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Many high school students are unable to draw justified conclusions 
from statistical data in histograms. A literature review revealed various 
misinterpretations. Current statistics education often falls short of 
preventing these. In preparation for new instructional materials, 
several studies were conducted to better understand where these 
misinterpretations come from. Five solution strategies were found 
through qualitative analysis of students’ eye movements on histogram 
and case-value plot tasks. Quantitative analysis of some tasks using 
a mathematical model and a machine learning model confirmed the 
results of the qualitative analysis which implied that the strategies 
could be identified reliably and automatically. Literature suggested 
that lesson materials with dotplot tasks can support students to 
correctly interpret histograms. An analysis of students’ eye movements 
on histogram tasks before and after dotplot tasks suggested that 
students improved their strategies but not their answers. Based on 
the literature and eye-tracking studies, we conjectured that students 
most likely lacked embodied experiences with the actions required to 
construct histograms. Inspired by ideas of embodied instrumentation, 
we designed and tested instructional materials that provide starting 
points for scaling up. Together, the studies contribute to theorizing 
about teaching histograms and the use in statistics education of 
eye-tracking research, quantitative methods from data science, and 
instructional materials designed from the perspective of embodied 
instrumentation.
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The role of histograms in developing statistical literacy 

“Ignite the mind’s spark to rise the sun in you.” 1 
Attributed to Florence Nightingale  
 
“Alone we can do so little; together we can do so much.” 2 
Helen Keller 
 
  

 
1 50 Florence Nightingale Quotes, NURSING.com, https://blog.nursing.com/florence-nightingale-
quotes 
2 Garson O’Toole (2014). Quote Investigator, Alone we can do so little; together we can do so 
much. https://quoteinvestigator.com/2014/04/21/together/ 

1 
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1.1 The histogram as a spider in a web of knowledge 
1.1.1 The relevance of graphs in statistics 

A correct use of statistics can literally save people’s lives. A famous example is 
from the first female statistician Florence Nightingale who saved many lives 
with her polar graph (Martineau, 1859), which shows that more soldiers died 
from preventable diseases—caused by bad hygienic circumstances in hospitals 
as well as a lack of beds and blankets—than from the wounds caused by the 
Crimean War (1853–1856). The graph on the right (Figure 1.1) shows the data 
when Nightingale started her data collection with each circle section indicating 
one month. As can be seen from the graph on the left, providing beds, 
blankets, and clean pottery dramatically reduced the number of preventable 
deaths indicated by the blue areas. 

Figure 1.1 Nightingale’s famous polar graph (1858) with causes of deaths in the British 
Army 

Note. Light red areas indicate the number of people who died from bullets, blue areas 
indicate the number of people who died from preventable diseases such as cholera, 
dysentery, frostbite, and typhoid. Black areas indicate other causes. Source: Wikimedia 
Commons (https://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg ). CC-
PD and PD-US-expired.  

In descriptive statistics, data are often summarized in numbers, such as the 
arithmetic mean and the standard deviation or a confidence interval, rather 
than in graphs. Many studies, including studies on educational improvement, 
report on descriptive statistics. Several examples, however, show that such 
summary statistics provide limited information, as different data distributions 
—depicted in graphs—can lead to the same descriptive statistics and vice versa 



Chapter 1 

10 

(e.g., Anscombe, 1973; Pastore et al., 2017). One example is the Datasaurus 
(Matejka & Fitzmaurice, 2017; based on the Datasaurus dataset created by 
Alberto Cairo), see Figure 1.2. Mean, standard deviation, and correlation are 
the same in both graphs, but as the reader can see, the pattern in the data is 
completely different. Yet it was not just one other graph they created. In total, 
besides the Datasaurus itself, they constructed twelve completely different 
graphs with the same mean, standard deviation, and correlation. This example 
highlights that graphs show “quantitative and qualitative information, so that a 
viewer can see patterns, trends or anomalies, constancy or variation, in ways 
that other forms—text and tables—do not allow” (Friendly, 2008, p. 502). 
According to Friendly, Galton made several important scientific discoveries 
through graphing data (e.g., the idea that barometric pressure and wind 
direction are related). 

Figure 1.2 Datasaurus and another scatter plot with the same mean, standard 
deviation, and correlation to two decimal places 

Note. Permission for reprinting granted by Justin Matejka, December 27, 2022. 
(Source: https://www.autodesk.com/research/publications/same-stats-different-
graphs ) 

The Datasaurus example is humorous. Unfortunately, the misuse of statistics—
in the following example combined with probability—can also destroy lives. In 
2003, the Dutch nurse Lucia de Berk was sentenced to life in prison for several 
alleged murders of patients. In 2010, De Berk was acquitted because the 
conviction was a judicial error, based on "flawed data collection" and "using an 
over-simplified discrete [hypergeometric] probability model" that did not 
include “the variation among nurses in incidents they experience during their 
shifts” (Gill et al., 2018, p. 9). Instead, Gill et al. used another model—the 
Poisson process. “Since we believe the incidents to be rare, a Poisson process 
is an obvious choice for modeling the incidents that a nurse experiences.” (p. 
11). Recently, in a similar case, Daniela Poggiali—an Italian nurse—was 
accused of murder based on flawed statistics (Gill, 2022) and acquitted in 
2021. Gill believes many nurses around the world that are accused of murder 
are most likely innocent (e.g., Ben Geen and Lucy Letby, UK). For both Lucia 
and Daniela, Gill and colleagues did a lot of demanding work to clean and 
depict the data. They found interesting and explainable patterns by simply 

https://www.autodesk.com/research/publications/same-stats-different-graphs
https://www.autodesk.com/research/publications/same-stats-different-graphs
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graphing the data, patterns such as patients tending to die mostly at half and 
whole hours in Italy (Gill, 2022). This search for general patterns in hospital 
data by graphing them had been omitted in the nurses’ first trial. 

Every day, vast amounts of data are collected. A graphical 
representation suitable for representing large amounts of data of one 
statistical variable (also called univariate data) is a histogram. As an example, 
consider the two histograms depicting the age of Dutch first-time mothers in 
1950 and 2021 respectively (Figure 1.3). One advantage of histograms is that 
they reveal a distribution of the data. They can show patterns in data better 
than bar charts depicting the mean and standard deviation—the latter being 
nothing more than a pretty ornament for these two numbers, to paraphrase 
Lee (1999) or a substitute for a table (Tukey, 1972).  

Figure 1.3 Two histograms depicting the age of mothers giving birth to their first child 

Note. Source: CBS (2022). 

Although boxplots and dotplots can similarly disclose a distribution, in some 
cases histograms do a better job. Pastore et al. (2017) conclude “that 
appropriate graphical representations can increase reliability in research 
findings and promote transparency in the way scientific information is shared 
and disseminated” (p. 2). A second advantage of histograms is that they seem 
easier than, for example, boxplots (e.g., Bakker et al., 2004; Lem et al., 2013b, 
2013c, 2015), although there are some examples of introducing boxplots via 
hatplots (Konold, 2002) with some degree of success (e.g., Allmond & Makar, 
2014; Makar & Confrey, 2003; Saldanha & Hatfield, 2021). In addition, 
histograms can support both proportion-based and quantile-based reasoning, 
whereas boxplots only support the latter (cf. Frischemeier et al., 2023). While 
non-stacked (‘messy’) dotplots support quantile-based reasoning, proportion-
based reasoning with them is more difficult than with histograms. 
Proportioned-based reasoning with stacked dotplots is similar to histograms. 
However, the difficulties students encounter with stacked dotplots are similar 
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to histograms (e.g., Lem et al., 2013a; Lyford, 2017). A disadvantage of 
histograms (and stacked dotplots) is that the binning process can influence 
how the shape of the graph appears (e.g., Sahann et al., 2021; Setlur et al., 
2022).  

1.1.2 What is a histogram? 

A histogram is an important graph in research, education, and in media—for 
example when reporting about the COVID-19 pandemic. A histogram displays a 
graph with bars that can depict large amounts of numerical data. Although 
histograms do a better job than descriptive statistics in giving a first impression 
of data and the patterns in them, they also lead to several misinterpretations. 
For example, students confuse histograms with look-alikes (Box 1), including 
case-value plots (Cooper, 2018; Cooper & Shore, 2008, 2010). Before we 
elaborate on these difficulties in the educational section, we first consider the 
following question:  

Which of the following two statements about the graphs in Figure 1.4 is 
true? Are the arithmetic mean and variability in weight higher in the graph on 
the left, the right, or are they approximately the same for both graphs?  

Figure 1.4 A histogram (left) with one statistical variable (weight) and a case-value plot 
(right) with two statistical variables (given name and weight)  

 

Before answering this question, let us discuss the data depicted in both graphs. 
Each bar in the histogram (Figure 1.4, left) indicates how many packages there 
are in that interval (e.g., there are 14 packages with a weight between 1 to 2 
kg). Hence, the mean weight of all those packages in the left-hand graph can 
be read on the horizontal axis and is approximately 4.5 kilograms. For the case-
value plot (Figure 1.4, right), nine students were supposed to collect garbage 
on the beach. Two students handed in zero weight. The rest of the students 
collected between 7 and 9 kilograms of beach waste. The arithmetic mean 
weight of beach garbage picked up per student was 57 : 9, which is about 6.3 
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kilograms. Hence, the arithmetic mean is higher in the case-value plot—the 
right-hand graph. In the histogram on the left, one might first think that postal 
worker Willem delivers 7 packages. But if all packages are depicted in a dotplot 
(Figure 1.5, left), it becomes clear that he delivers 114 packages in total.  

Figure 1.5 Dotplots depicting the same weights as in Figure 1.4 for all packages that 
postal worker Willem delivers (left) and the collected garbage on Scheveningen beach 
(right) 

Note. Both dotplots (graph areas) were constructed with VUstat 
(https://www.vustat.eu ). 

Some readers may have thought that the mean weight in the left-hand graph 
was about 16.3 (sum of frequencies divided by seven) or 12.7 kilograms 
(divided by nine). Like many students, they were possibly confused by the 
visual similarity to the type of graph on the right (e.g., Bakker, 2004a; Chance 
et al., 2004; delMas & Liu, 2005) and estimated the mean frequency, instead of 
the mean weight.  

To assess the variability in both graphs, the standard deviation from 
the mean can be used, which is approximately 1.9 for the histogram on the left 
and 3.7 for the case-value plot on the right. Hence, the variation is higher in 
the right-hand graph. This might seem counter-intuitive because the collected 
weights seem to vary between 7 and 9. However, two students collected zero 
kilograms of garbage. The weight, therefore, varies between 0 and 9 kilograms 
in the right-hand graph, compared to 1 to 8 kilograms in the left-hand graph. 
Outliers can have a huge influence on both the mean and the standard 
deviation, especially when the dataset is very small (see also Figure 1.5, right). 
Note that a case-value plot is a graph where each bar represents a 
measurement of one case. Typically, the horizontal axis depicts a variable   
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measured at a nominal or ordinal measurement level, and the vertical one at 
an interval or ratio measurement level3. 

Before it is defined what exactly a histogram is, les us first consider 
another, more realistic example of data that can be presented in a histogram. 
With the previous example of a histogram, an attempt was made to give the 
reader a sense of how difficult it can be for students to interpret graphs. 
However, we also know from research that graphs of data with which people 
are familiar, such as American SAT scores from college entrance exams in the 
USA (Kaplan et al., 2014) are easier to understand. Therefore, in Table 1.1, a 
few of the 826,192 reported infections of COVID-19 in 2020 in the Netherlands 
are presented (RIVM, 2022). From this table, we take one column: Age group 
(see also Box 2). Each row is one person, so in these five rows, we see that 
there is one person aged 40–49 who got COVID-19, one person aged 50–59, 
and so on. A dotplot from the original data (using a fictive age instead of an 
age group) could look like Figure 1.6. As an illustration, we present a small 
subset of cases in the dotplot. From these data, a histogram can also be 
created by binning age groups in bins of, for example, 10 years (Figure 1.7). 

Table 1.1 Example of a part of a data table for COVID-19 infections in the Netherlands 
in 2020 

Date statistics Date statistics type Age group Fictive age 
1/1/2020 DOO 40-49 45 
1/1/2020 DOO 50-59 53 
1/1/2020 DOO 20-29 21 
1/1/2020 DOO 60-69 62 
1/4/2020 DOO 10-19 16 

Note. Source: RIVM, 2022. DOO = Date of (disease) onset. It is not always known 
whether this first day of illness already involved COVID-19. Fictive age is a variable not 
present in the original dataset. It was created using the =RANDBETWEEN(a;b) function 
in Microsoft Excel where a and b are the borders of the bin. For example, 
=RANDBETWEEN(40;49) returns a random whole number from 40 to 49. This number 
was added to make a dotplot for these data.  

 
3 Measurement level refers to the scale used for the measurements of the statistical variable. An 
example is the variable temperature that can be measured at an ordinal level (e.g., cold, warm, 
hot), interval level (e.g., Celsius or Fahrenheit with an arbitrary zero point), or ratio level (Kelvin; 
absolute zero point. When temperature in Kelvin is doubled, thermal energy is also doubled). 
Besides the four measurement levels mentioned here, other scales do exist (e.g., cyclic for 
angles). 
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Figure 1.6 Possible dotplot for a subset of COVID-19 infections in the Netherlands in 
2020 (fictive age guessed from the age group through a random function in Excel)  

Note. Made with Codap https://codap.concord.org/. For our aim, we can ignore the 
high spikes in the graphs that are partly due to the random function in Excel, and 
rounding to whole numbers for age.  

Figure 1.7 Histogram for all 826,192 COVID-19 infections in NL in 2020  

 
Note. We removed all approximately hundred cases of people aged 0–49 who died due 
to COVID, as the RIVM removed their specific age group to prevent their identification 
based on the data. In addition, we removed about fifty people with unknown ages. 
Given the vertical scale in this histogram, this did not influence the graph's 
appearance. Note that this graph is not corrected for the total number of people in 
each age group (in which case it would no longer be a histogram). 
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For large datasets like COVID-19 infections in the Netherlands with over 
800,000 cases reported in 2020, the advantage of creating histograms comes 
to the forefront. Instead of depicting 826,093 dots, now only 10 bars are 
needed to represent this data set.  

Now that the histogram is informally introduced, let us define a 
histogram as this is rarely done (Humphrey et al., 2014). In many textbooks 
and online sources, incomplete definitions are given such as “A histogram 
represents numbers by area, not height.” (Freedman et al., 1978, p. 26), “A 
histogram is a bar graph [bar chart] of a frequency distribution with 
measurable data on the horizontal axis.” (Getal en Ruimte, 2014, p. 14) or only 
by most noticeable but irrelevant features such as a bar chart “with bars […] 
that touch” (e.g., Nijdam, 2003, pp. 49–50), often followed by a description of 
how to construct a histogram (e.g., on Wikipedia, December 11, 2022). 
Definition4 
A histogram is a graph with bars that meets the following criteria:  

• It consists of bars that represent groups of numerical data 
• It represents data of one statistical variable only (typically continuous) 
• The statistical variable is presented conventionally on the horizontal 

axis5  
• The statistical variable is measured at an interval or ratio 

measurement level  
• The vertical axis displays the class density, or—when bin widths are 

equal—relative or absolute frequency (counts) of the depicted 
statistical variable 

• The total density adds up to 1 or the total relative frequency adds up 
to 100% 

 

The histograms above were all with equal bin widths (e.g., Figure 1.7). In Figure 
1.8, an example of a histogram with density along the vertical axis can be 
found for COVID-19 infections per age group in the Netherlands in 2020. 
Density here means the proportion of the population per “unit on the 
horizontal axis” (Freedman et al., 1978, p. 33) with this unit being 10 years of 
age in our example. For example, the age group 80–110 has a proportion of 
about 0.02 per 10-year group. Calculating the actual number of people can be 
done through a multiplication 0.02 × 826,192 × 3 (this 3 is because there are 
three 10-year age groups in the age group 80–110) which returns 49,572 

 
4 This definition is a refined version of the one given in the next chapter.  
5 For example, a population pyramid (age-sex pyramid) is an exception. 
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people6, which is almost the actual total of age groups 80–90, 90–100, and 
100–110 together in Figure 1.7.  

 

1. Other types of graphs with bars: bar charts, distribution bar charts, and case-
value plots 

Histograms are often confused with other graphs with bars. One type is a 
distribution bar chart or distribution bar graph (univariate, categorical data along 
the horizontal axis, counts of data in these categories along the vertical axis). 
Similarly to a histogram, this distribution bar chart contains aggregated data as the 
height of the bar represents multiple data points (e.g., the blood type figure in the 
next chapter). These data could also be represented in pie charts whereas data 
depicted in a histogram cannot.  

Another type of graph with bars is a graph in which each bar’s height 
represents one measured value. We call this a case-value plot (cf. Garfield & Ben-
Zvi, 2008a). There is but different terminology for this type of graph: “value bar 
chart (aka “case value graph” [delMas et al., 2005], […] and “ordered value bar 
graph” [Lappan et al., 2014])” (Cooper, 2018, p. 111). A time-plot can “be 
considered a special case” of case-value plots (Cooper & Shore, 2010, p. 4). 

Variants also exist, for example, stacked forms of case-value plots. The 
words bar charts usually refer to all these graph types together but not to 
histograms. In the section on education, some examples can be found. Instead of 
‘bar charts’, ‘bar graphs’ is sometimes used (e.g., Humphrey et al., 2014). 

 

In histograms, bars are often connected. Nevertheless, this is neither a defining 
nor a distinctive feature to distinguish histograms from other graphs with bars 
(e.g., Ioannidis, 2003; Rufilanchas, 2017). A density histogram is hard to make 
using common software (e.g., neither Excel nor SPSS can make density 
histograms and Excel often makes mistakes with regular histograms)7.  

 
6 The actual number in our cleaned dataset of 2020 was 47,934. Differences are due to rounding. 
7 There are workarounds, but then the graph is constructed by the user. 
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Figure 1.8 Density histogram for COVID-19 infections per 10 years in the Netherlands 
in 2020 

Note. This density histogram was created by Alex Lyford with ggplot2 using a 
workaround. 

1.1.3 The role of histograms in statistics and statistical literacy 

Most citizens read the results of investigations in a newspaper and magazine 
or see these on television, news websites, and social media. Especially in these 
times when fake news spreads at lightning speed, it is important that people 
can critically evaluate results. Critical evaluation is part of statistical literacy: 

…people’s ability to interpret and critically evaluate statistical 
information, data-related arguments, or stochastic phenomena, 
which they may encounter in diverse contexts, and when relevant 
(b) their ability to discuss or communicate their reactions to such 
statistical information, such as their understandings of the 
meaning of the information, their opinions about the implications 
of this information, or their concerns regarding the acceptability 
of given conclusions. (Gal, 2002, pp. 2–3, emphasis in original) 

Statistical literacy requires graph comprehension and being able to interpret 
and produce graphs of data. This ability is also called graphicacy (Balchin & 
Coleman, 1966) or graph(ical) literacy (e.g., Gillespie, 1993). Graphicacy is “the 
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ability to read and write (or draw) graphs” (Fry, 1981, p. 383). Fry also includes 
pictograms and sketches in this definition of graphs, but we prefer to stick to 
what mathematicians usually refer to when talking about graphs. For this type 
of graph, three aims can be distinguished: propaganda, analytical, and 
substitute for tables (Tukey, 1972). In line with Tukey, we are specifically 
interested in analytical graphs. Some studies focus on people’s difficulties with 
misleading graphs (e.g., Wijnker et al., 2022). In this dissertation, we focus on 
students’ difficulties with correctly constructed graphical representations of 
data. 

 

2. Histograms have two axes but depict one statistical variable  
A returning topic of debate when discussing histograms with scientist is whether 
histograms depict one or two variables. An argument for stating it is one statistical 
variable is that the same data can be presented in dotplots, stem-and-leaf plots, 
boxplots, and density graphs; all being used for depicting one, statistical variable, 
and all without a vertical axis. A (density) “histogram does not need a vertical scale” 
and when income is along the horizontal axis “the area of each block [bar] is 
proportional to the number of families with incomes in the corresponding class 
interval” and the total area of a histogram is 100%, or one if proportions are used 
(Freedman et al., 1978, pp. 25–26). Another argument is that the algorithm for 
computing the arithmetic mean from histograms is different (i.e., sum of the 
measured values is divided by the sum of frequencies along the vertical axis, instead 
of number of bars) compared to, for example, case-value plots (where sum of the 
measured values is divided by the number of measured values along the horizontal 
axis, often being the same as the number of bars). “Univariate graphs provide 
information about the distribution of observations on a single variable. […] The 
histogram is by far the most commonly used procedure for displaying univariate 
data.” (Jacoby, 1997, p. 13). 

An argument for two variables is that there are two axes. To program 
software to plot this graph, two variables need to be defined somewhere in the 
software. Therefore, I often reply that there is only one statistical variable. If I had 
to label the other variable, I would call it a ‘plotting’ variable. 

 

A histogram can be regarded as a spider in a web of knowledge. Histograms 
prepare for key concepts such as probability distribution and density in 
probability theory (Batanero et al., 2004). Histograms may play a central role in 
learning statistical key concepts such as data, distribution, variability or 
variation, and central tendency (Garfield & Ben-Zvi, 2004). Each key concept—
such as distribution—relies on other concepts (e.g., center, density, skewness, 
relative frequency) (Bakker & Gravemeijer, 2004). Shape is often also included 
in this list, but one might wonder whether the focus should be so much on 
shape. As an example, we invite readers to think about the normal distribution. 
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What kind of shape do you have in mind? When people think about a normal 
distribution, they may imagine a bell shape, think about a straight line on 
normal probability paper, or an S-shape (the cumulative frequency polygon). 
Others may think of 

…the probability density function, the Galton board, or we think of 
phenomena that can be modeled with the normal distribution (for 
example, height). In line with Dörfler’s observation that he could 
not find the concept of the number 5 or the triangle in his mind, 
we cannot find the concept of the normal distribution in our mind, 
only representations. (Bakker, 2004a, pp. 31–32) 

The bell curve or other appearances of the normal distribution are signs 
(Bakker & Hoffmann, 2005)—graphs if one likes—of the concepts. Moreover, 
the shape of a histogram depends not only on the data but also on the binning 
choices (e.g., Sahann et al., 2021; Setlur et al., 2022). Therefore, the 
appearances—shapes—are not the concepts themselves. Unfortunately, we 
cannot learn concepts without signs, without graphs. Therefore, we see a 
histogram as a means to teach students about those concepts.  

In the Netherlands, histograms are taught mostly in Grades 9–12. They 
have been underrepresented in research literature while they are widely used 
in practice (e.g., Lem et al., 2014b). When we began this research, it was 
unclear how histograms could play a role in developing students' statistical 
literacy as part of critical citizenship. Research on students’ difficulties with 
histograms was hard to find and fragmented. A gap existed between research 
and teaching practice, at least in my own country, the Netherlands (cf. Bakker 
et al., 2021). Knowledge of how to effectively teach histograms was lacking. 
These problems existed for many years, (e.g., Ismail & Chan, 2015; Meletiou, 
2000; Pettibone & Diamond, 1972) despite some carefully designed 
interventions (e.g., Kaplan et al., 2014). 

Therefore, this doctoral dissertation concentrates on histograms to 
develop students’ critical citizenship and statistical literacy. In our research 
proposal for this dissertation, the research question was: How can pre-
university track students in Grades 10–12 learn to draw correct conclusions 
from histograms? After the first study, it became clear that the focus of our 
research should not be on histograms only, but on understanding key concepts 
that become visible through histograms. To elicit this focus on students’ 
understanding, we changed the overall research question into:  

RQ: How can pre-university track students in Grades 10–12 be 
supported in understanding histograms? 
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In the Netherlands, mathematics is mandatory for pre-university track (vwo) 
students and they can choose from three types of mathematics: A, B, and C. 
Mathematics C is preparation for cultural and art studies and includes 
statistics, Mathematics B prepares for technical and other scientific studies and 
does not contain statistics, and Mathematics A concerns applied analysis in 
economics and health contexts and statistics (Daemen et al., 2020). In addition 
to Mathematics B only, students can choose Mathematics D, which contains 
statistics and probability, as well as some other topics that broaden and 
deepen their mathematical knowledge from Mathematics B. In this 
dissertation, we mostly concentrate on the group of students with 
Mathematics A as these students have statistics in their curriculum. 

1.2 Educational aims for using histograms 
1.2.1 What is the educational problem with histograms? 

Students misinterpreting histograms 
As explained in the previous section, histograms are often confused with case-
value plots (e.g., Bakker, 2004a; Lem et al., 2013a, 2014b). Adding to students’ 
confusion, not every graph depicting frequencies is a histogram. Consider, for 
example, the number of people who died in a hospital (Figure 1.9, inspired by 
Gill, 2022). Although, at first glance, this graph might look like a histogram—as 
it has frequency on the vertical axis—but it is not. First, consider the variable 
along the horizontal axis. This is an ordinal variable (day of the week) and 
calculating an arithmetic mean of it would make no sense. Compare this to the 
COVID-19 histogram (Figures 1.7, 1.8), where the mean age (roughly 43 years) 
is along the horizontal axis and can be depicted by a vertical line that crosses 
the horizontal axis at 43 years. Second, in Figure 1.9, the mean (number of 
people who died) can be depicted by a horizontal line at 58 people per day, 
crossing the vertical axis at that number. Third, we can assess the variation. 
Imagine a graph similar to Figure 1.9 in which almost all people died on 
Saturday or Sunday. This would be a graph with only two high bars and five 
very low bars. Would that indicate much variation or not? We would assume 
that this would be considered a lot of variation. In that case, the graph is a 
time-plot (which can be considered a special case of a case-value bar chart 
regarding mean and variation; Cooper & Shore, 2010). But if this graph had 
been similar to a ‘histogram’ (or, to be precise: a distribution bar chart, as the 
horizontal scale is ordinal), the imaginary graph with only two high bars would 
not be considered much variation at all, as all deaths are concentrated around 
the same two days.  
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Figure 1.9 Number of people who died in one hospital per weekday counted over one 
year 

 

In addition, “The distinction between distribution bar graphs and value bar 
charts [case-value plots] can blur if frequency is found on the vertical axis and 
the data itself is not well-defined” (Cooper & Shore, 2010, p. 14). The same 
holds true for histograms and some time-plots. For example, consider the 
number of people who died at certain times (Figure 1.10, inspired by Gill, 
2022). Although at first glance, this graph might look like a histogram, it most 
likely is not. However, it really depends on what you consider to be the data. 
We would expect here that the data are the number of people who died. In 
that case, the mean number of people who died in a hospital per hour is 
approximately 17 and can be found along the vertical axis. Moreover, a dotplot 
for number of deaths cannot be made from Figure 1.10, or at least not without 
discarding the crucial time-of-the-day information, unless the mean time of the 
day somebody died is the variable of interest, in which case, time would be on 
the horizontal of this dotplot. Second, how is variation assessed? If the 
variation in the frequency only is considered (e.g., high and low peaks), the 
variation in heights of bars (vertical variation) is assessed as if this graph is a 
kind of case-value plot (with a standard deviation for the frequencies of 7.9). If 
this graph were a histogram, then the mean hour of deaths is roughly in the 
morning (mean hour: 10.84 or 10:50). For the variation in the data, we would 
then look at the horizontal spreadoutness of the data in combination with the 
heights of bars. 
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Figure 1.10 Number of people who died due to COVID-19 in one hospital in one year 
(fictive numbers) 

 

As explained in the previous section, in English, different words are used to 
distinguish different graphs with bars from each other; see the box on other 
types of graphs with bars. For example, the graph in Figure 1.10 is called a 
time-plot (Cooper & Shore, 2010). This naming might seem to be merely extra 
detail, but as we will see from the eye movements of students in Chapter 3, it 
is not. 
Teachers’ difficulties with histograms 
When we give workshops to teachers—after presenting them with the graphs 
from Figure 1.4—we regularly ask them to sort graphs with bars from 
textbooks and newspapers (Figure 1.11, see also Boels, 2019). Which of these 
graphs are histograms? Teachers often find this a challenging task. One way to 
decide on this is to try to find the mean. Another way is to make a graph with 
dots. Graphs a, b, and e would result in a line graph, and the mean can be 
found on their vertical axis. Graph d would result in a dotplot, and the mean 
can be found on the horizontal axis. For graph c, it is impossible to decide what 
kind of graph it is. We advise avoiding these graphs (e.g., in textbooks), as 
these emphasize most noticeable features instead of relevant ones8. 

 
8 See also my videos: https://youtu.be/zpRHhixoYmg and https://youtu.be/5od2uB908PI 
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Figure 1.11 Some graphs with bars found in textbooks and websites 

Note. Source: a) Moderne Wiskunde, 5 vwo, Mathematics A, 11th edition, b) Wisfaq 
explanation of histograms, 2017, November 1, c) Getal en Ruimte, 4 havo, 
Mathematics A, part 2, 11th edition, d) Mathplus, 4 havo, Mathematics A, part 3, 1st 
edition, e) Mathplus, 4 vwo, Mathematics A and C, part 2, 1st edition. 

Research in which histograms of research outcomes caused difficulties 
The previous section hinted at possible misinterpretations that can occur when 
using histograms. However, it is not only students that have difficulties with 
interpreting histograms, but also researchers. Here, we provide two examples. 
In both examples, histograms were avoided when they should have been used. 
The conclusions of the research could still be correct and the quality of the rest 
of the research could still be high. This is up to others to judge. My focus is 
strictly on the correct use—or avoidance—of histograms.  

In the first example, the diameter of savanna trees in Australia—the 
Banksia Marginata—was measured at breast height (Heyes et al., 2020). Bins 
were created with diameter on the horizontal scale and number of trees 
(frequency) on the vertical scale. The issue is with the graphs constructed in 
the study and the calculations that were done. First, the researchers drew a 
line graph, which is suitable for two statistical variables but not for one. 
Second, they used logarithmic scales for both axes. This means that for larger 
breast height widths, bin sizes are bigger, requiring a kind of density graph 
(density histogram, violin plot). Third, they calculated the correlation between 
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the middle of the bins and the frequency. The latter can be problematic as the 
choice for binning in histograms can severely influence the shape (e.g., Sahann 
et al., 2021; Setlur et al., 2022), which in turn influences what correlation will 
be found.  

The second example stems from a course for prospective mathematics 
teachers (Norabiatul Adawiah et al., 2021). To compare the distribution of 
scores in two groups—one statistical variable measured at ratio measurement 
level—a kind of double distribution bar chart was used (suitable for one 
variable measured at nominal or ordinal measurement level). For teachers, we 
would expect that data would be presented in two histograms, two boxplots, 
or two dotplots (e.g., Biehler, 2007; cf. Rodríguez-Muñiz et al., 2022) or that it 
would be discussed which didactical reasons justify this deviation (see also 
Chevallard & Bosch, 2014). In addition, for comparison, a group size of N = 12 
is quite small. 

1.2.2 Histograms in Dutch mathematics education 

In the Netherlands, there are different curricula for pre-vocational education 
(vmbo) and general secondary education (havo and vwo: pre-college and pre-
university track education). However, in most textbooks, histograms are 
introduced in Grade 9 (e.g., Getal en Ruimte, 2015) or sometimes in Grade 10, 
although one textbook that is no longer available (Mathplus, 2014) very briefly 
touched upon histograms in Grade 7. In addition, as explained earlier, in the 
pre-university track students choose one type of mathematics, and it is that 
choice that determines whether histograms are further elaborated on. 

A typical introduction in the Grade 9 pre-university track is that 
students are first asked to aggregate given data into a frequency table. Next, 
they perform some calculations with frequency tables, such as calculating the 
arithmetic mean or the median. Finally, students are asked to draw a 
histogram for a given frequency table. There can be quite a few months or 
even a whole school year in between those steps. In Moderne Wiskunde 
(2019, p. 102), dotplots are used in a statistics chapter in Grade 10 
Mathematics A and C. The word histogram is not used in this textbook and the 
authors do not seem to have clarity about what kind of graphs are used for 
what kind of data. In one task, for example, they ask students to make a 
dotplot, a bar chart, and a pie chart for the same data (p. 103). As dotplots are 
suitable for data measured at ratio or interval measurement level (sometimes 
called numeric or quantitative data) and pie charts are used for nominal or 
ordinal data (categorical data or qualitative data) this task does not seem to 
make sense, although they asked students to reflect on the most suitable chart 
for these data. A quick scan of the three most used Dutch mathematics 
textbooks in 2021 indicates that they all suffer from inconsistencies, 
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misinterpretations, and a focus on procedural knowledge instead of 
developing statistical literacy.  

Regarding the latter, for example, students rarely collect their own 
data. Although histograms are important tools for data analysis, data 
communication, and interpretation including inferential reasoning (see 
investigative cycle, Wild & Pfannkuch, 1999), the focus in textbooks is often on 
how to draw a histogram and how to calculate something with the data it 
represents. Interpretation of histograms is rare. Histograms can be used for 
data exploration, hypothesis generation, communication, interpretation, 
developing new ideas, drawing conclusions about the collected data or the 
population, and even sometimes to support data cleaning (e.g., to find typos 
that may be depicted as outliers). 

1.3 Personal motives for choosing statistics education as a 
research area 

Since my training as a mathematics teacher, like many other teachers, I have 
been concerned with the question of how topics in mathematics can best be 
taught. Through my experiences in teaching and in previous research, I have 
noticed that the effectiveness of statistics education in Dutch secondary 
schools (Grades 10–12) is far from optimal. Many teachers do not feel well-
equipped to teach statistics (e.g., Van Dijke-Droogers, 2021). As a result, 
students are poorly prepared for further study and society. Girls in particular 
become very frustrated by this as they often choose studies for which statistics 
courses are an important part of the university curriculum (e.g., psychology). 
As I was teaching Mathematics A most of the time, I felt personally responsible 
for their failure and frustration and I wanted to do something about that. This 
was my first motive. 

My second motive stems from students’ difficulties. The examples in 
the previous sections show that graphing data can be a crucial step in data 
analysis and interpretation. As discussed earlier, some important discoveries 
were made purely by graphing data. Interpreting graphs seems a simple first 
step in the statistics curriculum, but in practice, students have little 
understanding of statistical graphs such as histograms. For boxplots, students’ 
misinterpretations are well known (e.g., Bakker et al., 2004), but for 
histograms, most teachers seemed unaware of students’ difficulties (e.g., 
Cooper, 2002). I wanted to find out exactly why students have difficulties 
understanding histograms and what can be done about it.  

Given my technical background—I was trained as an electrical 
engineer—and my training to become a mathematics teacher approximately 
ten years later, I felt well-equipped for supporting students with topics within 
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calculus. Statistics, however, was never really part of my training, apart from 
some procedural knowledge such as how to calculate the mean or standard 
deviation from a frequency table. In past Dutch teacher training, statistics got 
little attention. I do not remember that I ever read or talked during my training 
to become a teacher—approximately twenty years ago—about the 
investigative cycle (Wild & Pfannkuch, 1999), talking students through the data 
collection (Ben-Zvi et al., 2018; Cobb & McClain, 2004) or key concepts (e.g., 
data, distribution), and how these relate to each other and to teaching. Further 
professionalization of teachers was, therefore, considered necessary when the 
new curriculum for Mathematics A was introduced in 2015, especially for 
statistics (cTWO, 2007). By conducting research on a topic I didactically knew 
little about, I wanted not only to advance teaching and research in statistics 
education but also to become a better-equipped teacher myself. This was my 
third motive to engage in this research. 

1.4 Overview of this dissertation 
Chapters 2 to 6 form the core of this dissertation. Below, a brief description of 
each chapter and its research question is given. In Figure 1.12, an overview of 
the studies and chapters can be found. When we started the trajectory for this 
dissertation, we expected that we would use the literature on students’ 
difficulties with histograms and a small-scale eye-tracking study both as inputs 
for a larger design study (Bakker, 2018). In that case, design research would 
have been at the heart of this dissertation. However, during the first study—a 
review of the literature, see Chapter 2—it became clear that several attempts 
had already been made to carefully develop interventions to tackle students’ 
misinterpretations. The success of these varied, often even within a single 
intervention. In a study by Kaplan et al. (2014), for example, after taking an 
introductory statistics course at a university, upon completion students were 
better able to distinguish a histogram from a case-value plot. In addition, 
confusing horizontal and vertical axis when determining the median decreased 
slightly. “Unfortunately, this may be due to the item construction, rather than 
actual students’ knowledge” (p. 16). Moreover, confusing the horizontal and 
vertical axis when comparing the mode of two histograms increased. The 
overall impression we got is that most interventions had not been very 
successful. Therefore, instead of trying out another intervention, we decided 
to dig deeper and do what McKenney called “a lot of ‘front-end work’, [which 
includes …] understanding the problem better”, identifying students’ 
difficulties, and “formulating design criteria” (Bakker, 2018, p. 142). Hence, in 
the second study (Chapter 3), we decided to figure out on a more fundamental 
level what students’ difficulties with histograms were through a larger eye-
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tracking study, as we thought that students’ gaze patterns could provide 
insight into their approaches. 
Chapter 2. As an overview of students’ difficulties with interpreting histograms 
was lacking in the research literature, the first step was to create such an 
overview through an extensive review of the literature. The research question 
for this study was: 

RQ1: What are the conceptual difficulties that become manifest in 
the common misinterpretations people have when constructing or 
interpreting histograms? 

A narrative systematic review of the literature with a configurative synthesis 
was conducted (Gough et al., 2017). Data were collected through a systematic 
search in several databases. From each publication in this review, we collected 
the misinterpretations that were reported or discovered.  
Chapter 3. The review results made it possible to address students’ conceptual 
difficulties that become manifest in most common misinterpretations more 
broadly rather than focusing on a specific misinterpretation. 
Misinterpretations related to the statistical key concepts data and distribution 
can be observed when students confuse histograms with look-alikes, including 
case-value plots. In addition, many of the studies in the literature review draw 
conclusions from students’ final answers (e.g., Whitaker & Jacobbe, 2017). 
Little was known about students’ strategies for reaching these answers. 
Therefore, it was unclear how to intervene effectively. By observing students’ 
actions, it becomes clear how students use their conceptual knowledge of the 
data in histograms, hence what strategies they employ. Eye movements can 
reveal students’ strategies (Van Meeuwen et al., 2014). We answer the 
following research question:  

RQ2: How and how well do Grades 10–12 pre-university track 
students estimate and compare arithmetic means of histograms 
and case-value plots? 

We used eye-tracking as a data collection method, as gaze patterns can 
provide detailed insight into students’ thinking processes, including those 
processes that students are not aware of or are not able to articulate (Green et 
al., 2007). We tracked the gazes of students (50) and teachers (18), although 
teachers are not included in this dissertation for reasons of time (Boels et al., 
2019b). Students were asked to estimate or compare arithmetic means. 
Students’ gaze data were qualitatively coded and combined with interview 
data from cued recall to connect specific gaze patterns—the perceptual forms 
of gazes—to interpretation strategies. 
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Chapter 4. The three patterns we found in students’ gaze data for single 
histograms sparked us to explore whether automatic recognition of students’ 
strategies might be possible through a machine learning analysis. A potential 
benefit of automatic recognition would be that targeted intelligent feedback 
could be given, based on students’ strategies inferred from gaze data, during 
online learning. This, in turn, could help reduce the pervasiveness of 
misinterpretations among students as described in Chapter 2. Chapter 4 
describes a first step in this automation process. The research question for this 
study was: 

RQ3: How can gaze data be used to automatically identify 
students’ task-specific strategies on single histograms? 

We made an Interpretable Mathematical Model (IMM) of the gaze data based 
on heuristics stemming from the previous study. To provide a baseline for the 
IMM, we used a supervised machine learning algorithm (MLA). The chosen 
software tool (Mathematica Classify Function) automatically prepared the gaze 
data and fed these into an automatically chosen MLA. As we also used some 
single histograms that were not yet analyzed in the previous study, this 
required another round of qualitative coding. In the chapter on this study, it is 
explained why that was necessary. The quantitative approach through an IMM 
and machine learning analysis contributed to the reliability of the results. A 
similar study for the double histogram tasks is planned for the future. 
Chapter 5. The previous studies revealed students’ solution strategies when 
solving histogram tasks in more detail. A local instruction theory in statistics 
education suggests that having students solving dotplot tasks can support 
students’ learning to interpret histograms (e.g., Bakker & Gravemeijer, 2004; 
Garfield, 2002; Garfield & Ben-Zvi, 2008a), as dotplots can draw students’ 
attention to the variable being presented along the horizontal axis in both 
graphs. In this study, previously collected gaze data were re-used to explore 
whether students’ histogram interpretations change after solving dotplot 
items. We used students’ gaze data on four histogram items as inputs for an 
MLA (random forest) to answer the research question: 

RQ4: In what way do Grades 10–12 pre-university track students’ 
histogram interpretations change after solving dotplot items? 

In addition, we used students’ verbal reports and answers to investigate 
whether changes in gaze patterns reflect changes in students’ approaches. 
Chapter 6. The literature research (Chapter 2) also made clear that existing 
interventions were not sufficiently successful in teaching students to correctly 
interpret histograms. The students’ solution strategies (Chapter 3) showed that 
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many of these Dutch students lacked understanding of how and where data 
are represented in histograms. Interpreting dotplots may assist students’ 
understanding of histogram (Chapter 5) but it was still unclear how an 
intervention could be designed that would support students’ learning of 
statistical key concepts through interpreting dotplots and histograms.  

Therefore, in this last study, we made a start with a design study. From 
the previous studies, we got the impression that students lacked experience 
with dotplots and sufficient attention to how these artifacts—histograms, 
dotplots—become tools in statistical reasoning. We suspected that students’ 
education might have lacked an embodied grounding of how histograms are 
constructed. Therefore, using embodied instrumentation approach as a 
theoretical lens, we designed a learning trajectory that drew upon findings and 
insights from previous studies. The research question for this study was: 

RQ5: What sequence of tasks designed from an embodied 
instrumentation perspective can support students’ understanding 
of histograms and the underlying key concepts? 

Chapter 7. This chapter presents general conclusions and discussion. We 
answer the main research question. The theoretical and methodological 
insights, implications, and recommendations for research and educational 
practice are elaborated.  
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Conceptual difficulties when interpreting histograms:  
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Sacagawea 
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Abstract Histograms are widely used and appear easy to understand. 
Nevertheless, research indicates that students, teachers, and researchers often 
misinterpret these graphical representations. Hence, the research question 
addressed in this chapter is: What are the conceptual difficulties that become 
manifest in the common misinterpretations people have when constructing or 
interpreting histograms? To identify these conceptual difficulties, we 
conducted a narrative systematic literature review and identified 86 
publications reporting or containing misinterpretations. The misinterpretations 
were clustered and—through abduction—connected to difficulties with 
statistical concepts. The analysis revealed that most of these conceptual 
difficulties relate to two key concepts in statistics: data (e.g., number of 
variables and measurement level) and distribution (shape, center, and 
variability or spread). These key concepts are depicted differently in 
histograms compared to, for example, case-value plots. Our overview can help 
teachers and researchers to address common misinterpretations more 
generally instead of remediating them individually. 

 

Keywords Statistical key concepts; Misconception; Big ideas; Statistics 
education; Statistical knowledge for teaching (SKT); Histogram. 
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2.1 Introduction 
Statistical literacy is a core competence for citizenship, and, therefore, an 
important goal of statistics education for students of all ages (Ben-Zvi et al., 
2017). It includes the ability to interpret graphical representations of statistical 
data (Ben-Zvi & Garfield, 2004b; Garfield & Ben-Zvi, 2007). Graphical 
representations of statistical data can be found in newspapers, schoolbooks, 
research articles, government policy reports, television, news bulletins, and 
other common sources of information. “Graphical representations serve as 
useful tools to communicate aspects of a distribution as they facilitate a focus 
on aspects of the data that may be missed with the use of descriptive statistics 
alone.” (Leavy, 2006, p. 90); see also Pastore et al. (2017). Different 
representations reveal different aspects of the data. Many real-life examples 
show that lives can literally be saved if people master the ability to switch 
between different representations of data to reveal different aspects. One 
example is from Nightingale, who saved many lives with her famous polar 
graph (Martineau, 1859) which showed that more soldiers died from 
preventable diseases—caused by bad hygienic circumstances in the hospitals—
than from the war wounds caused by the Crimean War.  

A graphical representation widely used to represent the distribution of 
univariate scale data is the histogram. What researchers consider a histogram 
is rarely defined. In addition, some researchers (e.g., Stevens & Palocsay, 2012; 
Wong, 2009), teachers, and citizens use—often implicitly—a definition of a 
histogram that deviates from what statisticians refer to as a histogram (e.g., 
Cooper & Shore, 2010; Friel et al., 2001). In the statistics literature (e.g., Bruno 
& Espinel, 2009; Cooper & Shore, 2010; Pearson, 1895; Shaughnessy, 2007), a 
regular histogram is defined as a graph with bars that meets the following 
criteria (see Figure 2.1 for an example and a non-example): 

• The data of only one statistical variable are presented on the 
horizontal axis; 

• The data are measured at interval or ratio measurement level; 
• The variable is preferably continuous; 
• The vertical axis typically displays the class density, or—when bin11 

widths or class intervals are equal—relative frequency or frequency12.   

 
11 Ioannidis (2003) uses the word ‘bucket’ instead of ‘bin.’  
12 In some languages the word frequency refers to relative frequency only and the word count is 
used to address absolute numbers. An example is found in French textbooks where the word 
effectifs is used for absolute frequency and the word fréquence is used for relative frequency 
(e.g., Derouet & Parzysz, 2016). In English and in our manuscript, the word frequency means 
absolute frequency.  
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Connected bars are neither a defining nor a distinctive feature to distinguish 
histograms from other graphs with bars (e.g., Ioannidis, 2003; Rufilanchas, 
2017). 

At first sight, histograms may appear easy to understand, but research 
indicates otherwise (e.g., Lem et al., 2014b). In fact, many errors, 
misconceptions, and mistakes in interpreting histograms have been 
documented in the literature (e.g., Bruno & Espinel, 2009; Derouet & Parzysz, 
2016; Friel et al., 2001; Kaplan et al., 2014; Lem et al., 2013c). However, a 
systematic overview of these misinterpretations—a term we use as an 
umbrella for the ways in which people interpret histograms incorrectly—has 
not yet been compiled. Research repeatedly showed the persistence of the 
misinterpretations despite various attempts to improve statistics education 
(e.g., Ben-Zvi & Garfield, 2004b; Ben-Zvi et al., 2017; Chance et al., 2004; 
Cohen, 1996; Garfield & Ben-Zvi, 2007; Kaplan et al., 2014; Shaughnessy, 
2007). Hence, there is a need to reflect on what conceptual difficulties may lie 
at the basis of these persistent misinterpretations. The aim of this review is, 
therefore, to make an inventory of the misinterpretations that occur when 
people use histograms, as well as to categorize these misinterpretations along 
the conceptual difficulties that become manifest in these misinterpretations. In 
this review, the word ‘people’ refers to students of all levels, as well as to 
teachers, researchers, teacher educators, and others. The question guiding this 
review is:  

What are the conceptual difficulties that become manifest in the 
common misinterpretations people have when constructing or 
interpreting histograms?  

Organizing misinterpretations by conceptual difficulties that may lead to them 
seems to have several advantages. First, it provides a better understanding of 
the misinterpretations (in terms of types or common difficulties). Second, once 
the conceptual difficulties that become manifest in the most common 
misinterpretations are made plausible, researchers and educators can address 
these more generally instead of treating or remediating misinterpretations one 
by one. Such a pedagogical route would be in line with the current view in 
statistics education, which aims to ensure that students develop an 
understanding of the key concepts of statistics in relation to each other. In the 
statistics education literature, the term ‘big ideas’ was once used more often 
than the now more common term ‘key concept’. We use ‘key concept’ and ‘big 
ideas’ as interchangeable terms. Up to now, research usually focuses on a 
specific misinterpretation (e.g., of the standard deviation) instead of multiple 
misinterpretations that together are a manifestation of a conceptual difficulty 
with a key concept (e.g., of the distribution). Third, this overview is useful for 
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all researchers in education and not only for mathematics education research 
because many education researchers either use statistics to analyze the results 
of their research or teach statistics in—for example—psychology or education. 
For researchers using statistics, graphing is a logical first step in analyzing 
quantitative data—for instance, when looking at the distribution of univariate 
data—and is often advised to do before calculating a measure (Ben-Zvi & 
Garfield, 2004b; Pastore et al., 2017). Fourth, research indicates that we need 
subject-topic-specific information for certain aspects of teaching and learning 
this topic (Leinhardt et al., 1990; Pareja Roblin et al., 2018).  

Figure 2.1 Example of a histogram (left; ratio measurement level) and a distribution 
bar graph (right; nominal measurement level) 

2.2 Theoretical background 
2.2.1 Graphical representations 

Statistical graphs often serve as the analysis of data or inquiry—as Gal (2002) 
phrases it—and communication of results. This requires graph comprehension 
(Curcio, 1981, 1987; Friel et al., 2001). Difficulties with graphical 
representations have been extensively studied (e.g., Arcavi, 2003; Carpenter & 
Shah, 1998; Larkin & Simon, 1987; Leinhardt et al., 1990; Tufte, 1983/2001; 
Tversky, 1997). Statistical graphs represent not only data but also statistical 
concepts—especially graphs that represent data in an aggregated form (e.g., 
boxplots and histograms). In turn, statistical concepts are inextricably 
represented in some form—sometimes numerically, sometimes graphically, or 
both. For example, for most people, the concept of the normal distribution is 
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inextricably connected to the bell shape as a graphical representation (Bakker 
& Hoffmann, 2005).  

Therefore, in this review, we focus on the relation between the 
graphical representation and key concepts in statistics. Although some 
misinterpretations might be unique to the graphical representation itself, we 
anticipated that most misinterpretations would be a manifestation of a 
conceptual difficulty. Some conceptual difficulties may appear with other 
graphical representations too, for example, with a boxplot, which is also a 
graphical representation of univariate data measured at interval or ratio 
measurement level (e.g., Bakker et al., 2004; Lem et al., 2013c).  

The literature on statistical graphs revealed that experts and novices 
analyze graphs in different ways. Experts tend to view a graph globally, while 
novices seem to focus on the local features of the graph (Khalil, 2005). Konold 
et al. (2015) showed that some elementary school students regard the data as 
a pointer to the context or situation, which is in line with the findings from 
other researchers that students see the graph as a picture (e.g., Friel et al., 
2001; Leinhardt et al., 1990). According to Konold et al., other students focus 
on individual cases in the graph, for example, the shortest person, or where a 
specific person can be found in the graph. Yet other students see the data in a 
graph as classifiers—for example, for the mode or “the winning outcome” (p. 
314). Elementary school students rarely see the data as aggregates, meaning 
that their focus is mostly not on the entire distribution. Which perspective is 
useful depends on the question posed to the data. 

2.2.2 Misinterpretations and conceptual difficulties 

In this review, we distinguish between conceptual difficulties and 
misinterpretations. In line with other research (Lem et al., 2013c), we use the 
term ‘misinterpretation’ to denote a repeatable and explicit mistake or error 
that occurs in different people (Leinhardt et al., 1990) and that relates to the 
conclusion being drawn from a given graph. The term ‘conceptual difficulty’ is 
widely used in the literature on physics and chemistry education when people 
have an incorrect, naïve or incomplete idea of a concept (e.g., Battaglia et al., 
2017; Garnett & Treagust, 1992; Hammer, 1996). As a clear definition was not 
found in this literature, we define a conceptual difficulty as having not fully 
grasped or understood the key concept at hand. People who have fully grasped 
the key concept are not expected to show misinterpretations when drawing 
conclusions from graphs. When we identify a misinterpretation, we can, 
therefore, conclude that it is a manifestation of a conceptual difficulty.  

An example may further clarify the distinction between a 
misinterpretation and a conceptual difficulty. When statistics teachers state 
that a graph has more variability because the graph is bumpier (meaning: more 
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difference in heights of the bars; e.g., Dabos, 2014) they assess the variability 
of the frequency bars in the histogram instead of the variability of the variable 
at hand. We infer from this behavior (i.e., showing a misinterpretation) that 
these teachers have difficulties with the statistical concept of variability, which 
is part of the key concept of distribution. This is further clarified through the 
examples in the next section.  

2.2.3 The key concepts of data and distribution 

The research on the teaching and learning of statistics identified several key 
concepts that underlie statistical investigations (Garfield & Gal, 1999)—as the 
core goals of statistics education. These statistical key concepts encompass 
several other concepts such as trend, model, sample, and graphical 
representation (e.g., Bakker, 2004a; Ben-Zvi et al., 2017; Gal & Garfield, 1997; 
Pfannkuch & Ben-Zvi, 2011). The statistical concepts are intricately connected 
(Bakker & Derry, 2011). Which statistical concepts are at stake depends on the 
particular context and research question posed to the data. Figure 2.2 
summarizes how the various statistical concepts fit together when it comes to 
solving a statistical problem involving univariate data that can be represented 
in a histogram.  

