 
the output line and I would go up; when I went up, her hand was on the input 
line going down—the same angle and speed… Once you get the fixed speed, 
it’s easy to make all lines come green.” These experiences underscore how 
collaboration fosters a shared understanding of the task’s functional 
relationships, as students articulate strategies and co-construct knowledge. 
This kind of collaborative process also improves emotional safety, which 
refers to an environment where students feel secure enough to take 
intellectual risks, make mistakes, and express uncertainty without fear of 
negative judgment from peers or the teacher. Emotional safety can often be 
improved by positive collective efficacy, which is the group’s shared belief in 
its capability to succeed (Karau & Williams, 2014; Klassen & Krawchuk, 2009). 
In such an environment, students interpret confusion or mistakes as 
opportunities for discovery rather than personal shortcomings (Eynde et al., 
2006). Over time, repeated emotional “wins” and productive struggle can 
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refine students’ attitudes and identities, even helping them view themselves 
as capable problem solvers (Hannula et al., 2016). 

6.6  Implications for future research 
This thesis opens up avenues for deeper and broader investigations on 
embodied learning. Future research may pursue the following directions to 
advance both the theoretical and practical applications. 

Rethinking Assessment 
Traditional assessments may not fully capture the learning outcomes of an 
embodied approach to functional thinking. Much of students’ emerging 
understanding described in this thesis unfolds through coordinated hand 
movements, quick adjustments when an arrow turns red, and spontaneous 
discussions of strategies. Therefore, written tests alone would offer an 
incomplete picture of the students’ progress. Chapter 5 demonstrates how 
hand-tracking technology can complement these traditional measures, 
revealing students’ movement patterns, use of feedback, and engagement 
over time. Although this approach enriched the research team’s post-hoc 
understanding of students’ learning processes, future work could prioritize 
dynamic, real-time assessment tools that empower teachers to act during 
lessons, for example in the following ways: 

 Real-time analytics: Develop AI-driven platforms that interpret hand-
tracking/gesture logs or gaze patterns data during tasks to provide 
immediate feedback to teachers (Darvishi et al., 2024; Šola et al., 2024). 
These platforms would employ machine learning algorithms to process 
sensor data (e.g., from tablets or motion-capture systems) and detect 
patterns indicative of learning states (Mitra & Acharya, 2007; Pellas et 
al., 2020). For example, for hand-tracking data, algorithms could identify 
hesitation (e.g., prolonged pauses between movements), 
miscoordination (e.g., inconsistent bimanual synchronization), or 
fluency (e.g., smooth, continuous adjustments) during tasks like 
nomogram manipulation (Pellas et al., 2020). As for gaze patterns, eye-
tracking might reveal whether students focus on critical features (e.g., 
intersection points in a nomogram) (Scheiter et al., 2019; Shvarts & 
Abrahamson, 2019; Strohmaier et al., 2020). Such data could prompt 
timely intervention or targeted scaffolding, ensuring that students 
receive immediate support when their learning trajectory begins to 
falter. By transforming these embodied metrics into actionable 
classroom intelligence, teachers can respond more precisely to 
students’ needs.  
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 Post-hoc analysis: In addition, the stored log files would enable 
longitudinal analysis to refine teaching and design strategies. The log 
data can be used to identify whether students’ movement preferences, 
such as discrete adjustments over continuous motion. By aggregating all 
students’ data together, it might reveal systemic challenges (e.g., 
difficulty interpreting negative slopes) so as to prompt iterative redesign 
of modules to include scaffolding steps (e.g., pre-task warm-ups for 
learning goals). Machine learning could also correlate movement 
patterns with learning outcomes to recommend individualized task 
sequences (e.g., students needing more fluency practice receive 
additional bimanual exercises).  

 Reflective tasks: In parallel, structured reflection can deepen students’ 
metacognitive awareness of how physical actions map onto abstract 
mathematical concepts. Asking students to keep a brief journal or digital 
log, describing specific bimanual movements, unexpected adjustments, 
and links to mathematical ideas. It is important to encourage them to 
articulate the embodied processes behind their understanding. This 
practice not only helps students internalize concepts but also provides 
teachers with evidence of learning that may otherwise remain hidden in 
physical action. 

 Performance-based assessments: Performance-based tasks can offer 
richer opportunities to demonstrate embodied understanding. For 
instance, students might be asked to recreate or extend a function 
within the digital-embodied environment, explaining their choices and 
describing their movement patterns. Such tasks shift the emphasis from 
static symbolic understanding to dynamic mathematical structure 
building, which reflects the core of embodied mathematics. By 
observing students’ evolving strategies and justifications, teachers and 
researchers gain a multidimensional view of students’ conceptual 
growth that traditional assessments might overlook. 

In summary, broadening assessment methods through including real-time 
analytics, post-hoc analytics, reflective tasks, and performance-based 
assessments might better align with the embodied nature of students’ 
learning. These methods not only illuminate students’ developing proficiency 
but also guide teachers in delivering timely, personalized support. 

Nomograms for advanced function types 
Much of this thesis focused on linear, quadratic, or absolute value functions 
to build foundational FT. A fruitful extension would be to explore more 
complex function families (e.g., exponential, trigonometric, and piecewise-
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defined functions) and advanced calculus content (e.g., function composition 
or transformations, derivative and gradient). This extension aims to 
investigate whether embodied learning through nomograms continues to 
improve students’ abstract understanding across diverse mathematical 
content and educational levels. 

 Function composition: Brieske (1978) notes that nomograms excel at 
visualizing function composition, where one function’s output becomes 
another’s input. The visualization of function composition is less 
intuitive in a cartesian coordinate system. Through nomograms, 
students could trace arrows from an input through multiple mappings, 
concretizing the abstract layering of functions and the chain rule (e.g., 
see a GeoGebra example:  https://www.geogebra.org/m/fxhvnnhp). 

 Derivatives and instantaneous rate of change: Nomograms can 
represent the derivative, sometimes conceptualized as a “local 
multiplier,” where the scale factor between input and output intervals 
approximates this rate of change. While Richmond (1963) was one of 
the first to highlight nomograms in mathematical contexts, recent work 
by Bos and Brinks (2024) extends this visual interpretation. They use 
nomograms to represent instantaneous rate of change as an 
enlargement factor relative to a local focus, which visualizes the 
derivative as a scaling effect at a point (e.g., see 
https://www.geogebra.org/m/hap8j44e). This approach mirrors how 
the tangent line approximates the graph in traditional calculus but more 
engaging (Bos et al., 2019). 

 Gradients in multivariable calculus: Brieske (1978) highlights 
nomograms’ role in multivariable settings, such as ℝ2 → ℝ2 functions, 
where they can represent linear transformations like stretches along 
axes. Similarly, Inselberg’s (2009) parallel coordinates (nomograms) 
provide a visual solution related to gradients under certain conditions. 
For example, if a scalar function 𝑓𝑓 in ℝ𝑁𝑁 is such that its partial 
derivatives (the components of its gradient ∇𝑓𝑓) are linear functions of 
the variables (e.g., if 𝑓𝑓 is a quadratic function), then setting ∇𝑓𝑓 equal to 
a constant vector 𝑏𝑏 yields a system of 𝑁𝑁 linear equations. The solution 
to this system could then be found and visualized as the intersection of 
these 𝑁𝑁 hyperplanes within the parallel coordinate system. This 
provides a specific geometric interpretation for finding points with 
particular gradient values. 