During the analysis of the groups of misinterpretations (the axial codes, 
see section 2.3.2), it became clear that the usual theoretical framework of key 
concepts in statistics—a collection of the statistical concepts they are related 
to—lacked a specification of the relationships between these statistical 
concepts. We, therefore, propose a network of statistical concepts based on 
the theoretical framework of key concepts found in the literature (see Figure 
2.2). As it is unlikely that there is a generic relationship between these 
statistical concepts, we focused on those relevant to solving statistical 
problems that may involve the representation of univariate data in a 
histogram. Our contribution consists of three parts. First, we added 
connections between the statistical concepts, which led to a coherent network 
that, from our analysis13, turned out to be relevant. In this network, we 
outlined how these connections can be understood. Second, we linked this 
network to the statistical investigation by assigning a specific statistical 
concept to a specific part of the statistical investigation—such as posing a 
question or collecting data (Wild & Pfannkuch, 1999). Assigning the concepts 
to the statistical investigation clarifies the consequence of misinterpretations 
for statistical investigations and inferential reasoning in education and 
research. Third, we added measurement level and number of variables as 

13 For example, concepts related to hypothesis testing are not included in this network as these 
did not emerge from our analysis. 
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separate statistical concepts, as from the grouping of our data it became clear 
that these concepts were lacking in the existing theoretical framework of key 
concepts. In addition, we added some statistical concepts that, beforehand, we 
did not expect to find in this review (e.g., correlation and covariance). These 
statistical concepts do not make sense for histograms. For example, correlation 
is only possible with at least two variables, whereas a histogram depicts only 
one variable. From the coding (axial codes), it nevertheless became clear that 
misinterpretations related to this statistical concept sometimes played a role, 
so we added this to the network.  

We now discuss the two key concepts that turned out to be most 
relevant during the analysis phase. The descriptions of these key concepts are 
taken from Garfield and Ben-Zvi (2004, p. 400).  

• Data: […] data represent characteristics or values in the real world […]
• Distribution: a representation of quantitative data that can be

examined and described in terms of shape, center, and spread
[variability], as well as unique features such as gaps, clusters, outliers,
and so on.

Because we know from the literature in this review that the key concepts data 
and distribution are hard to grasp for most people, we synthesize the main 
characteristics in two examples. 
The key concept of data 
The key concept of data includes how many variables are depicted in the graph 
(see the letter F in Figure 2.2) as well as the measurement level (nominal, 
ordinal, interval, or ratio) of its attributes (see K in Figure 2.2). In Figure 2.3, 
the key concept of data is explained through the example of babies born in a 
hospital in Queensland, Australia (Dunn, 1999). For our explanation, only two 
variables of this data set are used: a number referring to each baby girl that 
was born (instead of her name) and her weight in grams. To visualize these 
data, a so-called case-value plot or value bar chart is used, which is a special 
type of bar graph that shows a value (birth weight) for every case (baby girl; 
see Figure 2.3a). 
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Figure 2.2 Network of statistical concepts relevant for interpreting histograms and 
their place in the investigative cycle 

Note. Statistical concepts are located in the colored rectangles; the sizes of rectangles 
have no meaning. The thick lines of both arrows and boxes indicate frequently 
reported misinterpretations, see section 2.4 Results. The color or grayscale of the 
rectangles refers to different aspects of statistical investigations: 

The key concepts DATA and DISTRIBUTION encompass several statistical concepts as 
indicated by the large, dotted rectangles. Arrows indicate relationships. 
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From the case-value plot with two statistical variables (see Figure 2.3a)—thus, 
a bivariate distribution—a histogram can be constructed through six 
intermediate steps. These intermediate steps are needed to tackle one of the 
most common misinterpretations related to the key concept of data. This 
misinterpretation—existing not only among many students, but also among 
some researchers, and some mathematics teachers—is that the number of 
axes determines the number of statistical variables measured, thus defining 
whether the distribution is univariate or bivariate (see Figure 2.3; e.g., Cohen, 
1996). In the first step, one variable is removed from the graph. The resulting 
series of graphs is, therefore, univariate, including the histogram (see Figure 
2.3b–g).  

During three of the six steps described here, and during a seventh step 
outside figure 2.3, information reduction14 occurs (Gal & Garfield, 1997). The 
first information reduction is the removal of the names of the baby girls (here 
anonymized; see Figure 2.3b), possibly inducing, for example, the 
misinterpretation that bars in a histogram can be reordered (e.g., Bruno & 
Espinel, 2009). The second information reduction occurs when the dots are 
stacked (see Figure 2.3f), possibly inducing, for example, the misinterpretation 
that only the middle value of the bar is observed (e.g., Biehler, 1997). The third 
information reduction occurs when the dots are removed from the bars, 
making it necessary to use a second axis for the height of the bars (density or 
frequency), possibly inducing the misinterpretation that two statistical 
variables are depicted instead of one (see Figure 2.3g, e.g., Baker et al., 2002; 
Dabos, 2014). When bin widths are unequal, another step is needed. A fourth 
step in information reduction is, therefore, using frequency density instead of 
frequency (not shown in Figure 2.3; Boels & Shvarts, 2023) possibly inducing, 
for example, wrong labeling of the vertical axis (e.g., Derouet & Parzysz, 2016). 
The key concept of distribution 
The key concept of distribution encompasses shape, center, and variability (see 
L–V and part of W in Figure 2.2). The distribution depends on the type of data 
(see H–K in Figure 2.2). In line with Cooper and Shore (2010), we argue in this 
section that shape (part of W in Figure 2.2), center (see M and T in Figure 2.2), 
and variability (see L and S in Figure 2.2) are assessed differently depending on 
the type of graph at stake (see W in Figure 2.2). Identifying the mean and 
variation in a histogram—a univariate distribution—can be done by drawing a 
vertical line for the mean and examining the horizontal spread of the bars, 
meanwhile taking the heights of the bars into account, see Figure 2.4, left.  

14 We prefer information reduction over the term data reduction, as the original data 
themselves are not reduced—only aggregated—making other aspects, such as patterns in the 
data, more visible. 
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Identifying the mean and variation or spread in a case-value plot—a bivariate 
distribution—can be done by drawing a horizontal line for the mean and 
examining the variation of the heights of the bars around this line, see Figure 
2.4, right. Note that in a histogram, less variation in the heights of the bars 
often indicates more variability of the variable represented on the horizontal 
axis (here: weight), whereas more variation in the heights of the bars in a case-
value plot always indicates more variability of the variable represented on the 
vertical axis (here: weight). Although the graphical representations in Figure 
2.4 look quite different, the underlying distribution of the variable at hand 
(weight) is the same. This key concept of distribution is often misunderstood as 
people tend to think of a distribution as the shape of the graph and not as an 
abstract statistical concept leading to, for example, not recognizing different 
graphical representations of the same data (e.g., delMas et al., 2007).  

Figure 2.4 Different orientation of the mean value—the dotted line—in a histogram 
(left) and a case-value plot (right). Both graphs are based on the same weight data, 
and, therefore, depict the same distribution of weight 

Birth weight baby girls Queensland, Australia, December 18, 1997 

2.3 Method 
A narrative systematic review of the literature with a configurative synthesis 
was conducted (Gough et al., 2017) with a query-based search strategy in the 
following databases: PsycINFO, Web of Science, Scopus, ERIC, and Google 
Scholar, see Figure 2.5 for the flowchart. These five databases are commonly 
used for scientific literature in mathematics and statistics education.  

2.3.1 Search strategy 

This chapter includes publications that describe or contain misinterpretations 
when constructing or interpreting histograms by people (students, teachers, 
researchers, and others). A publication was excluded when histograms were 
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{ǘŀǘƛǎǘƛŎǎ ǘŜȄǘōƻƻƪǎ ǿŜǊŜ ŀƭǎƻ ŜȄŎƭǳŘŜŘΦ {ŜŀǊŎƘƛƴƎ ŦƻǊ ǘƘŜ ƪŜȅǿƻǊŘ ΨƘƛǎǘƻƎǊŀƳΩ 
ƴƻǘ ƛƴŎƭǳŘƛƴƎ ǇŀǘŜƴǘǎ ƎŀǾŜ ƳƻǊŜ ǘƘŀƴ нслΣллл Ƙƛǘǎ όмн aŀȅ нлмсύΦ aƻǎǘ ƻŦ 
ǘƘŜǎŜ Ƙƛǘǎ ǿŜǊŜ ƴƻǘ ǊŜƭŜǾŀƴǘΣ ŀǎ Ƴŀƴȅ ǇǳōƭƛŎŀǘƛƻƴǎ ƻƴƭȅ ǳǎŜ ƘƛǎǘƻƎǊŀƳǎ ŦƻǊ 
ǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ǊŜǎǳƭǘǎΦ {ŜŀǊŎƘƛƴƎ ƛƴ ǘƘŜ ǘƛǘƭŜ ƻŦ ŀǊǘƛŎƭŜǎ ƻƴƭȅ ǿƻǳƭŘ ŜȄŎƭǳŘŜ 
Ƴŀƴȅ ǊŜƭŜǾŀƴǘ ǇǳōƭƛŎŀǘƛƻƴǎΦ {ŜǾŜǊŀƭ ǊƻǳƴŘǎ ƻŦ ŎƘŜŎƪƛƴƎ ǎŜŀǊŎƘ ǘŜǊƳǎ ŦƻǊ 
ƛƴŎƭǳǎƛƻƴ ŀƴŘ ŜȄŎƭǳǎƛƻƴ ǿŜǊŜ ŎƻƴŘǳŎǘŜŘ ǘƻ ŀǊǊƛǾŜ ŀǘ ŀ ǿƻǊƪŀōƭŜ ǉǳŜǊȅΦ ¢ƘŜ 
ǎŜŀǊŎƘ ǘŜǊƳǎ ŦƻǊ ŜȄŎƭǳǎƛƻƴ ǿŜǊŜ ŎƘƻǎŜƴ ŦǊƻƳ ƴƻƴπǊŜƭŜǾŀƴǘ ǇǳōƭƛŎŀǘƛƻƴǎ ŀƴŘ 
ŎƘŜŎƪŜŘ ƛƴ ŀ ǉǳƛŎƪ ǎŜǇŀǊŀǘŜ ǎŜŀǊŎƘ ōŜŦƻǊŜ ŀŘŘƛƴƎ ǘƘŜ ƪŜȅǿƻǊŘ ǘƻ ǘƘŜ ƭƛǎǘ ǘƻ 
ŜƴǎǳǊŜ ǘƘŀǘ ƴƻ ƛƳǇƻǊǘŀƴǘ ǇǳōƭƛŎŀǘƛƻƴǎ ǿŜǊŜ ƳƛǎǎŜŘΦ ¢ƘŜ олл ǇǳōƭƛŎŀǘƛƻƴǎ 
ƛŘŜƴǘƛŦƛŜŘ ŘǳǊƛƴƎ ǘƘƛǎ ƛǘŜǊŀǘƛǾŜ ǇǊƻŎŜǎǎ ǿŜǊŜ ƪŜǇǘΦ Lǘ ǇǊƻǾŜŘ ƴŜŎŜǎǎŀǊȅ ǘƻ 
ŦƻǊƳǳƭŀǘŜ Ƴŀƴȅ ǎŜŀǊŎƘ ǘŜǊƳǎ ŦƻǊ ŜȄŎƭǳǎƛƻƴ ǘƻ ŀǾƻƛŘ ŀ ƭŀǊƎŜ ƴǳƳōŜǊ ƻŦ ƴƻƴπ
ǊŜƭŜǾŀƴǘ ǇǳōƭƛŎŀǘƛƻƴǎΣ ǎŜŜ ¢ŀōƭŜ нΦмΦ ²Ŝ ŀƭǎƻ ŜȄŎƭǳŘŜŘ ǇŀǘŜƴǘǎ ŀƴŘ ŎƛǘŀǘƛƻƴǎΦ 
¢Ƙƛǎ ǉǳŜǊȅ ǊŜǎǳƭǘŜŘ ƛƴ ŀƴƻǘƘŜǊ нфф ǇǳōƭƛŎŀǘƛƻƴǎ ǘƻ ōŜ ŎƘŜŎƪŜŘΣ ǊŜǎǳƭǘƛƴƎ ƛƴ ŀ 
ǘƻǘŀƭ ƻŦ рфф ǇǳōƭƛŎŀǘƛƻƴǎ ƛŘŜƴǘƛŦƛŜŘ ƛƴ DƻƻƎƭŜ {ŎƘƻƭŀǊΦ !ǎ ŜǾŜǊȅ ŘŀǘŀōŀǎŜ Ƙŀǎ ƛǘǎ 
ƻǿƴ ǎŜŀǊŎƘ ŜƴƎƛƴŜ ǿƛǘƘ ŘƛŦŦŜǊŜƴǘ ƻǇǘƛƻƴǎΣ ǿŜ ƘŀŘ ǘƻ ǎƭƛƎƘǘƭȅ ŀŘŀǇǘ ǘƘŜ ǎŜŀǊŎƘ 
ǎǘǊŀǘŜƎȅΦ ¢ŀōƭŜ нΦн ǇǊƻǾƛŘŜǎ ŜȄŀƳǇƭŜǎ ƻŦ Ƙƻǿ ǘƘƛǎ ǿŀǎ ŘƻƴŜ ŦƻǊ tǎȅŎLbChΦ CƻǊ 
ǘƘŜ ƻǘƘŜǊ ŘŀǘŀōŀǎŜǎΣ ŀ ǎƛƳƛƭŀǊ ǇǊƻŎŜŘǳǊŜ ǿŀǎ ǳǎŜŘΦ ²ƘŜǊŜ ǇƻǎǎƛōƭŜΣ ǿŜ 
ǎŜŀǊŎƘŜŘ ƛƴ ǘƛǘƭŜΣ ŀōǎǘǊŀŎǘΣ ƪŜȅǿƻǊŘǎΣ ŀƴŘ ǘƻǇƛŎ ƻǊ ŎŀǘŜƎƻǊȅΦ ¢ƘŜ ǎŜŀǊŎƘ ƛƴ ŀƭƭ 
ǘƘƻǎŜ ŘŀǘŀōŀǎŜǎ ǊŜǎǳƭǘŜŘ ƛƴ ƳƻǊŜ ǘƘŀƴ мллл ǇǳōƭƛŎŀǘƛƻƴǎ ǘƻ ōŜ ŎƘŜŎƪŜŘΦ ¢ƘŜ 
ǇǊƻŎŜŘǳǊŜ ŘŜǇƛŎǘŜŘ ƛƴ CƛƎǳǊŜ нΦр ǊŜǎǳƭǘŜŘ ƛƴ ус ǇǳōƭƛŎŀǘƛƻƴǎ ǘƘŀǘ ŀǊŜ ŜƴŎƭƻǎŜŘ 
ƛƴ ǘƘƛǎ ǊŜǾƛŜǿΦ !ǎ ǿŜ ǎŜŀǊŎƘŜŘ ŦƻǊ ǘƘŜ Ƴƻǎǘ ŎƻƳƳƻƴ ƳƛǎƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎΣ ƛƴ 
ŀŘŘƛǘƛƻƴ ǘƻ ōŀŎƪǿŀǊŘ ǎƴƻǿōŀƭƭƛƴƎΣ ǿŜ ŀǇǇƭƛŜŘ ŀ ŎƘŜŎƪƛƴƎ ǇǊƻŎŜŘǳǊŜ ŀǘ ǘƘŜ ŜƴŘ 
ƻŦ ǘƘŜ ǎŜŀǊŎƘ ǳƴǘƛƭ ǎŀǘǳǊŀǘƛƻƴ ƻŎŎǳǊǊŜŘ ǘƻ ƳŀƪŜ ǎǳǊŜ ǘƘŀǘ ǿŜ ŘƛŘ ƴƻǘ Ƴƛǎǎ ŀƴȅ 
ƪŜȅ ǇǳōƭƛŎŀǘƛƻƴǎмс ƻǊ ŎƻƳƳƻƴ ƳƛǎƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎΦ  

Table 2.1 {ŜŀǊŎƘ ǘŜǊƳǎ DƻƻƎƭŜ {ŎƘƻƭŀǊ όŀŘǾŀƴŎŜŘ ǎŜŀǊŎƘ ƛƴ ŀƭƭ ŦƛŜƭŘǎύΦ vǳŜǊȅ ǇŜǊŦƻǊƳŜŘ 
ƛƴ нлмс 

YŜȅǿƻǊŘǎ ŦƻǊ ƛƴŎƭǳǎƛƻƴ όǎŜŀǊŎƘ 
ǘŜǊƳǎύ 

YŜȅǿƻǊŘǎ ŦƻǊ ŜȄŎƭǳǎƛƻƴ 

IƛǎǘƻƎǊŀƳ 
aƛǎǘŀƪŜ 
9ŘǳŎŀǘƛƻƴ 
[ƛǘŜǊŀŎȅ 

!ǳǘƻƳŀǘŜŘ 
.ŀƴƪ 
.ŀȅŜǎƛŀƴ 
/ƻƳǇǊŜǎǎƛƻƴ 
5ƛǎŀōƛƭƛǘȅ 

5b! 
5ǊƛǾŜǊ 
CƻǊŜƴǎƛŎ 
DŜƴŜǘƛŎ 
awL 

bŜǳǊŀƭ 
bǳŎƭŜŀǊ 
hǇǘƛŎǎ 
tŀǘƛŜƴǘ 
tƘƻǘƻƴ 

wŀŘƛƻƭƻƎȅ 
{ŜƎƳŜƴǘŀǘƛƻƴ 
{ǇŜƭƭƛƴƎ 
¢ŜȄǘǳǊŜ 
±ƛƻƭŜƴŎŜ 

Note. !ǎ DƻƻƎƭŜ {ŎƘƻƭŀǊ ƛƴ нлмс ŘƛŘ ƴƻǘ ŀƭƭƻǿ ŜȄǇƻǊǘмт ƻŦ ǘƘŜ ǎŜǾŜǊŀƭ ǘƘƻǳǎŀƴŘǎ ƻŦ 
ǊŜǎǳƭǘǎ ƻōǘŀƛƴŜŘ ǿƘŜƴ ǳǎƛƴƎ ǘƘŜ ŦƻǳǊ ǎŜŀǊŎƘ ǘŜǊƳǎ ŦƻǊ ƛƴŎƭǳǎƛƻƴΣ ƛƴǎǘŜŀŘ ŀōƻǾŜ ǎŜŀǊŎƘ 
ǘŜǊƳǎ ŦƻǊ ŜȄŎƭǳǎƛƻƴ ǿŜǊŜ ǳǎŜŘ ǊŜǎǳƭǘƛƴƎ ƛƴ ǘƘŜ ǎŜŀǊŎƘ ǎǘǊƛƴƎ ϑIƛǎǘƻƎǊŀƳ aƛǎǘŀƪŜ 

мс hǳǊ ǳƴƛǘ ƻŦ ŀƴŀƭȅǎƛǎ ƛǎ ǇǳōƭƛŎŀǘƛƻƴǎΣ ƴƻǘ ǎǘǳŘƛŜǎΦ  
мт !ŘǾŀƴŎŜŘ ǘƻƻƭǎ ǎǳŎƘ ŀǎ ǿŜō ǎŎǊŀǇƛƴƎ ŎƻǳƭŘ ƘŀǾŜ ōŜŜƴ ǳǎŜŘ ōǳǘ ǿŜǊŜ ƻǳǘǎƛŘŜ ǘƘŜ ǎŎƻǇŜ ƻŦ ǘƘƛǎ 
ǊŜǎŜŀǊŎƘΦ 
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Education Literacy -Automated -Bank -Bayesian -Compression -Disability -DNA -Driver -
Forensic -Genetic -MRI -Neural -Nuclear -Optics -Patient -Photon -Radiology -
Segmentation -Spelling -Texture -Violence}. Exact reproduction of results in Google 
Scholar is not possible. While Google Scholar can lead to more included publications 
than other databases, some research might not be found when using Google Scholar 
alone (e.g., Haddaway et al., 2015). Therefore, Haddaway et al. advise to also use other 
databases.  

Figure 2.5. Flow chart of publication selection process. When exclusion could not be 
decided on the basis of an abstract, the full text was studied 

2.3.2 Data analysis 

For every publication included in this review, we collected the 
misinterpretations that were either reported or detected in the publication. To 
identify the conceptual difficulties that become manifest in the most common 
misinterpretations, we grouped these misinterpretations into axial codes. 
Using the key statistical concepts as a lens, we inferred through abduction 
(Peirce, 1994) that misinterpretations stem from a lack or misunderstanding of 
these concepts. Abduction is the process of generating explanatory 
hypotheses. Hoffmann (2011) states that we can stop this process “when an 
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abductive insight has been achieved” which he defines as “the experience that 
what someone created in abductive reasoning” is plausible and gives an 
acceptable argument for the phenomenon (p. 572). As explained in section 
2.2., the following holds. People who have fully grasped a key concept are not 
expected to show misinterpretations when drawing conclusions from graphs. 
When we identify a misinterpretation, we can, therefore, conclude that it is a 
manifestation of a conceptual difficulty. 

Table 2.2 Example of some searching strategies, search terms, and number of 
identified and relevant publications in database PsycINFO in 2016. Since then, some 
changes in OVID databases have taken place including replacing or changing subject 
headings in the APA Thesaurus 

Search in Keywords for 
inclusion (search 
terms) 

Number of 
publications 
identified 

New 
relevant 
publications 

Abstract Histogram and 
mistake and 
education and 
literacy 

0 0 

 Histogram* Almost 600, so 
more keywords 
were used 

 

All fields Histogram and 
education** 

Over 200, so 
more keywords 
were used 

 

 Histogram and 
education and 
literacy 

8 1 

Abstracts of 
predefined category 
2240 statistics & 
mathematics 

Histogram 40 0 

Title Histogram 43 0 
Total  91 1 

Note. Using four keywords for inclusion and none for exclusion led to zero publications 
identified, so the search strategy had to be slightly adapted by using fewer keywords. 
*Including a second keyword led to almost zero publications identified and no new 
relevant publications. **Other combinations were tried resulting in no new relevant 
publications. 

How the network of statistical concepts was used is now explained with two 
examples. The first example is the misinterpretation of students who used two 
statistical variables when asked to draw a histogram (Baker et al., 2002). This 
misinterpretation is categorized as indicating a problem with understanding 
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the key concept of data (see box F in Figure 2.2: 1, 2 or more variables and 
attributes), as it indicates that these students do not differentiate between a 
histogram—which represents a univariate distribution of one variable—and a 
bivariate distribution of two statistical variables (the latter often being 
depicted in a scatterplot). A second example is students who do not 
understand that a distribution that looks unimodal in a histogram can turn out 
to be bimodal if the bin width is made smaller (Karagiannakis, 2013). This 
misinterpretation is categorized as indicating a problem with understanding 
the key concept of distribution, as it indicates that these students do not 
understand the influence of grouping on the graphical representation, which is 
displayed by the arrow from grouping (see box R in Figure 2.2: group or 
ungroup) to graphical representation (see box W in Figure 2.2: graphical 
representation: graph with bars, histogram). As further explained in the 
codebook (see Appendix A of this chapter for the full version), the selective 
code grouping was assigned here.  

We used open, axial, and selective coding (Corbin & Strauss, 1990) to 
cluster the identified misinterpretations exhaustively and mutually exclusively 
into three categories: (1) data-related conceptual difficulties, (2) distribution-
related conceptual difficulties, and (3) miscellaneous. Three examples of axial 
codes (a group of misinterpretations) are: ‘larger frequency thus larger mean’, 
‘bell-shaped = histogram’, and ‘bumpier = higher variability’. From these axial 
codes, the selective codes were created through abduction from the network 
of statistical concepts (see Figure 2.2). Provided with the codebook and the 
open codes (description of what was reported or found in the publication) and 
axial codes (the first grouping of the misinterpretations), an external coder was 
asked to assign one of eleven selective codes to the description of the 
misinterpretations. Of the more than 300 descriptions of misinterpretations 
(open codings), 73 were coded by the first author and an external coder. The 
interrater reliability—Cohen’s kappa—was .84, suggesting a reliable coding 
procedure with “almost perfect” agreement (Landis & Koch, 1977, p. 165). A 
summary of the codebook is given in Table 2.3; a full version can be found in 
Table A.1 in the Appendix of this article. 

The selective codes in the codebook categorize the misinterpretations 
at the level of a specific concept that were then merged into three categories 
of conceptual difficulties. At this final level, categories summarize whether the 
conceptual difficulties that become manifest in the misinterpretations are 
related to the data represented, or related to the distribution represented, or 
neither of these two (miscellaneous). The level of selective codes identifies 
subcategories of specific concepts that are misinterpreted. These 
subcategories are characterized briefly in the last column of the codebook and 
are illustrated with the types of misinterpretations listed. The characterization 
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ends with a note detailing when not to assign this code so as to make the 
second coder aware of the boundaries of a particular code (subcategory) 
(Boyatzis, 1998).  

Some misinterpretations are possibly caused by the translation into 
English. In English, different words are created to distinguish histograms (one 
variable; numerical measurement level, see Figure 2.1, left) and distribution 
bar graphs (one variable; categorical measurement level, see Figure 2.1, right) 
from case-value plots (see Figure 2.3a; two variables) on the one hand and 
time-plots (also two variables) on the other. Other languages may lack such 
different words. Several researchers refer to a graph with bars as a histogram 
while it is not. If this misinterpretation was held by researchers from non-
English-speaking countries, it might be due to translation only. Therefore, 
these specific misinterpretations were excluded from the results (Kramarski, 
1999; Mevarech & Kramarsky, 1997).  

Table 2.3 Summary of the codebook for classifying the misinterpretations; letters (e.g., 
K) refer to the network of statistical concepts 

Phase Conceptual 
difficulty 

Selective codes 

Orientation on 
histogram 

Data-related Number of variables (F) or measurement 
level (K) or both (K, F).  

Interpreting 
histogram 

Distribution-
related 

Variability (L, S), center (M, T), shape (W) 
and grouping (C) 

 Miscellaneous Context (A), Population (B), ICT18 or 
unknown 

In review but not included in results Translation 

 

  

 
18 ICT is found along the arrows from population to a sample. ICT is indicated only where 
relevant for this review. 
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2.4 Results 
Table 2.4 Overview of publications in which misinterpretations were identified 

Misinterpretations related to 
difficulties with the concept of data 

Misinterpretations related to difficulties with 
the concept of distribution 

Abrahamson & Wilensky, 2007; Agro, 
1977; Baker et al., 2001, 2002; Bakker, 
2004a; Bruno & Espinel, 2009; Capraro 
et al., 2005; Chance et al., 2004; 
Clayden & Croft, 1990; Cohen, 1996; 
Cooper & Shore, 2008; Corredor, 2008; 
Dabos, 2014; delMas et al., 2005; 
delMas et al., 2007; Derouet & Parzysz, 
2016; Enders, 2013; Eshach & 
Schwartz, 2002; Friel & Bright, 1996; 
Gilmartin & Rex, 2000; Hawkins, 1997; 
Humphrey et al., 2014; Ismail & Chan, 
2015; Kaplan et al., 2014; Kramarski, 
2004; Kulm et al., 2005; C. Lee & 
Meletiou-Mavrotheris, 2003; Lem et 
al., 2013c; McKinney, 2015; Meletiou & 
Lee, 2002; Meletiou, 2000; Redfern, 
2011; Ruiz-Primo et al., 1999; Sorto, 
2004; Stevens & Palocsay, 2012; Stone, 
2006; Strasser, 2007; Tiefenbruck, 
2007; Watts et al., 2016; Whitaker & 
Jacobbe, 2017; Wong, 2009; Yun, Ko, & 
Yoo, 2016; Zaidan et al., 2012. 

Baker et al., 2001; Batanero et al., 2004; 
Biehler, 1997; Bruno & Espinel, 2009; Capraro 
et al., 2005; Chan & Ismail, 2013; Chance et al., 
2004; Cohen, 1996; Cooper & Shore, 2008; 
Cooper & Shore, 2010; Corredor, 2008; Dabos, 
2014; delMas & Liu, 2005; delMas et al., 2005; 
delMas et al., 2007; Derouet & Parzysz, 2016; 
Friel & Bright, 1995, 1996; Gilmartin & Rex, 
2000; González, 2014; Huck, 2016; Ismail & 
Chan, 2015; Kaplan et al., 2014; Kaplan et al., 
2009; Karagiannakis, 2013; Kelly et al., 1997; 
Konold et al., 1997; Kukliansky, 2016; Kulm et 
al., 2005; Lee & Meletiou-Mavrotheris, 2003; J. 
T. Lee, 1999; Lem et al., 2011, 2013a, 2013c,
2014b, Madden, 2008; Martin, 2003; McGatha
et al., 2002; McKinney, 2015; Meletiou & Lee,
2002; Meletiou, 2000; Meletiou-Mavrotheris &
Lee, 2005; Mevarech & Kramarski, 1997;
Olande, 2014; Roth, 2005; Rumsey, 2002; Sorto,
2004; Stevens & Palocsay, 2012; Stone, 2006;
Tiefenbruck, 2007; Turegun & Reeder, 2011;
Vermette & Gattuso, 2014; Whitaker &
Jacobbe, 2017; Whitaker et al., 2015; Wong,
2009.

Misinterpretations related to 
miscellaneous concepts 

Language or translation 

Abrahamson, 2006, 2008, 2009; 
Abrahamson & Cendak, 2006; 
Abrahamson & Wilensky, 2007; Baker 
et al., 2001; Behrens, 1997; Biehler, 
1997; Carrión & Espinel, 2006; Chance 
et al., 2004; Cohen, 1996; delMas et al., 
2005; 2007; Friel et al., 2001; Hawkins, 
1997; Kaplan et al., 2014; Konold et al., 
1997; Madden, 2008; McKinney, 2015; 
Nuhfer et al., 2016; Prodromou & Pratt, 
2006; Shaughnessy, 2007; Slauson, 
2008; Stone, 2006; Whitaker & 
Jacobbe, 2017; Whitaker et al., 2015; 
Yun & Yoo, 2011; Yun et al., 2016. 

Kramarski, 1999; Mevarech & Kramarsky, 1997 
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The results show that the conceptual difficulties that become manifest in the 
most frequently reported misinterpretations fall into three different 
categories: data-related, distribution-related and other. The misinterpretations 
that are a manifestation of difficulties with the concept of data include: not 
understanding how many statistical variables are depicted in a histogram (only 
one) and not understanding that a histogram is suitable for numeric variables 
only (see Figure 2.2 F and L). The misinterpretations that are a manifestation of 
difficulties with the concept of distribution include: (a) not knowing how shape 
(part of W, Figure 2.2), center (see Figure 2.2 M and T), and variability (see 
Figure 2.2 L and S) are depicted in a histogram and (b) not understanding the 
effect of grouping into bins in a histogram (see Figure 2.2 R). In line with 
Bakker and Hoffmann (2005), our research shows that these two conceptual 
difficulties cannot be isolated from their sign—the histogram. The third 
category of miscellaneous conceptual difficulties is more loosely related to the 
sign—the histogram—and entails difficulties that occur due to the software 
used, and/or confusion about whether the sample or the population is 
depicted in the histogram, and the context. The most common 
misinterpretations resulting from these conceptual difficulties are elaborated 
further in the next sections. Table 2.4 gives an overview of the publications 
included in this review. The full details of all misinterpretations can be found in 
the data paper (Boels et al., 2023) and more summaries of the findings are 
given in the online extra materials. The misinterpretations described or 
detected in the publications—including almost 16,000 students, teachers, and 
researchers—are incorporated in this review. This includes slightly over 400 
elementary school students, almost 7,000 secondary school students, and 
approximately 8,000 college and university students. The remainder includes 
college statistics teachers, mathematics teachers, and researchers. Most 
participants are from the USA (see Appendix A of this chapter).  

2.4.1 Misinterpretations related to difficulties with the concept of 
data 

Identifying the measured variable only 
As explained in the theoretical background, by definition a histogram displays 
the distribution of one statistical variable19. Twenty-five publications reported 
or showed misinterpretations regarding the measured variable. A widespread 
misinterpretation is that a histogram could display the data of two variables, 
which was reported or found in nine sources (e.g., Cohen, 1996; Gilmartin & 

 
19 Some statistics educators prefer the more general term of ‘attribute’ (W. Finzer, personal 
communication, July 12th, 2018). As other people may think that attribute only refers to a 
nominal measurement level, we avoided this term.  
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Rex, 2000; Meletiou & Lee, 2002; Meletiou, 2000; Stevens & Palocsay, 2012; 
Zaidan et al., 2012) and which is related to the misinterpretation that the 
number of bars is seen as the number of cases (Dabos, 2014; Ismail & Chan, 
2015; Sorto, 2004). Another often-found misinterpretation is that the 
frequency is seen as the measured value (Bakker, 2004a; Chance et al., 2004; 
delMas & Liu, 2005; Friel & Bright, 1996; Kaplan et al., 2014; Lem et al., 2013c) 
and that the horizontal axis is seen as a timescale when it is not (Dabos, 2014; 
Kaplan et al., 2014; Meletiou & Lee, 2002; Meletiou, 2000; Zaidan et al., 2012). 
This confusion is aggravated as frequency and number (count) are commonly 
interchangeable terms20. The definition of a histogram nevertheless implies 
that the vertical axis depicts the frequencies or number counts of the 
measured values that are depicted on the horizontal axis. Consequently, a 
time-plot—with, for example, years on the horizontal axis—is not a histogram, 
as it is nonsensical to count how often a year occurs in a year. Furthermore, it 
is often stated that the bars of a time-plot must be connected when intervals 
are consecutive, but this is only true for histograms21.  

Figure 2.6 Case-value plot or time-plot with two statistical variables (year and number 
of unemployed). Data source: Statistics Netherlands (CBS, 2018) 

Note. Many people incorrectly think this graph is a histogram because the variable on 
the horizontal axis is numerical. In such cases, connected bars are often—mistakenly—
used. 

20 See also our footnote in the introduction on the influence of language on the interpretation of 
the term frequency.  
21 Some researchers also use separate bars in histograms, e.g., Ioannidis (2003). 
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Identifying the measurement level only 
Eighteen publications reported or contained misinterpretations regarding the 
measurement level. Five of these publications reported people referring to a 
normal distribution—which is only possible for numerical data—while the 
measurement level of the data was nominal or ordinal (delMas et al., 2007; 
Humphrey et al., 2014; Kaplan et al., 2014; Redfern, 2011; Whitaker & 
Jacobbe, 2017). Nine publications reported or contained ‘histograms’ with 
nominal or ordinal measurement level (e.g., Stone, 2006; Tiefenbruck, 2007; 
Watts et al., 2016; Wong, 2009). People showing this misinterpretation may 
consider the blood type graph (see Figure 2.1) as ‘right skewed’ or ‘not 
normally distributed’. These people overlook that the measurement level is 
nominal, and, therefore, the bars are not in scale order and the theoretical 
model of a normal distribution is, therefore, not applicable.  

Three publications identified the misinterpretation that the interval is a 
‘label’ with, for example, students and authors of schoolbooks treating this 
label as a nominal measurement level, neglecting the numerical scale (Bruno & 
Espinel, 2009; Derouet & Parzysz, 2016; Humphrey et al., 2014).  

Figure 2.7 Example of incorrect ‘histogram’ with labeled bars (data from Fisher, 1947) 

 

Another misinterpretation is the use of histograms for Likert scales when 
words combined with numbers are used. An example of how seriously this can 
go wrong when used by non-statisticians can be found in McKinney (2015) 
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where the following strange22 attribution for a 5-point Likert scale is used: 
none at all (1), very little (2), strong degree (3), quite a bit (4) and a great deal 
(5) for a Self-Efficacy Scale for Teaching Mathematics Instrument (SETMI). This
SETMI was developed by McGee (2012) and is used in several other studies
(e.g., McCampbell, 2014).
Identifying the measured variable and the measurement level 
Seventeen publications reported or contained misinterpretations regarding 
both the number of variables and the measurement level. The most often 
reported or found misinterpretation (10 publications) is that people think that 
there is no difference between a histogram and a bar graph, or that the only 
difference is that bars are connected in a histogram, neglecting the required 
measurement level (Capraro et al., 2005; Clayden & Croft, 1990; Eshach & 
Schwartz, 2002; Gilmartin & Rex, 2000; Humphrey et al., 2014; Kramarski, 
2004; Kulm et al., 2005; Sorto, 2004; Stevens & Palocsay, 2012; Tiefenbruck, 
2007). Six publications contained or reported the misinterpretation that a 
histogram could be used for nominal or ordinal data and two variables (Baker 
et al., 2001, 2002; Dabos, 2014; delMas & Liu, 2005; Eshach & Schwartz, 2002; 
Ruiz-Primo et al., 1999). Four publications reported the misinterpretation that 
bars could be rearranged in a histogram, for example, from highest to lowest 
bar (Dabos, 2014; Humphrey et al., 2014; Kaplan et al., 2014; Whitaker & 
Jacobbe, 2017).  

2.4.2 Misinterpretations related to difficulties with the concept of 
distribution 

As explained in the Theoretical background section, the number of measured 
variables as well as the measurement level define the type of graphical 
representation, which in turn influences the interpretation of the distribution: 
shape, center, and variability. For example, variability can be seen as weighted 
deviation from the arithmetical mean (Cooper & Shore, 2010). In a case-value 
plot with nominal data on the horizontal and numerical data on the vertical 
(two measured variables), the relevant measured value is on the vertical axis 
and variability can be seen as variation in the heights of the bars. In a 
histogram, the only measured value is on the horizontal axis, and, therefore, 
the horizontal spread of these measurements must be considered—in 
combination with the heights of the bars. Several studies report that students 

22 For instance, strong degree (3) is in the middle of the scale so it should be a more neutral 
word, such as undecided. Furthermore, strong degree (3) and a great deal (5) seem synonyms; 
quite a bit (4) seems a bit less strong than strong degree. This scale does not even seem to be 
ordinal, but rather nominal and therefore, a histogram is inappropriate (and calculating a mean 
is nonsensical). 
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and teachers confuse variation in the frequencies in a histogram—the heights 
of the bars—with variation in the measured value—hence, the variability in a 
histogram (e.g., Lem et al., 2013a). In this section, four groups of 
misinterpretations are reported regarding variability, center, shape, and 
information reduction through grouping.  
Variability 
Twenty-six publications reported on misinterpretations regarding the 
statistical concept variability or regarding the variability combined with the 
statistical concept’s center and/or shape. Eleven publications reported the 
misinterpretation that a higher difference in the heights of the bars only 
implies more variation in the data (Cooper & Shore, 2008; delMas et al., 2007; 
Kaplan et al., 2014; Karagiannakis, 2013; Madden, 2008; Meletiou & Lee, 2002; 
Meletiou, 2000; Meletiou-Mavrotheris & Lee, 2005; Olande, 2014; Stone, 
2006; Vermette & Gattuso, 2014). Eight publications reported an 
overgeneralization of the idea that a certain shape (normal, uniform, or 
symmetrical distribution) has the highest or lowest variability (Cooper & Shore, 
2010; Dabos, 2014; González, 2014; Kaplan et al., 2014; Meletiou-Mavrotheris 
& Lee, 2005; Turegun & Reeder, 2011; Vermette & Gattuso, 2014; Whitaker & 
Jacobbe, 2017). Range can be regarded as a simple or preliminary measure of 
variability, especially for secondary school students. Seven publications 
reported misinterpretations of the variability in the data when range was used 
(Cooper & Shore, 2008; Dabos, 2014; Kaplan et al., 2014; Lem et al., 2013c; 
Madden, 2008; Meletiou-Mavrotheris & Lee, 2005; Olande, 2014) and two 
reported misinterpretations about variability and center when range was used 
(Kukliansky, 2016; Lem et al., 2013a). Various misinterpretations regarding the 
standard deviation in a histogram are reported, including that a certain shape 
or ordering of the bars (e.g., ascending or descending heights) leads to the 
largest or smallest standard deviation, that a larger mean implies a larger 
standard deviation and that gaps between bars (frequency zero) do not 
influence the standard deviation (delMas & Liu, 2005). Others found the 
misinterpretation that standard deviation and mean in a histogram are the 
same (Chan & Ismail, 2013) or that once the means in both histograms are the 
same, the standard deviation is the same as well (Kukliansky, 2016). 
Misinterpretations regarding variability are also found among teachers (e.g., 
González, 2014). Variability is the variation of the data, for example, around 
the mean—see Figure 2.8. As the mean is depicted differently in a histogram 
than in a case-value plot, the variability also has to be assessed differently. In a 
case-value plot, the variability is the variation in the heights of the bars. In a 
histogram, the variability is the weighted horizontal spread of the bars. 
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Figure 2.8 Center and thus variability is assessed differently in a histogram (left) 
compared to a case-value plot (right) 

Center 
Thirteen publications reported on misinterpretations regarding the statistical 
concept of center. Four publications reported a misinterpretation where the 
mean of the frequencies (vertical axis) was used instead of the mean of the 
measured values of the variable (horizontal axis, see Figure 2.8) (Cooper & 
Shore, 2008; Lem et al., 2013a, 2013c, 2014b). Five publications reported a 
similar misinterpretation regarding the median (Cooper & Shore, 2008; Ismail 
& Chan, 2015; Kaplan et al., 2014; Lem et al., 2013a), the mode (Huck, 2016; 
Ismail & Chan, 2015; Kaplan et al., 2014) or both (Kaplan et al., 2014). All these 
misinterpretations are related to the type of graphical representation, as 
whether the frequency is a statistical variable or not depends on the type of 
graph. For example, in a time-plot, the frequency is the measured value. Other 
misinterpretations include that the median is seen as the middle class (Stevens 
& Palocsay, 2012), that it is seen as the midpoint of the scale on the horizontal 
axis, or as the midrange (Cooper & Shore, 2008).  

In many Introductory Statistics courses, rules of thumb are taught for 
the position of mean and median in relation to the skewness of the 
distribution (thus the shape in the histogram). One such rule of thumb is that 
the mean is typically lower than the median in left or negatively skewed 
distributions. Although this holds true in many situations, Huck (2016) states 
that this was helpful when people lacked strong computers, but nowadays 
these kinds of rules are no longer needed as they can also mislead us when 
analyzing results. Huck claims that “Unfortunately, the application of those 
rules can make one think data are skewed left when they are skewed right (or 
vice versa).” (p. 26). Therefore, we carefully need to reconsider questions that 
test, for example, if students know the rule of thumb that the mean is bigger 
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than the median in right-skewed distributions (Cooper & Shore, 2008; delMas 
et al., 2007; Karagiannakis, 2013; Lee & Meletiou-Mavrotheris, 2003; Whitaker 
& Jacobbe, 2017).  
Information reduction through grouping 
People have difficulties with the information reduction (Gal & Garfield, 1997) 
present in histograms. As explained in the theoretical background, one step in 
information reduction is that several values are grouped into one bin. Bakker 
(2004a) already pointed out that this grouping is difficult for students in 
Grades 7 and 8. Fifteen publications reported or contained misinterpretations 
regarding the grouping in bins. Misinterpretations include not using or 
mentioning density for unequal bin width (Derouet & Parzysz, 2016; Gilmartin 
& Rex, 2000; Kelly et al., 1997; McGatha et al., 2002) and choosing a wrong bin 
width or wrong boundaries for the bins (Bruno & Espinel, 2009; delMas et al., 
2005; Martin, 2003; McKinney, 2015; Whitaker & Jacobbe, 2017). Three 
publications reported misinterpretations regarding the measured values, 
either that all possible values in a bin are measured (Lem et al., 2013c; 
Meletiou, 2000) or that only the middle value of a bar is measured (Biehler, 
1997).  
Shape 
Twenty-eight publications reported or contained misinterpretations 
concerning the graphical representation of a histogram itself. Six reported that 
students cannot link a histogram to a corresponding boxplot (Corredor, 2008; 
delMas et al., 2005; delMas et al., 2007; Karagiannakis, 2013; Lem et al., 2011, 
2015). Ten reported or contained misinterpretations regarding graph 
conventions (Baker et al., 2001; Batanero et al., 2004; Bruno & Espinel, 2009; 
Lem et al., 2013c; Martin, 2003; McGatha et al., 2002; Mevarech & Kramarsky, 
1997; Roth, 2005), for example, that connected bars are for easier comparison 
(Capraro et al., 2005; Kulm et al., 2005). Some authors state that histograms 
are not suitable for discrete variables (Batanero et al., 2004; Cohen, 1996; Friel 
& Bright, 1995, 1996; Tiefenbruck, 2007). However, data are always discrete 
due to the accuracy of the measurement instrument. Therefore, we decided 
not to exclude discrete variables. Students using graphs with poles instead of 
bars can be found in McGatha et al. (2002).  

2.4.3 Misinterpretation related to miscellaneous concepts  

In addition to the two aforementioned categories, there are less frequent 
miscellaneous difficulties that can be summarized as: not understanding the 
histogram in relation to the given context, not understanding the difference 
between a histogram of a sample and a histogram of a population, and the 
influence of ICT (ICT often does not differentiate between histograms and 
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other types of graphs with bars23; e.g., see Abrahamson, 2006 for an example). 
Some descriptions in publications do not provide enough details for specifying 
the type of misinterpretation and are classified as unknown (Baker et al., 2001; 
Behrens, 1997; Biehler, 1997; Carrión & Espinel, 2006; Chance et al., 2004; 
Konold et al., 1997; Shaughnessy, 2007; Yun & Yoo, 2011). 
Context 
Nine publications reported misinterpretations due to the context. One 
example of a misleading context is height (Whitaker & Jacobbe, 2017), as 
students in this specific context more easily interpret the height of the bars in 
a histogram as the measured height, leading to the confusion of a case-value 
plot with a histogram. The misinterpretation of a time scale on the horizontal 
axis can sometimes also stem from the context and is described in section 
Identifying the measured variable only. Furthermore, students and teachers 
occasionally use context knowledge or personal experience instead of the data 
(Friel et al., 2001; Madden, 2008; Shaughnessy, 2007). The opposite equally 
occurs where students have trouble linking the histogram to the original data 
collection or context (delMas et al., 2005; Yun & Yoo, 2011). This is in line with 
research from Kaplan et al., (2018) who showed that students’ descriptions of 
histograms systematically differ depending on the specific wording of the 
question (including the word distribution or variable or both in the question) as 
well as the context (income or hours of sleep).  
Sample or population? 
Seven publications reported misinterpretations regarding the population. Five 
of these report the misinterpretation that the histogram of a sample and the 
histogram of a population have the same properties—for example, the same 
shape or distribution (Chance et al., 2004; Hawkins, 1997; Slauson, 2008; 
Stone, 2006; Whitaker & Jacobbe, 2017). Not distinguishing between sample 
and population might also lead to ignoring the effect of random noise (Biehler, 
1997; Nuhfer et al., 2016).  
Influence of ICT 
Although ICT can be a helpful tool to understand statistics, it can also introduce 
new misinterpretations. The most common misinterpretation is embedded in 
the software where no distinction is made between a histogram and a bar 
graph (Hawkins, 1997), often leading to histograms with strange or even wrong 

23 Excel, for example, creates a kind of bar chart with intervals below, instead of a histogram (see 
https://trumpexcel.com/histogram-in-excel/#Creating-a-Histogram-using-Data-Analysis-Toolpak 
for an incorrect example of a ‘histogram’ with unequal bin widths). Although this was more 
prominent in older versions, the way Excel handles unequal bin widths or values that are higher 
or lower than the specified categories, is not correct, and more in line with how bar charts 
would be created. 

https://trumpexcel.com/histogram-in-excel/#Creating-a-Histogram-using-Data-Analysis-Toolpak
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boundaries of the bins (Abrahamson, 2006, 2008, 2009; Abrahamson & 
Cendak, 2006; Abrahamson & Wilensky, 2007; McKinney, 2015; Prodromou & 
Pratt, 2006). Two publications reported the misinterpretation that the number 
of classes is fixed, possibly due to a fixed number of classes in the software 
(Cohen, 1996; Yun et al., 2016). 

2.5 Conclusions and discussion 
In this review, the aim was to make a systematic inventory of the 
misinterpretations that occur when people use histograms, as well as to 
categorize these misinterpretations along the conceptual difficulties that 
become manifest in them. It turned out that the most common conceptual 
difficulties could be related to two key concepts in statistics: data and 
distribution. The category misinterpretations that are related to the difficulties 
with the key concept of data includes misinterpretations about the number of 
variables depicted in a histogram and the measurement level of the data, 
including the wrong application of theoretical models. The category of 
misinterpretations that are related to difficulties with the key concept of 
distribution includes misinterpretations about variability, center, shape, and 
information reduction through grouping. The third and more diverse category 
of misinterpretations is related to other conceptual difficulties and includes 
having trouble linking the context to the histogram, not understanding the 
difference between a histogram of a sample and of a population, and the 
influence of ICT. The analysis of the publications in our review also led to the 
identification of a network of statistical concepts specific to interpreting 
histograms, see the theoretical background section. From our analysis, it 
furthermore became clear that two statistical concepts needed to be added to 
the key concept of data: number of variables and measurement level. These 
two concepts were not yet explicitly part of the collection of key concepts in 
statistics.  

Furthermore, our review study reveals that most publications 
investigate students’ or teachers’ notions of shape and variability, which is an 
important topic for college and university students. Hence, these publications 
focus on misinterpretations that are related to difficulties with the key concept 
of distribution. Although misinterpretations regarding identifying the number 
of variables and the measurement level of their attributes are more often 
observed, research specifically addressing these misinterpretations is scarce. 
The latter two sub-categories of misinterpretations are related to difficulties 
with the key concept of data. The data-related conceptual difficulties may be 
underlying the distribution-related conceptual difficulties, as the data (number 
of statistical variables and measurement level) define the type of graph, and in 
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turn how variability and center are depicted in the graphical representation 
(e.g., Cooper & Shore, 2010). We speculate that the persistence of people’s 
misinterpretations of histograms is partly due to overlooking the impact of 
data-related conceptual difficulties. This might also result in the 
underreporting of misinterpretations regarding data-related conceptual 
difficulties, as well as misinterpretations regarding shape and center.  

Our findings are in line with findings about mathematical graphs from 
Leinhardt et al. (1990), such as the tendency to overgeneralize. An example of 
overgeneralization is the idea that the number of axes is the number of 
measured variables (true for a case-value plot, but false for a histogram; see 
the section Identifying the measured variable only). Another example is the 
overgeneralization of the effect of shape (e.g., uniform distribution) on 
variability (see the section Variability) and of theoretical models (normal 
distribution, see the section Identifying the measurement level only). Leinhardt 
et al. also found interference with the context or daily life observations (see 
the section Context).  

According to Friel et al. (2001), the basic level of reading the data is 
often not very difficult for students for most graphs. This may be true for 
reading off a particular value, but our review shows that many 
misinterpretations are related to the data depicted in a histogram, hence, to 
reading the data (thus the key concept of data). In addition, during the 
application of the theoretical framework of statistical key concepts, it became 
clear that not only are the statistical concepts important, but also the 
connections between them, such as, for example, that grouping in bins 
influences the shape of the distribution, thus the graphical representation of 
the data. We, therefore, proposed a coherent network of statistical concepts 
relevant to research questions that may involve the interpretation of 
histograms (see the section Data analysis).  

Systematic reviews of the literature have limitations. A geographical 
selection bias seems to exist. A large proportion of the studies in this literature 
review was carried out in the United States, followed by European countries 
(see the Appendix). The English-speaking countries generally pay more 
attention to statistics in their curriculum than other countries (e.g., Franklin, 
2019). This suggests that the problem may be bigger than what was found 
here. We do not want to suggest representativeness, as we were mainly 
interested in the types of conceptual difficulties that become manifest when 
people (students, teachers, researchers, and others) interpret histograms. 

Furthermore, we speculate that the misinterpretations identified in this 
literature review also hold for Asian, African, and South American countries, as 
well as for Australia. The reasons for this speculation are that in some 
countries statistics is not yet or only recently part of the curriculum, for 
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example in Thailand (e.g., Burrill & Ben-Zvi, 2019; Franklin, 2019; González & 
Chitmun, 2019), and there are some, although not yet many, studies of Asian 
countries indicating misinterpretations when interpreting histograms (Ismail & 
Chan, 2015; Yun & Yoo, 2011; Yun et al., 2016).  

Several implications for future research and education arise from this 
review. The first is that data-related conceptual difficulties seem to be 
understudied, and, therefore, would require more explicit attention from 
researchers. Ignoring the difficulties with the concept of data may possibly 
explain the persistence of misinterpreting histograms. Researchers, teachers, 
and teacher trainers are encouraged to be more aware of the differences 
regarding distribution and data (number of variables, measurement level), the 
differences between a case-value plot, a distribution bar graph, and a 
histogram, and the consequences of these differences for shape as well as for 
assessing variability and center. Furthermore, in languages that lack distinct 
words for case-value plots, distribution bar graphs, and histograms, our 
suggestion is to create and introduce those words and implement them in the 
statistics education curriculum from elementary school level up to the 
university level, as this will support the awareness of the differences. In 
addition, this literature review adds to the framework of key concepts in 
statistics education that there is a hierarchy in those key concepts. The key 
concept data (number of variables and measurement level) is fundamental for 
a deep understanding of the key concept distribution as shape, center, and 
variability are depicted differently in different types of graphical 
representations.  

The second implication is that the role of information reduction seems 
to be understudied (see the section Theoretical background). The literature on 
information reduction is very scarce. Bakker (2004a) is one of the few 
examples indicating the difficulty of the idea of grouping. Nevertheless, 
indications for this difficulty are also found in other research (Ismail & Chan, 
2015; Lem et al., 2013c; Meletiou, 2000; Sorto, 2004). Researchers, teachers, 
and teacher trainers are advised to be aware that information reduction plays 
an important role in the following four stages when turning a case-value plot 
into a histogram. The first stage is when one of the measured variables is 
removed (resulting in, for example, a dotplot). Students who see the data in a 
graph as a pointer to the situation (Konold et al., 2015) and students who 
consider a histogram as a case-value plot might not have understood the case 
information removal phase. The second phase is when the dots in a dotplot are 
stacked into classes with a certain bin width. People who think that only the 
middle value of a bar is observed might not have understood this grouping 
phase. The third phase is when the dots are omitted from the bar, making it 
compulsory to use a second axis when absolute frequencies are used. People 
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who regard a histogram as a bivariate distribution might have problems with 
this third phase. The fourth phase, which is hardly studied, is when the 
frequency is turned into frequency density. This phase is of key importance for 
the transition to continuous probability distributions. The other two 
understudied areas are the difference between the histogram of a sample and 
of a population and the influence of the context. These two areas are only 
loosely related to histograms. 

The third implication is that future research is needed in those 
countries that are not yet included in our review to substantiate our claim that 
the identified conceptual difficulties can be found all over the world and are 
not due to a specific way of teaching or an educational system, as a 
geographical gap seems to exist in the research literature. Also, the active 
promotion of publishing in English journals of work published earlier in other 
languages is needed to make this literature available for many more 
researchers, as well as the translation of English literature into other 
languages.  

As an implication for task design in research and education, this review 
makes it clear that items containing graphs with bars without context or labels 
cannot be identified with regard to the type of graph and must be avoided in 
schoolbooks as well as assessments and research items. Furthermore, for 
languages that lack different words for different types of graphs with bars, the 
advice is to create such words—and use these in education as well as 
research—to distinguish histograms, distribution bar graphs, case-value plots, 
and time-plots.  

An implication for education—now that the conceptual difficulties that 
become manifest in the most common misinterpretations are made 
plausible—is that researchers and educators can address these more broadly 
rather than treating or remediating misinterpretations one at a time. Such a 
didactical itinerary would be consistent with the current view in statistics 
education which aims for students to develop an understanding of the key 
concepts of statistics and their interrelationship. Our overview opens up the 
possibility of systematically dealing with these misinterpretations first in 
research and eventually in elementary and secondary schools and statistics 
introductory courses, as well as developing and testing materials specially 
designed to tackle these misinterpretations. Teachers and teacher trainers 
now have access to an overview of all the common misinterpretations 
identified in the publications. This adds to their Statistical Knowledge for 
Teaching (SKT, see Groth, 2007). According to Pareja Roblin et al. (2018), an 
overview is very important as “positive student outcomes were associated 
with curriculum materials […] that provide teachers with information about 
students’ ideas” (p. 260). 
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One might conclude that histograms are too difficult to use and teach. 
Can we do without them in education and research? Our answer is no. First, 
histograms reveal some aspects of the distribution that other graphs do not 
(e.g., Pastore et al., 2017). Second, histograms are omnipresent in research 
and education and should, therefore, be learned. Third, the alternatives entail 
some of the same disadvantages such as the height misinterpretation in 
dotplots (Lyford, 2017), as well as other disadvantages such as an irregular 
shape (dotplots) or an even more advanced step in information reduction 
(boxplots; Lem et al., 2014a). Fourth, it is the key concepts underlying a 
histogram that are hard to grasp (the key concepts of data and distribution). 
Unfortunately, we cannot learn those key concepts without signs (e.g., 
histogram), as the representation of the data as well as how the distribution 
manifests itself (through its shape) strongly depends on the specific type of 
graph with bars, as we explained in the theoretical background section. It is 
when interpreting histograms that these underlying conceptual difficulties 
become manifest, making histograms a good diagnostic instrument for 
teachers and researchers as well.   
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Appendix A Codebook, samples, and misinterpretations 
In this Appendix, the provenance of participants included in the review, an 
overview of the identified misinterpretations (axial codes), and the full 
codebook can be found. This is supplementary to Chapter 2 of this dissertation 
and is published on the website of Educational Research Review. 

A.1 Provenance of participants of studies included in this review

The participants of studies included in the publications in this review come 
from the United States of America (12,959) followed by Europe (1572). Asia 
(1298) and South America (84) are relatively underrepresented (see Figure 
A.1); no African studies were found during the search. When the
misinterpretation was in the publication itself or when the number of
participants was not given, the count was set to zero.

Figure A.1 Spread of the participants included in the studies in this review 
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A.2 Samples included in the publications 

Table A.1 Publications included in this review as well as number of participants  

Publication (shorted reference) Number of participants24 
Abrahamson_2006_01 0 
Abrahamson_2006_02 0 
Abrahamson_2007 0 
Abrahamson_2008 0 
Abrahamson_2009 2 
Agro_1977 0 
Baker_2001 52 
Baker_2002 12 
Bakker_2004a 580 
Batanero_2004 117 
Behrens_1997 0 
Biehler_1997 4 
Bruno_2009 29 
Capraro_2005 134 
Carrion_Perez_2006 0 
Chan_2013 412 
Chance_2004 0 
Clayden_1990 18 
Cohen_1996 0 
Cooper_2008 186 
Cooper_2010 0 
Corredor_2008 84 
Dabos_2014 52 
delMas_2005_01 12 
delMas_2005_02 542 
delMas_2007 763 
Derouet_2016 0 
Enders_2013 80 
Eshach_2002 10 
Friel_1995 76 
Friel_1996 76 
Friel_2001 0 
Gilmartin_2000 0 
González_2014_01 4 
Hawkins_1997 0 
Huck_2016 0 
Humphrey_2014 0 

 
24 Zero students either indicates that no numbers were given (often) or that this was not relevant 
(sometimes) as—for example—the misinterpretation was in the ICT used in this publication.  
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Publication (shorted reference) Number of participants24 
Ismail_2015 412 
Kaplan_2009 67 
Kaplan_2014 341 
Karagiannakis_2013 9 
Kelly_1997 25 
Konold_1997 4 
Konold_2015 15 
Kramarski_1999 0 
Kramarski_2004 0 
Kukliansky_2016 256 
Kulm_2005 134 
Lee_1999 0 
Lee_2003 162 
Lem_2011 167 
Lem_2013a 167 
Lem_2013c 125 
Lem_2014 114 
Lem_2015 188 
Madden_2008 56 
Martin_2003 0 
McGatha_2002 24 
McKinney_2015 0 
Meletiou_2000 33 
Meletiou_2002 33 
Meletiou_2005 35 
Mevarech_1997 92 
Nuhfer_2016 0 
Olande_2014 13 
Prodromou_2006 6 
Redfern_2011 0 
Roth_2005 1 
Ruiz_1999 0 
Rumsey_2002 0 
Shaughnessy_2007 0 
Slauson_2008 53 
Sorto_2004 42 
Stevens_2012 4727 
Stone_2006  0 
Strasser_2007 0 
Tiefenbruck_2007 0 
Turegun_2011 41 
Vermette_2014 12 
Watts_2016 0 
Whitaker_2015 3324 
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Publication (shorted reference) Number of participants24 
Whitaker_2017 1881 
Wong_2009 0 
Yun_2011 0 
Yun_2016 0 
Zaidan_2012 122 
Total number of participants 15926 

 

Table A.2 Number of publications and participants per type of school 

Type of school  Number of 
publications 

Number of 
participants 

college 5 418 
college and university 2 763 
middle school 7 46 
elementary school 8 420 
elementary and secondary school 1 15 
secondary school 12 6763 
secondary school and college 1 542 
university 25 6757 
unknown or unclear 3 29 
work (teachers or researchers) 5 169 
n.a. 17 4 
Total 86 15926 

 

A.3 Overview of axial codes 

The table below gives an overview of the axial codes that were informed by 
the open codes (description of the misinterpretations). Some of the axial codes 
might only make sense to readers if they are combined with the description of 
the misinterpretations. Readers interested in specific axial codes are, 
therefore, referred to the first author. 

Table A.3 Axial codes used in the review 

Axial codes Axial codes 
all values = middle bar 
area 
ascending/descending order = smallest 
st.dev25. 
bar = observed value 

mean = st.dev. 
mean > median left skewed 
measure of variability 
median = frequency of mode 
median = median of frequency or scale 

 
25 st.dev. is standard deviation 
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Axial codes Axial codes 
bar --> all values observed 
bars can be reordered 
bars in middle = smallest st.dev. 
bell-shaped = histogram 
bell-shaped histogram = higher variability 
bell-shaped histogram = lower variability 
bumpier = higher variability 
bumpier = lower/higher variability 
choice of graph 
choosing wrong variable  
combining 2 histograms 
comparing sample(s) and population(s) 
connected bars 
context 
density 
depicted variables 
discrete = bar graph 
effect bin width 
evenly spread 
fixed number of classes 
frequency = measured value 
frequency on vertical then always 
histogram 
graph convention 
higher bars, not higher average and 
st.dev. 
histogram = bar graph 
histogram = dot plot 
histogram = scatterplot 
histogram = stem & leaf 
histogram --> boxplot 
histogram 2 variables 
hor. axis = data 
horizontal = time 
label bars 
larger frequency thus larger mean 
larger frequency thus larger median 
larger frequency thus larger variability 
larger mean thus larger st.dev. 
larger n26 = more variation 
larger n = more variation and higher mean 

median = middle class 
median = midpoint hor. axis 
median = midrange 
miscellaneous 
modality cannot change 
mode = highest frequency 
more bars = higher variability 
no influence gaps on st.dev. 
nominal measurement level 
not include effect random noise 
not noting difference in range 
number bars = number cases 
ordinal Likert scale 
ordinal scale 
outliers 
random = bell-shape 
range 
range = variability 
relating graphs 
same frequency thus same st.dev. 
same mean thus same st.dev. 
same range and shape thus same 
median 
sample = population 
shape doesn't influence variability 
skewness 
smallest st.dev. Is not smallest spread 
from center 
standardization = normality 
statistical language 
swap of axis 
symmetrical histogram = lower 
variability 
table preference 
total n is not sum frequency 
uniform shape = highest variability 
uniform shape = lowest variability 
use context 
variation = variation frequency 
wrong bin width 
wrong boundaries bins 

26 n is the number of observations shown in the graph 
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Axial codes Axial codes 
larger range or variation frequency thus 
larger mean 
largest max = more values above mean 
largest range = more values above mean 
largest st.dev. is not largest spread from 
center 
largest st.dev.: uniform shape 
largest st.dev.: U-shape 
mean < median right skewed 
mean = mean of frequency 
mean = mean of hor. axis  

wrong chance 
wrong data collection 
wrong description 
wrong labels 
wrong mean 
wrong median 
wrong skewness 
zero frequency problems 
 

 

A.4 Full text of the codebook 

The codebook categorizes the misinterpretations found in the literature, see 
Table A.4 below. These misinterpretations are not only found in students’ work 
or reasoning, but also sometimes in the work or reasoning of researchers, 
teachers, software makers, journalists, etcetera. The misinterpretations in the 
codebook are categorized at two different levels. At the first level, categories 
summarize whether misinterpretations are related to the data represented, or 
related to the distribution represented, or none of these two (miscellaneous).  

The second level of codes identifies subcategories of possible origins of 
misinterpretations. These subcategories are characterized briefly in the last 
column of the codebook and are illustrated with types of misinterpretations 
listed. The last column ends with a note when NOT to assign this code, alerting 
the second coder to the boundaries of a particular code (subcategory). 

 

Table A.4 Abstract of the codebook for data-related misinterpretations 

Selective code Assign this code if… 
Identifying the 
measured 
variable only 
(VO) 

The misinterpretation is related to identifying what was 
measured (which variable), but not to the measurement level of 
this variable. This includes the following misinterpretations: 
- frequency is regarded as a measured value (focus on the wrong 
– vertical – axis) with correct measurement level (interval/ratio – 
horizontal axis) 
- it is stated that frequency or number count on the vertical axis 
implies a histogram 
- a histogram is chosen to depict two variables, or a histogram is 
confused with a scatterplot 
- the graph is called a histogram, but has time-scale on the 
horizontal axis and the frequency is not a count of a time interval 
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Selective code Assign this code if… 
represented on the horizontal axis (e.g., the percentage of 
unemployed in 2018, 2019, …, or the number of mortalities 
during certain time periods in a day). An example of a correct 
histogram with time-scale would be if it was counted how many 
times the postman worked 5 hours (per day), how many times 6 
hours per day, and so on. When in doubt, calculate the 
arithmetic mean. If that is the mean of the time, it is a 
histogram. If it is the mean of something else (number of 
mortalities, number of unemployed), it is NOT a histogram and 
this code should be assigned.  
- two histograms are combined without extra information
available
- a wrong choice is made of variable(s) that are or will be
depicted in the histogram (e.g., a histogram of the distribution of
age is asked, and salary was chosen on the horizontal axis)
- the variable depicted in the histogram is not the one depicted
in the table
- people use the number of bars as the number of measured
values
- a statement is made such as: bars on the right-hand side of the
graph occur later in time
- the time-scale issue is also related to the context
- correlation, association or trend in time is mentioned
Do not assign this code if:
- there is also an issue with the measurement level (see the code
identifying the measured variable and measurement level)

Measurement 
level only (MO) 

The misinterpretation is related to only the measurement level 
of this variable, including:  
- what is called a ‘histogram’ is actually a distribution bar graph
(nominal or ordinal data on horizontal, (relative) frequency on
the vertical)
- a statement is made about continuous distributions (e.g.,
normal distribution) in a graph with nominal or ordinal data
- a bar graph (nominal or ordinal data) with a ‘bell-shape’ is
chosen instead of a histogram
- the intervals (e.g., the interval “[6, 7>”) are seen as labels, thus
nominal or ordinal measurement level (often inferred by the
researchers when instead of a number scale on the horizontal
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Selective code Assign this code if… 
axis, the interval notation is used as a label underneath each 
bar)27  
Do not assign this code if: 
- the measurement level of the data represented is ratio or 
interval (exception: intervals with labels; see above) 
- a statement about the normal distribution is related to 
variability in a histogram (e.g., a normal distribution has the 
lowest standard deviation; see the code variability) or to 
randomness (e.g., if the sample is random, the population has a 
normal distribution; see the code population) 
 

Identifying the 
measured 
variable and 
measurement 
level 
(VM) 

Both previous misinterpretations are at stake, for example if: 
- frequency is regarded as a measured value (focus on the 
wrong—vertical—axis) in combination with a wrong 
measurement level (nominal or ordinal measured values; 
horizontal axis) 
- a statement is made that bars can be rearranged 
- bar graph and histogram are used as synonyms  
- it is unclear whether two variables are involved or one 
Do not assign this code if: 
- the authors who made the mistake are not native English 
speakers nor statistics teachers (see the language code) 
- a statement is made that a histogram depicts a relationship 
between two variables (without indication of measurement level 
or with interval or ratio measurement level; see the code 
identifying the measured variable only) 
- the software does not distinguish between bar graphs and 
histograms (see the code ICT) 

 

The distribution-related codes category consists of four interrelated codes: 
variability, center, shape and grouping. Variability, for example, can be 
measured in terms of standard deviation and this is a measure relative to the 
center of the distribution. Similarly, the shape of the distribution is often 
assessed in relation to variability (e.g., an incorrect statement such as: a 
uniform distribution has the highest possible variability). We, therefore, made 
choices. If misinterpretations can be assigned to two subcategories (codes), 
the following hierarchy applies: grouping takes priority over all other 
subcategories, then variability, then measures of center, and finally shape. We 

 
27 Some researchers report this as a mistake or misconception, and we, therefore, included this 
in the review. One can discuss if labeling itself really is a problem, although there is indeed 
evidence that labeling can lead to or does stem from misinterpretations.  
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made this hierarchy keeping in mind that, for example, variability is often 
regarded as a more difficult concept to grasp than center.  

Table A.5 Abstract of the codebook for distribution-related misinterpretations 

Selective code Assign this code if… 
Variability (VY) (A measure of) variability is wrongly used in relation to the shape 

of the distribution in a histogram, including the following 
misinterpretations:  
- variability is assessed as variation in the heights of the bars (thus
variation in the frequency), instead of variation around the mean
(e.g., range of measured value, IQR). This includes using words like
‘bumpy’.
- measures of variability such as standard deviation and IQR are
wrongly used in a histogram, (e.g., if two symmetrical histograms
have the same mean; their standard deviation is the same)
-a statement about symmetry in relation to variability (e.g., a more
symmetrical histogram has a variability).
Do not assign this code if:
- a statement is made about continuous distributions (e.g., normal
distribution) in a graph with nominal or ordinal data (see the code
measurement level only)
- if the histogram is compared with another type of graph (see the
code shape)
- people use the number of bars as the number of measured
values (see the code identifying the measured variable only)

Center 
(CE) 

(A measure of) center is wrongly used in relation to the shape of 
the distribution in a histogram, including the following 
misinterpretations:  
- mean, mode or median are assessed of the frequency
- heights of the bars are used for mean, mode, median
- shape (e.g., skewness) in the histogram is assessed with
measures of center
- people cannot estimate measure(s) of center from a histogram28

Do not assign this code if:
- center and variability are both assessed (see the code
variability29)

28 Some people might argue that a histogram is normally not used or made for estimating the 
mean. Nevertheless, as variability in a histogram is assessed, for example, relative to the mean 
of the data, one has to have at least a rough estimation of what the mean is to correctly 
interpret the variability. 
29 The reason for this choice is that variability is regarded as variation around a measure of 
center.  
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Selective code Assign this code if… 
- people use the number of bars as the number of measured 
values (see the code identifying the measured variable only) 
 

Shape 
(SH) 

The misinterpretation is related to how the distribution of the data 
is depicted in a histogram, including graph conventions. The 
following are examples of misinterpretations: 
- dotplots and stem-and-leaf plots are called histograms 
- a histogram is wrongly matched to or compared with another 
type of graph (e.g., boxplot of the same data) 
- graph conventions for histograms are not met; including 
statements about connected bars or discreteness of data or when 
space is left between bars in a histogram30 
- any graph can depict the shape of a data distribution (e.g., the 
authors state that people do not understand that a graph like a 
histogram is needed to describe shape, center and variation31) 
- the intervals of bars with a frequency of zero are left out or a bar 
is used when the frequency is zero 
- statements are made that a table is more precise than a graph 
(thus not taking variability32 and random noise into account) 
- not knowing the purpose of different graphical representations, 
including histograms 
- area or density is not correctly used 
- outliers are missed or not taken into account 
Do not assign this code if: 
- a statement is made about continuous distributions (e.g., normal 
distribution) in a graph with nominal or ordinal data (see the code 
measurement level only) 
- shape or gaps are used in relation to center (see the code center) 
- shape or gaps are used in relation to variability (see the code 
variability) 
- density or area are wrongly used in relation to the bin width (see 
the code grouping) 
- the variables in the graphs are not the same (see the code 
identifying the measured variable only) 
- people use the number of bars as the number of measured 
values (see the code identifying the measured variable only) 
 

 
30 We are aware that some researchers will not regard this as a misinterpretation.  
31 We are aware that other graphs exist that describe shape, center and spread.  
32 Variability caused by sampling. 
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Selective code Assign this code if… 
Grouping 
(GR) 

The misinterpretation is a misunderstanding of the process of 
information reduction33 encompassed in a histogram leading to a 
possibly different shape or modality (e.g., bimodal, depending on 
the bin width), including the following misinterpretations: 
- a statement is made that all values in a bar or only the midpoint
are/is measured or when the data in the histogram are used as
raw data (not taking into account the information reduction
caused by grouping into bins)
- a wrong bin width is chosen (e.g., different bin widths without
using density on the vertical axis), or not enough (e.g., two) or too
many bins (e.g., a ‘bin’ for every value in a continuous distribution,
often resulting in a graph with only frequencies of one) in relation
to the given context
- area or density is wrongly used in relation to the bin width
Do not assign this code if:
- the wrong bin width is generated by the software (see the code
ICT)

Table A.6 Abstract of the codebook for miscellaneous misinterpretations 

Selective code Assign this code if… 
Context (CO) The misinterpretation is due to the context or the research question, 

including the following: 
- shape, center, and variation are incorrectly, or not at all, related to
the context
- a wrong description of the distribution in a histogram is given in
relation to context
- the context or personal knowledge is used instead of the given
data in the histogram
Do not assign this code if:
- correlation, association, or trend over time is mentioned (see the
code identifying the measured variable only).

Population (PO) The misinterpretation of the histogram is related to the distinction 
between sample and population, including the following: 
- a statement is made indicating that sample and population in a
histogram are the same (e.g., distribution, shape)

33 One could argue that grouping is related to data reduction and, therefore, should be 
categorized in the data-related category. However, the data reduction (information reduction) 
directly influences the shape as well as the modality. Therefore, it was classified as distribution-
related.  
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Selective code Assign this code if… 
- the histogram (of a sample) is regarded as a precise representation 
of the population (random noise in sample or population is not 
taken into account) 
- a statement is made that the sampling distribution with z- or T-
scores has a normal distribution thus the population has a normal 
distribution 
 

ICT 
(IT) 

The misinterpretation is embedded in the software by the software 
designers, including the following: 
- the software does not distinguish between bar graphs and 
histograms  
- histograms produced by ICT have wrong or strange boundaries  
- (use of ICT leads to) the idea that a fixed number of classes is 
needed (e.g., 10) with or without ICT, regardless of situation  
 

Unknown 
(U) 

A misinterpretation is mentioned by the authors of the publication 
but is not specific enough to be coded.  
 

Translation 
(T) 

The misinterpretation may be caused by translation, including the 
following:  
- if authors use the word bar graph for a histogram—or as a 
synonym—and are not from a native English-speaking country.  
Do not assign the code if  
- the authors are teachers/researchers of statistics (education)34.  

 
  

 
34 In statistics, a distinction is made between histograms and other types of graphs with bars. 
Researchers and teachers investigating statistics education are expected to be aware of this, 
even in non-English speaking countries.  
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Secondary school students’ strategies when interpreting 
histograms and case-value plots: An eye-tracking study 
“I never am really satisfied that I understand anything; because, understand it 
well as I may, my comprehension can only be an infinitesimal fraction of all I 
want to understand about the many connections and relations which occur to 
me, how the matter in question was first thought of or arrived at…” 35 
Ada Lovelace  

This chapter is based on  
Boels, L., Bakker, A., Van Dooren, W., & Drijvers, P. (2022). Secondary school 
students’ strategies when interpreting histograms and case-value plots: An 
eye-tracking study [Manuscript submitted for publication]. Freudenthal 
Institute, Utrecht University. 

35 https://www.goodreads.com/author/show/3950749.Ada_Lovelace 

3 
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Abstract Many students persistently misinterpret histograms. A literature 
review made plausible that students’ difficulties with statistical key concepts 
become manifest in most common misinterpretations. In line with suggestions 
from that review, in the present study, we address students’ conceptual 
difficulties more broadly, rather than focusing on a specific misinterpretation. 
Students’ difficulties related to the statistical key concepts data and 
distribution can be observed when students confuse histograms with look-
alikes, including case-value plots. However, little was known about students’ 
strategies when solving histogram tasks. Using students’ gaze data, we address 
the question: how and how well do Grades 10–12 pre-university track students 
estimate and compare arithmetic means of histograms and case-value plots? 
We designed four item types: two requiring estimation of the mean and two 
requiring comparison of means. Gaze data of 50 [15–19 years old] Grades 10–
12 students solving these items were combined with data from cued recall. We 
found five strategies. Two hypothesized most common strategies for 
estimating means were confirmed: a typical case-value plot strategy and a 
histogram (interpretation) strategy. A third, new, count-and-compute strategy 
was found. Two more strategies were found for comparing case-value plots 
and histograms: a distribution-informed histogram strategy and a case-value 
plot strategy, both taking specific features of the distribution into account. In 
43% of the trials, students used a correct strategy for estimating the mean 
from one histogram. In 50% of the trials, students used a correct strategy for 
comparing two histograms. Surprisingly, some students used a distribution-
informed histogram strategy for comparing two case-value plots. As several of 
the students’ strategies related to how and where the data and the 
distribution of these data are depicted in histograms, future interventions 
should aim at supporting students in understanding of these concepts in 
histograms. A methodological advantage of eye-tracking data collection is that 
it reveals more details about students’ thinking processes than thinking aloud 
protocols. Teachers can use gaze patterns (scanpaths) to draw students’ 
attention to correct and incorrect interpretations of graphs. We speculate that 
gaze data can be re-used to underpin ideas about the sensorimotor origin of 
learning mathematics. 

 

Keywords Eye-tracking (ET); Histograms; Problem-solving strategy; Graphs; 
Statistics education; Misinterpretation. 
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3.1 Interpreting histograms 
The ability to understand and communicate through graphs—called graphicacy 
(Balchin & Coleman, 1966)—is an important skill for citizens (Ben-Zvi & 
Garfield, 2004a). “Looking at the data” is essential (Watson & Moritz, 1999), as 
graphs can reveal data patterns that might stay hidden when computational 
measures or hypothesis tests alone are used and even lead to opposite 
conclusions (Pastore et al., 2017). In addition to this general importance of 
statistical graphs, histograms are considered of key importance for introducing 
continuous probability distributions. Nevertheless, difficulties with 
understanding and interpreting histograms have been reported for several 
decades now (e.g., Cooper, 2018; Pettibone & Diamond, 1972). 

A review of the literature revealed many misinterpretations regarding 
histograms (Chapter 2). Based on that review, we conjectured that overlooking 
the importance of data-related conceptual difficulties in previous research—
and interventions addressing these difficulties—might partly have contributed 
to the persistence of people’s misinterpretations. In addition, we proposed to 
address these conceptual difficulties more broadly rather than focusing 
separately on each specific misinterpretation. In the present study we, 
therefore, examine several data- and distribution-related conceptual 
difficulties concerning histograms. 

Students’ difficulties related to the statistical key concepts data and 
distribution can be observed when students confuse histograms with look-
alikes, including case-value plots (Cooper, 2018). Figure 3.1 illustrates one 
common confusion when the questions are posed whether the arithmetic 
mean and variation are higher in the graph on the left, or the right, or 
approximately the same for both? To answer these questions, one first needs 
to understand what data are depicted in these graphs. In the histogram (left), 
weight of packages is on the horizontal scale and ranges between 0–9 kg. The 
first bar contains twelve packages with a weight between 0–1 kg. In total, 
there are 138 packages. The mean weight is around 4.5 kg and can be 
estimated on the horizontal axis. In the case-value plot (right), nine students 
collected garbage. Garbage weights range between 6–9 kg with a mean of 
around 7.7 kilograms, which can be estimated on the vertical axis. At first 
glance, the variation in both graphs might seem the same. However, in this 
example, the variation is the highest in the histogram, regardless of whether 
an informal measure of variation (range) is used or a more formal one 
(standard deviation).  
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Figure 3.1 A histogram (left) with one statistical variable (weight) and a case-value plot 
(right) with two statistical variables (name and weight) 

 

The example above shows that understanding data in histograms includes an 
understanding of what, how many, and where the variables are depicted in a 
histogram. For example, a histogram (Figure 3.1, left) has one statistical 
variable located along the horizontal axis (here: weight). A case-value plot 
(Figure 3.1, right) has two statistical variables—here: name and weight—
represented along two different axes.  

Many secondary school students struggle with interpreting histograms. 
Most of 412 Malaysian Grade 10 students most incorrectly calculated the 
mean from a histogram (Ismail & Chan, 2015) by dividing the sum of the 
frequencies by the number of bars—an approach only correct for finding the 
mean from a case-value plot if frequencies were the measured values. In a 
study by Whitaker and Jacobbe (2017), around 3,700 Grades 6–12 United 
States students answered one or more questions about histograms. A common 
misinterpretation when comparing histograms was that the least variability 
from the mean was understood as the least variation in the heights of bars. 
Thus, students compared frequencies instead of measured values. Similarly, in 
an item about height, some students thought that taller bars in a histogram 
indicate taller instead of more people. In summary, people find it difficult to 
identify the statistical variable and its measurement level depicted in a 
histogram (Chapter 2). This identification is part of the key concept of data 
(Ben-Zvi & Garfield, 2004a).  

Despite several decades of carefully designed interventions students’ 
difficulties persist (e.g., Delport, 2020). As many of them relate to confusing 
histograms with case-value plots, we decided to examine how this confusion 
arises. Various studies draw conclusions from students’ final answers (e.g., 
Whitaker & Jacobbe, 2017). Some studies used other approaches, including 
classroom observations (Bakker, 2004a), concurrent think-aloud protocols and 
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observations or interviews (Stone, 2006), or students’ written explanations to 
open answer questions (Whitaker & Jacobbe, 2017). However, little was still 
known about students’ detailed thinking processes for reaching their 
answers—and thus their strategies—when interpreting histograms and case-
value plots.  

In this study, we aim to better understand how students interpret data 
in histograms and case-value plots. By observing students’ actions—estimating 
and comparing means from these graphs—it becomes clear how students use 
their conceptual knowledge of the data in these graphs, hence, what strategies 
they employ. Therefore, the research question is: how and how well do Grades 
10–12 pre-university track students estimate and compare arithmetic means of 
histograms and case-value plots? We use eye-tracking as a tool to observe 
some of students’ actions. In the following section we elaborate on some 
advantages and disadvantages of using such tool.  

3.2 Theoretical background 
3.2.1 The mean as a representative value 

Modeling and interpreting distributions as a center with variation around it is 
important for statistical thinking and modeling. Historically, the mean evolved 
from estimations of a representative value (Bakker & Gravemeijer, 2006). 
Therefore, students need to learn to estimate the center of a data set (Bakker, 
2003)—represented in a histogram—and judge the variation around this 
center. Bar representations can be used for visually estimating the mean (Cai 
et al., 1999). Moreover, Gal (1995) argues that: “Asking students to compute 
or estimate averages from data presented in […a] histogram […] can often 
reveal certain strengths and flaws in students’ knowledge” (p. 99).  

Most secondary school students (Grades 7–12; 12–18 years old) know 
how to calculate the arithmetic mean from raw data. Applied to a histogram, 
this calculation could be multiplying the height of each bar with its middle 
value, summing the results, and dividing this answer by the sum of the 
frequencies. Besides this school-learned algorithm, several approaches exist 
for finding an average from a histogram including mode, average as 
reasonable—centered within the data—midpoint or median, and the point 
where the data are in balance (Mokros & Russell, 1995).  

Comparing groups is important for statistical literacy, can motivate 
students (e.g., Konold & Pollatsek, 2002), and is recommended for introducing 
hypothesis testing (Watson & Moritz, 1999). Group comparison is also 
considered a way for teaching statistical reasoning (Makar & Confrey, 2004). 
“All students […] should be encouraged to draw comparisons between 
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groups.” (GAISE II, Bargagliotti et al., 2020, p. 10). The mean—as a 
representative value of a group—can be used for such comparisons. We, 
therefore, designed items for which students needed to compare and estimate 
means. For comparing groups, Frischemeier and Biehler (2016) found six 
approaches: comparing center (means, median), spread (IQR, range), shift, 
skewness, percentages (in histograms: areas) below or above a certain value 
called p-based and values belonging to (e.g., first) quartiles—called q-based. 

3.2.2 The potential of eye-tracking for graph interpretation research 

Eye movements are our most frequent motor movements and play an 
important role in our cognitive processes (Spivey & Dale, 2011). Gaze data can 
provide a special window into students’ thinking processes on a micro level. 
Although it is generally accepted that such processes can be inferred from eye 
movements (e.g., Kok & Jarodzka, 2017), there is no simple relation between 
the two (e.g., Orquin & Holmqvist, 2017). For example, not every eye 
movement is part of students’ solving strategy (e.g., Schindler & Lilienthal, 
2019).  

Gaze data can provide evidence of actions that are related to specific 
concepts (e.g., Chumachemko et al., 2014; Schindler et al., 2021; Schindler & 
Lilienthal, 2019), but a form of data triangulation is often useful. In this study, 
we combined the gaze data with data from cued recall. According to Van Gog 
et al. (2005), the advantage of recall is that it often contains more information 
on the ‘why’ and ‘how’, hence on students’ strategies, compared to thinking 
aloud. The disadvantage, however, is that students may have forgotten their 
strategy after completing all items. This risk can be reduced by cueing 
students: having them look back at their eye movements (e.g., Kragten et al., 
2015; Van Gog & Jarodzka, 2013). 

The use of gaze data on graph items for finding students’ strategies has 
several advantages over other data collection methods. First, most people 
cannot manipulate their gazes as they are not aware of their eye movements. 
Second, eye movements can reveal thinking processes that students are not 
aware of or cannot articulate (Green et al., 2007). Third, thinking aloud can 
slow down or alter the problem-solving process and influence eye movements 
(e.g., Dickson et al., 2000). Fourth, students who think aloud might only report 
what is readily available or what they think is expected (Wilson, 1994). Last, 
gaze data can reveal students’ strategies toward the answer. This makes it 
possible to detect whether students used a correct strategy despite an 
incorrect answer—or vice versa. 

Eye-tracking is quite often used for investigating how students solve 
mathematical problems (e.g., Lai et al., 2013; Lilienthal & Schindler, 2019). A 
review of eye-tracking studies in mathematics education showed that gaze 
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data are particularly suitable for studying processes and subconscious 
mathematical thinking (Strohmaier et al., 2020). Research in the last two 
decades demonstrates that gaze data are suitable for studying students’ 
thinking processes for many other graph types (e.g., Andrá et al., 2015). In a 
study using stacked dotplots—similar to histograms but with all cases visible 
and vertically stacked—novices and experts both mostly used global 
comparison methods like displacements of means and modal clumps when 
comparing two groups, experts more than novices (Khalil, 2005). In addition, 
several novices used local comparison methods, mostly comparing similar 
parts of both graphs. Recently, Schreiter & Vogel (2023) found similar patterns 
when tracking the gazes of Grade 6 students. Taken together this suggested 
that eye-tracking would fit our aim to study details of students’ strategies 
while solving statistical graphs. 

3.2.3 Considerations for choosing gaze metrics 

Various gaze metrics can be used in eye-tracking research: temporal, count, or 
spatial. A review study on the use of gaze data in education (Lai et al., 2013) 
shows that cognitive researchers often use temporal metrics to analyze gaze 
data (e.g., total gaze or fixation duration or total dwell time, time to first 
fixation, total reading time) followed by count (e.g., fixation count). A fixation 
is where people look at the screen 36. Saccades are relatively fast transitions 
between two fixations. 

Some of the metrics—for instance, total dwell time—are nowadays 
considered a threat to the validity of the research (Orquin & Holmqvist, 2017). 
To calculate such metrics, areas of interest (AOIs) that seem relevant for the 
given item need to be defined. The choice of number and size of AOIs 
influences results on those metrics. The least used measures are spatial (e.g., 
scanpath, fixation position). Spatial measures can both be used independently 
or combined with AOIs. 

Temporal metrics have the advantage of being easy to compute. The 
disadvantage, however, is that they often provide only global insight into 
students’ thinking processes, as many gaze data details are ignored. Traditional 
temporal metrics, for example, can hide visual scanning patterns (Goldberg & 
Helfman, 2010). Such general measures do not seem to provide topic-specific 
guidance needed for learning or instruction on that topic. Spatial measures, 
such as scanpaths, seem better suited for providing detailed information about 

36 A “period of time during which a specific part of [item on screen] is looked at and thereby 
projected to a relatively constant location on the retina […] operationalized as a relatively still 
gaze position in the eye-tracker signal implemented using the [Tobii] algorithm.” (Hessels et al., 
2018, p. 22) 
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students’ thinking processes (Hyönä, 2010) and are advised for problem-
solving research (Tai et al., 2006). The use of students’ scanpaths for 
identifying strategies is rare (Epelboim & Suppes, 2001). The disadvantage of 
using scanpaths is that it often requires time-consuming qualitative analyses of 
eye-movement data (Alemdag & Cagiltay, 2018), although machine learning 
algorithms may be helpful in analyzing scanpaths from heatmaps, (Schindler et 
al., 2021), order of AOIs (Garcia Moreno-Esteva et al., 2018) and geometrical 
vectors (Chapter 4; Jarodzka et al., 2010; Schreiter & Vogel, 2023).  

From the pilot study—described in the next section—with six university 
students (Boels et al., 2018), we learned that students’ scanpaths—thus their 
strategies—typically differ within the graph area (Figure 3.2). In contrast to 
most existing eye-tracking studies that define scanpaths as a sequence of AOI 
transitions (e.g., Garcia Moreno-Esteva et al., 2018), here a scanpath is defined 
as a sequence of fixations and saccades within an AOI (graph area). Therefore, 
we characterized the perceptual form of a sequence of fixations and saccades 
on the graph area.  

3.2.4 Pilot study 

In an exploratory pilot study with six university students, we found two main 
strategies for estimating the mean from single histograms and case-value 
plots: a histogram strategy and a case-value plot strategy (Boels et al., 2018). 
First, in a ‘typical’ histogram strategy, students interpreted the graph at hand 
as a histogram. Although this strategy can initially be applied to both graph 
types (Figure 3.2, top), it is only appropriate for histograms. In this strategy, 
students visually search for the mean on the horizontal axis, often using a 
point on this axis where the distribution in the graph seems in balance. 
Students’ gazes go up and down between a point on the horizontal axis and 
the top of the bars, resulting in a specific perceptual form of their scanpaths on 
the graph area: a vertical line. Although there are other correct strategies for 
finding the mean from a histogram, students did not use these in the pilot 
study, possibly because they were asked to estimate from the graph on the 
screen. 

Second, in a ‘typical’ case-value plot strategy, students visually search 
for the mean on the vertical axis, meanwhile often ‘flattening’ the bars, 
sometimes referring to an imaginary horizontal line (Figure 3.2, bottom). In 
this strategy, students interpreted the graph as a case-value plot and their 
gazes went back and forth between a point on the vertical axis and the middle 
of the bars, resulting in a horizontal scanpath on the graph area. 
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Figure 3.2. Examples of gaze patterns on histograms and case-value plots 

Note. Top: histogram (interpretation) strategy on histogram (left; similar to Item06) 
and initial application to a case-value plot (right, Item04). Bottom: case-value plot 
(interpretation) strategy applied to a histogram (left,) and to a case-value plot (right). 
Circles indicate fixations; thin lines between the circles indicate saccades. In this, and 
following figures with scanpaths, axis, and graph titles are translated into English 
whenever possible. Horizontal or vertical line segments—indicating scanpaths—are 
superimposed for the reader’s convenience. The barely visible numbers on the circles 
indicate the order of fixations.  

Our pilot study made us hypothesize the existence of the above-described two 
main student strategies for estimating the mean in histograms and case-value 
plots. In the present article, we check the commonality of these strategies in a 
larger sample than Boels et al. (2019a). Furthermore, we now (1) also explore 
strategies for comparing two graphs, (2) report on how gaze data reveal the 
imaginary object students talked about (e.g., horizontal line), (3) address the 
uniqueness and potential of considering the perceptual form of scanpaths on 
one AOI compared to other metrics and (4) discuss how gaze data could be re-
used to underpin ideas about the sensorimotor origin of learning mathematics. 
Furthermore, we added a section on (5) the potential of eye-tracking for graph 
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interpretation research, (6) considerations for choosing gaze data metrics, and 
(7) lessons learned on doing eye-tracking research for novices in this field 
(Appendix A of this chapter). 

3.3 Method 
3.3.1 Participants and school curriculum 

Gaze data were collected from 50 Grades 10–12 pre-university track students 
(Table 3.1) from a Dutch public secondary school [15–19 years old; mean = 
16.31 years]; 23 males, 27 females. Each student was individually given the 
items in a separate room in their own school. Participation was voluntary; 
informed consent was signed and permission from the Utrecht University 
ethical committee was obtained. Participants received a small gift for their 
participation. Dutch students can choose four different mathematics levels 
starting from Grade 10 (Table 3.2). 

Table 3.1 Grade level and age of participants. One participant did not provide details 
on grade, another one not on age (see also Chapter 3)  

Grade Number of participants  Age Number of participants 
10 20  15 12 
11 17  16 19 
12 12  17 10 
Unknown 1  18 7 
Total 50  19 1 
  Unknown 1 
  Total 50 

Note. Due to legislation, data on ethnicity cannot be collected. In the Netherlands, 
there is hardly any difference between public and private schools, nor between city, 
suburban, and rural schools. Private schools are rare. 

Table 3.2 Choice of mathematics course per grade level 

Mathematics Grade 10 Grade 11 Grade 12 Unknown Total 
A  13 10 4 1 28 
A and B   1  1 
B  5 3 3  11 
B and D 2 3 4  9 
C   1   1 
Total 20 17 12 1 50 

Note. The content of the different types of mathematics is, according to Daemen et al. 
(2020), as follows: A—applied analysis and statistics in economics/health; B—analytic 
geometry, and analysis, formal or applied in engineering/science; C—liberal arts topics, 
e.g., statistics, logic, symmetry, perspective and D—more analysis, Euclidean 
geometry, statistics, other applications in engineering/science. 
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The textbooks used in this secondary school had one histogram—referred to as 
bar graphs—in Grades 7 and 9, and around five in Grade 8. Students with 
Mathematics A, D, or C re-encounter histograms in Grades 10–12; students 
with Mathematics B re-encounter histograms in Grade 11 as part of a school-
selected topic. Textbooks sometimes confuse histograms and case-value plots 
and pay no attention to relevant differences. 

3.3.2 Materials 

Students solved 25 items. Only the first twelve are relevant for the present 
study and included four different item types: two single graph types—a 
histogram or a case-value plot—and two types with two histograms or two 
case-value plots (Figure 3.3). For each item type, we constructed three 
versions. The question for all single graph items was what the approximate 
mean weight was, either per package (histogram) or per person (case-value 
plot). The question posed in the double graph items was which graph had the 
higher mean weight, with three answer options: left, right, or that both had 
(approximately) the same mean weight. Most items were right-skewed and 
double graphs all had pair-wise similar skewness, shapes, and symmetry 
(Figure 3.3, middle and right). In two double graph items, for example, one 
graph was shifted to the right, which is relevant for histograms but irrelevant 
for case-value plots as bars can be reordered in the latter. As students often do 
not understand the influence of bars with zero ‘height’ (e.g., delMas & Liu, 
2005), we added some items with ‘zero’ bars. We also chose a non-ambiguous 
context (weight), as some misinterpretations are related to the context or 
appear when context is missing (e.g., Lem et al., 2013c; Meletiou, 2000).  

Figure 3.3 Graphs used in Item02 (left) and Item03 (middle and right) 

Note. The answer for the histogram (left) is approximately 2.7 [1.6–3.8]. The answer 
for comparing the case-value plots (middle and right) is that the mean is higher in the 
right-hand graph. 



Chapter 3 

88 

3.3.3 Eye-tracking apparatus 

A Tobii XII-60 (sampling rate: 60 Hz) was placed on an HP ProBook 6360b 
between the 13-inch screen (refresh rate: 59 Hz) and keyboard (Figure 3.4). 
Participants used a chin rest. Gaze data were recorded and processed with 
Tobii Studio software version 3.4.5 (Tobii, n.d.-a). The calibration procedure 
consisted of a 9-point calibration; this software has no built-in validation 
procedure. Therefore, we included a validation screen in the set-up at the 
start, after each item, and at the end. Fixations and saccades are calculated by 
the Tobii software.  

Good data quality can be hard to achieve in an eye-tracking study. 
Nevertheless, no students were excluded from the data set, as the data loss 
per trial (averaged over all participants) and per participant (averaged over all 
items) were below the exclusion point (34% or more). Accuracy and precision 
are especially important when using temporal or count measures as—for 
example—a low accuracy can result in fixations being classified to a different 
AOI than where participants actually looked. In our qualitative study—where 
scanpaths from videos of eye movements were used—accuracy and precision 
have less influence on the final results. The mean accuracy is 56.6 pixels (1.16°) 
with the highest accuracy on the graph area (mean 13.4 pixels or 0.27°). The 
average precision (0.58°; RMS-S2S; Holmqvist et al., 2023) is considered good. 

Figure 3.4 Set-up of the experiment (person in the picture did not participate). Red 
oval: eye-tracker placed on the laptop 

 



Students’ strategies when interpreting histograms and case-value plots: An ET study 

89 

3.3.4 Data collection 

Data were collected on the following: characteristics of participants (e.g., age, 
prior knowledge), students’ answers, answer correctness, and solution strategy 
through cued recall. Students’ gaze data on graph tasks behind a laptop were 
collected. The Tobii software collected x- and y-coordinates of the eyes on the 
screen for each time stamp and produced videos of smoothed eye movements 
overlaid on the screen image for each item. The video also displayed which 
answer students clicked on in the double graph, multiple-choice items. For the 
single graph items, students answered verbally. Furthermore, we asked half of 
the students immediately after they finished the 25 items what strategies they 
used. To this end, we used students’ own gaze data for a cued recall of what 
they thought when solving the item. 

We illuminated the location where students looked—through a kind of 
spotlight—and made the rest of the graph darker. We preferred this method 
over having students look back at their fixations (e.g., red dots) for two 
reasons. First, it may prevent students from making different eye movements 
when looking back—and describing the corresponding strategy—instead of the 
strategy they initially used (M. Kragten, personal communication, March 8, 
2017). Second, this made visible the exact information that the learner had 
looked at, instead of the information being covered by—for example—a red 
dot (Jarodzka et al., 2013). 

3.3.5 Data analysis 

We first discuss how we analyzed and coded single graph items based on the 
hypothesis of the existence of two typical strategies as found in the pilot study. 
Next, we discuss the analysis of double graph items.  
Single graph items 
As students were asked to estimate the mean, answer ranges for correct 
answers were set to the mean +/- 1.1 based on spread in experts’ answers, see 
Appendix A of this chapter. A pragmatic iterative approach was used for coding 
gaze data (Tracy, 2013) that alternated between existing explanations and 
emergent interpretations. Hence, although we started with two predefined 
categories (deductive approach, Twining et al., 2017), we used open coding 
that allowed other strategies to emerge (inductive approach). The unit of 
analysis was one trial. Note that in mathematics education we usually talk 
about an item, task, or problem. In eye-tracking research, the gazes of a 
student solving one such item are called a trial. 
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To analyze students’ scanpaths, the first author qualitatively coded 
video data 37 of eye movements on single graph items (Table 3.3). In the pilot 
study (Boels et al., 2018), we found two strategies that led to two predefined 
coding categories: a ‘typical’ histogram strategy associated with a vertical 
scanpath on the graph area and a ‘typical’ case-value plot strategy associated 
with a horizontal scanpath on the graph area (Figure 3.2). In the present study, 
a third strategy emerged from the data during coding: count-and-compute, 
associated with a zigzag scanpath from the vertical axis to the top of bars, 
sometimes followed by gazes on almost all names or numbers on the bottom 
of the bars along the horizontal axis (Figure 3.5). This strategy led to a correct 
answer for case-value plots but not for histograms. Our interpretation—
supported by triangulation with verbal data—is that students added the 
heights of all bars and divided by the number of bars:  

 

StudentL13: Looking at the number of people [frequency] and at the weight 
and again I added up [frequencies] here and divided [this sum] by 
the number of people. 

Table 3.3 Gaze data single graph items (* predefined categories) 

Code Assign this code if most of the gazes on the graph area are 
Case-value 
plot strategy* 

- horizontal (e.g., from vertical axis to a bar in the graph) and 
approximately on the same height 
- at specific numbers on the vertical axis 
Do not assign this code if one of the count-and-compute strategy 
options hold (see below). 

Count-and-
compute 
strategy 

- horizontal and clearly go from the vertical axis to (almost) all (top 
of the) bars (zigzag pattern or repeating Z-pattern) 
- jump underneath the horizontal axis or bottom of bars from one 
to the next (for almost all bars) 

Histogram 
strategy* 

- vertical (e.g., from horizontal axis to the top of a bar in the graph) 
and approximately on the same position 
- at specific numbers on the horizontal axis 
Do not assign this code if one of the count-and-compute strategy 
options hold (see above). 

 

For coding the verbal reports, a predefined codebook was used with both 
typical strategies (Table 3.4). In some cases, the verbal data allowed us to 
distinguish variations of strategies that might be associated with the same 
scanpath. In the median and mode strategy, students correctly understood 
where to find the data in the histogram but took an incorrect measure of 

 
37 We use static gaze plots to report results instead of video stills which would require much 
more figures to show scanpaths. 
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center. As we found no consistent way of detecting this strategy from the gaze 
data, we reported this in the verbal data only and did not use it for the final 
coding in the scanpath analysis. As anticipated, some students described a 
strategy during the recall that differed from the strategy that was visible from 
their gazes and answer.  

Table 3.4 Verbal data single graph items (* predefined categories) 

Code Assign this code if a student talks about 
Case-value plot 
strategy* 

- using the height of one or more bars to determine the mean
- a horizontal line

Count-and-
compute strategy 

- adding the heights of the bars and divides the answer by the
number (9) of bars

Histogram 
strategy* 

- using a balance or balancing point to find the mean

Median strategy - making areas left and right in the graph the same. Can only
be assigned for histograms.

Mode strategy - using the weight that belongs to the highest bar. Can only be
assigned for histograms.

Final coding was obtained by triangulating the coding of the gaze data for one 
trial with the coding of the verbal data of the same trial when available. 
Whenever there was a discrepancy, the video of the gazes was reconsidered. 
The video code—most often similar to the final code—was only recoded if 
obvious signs for a specific type of strategy were missed. When the 
discrepancy between the coding of video and verbal data remained, the first 
coder decided on the strategy code. An example of such a discrepancy is when 
a student’s gazes (Figure 3.6) and answer (ten) indicated a case-value plot 
strategy but verbal data in the transcript (below) indicated a histogram 
strategy. Therefore, the video and final code remained identical: a case-value 
plot strategy. 

StudentL01: Then I looked to see which one occurred more often. That was 
eight. And then it went down a bit so it should be between four 
and eight because those are the highest values that occur. And 
then somewhere in the middle [six]. 
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Figure 3.5 Count-and-compute strategy  

Note. Parts of scanpaths alternating between top of bars and vertical axis for both a 
single histogram (left, Item01) and single case-value plot (middle, Item04) with 
fixations on almost all names (right) indicating counting bars. Note the characteristic 
zigzag pattern (black line segments superimposed for convenience of the reader in the 
left graph. A similar pattern is noticeable in the middle graph).  

Figure 3.6 Static gaze-plot with a case-value plot strategy of studentL01 on Item06: 
reading off frequency values from the vertical axis 

Note. Note that there are no fixations on the horizontal axis even though the title/label 
weight is read.  
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If the strategy was still not clear after reconsidering the video coding, or the 
first coder could not reach a decision, the final code ‘unclear’ was used. The 
resulting final code is presented in the Results section. Coding reliability was 
checked by a second coder who coded ten percent of the trials, and the verbal 
data associated with these. Interrater agreement for the final codes was .89 
(Cohen’s Kappa), which is considered almost perfect agreement (Landis & 
Koch, 1977). 
Double graph items 
For the double graph items, we explored strategies (inductive approach) per 
trial. Pilot data, and, therefore, coding categories were not available. Most 
scanpaths indicated a distribution-informed strategy that takes specific 
characteristics of the distribution of the data in the graphs into account (Table 
3.5). The differences in gazes between distribution-informed histogram and 
case-value plot strategies are subtle (Figure 3.7), and, therefore, sometimes 
hard to classify. In both strategies, students looked at the position of the zero 
frequency bar and weight range (histogram) or position of zero weight bars 
and number of bars (case-value plot) but the given—correct—answers differ. 
Small differences in scanpaths—such as the pattern on the horizontal and 
vertical axis and labels—combined with the given answer—determined the 
correctness of this distribution-informed strategy. Note that the researchers 
analyzed the videos, not the gazeplots. Videos of gazes showed how the 
student’s gazes on the graph area progressed through time which made it 
slightly easier for a trained viewer to interpret the scanpath pattern. Gaze data 
were combined with verbal data when available. For the verbal data on double 
graph items, we used open, axial, and selective coding (Table 3.6). For the 
approach to obtaining a final code, see the single graph items. 