By pursuing these directions, researchers can uncover nomograms’ full 
potential as an embodied representation across different levels of 

https://www.geogebra.org/m/fxhvnnhp
https://www.geogebra.org/m/hap8j44e
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mathematics education. Future research should aim to empirically validate 
their efficacy and refine their implementation.  

Scalability and accessibility considerations 
While the thesis shows success in specific contexts, broader adoption of 
digital-embodied design requires addressing scalability and accessibility, 
particularly in different educational settings, large classrooms, and resource-
limited environments. 

 Scalability in large classrooms: Investigate how digital-embodied 
learning can be effectively implemented in large classrooms without 
compromising student engagement and individualized feedback. This 
may involve exploring group-based interactions, teacher-guided 
demonstrations, or hybrid digital-paper approaches. 

 Low-tech options: To extend the reach of embodied learning, research 
could explore low-cost, non-digital alternatives, such as paper-based 
nomograms, manipulation with physical artifacts, or classroom-scale 
embodied activities. These alternatives could serve as effective options 
for digital environments while maintaining embodied learning features. 

By addressing these considerations, future research can help bridge the gap 
between innovative embodied learning environments and their practical 
large-scale implementation. Scaling up the digital-embodied learning 
environment requires thoughtful adaptation that ensures that all students 
have the opportunity to have a meaningful role in the lesson.  

6.7  Implications for educational practice  
The journey of this thesis–from conceptualizing embodied learning 
environments to assessing students’ evolving functional thinking–offers a 
roadmap for reimagining mathematics education. At its heart lies a simple 
yet profound idea: mathematics is not just abstract symbols on a page, but a 
dynamic structure of movement, emotion, and discovery. Here, we translate 
these insights into actionable strategies for educators, curriculum designers, 
and policymakers, weaving together the threads of nomograms, embodied 
pedagogy, and classroom innovation. 

A new character in the function curriculum: The nomogram 
One of the stars of this thesis is the nomogram. Nomograms did not start in 
classrooms, they were born out of necessity in the 19th century, before 
calculators or computers existed. Engineers, scientists, and mathematicians 
needed a way to perform complex calculations quickly and accurately. Their 
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brilliance lies in the ability to transform symbolic equations into a visual, 
manipulable form. This historical context explains why nomograms 
appeared: they were practical tools for a pre-digital world, making complex 
math accessible through geometry. Today, this same accessibility makes 
them a useful educational tool, turning abstract functions into something 
students can see and touch. 

In today’s classrooms, functions are typically taught through the lenses 
of tables, algebraic formulas, Cartesian graphs, and mapping diagrams. Each 
has its strengths, but they often leave students viewing functions as static 
objects rather than dynamic relationships. Nomograms step in to fill this gap, 
offering a hands-on, kinetic complement that ties these representations 
together. Take an algebraic representation like 𝑦𝑦 = 2𝑥𝑥 + 1. It is precise and 
concise, but it is also abstract, it does not show how 𝑦𝑦 changes with 𝑥𝑥. 
Students might memorize the rule without truly grasping the relationship. A 
nomogram, however, lets them explore it physically. In the digital-embodied 
nomogram of 𝑦𝑦 = 2𝑥𝑥 + 1, they can move one hand along an 𝑥𝑥-axis and 
another along a 𝑦𝑦 -axis. Through this, they feel the pattern, their 𝑦𝑦 -hand 
speed is always doubling the 𝑥𝑥-hand speed. It is a similar situation for plotting 
𝑦𝑦 = 2𝑥𝑥 + 1 on a coordinate plane. It is a straight line with a slope of 2 and a 
𝑦𝑦 -intercept of 1. Yet, this standard depiction can feel static. Students see the 
line but may struggle to sense the motion of two variables covarying, since a 
Cartesian graph merges changes in both 𝑥𝑥 and 𝑦𝑦 into one geometric object. 
By contrast, a nomogram enables them to literally move 𝑥𝑥 and 𝑦𝑦 and observe 
how they covary along the scales. This “enacted representation” provides 
direct experiences of how a change in one variable affects the other, 
especially for those who find traditional graphs or formulas abstract. 

So, why not include nomograms into the mathematics curriculum? At 
the secondary level, where functions often trip up students, nomograms 
could join the cast of representations alongside graphs and formulas. 
Teachers might weave them into lessons, offering ready-made digital tools 
and activities. For students who struggle, nomograms could be the gentle 
guide that leads them into the world of FT, turning abstract ideas into 
something they can get their hands on. For example, coordinating bimanual 
movements to maintain a green arrow taught students to intuit inverse 
relationships (𝑦𝑦 = −𝑥𝑥) or proportionality (𝑦𝑦 = 2𝑥𝑥) before they wrote 
formulas. The nomogram, with its roots in real-world contexts like light and 
shadow, offer a missing link in curricula dominated by static graphs and 
equations. 
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Bringing nomograms into schools is not without challenges. They 
require multi-touch devices (like tablets or interactive whiteboards) that 
support bimanual input and real-time feedback. For teachers, the key is 
sequencing (see Appendix 3 in Chapter 4 for exemplary lesson plans): 

1. Real-Life Context: Start with a relatable scenario, like how shadows 
change with light position. It mirrors how one variable depends on 
another. 

2. Nomogram Exploration: Introduce digital-embodied nomograms 
where students manipulate variables and observe outcomes. 

3. Linking Representations: Guide students to translate their 
nomogram actions into graphs and formulas, highlighting the 
connections among these different representations of the same 
relationship. 

4. Reflection: Use whole-class discussions or short written exercises so 
students can solidify their new insights and connect the embodied 
experience to formal symbolic language. 

Embodied Classrooms 
The thesis demonstrates the effectiveness of digital-embodied tasks in 
authentic classroom settings (Chapter 4), showing significant learning gains 
in FT. These tasks can be implemented using accessible technologies like 
multi-touch tablets or interactive whiteboards. This section explores how 
teachers can adopt embodied learning to create interactive, student-
centered mathematics lessons. 

Embodied learning aligns with contemporary trends in mathematics 
education that emphasize active, student-centered approaches. Research 
shows that students develop deeper understanding when they actively 
construct knowledge rather than passively receive it (Freeman et al., 2014; 
Hiebert & Grouws, 2007). Traditional teaching often focuses on rote 
procedures, but embodied learning invites students to engage physically with 
concepts. In this thesis, students were invited to move their actively interact 
with the tasks. This process also mirrors the pedagogical principle of multiple 
representations, where students explore mathematical ideas through 
different formats (e.g., visual, symbolic, kinesthetic) to build flexibility and 
insight (Goldin & Shteingold, 2001). By incorporating movement, embodied 
tasks add a kinesthetic dimension that makes abstract notions like covariation 
palpable. 

Effective classroom activities often follow a progression from inquiry-
based exploration (students freely manipulate variables) to guided reflection 
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(students discuss patterns or write brief explanations) to formalization 
(students connect their movements to symbolic notations or standard 
function graphs) (Artigue & Blomhøj, 2013; Bakker, 2018; Cobb et al., 2003). 
It is recommended to start with a context that is meaningful to the students, 
for example through being close to real-life: 

1. Embodied tasks are effective when grounded in familiar contexts or 
phenomena (e.g., shadows and light sources), which students then 
link to more abstract representations (Nathan & Walkington, 2017).  

2. After physically enacting relationships, teachers can gradually 
prompt students to express these relationships in formal 
mathematics language (e.g., algebraic formulas and Cartesian 
graphs), developing a dynamic-to-formal trajectory of understanding 
(Drijvers, 2019).  

3. Teachers can also use these embodied tasks to facilitate 
mathematically rich discussions. For example, after a group 
completes a correct “green arrow” diagram, the teacher might have 
them explain their reasoning. Another group might discuss why their 
arrow fluctuates between green and red to reveal partial or incorrect 
understandings. These moments are critical for bridging 
sensorimotor experiences with formal mathematics language. 

Overall, this thesis argues that nomograms should be recognized not as a 
replacement but as an enhancement in function education. Their embodied, 
interactive nature complements static graphs, tables, and algebraic formulas. 
Digital-embodied nomograms provide an additional lens through which 
students can experience and internalize the dynamic nature of functions. 
Structured lesson plans that connect embodied experiences with formal 
mathematics notation through inquiry, guided exploration, and reflective 
discussion are key to ensuring that nomograms serve as a cohesive 
representation in function teaching and learning. 
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Summary  
Functional thinking (FT)—understanding relationships between variables 
through aspects such as input-output, covariation, and correspondence—is 
an important skill in mathematics and in everyday life. However, students 
often struggle with its abstract nature. Traditional teaching, often relying on 
static pictures, does not effectively build dynamic reasoning about how 
variables change together. This difficulty is aggravated by the abstract 
character of functions, which are frequently taught as fixed rules rather than 
as dynamic relationships between changing quantities.  

This thesis addresses these challenges through integrating digital 
technologies using the lens of embodied cognition, which claims that the 
body, environment and artifact work together in shaping learning. The main 
innovation is the use of nomograms. A nomogram is a visual tool that maps 
functional relationships through parallel axes and arrows (Figure 1). In this 
thesis, we reimagine digital nomograms as dynamic, interactive tools that 
connect students’ sensorimotor experiences with formal mathematics. The 
overarching question guiding the thesis is: How do nomogram tasks foster 
students’ FT development in a digital-embodied learning environment? 

To answer this question, the thesis comprises six chapters: An 
Introduction (Chapter 1), four core sub-studies (Chapters 2-5), and a General 
Conclusion & Discussion (Chapter 6). These sub studies progress from 
identifying research gaps to designing, piloting and refining digital-embodied 
nomogram learning environments, implementing them in regular 
classrooms, and finally, to analyzing bimanual movements at a micro-level. 
Together, these sub studies provide a holistic view on how nomogram tasks 
in a digital-embodied setting develop students’ FT, including theoretical 
grounding and practical application. 
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Figure 1  Nomogram of the function 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥2 

Chapter 1 contextualizes FT within broader mathematical practice. It argues 
that a digital-embodied learning environment using nomograms could 
address challenges in FT teaching and learning. The chapter introduces the 
main research question and explains the choice of a design-based approach, 
in which iterative cycles of design, piloting, analysis and redesign offer a 
systematic method to study students’ understanding of FT. Figure 2 provides 
an overview of the sub studies in this thesis.  

 

Figure 2  An overview of the studies and the chapters 
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In Chapter 2, we surveyed existing research on FT, embodied cognition, and 
digital technology to answer these research questions:  

RQ 1 How does research literature inform an embodied approach to FT 
using digital technology that invites abstraction? 

RQ 1.1 Which role of technology is widely used in developing functional 
thinking? 

RQ 1.2 What is known about different abstraction stages of functional 
thinking? 

RQ 1.3 Which embodied approaches can be identified in the literature on 
developing functional thinking? 

 

This systematic review of 51 papers clarified the roles that digital technology 
plays from an either didactical or mathematical angle, the stages of 
mathematical abstraction embedded in FT, and the diversity of embodied 
strategies. Results show that most studies use graphing and algebraic roles 
of digital tools, often through dynamic software like GeoGebra, to promote 
covariation and correspondence. The input-output aspect of FT and 
geometry-based approaches remain relatively under-explored. Four main 
abstraction stages (contextual/situational, referential, particular, and 
general) emerge in these studies, suggesting that higher-level abstractions 
typically require dynamic representations and multiple function 
representations. Although action-based and perception-based embodied 
tasks are common, the potential of continuous real-time feedback remains 
underutilized. At this stage, we recognized that the MIT proportion task 
(Abrahamson & Trninic, 2011) could be generalized to any function and that 
its mathematized version aligns with an existing mathematical 
representation: the nomogram in a parallel axes system. By identifying these 
gaps and opportunities, the systematic review motivated the design, 
implementation, and analysis of digital-embodied modules in the 
subsequent sub-studies. 

Building on the insights from the systematic review, we investigated in 
Chapter 3 how an embodied design, centered on nomograms, can help 
students develop FT. It addresses the following research questions: 

RQ 2 How can an embodied design using nomograms foster functional 
thinking? 

RQ 2.1 How does a light ray context foster the students’ meaning making 
of nomograms? 

RQ 2.2 How do bimanual movement tasks foster covariational thinking? 
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RQ 2.3 How do different function representations and their conversions 
support a correspondence view on functions? 

 

Grounded in a light ray context, the learning environment uses input-output 
mappings as a metaphor: rays (or arrows) map from an object (input) to its 
shadow (output), representing different rules described by functions. By 
manipulating parameters for contexts, such as sunlight vs. spotlight 
(representing additive or multiplicative relationships), students were 
observed to interpret nomograms as function representations. In doing so, 
they linked everyday intuition (e.g., shadow patterns) with mathematical 
structures like parallel or divergent rays. Key to this design are bimanual 
movement tasks, which encourage students to physically coordinate two 
variables along the nomogram’s input and output axes. Real-time color 
feedback (green/red) signals them to adjust their hand positions until the 
correct relationship is maintained. This tactile process did indeed foster a 
sensorimotor experience of functional relationships. For example, students 
actively experienced how one variable must speed up or slow down relative 
to the other. In the meantime, the embodied tasks intentionally integrate 
different function representations, prompting students to convert between 
nomograms, formulas, and Cartesian function graphs. This conversion 
practice invited a correspondence view of functions, helping students see 
how changes in one representation affect another. While the approach 
proved engaging and conceptually rich for the small group of 14-year-old 
participants (from the pre-university stream), findings also showed design 
issues, like the risk of tool-driven rather than concept-driven learning. 
Overall, by iteratively comparing Hypothetical Learning Activities to Actual 
Learning Activities, Chapter 3 revealed how specific design features—such as 
light ray contexts, bimanual coordination, and real-time feedback—can 
nurture function concepts when tightly coupled to the targeted 
mathematical content. These results set the stage for design refinements and 
broader classroom application in the subsequent sub-studies. 

In Chapter 4, we moved the digital-embodied nomogram intervention 
to authentic classroom conditions to examine its feasibility on a broader scale 
of Grade 9 students (N=39).  The research questions for this chapter are: 

RQ 3 How can an embodied design using nomograms foster functional 
thinking in a classroom setting? 

RQ 3.1 How does a digital-embodied design using nomograms affect the 
various aspects of functional thinking among students within a 
classroom setting? 
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RQ 3.2 How do the design features contribute to the development of 
functional thinking? 