Table 3.5 Example of codebook for gaze data on double graph items, histogram 
strategy code 

Assign this code if the gazes are Assign this code if the answer is 
- on the top of bars in both graphs,
indicating comparing double heights
- going back and forth along the
horizontal axis
- see the codebook for single graph
items

Same or Texel (Item03)  
Willem (Item05)  
Kees (Item09, Figure 3.7) 
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Figure 3.7 A correct distribution-informed strategy for comparing the means of two 
histograms in Item09 (top row) using similar shape, shifted to the right and for 
comparing means of two case-value plots in Item07 (bottom row) using shape and 
number of bars 

Note. Students specifically compared the position of the ‘zero’ bars (black ovals) and 
others on similar positions (e.g., purple squares). Correct answer top row: Kees’ 
packages had a higher mean weight; bottom row: mean weight is the same for both 
graphs. 

Table 3.6 Example of codebook for verbal data double graph items, case-value plot 
strategy code 

Assign this code if a student talks about 
-the two zero bars or missing bars lower the mean 
-comparing the heights of the bars 
-higher/more/fewer bars in one graph thus higher mean 
-bigger area thus higher mean 
-same number of bars and same heights 
-similar bars but reordered 
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3.4 Results 
More details can be found in Appendix A of this chapter. 

3.4.1 Strategies on single graph items 

The most common strategy for single graph items was the ‘typical’ case-value 
plot (interpretation) strategy that we already found in our pilot study—
associated with a horizontal scanpath and only correct when applied to case-
value plots—with 37% and 71% for histogram and case-value plot trials 
respectively (Table 3.7). The ‘typical’ histogram (interpretation) strategy—
associated with a vertical scanpath—was used for single histograms in 43% of 
the trials. The most common strategies hypothesized based on the pilot study 
were, therefore, confirmed. A third strategy was found—count-and-compute, 
associated with a zigzag scanpath (Figure 3.5)—in which students add heights 
of bars and divide by the number of bars.  

Table 3.7 Strategies, percentage of trials (N = 150) per item type (correct strategy in 
bold) 

Histogram 
strategy 

Case-value plot 
strategy 

Count-and-
compute 
strategy 

Unclear 

Single histogram 43% 37% 18% 2% 
Single case-value plot 0% 71% 29% 0% 

Note. Although a correct count-and-compute strategy is also possible for histograms, 
such a strategy was not found. In case-value plots, count-and-compute only returns 
the mean if the sum of the heights of bars is divided by the number of cases. 

StudentL18 describes a correct ‘typical’ histogram strategy for single Item02: 

StudentL18: I was mostly […] looking at the small counts.  
[…] 

Researcher1: Can you explain why you answered three here? 
StudentL18: Because the first one [bar] was really long anyway and the rest 

were all pretty small. So to my feeling that made more sense. 
Because it was kind of in the middle as such. Not very far from the 
middle [of the horizontal scale]. 

Most strategies applied to single histogram items (55%) were incorrect, namely 
case-value plot and count-and-compute strategies. During recall, some 
students reported a strategy that returns the median—dividing the area into 
two equal parts, see the excerpt of studentL11 below—or the mode—the 
position of the highest bar, in line with the literature (Frischemeier & Biehler, 



Chapter 3 

96 

2016; Watson & Moritz, 1999). Both strategies were associated with the same 
vertical scanpath, and, therefore, reported as a histogram strategy. 

 

StudentL11:  A bit where the area was somewhat the same already from the 
right, so [the point on the horizontal axis] where the areas cancel 
each other out [are equal]. 

3.4.2 Strategies on double graph items 

In 50% of the trials with double histograms, students used a histogram strategy 
for comparing the means (Table 3.8). Most students used a distribution-
informed strategy using specific features of the graph such as: same symmetry 
and positions of the bar thus same mean, or similar shape but moved to the 
right thus higher mean (Figure 3.7) in short: using ‘shift’ and ‘shape’ 
(Frischemeier & Biehler, 2016). This has some similarities with what Khalil 
named ‘local slices’ (2005). However, in contrast to Khalil, our participants saw 
the full graph at once. The ‘typical’ strategy in which students estimate 
means—similar to what is used for single graphs—is rare for double graphs. A 
distribution-informed histogram strategy—shift—is described for double 
histogram Item09 (Figure 3.7, top): 

 

StudentL22:  So his [postal worker Kees] mean is always one step higher anyway 
and [postal worker] Rianne's one step lower because the [Kees’] 
graph shifts one step [to the right]. 

Table 3.8 Strategies, percentage of trials (N = 150) per item type (correct strategy in 
bold) 

 Histogram 
strategy 

Case-value plot 
strategy 

Count-and-
compute 
strategy 

Unclear 

Double histograms 50% 49% 0% 1% 
Double case-value plots 9% 87% 3% 1% 

 

In trials with double case-value plots, students frequently (87%) used a case-
value plot strategy for comparing means. Most students applied a distribution-
informed strategy using specific features of the graph such as same shape and 
number of bars, double heights, or more area. In contrast to histograms, in 
case-value plots, more area does indicate a higher mean (see also the 
discussion on the use of totals in Watson & Moritz, 1999). A count-and-
compute strategy—similar to the single graph items—was also found for 
double graph items but much less frequently (3%). 
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To our surprise, in 9% of the double case-value plots trials students 
used a distribution-informed histogram strategy (Table 3.8), resulting in an 
incorrect answer (Figure 3.8: same instead of Renesse). As a student stated: 

StudentL11: […] the same, because the graphs are almost the same, only the left 
graph has two extra bars on the outside, but if you average it, they 
cancel each other out as well. 

Researcher1: And why […]? 
StudentL11: Because they are exactly the same [symmetry]. But I now see that is 

not correct because it is obviously not a frequency [on the vertical 
axis]. 

3.4.3 Students’ answers compared to strategy correctness 

Regarding answer correctness (Table 3.9) compared to strategy correctness, 
case-value plots were solved considerably better than histograms and usually 
also with a correct strategy. Case-value plot strategies were often used for 
histogram items, resulting in both lower correct answers and lower correct 
strategies. The discrepancy between answers and strategies (Table 3.9) is 
mostly due to students' preferences for whole and half numbers. For example, 
single case-value plot Item04 (Figure 3.5, middle/right) scored the lowest of 
these plots (76%). For Item04, ten students answered 5—just outside the 
answer range [2.6–4.8]—and two students overestimated the mean by 
answering 5.5 and 6. 

Table 3.9 Overview of the percentage of correct answers (N = 150 trials) and strategies 
per item type 

Item type Correct answers Correct strategy 
Single histogram 43% 43% 
Single case-value plot 83% 100% 
Double histograms 39% 50% 
Double case-value plots 74% 90% 
Total 60% 71% 

Students performed best on the three single case-value plots items—on 
average, in 83% of the trials they correctly estimated the mean and scored 
highest on Item08 (90%). Of the three double-case-value plot items, Item10 
scored low, with 40% of the students answering correctly. Gaze data revealed 
that there was no difference between students who answered incorrectly and 
those who answered correctly regarding the fixations on the white space 
(Figure 3.8) above the names Alex and Yves, as both groups had or did not 
have fixations in these areas. Only two students explicitly mentioned that Alex 
and Yves did not collect any litter, but they were initially confused by the 
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graphs—see the excerpt below. Several students did not understand the role 
of ‘bars’ with frequency zero, which is in line with the literature (e.g., delMas & 
Liu, 2005). 

 

StudentL07 Yes, I had my doubts about this one too, because there is a bar 
missing on the left and then I want to compare it and that is not 
possible. [...] then I start to doubt easily whether it is good or not 
that bar is there and then I thought well if the bar is not there then 
in this case the low numbers are not there so then the average 
weight of the right one will be higher. Because it is less distributed. 
It's all the same numbers, so to speak. 

Researcher1: You said Renesse, so the left one […]. While on the left, the two 
bars are extra compared to the right. 

StudentL07: Oh no never mind, average weight. No then because on the left 
those bars are there, it means that something was picked up at all 
instead of nothing on the right. 

 

Figure 3.8 White space (ovals) above the names Alex and Yves (right hand graph in 
Item10) 

3.5 Conclusions and discussion 
In this study, we investigated how and how well Grades 10–12 pre-university 
track students interpret histograms and case-value plots. We found five 
strategies. Our study confirmed the two most common strategies for 
estimating the mean from single graph items found in the pilot study—a 
typical case-value plot strategy associated with horizontal gazes and a typical 
histogram strategy associated with vertical gazes. A third, new ‘typical’ count-
and-compute strategy was found—in line with other findings (e.g., Watson & 
Moritz, 1999)—for both single and double graphs, and associated with a zigzag 
scanpath. Although this could be seen as a variation of the case-value plot 
strategy, we decided to report this separately due to its algorithmic character. 
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These three typical strategies for estimating the mean from graphs were rarely 
used for double graph items. 

Furthermore, two new strategies were found for comparing means by 
considering specific features of the graphs. In a distribution-informed 
histogram strategy, students compared ‘shifts’, ranges and symmetry (spread, 
shapes, cf. Frischemeier & Biehler, 2016). To our surprise, some students 
applied a distribution-informed case-value plot strategy on double histogram 
items. These strategies are item-specific, as scanpaths differ depending on the 
distribution. Furthermore, some students ignored bars with frequency or 
measured value zero, even when they looked at them (cf. delMas & Liu, 2005). 

Discussing these findings, first, we note that several students talked 
about a mathematical object not present in the item (e.g., horizontal or 
vertical line). Although imagined, this object played a role in finding the mean. 
This imagined object was visible in the gaze data on the graph area of several 
students on single as well as some double graph items. When students 
estimated the mean from the graph (for single or double graphs), the same 
object was used for similar graphs. When comparing means in the double 
graph items, the object was often item-specific and included for example the 
‘bars’ with zero frequency or weight or range. This is in line with findings from 
other studies in which objects appeared in the form of triangles, center points, 
or lines (Alberto et al., 2022). Further research, for example, using machine 
learning algorithms or latent class or profile analysis (e.g., Hickendorff et al., 
2018), is needed to find out whether students can be grouped meaningfully 
purely based on their scanpaths on the graph area and be related to the 
framework of Frischemeier and Biehler (2016). 

Second, as many students tended to focus on most noticeable features, 
the different signs—case-value plots and histograms—are perceived as similar. 
Our results might indicate that perception-action loops (Shvarts et al., 2021) 
for case-value plots are stronger—or older—than for histograms leading to 
both graphs being recognized as case-value plots. Future research is needed to 
find out how specific perception-action loops for histograms can be built.  

Third, we speculate that our gaze data can also be re-used to underpin 
theoretical ideas about embodied aspects of thinking processes in learning 
mathematics. Piaget (1952) showed that learning starts from reflexes. 
Sensorimotor experiences (e.g., touch, vision) induced learning through 
accommodation to the environment, assimilation (incorporating objects that 
fulfill what is needed and rejecting objects that do not), and individual 
organization which “exists, inasmuch as organization is the internal aspect of 
this progressive adaptation” (p. 41). According to Vygotsky, thinking is an 
especially complex form of behavior (1926/1997). For example, Vygotsky 
describes an experiment with participants sitting between two objects with 
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their eyes closed. When asked to think “hard of either of these objects […] The 
movement of the [participant’s] eyes and the straining of his muscles always 
occurred in the direction his thinking was aimed at.” (p. 155). Here, Vygotsky 
associates specific eye movements—motor actions—with thinking processes. 
Moreover, stronger and more focused thoughts are associated with clearer 
and more complex motor actions. This is, according to Vygotsky, also true for 
mathematical thoughts. For example, young children performing addition or 
subtraction move their lips, tongue, forehead or cheeks. “Even the most 
abstract thoughts of relations […] are related ultimately to particular residues 
of former movements now reproduced anew.” (p. 162). Residues of 
movements can be found in students’ gazes—the horizontal line representing 
the estimated mean—which are sometimes described by students as the line 
that makes all bars equally high. Students’ language described imagined motor 
actions in line with their gestures as if these occurred. What is particularly new 
in our study—compared to, for example, the research on trigonometry tasks 
(Alberto et al., 2022)—is that we found residues of movements even though 
students could not perform the described action. Eye movements can, 
therefore, be used as evidence of sensorimotor coordinations that constitute 
and contribute to mathematical competencies (Abrahamson et al., 2015).  

3.5.1 Education 

For educational practice, insight into students’ graph-based reasoning may 
contribute to new perspectives on teachers’ own thinking processes. Teachers 
sometimes also misinterpret histograms (Boels et al., 2019b; Dabos, 2014). 
Therefore, awareness of fundamental differences between various types of 
graphs that share similar most noticeable features is an important part of 
teachers’ Statistical Knowledge for Teaching (Groth, 2013). 

Second, gaze data provide fine-grained information on students’ where 
students looked. Although the relation between a scanpath and students’ 
thinking processes is not straightforward, the present study support the 
growing body of literature that gaze data can reveal students’ reasoning (e.g., 
Lai et al., 2013). This allows educators to link more closely to students’ thinking 
processes. For instance, teachers can use students’ scanpaths for drawing 
students’ attention to correct interpretations of graphs and pay explicit 
attention to relevant—instead of most noticeable—differences between 
graphs. As several students explicitly looked at the axis labels and still used an 
incorrect strategy, this implies that just telling students to carefully read the 
axis labels might not be enough. We also noticed that some students checked 
their answer prior to reporting it. Although such findings are beyond the scope 
of this study, eye-tracking seems well-suited for disclosing such thinking 
processes. This is left for future research. 
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Third, the present study also shows that the statistical key concept of 
data (e.g., number of variables and measurement level, Chapter 2, see 
https://youtu.be/zpRHhixoYmg and https://youtu.be/5od2uB908PI) should be 
extended with an understanding of on which axis the data values are 
depicted—being mostly the horizontal axis in a histogram, with very few 
exceptions (e.g., age-gender-pyramid). Not fully understanding the key 
concepts of data and distribution can lead to several misinterpretations 
(Chapter 2). When students applied a case-value plot interpretation strategy to 
a histogram, this related to several misinterpretations, including that the 
frequency is mistakenly seen as the measured value (Chance et al., 2004), that 
the number of bars is confused with the number of cases (Dabos, 2014), and 
that the mean of the measured value is mixed with the mean of the heights of 
the bars or frequencies in a histogram (Lem et al., 2014b). As these are all 
related to how and where the data and the distribution of these data are 
depicted in histograms, future interventions should aim to support students in 
understanding these concepts in histograms. In addition, teachers could ask 
students to explain their strategies to promote reflection.  

3.5.2 Eye-tracking 

A first methodological aspect of eye-tracking is that—compared to students’ 
verbal reports—more details of their problem-solving processes are visible. For 
example, an imaginary horizontal line was visible in many more students’ gaze 
data on single graph items than was reported by students. Furthermore, some 
students were unable to correctly report their strategy in retrospect, even 
when cued with their gaze. Hence, gaze data can reveal approaches that 
students are not aware of or are unable to articulate. The subtle differences in 
scanpaths for double graph items as well as the item and question-dependent 
scanpaths emphasize both the need for triangulation and a domain-specific 
interpretation of gaze data (e.g., Schindler & Lilienthal, 2019). For the double 
graph items, we did not find a consistent way to distinguish between a strategy 
involving estimating means, on the one hand, and a distribution-informed 
strategy, on the other, based solely on gaze data. A possible future line of 
research is to explore whether these variations can be identified with other 
analysis methods. 

Second, eye-tracking may also influence students’ thinking processes 
less than thinking aloud. We noted, for example, that in retrospect, when 
explaining—thus reflecting on—their strategy, several students realized that 
they took an incorrect approach.  

A third methodological aspect of our study is that we used spatial eye-
tracking measures: scanpaths on one AOI (graph area). Scanpaths are complex 
data that usually require qualitative and labor-intensive analysis. Nevertheless, 
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our study shows that spatial measures can reveal task-specific strategies that 
would have stayed hidden using more traditional measures such as time on—
or count of transitions between—AOIs only (cf. Hyönä, 2010). Cued recall data 
revealed that a correct vertical scanpath is not only associated with estimating 
the arithmetic mean but also with the median and mode. Future research is 
needed to investigate whether these can be distinguished, for example, 
through using machine learning algorithms to analyze raw gaze data or 
heatmaps.  

Fourth, gaze data—scanpaths in particular—can potentially shed new 
light on tenacious didactical problems in mathematics teaching—including 
students consistently misinterpreting histograms. We speculate that this holds 
not only for other misinterpreted graphs, including boxplots (Lem et al., 2013c, 
2014a), violin plots, scatterplots, density curves (Nolan & Perrett, 2016), 
stacked-dotplots (Lyford, 2017), increase diagrams, network topologies and 
function graphs (Leinhardt et al., 1990) but also for other mathematical topics 
where scanpaths may play an important role: line and point symmetry in 
functions, congruency of triangles, the relation between a straight line, axis 
scales (logarithmic, linear, normally distributed), and functions, and maybe 
even the representation of a cubic and hexagon.   
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Appendix A  Background of the eye-tracking and 
participants’ data 

A.1  Details of the eye-tracker

A Tobii XII-60 with a sampling rate of 60 Hz was placed on an HP ProBook 
6360b laptop with a magnetic strip between the laptop's 13-inch screen 
(refresh rate 59 Hz) and keyboard. A chin rest was used for reduced data loss 
and improved accuracy of the gaze data. The Tobii XII-60 uses Pupil-Corneal 
Reflection (see Tobii’s user manual, n.d.-a and Holmqvist et al., 2023). Tobii’s 
eye-tracking software automatically uses both bright and dark pupil methods 
during calibration and, according to the product specifications, the software 
automatically chooses the most suitable method. 

By using harmless infrared light, the Tobii can detect where people 
look. In this study, the Tobii Pro Studio software (Tobii, n.d.-a) recorded 
students’ gazes on the screen in real-time. The distance between the screen 
and the participant was 55–60 cm [mode and mean: 59 cm].  

A Røde microphone was used to record the cued recall (verbal data). 
More details of the set-up are shown in Figure A.1. The participant used a 
height-adjustable office chair to ensure a comfortable position on the fixed 
chin rest.  

Figure A.1 Set up of the laptop, Tobii eye-tracker, chin rest and microphone 

The live viewer mode was enabled and used on a second screen that was 
turned to the researcher and not visible to the participant. The raw gaze data 
were exported with the data export function of the Tobii Studio Pro 3.4.5 
version. Each participant’s data were exported in a separate .tsv-file (tab-
separated, comparable to a .csv-file) readable in, for example, Excel. 
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A.2  Gaze data quality 

Getting good data quality can be hard in an eye-tracking study. The quality is 
influenced by the design of the experiment (e.g., a chin rest usually improves 
data quality) and by the characteristics of the participants (e.g., wearing 
glasses). We used a chin rest and asked participants not to wear mascara, 
although a few of the participants did.  

The calibration procedure consisted of a 9-point calibration on the 
screen provided by the Tobii Pro Studio 3.4.5 software. The calibration 
procedure was repeated for specific points on the screen if the gaze was too 
far off the required spot. As the Tobii software does not supply specific quality 
measures for the calibration, this was based on expert decision. 

The Tobii software has no built-in validation procedure. A validation 
screen was, therefore, included in the set-up at the start, after each item, and 
at the end. Directly after the calibration by Tobii, students were instructed to 
look at the middle of a series of four single dots appearing on the screen. Each 
of these marked important positions in the item (Figure A.2), and each time, 
only one dot was visible at the same time in a fixed order.  

Figure A.2 A 4-point validation procedure was applied before and after the series of 
items, left: position of points, right: letters indicating the order of points on the 
screens 

 

After each item, a validation cross appeared on the screen. Participants were 
instructed to look at the middle of this cross (Figure A.3). This validation cross 
was positioned at the right-hand side of the screen, in different positions each 
time. This ensures that the first eye movement is never accidentally on the 
graph area.  
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Figure A.3 Fixation cross that appeared somewhere on the right-hand side of the 
screen 

Data loss is normal during an eye-tracking experiment and will appear during 
blinking or looking away from the screen. Furthermore, epicanthic folds 
(almond eyes), wearing glasses, contact lenses and makeup can also lead to 
extra data loss. Although some of these conditions applied to some students, 
we did not exclude any student from the data set as the data loss per trial 
(averaged over all participants) and the data loss per participant (averaged 
over all items) were below the exclusion point (34% or more; Table A.1). In 
some cases, there was too much data loss for a specific trial, for example, 
because the student had accidentally clicked through the item or because the 
track of the gaze data got lost. If this happened, an attempt was made to 
identify the strategy. If this was impossible, it was indicated that the strategy 
was unclear and marked as unknown (type of strategy) and incorrect 
(correctness of strategy). Two students reported wearing glasses, three 
students reported wearing contact lenses. In total, 25 trials per participant 
were recorded; only the first twelve trials are reported in this study.  

Table A.1 Data loss 

Average per participant 
over all 25 trials 

Average per trial over all 50 
participants, first twelve trials 

Average data loss 7.21% 6.58% 
Minimum data loss 1.00% 2.48% 
Maximum data loss 27.78% 12.04% 

In response to recent calls from researchers to provide more insight into the 
quality of eye-tracking data, we provide measures of accuracy and precision of 
the gaze data (Holmqvist et al., 2012, 2023; Strohmaier et al., 2020). Accuracy 
and precision are especially important when using temporal or count 
measures, as—for example—a low accuracy can indicate that fixations are 
classified to a different AOI than where a participant was actually looking. For a 
qualitative study like ours, where scanpaths from videos of the eye movements 
are used, accuracy and precision have less influence on the final results. 
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Furthermore, we placed the most important part of the task (graph area) near 
the center of the screen where accuracy was expected to be higher than in the 
corners. The corners of the screen were mostly left empty or used for less 
important parts of the tasks where accuracy does not play a role (e.g., the 
‘next’ button).  

The four validation screens at the beginning and end were used to 
calculate accuracy and precision. To determine accuracy, the offset was 
calculated: the distance from the closest fixation (gaze-point) to a validation 
point (Figure A.2 and Table A.2). “The offset gives an indication of the 
discrepancy between gaze position as reported by the eye-tracker and the 
assumed gaze position of the participant.” (Van der Stigchel et al., 2017, p. 
3588). We used the raw x- and y-coordinates of a fixation (gaze-point) closest 
to the validation point (x- and y-coordinates averaged over the two eyes by the 
Tobii software, which can be found in the columns named GazePointX 
(ADCSpx) and GazePointY (ADCSpx)). Only fixations within 170 pixels (3.5°) of 
the center of the validation point were considered. The mean accuracy is 56.6 
pixels (1.16°). As can be calculated from Table A.2, the mean accuracy for the 
validation points at the start does not differ much from the end (4.9 pixels or 
0.10°). As expected, the accuracy of the middle point of the screen (A, 11.4 and 
15.3 pixels or 0.23° and 0.31°) is better than for the points in the corners of the 
screen (B–D).  

Table A.2 Accuracy and precision, averaged over all students except studentL50 

Validation 
point 

X position 
(px) 

Y position 
(px) 

Accuracy 
px 

deg Precision 
px 

deg 

A – start 683.0 384.0 11.4 0.23 16.8 0.34 
B – start 228.5 175.5 55.9 1.15 27.7 0.57 
C – start 178.5 592.5 74.3 1.52 31.1 0.64 
D – start  1187.5 542.5 74.9 1.53 33.9 0.69 
A – end  683.0 384.0 15.3 0.31 17.1 0.35 
B – end  228.5 175.5 69.0 1.41 25.9 0.53 
C – end  178.5 592.5 79.2 1.62 35.1 0.72 
D – end  1187.5 542.5 72.7 1.49 38.4 0.79 
Mean   56.6 1.16 28.3 0.58 

 

Precision was calculated as follows. The fixation (gaze-point) closest to the 
validation point—see the calculation of accuracy—was used to determine 
which fixations the Tobii Studio software considers as belonging to that point; 
Tobii software column names FixationPointX (MCSpx) and FixationPointY 
(MCSpx) were used as filters for the gaze-points. The root-mean-square 
sample-to-sample (RMS-S2S, Holmqvist et al., 2023) distance (deviation) across 
all fixations (coordinates of the gaze-points, columns GazePointX (ADCSpx) and 
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GazePointY (ADCSpx)) was taken over the raw x- and y-coordinates of these 
gaze-points to give an indication of the noise. This was done per student for 
each validation point. This RMS-S2S was then averaged over all students per 
validation point. StudentL50 was excluded from these calculations due to 
technical problems. Under optimal conditions, the Tobii XII-60 has 0.4–0.5° 
accuracy (with artificial eyes) and 0.32° precision Tobii (n.d.-b). As can be 
expected, the offset for human eyes is higher (1.16°) but is nevertheless within 
the acceptable accuracy limits for this type of eye-tracker given that the most 
important part of the stimulus is near the middle of the screen. The precision 
(0.58°) is considered good. The RStudio-code for these calculations can be 
found in the data repository. 

A.3 Self-reported grades

Students reported their grades (Table A.3).

Table A.3 Arithmetic mean of self-reported mathematics scores (scale 1–10; lowest–
highest) for choice of mathematics and grade levels 

Mathematics Grade 10 Grade 11 Grade 12 Unknown Total 
A 6.0 6.4 5.4 6.2 6.1 
A and B 7.1 7.1 
B 6.1 7.0 7.8 6.8 
B and D 7.5 6.7 7.7 7.3 
C 6.0 6.0 
Total 6.2 6.6 7.0 6.2 6.5 

Note. In Dutch schools, a score of 5.5 or above is regarded sufficient. 
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A.4 Items and students’ answers 

A.4.1 Single graph items and students’ answers 
In table A.4 an example of students’ answers can be found.  

Table A.4 Students’ answers for Item01 

Answer Number of students (percentage) 
1 1 (2.0%) 
2 2 (4.1%) 
3 5 (10.2%) 
3.5 5 (10.2%) 
4 9 (18.4%) 
4.25 1 (2.0%) 
4.5 2 (4.1%) 
5 2 (4.1%) 
6 3 (6.1%) 
7 4 (8.2%) 
8 8 (16.3%) 
8.5 2 (4.1%) 
9 1 (2.0%) 
9.5 1 (2.0%) 
10 2 (4.1%) 
11 1 (2.0%) 
Total 49 (100%) 

Note. The mean is 3.3; bold answers are noted as correct as they are within the range 
mean +/- 1.1; here: [2.2, 4.4]. One student accidentally skipped this item.  

Table A.5 provides an overview of all the answers given by the 50 secondary 
school students during the eye-tracking study for the single graph items. The 
original graph for which the students were asked to estimate the arithmetic 
mean is given in the column Graph in item. The items were constructed in line 
with the recommendations from Orquin and Holmqvist (2017) so that the 
“stimuli […] differ systematically on one or more features” (p. 6). The last 
column shows histograms of students’ answers. Most students rounded to half 
and whole numbers. Table A.8 provides an overview of the number of correct 
answers per item for all items. The range for correct answers in single graph 
items was based on the following criteria. First, we noted that students’ 
estimations were most often whole numbers and numbers rounded to the 
nearest half (e.g., Table A.4). Second, we noted that the range in answers of 
three experts in a small expert pilot was within +/-1.2 of the exact answer. 
Unlike the students, these experts tended to round their answers to one 
decimal. Third, we chose the range so that answers found by applying an 
incorrect strategy (e.g., a case-value plot strategy applied to a histogram) 
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would not be part of the range. As a result, all answer ranges for correct 
answers were set to the mean +/- 1.1.  

Table A.5 Students’ answers on single graphs (open answers) 
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A.4.2 Double graph items and students’ answers 
Table A.6 provides an overview of all the double graph items. Table A.7 
provides an overview of all students’ answers for these items. 

Table A.6 Overview of double graphs items (multiple-choice) 

Item 
Gr

ap
h 

ty
pe

 Graphs in item 

Item03 

Ca
se

-v
al

ue
 p

lo
t 

Item05 

Hi
st

og
ra

m
 

Item07 

Ca
se

-v
al

ue
 p

lo
t 



Chapter 3 

112 

Item 

Gr
ap

h 
ty

pe
 Graphs in item 

Item09 
Hi

st
og

ra
m

 
 

 
Item10 

Ca
se

-v
al

ue
 p

lo
t 

 
Item11 

Hi
st

og
ra

m
 

 
 

  



Students’ strategies when interpreting histograms and case-value plots: an ET study 

113 

Table A.7 Overview of students’ multiple-choice answers on double graphs items 
(correct answers in bold) 

Item Graphs type Answer (count) Answer (count) Answer (count) 
Item03 Case-value plots Texel (0) Cadzand (47) Same (3) 
Item05 Histograms Julia (11) Willem (24) Same (15) 
Item07 Case-value plots Kijkduin (1) Zandvoort (5) Same (44) 
Item09 Histograms Kees (25) Rianne (5) Same (20) 
Item10 Case-value plots Renesse (20) Scheveningen (24) Same (5) 
Item11 Histograms Ellen (2) Titia (30) Same (18) 

A.4.3 Item order, item type, and number of correct answers
In Table A.8, the order of the items, item, and graph type, as well as the
number of students answering correctly or incorrectly, are given. A fixed item
order was used in this study, with never more than two graphs of the same
type (histogram or case-value plot) in succession. If no answer was given (two
students each accidentally skipped one question), this was noted as incorrect.
As we expected most students who confuse case-value plots with histograms
to apply a case-value plot strategy to a histogram, we started with two single
left-skewed histograms. This was done to avoid priming (e.g., Lashley, 1951).
Graphs with the same most noticeable features (e.g., Item02 and Item08)
never directly followed one another.

Table A.8 Students’ answers correctness per item 

Item Item type Graph type Correct Incorrect Total 
Item01 Single Histogram 20 30 50 
Item02 Single Histogram 19 31 50 
Item03 Double Case-value plots 47 3 50 
Item04 Single Case-value plot 38 12 50 
Item05 Double Histograms 15 35 50 
Item06 Single Histogram 25 25 50 
Item07 Double Case-value plots 44 6 50 
Item08 Single Case-value plot 45 5 50 
Item09 Double Histograms 25 25 50 
Item10 Double Case-value plots 20 30 50 
Item11 Double Histograms 18 32 50 
Item12 Single Case-value plot 42 8 50 
Total 358 256 600 
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A.4.4 Percentage of correct answers per item type and occurrence of
                  ‘zero’ bars
In Table A.9, the items are clustered by item type. For each item, the 
percentage of correct answers is given, as well as the occurrence of bars with a 
measured weight or frequency zero. For Item10, the low scores are due to not 
understanding the role of the two bars with measured value zero, see the 
Results section.

Table A.9 Students’ answers correctness per item 

Item Item type Bars with frequency or 
measured value zero Correct 

Item01 Single histogram No 40% 

Item02 Single histogram No 38% 

Item06 Single histogram No 50% 

Item05 Double histograms No 30% 

Item09 Double histograms Yes 50% 

Item11 Double histograms Yes 36% 

Item04 Single case-value plot No 76% 

Item08 Single case-value plot No 90% 

Item12 Single case-value plot No 84% 

Item03 Double case-value plots No 94% 

Item07 Double case-value plots Yes 88% 

Item10 Double case-value plots Yes 40% 

A.5 Codebooks and detailed results coding

Note that all codebooks and coding results are available in a data repository.
A.5.1 Codebook general 
The gaze and verbal data were coded separately. Next, these codes were 
combined into a final code using the verbal data—if available—as a 
triangulation of the gaze data, see the Data analysis section for more 
explanation. From the pilot study, it appeared students did not change their 
strategies over the first twelve trials (Boels et al., 2018). Therefore, items of 
the same type (e.g., all single case-value plot items) were coded directly one 
after another in the same coding session per participant so that the coding per 
participant was kept as consistent as possible. For example, items 1, 2, and 6 
(all with single histograms) were coded for one participant and then for the 
next participant, and so on. In the next coding round, items 4, 8, and 12 (all 
with single case-value plots) were coded for one participant, and so on. 
Participants where the coding indicated a switch in strategy between items but 
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within a series of one type of item were reconsidered after all participants 
were coded for this type of item to make sure strategy switches between items 
were not due to coding inconsistency. In the case of a switch of strategy during 
a trial, only the code of the strategy that was used just before the answer was 
given was used. The students volunteered for the cued recall, and after 
collecting gaze data from the first 27 students, we completed the 25 cued 
recalls on several items, depending on the time left before the 50 minutes (one 
lesson) had passed. The gazes were coded from videos (available on request 
from the first author). A still of such a video as well as the static gaze-plot for 
these gazes are shown in Figure A.4.  

Figure A.4 Video still (left) and static gaze-plot (right) of studentL49’s gazes on Item06 

Note. The full video of L49’s gazes on Item06 can be found on the publisher’s website. 
The static gaze-plot (right) contains all gazes of this student on this item. Although the 
mean weight of the packages is approximately 5.7 kg, the student answers 9 [kg] even 
though this student looked at the word ‘Gewicht’ (Weight) along the horizontal scale. 
We removed sound (e.g., a student saying the answer) from the original video for 
privacy reasons. 

A.5.2 Codebook double graph items 
Codebook for the gazes on double graph items 
In the double graph items, the differences between a case-value plot strategy 
and a histogram strategy are subtle. Therefore, the answer is considered 
(Table A.10). When answer and gaze data lead to different codes, the gaze 
data are leading.  
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Table A.10 Codebook for the gazes on double graph items. Dh = double histogram, 
dcvp = double case-value plot 

Code Assign this code if 

The gazes are The answer is 
Histogram 
strategy 

- on the top of bars in both graphs,
indicating comparing double heights
- look at (max) frequency 8 and 16 in the
relevant graphs
- fixations on or around the origin of
graphs
- going back and forth along the horizontal
axis (range)
- on the last bars or outer bars of each
graph
- see the codebook for single graph items

Same or Texel (Item03 
– dcvp)
Willem (Item05 – dh)
Zandvoort or Kijkduin
(Item07 – dcvp)
Kees (Item09 – dcvp)
Same (Item10 – dcvp)
Same (Item11 – dh)

Case-value 
plot 
strategy 

- back and forth between the top of the
bars
- on the bars with value or frequency zero
- on the top of last bars or outer bars of
each graph
- are not on the bars with value or
frequency zero where this is relevant
- see the codebook for single graph items
Do not assign this code if one of the
distribution-informed histogram strategy
options hold

Cadzand (Item03-dcvp) 
Julia or same (Item05-
dh) 
Same (Item07 – dcvp) 
Same or Rianne 
(Item09 – dcvp) 
Renesse or 
Scheveningen (Item10 
– dcvp)
Titia or Ellen (Item11 –
dh)

Count-and-
compute 
strategy 

- see the codebook for single graph items

There is a sound of counting during trial 

n.a.

Codebook for the verbal data for double graph items 
The codebook for the verbal data for double graph items is given in Table A.11. 

Table A.11 Codebook for the verbal data on double graph items 

Code Assign this code if  
a student talks about 

Histogram strategy - extra bars outside compensate each other
- higher mean through extra bar on the left (overlooking the
extra bar on the right in the other graph)
- same range, double frequency
- one graph is shifted to the right compared to the other
graph
- see the codebook for single graph items
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Case-value plot 
strategy 

- the two zero bars or missing bars lower the mean
- comparing the heights of the bars
- higher bars in one graph thus a higher mean
- less bars thus a higher mean
- more bars thus a higher mean
- more area thus a higher mean
- same number of bars and same heights
- similar bars but reordered
- see the codebook for single graph items

Count-and-compute 
strategy 

- see the codebook for single graph items

A.5.3 Results final coding strategies

The qualitative analysis of the coded data led to a decision of what kind of 
strategy was used by each student (Table A.12), and whether the student used 
a correct or an incorrect strategy (Table A.12). This is not necessarily the same 
as giving a correct answer. A student may, for example, use a correct strategy 
to estimate the mean but then make an error in the estimation itself which 
might lead to an incorrect answer. The codes of the gaze data were combined 
with the verbal data. If the verbal and gaze data did not align, the gaze data 
prevailed. When the data were unclear, the coder decided on the strategy’s 
correctness. Strategies were coded unclear when a student accidentally 
skipped a question (two students each skipped one item), when there were 
not enough gaze data (two students each on one item), and when the verbal 
data and gaze data did not align and the first coder could not reach a decision 
(two students, one item). 
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Table A.12 Final coding strategy type. In bold: number of trials (N = 50) in which 
students use a correct strategy for this item 

Item Histogram 
strategy 

Case-value 
plot strategy 

Count-and-compute 
strategy 

Unclear Total 

Item01 24 15 10 1 50 
Item02 23 18 7 2 50 
Item03 2 45 2 1 50 
Item04  38 12 

 
50 

Item05 23 27  
 

50 
Item06 19 21 10 

 
50 

Item07 5 43 2 
 

50 
Item08  36 14 

 
50 

Item09 30 19  1 50 
Item10 6 42 1 1 50 
Item11 22 28  

 
50 

Item12  33 17 
 

50 
Total 153 366 75 6 600 

Note. For the single graph items, most students used a ‘typical’ strategy; for double 
graph items, most students used a ‘distribution-informed’ strategy. We did not find a 
consistent way for coding these variations in scanpaths qualitatively, so we only 
distinguished whether they used a strategy interpreting the graph as a histogram or as 
a case-value plot. 

Table A.13 Strategy correctness of students – number and percentage of trials (N = 50) 

Item Item type Graph type Correct Incorrect Unclear Total 
Item01 Single Histogram 24 (48%) 25 1 50 
Item02 Single Histogram 23 (46%) 25 2 50 
Item03 Double Case-value plots 47 (94%) 2 1 50 
Item04 Single Case-value plots 50 (100%) 

  
50 

Item05 Double Histograms 23 (46%) 27  50 
Item06 Single Histogram 19 (38%) 31 

 
50 

Item07 Double Case-value plots 45 (90%) 5 
 

50 
Item08 Single Case-value plot 50 (100%) 

  
50 

Item09 Double Histograms 30 (60%) 19 1 50 
Item10 Double Case-value plot 43 (86%) 6 1 50 
Item11 Double Histograms 22 (44%) 28  50 
Item12 Single Case-value plot 50 (100%) 

  
50 
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A.5.4 Static gaze-plots examples for specific coding categories

In the gaze-plots below, some examples of typical, distribution-informed and 
count-and-compute strategies for double graph items can be found (Figures 
A.5, A.6, A.7, A.8).

Figure A.5 Correct typical strategy for comparing the means of two case-value plots 
(horizontal line segment superimposed for convenience of the reader)  

Below, a distribution-informed histogram strategy: similar shape and double 
heights thus same mean (Figure A.6). 

Figure A.6 A correct distribution-informed strategy for comparing the means of two 
histograms: using similar shape and double heights 

Note. This distribution-informed histogram strategy is only correct if students conclude 
from the double heights that means are the same. 
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Figure A.7 A correct distribution-informed strategy for comparing the means of two 
case-value plots: comparing the heights of the (outer) bars in and between the graphs 

Figure A.8 A correct count-and-compute strategy applied to case-value plots 

Note. Characteristic for this scanpath is the zigzag form on each graph area.  

A.5.5 Examples of transcripts 

Below are some transcripts with a short explanation. During the cued recall, 
several students noted that they thought that weight was on the vertical axis 
in the histograms. Some students talked about a horizontal line, making all 
bars equal or the same area above and underneath an imagined line—all case-
value plot strategies. Some gestured a horizontal line, for example for Item01: 

 

StudentL15: Then I think I flipped the axes in my head [...]  
Researcher1: Okay, well you came to the answer ‘four’, how did you come to 

that answer ‘four’? 
StudentL15: That was about in the middle. 
Researcher1: In the middle of what? 
StudentL15: In the middle of the graph. 
Researcher1: Can you point to where you are pointing if you mean that? 
StudentL15: These bars. 
Researcher1: Yes, okay so you are now pointing to a horizontal line at the 

height of four.  
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From the gaze data, this horizontal line was frequently visible in the eye 
movements on the graph area of the single graphs for both histograms and 
case-value plots (see Figure 3.2 in this chapter for an example from the pilot 
study).  

For single histogram Item02 a student stated: 

StudentL10: Yes, just read the question first and then I did the same as before. 
So try to make everything the same length. 

Many students who answered incorrectly thought that the outer two bars in 
the Renesse graph (a case-value plot) lowered the mean, see for example the 
transcript of studentL03: 

StudentL03: Well, you saw that they were both the same height in the middle. 
Only that Scheveningen had no lowers at the beginning and at the 
end, so then it is logical that it is a bit higher because two lowers 
are taken off. From the average.  

A.6 Instruction to the participants

The following instruction was part of the letter accompanying the informed 
consent: 

What do we study? 
Graphs are everywhere—in newspapers, on television, in school textbooks, 
and in surveys or, for example, to present school exam results in a clear 
manner. We would like to know how we can support students to better 
understand these graphs. In addition, we can then explain to teachers how 
they can help students and the makers of textbooks (i.e., publishers) to 
understand graphs even better. In addition, we can explain to journalists, 
textbook authors, and researchers how they can make even better graphs.  

Therefore, it is important that we discover how people read graphs. 
We do this by following the eye movements of students and experts 
(teachers). The device with which we do this is called an eye-tracker. This 
device is placed on the laptop and has a camera and infrared lights. The light 
from these lamps is invisible and harmless. The device measures exactly what 
you are looking at without you noticing it. Your face is not filmed. We do 
make audio recordings of what you say. We also ask the school what the 
scores are from the CITO examination that the school takes in ninth Grade. 
We do this to rule out that the results of our investigation are due to 
something other than what we are investigating.  
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What are you going to do in the study? 
First, we will ask you a questionnaire with some general questions and a 
questionnaire that measures what you already know about certain subjects. 
Then, we must calibrate the eye-tracker. This calibration means that you will 
be asked to look at certain points on the screen. Sometimes it doesn't work 
immediately; then we just repeat it. It is also possible that it does not work at 
all.  

Calibration is often more difficult if you are wearing mascara or if you 
have glasses you cannot remove. Therefore, please come without mascara. If 
you are wearing glasses, you can usually do this, but occasionally it will not 
work. Contact lenses are usually no problem.  

After the calibration, you will be asked 25 questions on the computer, 
each of which contains graphics. You determine the speed at which you 
answer the questions. You must answer all questions out loud. Afterward, we 
will ask you about the tasks you have had.  

At the start of the session, the participant handed over the informed consent. 
The researcher stressed that participation was voluntary and that the 
participant could stop at any time without any consequences (as was also 
written in the informed consent). Then, the participant would fill in both 
questionnaires. Next, the participant was taken to the chair behind the eye-
tracker. The procedure of calibration, validation (looking at certain points on 
the screen), answering questions, and looking at fixation crosses between 
items was explained. The participant was asked to say the answer out loud for 
single graph items. For double graph items, the participant was asked to click 
the correct answer and was given the option to say the answer as well. After 
the 25 trials, the video data of the participant were shown to the participant. 
The participant was asked how s/he solved the item of which the gaze data 
were shown. Only clarifying questions were asked. The participant was—if 
necessary—prompted to look at her/his own gazes when explaining how the 
item was solved. Due to technical problems, looking at one’s own gazes was 
not available for a few items (double histograms) for the first participant, who 
then clarified the strategy with only the item on the screen. 
 

A.7 Lessons learned on doing eye-tracking research with our items 

Although eye-tracking is not new, using gaze data is still rare in mathematics 
education research (Lilienthal & Schindler, 2019; Strohmaier et al., 2020). 
Therefore, we provide a list of lessons we learned when doing this study for 
those who are novices in eye-tracking research. This list is unordered and not 
complete. We also provide two lessons for those wanting to execute a similar 
study. Note that Holmqvist et al. (2011) also provide a list with advice.  
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Lessons learned about eye-tracking: 
• Consider whether eye-tracking is really necessary. It is time-consuming

to learn how to use the eye-tracker, to design items suitable for such
research, and it is not always successful.

• Find a group of people with experience using eye-trackers. The first
author is very grateful that the eye-tracking seminar of the Faculty of
Social Sciences provided the opportunity for researchers from there
and other faculties to join and learn from senior researchers in this
field.

• Use a chin rest if you use a remote eye-tracker whenever possible. It
does not make much difference for the participant, but it makes the
accuracy of the trials much better.

• Check if there is both a calibration procedure (to make sure that the
eye-tracker knows where a participant is looking) and a validation
procedure (to verify how successful this calibration was). Make sure
that the calibration and validation backgrounds are the same as the
stimulus (items). Some advice that came too late for us was to take a
screenshot of the calibration screen results if the software does not
provide it.

• Do a pilot with only a few participants. During our pilot, we discovered
that: (1) we made an impractical design for the eye-tracker software
we used, which made it impossible to know where a new trial started.
This happened because we wanted to use graphs in combination with
multiple-choice answers (or open answers). See the data repository for
our final setup; (2) therefore, we could also not use AOIs from the
software during the pilot study; (3) using multiple-choice answers for
estimating the mean items guided students too much toward the
correct answer; (4) students were much faster in answering the items
than expected. This opened the possibility of a larger set of items.

• Multiple-choice items combined with graphics are not possible in the
Tobii software if you also want the answers automatically scored. It
would be possible to use a separate screen for clicking the answer
options. We did not use this option because of the risk of influencing
students’ gazes on the items.

• During the eye-tracking experiment, note down relevant information,
such as the geometry of the set-up (take a picture, measure distances
such as between participant and screen), whether a participant has
mascara, contact lenses, glasses, epicanthic eye folds, drooping eyelids
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(right/left/both). Keep distances the same for each participant as much 
as possible. For example, we used a desk chair that we could raise 
depending on the participants’ heights so that the chin rest was always 
in the same position relative to the screen.  

• Cover windows if curtains let through too much light (some people 
have used dark plastic waste bags) and other sources of light that 
might create shadows in the room. Avoid light sources directly 
on/above the screen and eye-tracker. Place the eye-tracker (and 
screen or tablet) in between fluorescent tubes. More advice on factors 
influencing gaze data quality can be found in the work of Holmqvist et 
al. (2012).  

• Anonymize/pseudonymize participants from the start (e.g., we used 
L01 for the first participant on the questionnaires, as the name for the 
trial and so on). Otherwise, you have to change that afterward (before 
or after exporting) your data export from Tobii to guarantee 
anonymity.  

• Test the items on paper before you use them in the eye-tracking 
software. 

• Have someone check for typos in your items as well as small 
deviations. For example, it was hard to get the axis lengths of case-
value plots and histograms the same. Furthermore, in the graph of 
Item03 a small mistake was made. As this was discovered only after 
several trials and did not influence the correct answer, we did not 
correct this.  

• Make sure that the items only differ where relevant and keep the rest 
as constant as possible (colors, background, letter size, position, and so 
on). See the work of Orquin and Holmqvist (2017) for more advice. 

• Have some small talk with the participant before you start. Have the 
participant do something (e.g., fill in a questionnaire) before you put 
them behind the eye-tracker. This gives them time to become at ease 
with you, the setting, and so on.  

• Make a plan for what you say when, what to do in certain situations, 
and where the equipment is placed. Use tape to mark places for 
equipment if you must remove it between participants.  

• Try to avoid gazes hovering over a relevant area (e.g., the graph area) 
when going from the question to answer options. In our double graph 
items, we avoided this by giving the answer options directly 
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underneath the question and above the graphs. In the single graph 
items, we used open answers.  

• Think carefully about what measures are relevant to your stimulus and
research question. See the section on which metrics to use for gaze
data. Apart from the metrics mentioned there and in the Data analysis
section, also consider machine learning (with raw gazes, fixations on
AOIs, vectors for each saccade, and so on) or latent profile analysis
(see Hickendorff et al., 2018 for an introduction). Latent profile
analysis could, for example, be used to cluster AOI-based gaze data
into groups.

• Take a screenshot of the settings of your eye-tracker.
• Before you calculate any metric, make sure that you have seen enough

gaze data (trials) to get a sense of what is going on. Take the time to
make yourself acquainted with these data. The advice the first author
received from colleagues was to watch the gazes, and when you are
done, watch even more.

• Besides analyzing the video of the gazes (sometimes also called
dynamic gaze-plots) or AOIs, you can also think of analyzing static
gaze-plots or heatmaps. Make sure to save them all for a data paper or
later analysis if necessary.

• If you make html files for your stimuli, use fixed places (instead of
dynamic) on the webpages as much as possible so that the webpages
can easily be re-used on another device using the same size and
position on the screen.

• For machine learning purposes and power (for hypothesis testing), it
may be necessary to collect data from many students and on many
items; the Tobii Studio software may become very slow with large
amounts of data. This was a bit annoying during the recall, but most
time was lost during data export (one export file with all data was not
possible due to its size) and visualization creation (heatmaps, gaze-
plots). This is a combination of the software and the processor of the
laptop used.

Lessons learned about the items: 
• The single graph case-value plot items are, in a way, self-correcting, as

it is impossible to use a histogram strategy on these. This was not the
case for the double case-value plot items.

• In a next experiment, we would consider positioning the double graph
items on a diagonal on the screen. This will make it easier to
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distinguish the typical (horizontal or vertical) gazes within the graph 
area from gazes that go between two graphs. As this positioning has 
some other disadvantages (e.g., you need a bigger screen for the same 
size of the stimulus and the comparison of the graphs by the students 
might be hindered by this positioning), another possibility might be to 
place the graphs underneath each other in some items and next to 
each other in others (although that might require a bigger screen).  
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Automated gaze-based identification of students’ strategies 
in histogram tasks through an interpretable mathematical 
model and a machine learning algorithm 
“If you haven’t got it, you can’t show it. If you have got it, you can’t hide it.” 38 
Zora Neale Hurston 

This chapter is based on  
Boels, L., Garcia Moreno-Esteva, E., Bakker, A., & Drijvers, P. (accepted). 
Automated gaze-based identification of students’ strategies in histogram tasks 
through an interpretable mathematical model and a machine learning 
algorithm. International Journal of Artificial Intelligence in Education. 

38 Hurston, Z. N. (1942). Dust tracks on a road, p. 143. 
https://en.wikiquote.org/wiki/Zora_Neale_Hurston 
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Abstract As a first step toward automatic feedback based on students’ 
strategies for solving histograms tasks we investigated how strategy 
recognition can be automated based on students’ gazes. In a previous study, 
we showed how students’ task-specific strategies can be inferred from their 
gazes. The research question addressed in the present chapter is how data 
science tools (interpretable mathematical models and machine learning 
analyses) can be used to automatically identify students’ task-specific 
strategies from students’ gazes on single histograms. We report on a study of 
cognitive behavior that uses data science methods to analyze its data. The 
study consisted of three phases: (1) using a supervised machine learning 
algorithm (MLA) that provided a baseline for the next step, (2) designing an 
interpretable mathematical model (IMM), and (3) comparing the results. For 
the first phase, we used random forest as a classification method implemented 
in a software package (Wolfram Research Mathematica ‘Classify Function’) 
that automates many aspects of the data handling, including creating features 
and initially choosing the MLA for this classification. The results of the random 
forests (1) provided a baseline to which we compared the results of our IMM 
(2). The previous study revealed that students’ horizontal or vertical gaze 
pattern on the graph area were indicative of most students’ strategies on 
single histograms and the IMM captures these in a model. The MLA (1) 
performed well but is a black box. The IMM (2) is transparent, performed well, 
and is theoretically meaningful. The comparison (3) showed that the MLA and 
IMM identified the same task-solving strategies. The results allow for the 
future design of teacher dashboards that report which students use what 
strategy, or for immediate, personalized feedback during online learning, 
homework, or massive open online courses (MOOCs) through measuring eye 
movements, for example, with a webcam.  

 

Keywords Eye-tracking; Computer in education; Histograms; Mathematica 
Classify Function; Problem-solving strategy; Graphs. 
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4.1 The challenge of gaze-based strategy identification in 
statistics education 

Imagine students learning statistics on a laptop. They interpret histograms to 
solve a task. Assume that the webcam camera is good enough to track their 
eye movements when thinking about the task. It is imaginable that the eye 
movements of all students can be automatically recorded online39 in the near 
future to document students’ strategies. With available techniques, it is in 
principle possible to give automated feedback on students’ task-specific 
solution strategies. In this imaginary situation, feedback on students’ strategies 
can even be given before students answer. We see this chapter as a first step 
toward using gaze data as a learning analytics source in, for example, an 
intelligent tutoring system (ITS) in statistics education.  