 

In three digital-embodied learning modules, students interacted with real-
life contexts (e.g., light and shadow), performed bimanual coordination 
tasks, received real-time feedback (green/red arrows), and navigated 
multiple function representations. Quantitative findings (pretest-posttest 
gains) demonstrated significant improvements across all three aspects of 
functional thinking: input-output, covariation, and correspondence. Students 
initially weak in FT showed especially notable gains, while high achievers 
appeared to reach a performance ceiling in the input-output aspect. Overall, 
progress in more advanced correspondence thinking was relatively modest, 
suggesting challenges in mastering representation conversion tasks (e.g., 
transitioning between nomograms, formulas, and function graphs). 
Qualitative data (answer boxes within the digital learning environment, mini 
interviews) clarified how key design features scaffolded the transition from 
concrete sensorimotor experiences to abstract mathematical reasoning; a 
process in which initial sensorimotor experiences enable the articulation and 
formalization of mathematical concepts. Real-life contexts anchored 
students’ early understanding; bimanual movements strengthened 
covariation awareness; continuous color feedback fostered immediate 
strategy adjustments; and multiple representations broadened their grasp of 
functions in various forms. As such, Chapter 4 confirmed the feasibility and 
educational value of digital-embodied modules in a classroom setting, 
reinforcing that embodied experiences and digital tools can drive significant 
learning gains in FT. These outcomes pave the way for a deeper, micro-level 
exploration of how covariational thinking evolves in Chapter 5. 

In Chapter 5, we delved deeper into the micro-processes of FT by 
investigating covariational reasoning in a digital-embodied environment. The 
following research question was investigated: 

RQ 4 How do bimanual movements within a digital-embodied 
environment support students’ covariational thinking? 

 

Specifically, this chapter examined bimanual movements through hand-
tracking data, aiming to link sensorimotor fluency with conceptual 
development in CR. We operationalized Thompson and Carlson’s (2017) CR 
taxonomy to an embodied, bimanual task context, providing a tool to better 
analyze learning activities and mathematical reasoning through the lens of 
embodied learning processes. This allowed us to analyze patterns in 
students’ hand-tracking data and classify their CR levels using the bimanual 
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CR framework, ranging from no coordination (L0) to smooth continuous 
covariation (L5). Quantitative analyses showed that students with higher 
initial CR levels tended to reach smooth, coordinated movements more 
quickly (shorter Time to fluency), reflecting how existing conceptual 
understanding supports efficient motor coordination. Students who made 
greater learning gains in CR typically spent more time in fluent coordination 
phases (longer Fluency time sum), which suggests that prolonged interaction 
in embodied exploration can foster deeper reasoning development. 
Additionally, hand-tracking data provided a microlens into perception-action 
loops, showing how students relied on real-time color cues to iteratively 
refine their movements and conceptualize continuous covariation. 
Supporting evidence from pre-post assessments and mini interviews 
corroborated that bimanual tasks heighten understanding of relationships 
between variables. Methodologically, Chapter 5 showed how combining 
hand-tracking metrics (Time to fluency, Fluency time sum) with qualitative 
insights can capture both the “how” and the “why” of students’ reasoning 
develops. These findings reinforced that digital-embodied environments—
especially those featuring coordinated hand movements and real-time 
feedback—can foster sensorimotor interaction with functional relationships 
in combination with CR. 

Chapter 6 synthesizes the findings from the four sub-studies, revealing 
how they collectively address the overarching question. This synthesis leads 
to the following conclusions.  

 Nomograms can be effective tools to foster input-output thinking, 
covariational reasoning, and representation conversion within 
correspondence thinking, especially when they are augmented with 
real-time feedback and bimanual tasks. 

 Embodied design features (particularly coordinated bimanual 
movements) create attentional anchors for abstract functional 
relationships, helping students “feel” how changes in one variable 
correspond to changes in another. 

 The design is practically feasible in regular classroom settings, with 
empirical evidence of learning gains and positive engagement. 

Theoretical implications include a deeper understanding of embodied 
cognition in mathematics education: students’ bimanual movement fluency 
develops concurrently with mathematical thinking. The findings indicate that 
body-artifact functional dynamic systems – involving bimanual coordination, 
real-time feedback, and interactive digital representations – facilitate the 
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mathematization of functional relationships. Methodologically, this thesis 
offers a replicable framework for future design-based research in digital-
embodied learning.  Specifically, it combines systematic review, iterative 
environment design, classroom testing, and fine-grained sensor data (hand-
tracking) to analyze students’ learning processes.  

Limitations of the study include reliance on specific digital tools (e.g., 
multi-touch tablets), the relatively homogeneous student samples, and the 
short-term nature of the interventions. Future research is invited to (a) 
explore low-tech or mixed reality adaptations of nomograms, (b) conduct 
longitudinal studies for sustained improvements in students’ FT, (c) integrate 
machine learning or AI-driven analytics for real-time scaffolding, and (d) 
extend nomogram-based approaches to more advanced functions across 
different educational levels. While limitations suggest caution in generalizing 
findings, this thesis offers a robust framework for both future research and 
classroom innovation. Specifically, this innovation contributes to 
mathematics education by demonstrating how to effectively introduce the 
nomogram into the function curriculum as a dynamic, interactive 
representation; and by illustrating the principles and practicalities of 
establishing embodied classrooms where students actively engage with 
mathematical ideas through bodily movement and interaction, fostering a 
more active and student-centered learning experience. 
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摘要 
函数思维（Functional Thinking）作为数学教育中的一项重要能力，

不仅涉及变量关系的多维度理解（如输入-输出、协变关系及对应的表

征方式），更是在连接数学抽象与现实应用中发挥着桥梁作用。尽管

函数概念在数学课程中占据基础地位，学生却因其高度抽象性而难以

理解。传统教学模式往往侧重于静态图表与公式推导，难以有效支持

学生发展动态的协变推理能力，导致函数规则沦为机械记忆和计算的

对象。这一教学困境亟待创新性的教学方法予以突破。 

本研究以具身认知理论（Embodied Cognition）为理论基础，结合

数字技术的发展前沿，提出一种基于诺模图（Nomogram，亦称“列线

图”）的数字化具身学习环境（Digital-embodied learning 

environment），旨在通过身体动作与数学概念的深度融合，重构函数

思维的教学路径。诺模图作为一种历史悠久的函数可视化工具，通过

平行坐标轴与几何映射直观呈现变量间关系（如图1所示）。本研究将

其重新设计为动态交互界面，整合实时反馈与双手协调操作的机制，

引导学生在感知运动的过程中内化函数的多重表征（如代数式、图像

与情境化模型）。本文的核心研究问题是：在数字化具身学习环境中，

基于诺模图的任务如何促进学生函数思维的发展？ 

 

图 1 函数 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥2 的列线图 

为系统探究这一问题，研究通过以下四个阶段的子研究递进展开： 
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1. 理论建构与发现研究空白（第二章）：系统性文献综述，梳理函数

思维与具身学习的研究现状，明确理论基础与研究缺口； 

2. 任务设计与试点（第三章）：基于诺模图开发具身化任务，开展小

规模教学实验来初步验证其教学潜力； 

3. 课堂规模化应用（第四章）：在真实课堂中实施优化后的方案，检

验其可行性与普适性； 

4. 微观机制分析（第五章）：利用手部运动追踪技术（Hand-

tracking），量化分析身体动作与数学思维之间的关联机制。 

这些子研究提供了一个整体视角，揭示了数字-具身环境中的诺模

图任务如何通过理论基础、实践应用和微观分析促进学生的函数思维

发展。最终，第六章整合研究发现，提出具身化函数教学的理论模型

与实践框架，为未来相关研究与教学实践提供依据与参考。 

第一章：引言 

第一章将函数思维置于更广泛的数学实践背景下，提出基于诺模图的

数字-具身学习环境作为应对函数思维教学与学习挑战的创新路径。本

章介绍了主要研究问题，并阐述了基于设计的研究方法的依据，即通

过任务设计、试点与优化的迭代过程，为培养和研究学生函数思维的

发展提供系统化的方法支持。图2展示了本论文中各子研究的整体概览。 

 

图2 研究概览 
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第二章：文献综述 

第二章通过系统文献综述（Systematic literature review）奠定研究

基础，探讨当前运用数字技术支持函数思维具身化发展的研究现状，

并提出以下研究问题： 

研究问题1：现有文献如何为运用数字技术的具身方法提供支持，以培

养学生对抽象函数思维的理解？ 

子研究问题1.1：数字技术在函数思维发展的过程中广泛扮演了哪些角色？ 

子研究问题1.2：关于函数思维的不同抽象阶段，现有研究揭示了哪些

内容？ 

子研究问题1.3：在发展函数思维的文献中，已被识别的具身方法有哪些？ 

基于对51篇相关文献的系统梳理，本章总结了函数思维中的数学抽象

阶段、具身策略的多样性，以及数字技术在教学或数学视角中的角色

等。结果表明，大多数现有研究主要通过GeoGebra等动态软件的绘图

和代数功能，促进协变与对应的理解，而输入-输出视角和几何类任务

的探索仍较为有限。研究归纳出函数思维发展的四个主要抽象阶段：

情境（Contextual）、指代（Referential）、具体（Particular）和

一般（General），并指出高阶抽象通常依赖动态表征和多种函数视角

的支持。 

此外，尽管动作与感知导向的具身任务在现有研究中占主导地位，

持续实时反馈这一关键机制——作为错误纠正和深入参与的关键驱动

力——仍较少被充分利用。基于上述发现，本研究提出诺模图具备潜

力，通过协调性手势等身体动作与函数概念建立更紧密的联系：其平

行坐标轴结构有助于输入-输出映射，而动态交互则可实现“操作-反

馈-修正”的学习闭环。 

本章节通过文献综述揭示了研究空白与机会，为后续子研究中数

字-具身任务的设计、实施和分析提供理论支持，并明确论文基于诺模

图开展干预研究的方向。 

第三章：数字-具身学习环境的设计与试点 

第三章基于综述的研究见解，围绕“光线-影子”这一隐喻情境，开发

了一套数字化诺模图学习环境，并在一所中学中选取4名14岁资优生开

展试点研究。研究围绕以下核心问题展开： 

研究问题2：使用诺模图的具身设计如何促进学生的函数思维？ 
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子研究问题2.1：“光线-影子”情境如何支持学生对诺模图的意义建

构？ 

子研究问题2.2：双手运动任务如何促进协变思维？ 

子研究问题2.3：多种函数表征及其转换如何支持学生发展函数的对应

观点？ 

本研究以“光线-影子”情境为依托，设计的具身学习环境以输入-输

出映射为隐喻：光线（或箭头）从物体（输入）映射到影子（输出），

代表不同的函数规则。通过设置阳光与聚光灯等情境参数（影响加法

或乘法关系），学生逐步将诺模图视为函数的表征形式，实现日常直

觉（如影子模式）与数学结构（如平行或发散光线）的连接。核心任

务为诺模图中的双手运动任务：诺模图界面设有左右两数轴，分别对

应输入变量（x）与输出变量（y）。学生需协调双手同时操作控制两

轴上的输入值和输出值，使连接输入和输出的“映射箭头”保持绿色

（表示当前操作符合函数规则）。例如，在线性函数关系𝑦𝑦 = 𝑥𝑥 + 1中，

左手匀速上移时，右手需以相同速率向上移动，且与始终高出左手一

个单位长度的距离；而在非线性函数关系如𝑦𝑦 = 𝑥𝑥2中，右手则需先减

速后加速以匹配相应的函数规律。当操作偏离函数规律时，箭头转为

红色，促使学生反思变量间的协变关系。这种动觉互动过程加深了学

生对函数关系的感知与理解，例如，学生能主动感知一个变量相对于

另一个变量的加速或减速变化。 

同时，具身任务整合了多种函数表征形式，引导学生在诺模图、

公式和函数图像（平面直角坐标系）之间转换，从而强化函数的对应

观点。试点结果表明该方法具有较高的吸引力和概念丰富性，但也暴

露出设计复杂性带来的挑战，如存在工具驱动而非概念驱动的风险。 

通过比较假设学习轨迹（Hypothetical learning trajectory）与

学生的实际学习轨迹，本章进一步揭示了“光线-影子”情境、双手协

调操作与实时反馈机制等特征如何与目标数学内容紧密结合，并为后

续课堂层面的评估与实施奠定基础。 

第四章：课堂规模化实施与效果验证 

本章节将数字-具身诺模图设计引入真实课堂，检验其在九年级数学课

堂中的可行性与效果（N=39），并围绕以下研究问题展开： 

研究问题3：在课堂环境中，基于诺模图的具身设计如何促进学生的函

数思维？ 
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子研究问题3.1：数字-具身设计如何影响学生函数思维的不同维度？ 

子研究问题3.2：设计特征如何具体支持函数思维的发展？ 

优化后的教学方案在两个九年级班级中进行教学实验，设计包含针对

函数思维水平的前后测和三个60分钟的学习模块。前后测结果显示，

学生在输入-输出、协变与对应思维三个函数思维维度上均有显著提升，

特别是协变维度。最初函数思维能力较弱的学生的进步尤为明显，而

成绩优秀的学生在输入-输出方面的表现似乎达到了上限。总体而言，

对应思维方面的进步相对较小，这表明学生在掌握表征转换任务（如

在直观图、公式和函数图之间转换）方面面临挑战。 

定性数据（答案框记录与快速访谈）揭示了具体设计特征如何支

持学生从感觉运动体验到抽象推理的过渡：现实情境锚定早期理解，

双手运动增强协变意识，颜色反馈促使即时调整，多重表示拓宽对应

理解。特别是实时反馈与多表征联动显著降低了认知负荷，对基础薄

弱学生尤为有效；然而过度具身化可能导致“动手不动脑”的问题，

需平衡操作活动与反思讨论之间合理分配时间。本章验证了基于诺模

图的数字-具身任务在课堂教学中的可行性和教育价值，强调当具身体

验与数字表征形成协调互动时，能够有效促进学生函数思维的发展。 

第五章：微观分析 

第五章深入研究数字具身环境中协变推理的微观过程，利用手部追踪技

术采集学生在诺模图任务中的运动轨迹，并围绕以下研究问题展开： 

研究问题4：双手运动如何支持学生的协变思维？ 

通过对手部运动数据的分析，本研究尝试连接感觉运动的流畅性与协

变推理的概念发展，提取了两项关键指标：进入流畅运动的时间（

Time to Fluency）和流畅运动总时长（Fluency Time Sum）。定量分

析结果显示，协变推理初始水平较高的学生更快进入流畅运动状态，

反映出概念理解有助于身体动作的协调控制；而学习进步较大的学生

在流畅运动阶段停留时间更长，表明具身探索中的持续互动促进思维

发展。这些模式可以与Thompson和Carlson的协变推理分类法相对应，研究

将运动模式与概念理解水平（从L0无协调到L5平滑协变）进行匹配。手部

追踪数据揭示出“感知-行动循环（perception-action loop）”：学生依

赖实时的颜色反馈来优化动作并概念化连续协变。 

结合前后测结果与访谈资料，本研究进一步验证了双手任务在增

强变量关系理解方面的有效性。方法上，本研究整合定量的运动数据
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与定性的访谈资料，捕捉学生概念转变的“方式”和“原因”，从而