Although techniques are available, there are still several challenges 
regarding the use of gaze data as a learning analytics source in statistics 
education, before an ITS can be considered. The first is the availability of gaze 
data, as the use of eye-tracking in statistics education is rare (e.g., Strohmaier 
et al., 2020). Recent reviews of eye-tracking studies in mathematics education 
found only four studies in statistics education (one out of 33 included studies, 
Lilienthal & Schindler, 2019; three out of 161, Strohmaier et al., 2020). 

The second challenge is that current usage of gaze data often 
addresses general pedagogical themes (e.g., metacognitive skills; Lai et al., 
2013) instead of task-specific strategies teachers in statistics education are 
interested in (sometimes called didactics or domain-specific pedagogy). Most 
studies investigating students’ strategies look at general strategies including 
planning and evaluation (e.g., Eivazi & Bednarik, 2010) or global scanning 
followed by local viewing (Van der Gijp et al., 2017). Other studies look at 
cognitive models such as visual working memory (e.g., Epelboim & Suppes, 
2001). The number of studies that uncover task-specific strategies in 
mathematics in primary and secondary education (e.g., Lilienthal & Schindler, 
2019; Strohmaier et al., 2020) and science (e.g., Garcia Moreno-Esteva et al., 
2020; Klein et al., 2021; Kragten et al., 2015) is still relatively small but growing. 
For example, patterns in students’ gazes indicating strategies have already 
been found in mathematical domains such as numbers (Schindler et al., 2021), 
arithmetic (Green et al., 2007), fractions (Obersteiner & Tumpek, 2016), 
proportional reasoning (Shayan et al., 2017), area and perimeter (Shvarts, 
2017), Cartesian coordinates (Chumachemko et al., 2014), geometry (Schindler 

39 For most people, online means on a website. In eye-tracking research, however, online often 
refers to: real-time, hence, during the task solving process of the student. Here we refer to both 
meanings of online. 
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& Lilienthal, 2019), trigonometry (Alberto et al., 2019) and functions (e.g., 
parabola; Shvarts & Abrahamson, 2019). For mathematics and statistics 
teachers, such strategies are important as they can reveal students’ knowledge 
of and deficiencies in this specific topic (cf. Gal, 1995).  

Third, a challenge is that automation of strategy identification by using 
interpretable models or machine learning techniques in combination with gaze 
data, is even rarer in statistics education: Only one of the four studies in the 
previously mentioned review studies used a machine learning approach 
(Garcia Moreno-Esteva et al., 2016). None of these studies used an 
interpretable mathematical model. Our present study aims to address this 
third challenge by investigating how these two data science tools—an 
interpretable mathematical model and machine learning algorithms—can be 
used to automatically identify students’ strategies on histograms based on 
gaze data. 

Fourth, although the use of gaze data in ITSs is not new, the majority of 
studies on ITSs that use gaze data seem to focus on general skills such as 
engagement (e.g., D’Mello et al., 2012). This is in line with a review of research 
articles on artificial intelligence in education (AIED) in which an independent 
cluster of recent eye-tracking articles emerged that “include ‘collaborative 
learning’, ‘engagement’, ‘video-based learning’ and ‘recommender system’” 
(Feng & Law, 2021, p. 293). 

Fifth, many ITSs in mathematics and statistics education seem to focus 
on procedural knowledge—problems that can be solved by following a 
stepwise solving procedure such as solving a linear equation—although ITSs 
that focus on students’ task-specific strategies do exist, also in statistics 
education (e.g., Tacoma et al., 2019). To the best of our knowledge, none of 
these seem to use gaze data as a learning analytic source. 

That said, ITSs that use gaze data for identifying visual-based task-
specific strategies, as far as we are aware, do not exist yet in statistics 
education. Before such a gaze-based ITS can be considered and developed, we 
not only need to be able to link students’ mathematical task-solving strategies 
to specific gaze patterns but also to automate the identification (or 
classification, as data scientists would say) of such strategies. In our previous, 
qualitative study, we inferred students’ strategies from their gaze data. In the 
current study, we concentrate on automatization through the research 
question: How can gaze data be used to automatically identify students’ task-
specific strategies on single histograms? 

The potential of automated identification of such strategies is to make 
large-scale, personalized feedback possible for online learning both in the 
initial stages of learning and during expertise development (Ashraf et al., 2018; 
Brunyé et al., 2019; Jarodzka, et al., 2017; Hwang & Tu, 2021). This can make  
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feedback in online courses or during homework more efficient and more 
accurate.  

The aim of our chapter is to show how the identification of students’ 
task-specific strategies on histograms can be automated. We expect that this 
work can nurture the dialogue between experts in the field of data science 
algorithms—more specifically experts regarding interpretable mathematical 
models (IMM) and machine learning algorithms (MLAs)—and educational 
researchers. IMM and MLA experts may be more interested in how the IMM or 
MLA was or could be tailored to the specific application. Educational 
researchers may be more interested in using an MLA as it is, as a black box, 
and wonder what it provides them and how well it works. The advantage of an 
IMM for educational researchers, is that it is transparent in how exactly it 
came to its decisions for individuals. We think this chapter can fuel the 
dialogue between IMM and MLA experts and educational researchers to keep 
the boundaries between disciplines permeable. At such boundaries, exciting 
new research can emerge.  

In this chapter, we developed an interpretable mathematical model 
(IMM) and compared its results with a machine learning algorithm (MLA). We 
used these two methods from data science along with theories and insights 
from psychology research and neurosciences (e.g., on eye-tracking, what gaze 
data can and cannot tell us and the sensorimotor system), theories and 
insights from mathematics and statistics education research (e.g., on averages 
and histograms) and bring this to the world of human-computer interaction (in 
which, for example, the usability of an IMM or MLA is important). This means 
that we sometimes need to bridge worlds in terms of terminology, 
expectations, and explanations. 

Our study is in line with the call for research focusing on methods for 
using measures of micro-level learning processes—including gaze data (Harteis 
et al., 2018). For the specific topic of histograms, our study also provides the 
level of detail that Peebles and Cheng (2001) referred to: “From [...] eye-
movement studies it is argued that there is a missing level of detail in current 
task analytic models of graph-based reasoning.” (p. 1069). Yuan et al. (2019) 
showed that there is a need for searching for “visual cues that mediate the 
patterns that we can see in data, across visualization types and tasks” (p. 1).  
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4.2 Theoretical background of tasks and identification 
methods 

4.2.1 Estimating the arithmetic mean from histograms 

Developing students’ statistical literacy, reasoning, and thinking is an 
important goal of education (Ben-Zvi et al., 2017). Statistical literacy is 
especially important in the world of “big data” and alternative truths (Burrill, 
2020). Most adults will be data consumers, making decisions based on data 
collected by others (Gal, 2002). Statistical data in tables are not always clear. 
Messages can be clearer if these data are presented in more aggregated forms 
in graphical representations—including dotplots, boxplots, and histograms—
that stress some aspects of the data (e.g., variability) and leave out other 
information (e.g., the exact measurements). Students, however, find it difficult 
to correctly interpret histograms.  

A review of students misinterpreting histograms revealed that many of 
their difficulties stem from not understanding the statistical key concept of 
data (see Chapter 2). The key concept of data includes an understanding of 
what, how many, and how variables and their values are depicted in a 
histogram. Despite many carefully designed interventions to tackle 
misinterpretations (e.g., Kaplan et al., 2014), students’ difficulties with 
histograms remain (e.g., Cooper, 2018). We, therefore, decided to use eye-
tracking to study in depth how students interpret histograms (see Chapter 3; 
Boels et al., 2018, 2019a, 2023).  

Strengths and caveats in students’ knowledge can be revealed by 
asking them to estimate averages from data in different representations (e.g., 
histogram, dotplot, case-value plot; cf. Gal, 1995). Estimating the mean can be 
seen as a prerequisite for assessing variability, as the variation in data is 
compared to a measure of center (e.g., standard deviation from the mean). 
Furthermore, our students are familiar with the mean, but not so much with 
variability. Therefore, in a previous eye-tracking study, students were asked to 
estimate the mean from various—but univariate—statistical graphs in 25 items 
(e.g., see Chapter 3). In the present chapter, we re-use gaze data from a subset 
of this previous study containing all five single histogram items. 

Historical examples show that the mean has emerged from estimating 
representative values for a dataset through compensation and balance (Bakker 
& Gravemeijer, 2006). Students exhibit minimal difficulty in estimating the 
mean from case-value plots (Cai et al., 1999), unless zero is one of the 
measured values (see Chapter 3). Most students know how to calculate the 
arithmetic mean from raw data (e.g., Konold & Pollatsek, 2004). In a study with 
various items—including finding the “average” allowance from a histogram—
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five approaches were found for solving the items: average as (1) mode, (2) 
algorithm, (3) reasonable, (4) midpoint, and (5) balancing point (Mokros & 
Russell, 1995). Students often (implicitly) use the mean of frequencies in a 
histogram (cf. Cooper, 2018). The latter is incorrect when applied to 
histograms but correct for finding the mean from a case-value plot, and can be 
seen as finding the horizontal line that makes all bars of equal height by using 
compensation.  

The weighted estimation of the mean in a histogram is the balance or 
gravity point of the graph (e.g., Mokros & Russell, 1995). This mean can be 
found by taking the range or spread of the data in the histogram into account 
together with the height of the bars. For this approach, it is not necessary to 
read off frequencies on the vertical axis. We call this approach a histogram 
(interpretation) strategy or correct strategy. An estimation of the mean in a 
histogram with equal bin widths can also be computed by multiplying the 
frequency or percentage (height of the bar) with the middle value of that bar, 
adding the results over all bars, and dividing this by the sum of the frequencies. 
No students in the previous study used this approach. Instead, all that used a 
computational approach added all frequencies and divided this sum by the 
number of bars. This would be a correct strategy if the height of each bar was 
representing weight and the number of bars was the number of measured 
weights (as in a case-value plot). Therefore, this count-and-compute strategy is 
incorrect for histograms. 

In our previous study, we found several strategies for estimating the 
mean from a histogram based on students’ visual search strategies (cf. 
Goldberg & Helfman, 2011) inferred from their gaze patterns (see the 
Empirical background of the re-used data section). A visual search strategy can 
be part of a task-specific strategy. People use these strategies to get “from an 
initial problem state to a desired goal state, without knowing exactly what 
actions are required to get there (Newell & Simon, 1972)” (Van Gog et al., 
2005, p. 237). As the debate between Lawson (1990) and Sweller (1990) 
illustrates, there are different opinions on what strategies are. In our study on 
graph interpretation, students’ strategies typically consist of (1) visually 
searching for the relevant information, (2) making inferences based on this 
information, and in some cases (3) verifying the inference; see also the section 
Theoretical interpretation of students’ gaze patterns. Given our focus on what 
eye-tracking and data science tools (IMM, MLA) can provide to educational 
researchers, we now first discuss the theoretical background of using eye-
tracking. Next, we discuss the background of our methodological choices 
including eye-tracking, IMM and MLA, and provide a short introduction to 
supervised MLAs. How we tailored these methods for our purpose, is discussed 
in the research approach section.  
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4.2.2 Use of gaze data 

There are multiple reasons for using gaze data to identify students’ strategies. 
First, eye-movement patterns (e.g., order of fixations40 or saccades) are online, 
real-time measures that may allow for more adequate feedback than feedback 
on answers only. Moreover, feedback on strategies can be provided earlier 
during the task-solving process (e.g., Gerard et al., 2015; Mitev et al., 2018), 
although strategy feedback can also be on answers (e.g., Tacoma et al., 2019). 
Second, low-accuracy eye-tracking—for example, through webcams—is 
expected to be a standard option for computers in several years’ time (e.g., 
Kok & Knoop-Van Campen, 2022), which would make it possible to give 
feedback to large groups of students. Third, gaze data are direct motor data 
that are almost impossible to manipulate. This makes measuring eye 
movements more reliable than, for example, thinking-aloud protocols (e.g., 
Van Gog et al., 2005). In addition, younger students, novices, and sometimes 
even experts find it difficult to articulate their thinking process, are sometimes 
not aware of their thinking (e.g., Green et al., 2007) or might respond to what 
they think the interviewer expects or what is easily accessible (e.g., Wilson, 
1994).  

The implicit assumption here is that eye movements reflect cognitive 
processes. Spivey and Dale (2011) state: “Our most frequent motor 
movements—eye movements—are sure to play an important role in our 
cognitive processes. [...they] provide the experimenter with a special window 
into these cognitive processes.” (p. 551). It is indeed generally assumed that 
gaze data can provide evidence of conceptual actions, however with some 
caveats (e.g., Radford, 2010). First, the relationship between eye movements 
and cognitive processes is not straightforward (e.g., Kok & Jarodzka, 2017; 
Russo, 2010). In addition, not every eye movement is part of a student’s 
strategy (e.g., Anderson et al., 2004; Schindler & Lilienthal, 2019). 
Furthermore, one could argue that students’ fixations on the screen do not 
indicate where they looked, as people also observe through their peripheral 
vision (Lai et al., 2013). Nevertheless, in our items, focused vision is needed for 
locating detailed information (e.g., locating a bar, reading a specific number on 
the horizontal axis). As the fovea has the greatest acuity (sharpness; Wade & 
Tatler, 2011), locating a number on an axis is only possible with foveal vision, 
and peripheral vision most likely guides our attention to it and to the bars (cf. 

 
40 “A fixation is a period of time during which a specific part of [we use graph on the computer 
screen here] is looked at and thereby projected to a relatively constant location on the retina. 
This is operationalized as a relatively still gaze position in the eye-tracker signal implemented 
using the [Tobii] algorithm.” (Hessels et al., 2018, p. 22). A period of time during which a 
relatively fast switch of gaze between two fixations occurs is called a saccade.  
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Kok & Jarodzka, 2017). Therefore, we can infer that the fixation on the screen 
is what the student is looking at. 

Choosing what eye-movement measures to use is a methodological 
decision. According to a review study (Lai et al., 2013), the measures used 
most often were temporal (e.g., total fixation duration, time to first fixation, 
total reading time), followed by count (e.g., fixation count). The least used 
measures were spatial (e.g., scanpath, fixation position, order of AOIs). 
Goldberg and Helfman (2010) stated that “with appropriate task design and 
targeted analysis metrics, eye-tracking techniques can illuminate visual 
scanning patterns hidden by more traditional time and accuracy results” (p. 
71). Scanpaths can reveal learning in more detail (Hyönä, 2010). Tai et al. 
(2006), therefore, advise using spatial measures such as scanpaths in problem-
solving research.  

Studies using students’ scanpaths for identifying strategies are rare, 
and often use the sequence of AOIs (e.g., Garcia Moreno-Esteva et al., 2018) or 
scanpaths that are aggregated over time and fixations (e.g., in heatmaps, 
Schindler et al., 2021). Up to now, scanpaths mostly require qualitative 
inspection or analysis of the eye-movement data (e.g., Alemdag & Cagiltay, 
2018; Susac et al., 2014)—especially when looking for task-specific strategies. 
Figure 4.1 provides an example of such a scanpath (a sequence of fixations and 
saccades). Qualitative analysis is both time-consuming and harder to objectify. 
In this chapter, we, therefore, use the raw scanpath data to identify students’ 
strategies.  

In studies using angles and direction of saccades in educational settings 
(e.g., Dewhurst et al., 2018), scanpaths are often compared on multiple or all 
AOIs41. In our previous, qualitative study, we took a new approach in using the 
perceptual form (e.g., vertical gaze pattern) of the gazes on one AOI only 
(graph area)—the one that was found was particularly relevant for students’ 
task-specific strategies (see also the following section, ‘inferring an attentional 
anchor from gaze data’). This perceptual form consists of angles and direction 
of saccades that are roughly aligned. So far, we have not found any other study 
in education that uses alignment of saccades. For more details, see the 
Research approach section (students’ strategies). A possible advantage of 
looking at saccades over fixations or order of AOIs is that it may be less 
sensitive to spatial offsets (e.g., Jarodzka et al., 2010). 

41 In addition, this study is about the influence of task difficulty on scanpaths. It does not 
consider the kind of task-specific strategies we are aiming for.  
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4.2.3 Inferring an attentional anchor from gaze data 

For our theoretical interpretation of the perceptual form of students’ gaze 
patterns on the graph area (horizontal or vertical line segments), we draw 
upon insights from theories on enactivism and embodied cognition. According 
to these theories, cognition arises from interaction with the environment (e.g., 
Rowlands, 2010). The focus of an actor’s interaction with this environment is 
called an attentional anchor (AA) (AA; Hutto & Sánchez-García, 2015). An AA is 
“a real or imagined object, area, or other […] behavior of the perceptual 
manifold that emerges to facilitate motor-action coordination” (Abrahamson & 
Sánchez-García, 2016, p. 203). Other behavior of the perceptual manifold, for 
example, includes students gesturing a horizontal line when explaining how 
they made all bars equally high in a case-value plot strategy. The AAs found in 
our previous research (see Chapter 3) facilitated students’ imagined actions 
(strategies for finding the mean)—regardless of the strategies’ correctness. 

Examples of AAs in motor action can be found in research on high 
school trigonometry where students coordinate the movement of the left hand 
to describe a circle and their right hand to describe a sine graph (Alberto et al., 
2019). Another example is the manipulation of two bars that are proportional 
to each other, see Figure 4.1 (e.g., Shayan et al., 2017). Students needed to 
keep the bars green, which occurred when the bars had a fixed ratio of, for 
example, 1 : 2 (unknown to the students). They dragged both bars up to find 
various points where both are green. Students had different strategies for 
finding these points. In one strategy, gaze fixation is on the right-hand bar in 
the middle, which is mathematically relevant, as this bar is twice as high as the 
left-hand bar (Figure 4.1). As this imagined triangle emerges to facilitate the 
coordination of the motor action, it is an example of an AA. 

Figure 4.1 Stable triangular scanpath that was interpreted as an AA 

 
Note. Circles are fixations (places where students looked), arrows indicate the 
direction of saccades (fast transitions between two fixations), redrawn after Shayan et 
al. (2017, p. 175).  
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4.2.4 Theoretical interpretation of students’ gaze patterns 

Although enactivism often assumes manipulation of an environment, there are 
indications that people’s sensorimotor systems are also activated in situations 
without physical manipulation (e.g., Fabbri et al., 2016; Lakoff & Núñez, 2000; 
Molenberghs et al., 2012). In the retrospective stimulated recall interviews, 
students talked about the graphs as if manipulation were possible. For 
example, studentL10 refers to chopping and flattening all bars (hence, using 
compensation, Bakker & Gravemeijer, 2006), see the excerpts below. This 
student describes sensorimotor actions, namely: breaking up the longest bar 
into pieces that are then divided over the shorter bars, resulting in a horizontal 
line along the top of the now equally high bars. This would be a correct 
strategy for finding the arithmetical mean in a different type of graph (namely, 
a case-value plot, e.g., Cai et al., 1999; Yuan et al., 2019). An imaginary 
horizontal line segment is used for coordinating this imagined action. Gaze 
data show this imaginary segment in the form of a stable scanpath indicating 
the focus of interaction of this student, see Figure 4.2. We, therefore, interpret 
this segment as an AA. Gazes on Item06 indicate that this AA was also visible 
before item20.  

StudentL10: I looked at the graph itself [Item06] first and then I kind of looked 
at the axes, how is it constructed and then I looked at the question, 
and then I looked again at the frequency, how to group it. That was 
it in my opinion. 

Researcher1: And were you doing that here the same way you did with those 
other [previous] questions? Chop it into pieces? 

StudentL10: Yes. 
Researcher1: You said five here [Item20]. 
StudentL10: Yes, because I thought the weight would be on the left side. So, if 

you flattened it all out, between 4 and 6 would be the imaginary 
[horizontal] line. 
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Figure 4.2 Part of the stable scanpath of studentL10 on Item06 (left) and Item20 (right) 

Note. The stable scanpaths reveal the horizontal line segment along which the student 
looks on Item06 (left; here superimposed on the figure for the reader) and Item20 
(right). Circles indicate fixations, thin lines indicate saccades. As the weight value is on 
the horizontal axis, so is the actual mean. However, from the eye movements of this 
student, we can conclude that the mean of the frequency is estimated, instead of the 
mean weight. The interview data support this conclusion. This stable scanpath, 
therefore, indicates an incorrect (case-value plot interpretation) strategy. 

4.2.5 Considerations for strategy identification with machine learning 
algorithms 

For automated strategy identification, an analytic model of this strategy is 
needed. A machine learning algorithm42 (MLA) automates building an 
analytical model. An MLA is a computer program that improves with 
experience (Kersting, 2018; Mitchell et al., 1990; Molnar, 2019). An MLA is not 
explicitly programmed to use any particular input features. ‘Features’ here 
refers to variables constructed from input data. 

An MLA can be supervised or unsupervised. Being supervised means 
that the training cycle of the program is fed with, for example, the correctness 
of the strategy; in unsupervised learning, only the gaze data would be given to 
the program during the training cycle and the program might infer correctness 
information by itself. As we previously identified two groups in our qualitative 
study, we wanted to see if the MLA could identify those students correctly. 
That calls for a supervised MLA. During the training cycle, see Figure 4.3, an 
MLA is fed with the raw gaze data as well as a classification code for the 
already identified strategy (0 for incorrect, 1 for correct). After this learning or 
training cycle, the trained MLA identifies the strategy of other students (or 
trials) that were not part of the training set. 

 
42 In the media, machine learning (ML) and artificial intelligence (AI) are often regarded as 
synonyms, but there is a difference. Interested readers are referred to Kersting (2018).  
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Figure 4.3 Training and identification cycles of a supervised MLA 

We used Mathematica’s implementation of random forest in the ‘Classify 
Function’ (version 13.2.1; WRI, 2020) with default parameters. The Classify 
Function automates and optimizes the data preparation process. For example, 
it automatically handles the different lengths of input vectors of x-y-pairs (it 
normalizes input features). 

We underline that we used the MLA as a baseline to compare our 
interpretable mathematical model (IMM) with. We see it as a tool. Educational 
researchers may be more interested in how well such an MLA performed and 
what it can provide for them. MLA experts may be more interested in the 
details of the ML method. It is like users of an electric screwdriver being 
interested in how well it works and designers of such screwdrivers being 
interested in the details of how this screwdriver was assembled and could be 
optimized and whether better ones exist. We would like to emphasize that our 
article is not a report about research into machine learning methods. It is a 
report of a study of cognitive behavior which uses machine learning tools to 
analyze its data. Hence, the purpose of our research was not to conduct an in 
depth investigation into which machine learning methods would work best for 
our data but to see how well our IMM performed compared to an MLA. 

MLA (black box) 

Training cycle 

Identification cycle 

student gaze data (sequence of x-y-pairs) 

strategy correctness (0 or 1) 

other student or same student new trial gaze data (sequence of x-y-pairs) 

strategy correctness (0 or 1) 

MLA (black box) 
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An important prerequisite for ML analysis is that the dataset is large 
enough and contains enough information for the MLA to identify (classify) 
students’ strategies. For this purpose, we decided to do a ‘sanity check’ and 
see if the MLA would be able to identify students’ answer correctness. As 50% 
of the students answered Item06 correctly (Table 4.1), an MLA with an 
accuracy of about 50% would not be better than throwing a coin. Fifty percent 
accuracy could also be reached by identifying all students having a correct 
strategy. Therefore, for the prerequisite of enough information to be met, the 
accuracy of this answer identification needs to be well above 50% when using 
balanced data as in Item06. We decided to set it to 70% or above, as this is a 
low-stake classification problem. Such a sanity check can be used as a first step 
before proceeding to the manual determination of students’ strategies 
through qualitative research, or when qualitative research is still in progress. 
To judge the performance of an MLA, other metrics also need to be 
considered; see the Methodological evaluation criteria section. Therefore, we 
first trained the MLA on students’ answers (and then identified other students’ 
answers) before we retrained the MLA on students’ strategies (and then 
identified other students’ strategies). 

4.2.6 Considerations for analyzing eye movements with an MLA 

The use of an MLA for analyzing gaze data is still unusual (e.g., Kang et al., 
2020) and even more so for educational use (e.g., Brunyé et al., 2019; Mitev et 
al., 2018). For example, in a review of eye tracking in medical education, the 
use of an MLA is described in only two out of 33 studies (Ashraf et al., 2018). In 
many studies, areas of interest (AOIs) are used. AOIs are predefined areas of 
the item that are judged by the researchers as being distinct from each other 
and relevant to the strategy. Eye movements on these AOIs or between them 
are recorded. Typically, the information is often reduced to a single measure 
for each AOI—for example, whether an AOI was visited or not. In our study, we 
used raw gaze data on one large AOI to study the perceptual form of the 
scanpath. Examples of AOI usage in ML studies are the order in which AOIs are 
visited, or the number of fixations on the areas of interest (e.g., Garcia 
Moreno-Esteva et al., 2020; Najar et al., 2014). In other studies, temporal 
measures are used, such as the total duration for fixations on an AOI or mean 
duration per fixation (e.g., Voisin et al., 2013). Schindler et al. (2021) used 
heatmaps of students’ gazes in an MLA, thus discarding the order of fixations 
in the scanpath pattern. However, in most eye-tracking studies, no MLA is used 
at all (e.g., Strohmaier et al., 2020; Van Gog & Jarodzka, 2013). In some studies, 
an interpretable (vector) model was made from the raw data (e.g., Dewhurst 
et al., 2012). The use of multimodal data—including eye-movement data—in 
combination with an MLA is an emerging line in educational research (Järvelä 
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et al., 2019). What is new in our study, to the best of our knowledge, is that we 
feed the MLA (and IMM) with the raw gaze data to identify students’ task-
specific strategies.  

An advantage of supervised MLAs for analyzing gaze data is that they 
provide a rather generic approach. However, the disadvantage of many MLAs 
is that they are effectively like black boxes that do not reveal how they identify 
the results from the data, and, hence, what analytical model emerges (e.g., 
Guidotti et al., 2018; Kuhn & Johnson, 2013; Lakkaraju et al., 2019; Rudin, 
2019). Therefore, it is unknown what gaze data patterns are used by the MLA 
for data classification. 

Several solutions are suggested in the literature to overcome this 
disadvantage. More transparency can be created by (1) model or global 
explanations, (2) outcome or local explanations, or (3) model inspection or 
differential explanations (e.g., Guidotti et al., 2018; Lakkaraju et al., 2019). 
Explainable means that humans can understand how the MLA reached its 
decision (e.g., Doshi-Velez & Kim, 2017). An alternative is to create an (4) 
interpretable model directly from the data, sometimes after first using MLAs to 
understand what is relevant in the data (e.g., Rudin, 2019), or (5) use white-
box techniques such as models that are made a priori. The disadvantage is that 
(5) is based on human assumptions, not on data; this risks relevant information
in the eye-movement data being overlooked (e.g., Villagrá-Arnedo et al., 2017).

In our case, (1) model explanation could involve trying to extract the 
general rules that the MLA uses to decide what strategy a student uses (for 
examples from weather forecasting, see McGovern et al., 2019). Outcome 
explanations (2) might involve trying to extract why student A is identified as 
having strategy z (for clinical examples, see Krause et al., 2016; for an example 
with birds, see Rudin, 2019). Model inspection (3) could be understood as 
finding out how sensitive the model is to variations in the data.  

As (2) is even more complex to achieve, we decided to make an 
interpretable model instead (4). An interpretable model is a model that 
captures the most important characteristics of the strategy, in a way that can 
be understood by human beings and that is transparent (Rudin, 2019). An 
interpretable model is often a mathematical and logical model (e.g., Hancox-Li, 
2020; Lakkaraju et al., 2019; Molnar, 2019); in our case, it consisted of a set of 
rules that approximately describes the stable scanpath of the gazes. We call 
this our interpretable mathematical model (IMM). 

To provide a baseline for this IMM, we compared it with a random 
forests MLA. We used Mathematica’s implementation of random forest in the 
‘Classify Function’ (version 13.2.1; WRI, 2020) with default parameters. The 
Classify Function automates and optimizes the data preparation process. For  
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example, it automatically handles the different lengths of input vectors of x-y-
pairs (it normalizes input features). 

The Classify Function initially choose random forest as the best MLA for 
each of all five items in a previous version of the software that we started our 
analyses with. In the newest version (13.2.1) another MLA (logistic regression) 
provided slightly better results for several of our items and random forest for 
others. We report the results for random forests for several reasons, including 
consistency, and that the MLA is only a baseline for our IMM. For all further 
analysis we seeded these random forests to make sure that our results are 
reproducible. An advantage of the Classify Function in the Mathematica 
software is that users do not need to deal with the details of machine learning 
methods. The Classify Function is used “as is” and automates many aspects of 
the methodological stack. Specifically, to give an example, it automates the 
selection of the machine learning method and the preparation of data 
(consisting of only the—temporally ordered—x- and y-coordinates of fixations 
on the AOI graph area) so the selected method can be applied to it. Note that 
timestamps are not provided to the MLA, so the MLA does not ‘know’ that the 
data is temporally ordered or that data from other AOIs are removed. The 
downside of our approach is that we know little about how the Classify 
Function is handling our data. For example, data preparation and feature 
selection is all hidden in the software and we, therefore, consider it a black 
box, even though the MLA it initially selected —random forest—is itself known 
for its possibilities for feature extraction (e.g., through a feature importance 
plot). Our data, which are continuous, are by themselves difficult to interpret 
(x- and y-coordinates). Ultimately, the problem is that it is impossible to know 
whether the classification is based on gazes that are typical for the task-
specific strategy at hand (cf. Kuhn & Johnson, 2013). In addition, the first step 
of (3) was performed by using the random forest MLA trained on one item for 
classifying strategies on other items and vice versa for all item pairs.  

4.2.7 Considerations for the construction of an interpretable 
mathematical model 

An (IMM) is transparent in what and how characteristics of students’ gaze 
patterns are used to identify students’ strategies. To detect task-specific 
strategies and ensure that the IMM is usable—an evaluation criterion, see the 
next section—we use the idea of an attentional anchor (AA) as described 
earlier to search for a task-specific perceptual form of the gazes (stable 
scanpath; see the section on Theoretical interpretation of students’ gaze 
patterns). The advantage of using an AA for constructing an IMM is that it is 
both task-specific (for each topic and task a different perceptual form is 
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expected) and generalizable (it has been found already for topics and tasks in 
various mathematical domains).  

4.2.8 Methodological evaluation criteria 

Validity, reliability, and causality are important methodological evaluation 
criteria in educational research. Different terminology and definitions are used 
in data science and human-computer interaction research for evaluating MLA 
results. In this section, we compare these terminologies.  

First, in educational research, validity “concerns whether we really 
measure what we intend to measure” (Bakker & Van Eerde, 2015, p. 443). In 
educational research, threats to the validity are internal and external, for 
example, maturation of subjects between measurements, subject selection 
effects on results, loss of subjects, changes in instrumentation, and so on 
(Eisenhart & Howe, 1992). This mostly applies to how the data were collected 
and what can be inferred from them. Regarding the data collection, as all data 
were collected in one session, maturation does not apply. Also, we did not 
exclude any subjects from the dataset, hence, there is no loss of subjects. We 
did not change our instrumentation, and so on. What does apply is that we 
selected subjects from pre-university track students in Grades 10–12 only, 
from one school, and only those who volunteered (which is inevitable). 
However, we observed the same phenomena (strategies) in different subjects 
in previous studies with secondary school teachers (Boels et al., 2019b) and 
with university students (Boels et al., 2018). Moreover, qualitative research 
does not seek to generalize from sample to population but from variation in 
the data to the phenomenon (Levitt, 2021). Regarding what can be inferred 
from the data: we combined the gaze data with the results of cued recall. Cued 
recall means that students were shown their gazes (the cue) and asked to 
explain what strategy they used (cf. Van Gog et al., 2005). This ensures that the 
data collection was valid. For the MLA and IMM, validity can be understood as 
whether these actually measure the phenomenon (strategies). As we discuss in 
the Research approach section, this is true for the IMM by its design, but we 
cannot be sure about the MLA. However, the results of the IMM suggest that 
the phenomenon can be measured from the gaze data. 

Second, reliability in educational research is about “independence of 
the researcher[s’ judgment]” (Bakker & Van Eerde, 2015, p. 443) or small 
variation in outcomes. Reliability of a method entails that its results can be 
reproduced with the same population with comparable items (e.g., Golafshani, 
2003). Reliability, in this sense, can be understood as the MLA results having 
about the same and sufficient accuracy as the results of the qualitatively 
identified strategies and of those of an IMM. Another way to look at the 
reliability of MLAs in this sense is by comparing results on different items (e.g., 
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train the MLA with data of one item and identify students’ strategies for 
another). When there is sufficient overlap, all are considered to identify the 
same phenomenon. This, in turn, makes the MLA results more reliable. 
Reliability here refers to what data scientists sometimes call the performance 
of the MLA. In human-computer interaction research, reliability (also) involves 
the safety of the system, downtime, and consistency in the results (e.g., Bosnić 
& Kononenko, 2009; Webb et al., 2020), which is not relevant to us as we are 
not building an application.  

Data scientists, however, define “reliability of classification as an 
estimated probability that the (single) classification is in fact the correct one” 
(Kukar & Kononenko, 2002, p. 219). To avoid confusion, we will, therefore, use 
performance when evaluating our results. Performance is also checked 
through cross-validation (e.g., Berrar, 2019) which involves applying the 
trained MLA to unseen data. We used several cross-validation procedures. 
First, we used a procedure often applied in statistical research—jackknife—
which is a form of resampling (e.g., Efron & Stein, 1981) which means that the 
answers or strategies for all 50 students are identified in an iterative process 
by the MLA based on learning from the other 49 students. Since there are 50 
students who can be left out one at a time, there are 50 ways to do this and 
the 50 results are averaged. Second, we performed a leave-one-out cross-
validation (LOOCV) which means that data from 49 students are used as 
training data, and the strategy of the 50th student is classified. This is done 50 
times until all students’ data are used as test data once. Furthermore, we used 
a stratified 5-fold cross-validation which means that the data are split into 
groups of ten students. Stratified means that in each group of ten students, the 
number of students with a correct strategy is roughly the same. Then, the MLA 
is trained with 40 students and classifies the strategies of the remaining 10. 
This is repeated five times until data from all groups are used once as test data.  

An MLA’s performance can be measured in different ways; through 
accuracy, through a confusion matrix (e.g., comparing the results of the MLA 
with the results of the qualitative coding), and through a ROC43 plot (Fawcett, 
2006; see the Results of applying an MLA and IMM section) that gives an idea 
of the true positives and false negatives rates. Accuracy is expressed as a 
percentage of correctly predicted or identified cases (e.g., Afonja, 2017). As 
explained earlier, for our supervised MLA in this low-stake situation, we regard 
an accuracy of 70% or higher as good. In addition, we consider 80% or above as 

 
43 ROC stands for Receiver Operating Characteristic. Originally it was used to judge how well a 
specific Receiver Operated meaning how well it was picking up enemy signals (radar). In our 
case, the plot visualizes how well the signal (in our case: true positives) is detected compared to 
false negatives.  
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very good, and 90% or more as excellent. However, accuracy can be 
misleading. For example, if only ten percent of the students used the correct 
strategy, and the MLA identifies all strategies as incorrect, the accuracy would 
be 90%, but this identification would not be valid. Therefore, accuracy should 
be used with precaution. In a confusion matrix, counts for true and false 
positives and negatives are reported separately (see the Results section and 
Appendix A of this chapter). From this matrix, sensitivity and specificity can be 
calculated using the following formulas (cf. Kuhn & Johnson, 2013), which give 
a better idea of how the MLA is performing: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=  
#samples qualitatively coded correct 𝑎𝑎𝑆𝑆𝑛𝑛 by MLA identified as correct (strategy)

#samples qualitatively coded having correct strategy

This formula is often shortened to (e.g., Fawcett, 2006): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
true positives

true positives +  false negatives =  
true positives

total positives in true class =  
𝑇𝑇𝑇𝑇
𝑇𝑇

In this second formula it is not immediately clear what is considered to be the 
‘true’ class, whereas in the first it is clear that we took the results of the 
qualitative study as the ‘true’ results and the MLA results as the hypothesized 
class. For example, for Item01 and the IMM, 𝑇𝑇𝑇𝑇 =  14 and 𝑇𝑇 =  14 + 10, 
(Table 4.6), therefore, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  14

24
= 0.583 … which is rounded to 0.58 

(Table 4.5, Results of applying an MLA and IMM section). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=  
#samples qualitatively coded incorrect 𝑎𝑎𝑆𝑆𝑛𝑛 MLA identified as incorrect (strategy)

#samples qualitatively coded having incorrect strategy

Similarly to the above formula for sensitivity, the formula for specificity is often 
shortened, to:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
true negatives

true negatives +  false positives
=  

true negatives
total negatives in true class

=  
𝑇𝑇𝑇𝑇
𝑇𝑇

Third, in educational research, measuring is only valid “if and only if (a) the 
attribute exists and (b) variations in the attribute causally produce variations in 
the outcomes of the measurement procedure” (Borsboom et al., 2004, p. 
1061). Data science does not use the word validity. With the MLA, we intend to 
measure students’ strategy correctness based on their gazes. Therefore, 
variations in students’ gazes should produce variations in the classification by 
the MLA. Furthermore, if an IMM can be understood by human beings—and 
describes the observed phenomenon accurately—it adds to the validity of both 
the model and the MLA (e.g., Doshi-Velez & Kim, 2017; Rudin, 2019) as well as 
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to its usability (e.g., Guidotti et al., 2018). Usability is another criterion from 
human-computer interaction literature. In the previous section, we described 
how an IMM that meets these criteria can be constructed.  

Fourth, causality implies that a change in the results of the MLA is due 
to a change in the real system (Doshi-Velez & Kim, 2017). Although not every 
eye movement is part of the task-solving strategy (e.g., Schindler & Lilienthal, 
2019), eye movements and strategies do associate (e.g., Kok & Jarodzka, 
2017). Therefore, instead of causality, we use association, meaning that if 
students perform a specific pattern of gazes, they use a specific strategy. If 
there is an association between a gaze pattern and a strategy, the accuracy of 
identifying this strategy by the IMM and the MLA will be sufficient or better. 

4.3 Research approach 
In a previous study, we collected and qualitatively analyzed students’ gaze and 
stimulated recall data and classified these into groups (Table 4.2) of students 
using the same strategy (see Chapter 3). The present study consists of three 
phases: (1) analysis of gaze data on one AOI (that contains the stable scanpath) 
through a random forest MLA; (2) construction of a separate interpretable 
mathematical model (IMM) based on the gaze data and using insights from 
qualitative research; and (3) comparison of the results of the MLA with the 
IMM and with the results of the previous qualitative study as the MLA is a 
baseline to compare our IMM to. The most important information from the 
previous study is presented in the following section. Next, the first two phases 
of the present study are explained in more detail. A comparison of the results 
is made in the Results section.  

4.3.1 Empirical background of the re-used data 

Participants 
This study re-uses data from an eye-tracking study with 50 Grades 10–12 
students of a Dutch public44 city high school (see Chapter 3). All participants 
are Dutch pre-university track students (15–19 years old; mean age 16.3; all 
with normal or correct-to-normal vision; 23 males, 27 females).  
  

 
44 In the Netherlands, private schools are rare and in general, there is no difference between 
state schools in terms of students’ results.  
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Eye-tracking apparatus 
The gaze data that are used as input for the IMM and the MLA were collected 
with a Tobii XII-60 eye-tracker with a sampling rate of 60 Hz that was placed on 
an HP ProBook laptop between the laptop’s 13-inch screen and keyboard 
(Figure 4.4). A chin rest was used to reduce data loss and improve the accuracy 
of the gaze data. Furthermore, a 9-point calibration on the screen was used. 
The Tobii Pro Studio 3.4.5 software recorded in real-time where people looked 
at the screen by using harmless infrared light to detect their gaze. Data loss 
was minimal (7.2% on average) and none of the students (averaged over all 
trials45) or items (averaged over all students) went over the exclusion point of 
34%. The mean accuracy is 56.6 pixels (1.16°) with the highest accuracy on the 
graph area (mean 13.4 pixels or 0.27°). The average precision (0.58°; RMS-S2S; 
Holmqvist et al., 2023) is considered good. For other measures of gaze data 
quality, see Chapter 3. We, therefore, did not exclude any student, although 
for some specific trials, data loss could come close to or even over this 
exclusion point (e.g., studentL39 and studentL32 had 27.5% and 46.0% data 
loss respectively on their trial of Item01). Some data loss is normal, due to 
blinking, wearing glasses or make-up, epicanthic eyes, or students looking 
above or below the screen while thinking. Another reason for not excluding 
students is that this would not be representative of a future gaze-based 
feedback application where real-time data collection and processing would 
occur. 

Figure 4.4 Set-up of the experiment 

Note. The red arrows in the right-hand picture point at the eye tracker (bottom left, 
see the red oval) and chin rest apparatus (top middle). The person in the picture is not 
a participant.  

45 In mathematics education, we usually talk about an item, task or problem. In eye-tracking 
research, a series of gazes of one student solving one such item is called a trial. 
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Tasks 
The data on five histograms items are used and analyzed in the present 
chapter, see Figure 4.5. The question for all five items was: “What is 
approximately the mean weight of the packages [name of postal worker] 
delivers?”  

The students verbally estimated the mean (Table 4.1); their answer was 
coded as correct or incorrect. Answer correctness can differ from strategy 
correctness, due to, for example, underestimation of the mean, even if a 
correct strategy was used to locate the mean.  
Students’ strategies  
Qualitative data were collected through expert judgment on students’ 
strategies on the items (Table 4.2), which in turn was based on (1) videos of 
students’ gaze data on the items; (2) interview data when available; (3) 
students’ answers. Three common strategies were identified (Table 4.2): a 
histogram strategy (Figure 4.6—a correct strategy that reads off the estimation 
on the horizontal weight axis), a case-value plot strategy (Figure 4.2—a 
strategy that would be correct for a case-value plot but is incorrect for finding 
the mean from a histogram as it returns the mean frequency, read on the 
vertical frequency axis), and a count-and-compute strategy (an incorrect 
strategy46 that, for example, adds the height of the bars, hence the 
frequencies, and divides by the number of bars—resulting in a kind of zig-zag 
pattern of horizontal and vertical gazes, see Chapter 3 for more details). Both 
the case-value plot strategy and count-and-compute strategy relate to the 
same misinterpretation: interpreting the histogram as a case-value plot (Boels 
et al., 2019a; Cooper, 2018); the difference is whether students estimated 
(case-value plot strategy) or calculated (count-and-compute strategy) the 
mean. Hence, almost all strategies can be attributed to one of two classes: one 
in which students correctly interpreted the graph as a histogram and one in 
which students incorrectly interpreted the graph as a case-value plot. 
  

 
46 Although a correct variant of this strategy is, in theory, possible, we did not find such a correct 
variant in the gaze data, nor in students’ explanations. 



Automated gaze-based identification of students’ strategies in histogram tasks 

149 

Figure 4.5 Graphs (all single histograms) used in Item01 (upper left), 02 (upper right), 
06 (middle left), 19 (middle right) and 20 (bottom) 
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Table 4.1 Answers given by the students, N = 50 (see also Chapter 3, Table A.9) 

Item Correct 
answer 

Answer 
range correct 
answers a 

Average of 
given 
answers 

Number of 
students 
correct 

Percentage of 
students correct 

Item01 3.3 2.2–4.4 5.6 20 40% 
Item02 2.7 1.6–3.8 3.8 19 38% 
Item06 5.7 4.6–6.8 6.9 25 50% 
Item19 6.4 5.3–7.5 6.9 34 68% 
Item20 6.3 5.2–7.4 b 6.7 17 34% 

Note. a Experts were asked to give an answer to these items as well. Based on these 
results as well as students’ preference for whole numbers, the answer range was set to 
+/-1.1 for all items. 
b If the answer 7.5 had been included, 18 students would have answered correctly. 
Furthermore, 10 students answered 5 for Item20.  

Table 4.2 Strategies, percentage of trials (correct strategy in bold), N = 50 per item 
(see also Chapter 3, Table A.12) 

Item Histogram 
strategy 

Case-value 
plot strategy 

Count-and-
compute strategy 

Unclear 

Item01 48% 30% 20% 2% 
Item02 46% 38% 12% 4% 
Item06 38% 42% 20% 0% 
Item19 44% 42% 14% 0% 
Item20 46% 34% 16% 4% 

 

A second coder coded 10% (25 trials). The interrater reliability of the coding in 
Table 4.2 measured with a Cohen’s Kappa of .62 is considered substantial 
(Landis & Koch, 1977). Four out of five disagreements involved the second 
coder choosing a count-and-compute strategy and the first coder choosing one 
of the other strategies. If this coding is aggregated to correct (histogram 
strategy) and incorrect (all others)—as used as input for training the machine 
learning algorithm—agreement goes to 22 out of 25 trials, which corresponds 
to a Cohen’s Kappa of 0.73 (substantial).  

We used a code for a correct (bold) or incorrect strategy (all other, 
mostly misinterpreting the histogram as a case-value plot) as input in the 
training phase of the MLA and compared these to the results of the IMM and 
of the testing phase of the MLA (we explain later how the testing was done 
relative to the training). The eye movements belonging to correct strategies 
were mainly vertical and answers were read on the horizontal axis, as the data 
in a histogram are positioned along this axis (Figure 4.6).  
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In contrast to most eye-tracking studies, in the qualitative study, we looked at 
the perceptual form of the scanpath, for example, the vertical gaze pattern 
(Figure 4.6), and refer to this as a stable scanpath if it includes multiple aligned 
fixations and saccades along this scanpath and was explicitly mentioned by at 
least some students as being relevant for their strategy (e.g., Boels et al., 2018, 
2019a; Chapter 3). This vertical line is formed by looking back and forth 
between the balance point of the graph on the horizontal axis and the height 
of the bars as a weighting factor. Incorrect strategies contained mainly 
horizontal gaze patterns and searching for the answer on the vertical 
(frequency) axis—hence using incorrect data—and leveling all bars (Figure 4.1 
in the section on the Theoretical interpretation of students’ gazes).  

Figure 4.6 Part of a stable vertical scanpath (left) and all gazes (right) on Item06 

Note. The left figure reveals the vertical line segment (left: superimposed for the 
reader) in studentL26’s gazes on Item06 (right: all gazes). Circles indicate fixations, thin 
lines indicate saccades: fast transitions between two fixations. The left figure is 
translated for the reader’s convenience. These gazes indicate a correct (histogram 
interpretation) strategy.  

4.3.2 Random forests machine learning analysis 

For the machine learning analysis we used the random forest MLA that is 
implemented in the Mathematica software as described in a previous section, 
both for training the MLA—with a subset of students—and for the 
classification of the remaining students by the trained MLA. The aim of our ML 
analyses was to set a baseline for an IMM (see next section). We started our 
analysis with Item06 from the original 25 items in the qualitative study (e.g., 
Chapter 3). The first reason for choosing this item is that 50% of the students 
answered this item correctly (Table 4.1) which is—in theory—an ideal situation 
for MLA. If it did not work with this item, we would not expect the MLA to 
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work on other items. The second reason was that we expected students to 
have settled on a strategy by the sixth item of the original study—in line with 
our observations from the qualitative study—possibly making the identification 
of strategies easier than for the first two items. The third reason was that this 
graph is skewed to the left, making large horizontal eye movements—part of 
the incorrect strategy—more likely to be explicit than in graphs that are 
skewed to the right (e.g., Figure 4.7). 

Figure 4.7 Example of all gaze data on Item02 (left) and Item06 (right) of studentL27 

Note. This student incorrectly answered six and eight, respectively. The incorrect 
strategy is visible by the many horizontal saccades going from the left-hand side of the 
graph to the middle or right-hand side and the absence of vertical gazes going from the 
top or middle of bars to the bottom of the graph (see also Fig. 4.2 and 4.5 for 
comparison). The horizontal saccades in the gaze cloud on the graph area in Item02 
(left) are smaller than in Item06 (right). On both graphs, this student applied an 
incorrect strategy, even though for the first items (e.g., Item02) this student looked at 
the titles of the axes47. 

In the present study, we used a supervised MLA. The MLA is fed with the raw 
data of the gazes: the x- and y-coordinates of the eyes for selected timestamps 
and the correctness of the answers (0 = incorrect, 1 = correct). As the stable 
scanpath (see students’ strategies section) occurred only in the graph area, we 
did not use other AOIs here. Note that we are interested in task-specific 
strategies, not in general reading or viewing strategies. Both the previous 
qualitative study and another study (Lyford & Boels, 2022) suggested that 
reading axes was not a relevant part of such a strategy and would add noise 
when used in an MLA. Examples of other AOIs were the horizontal label (title 
of the horizontal axis), vertical label, horizontal axis, vertical axis, graph title, 

 
47 Looking at statistical graphs (e.g., concentrations of greenhouse gases from 0 to 2005), experts 
tend to spend more time on AOIs that help them understand the data in the graph (title, legend, 
axes) compared to novices (Harsh et al., 2019). The gaze pattern of studentL27 on Item02 
indicates that attending axes and graph titles might not be enough. 
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question, and ‘next’ button. We filtered and prepared the data as follows. 
First48, we removed all data that fell outside the computer screen (all rows 
with x- and y-coordinates outside the range 0–1366 horizontally, and 0–768 
vertically). Then, we calculated new y-coordinates as 768 minus the original 
values, as the coordinate system is upside down in the Tobii software 
compared to the Cartesian plane commonly used in mathematics and 
preferred in Mathematica49 so that a y-coordinate of 700 in Tobii indicates a 
position close to the bottom of the screen. In Mathematica, we selected the 
data that Tobii indicated as being within the graph area (signposted by a 1 in 
the column ‘AOI graph’ in the dataset) and then selected the coordinates that 
were in the graph area (pixels 500 to 1100, horizontally, and pixels that were 
originally between 190 to 525, vertically, for all items, Figure 4.8). We also 
removed few bad data (start and end line of the gazes on an item, as well as 
incomplete data due to data loss as described elsewhere). The order of the 
gaze data was kept in the input file but without timestamps.  

The tool we used (the Classify function in Mathematica version 12.1) 
initially automatically chose random forest (considered to be a high-
performance model, Kuhn & Johnson, 2013) as the best MLA for our 
continuous gaze data (WRI, 2020). During the review process, we made once 
more all analyses with the newest version of Mathematica, 13.2.1. Instead of 
the random forests, the software now suggested that logistic regression 
performs slightly better in most cases, and random forests in some. However, 
our analyses that are based on random forests still hold as the conclusions that 
can be drawn from these analyses with logistic regression are the same. As the 
MLA is intended as a baseline for our IMM, we, therefore, report the results of 
random forests for all items in the remainder of this article. We seeded the 
random forests and prescribed it as method in follow-up analyses (see code 
line below). Although random forest is known for its explainability the way it is 
embedded in the software made us consider it a black box. This ML-model is 
not to be confused with the IMM we constructed and is described in the next 
section. The following code line was used for obtaining a trained classifier 
function in follow-up analyses (some detailed codes can be found in the 
Appendix A of this chapter): 

48 Even before that, some data cleaning was partially done by hand, as, due to the huge amount 
of data, the Tobii software could not deliver the data in one database with all students and items 
together. Instead, all data were delivered per student (25 trials per student), whereas we 
wanted to have all data per item (50 trials per item). Moreover, the original dataset contained 
few empty lines that needed to be removed.  
49 In version 13.2.1, the vertically flipped coordinate system used by the Tobii software now can 
also be used.  
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Classify[{datarow1 -> class1, datarow2 -> class2 ... datarow50 -> 
class50}, Method -> "RandomForest"] 

Here, each data row is a sequence of x-y pairs—the coordinates of the gaze 
locations on the screen, in pixel units, keeping the original order of the 
fixations—and each class is either 0 (incorrect strategy) or 1 (correct strategy). 
Classify returns a classifying function. After this training cycle, a list of data 
rows is fed to this Classify Function to obtain the algorithm’s classification of 
the data. It returns a list of zeros and ones: the algorithm’s identification of 
students’ strategy correctness. 

Figure 4.8 Example of the AOI graph area (yellow rectangle) in Item06 

Note. The size and place of this AOI are the same for all five items.  