拓展了连接感觉运动与函数思维发展的理论框架，强化了数字-具身环

境促深度互动的结论。 

第六章：结论与讨论 

第六章综合四个子研究的主要发现，回答本研究的总体问题，并确认

以下结论： 

• 诺模图在输入-输出关系、协变推理和对应思维等维度上，是一

种有效的表示转换工具，尤其在实时反馈和双手操作任务的主

持下表现突出； 

• 具身设计特征（如情境设定，双手运动和实时反馈）为抽象的

函数关系提供了具体的物理锚点，有助于学生“感知”变量变

化的动态过程。 

• 教学实验证明该设计在真实课堂中的实施具有可行性，学生在

函数思维方面取得显著学习收获，并表现出积极参与的态度。 

理论上，本研究深化了数学教育中对具身认知的理解：双手运动的流

畅性与数学思维的同步发展过程表明，身体-工具动态系统（Body-

artifact functional dynamic system）能够有效支持函数关系的内化

与数学化。 

在方法上，研究提供了一个可复制的设计研究框架，结合系统性

文献综述、迭代任务设计、课堂测试和手部追踪数据技术，深入分析

学生的学习轨迹与实际学习过程。 

本研究的局限性包括对特定工具（如多点触控平板）的依赖、样

本的同质性以及干预时间的限制。未来的研究方向建议包括：(1) 探索

诺模图的低技术或混合现实改造方案；(2) 进行追踪研究，以实现学生

函数思维的持续改进；(3) 集成机器学习或人工智能驱动的分析工具以

提供实时反馈支持；(4) 将基于列线图的方法扩展到不同教育阶段的函

数学习中。 

综上所述，本研究通过理论创新与实证探索，为数字时代的函数思维

教学提供了一条具身化的发展路径。诺模图不仅是一种教学技术工具

，更是一座连接身体经验与数学抽象的认知桥梁。当学生的手指在屏

幕上舞动时，他们不仅在操作数据，更在重构对函数本质的理解 

——这一过程，正是具身认知理论在数学教育中的生动而有力的写照。
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Samenvatting 
Functioneel denken (FD) – het begrijpen van relaties tussen variabelen via 
aspecten als input-output, covariatie en correspondentie – is een belangrijke 
vaardigheid, zowel in de wiskunde als in het dagelijks leven. Leerlingen 
worstelen echter vaak met de abstracte aard ervan. In het traditionele 
onderwijs, dat veelal steunt op statische afbeeldingen, leren leerlingen 
slechts in beperkte mate om dynamisch te redeneren over hoe variabelen 
samen veranderen. Dit probleem wordt versterkt doordat functies, die vaak 
worden aangeleerd als vaste regels in plaats van dynamische relaties tussen 
veranderende hoeveelheden, zelf ook abstract zijn. 

Dit proefschrift pakt dit probleem aan door digitale technologieën in 
het onderwijs in te zetten vanuit het perspectief van embodied cognition 
(belichaamde cognitie), een theorie die stelt dat lichaam, omgeving en 
hulpmiddelen samenwerken bij het leren. De belangrijkste innovatie is het 
gebruik van nomogrammen. Een nomogram is een visueel hulpmiddel dat 
functionele relaties weergeeft met parallelle assen en pijlen. In dit 
proefschrift gebruiken we digitale nomogrammen als dynamische, 
interactieve tools die de sensomotorische ervaringen van leerlingen 
verbinden met formele wiskunde. De overkoepelende onderzoeksvraag van 
dit proefschrift is: Hoe bevorderen opdrachten met nomogrammen de 
ontwikkeling van FD bij leerlingen in een digitale, belichaamde 
leeromgeving? 

Figuur 1 Nomogram van de functie 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥2 
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Deze vraag wordt beantwoord in zes hoofdstukken: een inleiding (Hoofdstuk 
1), vier centrale deelstudies (Hoofdstukken 2–5), en een conclusie en 
discussie (Hoofdstuk 6). De vier deelstudies richten zich op het identificeren 
van hiaten in onderzoek, het ontwerpen, testen en verfijnen van digitale, 
belichaamde modules rond nomogrammen, de implementatie ervan in 
klaslokalen, en tot slot de analyse van bimanuele (tweehandige) bewegingen 
op microniveau. Samen bieden deze deelstudies een holistisch beeld van hoe 
nomogram-opdrachten in een digitale, belichaamde setting het FD van 
leerlingen bevorderen, inclusief een theoretische onderbouwing en een 
toepassing in de onderwijspraktijk. 

Hoofdstuk 1 plaatst FD in de context van de bredere wiskundepraktijk. 
Er wordt beargumenteerd dat een digitale, belichaamde leeromgeving met 
nomogrammen een manier is om uitdagingen in het onderwijzen en leren 
van FD aan te pakken. Het hoofdstuk introduceert de centrale 
onderzoeksvraag en licht de keuze toe voor een ontwerpgericht onderzoek 
(design-based research), waarbij iteratieve cycli van ontwerpen, testen, 
analyseren en herontwerpen een systematische methode bieden om het 
begrip van FD bij leerlingen te bestuderen. Figuur 2 geeft een overzicht van 
de deelstudies in dit proefschrift. 

Figuur 2 Overzicht van deelstudies en hoofdstukken 

In Hoofdstuk 2 hebben we bestaand onderzoek naar FD, embodied cognition 
en digitale technologie geanalyseerd om de volgende 
onderzoeks(deel)vragen te beantwoorden: 
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1 Hoe kan de onderzoeksliteratuur bijdragen aan een belichaamde 
benadering van FD met digitale technologie die abstractie uitlokt? 