The ML analysis consisted of two steps: (1) verification of whether 
prerequisites were met (see the section Considerations for strategy 
identification with machine learning algorithms) and (2) identification of 
students’ strategies. At each step, the MLA was re-trained. We repeated these 
two steps for all five items. As the results of the second step were above our 
expectations, we decided to take an extra step: training the MLA with one item 
and testing the MLA with another; see the Results of applying an MLA and 
IMM section. We did this for all item pairs. In addition, we performed several 
cross-validation procedures as described in the Methodological evaluation 
criteria section. 
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4.3.3 Construction of an interpretable mathematical model 

In the second phase, we constructed an interpretable mathematical model 
(IMM) based on attentional anchors (AA) found in a qualitative analysis of 
students’ strategies in a previous study (see Chapter 3). Two AAs were found: 
an imaginary horizontal line and an imaginary vertical line. We tried several 
ways of capturing these two strategies mathematically, with varying success. 
The best model we found relies on the following algorithm, which is based on 
saccade lengths and angles. The cut-off values below were found empirically 
by testing many values close to a slope of 1. The starting point 1 for the slope 
followed from insights about the two AAs from the qualitative study. For each 
participant, we transform the sequence of saccades on the graph area into a 
sequence of -1, 0, and 1 values (Table 4.3): 

• If a saccade is less than 200 pixels long (Euclidean distance), map it to
0.

• If a saccade is at least 200 pixels long and the absolute value of the
slope of the saccade line is greater than or equal to 0.875 (or ⅞), map it
to 1 (these saccades are considered vertical).

• If a saccade is at least 200 pixels long and the absolute value of the
slope of the saccade is less than 0.875, map it to -1 (these saccades are
considered horizontal).

Our algorithm continues as follows: 
• Split the -1, 0, 1 valued sequence into subsequences of identical

consecutive values.
• Delete the duplicates in each subsequence of the sequences and join

the subsequences.
• Remove the “0” cases; this is equivalent to disregarding saccades that

are “short”.
• Add up the elements of our sequence.
• If the total is negative or 0, we replace the sequence with 0; if the total

is positive, we replace the sequence with 1. This counts the number of
runs of consecutive “long” horizontal or vertical scans, and based on
the total, determines whether there were more horizontal or vertical
sets of long scans. Replacing the sequence with a value of 0 indicates
that the scanning is “mostly horizontal,” if we disregard short saccades
and regard consecutive long scans with similar slopes as a single
“scanning run”.
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Table 4.3 Example of applying the algorithm for the IMM 

Step in algorithm Result 

1–3 {-1, -1, 0, 0, -1, 1, 1, 1} 
4 {{-1, -1}, {0, 0}, {-1}, {1, 1, 1}} 
5 {-1, 0, -1, 1} 
6 {-1, -1, 1} 
7 -1 
8 0 
 

An illustration of what we do is given in the following graphs, in which the 
scans that are considered horizontal are in red and the vertical ones in blue 
(Figure 4.9). The green saccades are shorter than 200 pixels. The color 
becomes lighter as the sequence progresses, to get a sense of the order in 
which the saccades occurred. In the left-hand graph, there are more blue lines 
than red ones, indicating a correct strategy for finding the mean in a 
histogram. In the right-hand graph, there are only red lines, so this scanning is 
regarded as horizontal. The 200 pixels saccade length cut-off point was fixed, 
thus not scaled to the width and height of the graph area (AOI). The size of the 
AOI in Figure 4.9 is indicated with a black rectangle (not present in the item) 
and is the same for all histogram items. As the AAs are similar on all five items, 
we constructed one IMM for all items. This means that the IMM is a more 
general model compared to the random forest models as the latter are 
different for each item. 

Figure 4.9 Examples of horizontal and vertical eye movements that were counted in 
the IMM 

Note. Red—long horizontal—gazes correspond to value 1 in step 7 of the IMM, blue—
long vertical—gazes correspond to 0 in step 7. Lighter colors indicate later occurrence. 
Green saccades are less than 200 pixels (hence disregarded). Left is an example of a 
correct strategy for Item06 (more blue vertical gazes), right an example of an incorrect 
strategy (more red horizontal gazes). Readers are referred to the online enlargement 
of this figure for subtle differences in coloring. 
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4.4 Results of applying an MLA and IMM 
The details of the results, including confusion matrices, can be found in the 
Appendix A of this chapter (Tables A.1–A.8). 

4.4.1 Machine learning algorithm results 

Supervised machine learning with students’ answers’ correctness 
The identification accuracy of the MLA for students’ answers for the first item 
we looked at, Item06, turned out to be 88% (very good) with a jackknife cross-
validation procedure. As we aimed to identify strategies, not students’ 
answers, we needed accuracy to be at least 70%. This criterion is met for all 
items when using version 13.2.1 (Table 4.4). Based on the confusion matrices 
(Tables A.2–A.3) sensitivity and specificity were calculated (Table A.1). 

Next, we trained the MLA with gaze data on one item and then 
identified answers on another item (Table A.6) for the results. Accuracies 
varied between chance level (32%) to well above (70%). 

Table 4.4 Accuracies of the IMM and of the random forests MLA after cross-validation 

Validation 
procedure 

Classification of: Item01 Item02 Item06 Item19 Item20 

Jackknife Answers (mean) 83% 80% 88% 86% 82% 
Jackknife Strategies (mean) 71% 71% 86% 88% 83% 
Leave one out Answers 66% 68% 74% 60% 58% 
Leave one out Strategies 60% 38% 64% 78% 48% 
5-fold Answers 62% 62% 62% 58% 68% 
5-fold Strategies 56% 56% 64% 74% 62% 
IMM Strategies 62% 70% 84% 70% 72%a 

Note. a With a small adjustment of the slope, this could go up to 74%. Accuracy is 
expressed as a percentage of correctly predicted or identified cases (e.g., Afonja, 
2017). The results of the qualitative study are treated as the positive case. 

Supervised machine learning with students’ strategies’ correctness 
The accuracy of the random forests MLA for identifying students’ strategies in 
the first item we looked at, Item06, turned out to be 86% with a jackknife 
cross-validation procedure. This result is considered very good. Consistency of 
the MLA was tested through various procedures such as jackknife, leave-one-
out cross-validation, and 5-fold cross-validation (see section Methodological 
evaluation criteria). Overall, the MLA correctly identifies 71% to 88% of 
students’ strategies (jackknife cross validation) for five different (but all 
histogram) items (Table 4.4). Percentages for correct strategies in the 
qualitative study (Table 4.2) varied between 38% and 48% (or 52%– 62% when 
reversed) and strategies identification results are all well above these chance 
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levels with jackknife. When applying other cross-validation procedures, results 
drop and vary from around chance level (38%) to good (78%) for leave-one-out 
cross-validation to around chance level (56%) to good (74%) for 5-fold cross-
validation. We consider these results a baseline for the IMM. 

Next, we trained the MLA with gaze data on one item and then 
identified strategies on all other items. Accuracies varied between around 
chance level (52%) to quite well above that level (80%; Table A.7). Specifically 
interesting are the results when gazes on Item01 are used as training data 
(Figure 4.10). Testing this trained random forest MLA for identifying strategies 
on other items resulted in accuracies that vary between good (72%) and very 
good (80%) which suggests that the MLA has the potential to generalize 
beyond a specific item, even when shapes and skewness of the histograms 
differ. See also the ROC plot (Fig. 4.10). 

Figure 4.10 ROC plot for strategies with train-test item pairs for random forest 

Note. Ideally, for educational use, points should be concentrated in the upper left 
corner of the plot and close together for all items.  

Based on the confusion matrices (Tables A.4–A.5), specificity and sensitivity 
(e.g., Kuhn & Johnson, 2013) were calculated (Table 4.5). Sensitivity 
(identification of correct strategies) is low to acceptable and lower than the 
low to excellent specificity (identification of incorrect strategies) after cross-
validation. An excellent specificity is favorable for a future application that 
seeks to provide feedback to this particular group of learners. In practice this 
could mean that only a few students who used an incorrect strategy will be 
missed (Q-incorrect, MLA-correct, type I error) which we consider most 
important for feedback. In addition, some more students who used a correct 
strategy would get feedback implying that they used an incorrect strategy (Q-
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correct, MLA-incorrect, type II error) while they were not. As such feedback 
would hint at the correct strategy, this feedback could make them think once 
more and then conclude that their strategy was correct, which is not a 
problem.  

Table 4.5 Sensitivity and specificity of the MLA and the IMM when classifying 
strategies 

Cross-validation 
procedure 

Metric Item01 Item02 Item06 Item19 Item20 

Leave one out CV Sensitivity 0.58 0.45 0.21 0.64 0.39 
Leave one out CV Specificity 0.62 0.32 0.90 0.89 0.56 
5-fold CV Sensitivity 0.50 0.50 0.21 0.59 0.57 
5-fold CV Specificity 0.62 0.61 0.90 0.86 0.67 
IMM Sensitivity 0.58 0.46 0.74 0.36 0.43 
IMM Specificity 0.65 0.89 0.90 0.96 0.96 

Note. Calculation of sensitivity and specificity is not possible for jackknife. 

The confusion matrices (see Appendix A of this chapter), provide further 
insight into how well the results of the MLA align with the results of the 
qualitative coding. Differences between the qualitative coding of the strategies 
and the MLA results can be due to what data scientists call ground truth noise 
in the data. Ground truth, here, is what the strategies actually “are” (in the real 
world, independent of coding). Educational researchers would explain this 
noise as inconsistencies, inaccuracies (e.g., due to merging two different but 
similar strategies in one code) or errors in the qualitative coding (as coders 
usually do not fully agree on the qualitative codes), or as noise in the gaze data 
(e.g., not every fixation or saccade on the graph area being part of the 
strategy). Differences can also be used to reconsider qualitative coding.  

4.4.2 Results from the interpretable mathematical model 

With the IMM described earlier, we can correctly identify 62% to 84% of 
students’ strategies (Table 4.4). From the confusion matrices (Tables 4.6–4.7) 
that compare the results of the IMM with the results of the qualitative study 
(Q), sensitivity and specificity can be calculated (Table 4.5). Sensitivity varies 
between low and good; specificity varies between acceptable and excellent, 
see also Figure 4.11.  
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Table 4.6 Confusion matrices for Item01, 02, and 06 (IMM) 
 

Item01 Item02 Item06 
 Q-correct Q-incorrect Q-correct Q-incorrect Q-correct Q-incorrect 

IMM-correct 14 9 10 3 14 3 
IMM-incorrect 10 17 12 25 5 28 
Note. N = 50 per item. 

Table 4.7 Confusion matrices for Item19 and 20 (IMM) 
 

Item19 Item20 
 Q-correct Q-incorrect Q-correct Q-incorrect 

IMM-correct 8 1 10 1 
IMM-incorrect 14 27 13 26 

Note. N = 50 per item.  

4.4.3 Comparison of IMM and random forests MLA results 

The accuracy results of the IMM are quite close to the results of the random 
forests MLA with the jackknife cross-validation. In addition, the overlap 
between the IMM and MLA in identifying students’ strategies before cross-
validation was good and varied between 66% and 82% (Table A.8). The results 
of the IMM are better than the MLA after cross-validation. Moreover, the 
results of both the IMM and the MLA indicate that strategies might be clearer 
in Item06, which is in line with what we qualitatively found. In the ROC plot 
(Figure 4.10) the MLA results after cross-validation are compared to the IMM 
results. The plot shows that the IMM performs better. Altogether, this is 
considered a very good result, as it is not possible to know what parameters 
our MLA is using. As the accuracy of strategy identification of the MLA and the 
IMM is sufficient or above, the association is also sufficient or above.  

The IMM is a more general model than the random forest models as 
the latter is different for each item. Given the MLA as a baseline for the IMM, 
we consider the current IMM likely to be a main component of a more general 
and precise model explaining gaze behavior during the kind of cognitive tasks 
considered in this article. The fact that the MLA, when trained on one item, 
relatively successfully predicts performance in a different item can be 
considered as evidence that the gaze data contain information about cognitive 
behavior on this task, even though this behavior is not explained by the MLA. 
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Figure 4.11 ROC plot for strategy identification (Fawcett, 2006) in which “the point  
(0, 1) represents perfect classification” (p. 862). Random forest is the MLA the IMM is 
compared with 

Note. Ideally, for educational use, points should be concentrated in the upper left 
corner of the plot and close together for all items. One triangle is hidden behind the 
square in the lower left corner. The MLA provides a baseline for the IMM. Although the 
IMM worked well, the plot shows there is room for improvement. 

As this chapter aims to provide proof of principle, we did not further optimize 
the IMM. We chose the IMM that had the best overall performance for all 
items among the models we tried. When aiming to use the model in an 
application, one way to refine the IMM could be to split the model into two 
models: one only for identifying incorrect strategies (with two possible 
outcomes: the strategy is incorrect50 or unknown) and one only for correct 
strategies. Combined, both models would have four options for strategy 
identification: correct strategy, incorrect strategy, unknown, or contradicting 
outcomes. Unknown means that the strategy is unknown, contradicting 
outcomes would require an extra rule for deciding what strategy it is. Another 
idea for optimizing these two models—besides adjusting the slope that 
distinguishes between horizontal and vertical gazes to obtain better results for 
specific items—is to adjust the saccade length in the model. In the current 
model, only saccades of at least 200 pixels are considered for both horizontal 
and vertical gazes. The saccade length for the vertical gazes could be scaled 
(shortened) to the size of the AOI. The relatively small height of the graph area 
(335 pixels) as opposed to the width (600 pixels) would justify such an 

50 This incorrect strategy could also be further divided into a case-value plot interpretation 
strategy and a count-and-compute strategy not further discussed here. 
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adjustment. A possible improvement of the IMM could also be to incorporate 
alignment of saccades (relevant for the most common strategies). As the aim 
of the IMM in this research is not to find the best model but to show that the 
perceptual form of the stable scanpath can be captured by a model, we did not 
try to further optimize this model. 

In addition, the performance of both IMM and machine learning might 
be influenced by students switching their strategy during or in between trials, 
making strategy identification less clear. There is some evidence in the 
interview data (e.g., Chapter 3 and below) that students’ strategies were 
influenced by item13 to item18 (with dotplots) which were designed to 
scaffold students in applying a correct strategy (e.g., Lyford, 2017). Although 
this did not result in a higher number of correct strategies, it might have 
changed the strategies on a more subtle level.  

 

StudentL22:  Yes then [Item19] I was going to change my approach a little bit. Then 
I started doing it a little bit similar to what I did with the dots. So then 
here is about more and there is again less, so then it will be 
somewhere here in between. 

4.5 Conclusions and discussion 
Automated identification of students’ strategies is a prerequisite for targeted 
intelligent feedback. The present study took on this challenge by providing an 
example of automated identification of students’ task-specific strategies on 
single histograms based on gaze data. This could allow for future applications 
such as real-time feedback based on gaze data, for example, collected through 
webcams (e.g., Knoop-Van Kampen et al., 2021). 

We analyzed a set of gaze data in three phases: (1) an analysis of raw 
gaze data on one AOI (that contained the relevant scanpath) through an MLA 
that provided a baseline for the second step; (2) the construction of a separate 
interpretable mathematical model (IMM) using the same gaze data and 
insights on the perceptual form of this stable scanpath from previous 
qualitative research; and (3) an evaluation of the results by comparing the 
performance of the MLA, the IMM and the overlap between the two. The IMM 
outperformed the MLA in several cases.  

The MLA (phase 1, random forests as implemented in the software 
Mathematica Classify Function) has the advantage that it can process raw gaze 
data (x- and y-coordinates). It has the disadvantage that it is a black box in that 
it does not explain how it reached its decision for an individual student. The 
results of the random forests MLA after cross-validation provided our baseline 
for the IMM (phase 2). The IMM performs well (62% to 84% accuracy) with the 
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advantage of being transparent for individual decisions and theoretically 
meaningful. The overlap between the results of the IMM and MLA is sufficient 
(phase 3).  

Although these results are encouraging, an issue in data science is 
whether an MLA trained on one item is able to identify students’ strategies for 
similar but different items. We, therefore, trained the MLA on one item and 
then tested it on all other items, and repeated this until all items were used 
once as training items. The accuracy results varied between around chance 
level and well above. The latter indicates very good performance. Combined, 
these results indicate that the IMM and MLA do describe the same 
phenomena—strategies—and that these strategies can be derived from 
students’ gaze data.  

What is new in our approach is that the filtering and preparation of the 
gaze data for the IMM and MLA are based on one AOI that contains the 
perceptual form of the gazes, instead of, for example, the number of 
transitions between AOIs. This perceptual form is a stable scanpath indicating 
the student’s focus of interaction and is interpreted as an attentional anchor 
(AA, e.g., Abrahamson & Sánchez-García, 2016). In our previous research 
(Chapter 3) we found that this perceptual form is indicative of students’ 
strategies. 

A prerequisite for the approach used is that a stable scanpath has been 
found in the gaze data. Furthermore, it requires gaze data to be classified into 
groups of students using the same strategy. Both prerequisites were met for 
our study. A further prerequisite for ML analysis is that the dataset is large 
enough and contains enough information for the MLA to identify (classify) 
students’ strategies.  

A limitation of our study is that we had gaze data on only fifty students. 
We alleviated this limitation by showing it worked for five items with 
differently shaped histograms, by using a resampling approach (jackknife cross-
validation), and by training the MLA with gaze data from one item and then 
having it identify strategies for all other items. For future research, collecting 
data from a larger and different population is recommended. Another 
limitation of our study is that we use one item type (single graphs) and five 
variants of one graphical representation (histograms). It would be interesting 
to apply our approach to other domains, following the three phases described 
above for each new topic. Once the IMM is optimized and the MLA is trained, 
both an IMM and an MLA could be implemented. The MLA might be more 
accurate (see results of the jackknife cross-validation) but is computationally 
more complex. The IMM is easier, faster, provides insight into the relevant part 
of the gaze pattern that its decision was based on, and can deal with partial 
data. This allows feedback on strategies before an answer is given. The 
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agreement between the IMM and MLA can be used as an indication of how 
certain the strategy identification was. 

From a methodological perspective, a first contribution of this study is 
that our approach is both item-specific and generalizable. It is important that 
both IMM and MLA are item-specific, as the mathematical strategies of 
students are specific to an item type. Our IMM and MLA meet this 
requirement since the stable scanpath is specific to a given item; a stable 
scanpath refers to the perceptual form of this scanpath (e.g., a horizontal line, 
triangle, or point), not the sequence of AOIs. We expect that a stable scanpath 
can be found in gaze data on items in various domains (e.g., Strohmaier et al., 
2020). It is also important that this method is generalizable, and, therefore, 
suitable for other mathematical domains. First, IMMs and MLAs (e.g., Rudin, 
2019)—such as our set of rules for the IMM—are general methods. Moreover, 
our approach is also theoretically generalizable in the sense that educational 
researchers aim for “how and why the studied events occurred (or not)” (Yin, 
2013, p. 326). The studied events are students’ strategies and are observed as 
stable scanpaths that indicate students’ focus of interaction with the item.  

It could be argued that our approach is not very generalizable as x- and 
y-coordinates are sensitive to, for example, scaling, position of the graph on 
the screen, and shape of the histogram. However, the same could be argued 
for AOIs, as AOIs are x- and y-coordinates binned into categories by 
researchers and, therefore, are also item-specific. Furthermore, coordinates 
can be rescaled which adds to their generalizability. In addition, we showed 
that for five differently shaped histograms, the IMM performed above chance 
level to good and the MLA performed at chance level to very good after cross-
validation. In addition, the same IMM was used for all five items which makes 
it a more generable model than the MLA that was initially retrained for each 
item. Also adding to the this generalizability is that, for several items, we have 
successfully trained the random forest MLA with this one item and then tested 
it for all other items. 

A second methodological contribution is that all gaze data on one AOI 
are used, in contrast to methods that use aggregated data such as the 
transition from one AOI to another (e.g., Garcia Moreno-Esteva et al., 2020). 
Unlike heatmaps that are produced afterward (e.g., Schindler et al., 2021), raw 
gaze data offer the possibility of real-time feedback.  

Third, we show that it is possible to automatically identify students’ 
task-specific strategies from their gaze patterns. As soon as a stable scanpath is 
found, we think this can be grasped in an IMM as well as through an MLA, 
hence, be automated. Scanpaths are found for tasks in various mathematic 
domains: numbers (Schindler, et al., 2021), arithmetic (Green et al., 2007), 
proportional reasoning (Shayan et al., 2017), area and perimeter (Shvarts, 
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2017), Cartesian coordinates (Chumachemko et al., 2014), geometry (Schindler 
& Lilienthal, 2019), trigonometry (Alberto et al., 2019), parabola (Shvarts & 
Abrahamson, 2019), statistical graphs (Chapter 3) and more (Lilienthal & 
Schindler, 2019; Strohmaier et al., 2020). Therefore, we believe that a similar 
approach can be used for other topics. 

Fourth, using raw gaze data opens the possibility of implementation in 
an online (e.g., Cavalcanti et al., 2021) and adaptive tutoring system (e.g., 
Scheiter et al., 2019) with real-time feedback. The IMM can process raw data 
directly without the (black-box) preprocessing that the MLA performs and the 
results are straightforward to interpret. 

Fifth, studying the differences between the results of the IMM and 
MLA on the one hand, and the qualitative coding on the other hand have the 
potential to improve the qualitative coding. Whenever the three methods lead 
to a different outcome, a closer inspection of the gaze patterns on the item, 
combined with interview data (if available), may lead to new insights for 
qualitative coding. This would combine the best capacities of people and 
machines, as suggested by Van de Schoot (2020). Sixth and final, our approach 
offers a new road for replicating results from a qualitative study.  

From a theoretical perspective, this study shows that an AA can be 
used as a theoretical lens to search for a stable scanpath that reflects a 
mathematical strategy that is meaningful to the students. These stable 
scanpaths can be linked to the idea of an AA as follows. In a retrospective 
recall, students talked about an imagined action. This imagined action is—
according to students—coordinated by an imaginary mathematical object: a 
horizontal or vertical line. As an AA is an existing or imagined object or area 
that emerges to facilitate or coordinate sensorimotor actions (Abrahamson & 
Sánchez-García, 2016), we also interpret these lines as an AA.  

In addition, the manipulation of an imaginary object manifest in the 
gaze data could suggest links between theories of mental processes and 
embodied cognition. The AA was previously found when students interact with 
the environment. In our items, students cannot physically manipulate the 
graph. Nevertheless, gaze data show a stable scanpath indicating scanning this 
imaginary object corresponding to a concrete location on the graph area on 
the screen (Chapter 3). We believe this reveals that cognitive processes can 
also be embodied and that eye movements can be a manifestation of both the 
perception and the action.  

This chapter may fuel the dialogue between educational researchers 
and data science experts. An advantage of our IMM is its interpretability. MLAs 
may be experienced as a black box and educational researchers may focus on 
how well it performs rather than how it performs. As educational researchers, 
we wondered what the application of data science tools to our data would 
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bring us. It is important to promote the dialogue between educational 
researchers and MLA-experts, to keep boundaries between disciplines 
permeable. At such boundaries, exciting new research can emerge.  

Future research into finding stable scanpaths for applying this method 
might, for example, concern geometry such as the Pythagoras theorem or the 
cosine rule. In calculus, one might consider interpreting the slope or direction 
field when learning to solve differential equations. To allow task-specific gaze 
patterns to emerge an alternative way of introducing a topic could be 
considered (e.g., Janßen et al., 2020). Finally, the domain of graphical or 
diagrammatic literacy could be a future line of research. Several examples can 
be found in the literature of students having difficulties with graphs in 
mathematics (e.g., difficulties with complex line graphs, Carpenter & Shah, 
1998; overgeneralization of linearity, Leinhardt et al., 1990; misreading of 
graphs, Roth & Bowen, 2001; inadequate strategies, Tai et al., 2006), but also 
in science education (e.g., Kragten et al., 2015). All these domains have in 
common that spatial patterns may play a role. 

Another direction for future research could be to improve the IMM and 
to investigate the apparent trade-off between its sensitivity and specificity. We 
know that students used several strategies but it is unclear whether and how 
this is visible in this trade-off. In addition, a possible improvement of the IMM 
could be to tailor it to each item. Furthermore, the alignment of saccades 
could be included in the IMM (important for the most common strategies, see 
Chapter 3). 

Future research might also focus on the appearances and changes of 
students’ strategies over time. By using an IMM and an MLA, online automated 
feedback becomes possible on students’ strategy, in some cases maybe even 
before students give their answers. This might make online feedback in 
massive online courses, online teaching, and homework more accurate and 
efficient. Another possibility would be to provide teachers with a dashboard on 
students’ strategies (e.g., Knoop-Van Kampen et al., 2021). The agreement 
between an MLA and an IMM could then be used to provide a measure for 
how reliable the strategy identification is. A prerequisite is the availability of 
cheap equipment for measuring eye movements. We expect more exact 
measuring of eye movements will be available for consumer computers in the 
near future, for example, through webcams. Whether this will be implemented 
in software and used by consumers will also depend on ethical discussions 
about privacy, fairness, bias, et cetera.   
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Appendix A Additional code and results 
In this Appendix we provide additional code and all results of the IMM, random 
forests ML-analysis, and cross-validation procedures. 
Mathematica code used to find the best method for the data 

pickMethod[answerTrainingData[[item]],answerData[[item]],met
hod, seed, performanceGoal] 

tob = DateObject[] 
beforeValidationResults = 
Monitor[Table[{pickMethod[answerTrainingData〚item〛, 
answerData〚item〛, 
Automatic, "1234", Automatic], pickMethod[strategyTrainingData
〚item〛, 
strategyData〚item〛, Automatic, "1234", Automatic]}, 
 {item, 1, 5}], item] 
DateObject[] - tob 
Clear[tob] 

Overview of the results for sensitivity and specificity 
For the results of strategy classification, see Table 4.5 in the article. Below, the 
results for answer classification can be found. 

Table A.1 Sensitivity and specificity of the random forests of answers 

Validation 
procedure 

What Item01 Item02 Item06 Item19 Item20 

Leave one out Sensitivity 0.26 0.32 0.72 0.82 0.00 
Leave one out Sensitivity 0.90 0.90 0.76 0.13 0.88 
5-fold Sensitivity 0.11 0.05 0.40 0.68 0.12 
5-fold Sensitivity 0.94 0.97 0.84 0.38 0.97 

Confusion matrices of answers 

Table A.2 Confusion matrices of answers for all items, random forests MLA, after 
LOOCV 

Item01 Item02 Item06 Item19 Item20 
Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi 

MLAc 5 3 6 3 18 6 28 14 0 4 
MLAi 14 28 13 28 7 19 6 2 17 29 

Note. N = 50 per item. The results of the qualitative study (Q) compared with the 
results of the MLA random forests, c = correct answer, i = incorrect answer. The 
qualitative study is treated as the positive case. For example, the number 5 in the top-
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left corner of Item01 stands for 5 students identified by both the qualitative study and 
the MLA as having a correct strategy. 

Table A.3 Confusion matrices of answers for all items, random forests MLA, after 5-
fold cross-validation 

 Item01 Item02 Item06 Item19 Item20 
 Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi 
MLAc 2 2 1 1 10 4 23 10 2 1 
MLAi 17 29 18 30 15 21 11 6 15 32 

Note. N = 50 per item. The results of the qualitative study (Q) compared with the 
results of the MLA random forests, c = correct answer, i = incorrect answer. The 
qualitative study is treated as the positive case. 

Confusion matrices of strategies 

Table A.4 Confusion matrices of strategies for all items, random forests MLA, after 
LOOCV 

 Item01 Item02 Item06 Item19 Item20 
 Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi 
MLAc 14 10 10 19 4 3 14 3 9 12 
MLAi 10 16 12 9 15 28 8 25 14 15 

Note. N = 50 per item. The results of the qualitative study (Q) compared with the 
results of the MLA, c = correct strategy, i = incorrect strategy. LOOCV = leave-one-out 
cross-validation. The qualitative study is treated as the positive case. 

Table A.5 Confusion matrices of strategies for all items, random forests MLA, after 5-
fold cross-validation 

 Item01 Item02 Item06 Item19 Item20 
 Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi 
MLAc 12 10 11 11 4 3 13 4 13 9 
MLAi 12 16 11 17 15 28 9 24 10 18 

Note. N = 50 per item. The results of the qualitative study (Q) compared with the 
results of the MLA, c = correct strategy, i = incorrect strategy. The qualitative study is 
treated as the positive case. 
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Results of the analyses when using one item as training item 

Table A.6 Accuracy of answer prediction for all items for the random forests MLA 

Item01 Item02 Item06 Item19 Item20 
Item01 x 64% 68% 46% 62% 
Item02 70% x 52% 38% 64% 
Item06 58% 56% x 62% 60% 
Item19 42% 48% 58% x 38% 
Item20 62% 64% 52% 32% x 

Note. N = 50 per item. The item in each row is used as training item. The items in the 
columns are the test items. For example, when using Item01 as training item, the 
accuracy of predicting students’ answers on Item02 is 64%. 

Table A.7 Accuracy of strategy prediction for all items for the random forests MLA 

Item01 Item02 Item06 Item19 Item20 
Item01 x 72% 72% 80% 80% 
Item02 66% x 70% 58% 58% 
Item06 66% 66% x 62% 68% 
Item19 60% 56% 64% x 68% 
Item20 52% 58% 62% 70% x 

Comparison of the random forests MLA and IMM results 

Table A.8 Confusion matrices of strategies for all items for the random forests MLA 
versus the IMM 

Item01 Item02 Item06 Item19 Item20 
MLAc MLAi MLAc MLAi MLAc MLAi MLAc MLAi MLAc MLAi 

IMMc 20 10 11 13 11 6 7 2 7 4 
IMMi 4 16 4 22 3 30 9 32 8 31 
Note. N = 50 per item. The results of the MLA random forests compared with the 
results of the IMM, c = correct strategy, i = incorrect strategy. The MLA before any 
cross-validation is treated as the positive case. 
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Assessing students’ interpretations of histograms before and 
after interpreting dotplots: A gaze-based machine learning 
analysis
“The bulk of the world’s knowledge is an imaginary construction.” 51 
Helen Keller 

This chapter is based on 
Boels, L., Lyford, A., Bakker, A., & Drijvers, P. (Accepted). Assessing students’ 
interpretations of histograms before and after interpreting dotplots: A gaze-
based machine learning analysis. Frontline Learning Research. 

51 Keller, H. (1910), Chapter 8, The Five-sensed World. Quoted in: Keller, H. (2002, p. 289). 
Organization & Environment, 15(3), 285–292. https://www.jstor.org/stable/26162186 
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https://www.jstor.org/stable/26162186


/ƘŀǇǘŜǊ р 

мтн 

Abstract aŀƴȅ ǎǘǳŘŜƴǘǎ ǇŜǊǎƛǎǘŜƴǘƭȅ ƳƛǎƛƴǘŜǊǇǊŜǘ ƘƛǎǘƻƎǊŀƳǎΦ [ƛǘŜǊŀǘǳǊŜ 
ǎǳƎƎŜǎǘǎ ǘƘŀǘ ƘŀǾƛƴƎ ǎǘǳŘŜƴǘǎ ǎƻƭǾŜ ŘƻǘǇƭƻǘ ƛǘŜƳǎ Ƴŀȅ ǇǊŜǇŀǊŜ ŦƻǊ ƛƴǘŜǊǇǊŜǘƛƴƎ 
ƘƛǎǘƻƎǊŀƳǎΣ ŀǎ ƛƴǘŜǊǇǊŜǘƛƴƎ ŘƻǘǇƭƻǘǎ Ŏŀƴ ƘŜƭǇ ǎǘǳŘŜƴǘǎ ǊŜŀƭƛȊŜ ǘƘŀǘ ǘƘŜ 
ǎǘŀǘƛǎǘƛŎŀƭ ǾŀǊƛŀōƭŜ ƛǎ ǇǊŜǎŜƴǘŜŘ ƻƴ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎΦ Lƴ ǘƘƛǎ ǎǘǳŘȅΣ ǿŜ ŜȄǇƭƻǊŜ 
ŀ ǎǇŜŎƛŀƭ ŎŀǎŜ ƻŦ ǘƘƛǎ ǎǳƎƎŜǎǘƛƻƴΣ ƴŀƳŜƭȅΣ Ƙƻǿ ǎǘǳŘŜƴǘǎΩ ƘƛǎǘƻƎǊŀƳ 
ƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎ ŀƭǘŜǊ ŘǳǊƛƴƎ ŀƴ ŀǎǎŜǎǎƳŜƴǘΦ ¢ƘŜ ǊŜǎŜŀǊŎƘ ǉǳŜǎǘƛƻƴ ƛǎΥ Lƴ ǿƘŀǘ 
ǿŀȅ Řƻ DǊŀŘŜǎ млςмн ǇǊŜπǳƴƛǾŜǊǎƛǘȅ ǘǊŀŎƪ ǎǘǳŘŜƴǘǎΩ ƘƛǎǘƻƎǊŀƳ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎ 
ŎƘŀƴƎŜ ŀŦǘŜǊ ǎƻƭǾƛƴƎ ŘƻǘǇƭƻǘ ƛǘŜƳǎΚ ¢ǿƻ ƘƛǎǘƻƎǊŀƳ ƛǘŜƳǎ ǿŜǊŜ ǎƻƭǾŜŘ ōŜŦƻǊŜ 
ǎƻƭǾƛƴƎ ŘƻǘǇƭƻǘ ƛǘŜƳǎ ŀƴŘ ǘǿƻ ŀŦǘŜǊΦ {ǘǳŘŜƴǘǎ ǿŜǊŜ ŀǎƪŜŘ ǘƻ ŜǎǘƛƳŀǘŜ ƻǊ 
ŎƻƳǇŀǊŜ ŀǊƛǘƘƳŜǘƛŎ ƳŜŀƴǎΦ {ǘǳŘŜƴǘǎΩ ƎŀȊŜ ŘŀǘŀΣ ŀƴǎǿŜǊǎΣ ŀƴŘ ŎǳŜŘ 
ǊŜǘǊƻǎǇŜŎǘƛǾŜ ǾŜǊōŀƭ ǊŜǇƻǊǘǎ ǿŜǊŜ ŎƻƭƭŜŎǘŜŘΦ ²Ŝ ǳǎŜŘ ǎǘǳŘŜƴǘǎΩ ƎŀȊŜ Řŀǘŀ ƻƴ 
ŦƻǳǊ ƘƛǎǘƻƎǊŀƳ ƛǘŜƳǎ ŀǎ ƛƴǇǳǘǎ ŦƻǊ ŀ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ŀƭƎƻǊƛǘƘƳ όa[!Τ ǊŀƴŘƻƳ 
ŦƻǊŜǎǘύΦ wŜǎǳƭǘǎ ǎƘƻǿ ǘƘŀǘ ǘƘŜ a[! Ŏŀƴ ǉǳƛǘŜ ŀŎŎǳǊŀǘŜƭȅ ŎƭŀǎǎƛŦȅ ǿƘŜǘƘŜǊ 
ǎǘǳŘŜƴǘǎΩ ƎŀȊŜ Řŀǘŀ ōŜƭƻƴƎŜŘ ǘƻ ŀƴ ƛǘŜƳ ǎƻƭǾŜŘ ōŜŦƻǊŜ ƻǊ ŀŦǘŜǊ ǘƘŜ ŘƻǘǇƭƻǘ 
ƛǘŜƳǎΦ aƻǊŜƻǾŜǊΣ ǘƘŜ ŘƛǊŜŎǘƛƻƴ όŜΦƎΦΣ ŀƭƳƻǎǘ ǾŜǊǘƛŎŀƭύ ŀƴŘ ƭŜƴƎǘƘ ƻŦ ǎǘǳŘŜƴǘǎΩ 
ǎŀŎŎŀŘŜǎ ǿŜǊŜ ŘƛŦŦŜǊŜƴǘ ƻƴ ǘƘŜ ōŜŦƻǊŜ ŀƴŘ ŀŦǘŜǊ ƛǘŜƳǎΦ ¢ƘŜǎŜ ŎƘŀƴƎŜǎ Ŏŀƴ 
ƛƴŘƛŎŀǘŜ ŀ ŎƘŀƴƎŜ ƛƴ ǎǘǊŀǘŜƎƛŜǎΦ ! ǇƭŀǳǎƛōƭŜ ŜȄǇƭŀƴŀǘƛƻƴ ƛǎ ǘƘŀǘ ǎƻƭǾƛƴƎ ŘƻǘǇƭƻǘ 
ƛǘŜƳǎ ŎǊŜŀǘŜǎ ǊŜŀŘƛƴŜǎǎ ŦƻǊ ƭŜŀǊƴƛƴƎ ŀƴŘ ǘƘŀǘ ǊŜŦƭŜŎǘƛƴƎ ƻƴ ǘƘŜ ǎƻƭǳǘƛƻƴ ǎǘǊŀǘŜƎȅ 
ŘǳǊƛƴƎ ǊŜŎŀƭƭ ǘƘŜƴ ōǊƛƴƎǎ ƴŜǿ ƛƴǎƛƎƘǘǎΦ ¢Ƙƛǎ ǎǘǳŘȅ Ƙŀǎ ƛƳǇƭƛŎŀǘƛƻƴǎ ŦƻǊ 
ŀǎǎŜǎǎƳŜƴǘǎ ŀƴŘ ƘƻƳŜǿƻǊƪΦ bƻǾŜƭ ƛƴ ǘƘŜ ǎǘǳŘȅ ƛǎ ƛǘǎ ǳǎŜ ƻŦ ǎǇŀǘƛŀƭ ƎŀȊŜ Řŀǘŀ 
ŀƴŘ ƛǘǎ ǳǎŜ ƻŦ ŀƴ a[! ŦƻǊ ŦƛƴŘƛƴƎ ŘƛŦŦŜǊŜƴŎŜǎ ƛƴ ƎŀȊŜǎ ǘƘŀǘ ŀǊŜ ǊŜƭŜǾŀƴǘ ŦƻǊ 
ŎƘŀƴƎŜǎ ƛƴ ǎǘǳŘŜƴǘǎΩ ǘŀǎƪπǎǇŜŎƛŦƛŎ ǎǘǊŀǘŜƎƛŜǎΦ 

Keywords {ǘŀǘƛǎǘƛŎǎ ŜŘǳŎŀǘƛƻƴΤ IƛǎǘƻƎǊŀƳΤ 5ƻǘǇƭƻǘΤ 9ȅŜπǘǊŀŎƪƛƴƎΤ wŀƴŘƻƳ 
ŦƻǊŜǎǘΤ tǊŀŎǘƛŎŜ ŜŦŦŜŎǘΦ 
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5.1 Introduction 
Statistical literacy includes “people’s ability to interpret and critically evaluate 
statistical information, data-related arguments […], which they may encounter 
in diverse contexts, and when relevant” (Gal, 2002, p. 4; emphasis in original). 
As data consumers, citizens should be able to correctly interpret various 
graphical displays. This is particularly important in this era of vague and fake 
news “that place interpretive and evaluative demands on a reader or viewer” 
(Gal & Geiger, 2022, p. 2). In this study we specifically focus on the graphical 
representation of histograms. 

Histograms can reveal particular aspects of the distribution of the data 
often hidden in other graphs (e.g., Pastore et al., 2017). Furthermore, as 
histograms are ubiquitous in research and education, they need to be learned 
(cf. Garfield & Ben-Zvi, 2008b). For example, searching for ‘histogram’ in 
Google Scholar resulted in more than 3.2 million hits (June 13, 2023). 
Therefore, the guidelines for assessment and instruction in statistics education 
II (GAISE II) for all Grades up to Grade 12 contain several examples of 
histograms and dotplots (for levels A, B, and C), with levels B and C roughly 
corresponding to middle and high school (Bargagliotti et al., 2020). Moreover, 
some alternatives for histograms, such as boxplots, are even more complex 
(e.g., Bakker et al., 2004, Lem et al., 2014a).  

However, many people persistently misinterpret histograms (e.g., 
Cooper, 2018; Kaplan, 2014). For example, Bakker (2004a) found that 
secondary school students (Grades 7–8) considered the individual heights of 
bars in a histogram to be the heights of individual people, rather than 
aggregations of data. Students’ conceptual difficulties with histograms are well 
documented (e.g., Chapter 2), but it is unclear how to support students in 
learning to interpret histograms.  

Figure 5.1 Example of dotplot Item17 for which students were asked to compare two 
datasets regarding their mean 
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Several studies suggest that having students solve dotplot items can scaffold 
this learning (e.g., delMas & Liu, 2005; Garfield & Ben-Zvi, 2008b; Makar & 
Confrey, 2004). In most of these studies, students’ answers and verbal reports 
were the main source of information. Dotplots have the advantage that they 
show all individual data points as well as their distribution (Figure 5.1). In 
addition, the absence of a vertical scale in dotplots can turn students’ 
attention toward the horizontal scale, which is where the variable is presented 
in both graphs. However, little is known about whether solving dotplot items 
allows students to become aware of aspects of graph representation and 
statistical variables that are useful for interpreting histograms. The aim of this 
study is, therefore, to explore how solving dotplot items influences secondary 
school students’ thinking on a detailed level when they interpret histograms. 
Our overall research question is: In what way do Grades 10–12 pre-university 
track students’ histogram interpretations change after solving dotplot items? In 
the Theoretical background section, we will specify this overall question with 
three sub-questions. 

Figure 5.2 Example of a dotplot (left) and a histogram (right) depicting the same 
distribution 

 

 

Note The dotplot was part of Item16. The histogram was part of Item05, not 
further discussed here (for more details, see Chapter 3). 

As we elaborate further in the Theoretical background section, gaze data can 
reveal students’ strategies in real-time, and in more detail, compared to 
concurrent thinking aloud (verbal reports) and without the risk of influencing 
the thinking process (Van Gog et al., 2005; Van Gog & Jarodzka, 2013). We use 
students’ gaze data when solving four items with histograms before and after 
solving similar items with dotplots, as well as their answers on these items. The 
four histogram items were taken from a larger sequence with 25 digital items 
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in total. Furthermore, we examined transcripts from stimulated recall (Lyle, 
2003) verbal reports about students’ strategies (for more details see section 
Data collection methods: Eye-tracking, stimulated recall verbal reports). In the 
next section, we elaborate on difficulties with histograms and dotplots and 
discuss how gaze data can be used. 

5.2 Theoretical background 
5.2.1 Review of statistics education literature 

In this section, we review statistics education literature on the problem (many 
students persistently misinterpreting histograms), a gap in this literature (the 
variation in results on students’ interpretations of dotplots), and graphs that 
are suggested for supporting students in learning to interpret histograms.  
Histograms are persistently misinterpreted 
Many people persistently misinterpret histograms (e.g., Cohen, 1996; Setiawan 
& Sukoco, 2021). Researchers and teachers think that there is no difference 
between bar graphs and histograms (e.g., Clayden & Croft, 1990; Tiefenbruck, 
2007). Dabos (2014) found that some college teachers did not see when 
students incorrectly counted the number of bars in a histogram to get the total 
frequency instead of adding the bars’ heights. First-year university students in 
educational sciences had difficulties finding or interpreting the mean, median, 
variation, and skewness in histograms (Lem et al., 2013c). College students 
interpreted the horizontal salary scale in a histogram as a timescale (Meletiou, 
2000). Middle school students used unequal intervals in a histogram with 
frequency on the vertical axis—instead of density—hence, not correcting the 
frequencies for unequal bin widths (McGatha et al., 2002). Other middle school 
students thought that bars in histograms are connected for easier comparison 
(e.g., Capraro et al., 2005). Students in Grades 6–12 answered histogram items 
17% to 53% correctly on average (Whitaker & Jacobbe, 2017). Many students 
mistakenly took bars’ heights as the measured value. Such students possibly 
think that only nine packages are depicted in the histogram in Figure 5.3 (the 
number of bars) instead of 67 (the actual number).  
Dotplots are not always correctly interpreted 
Generally, dotplots are interpreted better than histograms (e.g., delMas et al., 
2005), although stacked dotplots (in the early days also called line plots; e.g., 
Tiefenbruck, 2007) might still confuse students (e.g., Lyford, 2017). Lem et al. 
(2013c) found that university students understood dotplots slightly better than 
histograms (on average, 55% correct responses for dotplots versus 51% for 
histograms). However, in that study two dotplot items scored worse. 
University students taking introductory statistics explored variability and 
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standard deviation through a kind of stacked dotplots (delMas & Liu, 2005). 
Most of these students did not fully understand how standard deviation was 
related to the distribution of data in a histogram.  

Figure 5.3 An example of a histogram 

Note. The measured variable (weight) is along the horizontal axis. Weights of 67 
packages (sum of frequencies) are depicted in this histogram. The arithmetic mean 
weight is 3.3 kg. 

A local instruction theory in statistics education suggests that dotplots are 
suitable for supporting students’ learning of distribution and variability in data 
represented in histograms (e.g., Bakker & Gravemeijer, 2004; Garfield, 2002). 
Garfield & Ben-Zvi (2008b) stated “studies [that] suggest a sequence of 
activities that leads students from […] dotplots […] to histograms” can support 
students in “developing the concept of distribution as an entity” (p. 175). An 
advantage of dotplots over histograms is that dotplots show the distribution of 
data in a disaggregated form. In addition, dotplots have the possibility to draw 
students’ attention to the variable being depicted along the horizontal axis—
similar to histograms—, as dotplots typically have only this axis. A possible 
disadvantage of dotplots for teaching students to interpret histograms 
(aggregated data) is that dotplots might invite them to see the data as 
individual cases (Konold et al., 2015) instead of looking at aggregated 
measures (including arithmetic mean). 

One explanation for dotplots sometimes being misinterpreted is that 
students do not understand where the measured values are depicted in 
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stacked ŘƻǘǇƭƻǘǎ όōŜƛƴƎ ŀƭƻƴƎ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎύ ŘǳŜ ǘƻ ǘƘŜ ŎƻǳƴǘŀōƭŜ ƘŜƛƎƘǘ 
ƻŦ ǘƘŜ ǎǘŀŎƪΦ IŜƴŎŜΣ ǎǘǳŘŜƴǘǎ ŎƻƴŦǳǎŜ ŦǊŜǉǳŜƴŎȅτƘŜƛƎƘǘ ƻŦ ǘƘŜ ōŀǊ ƻǊ ǎǘŀŎƪτ
ǿƛǘƘ ǘƘŜ ƳŜŀǎǳǊŜŘ ǾŀƭǳŜ όŜΦƎΦΣ /ƻƻǇŜǊ ϧ {ƘƻǊŜΣ нллуΤ /ƻƻǇŜǊ нлмуΣ YŀǇƭŀƴ Ŝǘ 
ŀƭΦΣ нлмпύΣ ǎƛƳƛƭŀǊ ǘƻ ƘƛǎǘƻƎǊŀƳǎΦ CƻǊ ǎǘŀŎƪŜŘ ŘƻǘǇƭƻǘǎΣ ŀ ǾŜǊǘƛŎŀƭ ŀȄƛǎ ƛǎ ǇƻǎǎƛōƭŜ 
ōǳǘ ƴƻǘ ƴŜŎŜǎǎŀǊȅΣ ǿƘƛŎƘ ƳƛƎƘǘ ƛƴŘǳŎŜ ǘƘƛǎ ǎŀƳŜ ƘŜƛƎƘǘ ƳƛǎƛƴǘŜǊǇǊŜǘŀǘƛƻƴ όŜΦƎΦΣ 
[ȅŦƻǊŘΣ нлмтύΦ {ƻƳŜ ƻŦ ǘƘŜ ǇǊŜǾƛƻǳǎƭȅ ŘŜǎŎǊƛōŜŘ ǇŜǊǎƛǎǘŜƴǘ ƳƛǎƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎ 
ǿƛǘƘ ƘƛǎǘƻƎǊŀƳǎ ŀǊŜ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ Řŀǘŀ ƛƴ ŀ ƘƛǎǘƻƎǊŀƳΤ ƳƻǊŜ ǎǇŜŎƛŦƛŎŀƭƭȅΥ 
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ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎΣ

• Ƙƻǿ Ƴŀƴȅ ǾŀǊƛŀōƭŜǎ ŀǊŜ ƳŜŀǎǳǊŜŘτƻƴƭȅ ƻƴŜΣ
• ǿƘƛŎƘ ǾŀǊƛŀōƭŜ ƛǎ ƳŜŀǎǳǊŜŘτǘƘŜ ƻƴŜ ŀƭƻƴƎ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎ όƛƴ ŀ

ǊŜƎǳƭŀǊ ƘƛǎǘƻƎǊŀƳύΦ

Lƴ ƴƻƴπǎǘŀŎƪŜŘ ŘƻǘǇƭƻǘǎΣ ƴƻ ǎǘŀǘƛǎǘƛŎŀƭ ǾŀǊƛŀōƭŜ ƛǎ ǊŜǇǊŜǎŜƴǘŜŘ ƛƴ ǘƘŜ ǾŜǊǘƛŎŀƭ 
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ǘƘŜ ǇƻǘŜƴǘƛŀƭ ǘƻ ǊŀƛǎŜ ǎǘǳŘŜƴǘǎΩ ŀǿŀǊŜƴŜǎǎ ƻŦ ǘƘŜ ǾŀǊƛŀōƭŜ όƘŜǊŜΥ ǿŜƛƎƘǘύ ōŜƛƴƎ 
ŘŜǇƛŎǘŜŘ ŀƭƻƴƎ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎ ƛƴ ŘƻǘǇƭƻǘǎ ŀƴŘ ƘƛǎǘƻƎǊŀƳǎΦ bŜǾŜǊǘƘŜƭŜǎǎΣ 
ŀōǎǘǊŀŎǘ ŘƻǘǇƭƻǘǎ ǿƛǘƘƻǳǘ ŎƻƴǘŜȄǘ ƻǊ ƴǳƳōŜǊǎ ŀƭƻƴƎ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎ Ŏŀƴ 
ƭŜŀŘ ǘƻ ƳƛǎƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎ ƻŦ ǾŀǊƛŀōƛƭƛǘȅ όYŀǇƭŀƴ Ŝǘ ŀƭΦΣ нлмпύΦ ¢ƘŜ ǎŀƳŜ Ƴŀȅ 
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ǳǎŜ ŎƻƴǘŜȄǘΣ ŀƴ ŀȄƛǎ ǘƛǘƭŜΣ ŀƴŘ ƴǳƳōŜǊǎ ƛƴ ƻǳǊ ŘƻǘǇƭƻǘǎΦ ²Ŝ ŎƻƴƧŜŎǘǳǊŜ ǘƘŀǘ 
ǘƘŜǎŜ ΨƳŜǎǎȅΩ ŘƻǘǇƭƻǘǎ ǎǳǇǇƻǊǘ ǎǘǳŘŜƴǘǎΩ ƘƛǎǘƻƎǊŀƳ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎΦ ¢ƘŜǊŜŦƻǊŜΣ 
ŀǎ ǎǘŀǘŜŘ ƛƴ ǘƘŜ ƛƴǘǊƻŘǳŎǘƛƻƴΣ ƻǳǊ ƻǾŜǊŀƭƭ ǊŜǎŜŀǊŎƘ ǉǳŜǎǘƛƻƴ ƛǎΥ In what way do 
Grades 10–12 pre-university track students’ histogram interpretations change 
after solving dotplot items? 

Figure 5.4 9ȄŀƳǇƭŜ ƻŦ ŀ ŘƻǳōƭŜ ŘƻǘǇƭƻǘ 

Note. ¢Ƙƛǎ ǿŀǎ LǘŜƳмп ƛƴ ǘƘŜ ƻǊƛƎƛƴŀƭ ǎŜǉǳŜƴŎŜ ƻŦ нр ŘƛƎƛǘŀƭ ƛǘŜƳǎΦ ¢ƘŜ ǉǳŜǎǘƛƻƴ ǿŀǎΥ 
Ψ²ƘƛŎƘ Ǉƻǎǘŀƭ ǿƻǊƪŜǊ ŘŜƭƛǾŜǊǎ ǘƘŜ ƘŜŀǾƛŜǎǘ ǇŀŎƪŀƎŜǎ ƻƴ ŀǾŜǊŀƎŜΚΩ ǿƛǘƘ ǘƘǊŜŜ ŀƴǎǿŜǊ 
ƻǇǘƛƻƴǎΥ όŀύ CǊŀƴǎ ŘŜƭƛǾŜǊǎ ǘƘŜ ƘŜŀǾƛŜǎǘ ǇŀŎƪŀƎŜǎ ƻƴ ŀǾŜǊŀƎŜΣ όōύ !ƴƎŜƭŀ ŘŜƭƛǾŜǊǎ ǘƘŜ 
ƘŜŀǾƛŜǎǘ ǇŀŎƪŀƎŜǎ ƻƴ ŀǾŜǊŀƎŜΣ ŀƴŘ όŎύ ¢ƘŜ ƳŜŀƴ ǿŜƛƎƘǘ ŦƻǊ ōƻǘƘ ƛǎ ŀǇǇǊƻȄƛƳŀǘŜƭȅ ǘƘŜ 
ǎŀƳŜΦ ¢ƘŜ ŎƻǊǊŜŎǘ ŀƴǎǿŜǊ ƘŜǊŜ ƛǎ όŎύΦ 
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5.2.2 Review of literature on eye-tracking in education 

In this section, we review what is already known from gaze data in education 
and what measures are most suitable for our aim. In addition, we elaborate on 
how gaze data can be connected to students’ strategies. We end each section 
with a sub-question.  
Use of spatial gaze measures to reveal students’ strategies for interpreting 
histograms 
The use of gaze data for studying learning is not new (e.g., Strohmaier et al., 
2020). For example, Garcia Moreno-Esteva et al. (2018) and Khalil (2005) 
studied students’ visual cognitive behaviors on statistical graphs. A main 
advantage of eye-tracking “is that it can provide detailed information about 
the time-course of processing” (Kaakinen, 2021, p. 170). Most studies neglect 
this level of detail by using gaze data measures that are temporal (e.g., total 
fixation duration, reaction times), count (fixation count, number of saccades 
between relevant or irrelevant parts of the stimuli), or both (e.g., Kaakinen, 
2021; Lai et al., 2013). Traditional time measures, for example, can hide visual 
scanning patterns (Goldberg & Helfman, 2010). A similar argumentation can be 
made for count measures such as percent of fixations on specific parts of the 
screen (Godau et al., 2014).  

Spatial measures, such as a sequence of Areas of Interest (AOIs, e.g., 
Garcia Moreno-Esteva et al., 2018, 2020) can disclose the kind of detailed 
information Kaakinen (2021) refers to. Spatial measures, such as scanpaths, 
seem better suited for providing detailed information about students’ thinking 
(Hyönä, 2010). Dewhurst et al. (2018) were one of the first who studied 
(simplified) scanpaths using vectors in (scene) viewing tasks. Their vectors 
include direction and magnitude of saccades. 

In a previous study, we qualitatively analyzed students’ scanpath 
patterns (sequence of fixations and saccades) when students estimated the 
mean from histograms (Boels et al., 2019a). After qualitatively coding 300 
videos with students’ gazes and verbal reports of 25 students in that study, we 
found that the perceptual form of students’ scanpath patterns within one 
AOI—the graph area—was most relevant for students’ task-specific strategies 
on these items, see Figure 5.5 (Chapter 3). This perceptual form can be 
captured by the direction (angle) and magnitude (length) of students’ 
saccades. 

In that study, we found several scanpath patterns that were indicative 
of students’ task-specific strategies. All patterns were found on the graph area 
only. In one pattern, the perceptual form of that pattern was identified as 
vertical if successive saccades on the graph area were vertical and roughly 
aligned with each other (Figure 5.5). This vertical scanpath pattern indicates 
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that this student (correctly) tried to find the balancing point of the graph as an 
estimation of the mean. Another scanpath pattern was a horizontal gaze 
pattern indicating that this student (incorrectly) tried to make all bars equally 
high which results in the mean of the frequencies instead of mean weight. In 
total, five different scanpath patterns were found for students estimating and 
comparing means of histograms, each related to a specific strategy (Chapter 3). 
Other AOIs did not emerge as relevant to these students’ task-specific 
strategies. 

Figure 5.5 Example of a vertical scanpath on Item20 

Note. Circles indicate fixations (positions on the screen where students look longer), 
thin lines between the circles indicate saccades (fast transitions between two 
fixations). A vertical line segment—indicating a scanpath—is superimposed for the 
reader’s convenience. A scanpath is a sequence of fixations and saccades. “A fixation is 
a period of time during which a specific part of [the computer screen] is looked at and 
thereby projected to a relatively constant location on the retina. This is operationalized 
as a relatively still gaze position in the eye-tracker signal implemented using the [Tobii] 
algorithm.” (Hessels et al., 2018, p. 22). (The figure has been translated into English.) 

As the overall research question for this study indicates, we want to explore in 
what way secondary school students learn from dotplot items. Given that the 
scanpath patterns on the graph area indicate students’ strategies, we examine 
differences in these patterns on histogram items before and after students 
solved items with dotplots. We only address the main differences, those being 
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differences relevant to students’ task-specific strategies. The first sub-question 
for the present study is, therefore: 

What are the main differences in students’ gaze patterns on 
histogram items before and after solving dotplot items? 

Connecting gaze data to students’ strategies 
Although scanpaths can reveal students’ strategies on a detailed level, there is 
no simple relation between eye movements and strategies (e.g., Orquin & 
Holmqvist, 2017; Russo, 2010) as not every eye movement is part of a task-
specific strategy (e.g., Schindler & Lilienthal, 2019). Therefore, it is often 
needed to also ask at least some students what approach they took to solve 
the items.  

Instead of concurrent think-aloud protocols, recalls (retrospective 
reports) are preferred for complex items (e.g., Van Gog et al., 2005) as 
concurrent thinking aloud may influence both eye movements and students’ 
thinking (Van Gog & Jarodzka, 2013). The disadvantage of such retrospective 
think-aloud reports, however, is that students may have forgotten their 
strategy after completing all items. This risk can be reduced by having students 
look back at their eye movements (e.g., Guan et al., 2006; Kragten et al., 2015; 
Van Gog et al., 2005). Therefore, in the stimulated recall (cued retrospective 
reports), we individually cued each student with their own gazes. How we did 
that, is explained in the data collection section. The second sub-question for 
the present study is: 

What indications can be found in students’ verbalizations during 
stimulated recall that changes in their approaches to histograms 
occurred? 

5.2.3 Learning from a series of items: the practice effect 

Students learning from a sequence of tasks is known as the practice, test-
retest, or retesting effect in assessment theories (e.g., Heilbronner et al., 2010; 
Scharfen et al., 2018). The practice effect refers to improved performance 
(often scores or answers) due to repeated assessment with the same or 
similar, equally difficult items. The time interval between two assessments can 
be very short—5 or 10 minutes—to find such an effect (e.g., Catron, 1978; 
Falleti et al., 2006). The practice effect was found for several general cognitive 
function assessments for items that required memorization (e.g., of numbers), 
change detection (e.g., of changed colors between two items), and matching 
(e.g., what parts of items are alike). In addition, familiarity with test 
requirements can cause differences between the test and retest results (e.g., 
Falleti et al., 2006) and reduce anxiety (e.g., Catron, 1978). Furthermore, 
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regression to the mean can cause extreme results—high and low performance 
scores—to come closer to the mean, resulting in both under- and 
overestimation of improvement (e.g., Temkin et al., 1999). For achievement or 
knowledge tests, such as formative assessments in secondary education, the 
practice effect is also associated with actual or true learning as opposed to 
most cognitive tests, for example, IQ tests, for which learning is unlikely to 
occur (e.g., Lievens et al., 2007; Scharfen et al., 2018). Lumsden suggested that 
the practice effect can also be found within a sequence of items (1976). In 
addition, gaze data have been used to examine the practice effect (e.g., 
Guerra-Carrillo & Bunge, 2018; Płomecka et al., 2020). Although this is not the 
focus of our study, to the best of our knowledge, our study is the first that 
looks at a within-a-sequence-of-items practice effect. 

Most research investigating the practice effect uses scores on 
standardized tests (e.g., in this meta-analysis: Hinton-Bayre, 2010). However, 
standardized tests often lack instructional relevance (e.g., Hohn, 1992). 
Practitioners, such as mathematics teachers, are more interested in knowing 
whether students learn from a low-stake sequence of items. Moreover, 
teachers are interested in students’ strategies, hence “gaining qualitative 
insight into student understanding” (Bennett, 2011, p. 6). In this study, we, 
therefore, examine students’ changes in strategies during solving items as an 
indication for potential learning. To exclude several other possible influencing 
factors—such as peers’ or teachers’ interventions—we use items from one 
sequence of items with statistical graphs. 

For some items, students verbally reported their answer (estimation of 
the arithmetic mean), while for other items, they chose one of three answer 
options (comparing means, Figure 5.4). If a change in students’ strategies 
occurred, toward a correct instead of an incorrect strategy, we would expect a 
difference in students’ answers, including answer correctness. Therefore, the 
third sub-question for this research is: 

What are the differences in students’ answers on histogram items 
before and after solving dotplot items? 

5.2.4 Rationale for Using a Machine Learning Algorithm 

For very small data sets or very short sequences of tasks, the first sub research 
question could theoretically be answered through the careful, manual study of 
gaze data. Our study, however, seeks to use machine learning to both augment 
the effectiveness of identifying differences in students’ gaze patterns between 
items and to identify these differences at a scale that would be impractical to 
do by hand. To build an analytical model of the gazes, a non-ML-approach 
could be used. The ones we tried (e.g., logistic regression) performed relatively 
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poorly (see also Lyford & Boels, 2022). Instead, we use supervised learning, a 
subset of MLAs that use training data and pattern recognition to predict a well-
defined output (Friedman et al., 2001). In particular, the present study makes 
use of random forests algorithm (Breiman, 2001), which will allow us to 
effectively and efficiently identify systemic differences in gazes between our 
two hundred student-item pairings. These random forests can not only be 
efficiently trained and used to identify patterns in students’ gaze data, but they 
are likely to identify systematic differences in gaze data that are unnoticeable 
upon manual inspection (James et al., 2013). In addition, through assessing the 
importance of specific variables (Figure 15) random forests allow for some 
interpretability so that researchers can better understand what some of the 
differences in gazes might be (e.g., proportionally more vertical instead of 
more horizontal gazes could indicate a change from an incorrect to a correct 
strategy), and postulate about possible mechanisms. 

5.3 Materials and methods 
Details on participants as well as details on the eye-tracking method and two 
items (Item02 and Item11) were previously reported in a qualitative study 
(Chapter 3). Two items were previously used in a machine learning analysis 
(Item02 and Item20; Chapter 4) but with a different aim, namely, to examine 
how a machine learning algorithm (MLA) could identify students that used a 
correct or incorrect strategy—for solving the item—purely based on their gaze 
data on the graph area of this item. For the reader’s convenience, we 
summarize here all information relevant to the present study. 

5.3.1 Participants: pre-university track students Grades 10–12 

Participants were 50 Grades 10–12 pre-university track students from a Dutch 
public secondary school [15–19 years old; mean = 16.31 years]; 23 males, 27 
females (more details in Table 5.1). In the Netherlands, secondary school 
students are in a pre-vocational, pre-college, or pre-university track. Generally 
speaking, pre-university track implies mostly high-performing students. All 
participants had statistics in their mathematics curriculum. Each student 
individually solved the items in a separate room in their own school. 
Participation was voluntary; permission from the Utrecht University ethical 
committee was obtained, and informed consent was signed. Participants 
received a small gift for their participation.  
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Note. 5ǳŜ ǘƻ ƭŜƎƛǎƭŀǘƛƻƴΣ Řŀǘŀ ƻƴ ŜǘƘƴƛŎƛǘȅ Ŏŀƴƴƻǘ ōŜ ŎƻƭƭŜŎǘŜŘΦ Lƴ ǘƘŜ bŜǘƘŜǊƭŀƴŘǎΣ 
ǘƘŜǊŜ ƛǎ ƘŀǊŘƭȅ ŀƴȅ ŘƛŦŦŜǊŜƴŎŜ ōŜǘǿŜŜƴ ǇǳōƭƛŎ ŀƴŘ ǇǊƛǾŀǘŜ ǎŎƘƻƻƭǎΣ ƴƻǊ ōŜǘǿŜŜƴ ŎƛǘȅΣ 
ǎǳōǳǊōŀƴΣ ŀƴŘ ǊǳǊŀƭ ǎŎƘƻƻƭǎΦ tǊƛǾŀǘŜ ǎŎƘƻƻƭǎ ŀǊŜ ǊŀǊŜΦ 

5.3.2 Materials: histogram and dotplot items requiring comparing 
and estimating means 

Estimating and comparing arithmetic means reveals students’ knowledge 
¢ƻ ǊŜǾŜŀƭ ǎǘǊŜƴƎǘƘǎ ŀƴŘ Ŧƭŀǿǎ ƛƴ ǎǘǳŘŜƴǘǎΩ ƪƴƻǿƭŜŘƎŜ ŀōƻǳǘ Řŀǘŀ ƛƴ ƎǊŀǇƘǎ 
ǎǳŎƘ ŀǎ ƘƛǎǘƻƎǊŀƳǎΣ Dŀƭ όмффрύ ŀŘǾƛǎŜǎ ŀǎƪƛƴƎ ǎǘǳŘŜƴǘǎ ǘƻ ŎƻƳǇǳǘŜ ƻǊ ŜǎǘƛƳŀǘŜ 
ƳŜŀƴǎ ŦǊƻƳ Řŀǘŀ ƛƴ ƎǊŀǇƘǎΦ ²ŜΣ ǘƘŜǊŜŦƻǊŜΣ ŘŜǎƛƎƴŜŘ ƘƛǎǘƻƎǊŀƳ ŀƴŘ ŘƻǘǇƭƻǘ 
ƛǘŜƳǎ ƛƴ ǿƘƛŎƘ ǎǘǳŘŜƴǘǎ ǿŜǊŜ ǊŜǉǳƛǊŜŘ ǘƻ ŜǎǘƛƳŀǘŜ ǘƘŜ ŀǊƛǘƘƳŜǘƛŎ ƳŜŀƴΦ ¢Ƙƛǎ 
ƳŜŀƴ Ŏŀƴ ōŜ ŜǎǘƛƳŀǘŜŘ ŦǊƻƳ ŀ ƘƛǎǘƻƎǊŀƳ ŀƴŘ ŘƻǘǇƭƻǘ ōȅ ŦƛƴŘƛƴƎ ǘƘŜ 
ŜǉǳƛƭƛōǊƛǳƳ ƻǊ ōŀƭŀƴŎƛƴƎ Ǉƻƛƴǘ ŦǊƻƳ ǘƘŜ ƎǊŀǇƘ όŜΦƎΦΣ aƻƪǊƻǎ ϧ wǳǎǎŜƭƭΣ мффрΤ 
hΩ5ŜƭƭΣ нлмнΤ ǎŜŜ ŀƭǎƻ CƛƎǳǊŜ рΦрύΦ Lƴ ǎǘŀǘƛǎǘƛŎǎΣ ǘƘŜ ƳŜŀƴ ƛǎ ƻŦǘŜƴ ǳǎŜŘ ŦƻǊ 
ŎƻƳǇŀǊƛƴƎ ǘƘŜ Řŀǘŀ ŦƻǊ ǘǿƻ ƎǊƻǳǇǎ όŜΦƎΦΣ DŀƭΣ мффрΤ YƻƴƻƭŘ ϧ tƻƭƭŀǘǎŜƪΣ нллнύΦ 
²ŜΣ ǘƘŜǊŜŦƻǊŜΣ ŀŘŘŜŘ ƛǘŜƳǎ ŦƻǊ ǿƘƛŎƘ ŀ ŎƻƳǇŀǊƛǎƻƴ ƻŦ ƳŜŀƴǎ ǿŀǎ ƴŜŜŘŜŘ όǎŜŜ 
CƛƎǳǊŜ рΦп ŦƻǊ ŀƴ ŜȄŀƳǇƭŜ ƻŦ ŀ ŘƻǘǇƭƻǘ ƛǘŜƳ ǘƘŀǘ ǿŀǎ ǳǎŜŘ ƛƴ ōŜǘǿŜŜƴ ǘƘŜ 
before ŀƴŘ after ƘƛǎǘƻƎǊŀƳ ƛǘŜƳǎύΦ  
Four histogram items—dotplots items in between 
Lƴ ǘƘŜ ǇǊŜǎŜƴǘ ǎǘǳŘȅΣ ǿŜ ŀƴŀƭȅȊŜ ǎǘǳŘŜƴǘǎΩ ƎŀȊŜ Řŀǘŀ ƻƴ ŦƻǳǊ ƛǘŜƳǎ ŦǊƻƳ ŀ 
ǎŜǉǳŜƴŎŜ ƻŦ ƛǘŜƳǎ ƻƴ ŀ ŎƻƳǇǳǘŜǊ ǎŎǊŜŜƴ ǿƛǘƘ ǎŜǾŜǊŀƭ ǎǘŀǘƛǎǘƛŎŀƭ ƎǊŀǇƘǎΦ ²Ŝ 
ŎƘƻǎŜ ǘǿƻ ǇŀƛǊǎ ƻŦ ƛǘŜƳǎ ŦǊƻƳ ǘƘƛǎ ǎŜǉǳŜƴŎŜ ǘƘŀǘ ŀǊŜ ǎǳƛǘŀōƭŜ ŦƻǊ ŀƴŀƭȅǎƛǎ ǿƛǘƘ 
ŀ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ŀƭƎƻǊƛǘƘƳΣ ŀǎ ǘƘŜǎŜ ƛǘŜƳǎ ŀǊŜ ǾŜǊȅ ǎƛƳƛƭŀǊΣ ǎŜŜ CƛƎǳǊŜ рΦсΦ 
¢ǿƻ ƛǘŜƳǎ ǿŜǊŜ ƎƛǾŜƴ ōŜŦƻǊŜ ŀ ǎŜǉǳŜƴŎŜ ƻŦ ǎƛȄ ŘƻǘǇƭƻǘ ƛǘŜƳǎΣ ŀƴŘ ǘƘŜ ƻǘƘŜǊ 
ǘǿƻ ŀŦǘŜǊǿŀǊŘΦ bƻǘŜ ǘƘŀǘ ǘƘŜ after ƛǘŜƳǎ ŀǊŜ ƳƛǊǊƻǊŜŘ ǾŜǊǎƛƻƴǎ ƻŦ ǘƘŜ before 
ƛǘŜƳǎΦ ¢ƘŜ ŦƛǊǎǘ ǇŀƛǊ ƻŦ ƛǘŜƳǎ ǿŜ ŜȄŀƳƛƴŜτbefore LǘŜƳлн ŀƴŘ after LǘŜƳнлτ
ǊŜǉǳƛǊŜ ǎǘǳŘŜƴǘǎ ǘƻ ŜǎǘƛƳŀǘŜ ǘƘŜ ƳŜŀƴ ƻŦ ǘƘŜ Řŀǘŀ ƛƴ ƻƴŜ ƘƛǎǘƻƎǊŀƳΦ ²Ŝ ǿƛƭƭ 
ƘŜƴŎŜŦƻǊǘƘ ǊŜŦŜǊ ǘƻ ǘƘŜǎŜ ŀǎ ΨǎƛƴƎƭŜπƘƛǎǘƻƎǊŀƳΩ ƛǘŜƳǎΦ ¢ƘŜ ǉǳŜǎǘƛƻƴ ŦƻǊ ōƻǘƘ 
ƛǘŜƳǎ ǿŀǎΥ ²Ƙŀǘ ƛǎΣ ŀǇǇǊƻȄƛƳŀǘŜƭȅΣ ǘƘŜ ƳŜŀƴ ǿŜƛƎƘǘ ƻŦ ǘƘŜ ǇŀŎƪŀƎŜǎ ǘƘŀǘ 
ώ!ƴǘƻƴκaƻϐ ŘŜƭƛǾŜǊǎΚ ¢ƘŜ ǎŜŎƻƴŘ ǇŀƛǊ ƻŦ ƛǘŜƳǎτbefore LǘŜƳмм ŀƴŘ after 
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Item21—require students to compare the mean of the data in two histograms. 
We will henceforth refer to these as ‘double-histogram’ items. The question 
for both items was: Which postal worker delivers the heaviest packages on 
average? For each item, three answer options were given: (a) [Ellen/Elizabeth] 
delivers the heaviest packages on average, (b) [Titia/Monsif] delivers the 
heaviest packages on average, and (c) The mean weights for both are 
approximately the same. The correct answer for both items is (c). 

Figure 5.6 Graphs of single-histogram items (left) and double-histogram items (middle 
and right) in the before (top row) and after (bottom row) versions 

Note. Translated into English and numbering added. The numbering of the items (e.g., 
Item11) refers to the numbering in the original sequence of 25 digital items (Chapter 
3). Each after item (bottom row) is a mirrored version of the before item (top row). 

Six of the items between the items before and after were non-stacked (messy) 
dotplots that were specifically designed to scaffold students (Items13–18 from 
the original data collection, e.g., Figures 5.1, 5.2, and 5.4). As described in the 
Theoretical background section, we used dotplots to draw students’ attention 
to specific features of the histograms that are important but might have been 
misunderstood. 

5.3.3 Data collection methods: Eye-tracking, stimulated recall verbal 
reports 

Data of a previous qualitative study is re-used for this study (Chapter 3). Data 
collection included students’ answers on each item, x- and y-coordinates of 
gaze data on the items through an eye-tracker, and stimulated recall verbal 
reports. Collection of the gaze data and stimulated recall are shortly described 
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ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǎŜŎǘƛƻƴΦ CƻǊ ƳƻǊŜ ŘŜǘŀƛƭǎΣ ƛƴǘŜǊŜǎǘŜŘ ǊŜŀŘŜǊǎ ŀǊŜ ǊŜŦŜǊǊŜŘ ǘƻ 
ǘƘŜ ƻǊƛƎƛƴŀƭ ǎǘǳŘȅΦ  
Data collection with an eye-tracker 
! ¢ƻōƛƛ ·LLπсл όǎŀƳǇƭƛƴƎ ǊŀǘŜΥ сл IȊύ ǿŀǎ ǇƭŀŎŜŘ ƻƴ ŀƴ ItπtǊƻ.ƻƻƪπсослō 
ƭŀǇǘƻǇ ōŜǘǿŜŜƴ ǘƘŜ моπƛƴŎƘ ǎŎǊŜŜƴ όǊŜŦǊŜǎƘ ǊŀǘŜ рф IȊύ ŀƴŘ ǘƘŜ ƪŜȅōƻŀǊŘΣ ǎŜŜ 
CƛƎǳǊŜ рΦтΦ tŀǊǘƛŎƛǇŀƴǘǎ ǳǎŜŘ ŀ ŎƘƛƴ ǊŜǎǘΦ DŀȊŜ Řŀǘŀ ǿŜǊŜ ǊŜŎƻǊŘŜŘ ŀƴŘ 
ǇǊƻŎŜǎǎŜŘ ǿƛǘƘ ¢ƻōƛƛ {ǘǳŘƛƻ ǎƻŦǘǿŀǊŜ ǾŜǊǎƛƻƴ оΦпΦр ό¢ƻōƛƛΣ ƴΦŘΦπŀύΦ ¢ƻōƛƛ 
ǎƻŦǘǿŀǊŜΩǎ ŎŀƭƛōǊŀǘƛƻƴ ǇǊƻŎŜŘǳǊŜ ŎƻƴǎƛǎǘŜŘ ƻŦ ŀ фπǇƻƛƴǘ ŎŀƭƛōǊŀǘƛƻƴΦ !ǎ ǘƘƛǎ 
ǎƻŦǘǿŀǊŜ Ƙŀǎ ƴƻ ōǳƛƭǘπƛƴ ǾŀƭƛŘŀǘƛƻƴ ǇǊƻŎŜŘǳǊŜΣ ǿŜ ƛƴŎƭǳŘŜŘ ŀ ǾŀƭƛŘŀǘƛƻƴ ǎŎǊŜŜƴ 
ƛƴ ǘƘŜ ǎŜǘπǳǇ ŀǘ ǘƘŜ ōŜƎƛƴƴƛƴƎΣ ŀŦǘŜǊ ŜŀŎƘ ƛǘŜƳΣ ŀƴŘ ŀǘ ǘƘŜ ŜƴŘ όƳƻǊŜ ŘŜǘŀƛƭǎ ƛƴ 
/ƘŀǇǘŜǊ оύΦ ²Ŝ ŎƻƭƭŜŎǘŜŘ ǘƘŜ Ǌŀǿ Řŀǘŀ ƻŦ ǘƘŜ ŜȅŜ ƳƻǾŜƳŜƴǘǎ ƻƴ ŜŀŎƘ ƛǘŜƳ 
όŜΦƎΦΣ x- ŀƴŘ yπŎƻƻǊŘƛƴŀǘŜǎ ƻŦ ǘƘŜ ŜȅŜǎ ƻƴ ǘƘŜ ǎŎǊŜŜƴ ŦƻǊ ŜŀŎƘ ǘƛƳŜ ǎǘŀƳǇ ŀǎ 
ǿŜƭƭ ŀǎ ǘƻ ǿƘƛŎƘ !hL ǘƘŜǎŜ ŎƻƻǊŘƛƴŀǘŜǎ ōŜƭƻƴƎΣ ǎŜŜ /ƘŀǇǘŜǊ о ŀƴŘ CƛƎǳǊŜ рΦуύ 
ǘƘǊƻǳƎƘ ǘƘŜ ¢ƻōƛƛ ǎƻŦǘǿŀǊŜΦ ²Ŝ ŀƭǎƻ ŎƻƭƭŜŎǘŜŘ ǎǘǳŘŜƴǘǎΩ ŀƴǎǿŜǊǎ όǾŜǊōŀƭ 
ŀƴǎǿŜǊǎ ŦƻǊ ǎƛƴƎƭŜ ƎǊŀǇƘ ƛǘŜƳǎΣ ŎƭƛŎƪŜŘ ƳǳƭǘƛǇƭŜ ŎƘƻƛŎŜ ƻǇǘƛƻƴ ŦƻǊ ŘƻǳōƭŜ ƎǊŀǇƘ 
ƛǘŜƳǎύΦ 

Figure 5.7 {ŜǘπǳǇ ƻŦ ǘƘŜ ŜȄǇŜǊƛƳŜƴǘ 

Note. CƻǊ ŜŀŎƘ ǇŀǊǘƛŎƛǇŀƴǘΣ ŀ ŎƘƛƴ ǊŜǎǘ ƛǎ ǳǎŜŘΦ ¢ƘŜ ŜȅŜ ǘǊŀŎƪŜǊ ƛǎ ǇƭŀŎŜŘ ƻƴ ǘƘŜ ƭŀǇǘƻǇ 
όǎŜŜ ǘƘŜ ǊŜŘ ƻǾŀƭ ōŜƭƻǿ ǘƘŜ ǎŎǊŜŜƴΣ ŎƻǇƛŜŘ ƛƴǘƻ ǘƘŜ ŦƛƎǳǊŜ ŦƻǊ ǘƘŜ ŎƻƴǾŜƴƛŜƴŎŜ ƻŦ ǘƘŜ 
ǊŜŀŘŜǊύΦ 
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Figure 5.8 AOIs of before Item11 (top) and Item02 (bottom) 

 
 

 
Note. Upper row: the graph area consists of the yellow and green areas named 
It11b_graph_L_Ellen and It11b_graph_r_Titia. Bottom row: the graph area is the light 
blue area named It2_graph.   
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No students were excluded from the data set, as the data loss per trial 
(averaged over all 50 participants) and the data loss per participant (averaged 
over all 25 items from the original dataset) were below the exclusion point 
(34% or more). The mean accuracy is 56.6 pixels (1.16°) with the highest 
accuracy on the most relevant part for our study: the graph area (middle of the 
screen; 13.4 pixels or 0.27°). The average precision (0.58°) is considered good. 
More details on accuracy, precision, and the eye-tracker can be found in 
Chapter 3 in line with advice from Holmqvist et al. (2023). The design of the 
complete sequence of items (25 items in total), including files used in the Tobii 
Studio software, as well as AOI sizes and output are available from a data 
repository. 
Data collection through stimulated recall verbal reports  
Stimulated recall (Lyle, 2003) is also known as “cued retrospective reporting” 
(Van Gog et al., 2005, p. 273). It is called retrospective “own-perspective video 
think-aloud with eye-tracking” (McIntyre, 2022, p.4) when used with a head-
mounted eye-tracker. The first part of the verbal reports consisted of cued 
retrospective think-aloud. This means that students watched videos of their 
own gazes laid over the items, while they explained their thinking when they 
solved the items. This took place after students solved all items of the 
sequence of 25 items (Boels et al., 2023). During the second part of the verbal 
reports, clarifying questions were asked such as why they stated that their 
previously given answer was incorrect. In this second part, participants were 
also confronted with inconsistencies in their reports, such as differences 
between the answer given during recall and the answer during item solving. 
Time constraints influenced how many items could be questioned when 
students reported verbally. During this stimulated recall, we illuminated the 
location where students looked—through a kind of spotlight—and made the 
rest of the graph darker (see also Chapter 3). We preferred this method over 
having students look back at their fixations (e.g., red dots) for two reasons. 
First, it prevents students from making different eye movements when looking 
back—and describing the corresponding strategy—instead of the strategy they 
initially used. Second, this makes visible the exact information that the learner 
has looked at, instead of the information being covered by, for example, a red 
dot (the fixation; e.g., Jarodzka et al., 2013). 

5.3.4 Data analysis through a machine learning algorithm 

We used different methods for analyzing our data. For the first sub-question 
about differences in gaze data, we analyzed our data through a machine 
learning algorithm (MLA). For the second sub-question about changes in 
students’ strategies, we coded transcripts of verbal reports (for the codebooks, 
see Chapter 3). For the third sub-question about students’ answers, we 
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explored changes in answers and answer correctness. In the remainder of this 
section, we elaborate on the analysis with a machine learning algorithm. 
Studies usually only report on successful approaches. As a result, other 
researchers keep reinventing the wheel. For the first sub-question, we, 
therefore, decided to report both the MLA approaches we tried: our failed 
attempt to use time metrics as inputs for the MLA and a successful approach 
with spatial metrics. 

Before applying a machine learning algorithm, we first wanted to get a 
better understanding of the underlying data. Therefore, first, we plotted a 
graph using the time metric total fixation time per AOI (also known as total 
dwell time or total fixation duration). Next, we used this same time metric as 
input for training our MLA. This approach failed to produce an accurate MLA. 
Moreover, although this time metric is commonly used, recent literature 
strongly advises against using total dwell time (Orquin & Holmqvist, 2017). 
Second, we examined saccade directions and magnitudes (spatial metrics). 
Finally, using these spatial metrics as inputs for our MLA was successful, which 
is in line with the results of previous studies (Chapters 3 and 4).  

In the next section, we first describe how the MLA we used (random 
forest) works for those not familiar with MLAs and wanting to roughly 
understand these. Next, we describe how we applied the MLA in a failing 
approach using total dwell time and in a successful approach using saccade 
direction and magnitude. 
Gaze-data analysis through a machine learning algorithm (random forest) 
A machine learning algorithm (MLA) learns from input data without explicitly 
being programmed to use certain characteristics of the data. Supervised 
learning algorithms (see Figure 5.9) are a subset of machine learning 
algorithms whose training data contain known output values—in our case 
whether a student’s gaze data belonged to a before or after item. Supervised 
MLAs are broadly used for pattern recognition and for making predictions 
(Friedman et al., 2001). Specifically, our work focuses on the use of random 
forests to identify whether student gaze patterns change substantially 
between similar items across our sequence of items. 
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Figure 5.9 ¢ǊŀƛƴƛƴƎ ŀƴŘ ƛŘŜƴǘƛŦƛŎŀǘƛƻƴ ŎȅŎƭŜǎ ƻŦ ŀ ǎǳǇŜǊǾƛǎŜŘ a[! 

! ǊŀƴŘƻƳ ŦƻǊŜǎǘ ƛǎ ŀ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ Ƴŀƴȅ ǎƳŀƭƭ ŘŜŎƛǎƛƻƴ ǘǊŜŜǎ όŀƭǎƻ ƪƴƻǿƴ ŀǎ 
ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ǘǊŜŜǎύΦ ¢ƘŜǎŜ ǘǊŜŜǎ ŀǊŜ ŎƻƴǎǘǊǳŎǘŜŘ ƛƴ ǳƴƛǉǳŜ ǿŀȅǎ όCǊƛŜŘƳŀƴ Ŝǘ 
ŀƭΦΣ нллмύΦ ¢ƘŜ ōŀǎƛŎ ǎǘǊǳŎǘǳǊŜ ƻŦ ŀƴȅ ǎƛƴƎƭŜ ŘŜŎƛǎƛƻƴ ǘǊŜŜ ƛƴ ŀ ǊŀƴŘƻƳ ŦƻǊŜǎǘ 
ōŜƎƛƴǎ ǿƛǘƘ ŀ ŎŜƴǘǊŀƭ ƴƻŘŜ ŀƴŘ ǘǿƻ ōǊŀƴŎƘŜǎ όwƻƪŀŎƘ ϧ aŀƛƳƻƴΣ нллуΣ ǎŜŜ 
CƛƎǳǊŜ рΦмлύΦ ¢ƘŜƴΣ ŀ ǘǊŜŜπōǳƛƭŘƛƴƎ ŀƭƎƻǊƛǘƘƳ όǿŜ ǳǎŜ /!w¢Σ .ǊŜƛƳŀƴ Ŝǘ ŀƭΦΣ 
мфупύ ƛǘŜǊŀǘŜǎ ǘƘǊƻǳƎƘ ŀƭƭ ǾŀǊƛŀōƭŜǎ ƛƴ ǘƘŜ ǘǊŀƛƴƛƴƎ ǎŜǘ ǘƻ ƛŘŜƴǘƛŦȅ ƻƴŜ ǿƘƛŎƘ Ŏŀƴ 
ǎǇƭƛǘ ǘƘŜ Řŀǘŀ ŀǎ ƘƻƳƻƎŜƴŜƻǳǎƭȅ ŀǎ ǇƻǎǎƛōƭŜΦ Lƴ ƻǳǊ ŎŀǎŜΣ ǘƘƛǎ ƛƴǾƻƭǾŜǎ 
ƛŘŜƴǘƛŦȅƛƴƎ ŀ ǾŀǊƛŀōƭŜτǘȅǇƛŎŀƭƭȅ ŀ ǎŀŎŎŀŘŜ ƳŀƎƴƛǘǳŘŜ όƭŜƴƎǘƘύτǿƘƻǎŜ 
ǇǊŜǎŜƴŎŜ ƛƴŘƛŎŀǘŜǎ ōŜƭƻƴƎƛƴƎ ǘƻ ƻƴŜ ŎƭŀǎǎΣ ŀƴŘ ǿƘƻǎŜ ƎŜƴŜǊŀƭ ŀōǎŜƴŎŜ 
ƛƴŘƛŎŀǘŜǎ ōŜƭƻƴƎƛƴƎ ǘƻ ŀƴƻǘƘŜǊ ŎƭŀǎǎΦ Lƴ ǎƘƻǊǘΣ ǾŀǊƛŀōƭŜǎ ǘƘŀǘ ŘƛŦŦŜǊŜƴǘƛŀǘŜ 
ōŜǘǿŜŜƴ ƻǳǘǇǳǘ ŎƭŀǎǎŜǎ ŀǊŜ ǎŜƭŜŎǘŜŘ ŦƻǊ ǳǎŜ ƛƴ ǘƘŜ ǘǊŜŜπōǳƛƭŘƛƴƎ ǇǊƻŎŜǎǎΣ ŀƴŘ 
ǾŀǊƛŀōƭŜǎ ǘƘŀǘ Řƻ ƴƻǘ ƘŜƭǇ ŘƛŦŦŜǊŜƴǘƛŀǘŜ ōŜǘǿŜŜƴ ƻǳǘǇǳǘ ŎƭŀǎǎŜǎ ŀǊŜ ƴƻǘ 
ǎŜƭŜŎǘŜŘΣ ŀƴŘ ǘƘŜ /!w¢ ŀƭƎƻǊƛǘƘƳ ŘŜǘŜǊƳƛƴŜǎ Ƙƻǿ ǘƻ ōŜǎǘ ŜƳǇƭƻȅ ǘƘŜ ǳǎŜŦǳƭ 
ǾŀǊƛŀōƭŜǎΦ ¢Ƙƛǎ ǾŀǊƛŀōƭŜ ǎŜƭŜŎǘƛƻƴ ǇǊƻŎŜǎǎ ǊŜǇŜŀǘǎ ǳƴǘƛƭ ŀ ǎǘƻǇǇƛƴƎ ŎǊƛǘŜǊƛƻƴτ
ǘȅǇƛŎŀƭƭȅ ŀ ƳŀȄƛƳǳƳ ǘǊŜŜ ŘŜǇǘƘ όƛƴ CƛƎǳǊŜ рΦмлΣ ǘƘƛǎ ŘŜǇǘƘ ƛǎ ƻƴŜύ ƻǊ ŀ 
ƳƛƴƛƳǳƳ ƴƻŘŜ ǎƛȊŜ όƴǳƳōŜǊ ƻŦ ǎǉǳŀǊŜǎ ƛƴ CƛƎǳǊŜ рΦмлύτƛǎ ǊŜŀŎƘŜŘΦ ¢ƻ ƭŜŀǊƴ 
ƳƻǊŜ ŀōƻǳǘ ŘŜŎƛǎƛƻƴ ǘǊŜŜǎΣ ǎŜŜΣ ŦƻǊ ŜȄŀƳǇƭŜΣ .ǊŜƛƳŀƴ Ŝǘ ŀƭΦ όнлмтύΦ CƛƎǳǊŜ рΦмл 
ǎƘƻǿǎ ŀƴ ŜȄŀƳǇƭŜ ƻŦ ŀ ǇƻǎǎƛōƭŜ ǎǇƭƛǘ ƛƴ ŀ ǘǊŜŜ ǘƘŀǘ ǳǎŜǎ ŘƛǊŜŎǘƛƻƴ ŀƴŘ 
ƳŀƎƴƛǘǳŘŜ ƻŦ ŀ ǎŀŎŎŀŘŜΦ  

¢ƘŜ ǳƴƛǉǳŜƴŜǎǎ ƻŦ ŘŜŎƛǎƛƻƴ ǘǊŜŜǎ ƛƴ ŀ ǊŀƴŘƻƳ ŦƻǊŜǎǘ ƛǎ ǘƘŀǘ ŜŀŎƘ ǘǊŜŜ ƛǎ 
ƻƴƭȅ ƎƛǾŜƴ ŀŎŎŜǎǎ ǘƻ ŀ ǊŀƴŘƻƳ ǎǳōǎŜǘ ƻŦ ǘƘŜ Řŀǘŀ ǎŀƳǇƭŜŘ ǿƛǘƘ ǊŜǇƭŀŎŜƳŜƴǘ 
ŀƴŘ ŜŀŎƘ ǎǇƭƛǘ ƛƴ ǘƘŜ ǘǊŜŜ ƛǎ ƻƴƭȅ ƎƛǾŜƴ ŀŎŎŜǎǎ ǘƻ ŀ ǊŀƴŘƻƳ ǎǳōǎŜǘ ƻŦ ǘƘŜ 
ǾŀǊƛŀōƭŜǎ όŜΦƎΦΣ ¢ŀōƭŜ рΦнύΦ ¢Ƙŀǘ ƛǎΣ ŜŀŎƘ ǘǊŜŜ ƻƴƭȅ ǳǎŜǎ ŀ ǊŀƴŘƻƳ ǎŀƳǇƭŜ ƻŦ 
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participants’ data—with the possibility of sampling the same participant’s data 
multiple times—and each split in the tree uses a small subset of the total 
number of variables. The exact size of each sample is part of the tuning process 
and our final values can be seen in the supplementary R-code.  

Figure 5.10 Example of a decision tree. ESE means east-south-east direction of the 
saccade 

 

Allowing each tree to be built on only a subset of data and variables typically 
leads to a worse-performing tree than if all data were available (Dzeroski & 
Zenko, 2004). However, the risk of building one (the best) tree only, is that this 
tree might work perfectly for exactly the given data set, but not on data sets 
that are similar but slightly different. This is called overfitting. Building many 
trees using independently sampled data and variables stops any individual tree 
from drastically overfitting the training data and leads to trees that are 
relatively uncorrelated (Hansen & Salamon, 1990). These uncorrelated trees 
are then used together in an ensemble to make classifications, known as the 
random forest. Each tree makes a prediction about the class of the given 
data—in our case whether the user is seeing the item for the first or second 
time—and then the votes are totaled. Whichever class receives the most votes 
is the resulting classification of the random forest (Breiman, 2001). 

This technique of simultaneously combining multiple machine learning 
algorithms—the trees in a random forest—together is known as ensemble 
learning. This approach is effective since the combined knowledge of many 
algorithms is often more accurate than any single algorithm (Dzeroski & Zenko, 
2004). Here, we train our ensemble using gaze data as inputs and a binary 
output indicating whether the user is seeing the item for the first time or the 
second time. We use the randomForest package in R (Liaw & Wiener, 2002) to 
implement our random forest. Our final, fully-tuned model utilized the 
following hyperparameters: 1,000 trees, 5 variables considered at each split, a 
minimum node size of 1, and a maximum tree depth of 5. 
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We identified these optimal hyperparameters using a grid search of 
size 3^5 (we tried all combinations of three different values for each 
hyperparameter). Our nested resampling scheme utilized both an outer 
resampling and inner resampling of 5-fold cross validation. The reported best 
hyperparameters are the average values used across each of our outer 
resamplings. We likewise evaluated our model using 5-fold cross validation. To 
ensure no students’ data were part of both the training and testing data when 
evaluating our model, we split the data into five groups, each group containing 
10 students. We then used the 10 students’ data (yielding a total of 20 
student-item pairings) as testing data, and trained our random forest on the 
remaining 40 students’ data (80 student-item pairings). This process was 
repeated five times until all students’ data have been separately used as 
training and testing data. The software used for this data analysis is RStudio 
(RRID:SCR_000432). The full reproducible code to build our random forest as 
used in RStudio as well as the processed data are available through a data 
repository. The original data can be found in Boels et al. (2023). 
A failed MLA—using dwell time on AOIs  
As described in the beginning of this section, we first plotted the data before 
we analyzed it with an MLA. This plotting is considered part of the data 
analysis, as the plots can provide indications of what features might be 
relevant as inputs for the MLA. Differences in where and how long participants 
looked—fixated—were explored over time throughout each of the four items 
of interest. As an example, Figure 5.11 shows the fixations for two selected, 
archetypical participants, L01 and L05, who progressed very differently 
through the same item (here, the double-histogram Item11). The x-axis, time, 
has been rescaled from 0 to 1 so fixations could be compared between 
participants who spent different amounts of time on each item. A time of 0.5, 
for example, indicates the time at which the given participant is halfway 
through completing Item11. In this figure, points are jittered (shifted a slight 
amount in a random direction) to better display the density of points in a given 
AOI at a given time. 

StudentL01, like many participants, fixated on several different AOIs 
throughout their time working on Item11, often moving back and forth 
between the graphing area and the corresponding axis. StudentL05, however, 
spent most of their time fixating on the graph area of both the left and right 
graphs—stopping briefly to look at the right graph’s vertical axis and label after 
having spent a considerable amount of time looking at the graphing area. In 
addition to these two main archetypes, the remaining gaze patterns varied 
widely between each of the four items and between participants on a given 
item. 
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To quantify the differences between student approaches to the before and 
after items, we began by identifying features (variables) for training our series 
of random forest models. If the random forest algorithm can consistently 
differentiate between gaze data from the before and after item in each pairing, 
then some combination of features must exist that is more prevalent in one 
item when compared to the other, indicating a difference in gaze patterns 
between the paired items. 

For each of the two item pairings (pairing Item02 and Item20, pairing 
Item11 and Item21), we began by treating each participant-item combination 
as our unit of observation, yielding a total of 200 data points (50 participants’ 
gaze patterns across two items in each of two pairings). For each data point, 
we calculated the proportional time spent in each AOI, we identified the path 
each participant took through the AOIs, and converted this information into 
features for our random forest model. 

In short, this initial approach was unsuccessful. To prevent readers 
from scrolling back and forth, we provide a short description of these results 
here. There were no discernable differences at the individual level between 
each pairing of before and after items. Participants spent roughly the same 
proportion of time looking at each of the AOIs when they saw the before items 
as when they saw the corresponding after item. Though the order in which 
participants progressed through each of the AOIs differed between before and 
after items, no discernable pattern emerged, and the correspondingly trained 
random forest algorithms were unable to accurately predict whether a 
participant was viewing a before item or an after item in a given pairing. We, 
therefore, do not further elaborate on this approach in the Results section.  
A successful approach—exploring saccade direction and magnitude 
Based on previous qualitative work (see Chapter 3), we then used directional 
movements—saccades—first by, again, visually investigating whether 
differences appeared in saccade patterns between before items and after 
items. We noticed a clear difference in the pattern of saccades due to the 
mirrored orientation of the otherwise-identical graphs in Item11 and Item21. 
Thus, our subsequent analysis focused on mirrored versions of the after items, 
Item21 and Item20, so that the graph area is made identical to their before 
counterparts. In other words, we took the gaze coordinates for the mirrored 
after items and adjusted them to match the corresponding coordinate of the 
unmirrored before items. Without this un-mirroring, the random forest 
algorithm could have easily differentiated between gaze data from the before 
and after items in each pair. Figure 5.12 shows the patterns of saccades for the 
same two selected archetypical participants—L01 and L05—on one particular 
pairing, Item11 and mirrored-Item21. In this figure, all saccades are centered 
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at the origin and radiate outward based on the direction and magnitude of the 
saccade. Only saccades of magnitudes greater than 200 pixels are shown since 
these are the saccades used in our final model. Saccades of less than 200 pixels 
were generally eye movements that are not indicative of students moving from 
one fixation point to another.  

Given the size of the graph areas (width 489 pixels, height 313 pixels 
for double graph items, 600 x 335 for single graph items), the maximum 
possible saccade magnitude is 687 pixels (diagonal). The maximum speed for 
human saccades is approximately 700 degrees per second (Fuchs, 1967; Oohira 
et al., 1981) which is 570 pixels per 16.7 ms (a sampling rate of 60 Hz equals to 
one sample every 16.7 ms). Therefore, the maximum for long saccades was set 
at 600 pixels; longer saccades were considered to be artifacts. Furthermore, 
we removed ‘saccades’ smaller than 50 pixels. Given the accuracy of the eye-
tracker (mean 13.4 pixels in the center of the screen and mean 56.6 pixels over 
all measures), we consider these small ‘saccades’ part of fixations or noise. 
Although this meant removing more than ninety percent of the measurements 
on the graph area, the accuracy of our MLA became slightly better. 

We defined the beginning of a saccade to be a movement with a 
velocity greater than 50 pixels per 16.7ms. We defined the end of the saccade 
as any two consecutive 16.7ms windows where the participant’s gaze had not 
moved more than 50 pixels. Points of fixation were determined by averaging 
the x- and y-pixel values of gazes in between two saccades, and each saccade’s 
direction and magnitude were calculated between these points of fixation. 

Figure 5.13 shows all saccades of a magnitude of 200 pixels or more for 
each of the four items. There is a discernable difference in the number of 
vertically oriented saccades between before and after items, especially in the 
Item02 and Item20 pairing. The Item11 and Item21 pairing also shows 
differences in the orientations of many horizontally facing saccades. Notably, 
there are several more northwest- and southeast-facing saccades in Item11 
and more northeast and southwest-facing saccades in Item21 (after mirroring). 
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Figure 5.13 Saccades of magnitude 200 pixels or more of all participants on Item11 and 
Item21 (double-histograms, top) as well as Item02 and Item20 (single-histogram, 
bottom) 

Note. Notice the difference in the density of students’ saccade directions between the 
before items (left) and after items (right). 

We examine differences in students’ gaze patterns on histogram items. If the 
random forest algorithm can consistently differentiate between gaze data 
from the before and after item in each pairing, then there must be some 
combination of features (variables) that is more prevalent in one item when 
compared to the other, indicating a difference in gaze patterns between the 
paired items. To construct our random forest model, we tried different sets of 
features—placing each saccade into mutually exclusive bins depending on the 
direction, magnitude, and phase of the saccade, regardless of the point of 
origin. We tested two different directional schemes, two magnitude schemes, 
and three phase adjustment schemes, yielding a total of twelve combinations. 
Here, a phase adjustment is the angle (in radians) at which the direction bins 
are shifted, where 0 radians is equivalent to 0 degrees in mathematics—a 
saccade pointed eastward—and pi radians is equivalent to 180 degrees—a 
saccade pointed westward. Table 2 shows the details of each scheme. The 
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ŘƛǊŜŎǘƛƻƴ ƻŦ ŜŀŎƘ ǎŀŎŎŀŘŜ όǿƛǘƘ ƴƻ ǇƘŀǎŜ ǎƘƛŦǘύ ǿŀǎ ƭƛƴƪŜŘ ǘƻ ŀ ǎǇŜŎƛŦƛŎ ŎƻƳǇŀǎǎ 
ǊƻǎŜ ŘƛǊŜŎǘƛƻƴ όCƛƎǳǊŜ рΦмпύΦ ¢ƘŜ ŘƛǊŜŎǘƛƻƴ 9{9Σ ŦƻǊ ŜȄŀƳǇƭŜΣ ŀƭƛƎƴǎ ǿƛǘƘ ǘƘŜ 
ŘƛǊŜŎǘƛƻƴ ώтˉκпΣ нˉύΦ 

Table 5.2 .ƛƴǎ ǳǎŜŘ ǘƻ ŎŀǘŜƎƻǊƛȊŜ ŜŀŎƘ ǎŀŎŎŀŘŜ ŦƻǊ ǳǎŜ ƛƴ ƻǳǊ a[! 

CŜŀǘǳǊŜ bǳƳōŜǊ /ŀǘŜƎƻǊƛŜǎ /ŀǘŜƎƻǊȅ ƴŀƳŜ 
5ƛǊŜŎǘƛƻƴ м ώлΣ ˉκнύΤ ώˉκнΣ ˉύΤ ώˉΣ оˉκнύΤ 

ώоˉκнΣ нˉύ 
b9Σ b²Σ {²Σ {9 όǿƛǘƘƻǳǘ 
ǇƘŀǎŜ ŀŘƧǳǎǘƳŜƴǘΤ ǎŜŜ 
CƛƎǳǊŜ рΦмпύ 

5ƛǊŜŎǘƛƻƴ н ώлΣ ˉκпύΤ ώˉκпΣ ˉκнύΤ ώˉκнΣ 
оˉκпύΤ ώоˉκпΣ ˉύΤ ώˉΣ рˉκпύΤ 
ώрˉκпΣ оˉκнύΤ ώоˉκнΣ тˉκпύΤ 
ώтˉκпΣ нˉύ 

9b9Σ bb9Σ bb²Σ ²b²Σ 
²{²Σ {{²Σ {{9Σ 9{9 
όǿƛǘƘƻǳǘ ǇƘŀǎŜ ŀŘƧǳǎǘƳŜƴǘύ 

aŀƎƴƛǘǳŘŜ м ώрлΣ оллύΤ ώоллΣ сллύ aŜŘƛǳƳΣ ƭƻƴƎ 
aŀƎƴƛǘǳŘŜ н ώрлΣ мллύΤ ώмллΣ нллύΤ ώнллΣ 

пллύΤ ώпллΣ сллύ 
±ŜǊȅ ǎƘƻǊǘΣ ǎƘƻǊǘΣ ƳŜŘƛǳƳΣ 
ƭƻƴƎ 

tƘŀǎŜ 
!ŘƧǳǎǘƳŜƴǘ 

м л 

tƘŀǎŜ 
!ŘƧǳǎǘƳŜƴǘ 

н ˉκу 

tƘŀǎŜ 
!ŘƧǳǎǘƳŜƴǘ 

о ˉκо 

Note. CƻǊ ŜŀŎƘ ŦŜŀǘǳǊŜ όǾŀǊƛŀōƭŜύ ǘƘŜ ǎǇŜŎƛŦƛŎ ŎŀǘŜƎƻǊƛŜǎ ŀǊŜ ƛƴŘƛŎŀǘŜŘ ōȅ ŀ ƴǳƳōŜǊΦ Lƴ 
ǘƻǘŀƭΣ ǘƘŜǊŜ ŀǊŜ н × н × о Ґ мн ǇƻǎǎƛōƭŜ ŎƻƳōƛƴŀǘƛƻƴǎΦ 

Figure 5.14 /ƻƳǇŀǎǎ ǊƻǎŜ 

²Ŝ ŎŀƭŎǳƭŀǘŜŘ ŀŎŎǳǊŀŎȅΣ ǎŜƴǎƛǘƛǾƛǘȅ ŀƴŘ ǎǇŜŎƛŦƛŎƛǘȅ ŦƻǊ ŜŀŎƘ ŎƻƳōƛƴŀǘƛƻƴΣ 
ǎŜŜŘƛƴƎ ƻǳǊ ǊŀƴŘƻƳ ŦƻǊŜǎǘ ŀƭƎƻǊƛǘƘƳ ǘƻ ƻōǘŀƛƴ ǊŜǇǊƻŘǳŎƛōƭŜ ǊŜǎǳƭǘǎΦ ²Ŝ 
ǘǊŜŀǘŜŘ ǘƘŜ before ƛǘŜƳǎ ŀǎ ǘƘŜ ǇƻǎƛǘƛǾŜ ŎŀǎŜΣ ƳŜŀƴƛƴƎ ǘƘŀǘ ŀŎŎǳǊŀŎȅ ƛǎ ŘŜŦƛƴŜŘ 
ŀǎ ǘƘŜ ǘƻǘŀƭ ǇǊƻǇƻǊǘƛƻƴ ƻŦ ǘƛƳŜǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ŎƻǊǊŜŎǘƭȅ ƛŘŜƴǘƛŦƛŜŘ ǿƘŜǘƘŜǊ ǘƘŜ 
ƎƛǾŜƴ Řŀǘŀ Ǉƻƛƴǘ ōŜƭƻƴƎŜŘ ǘƻ ǘƘŜ before ƛǘŜƳ ƻǊ ǘƘŜ after ƛǘŜƳ ƛƴ ǘƘŜ ǇŀƛǊƛƴƎΦ 
{ŜƴǎƛǘƛǾƛǘȅ ƛǎ ǘƘŜ ǇǊƻǇƻǊǘƛƻƴ ƻŦ ǘƘŜ Řŀǘŀ Ǉƻƛƴǘǎ ǘƘŜ ƳƻŘŜƭ ƛŘŜƴǘƛŦƛŜŘ ŀǎ 
ōŜƭƻƴƎƛƴƎ ǘƻ ǘƘŜ before ƛǘŜƳ ǘƘŀǘ ŀŎǘǳŀƭƭȅ ōŜƭƻƴƎŜŘ ǘƻ ǘƘŜ before ƛǘŜƳΦ 
{ǇŜŎƛŦƛŎƛǘȅ ƛǎ ǘƘŜ ǇǊƻǇƻǊǘƛƻƴ ƻŦ after ƛǘŜƳ Řŀǘŀ Ǉƻƛƴǘǎ ǘƘŀǘ ǿŜǊŜ ŎƻǊǊŜŎǘƭȅ 
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identified as belonging to the after item. Each metric was calculated using 5-
fold cross validation.  