1.1 Welke rol van technologie wordt veel gebruikt bij de ontwikkeling 
van functioneel denken? 

1.2 Wat is er bekend over verschillende abstractiefasen van functioneel 
denken? 

1.3 Welke belichaamde benaderingen zijn te vinden in de literatuur 
over de ontwikkeling van functioneel denken? 

  

Deze systematische review van 51 artikelen verhelderde de rollen die digitale 
technologie speelt vanuit een didactisch of wiskundig oogpunt, de stadia van 
wiskundige abstractie binnen FD, en de diversiteit aan belichaamde 
strategieën. De resultaten tonen aan dat de meeste studies digitale tools 
inzetten voor grafische en algebraïsche toepassingen, vaak via dynamische 
software zoals GeoGebra, om covariatie en correspondentie te bevorderen. 
Het input-output aspect van FD en geometrische benaderingen blijven 
relatief onderbelicht. Vier hoofdfasen van abstractie 
(contextueel/situationeel, referentieel, particulier en algemeen) komen naar 
voren in deze studies. Dit suggereert dat abstracties op een hoger niveau 
doorgaans dynamische representaties en meerdere representaties van 
functies vereisen. Hoewel actie- en perceptiegerichte belichaamde 
opdrachten gebruikelijk zijn, wordt het potentieel van continue, directe 
feedback nog te weinig benut. In dit stadium realiseerden we ons dat de MIT-
verhoudingstaken (Abrahamson & Trninic, 2011) gegeneraliseerd kunnen 
worden naar elke functie en dat de gemathematiseerde versie hiervan 
overeenkomt met een bestaande wiskundige representatie: het nomogram 
in een parallel assenstelsel. Door deze hiaten en mogelijkheden te 
identificeren, motiveerde de systematische review het ontwerp, de 
implementatie en de analyse van de digitale, belichaamde modules in de 
volgende deelstudies. 

Voortbouwend op de inzichten uit de systematische review onderzochten we 
in hoofdstuk 3 hoe een belichaamd ontwerp, gericht op nomogrammen, 
leerlingen kan helpen FD te ontwikkelen. Het behandelt de volgende 
onderzoeks(deel)vragen: 

2 Hoe kan een belichaamd ontwerp met nomogrammen functioneel 
denken bevorderen? 

2.1 Hoe bevordert een context met lichtstralen de betekenisgeving van 
nomogrammen door leerlingen? 
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2.2 Hoe bevorderen bimanuele (tweehandige) bewegingstaken 
covariationeel denken? 

2.3 Hoe ondersteunen verschillende representaties van functies en de 
omzetting daartussen een correspondentieperspectief op functies? 

 

De leeromgeving, gebaseerd op een context met lichtstralen, gebruikt input-
outputrelaties als metafoor: stralen (of pijlen) lopen van een object (input) 
naar zijn schaduw (output) en representeren zo verschillende regels die door 
functies worden beschreven. Door parameters voor contexten te 
manipuleren, zoals zonlicht versus spotlight (die additieve of multiplicatieve 
relaties vertegenwoordigen), bleken leerlingen nomogrammen te 
interpreteren als representaties van functies. Hierbij legden ze verbanden 
tussen alledaagse intuïtie (bijv. schaduwpatronen) en wiskundige structuren 
zoals parallelle of divergerende stralen. Centraal in dit ontwerp staan 
bimanuele bewegingstaken, die leerlingen aanmoedigen om fysiek twee 
variabelen te coördineren langs de input- en outputassen van het 
nomogram. Directe kleurfeedback (groen/rood) geeft aan dat ze hun 
handposities moeten aanpassen om de juiste relatie te behouden. Dit 
tactiele proces bevorderde inderdaad een sensomotorische ervaring van 
functionele relaties. Leerlingen ervoeren bijvoorbeeld actief hoe de ene 
variabele moet versnellen of vertragen ten opzichte van de andere. 
Tegelijkertijd integreren de belichaamde opdrachten bewust verschillende 
representaties van functies, waardoor leerlingen worden aangezet om te 
schakelen tussen nomogrammen, formules en Cartesische functie grafieken. 
Deze oefening in omzetting stimuleerde een correspondentieperspectief op 
functies en hielp leerlingen inzien hoe veranderingen in de ene representatie 
een andere beïnvloeden. Hoewel de aanpak boeiend en conceptueel rijk 
bleek voor de kleine groep 14-jarige deelnemers (vwo-leerlingen), toonden 
de bevindingen ook ontwerpissues, zoals het risico dat het leren meer door 
de tool dan door het concept werd gestuurd. Al met al laat hoofdstuk 3 door 
het iteratief vergelijken van hypothetische leeractiviteiten met werkelijke 
leeractiviteiten zien hoe specifieke ontwerpkenmerken – zoals contexten 
met lichtstralen, bimanuele coördinatie en directe feedback – 
functieconcepten kunnen voeden wanneer ze nauw gekoppeld zijn aan de 
beoogde wiskundige inhoud. Deze resultaten legden de basis voor verfijning 
van het ontwerp en bredere klassikale toepassing in de volgende deelstudies. 

In hoofdstuk 4 pasten we de interventie met digitale, belichaamde 
nomogrammen toe in authentieke klassituaties om de haalbaarheid ervan op 
grotere schaal te onderzoeken bij 39 derdeklassers (klas 3 vwo). De 
onderzoeksvragen voor dit hoofdstuk zijn: 
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3 Hoe kan een belichaamd ontwerp met nomogrammen het 
functioneel denken bevorderen in een klassituatie? 

3.1 Hoe beïnvloedt een digitaal, belichaamd ontwerp met 
nomogrammen de verschillende aspecten van functioneel denken 
bij leerlingen in een klassituatie? 

3.2 Hoe dragen de ontwerpkenmerken bij aan de ontwikkeling van 
functioneel denken? 

 

In drie digitale, belichaamde leermodules werkten leerlingen met 
levensechte contexten (bijv. licht en schaduw), voerden ze bimanuele 
coördinatietaken uit, kregen ze directe feedback (groene/rode pijlen) en 
navigeerden ze tussen meerdere representaties van functies. Kwantitatieve 
bevindingen (vooruitgang tussen voor- en natoets) toonden significante 
verbeteringen aan op alle drie de aspecten van functioneel denken: input-
output, covariatie en correspondentie. Leerlingen die aanvankelijk zwak 
scoorden op FD lieten bijzonder opmerkelijke vooruitgang zien, terwijl 
hoogpresterende leerlingen een prestatieplafond leken te bereiken op het 
input-output aspect. Over het algemeen was de vooruitgang in het meer 
geavanceerde correspondentiedenken relatief bescheiden, wat wijst op 
uitdagingen bij het beheersen van taken die het omzetten van representaties 
vereisen (bijv. de overgang tussen nomogrammen, formules en grafieken van 
functies). Kwalitatieve data (antwoordvakken in de digitale leeromgeving, 
mini-interviews) verduidelijkten hoe belangrijke ontwerpkenmerken de 
overgang van concrete sensomotorische ervaringen naar abstract wiskundig 
redeneren ondersteunden; een proces waarbij initiële sensomotorische 
ervaringen de articulatie en formalisering van wiskundige concepten 
mogelijk maken. Levensechte contexten verankerden het aanvankelijke 
begrip van leerlingen; bimanuele bewegingen versterkten het bewustzijn van 
covariatie; continue kleurfeedback stimuleerde onmiddellijke aanpassingen 
van strategieën; en meerdere representaties verbreedden hun begrip van 
functies in verschillende vormen. Hoofdstuk 4 bevestigde de haalbaarheid en 
educatieve waarde van de digitale, belichaamde modules in een klassituatie, 
en onderstreepte dat belichaamde ervaringen en digitale tools aanzienlijke 
leerwinsten in FD kunnen opleveren. Deze resultaten baanden de weg voor 
een diepgaander onderzoek op microniveau naar hoe covariationeel denken 
zich ontwikkelt, zoals beschreven in hoofdstuk 5. 

In hoofdstuk 5 doken we dieper in de microprocessen van FD door 
covariationeel redeneren in een digitale, belichaamde omgeving te 
onderzoeken. De volgende onderzoeksvraag stond centraal: 
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4 Hoe ondersteunen bimanuele bewegingen binnen een digitale, 
belichaamde omgeving het covariationeel denken van leerlingen? 

 

Specifiek onderzocht dit hoofdstuk bimanuele bewegingen via hand-
trackingdata, met als doel sensomotorische vloeiendheid te koppelen aan 
conceptuele ontwikkeling in covariationeel redeneren (CR). We hebben de 
CR-taxonomie van Thompson en Carlson (2017) geoperationaliseerd voor 
een belichaamde, bimanuele taakcontext. Dit leverde een instrument op om 
leeractiviteiten en wiskundig redeneren beter te analyseren vanuit het 
perspectief van belichaamde leerprocessen. Dit stelde ons in staat patronen 
in de hand-trackingdata van leerlingen te analyseren en hun CR-niveaus te 
classificeren met behulp van het bimanuele CR-raamwerk, variërend van 
geen coördinatie (L0) tot soepele continue covariatie (L5). Kwantitatieve 
analyses toonden aan dat leerlingen met een hoger initieel CR-niveau 
doorgaans sneller soepele, gecoördineerde bewegingen bereikten (kortere 
'Time to fluency' – tijd tot vloeiendheid), wat weerspiegelt hoe bestaand 
conceptueel begrip efficiënte motorische coördinatie ondersteunt. 
Leerlingen die grotere leervorderingen maakten in CR, brachten doorgaans 
meer tijd door in vloeiende coördinatiefasen (langere 'Fluency time sum' – 
totale vloeiendheidstijd). Dit suggereert dat langdurige interactie bij 
belichaamde exploratie de ontwikkeling van dieper redeneren kan 
bevorderen. Daarnaast boden hand-trackingdata een gedetailleerd inzicht in 
perceptie-actiecycli, waaruit bleek hoe leerlingen vertrouwden op directe 
kleurfeedback om hun bewegingen iteratief te verfijnen en continue 
covariatie te conceptualiseren. Ondersteunend bewijs uit voor- en natoetsen 
en mini-interviews bevestigde dat bimanuele taken het begrip van relaties 
tussen variabelen vergroten. Methodologisch toonde hoofdstuk 5 hoe het 
combineren van hand-tracking maten (Time to fluency en Fluency time sum) 
met kwalitatieve inzichten zowel het 'hoe' als het 'waarom' van de 
ontwikkeling van het redeneervermogen van leerlingen kan vastleggen. Deze 
bevindingen versterkten het idee dat digitale, belichaamde omgevingen – 
vooral die met gecoördineerde handbewegingen en directe feedback – 
sensomotorische interactie met functionele relaties kunnen bevorderen in 
combinatie met CR. 

Hoofdstuk 6 synthetiseert de bevindingen van de vier deelstudies en laat zien 
hoe deze gezamenlijk de overkoepelende onderzoeksvraag beantwoorden. 
Deze synthese leidt tot de volgende conclusies. 

 Nomogrammen kunnen effectieve hulpmiddelen zijn om input-
outputdenken, covariationeel redeneren en het omzetten van 
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representaties binnen correspondentiedenken te bevorderen, vooral 
wanneer ze worden uitgebreid met directe feedback en bimanuele 
taken. 

 Belichaamde ontwerpkenmerken (vooral gecoördineerde bimanuele 
bewegingen) creëren aandachtsankers voor abstracte functionele 
relaties, waardoor leerlingen kunnen 'voelen' hoe veranderingen in de 
ene variabele overeenkomen met veranderingen in de andere. 

 De praktische haalbaarheid van dit ontwerp werd aangetoond in 
reguliere klassituaties, met empirisch bewijs van leerwinst en positieve 
betrokkenheid. 

Theoretische implicaties omvatten een dieper begrip van embodied 
cognition in wiskundeonderwijs: de vloeiendheid van bimanuele bewegingen 
van leerlingen ontwikkelt zich gelijktijdig met hun wiskundig denken. De 
bevindingen wijzen erop dat functioneel-dynamische systemen van lichaam 
en hulpmiddel – met bimanuele coördinatie, directe feedback en 
interactieve digitale representaties – de mathematisering van functionele 
relaties vergemakkelijken. Methodologisch biedt dit proefschrift een 
repliceerbaar kader voor toekomstig ontwerpgericht onderzoek naar 
digitaal, belichaamd leren. Specifiek combineert het een systematische 
review, iteratief ontwerp van de leeromgeving, klassikale tests en fijnmazige 
hand-tracking data analyse om de leerprocessen van leerlingen te 
analyseren. 

Beperkingen van het onderzoek betreffen onder meer de 
afhankelijkheid van specifieke digitale hulpmiddelen (bijv. multi-touch 
tablets), de relatief homogene groepen leerlingen en de korte duur van de 
interventies. Toekomstig onderzoek zou zich kunnen richten op (a) het 
verkennen van low-tech of mixed reality-aanpassingen van nomogrammen, 
(b) het uitvoeren van longitudinale studies naar duurzame verbeteringen in 
het FD van leerlingen, (c) het integreren van machine learning of AI-gestuurde 
analyses voor directe ondersteuning (scaffolding), en (d) het uitbreiden van 
nomogramgebaseerde benaderingen naar meer geavanceerde functies op 
verschillende onderwijsniveaus. Hoewel de beperkingen tot voorzichtigheid 
manen bij het generaliseren van de bevindingen, biedt dit proefschrift een 
robuust kader voor zowel toekomstig onderzoek als innovatie van de 
lespraktijk in de klas. Concreet draagt deze innovatie bij aan het 
wiskundeonderwijs door te laten zien hoe het nomogram effectief kan 
worden geïntroduceerd in het curriculum voor functies als een dynamische, 
interactieve representatie. Bovendien illustreert het de principes en 
praktische aspecten van het creëren van 'belichaamde klaslokalen' waar 
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leerlingen actief met wiskundige ideeën aan de slag gaan via lichamelijke 
beweging en interactie, wat een actievere en leerlinggerichte leerervaring 
bevordert. 
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bodied path to functional thinking
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Understanding how things change together is an important skill, both in 
mathematics and everyday life, from personal finance to public health. 
Learning about these relationships, in mathematics usually modeled as 

functions, can be challenging for students because the ideas may feel abstract 
and disconnected from their experience. Regular teaching with static formulas 
and graphs often fails to help students make sense of how the values of variables 
co-vary dynamically. This thesis explores an innovative way to make the learning 
of functional thinking, and of covariation in particular, more concrete and 
interactive. To do so, we designed a digital learning environment that uses a visual 
representation called a nomogram. Our key innovation was to get students to 
use both hands to explore these mathematical relationships. By moving points 
on two parallel lines on a screen, students experience directly how changes in 
one variable affect another variable, based on the function rule. The learning 
environment provides real-time feedback: a green arrow appears for a correct 
pairing, and a red one for an incorrect match. This feedback helps students adjust 
their movement and develop an understanding of covariation. Through a series 
of studies, from initial design pilots to trials in regular classrooms, we found 
this hands-on approach helped students grasp complex mathematical ideas in 
an embodied way. The action of moving the two hands and the perception of 
the feedback allowed students to develop a strong feeling for how functions 
work. By connecting physical action with abstract thinking through the use of 
digital technology, this research demonstrates that sometimes the best way to 
understand an abstract concept is to get your hands on it.
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