We categorized the features into bins (see Table 2) for two reasons. 
First, we wanted to extract the variable importance metrics from our random 
forest in a way that might better inform us why the model was differentiating 
so well. More specifically, which direction or magnitude of saccade is more 
present in one item’s data and not the other’s. If we would have used 
continuous features, this interpretation would have been much more 
convoluted to human beings. Second, we also tried a continuous features 
model. That model performed worse. This might be because saccades that are 
close in direction and magnitude are functionally identical. In other words, 
perhaps a saccade of 25 degrees and a saccade of 5 degrees both imply that a 
student is scanning from left to right, and the difference in angles is either an 
artifact of data error or a meaningless difference between fixation points. 

5.4 Results 
Our overall research question is: In what way do secondary school students’ 
histogram interpretations change after solving dotplot items? In this section 
we answer this question through answering the following three sub-questions: 

1) What are the main differences in students’ gaze patterns on 
histogram items before and after solving dotplot items? 

2) What indications can be found in students’ verbalizations 
during stimulated recall that changes in their approaches to 
histograms occurred?  

3) What are the differences in students’ answers on histogram 
items before and after solving dotplot items? 

5.4.1 Main changes in students’ gaze patterns on histograms 

The first sub-question is answered by using a random forest model. The twelve 
combinations of direction, magnitude, and phase schemes (Table 5.2) yielded 
accuracies, sensitivities, and specificities that varied between 55% and 88% 
(Table 5.3). The standard deviations for each performance metric are reported 
in parenthesis using 100 resamples. The most accurate combination for both 
pairings was direction 2, magnitude 2, and phase adjustment 1, which 
corresponded to the most granular direction and magnitude bins and no phase 
adjustment. The details of each combination can be seen in Table 5.2. This best 
combination yielded a remarkably high 77% accuracy for the single-histogram 
items (Table 5.3) and 86% accuracy for the double-histogram items (Table 5.4). 
We note that accuracy alone can be potentially misleading—in our study 
attributing scanpath patterns randomly would yield 50% accuracy. Therefore, 
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ŀƴ ŀŎŎǳǊŀŎȅ ƴŜŀǊ тр҈ ƛǎ ŎƻƴǎƛŘŜǊŜŘ ƎƻƻŘ ƛƴ ǘƘƛǎ ƭƻǿπǎǘŀƪŜ ǎƛǘǳŀǘƛƻƴΣ ǎƛƴŎŜ ƛǘ 
ǿƻǳƭŘ ǎƘƻǿ Ǝŀƛƴǎ ƛƴ ŀŎŎǳǊŀŎȅ ǿŜƭƭ ŀōƻǾŜ ǊŀƴŘƻƳ ƎǳŜǎǎƛƴƎΦ Lƴ ŀŘŘƛǘƛƻƴΣ 
ŀŎŎǳǊŀŎȅ ƴŜŜŘǎ ǘƻ ōŜ ƧǳŘƎŜŘ ǘƻƎŜǘƘŜǊ ǿƛǘƘ ǎŜƴǎƛǘƛǾƛǘȅ ŀƴŘ ǎǇŜŎƛŦƛŎƛǘȅ ŦƻǊ ǿƘƛŎƘ 
ǾŀƭǳŜǎ ƴŜŀǊ тр҈ ŀǊŜ ŀƭǎƻ ŎƻƴǎƛŘŜǊŜŘ ƎƻƻŘΦ bƻǘŜ ǘƘŀǘ ǘƘƛǎ ǇŜǊŦƻǊƳŀƴŎŜ Ƴŀȅ 
ƛƴŎǊŜŀǎŜ ƛŦ ǿŜ ǿŜǊŜ ǘƻ ŜȄŎƭǳŘŜ ǎƻƳŜ ǎǘǳŘŜƴǘǎ ŦƻǊ ǿƘƛŎƘ ǿŜ ƘŀŘ ǎǇŀǊǎŜ Řŀǘŀ ŦƻǊ 
ŀ ǎǇŜŎƛŦƛŎ ƛǘŜƳ όŜΦƎΦΣ ŘǳŜ ǘƻ Řŀǘŀ ƭƻǎǎ ŦƻǊ ǘƘŀǘ ǎǇŜŎƛŦƛŎ ƛǘŜƳύΦ  

Table 5.3 aƻŘŜƭ ŜŦŦƛŎŀŎȅ ƻƴ LǘŜƳлн ǾŜǊǎǳǎ LǘŜƳнл όǎƛƴƎƭŜπƘƛǎǘƻƎǊŀƳ ƛǘŜƳǎύ 

5ƛǊŜŎǘƛƻƴ aŀƎƴƛǘǳŘŜ tƘŀǎŜ !ŎŎǳǊŀŎȅ ό{5ύ {ŜƴǎƛǘƛǾƛǘȅ ό{5ύ {ǇŜŎƛŦƛŎƛǘȅ ό{5ύ 
м м м лΦсн όлΦлнпύ  лΦсл όлΦлнмύ  лΦсп όлΦлнтύ 
м м н лΦрр όлΦлнрύ  лΦрс όлΦлнпύ  лΦрп όлΦлнуύ 
м м о лΦсс όлΦлмуύ  лΦсл όлΦлнфύ  лΦтн όлΦлнмύ 
м н м лΦсу όлΦлмпύ  лΦсс όлΦлнлύ  лΦтл όлΦлмуύ 
м н н лΦсп όлΦлмсύ  лΦсл όлΦлнлύ  лΦсу όлΦлнсύ 
м н о лΦсм όлΦлммύ  лΦсн όлΦлмоύ  лΦсл όлΦлмтύ 
н м м лΦто όлΦллуύ  лΦтн όлΦллфύ  лΦтп όлΦлмпύ 
н м н лΦсс όлΦлмсύ  лΦсн όлΦлннύ  лΦтл όлΦлнпύ 
н м о лΦсф όлΦллуύ  лΦсс όлΦлмлύ  лΦтн όлΦлмпύ 
н н м лΦтт όлΦлмрύ  лΦтл όлΦлмуύ  лΦуп όлΦлнмύ 
н н н лΦтл όлΦлмсύ  лΦсу όлΦлноύ  лΦтн όлΦлнпύ 
н н о лΦтн όлΦлмпύ  лΦсс όлΦлмфύ  лΦту όлΦлннύ 

Note {5 Ґ {ǘŀƴŘŀǊŘ ŘŜǾƛŀǘƛƻƴ 

Table 5.4 aƻŘŜƭ ŜŦŦƛŎŀŎȅ ƻƴ LǘŜƳмм ǾŜǊǎǳǎ LǘŜƳнм όŘƻǳōƭŜπƘƛǎǘƻƎǊŀƳ ƛǘŜƳǎύ 

5ƛǊŜŎǘƛƻƴ aŀƎƴƛǘǳŘŜ tƘŀǎŜ !ŎŎǳǊŀŎȅ ό{5ύ {ŜƴǎƛǘƛǾƛǘȅ ό{5ύ {ǇŜŎƛŦƛŎƛǘȅ ό{5ύ 
м м м лΦто όлΦллсύ  лΦун όлΦллфύ  лΦсп όлΦлмлύ 
м м н лΦсу όлΦлмлύ  лΦтс όлΦлмрύ  лΦсл όлΦлмнύ 
м м о лΦтр όлΦлммύ  лΦтс όлΦлмфύ  лΦтп όлΦлмлύ 
м н м лΦто όлΦлмнύ  лΦуп όлΦлмтύ  лΦсн όлΦлнрύ 
м н н лΦсф όлΦлмнύ  лΦтн όлΦллфύ  лΦсс όлΦлмуύ 
м н о лΦто όлΦлммύ  лΦтс όлΦлмсύ  лΦтл όлΦлмтύ 
н м м лΦур όлΦллтύ  лΦфл όлΦлмпύ  лΦул όлΦллуύ 
н м н лΦул όлΦллфύ  лΦул όлΦллпύ  лΦул όлΦлмуύ 
н м о лΦум όлΦллтύ  лΦул όлΦлмлύ  лΦун όлΦллфύ 
н н м лΦус όлΦлмоύ  лΦуу όлΦллфύ  лΦуп όлΦлноύ 
н н н лΦтт όлΦлммύ  лΦтс όлΦлмтύ  лΦту όлΦлмсύ 
н н о лΦун όлΦллтύ  лΦул όлΦлмоύ  лΦуп όлΦллсύ 
Note {5 Ґ {ǘŀƴŘŀǊŘ ŘŜǾƛŀǘƛƻƴ 
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Figure 5.15 Plots showing the importance of variables for single-histogram 
MLA-model (top) and double-histogram MLA-model (bottom)  
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нлм 

tƘŀǎŜ мτƴƻ ǇƘŀǎŜ ŀŘƧǳǎǘƳŜƴǘτȅƛŜƭŘŜŘ ǘƘŜ ōŜǎǘ ƳƻŘŜƭ ƻƴ ŀǾŜǊŀƎŜΦ 5ƛǊŜŎǘƛƻƴ 
ŀƴŘ ƳŀƎƴƛǘǳŘŜ ƘŀŘ ƳƻŘŜǊŀǘŜ ŜŦŦŜŎǘǎΣ ǿƛǘƘ ƳƻǊŜ ǊŜŦƛƴŜŘ ōƛƴǎ ȅƛŜƭŘƛƴƎ ōŜǘǘŜǊπ
ǇŜǊŦƻǊƳƛƴƎ ƳƻŘŜƭǎΦ .ƻǘƘ ǇŀƛǊƛƴƎǎ ǎƘƻǿŜŘ ŀ ǿƛŘŜǊ ǾŀǊƛŀǘƛƻƴ ƛƴ ŀŎŎǳǊŀŎƛŜǎΣ ǿƛǘƘ 
ƭƻǿ ŀŎŎǳǊŀŎȅ ŦƻǊ ƳƻǊŜ ōǊƻŀŘ ŎŀǘŜƎƻǊƛȊŀǘƛƻƴ ǎŎƘŜƳŜǎ ŀƴŘ ǊŜƳŀǊƪŀōƭȅ ƘƛƎƘ 
ŀŎŎǳǊŀŎȅ ŦƻǊ ƳƻǊŜ ǊŜŦƛƴŜŘ ŎŀǘŜƎƻǊƛȊŀǘƛƻƴ ǎŎƘŜƳŜǎΦ 

¢ƻ ōŜǘǘŜǊ ǳƴŘŜǊǎǘŀƴŘ ǿƘƛŎƘ ŦŜŀǘǳǊŜǎ ǿŜǊŜ ŘǊƛǾƛƴƎ ǘƘŜ ŀŎŎǳǊŀŎȅ ƻŦ ǘƘŜǎŜ 
ƳƻŘŜƭǎΣ ǿŜ ŎŀƭŎǳƭŀǘŜŘ ǘƘŜ ƛƳǇƻǊǘŀƴŎŜ ƻŦ ŜŀŎƘ ǾŀǊƛŀōƭŜ όCƛƎǳǊŜ рΦмрύ ŦƻǊ ǘƘŜ 
ōŜǎǘ ƳƻŘŜƭǎ ŦƻǊ ŜŀŎƘ ǇŀƛǊƛƴƎΦ ¢ƘŜǎŜ Ǉƭƻǘǎ ǎƘƻǿ ǘƘŜ ŜǎǘƛƳŀǘŜŘ ŀǾŜǊŀƎŜ 
ŘŜŎǊŜŀǎŜ ƛƴ ŀŎŎǳǊŀŎȅ ƛŦ ǘƘŜ ƎƛǾŜƴ ŦŜŀǘǳǊŜ ǿŀǎ ǊŜƳƻǾŜŘ ŦǊƻƳ ǘƘŜ Řŀǘŀ ǎŜǘ 
ŎƻƳǇƭŜǘŜƭȅΦ CƻǊ ŜȄŀƳǇƭŜΣ ƛŦ ǘƘŜ ƴǳƳōŜǊ ƻŦ 9{9 ǎƘƻǊǘ ǎŀŎŎŀŘŜǎ ǿŀǎ ǳƴƪƴƻǿƴ ǘƻ 
ǘƘŜ ǊŀƴŘƻƳ ŦƻǊŜǎǘΣ ǘƘŜ ƳƻŘŜƭ ŦƻǊ ǘƘŜ ǎƛƴƎƭŜπƘƛǎǘƻƎǊŀƳ ƛǘŜƳ ǿƻǳƭŘ ǎŜŜ ŀ мр҈ 
ŘŜŎǊŜŀǎŜ ƛƴ ŀōǎƻƭǳǘŜ ŀŎŎǳǊŀŎȅΦ ¢ƘŜǎŜ ƳŜǘǊƛŎǎ ŀǊŜ ŎŀƭŎǳƭŀǘŜŘ ǳǎƛƴƎ ƻǳǘπƻŦπōŀƎ 
ŜǊǊƻǊ ŜǎǘƛƳŀǘŜǎрнΦ ¢ƘŜ 9{9Σ ²b²Σ ŀƴŘ ²{² ǎŀŎŎŀŘŜǎ ǿŜǊŜ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ǘƻ 
ōƻǘƘ ƳƻŘŜƭǎΩ ŀŎŎǳǊŀŎƛŜǎΣ ŀƭƭ ōŜƛƴƎ ŀƭƳƻǎǘ ƘƻǊƛȊƻƴǘŀƭ ǎŀŎŎŀŘŜǎΦ !ƭƳƻǎǘ ǾŜǊǘƛŎŀƭ 
ǎŀŎŎŀŘŜǎ όŜΦƎΦΣ bb²ύ ǿŜǊŜ ƭŜǎǎ ƛƳǇƻǊǘŀƴǘΦ 

5.4.2 Students’ post-activity verbal descriptions of approaches to 
histogram items 

¢ƘŜ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ŀƴŀƭȅǎƛǎ ƛƴŘƛŎŀǘŜŘ ǘƘŀǘ ǘƘŜǊŜ ŀǊŜ ŘƛŦŦŜǊŜƴŎŜǎ ƛƴ ǘƘŜ ƎŀȊŜǎ 
ƻŦ ǎǘǳŘŜƴǘǎΦ ¢ƻ ƛƴǾŜǎǘƛƎŀǘŜ ǿƘŜǘƘŜǊ ǘƘŜǎŜ ŎƘŀƴƎŜǎ ǊŜŦƭŜŎǘ ŀ ŎƘŀƴƎŜ ƛƴ ǎǘǳŘŜƴǘǎΩ 
ŀǇǇǊƻŀŎƘŜǎΣ ǿŜ ŀƴŀƭȅȊŜŘ ǎǘǳŘŜƴǘǎΩ ǎǘƛƳǳƭŀǘŜŘ ǊŜŎŀƭƭ ǾŜǊōŀƭ ǊŜǇƻǊǘǎΦ ¢ƘǊƻǳƎƘ 
ǉǳŀƭƛǘŀǘƛǾŜ ŎƻŘƛƴƎ ƻŦ ǘƘŜ ŜȄŎŜǊǇǘǎ ƻŦ ǘƘŜǎŜ ǾŜǊōŀƭ ǊŜǇƻǊǘǎΣ ǿŜ ŀƴǎǿŜǊ ǘƘŜ 
ǎŜŎƻƴŘ ǎǳōπǉǳŜǎǘƛƻƴΥ What indications can be found in the verbalizations 
during stimulated recall that changes in students’ approaches to histograms 
occurred? 

{ƻƳŜ ǎǘǳŘŜƴǘǎ ŎƭŜŀǊƭȅ ƭŜŀǊƴŜŘ ŦǊƻƳ ǘƘŜ ǎŜǉǳŜƴŎŜ ƻŦ ƛǘŜƳǎΣ ŀǎ ǿŜ Ŏŀƴ 
ǎŜŜ ŦƻǊ ŜȄŀƳǇƭŜ ŦǊƻƳ ǘƘŜ ǘǊŀƴǎŎǊƛǇǘ ƻŦ ǎǘǳŘŜƴǘ[нл ŦƻǊ ǎƛƴƎƭŜπƘƛǎǘƻƎǊŀƳ LǘŜƳлнΥ 

{ǘǳŘŜƴǘ[нлΥ L ǘƘƛƴƪ L ŘƛŘ 18 + 8 + 5 ∙ 2 + 2 ∙ 4Φ !ƴŘ ǘƘŜƴ ŘƛǾƛŘŜŘ ŀƭƭ ǘƘŀǘ ōȅ ƴƛƴŜΦ 
ώΧϐ 

wŜǎŜŀǊŎƘŜǊмΥ !ƴŘ ǘƘŜƴ ȅƻǳ ŦƛǊǎǘ ŎŀƳŜ ǳǇ ǿƛǘƘ ƴƛƴŜ ƪƛƭƻǎ ŀƴŘ ƭŀǘŜǊ ȅƻǳ ŎƘŀƴƎŜŘ ƛǘ 
ǘƻ ǎƛȄ ƪƛƭƻǎΦ ώΧϐ 

{ǘǳŘŜƴǘ[нлΥ Lǘ ƛǎ ƴƻǘ ǊƛƎƘǘΦ 
wŜǎŜŀǊŎƘŜǊмΥ !ƴŘ ǿƘȅ ƛǎ ƛǘ ƴƻǘ ǊƛƎƘǘΚ 
{ǘǳŘŜƴǘ[нлΥ Lǘ Ƴǳǎǘ ōŜ ǎƻƳŜǿƘŜǊŜ ƴŜŀǊ ǘƘŜ ǘƘǊŜŜΦ 
wŜǎŜŀǊŎƘŜǊмΥ ²ƘȅΚ 

рн {ƛƴŎŜ ŜŀŎƘ ǘǊŜŜ ƛǎ ōǳƛƭǘ ǳǎƛƴƎ ŀ ōƻƻǘǎǘǊŀǇǇŜŘ ǊŜǎŀƳǇƭŜ ƻŦ ǘƘŜ ŘŀǘŀΣ Ƴŀƴȅ ƻŦ ǘƘŜ Řŀǘŀ ǾŀƭǳŜǎ 
όŜΦƎΦΣ ǇŀǊǘƛŎƛǇŀƴǘǎϥ ƎŀȊŜ Řŀǘŀύ ŀǊŜ ƴƻǘ ǳǎŜŘ ƛƴ ŀƴȅ ƎƛǾŜƴ ǘǊŜŜΦ ¢ƘŜ ƻǳǘπƻŦπōŀƎ ŜǊǊƻǊ ǳǎŜǎ ǘƘŜ ǎǳōǎŜǘ 
ƻŦ ǘǊŜŜǎ ǘƘŀǘ ŘƛŘ ƴƻǘ ƘŀǾŜ ŀŎŎŜǎǎ ǘƻ ŀ ƎƛǾŜƴ ǇŀǊǘƛŎƛǇŀƴǘϥǎ Řŀǘŀ ǘƻ ƳŀƪŜ ŀ ǇǊŜŘƛŎǘƛƻƴ ŦƻǊ ǘƘŜ 
ǇŀǊǘƛŎƛǇŀƴǘΦ ¢Ƙƛǎ ǇǊƻŎŜǎǎ ƛǎ ǊŜǇŜŀǘŜŘ ŦƻǊ ŀƭƭ ǇŀǊǘƛŎƛǇŀƴǘǎΣ ŀƴŘ ǘƘŜƴ ǘƘŜ ƳŜǘǊƛŎǎ ƻŦ ƛƴǘŜǊŜǎǘ ŀǊŜ 
ŎŀƭŎǳƭŀǘŜŘ ōȅ ŎƻƳǇŀǊƛƴƎ ǘƘŜǎŜ ǇǊŜŘƛŎǘƛƻƴǎ ǘƻ ǘƘŜ ǇŀǊǘƛŎƛǇŀƴǘǎϥ ǾŀƭǳŜǎΦ 
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StudentL20: Because there's a lot less than one kilogram, and relatively a lot [of] 
two kilograms. And then after that it really expands to nine 
kilograms but those are all very small numbers. So, then you end up 
with three. 

Researcher1: Yes. So now that you look at it again you think I should have given a 
completely different answer? 

StudentL20: Yes. 
 

What this transcript also shows is that this understanding of how to estimate 
the mean from a histogram took place sometime after single-histogram 
Item02, but it is not clear when exactly this understanding occurred. For some 
students, it occurred after (at least one item of) the second series of histogram 
items, as the following student excerpt shows. This student reflects on the 
chosen approach in (left-skewed, single histogram) Item19 in the stimulated 
recall: 

 

StudentL01: The mean will be about between five and nine, because there are a lot 
of values [measured weights] there. And then around seven, because 
that's a little bit more to the left to zero from the middle between five 
and nine. 

Researcher1: Would you like to look at your eye movements again? 
 [L01 looks back at eye movements] 
Researcher1: […] You gave the answer ten. And that's where you looked. 
StudentL01: Ten? [sounds astonished] 
Researcher1: Yes, look at your eye movements again. 
 [L01 looks back eye movements] 
StudentL01 Oh yes, in that case I misread the axes. 

 

For twenty-six students, there was (almost) no room for improvement, 
because they already gave answers within or close to the answer range during 
the before sequence of single-histogram items. Another four to twelve 
students seem to have learned specifically from the dotplot items. For 
example, studentL16 answered seven (instead of 2.7) for single-histogram 
Item02, but starts giving answers within or very close to the answer range for 
all following single dotplot items, and continues with these correct answers for 
the second series of single-histogram items after the dotplot items. During the 
recall, this student first describes a correct strategy for finding the mean from 
Item02 which is not in line with the given answer: 

 

StudentL16: Yes, again looking at frequency and weight, and then we see that 
the one occurred very often and the further you get [to the right] 
actually the less [frequency]. So, then the mean goes much more to 
the one than to the high numbers. 
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Researcher1: Yes, you then said about seven. 
StudentL16: Yes, then I looked at it wrong again. Then I got weight and frequency 

flipped again. 

5.4.3 Differences in students’ answers to histogram items 

At first glance, there seems to be no real difference in answer correctness 
between Item02 and Item20 (Table 5.5). Nevertheless, there are two 
indications in students’ answers that students learned between Item02 and 
Item20. First, the answer range chosen for correct answers impacts answer 
correctness and was set the same for all items. In this study, students seem to 
prefer whole and half numbers. Enlarging the answer range to include the next 
whole or half numbers would result in (a non-significant) improvement in 
answer correctness (see note Table 5.5). Answer correctness is, therefore, 
quite sensitive to researchers’ choices. Hence, changes in students’ answers 
are a better indicator of students’ learning potential.  

Second, differences between students’ answers and the actual mean 
are much lower for Item20 compared to Item02. We calculated the difference 
between the actual mean and the estimated mean (= Mdiff). Mdiff is, as 
expected, lower for the after item. We explored if this difference was 
significant through a one-tailed paired-t-test, as we expected that dotplot 
items would support students in correctly estimating the mean from 
histograms in the after items. The assumptions for a paired t-test, such as the 
unimodality and rough symmetry of the paired differences, were checked and 
met. The results for before Item02 (Mdiff = 1.1, SD = 1.8) compared to after 
Item20 (Mdiff = 0.4, SD = 1.7) indicate that it is possible that dotplots improve 
students’ performance on the after item, t(49)= -1.7, p = 0.0469 < 0.05. We 
consider this (and the next) p-value significant in the way the statistician Fisher 
intended: “in the old-fashioned sense: worthy of a second look” (Nuzzo, 2014, 
pp. 150–151). The 95%-confidence interval for the differences in Mdiff is <-Inf, 
-0.014] and Cohen’s d measure for effect size is 0.40. Altogether, this points 
toward an improvement in answers. Note that, on the one hand, effect sizes 
tend to be larger in researcher-made tests compared to general (standardized) 
tests as well as in studies with small sample sizes. On the other hand, (very) 
short interventions often have lower effect sizes (e.g., Bakker, Cai, et al., 
2019). Furthermore, although students’ answers’ correctness improved for the 
double-histogram item after the dotplot items, this improvement is not 
significant, as p = 0.3428 > 0.05 (e.g., McNemar, 1947).  
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Instead of attributing the smaller Mdiff —for single histogram items—to the 
solving of dotplot items, one alternative explanation is that the mean of 
Item20 (M = 6.3) compared to Item02 (M = 2.7) is closer to the mean of the 
frequencies (M = 4.9 for both). Nevertheless, we do not expect that this is the 
case, as for another left skewed item of this sequence of items (Item06, not 
further reported here, see Chapter 4) the mean of the frequencies (M = 7.1) 
was also close to the mean of this item (M = 5.7), but the difference between 
actual and students’ mean (Mdiff = 1.2) was similar to before Item02. To further 
exclude this alternative explanation, we suggest enlarging the difference 
between the actual mean and the mean of frequencies by adding more data 
(e.g., 50 packages) to the graphs. This number of added packages should not 
be too high to avoid students guessing from the size of the numbers what the 
weights are, as may have played a role in an item with SAT scores according to 
Kaplan et al. (2014). 

5.5 Conclusions and discussion 
In this study, we answer the main research question of in what way Grades 10–
12 students’ histogram interpretations change after solving dotplot items. 
More specifically, we look at students’ estimations and comparisons of means 
from histograms. We expected that solving dotplot items would focus 
students’ attention on the measured variable (weight) being depicted along 
the horizontal axis. In turn, that would invite students to estimate the mean of 
the weights (along the horizontal axis) instead of the mean of the frequencies 
(along the vertical axis) in the histograms. We examined three indications that 
taken together can suggest detailed-level changes in students’ histograms 
interpretations: a change in students’ gaze patterns, a shift in students’ 
strategy for solving the histogram items, and an improvement in students’ 
answers. If the changes are for the better, the relevance of knowing them is 
that they could underpin the learning potential of using dotplot items before 
solving histogram items—a hypothesis put forward by researchers in statistics 
education.  

For the first indicator—a change in students’ eye movements—we 
looked at differences in students’ gaze or scanpath patterns on the graph area 
through a machine learning algorithm. Two main differences—on student 
level—between scanpath patterns on before and after items were found. First, 
there were proportionally less horizontal directions (ESE/WNW) in the gaze 
patterns on the after items than the before items. Second, proportionally more 
vertical directions (NNW/NNE) were found in the after items. A horizontal gaze 
pattern is associated with an incorrect strategy while a vertical gaze pattern is 
associated with a correct strategy. Our best implementations of random 
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forests were able to accurately classify (roughly 80% of the instances) whether 
it was the first (before) or second (after) time a participant had seen an item in 
one of two pairings. What we can attest to, is a significant, discernable 
difference in the way participants looked at the before items and when viewing 
the mirrored after versions, even after accounting for mirroring in the graphs. 
As we could not identify other confounding factors53, it seems reasonable to 
conclude that our findings exhibit evidence that students changed the way 
they approached an item when seeing its mirrored version later in this 
sequence of items. The results of our MLA are in line with the results of 
previous studies (Chapters 3 and 4). 

We cannot be certain whether the observed differences in gazes 
indicate a change in strategies. Although scanpaths can disclose students' 
strategies at a detailed level, the relationship between eye movements and 
strategies is task-dependent (e.g., Orquin & Holmqvist, 2017; Russo, 2010). In 
addition, not every eye movement is part of a task-specific strategy (e.g., 
Schindler & Lilienthal, 2019). Therefore, other data—such as our second and 
third indicators—are often needed to support or refute conjectures about the 
association between scanpath patterns and strategies. 

The second indicator of changes in students’ histograms 
interpretations—a shift in students’ strategy for solving the items—was 
evaluated by coding students’ stimulated recall verbal reports. The excerpts 
provide evidence that at least some students changed their strategies, from an 
incorrect approach for estimating and comparing means from histograms to a 
correct approach, during or after solving the dotplot items. 

The third indicator—improvement in students’ answers—was explored 
through both answer correctness, the difference between students’ estimation 
of the mean and the actual mean for single-histogram items, and the changes 
in students’ answers on the double-histogram multiple choice items. Answer 
correctness did not change significantly on either item type. Nevertheless, the 
difference in students’ estimation of the mean compared to the actual mean 
was significantly smaller for the after item compared to the before item. We 
use ‘significantly’ here in the sense Fisher intended: worthy of further 
investigation. Data collection with new and more participants—from the same 
population (Dutch Grades 10–12 pre-university track students)—is needed to 
investigate the hypothesis that this difference becomes smaller, that there is a 
change in multiple choice answers, and that both are due to solving the 
dotplot items. 

 
53 Students solved similar items in the sequence of items preceding the before items. Therefore, 
we consider it less likely that solving a similar but mirrored item contributed to the change in 
gaze behavior, although we cannot rule this out. 
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The three indicators taken together suggest that at least some students 
changed their strategy during or after solving the sequence of dotplot items. A 
change in gaze behavior was observable through our machine learning analysis 
with random forests. Depending on how learning is defined, this change could 
point to a learning effect of solving dotplot items.  

Interpreting the results, we abductively arrived at the following 
explanations for our results. First, the change toward proportionally more 
vertical gazes on the after items, is in line with the conjecture that the absence 
of a vertical scale in dotplots can turn students’ attention toward the 
horizontal scale which is where the variable is presented in both histograms 
and dotplots. These students possibly figured out that the mean can be 
estimated from the measured values along the horizontal axis. However, we 
cannot rule out that factors other than solving dotplot items could have 
contributed to this change.  

Second, we consider the most likely explanation for the mixed results 
that solving dotplot items promoted readiness for learning (Church & Goldin-
Meadow, 1986) about histograms. Having students reflect on their previous 
strategy while they were cued with their own gazes during retrospective verbal 
reporting then might have given them new insights. After solving the dotplot 
items, histogram items seem to lie within the region of sensitivity for learning, 
hence within students’ zone of proximal development (Vygotsky, 1978). It is 
possible that the questions asked by the researcher (an adult), which were 
intended to figure out how students solved the items, unintentionally 
stimulated students’ thinking by asking them to explain—hence, reflect on—
their strategies. Further research is needed to check this explanation. An 
alternative explanation for the results would be that other items after the 
second series of histogram items induced students’ thinking. Although we 
cannot exclude this alternative, we regard this to be less likely. 

Further discussing the results, we note that this study is novel in the 
following ways. First, to the best of our knowledge our study is the first in 
education that combined a quantitative analysis of the scanpath patterns 
found in spatial gaze data with insights from a previous qualitative study about 
what part of the scanpath pattern is relevant for students’ strategies (namely, 
the scanpath on the graph area only). The use of qualitative insights 
contributes to the validity of the study while the quantitative approach 
through machine learning analysis contributes to the reliability of it. Most eye-
tracking studies that use spatial measures investigate the sequence of AOIs 
(Garcia Moreno-Esteva et al., 2020) and the same holds true for those 
combining it with MLAs (e.g., Garcia Moreno-Esteva et al., 2018). Instead, we 
used vectors (i.e., direction and magnitude) of saccades. Studies in education 
that utilize vectors are rare (e.g., Dewhurst et al., 2018). Second, novel is the 
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use of an MLA for finding differences in gazes that are relevant for changes in 
students’ task-specific strategies between tasks.  

Our study has several limiting factors. First, many of the participants’ 
gaze data contained data loss. Although data loss is normal due to blinking or 
looking away from the screen, some data loss could be avoided by pre-
excluding participants who wear glasses, contact lenses, or mascara. In 
addition, an eye-tracker could be used that is better in catching gazes from 
people with epicanthic folds (almond eyes). As we aimed for a naturalistic 
setting, we did not exclude any of such participants. In addition, for some 
participants we had sparse data. Some of these participants spent only a few 
seconds looking at a given item. This made predictions and training more 
challenging. Most of these participants appeared to parse the graph and 
answer the corresponding question(s) in a rapid but reasonable manner, 
although one participant appeared to scan the graph and answer the question 
in such a rapid way that it is unlikely that they had time to fully understand 
what the graph was depicting. Since no participants’ data were removed, it is 
likely that some amount of data cleaning and removal of outlier participants 
would increase the accuracy of our random forests, although our data 
collection scheme does not allow us to know with certainty why a certain 
participant’s gaze data were sparse for a particular item.  

A second limiting factor was that we restricted our final analysis to the 
graph area of each item, excluding AOIs such as the axes labels and the graph 
title. The inclusion of these AOIs yielded more noise and worse results, but 
further work might investigate the possibility of productively including them. 
Third, answer correctness and students’ strategies correspond only to a limited 
extent. Finally, and most importantly, our sample size—50 participants and 2 
items yielding 100 participant-item pairings—is relatively small for machine 
learning and statistical analysis. Our results indicate strong evidence of a 
change in gaze patterns between the before and after items, but more data are 
needed to generalize these findings appropriately. 

A theoretical contribution of this study is that having students solve 
‘messy’ dotplot items can create readiness for learning histograms. A reflection 
phase seems to be needed to make use of the knowledge obtained. We 
speculate that this partly explains the results from the literature on dotplots 
(e.g., Garfield & Ben-Zvi, 2008b; Lyford, 2017). Another reason for these 
results, we believe, is that only ‘messy’ dotplots contribute to students’ 
understanding of where the measured value is. Stacked dotplots already 
contain an information reduction step (the binning) that could lead to similar 
misinterpretations as for histograms (see Chapter 2). We, therefore, advise 
investigating whether stacked dotplots need to be avoided in secondary 
education. 
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As a first methodological implication, our study shows how an MLA in 
combination with eye-tracking data can be used to reveal phenomena that are 
of interest to researchers of education. Future use could include interpreting 
graphical representations in biology, physics, economics, and geography. By 
choosing features (variables) that are relevant to the phenomena of interest 
(here: students’ strategies for solving a histogram item) and meaningful to the 
researchers, an MLA can give insights into subtle, detailed-level differences in 
students’ strategies that are hard to detect through other research methods, 
such as time measures in eye-tracking research or qualitative analysis of gaze 
data by researchers.  

A second methodological implication is that there seems to be a 
practice effect within a sequence of items for at least some students, in line 
with suggestions from Lumsden (1976). A practice effect refers to improved 
performance after ‘practicing’ (i.e., repeatedly solving of similar or the same 
items). This is also important for judging the validity of summative assessment. 
More research is needed to confirm this within-a-test practice effect. Catron 
(1978) found an effect of item types on an IQ test. For example, he showed 
that development of a strategy in strategic items improved performance on 
retesting. The present study does not consider an effect of item type. Further 
research is needed to find out whether and for what items the order and type 
of items influence the within-a-test practice effect. 

What are possible implications of our findings? The ML approach is 
generalizable to other sequences of items or any instance when a user may 
wish to classify eye-tracking data into one of many discrete categories. Further 
analysis is needed to correlate the number of saccades of specific directions 
and magnitudes with particular viewing strategies. In other words, does the 
presence of certain features (variables, such as horizontal or vertical saccades) 
indicate students taking a particular strategy, and if so, is this strategy more 
common when viewing a before item as opposed to an after item? Moreover, 
we think our ML approach can also be used when researchers want to know 
whether solving X (a question about a graph or image) changes the way 
students solve Y (a question about a different type of graph or image). 

For testing a future hypothesis that students’ estimations of the mean 
from histograms become closer to the actual mean after solving dotplot items, 
we suggest making a sequence of 24 items: eight histogram items (improved 
versions of the existing items from the original sequence with more data in 
them as well as one extra left skewed single histogram and one extra double 
histogram), eight dotplot items (all items containing the same data as the first 
eight histograms) and then again eight histogram items (all mirrored versions 
of the first eight histogram items). To check a future hypothesis that giving 
students stacked dotplots is a less effective way to scaffold them, a variant of 
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this design could be made with stacked dotplots only, instead of ‘messy’ 
dotplots (with the stacks in between two values on the horizontal scale; all 
stacked dotplots contain the same data as the first eight histograms). To check 
a future hypothesis that the reflection phase is important, a variant with and 
without stimulated recall verbal reports could be conducted followed by 
another series of histogram items. In all these variants, machine learning 
analysis can support this hypothesis testing. 

For practitioners, insight into what students learn from doing a 
sequence of items is also relevant for homework and formative assessment, in 
particular, if no feedback is given—which is quite a common situation (e.g., 
when there is less student-teacher interaction). The observed differences in 
gaze patterns together with the other evidence in this study, suggest that a 
sequence of items can create readiness for learning, but a teacher may still be 
needed to ensure that students reach their full potential. 
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Abstract Many students persistently misinterpret histograms. We think this is 
partly due to a lack of embodied experiences. To answer the question of what 
sequence of tasks—designed from an embodied instrumentation 
perspective—can support students’ understanding of histograms and the 
underlying key concepts, we created a hypothetical learning trajectory (HLT). 
We used five design guidelines based on our theoretical framework: (1) 
identify the actions that could have constituted the target artifact (histogram), 
(2) design motor-control or perception tasks to which these actions are the 
answer, (3) have students (digitally) perform these actions with feedback, (4) 
stimulate reflection on actions, (5) create possibilities for transfer of actions by 
varying contexts and environments. The main steps in the HLT are experiencing 
a lack of understanding, reinventing the role of both axes and arithmetic 
means in histograms and transfer. Our multiple-case study with five 10–12th 
graders suggests that most conjectures of the HLT were met, but transfer could 
be improved. Students’ gestures indicated using actions from previous tasks to 
solve current tasks. The results suggest that embodied experiences with 
reflection contributed to overcoming some well-known misinterpretations. 
Overall, we show how students can be guided to reinvent more complicated 
mathematical artifacts from actions with simpler ones. 

 

Keywords Embodied design; Dotplot; Histogram; Hypothetical learning 
trajectory (HLT); Sequence of statistical tasks; Statistics education. 
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6.1 Introduction 
IƛǎǘƻƎǊŀƳǎ ŀǊŜ ǿƛŘŜǎǇǊŜŀŘΣ ȅŜǘ ŘŜŎŀŘŜǎ ƻŦ ǊŜǎŜŀǊŎƘ ŀƛƳƛƴƎ ǘƻ ǇǊƻƳƻǘŜ ǘƘŜ 
ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ƘƛǎǘƻƎǊŀƳǎ ƘŀǾŜ ƴƻǘ ǇǊŜǾŜƴǘŜŘ ǎǘǳŘŜƴǘǎ ŦǊƻƳ ǇŜǊǎƛǎǘƛƴƎ ƛƴ 
ǾŀǊƛƻǳǎ ƳƛǎƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎ ό[ŜƳ Ŝǘ ŀƭΦΣ нлмоŎύΦ ²Ŝ ŘƛǎǘƛƴƎǳƛǎƘ ǘƘǊŜŜ ǇŜǊǎƛǎǘŜƴǘ 
ŘƛŦŦƛŎǳƭǘƛŜǎΥ ǳƴŘŜǊǎǘŀƴŘƛƴƎ Ƙƻǿ όмύ ŘŀǘŀΣ ŀƴŘ όнύ Řŀǘŀ ŘƛǎǘǊƛōǳǘƛƻƴǎ ŀǊŜ ŘŜǇƛŎǘŜŘ 
ό/ƘŀǇǘŜǊ нύΣ ŀƴŘ όоύ ŘƛǎǘƛƴƎǳƛǎƘƛƴƎ ƘƛǎǘƻƎǊŀƳǎ ŦǊƻƳ Ǿƛǎǳŀƭƭȅ ǎƛƳƛƭŀǊτōǳǘ 
ǎǘŀǘƛǎǘƛŎŀƭƭȅ ǉǳƛǘŜ ŘƛŦŦŜǊŜƴǘτƎǊŀǇƘǎ ǿƛǘƘ ǾŜǊǘƛŎŀƭ ōŀǊǎΣ ǎǳŎƘ ŀǎ ŎŀǎŜπǾŀƭǳŜ Ǉƭƻǘǎ 
ό/ƻƻǇŜǊ ϧ {ƘƻǊŜΣ нлмлΤ /ƘŀǇǘŜǊ оύΦ ¢ƘŜǎŜ ŘƛŦŦƛŎǳƭǘƛŜǎ ŀƭƭ ǊŜƭŀǘŜ ǘƻ ǘƘŜ ǎǘŀǘƛǎǘƛŎŀƭ 
ƪŜȅ ŎƻƴŎŜǇǘǎ ƻŦ Řŀǘŀ ŀƴŘ ŘƛǎǘǊƛōǳǘƛƻƴ όŜΦƎΦΣ /ƘŀǇǘŜǊ нύΣ ŀǎ ǿŜ ŜƭŀōƻǊŀǘŜ ƛƴ ǘƘŜ 
ƴŜȄǘ ǎŜŎǘƛƻƴΦ  

¢ƘŜ ǇǊŜǎŜƴǘ ǎǘǳŘȅ ŜȄǇƭƻǊŜǎ Ƙƻǿ ǎǘǳŘŜƴǘǎ Ŏŀƴ ōŜ ǎǳǇǇƻǊǘŜŘ ƛƴ ŎƻǊǊŜŎǘƭȅ 
ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƘƛǎǘƻƎǊŀƳǎΦ ²Ŝ ŘŜǎƛƎƴŜŘ ŀ ƘȅǇƻǘƘŜǘƛŎŀƭ ƭŜŀǊƴƛƴƎ ǘǊŀƧŜŎǘƻǊȅ 
όI[¢ύ ό{ƛƳƻƴ ϧ ¢ȊǳǊΣ нллпύ ǘƘŀǘ ŀŘŘǊŜǎǎŜǎ ǘƘŜ ŀōƻǾŜ ŘƛŦŦƛŎǳƭǘƛŜǎΦ LƴǎǇƛǊŜŘ ōȅ 
ǘƘŜƻǊƛŜǎ ƻƴ ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ όIǳǘǘƻ ϧ !ōǊŀƘŀƳǎƻƴΣ нлннύΣ ǿŜ ŀǎǎǳƳŜ ǘƘŀǘ 
ǎǘǳŘŜƴǘǎΩ ŜŘǳŎŀǘƛƻƴ ƳƛƎƘǘ ƘŀǾŜ ƭŀŎƪŜŘ ŀƴ ŜƳōƻŘƛŜŘ ƎǊƻǳƴŘƛƴƎ ƻŦ Ƙƻǿ 
ƘƛǎǘƻƎǊŀƳǎτŀǎ ŎǳƭǘǳǊŀƭ ŀǊǘƛŦŀŎǘǎτŀǊŜ ŎƻƴǎǘǊǳŎǘŜŘΣ ŀǎ ǿŜƭƭ ŀǎ ǎǳŦŦƛŎƛŜƴǘ 
ŀǘǘŜƴǘƛƻƴ ǘƻ Ƙƻǿ ǘƘŜǎŜ ŀǊǘƛŦŀŎǘǎ ōŜŎƻƳŜ ǘƻƻƭǎ ƛƴ ǎǘŀǘƛǎǘƛŎŀƭ ǊŜŀǎƻƴƛƴƎΦ !ǎ 
ŜƭŀōƻǊŀǘŜŘ ƛƴ ŀ ŦƻƭƭƻǿƛƴƎ ǎŜŎǘƛƻƴΣ ǿŜ ǳǎŜ ǘƘŜ ǘƘŜƻǊŜǘƛŎŀƭ ǇŜǊǎǇŜŎǘƛǾŜ ƻŦ 
ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ ŀƴŘ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴ ό5ǊƛƧǾŜǊǎΣ нлмфΤ {ƘǾŀǊǘǎ Ŝǘ ŀƭΦΣ нлнмύΦ 
¢Ƙƛǎ ŀǇǇǊƻŀŎƘ ǘƘŜƻǊƛȊŜǎ ǘƘŜ ƛƴǾƻƭǾŜƳŜƴǘ ƻŦ όǘŜŎƘƴƻƭƻƎƛŎŀƭύ ǘƻƻƭǎ ŀƴŘ ǘǊƛŜǎ ǘƻ 
ǊŜŎƻƴŎƛƭŜ ŀƴŘ ǳƴƛǘŜ ƴƻǘƛƻƴǎ ŦǊƻƳ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴ ǘƘŜƻǊȅ ǿƛǘƘ ŀƴ ŜƳōƻŘƛŜŘ 
ǇŜǊǎǇŜŎǘƛǾŜΦ ¢ƘŜ ǊŜǎŜŀǊŎƘ ǉǳŜǎǘƛƻƴ ƎǳƛŘƛƴƎ ƻǳǊ ǎǘǳŘȅ ƛǎΥ What sequence of 
tasks designed from an embodied instrumentation perspective can support 
students’ understanding of histograms and the underlying key concepts? 

¢ƘŜ ǘŀǊƎŜǘ ŀǳŘƛŜƴŎŜ ƻŦ ǘƘŜ ƭŜŀǊƴƛƴƎ ǘǊŀƧŜŎǘƻǊȅ Ŏƻƴǎƛǎǘǎ ƻŦ мрςмуπȅŜŀǊπ
ƻƭŘ ǇǊŜπǳƴƛǾŜǊǎƛǘȅ ǘǊŀŎƪ ǎǘǳŘŜƴǘǎΦ Lƴ ǘƘƛǎ ŎƘŀǇǘŜǊΣ ǿŜ ŘƛǎŎǳǎǎ ǘƘŜ ǊŜǎǳƭǘǎ ƻŦ ŀ 
ƳǳƭǘƛǇƭŜ ŎŀǎŜ ǎǘǳŘȅ ǿƛǘƘ ǘƘǊŜŜ DǊŀŘŜ мл ŀƴŘ ǘǿƻ DǊŀŘŜ мн ǎǘǳŘŜƴǘǎ ŀǎ ǇŀǊǘ ƻŦ 
ŀ ƭŀǊƎŜǊ ŘŜǎƛƎƴ ǎǘǳŘȅ ǘƻ ŜǾŀƭǳŀǘŜ ƻǳǊ ŘŜǎƛƎƴ ƛŘŜŀǎ ŀƴŘ ƛƴǾŜǎǘƛƎŀǘŜ Ƙƻǿ ǘƘŜ 
ƛƴǘŜƴŘŜŘ ǇǊƻŎŜǎǎŜǎ ƻŦ ƻǳǊ ŘŜǎƛƎƴ ŀƴŘ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴ ǇƭŀȅŜŘ ƻǳǘΦ .ȅ ŜȄǇƭƛŎƛǘƭȅ 
ŘƛǎŎǳǎǎƛƴƎ ŀƴŘ ŜǾŀƭǳŀǘƛƴƎ ƻǳǊ ƛƴƛǘƛŀƭ ŘŜǎƛƎƴ ŘŜŎƛǎƛƻƴǎΣ ǿŜ ŀƛƳ ǘƻ ŎƻƴǘǊƛōǳǘŜ ǘƻ 
ǘƘŜ ŦƛŜƭŘ ƻŦ ǎǘŀǘƛǎǘƛŎŀƭ ǘŀǎƪ ŘŜǎƛƎƴ ŦǊƻƳ ǘƘŜ ǘƘŜƻǊŜǘƛŎŀƭ ǇŜǊǎǇŜŎǘƛǾŜ ƻŦ ŜƳōƻŘƛŜŘ 
ŎƻƎƴƛǘƛƻƴ ŀƴŘ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴΦ  

²Ŝ ŦƛǊǎǘ ǊŜǾƛŜǿ ǘƘŜ ƭƛǘŜǊŀǘǳǊŜ ƻƴ ǘƘŜ ŎƻƴǘŜƴǘ ƻŦ ǎǘǳŘŜƴǘǎΩ ŘƛŦŦƛŎǳƭǘƛŜǎ 
ǿƛǘƘ ƘƛǎǘƻƎǊŀƳǎΣ ŀƴŘ ŀŘǾƛŎŜ ŦǊƻƳ ǇǊƛƻǊ ǊŜǎŜŀǊŎƘΦ ¢ƘŜƴΣ ǿŜ ǎǇŜŎƛŦȅ ƻǳǊ ŘŜǎƛƎƴ 
ƎǳƛŘŜƭƛƴŜǎ ǳǎƛƴƎ ǘƘŜ ǘƘŜƻǊŜǘƛŎŀƭ ǇŜǊǎǇŜŎǘƛǾŜ ƻŦ ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ ŀƴŘ 
ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴΦ 
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6.2 Review of the literature on histograms 
6.2.1 Misinterpreting histograms 

An extensive literature review revealed that many students persistently 
misinterpret histograms (Chapter 2). Misinterpretations included that Grades 
7–12 students incorrectly interpreted the height of bars as people’s heights 
(Bakker, 2004b) and calculated the mean from histograms by dividing the sum 
of frequencies by the numbers of bars (Ismail & Chan, 2015). The review study 
revealed two of the statistical key concepts that underlie students’ difficulties 
when interpreting histograms: data and distribution. Much research focuses on 
specific misinterpretations related to distribution (e.g., center, variability, 
shape). Nevertheless, several of these misinterpretations may originate in the 
much less studied concept of data.  

The concept of data encompasses “the need for data; how data 
represent characteristics or values in the real world; how data are obtained; 
different types of data, such as numbers, words, and so forth” (Garfield & Ben-
Zvi, 2004, p. 401). Gould phrases this as “understanding who collects data 
about us, why they collect it, how they collect it”, “understanding how 
representations [of data] in computers can vary and why data must sometimes 
be altered before analysis” (Gould, 2017, p. 22). It includes ‘data moves’ which 
is merging data, constructing new data based on existing data, and so on 
(Erickson et al., 2019), and the difference between variable (e.g., weight) and 
data (e.g., numbers representing the measured weights). For graphical 
representations, this concept of data encompasses how data are represented 
in, for example, histograms, boxplots, case-value plots, and along what axis the 
measured variable is represented (Chapter 2). This is a broader concept of data 
than that found in the GAISE II guidelines (Bargagliotti et al., 2020), in which 
data is used as ‘raw data’ and didactical choices needed to be made.  

We focus on three aspects of the key concept of data in histograms 
that many students tend to misinterpret:  

• What the data are. The number of bars is incorrectly seen as the 
number of cases N (e.g., Ismail & Chan, 2015; Sorto, 2004).  

• How many variables a histogram depicts. Some people incorrectly 
think histograms display two statistical variables (e.g., Cohen, 1996; 
Meletiou, 2000; Zaidan et al., 2012).  

• What the measured values are. Frequency (depicted along the vertical 
axis) is incorrectly seen as the measured value (e.g., Bakker, 2004a). In 
addition, graphs without context (only bars) can be histograms or case-
value plots and should be avoided (e.g., Cooper & Shore, 2010). Some 
contexts are associated with specific axes in graphs (e.g., body height 
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ǿƛǘƘ ǘƘŜ ǾŜǊǘƛŎŀƭΣ ǘƛƳŜ ǿƛǘƘ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭΤ aŜƭŜǘƛƻǳΣ нлллΤ ²ƘƛǘŀƪŜǊ ϧ 
WŀŎƻōōŜΣ нлмтύΦ  

6.2.2 Revealing students’ understanding of data in histograms 
through estimating the arithmetic mean from a graph 

¢ƘŜ ǉǳŜǎǘƛƻƴ ƛǎ Ƙƻǿ ǎǘǳŘŜƴǘǎΩ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ǎǘŀǘƛǎǘƛŎŀƭ ƪŜȅ ŎƻƴŎŜǇǘǎ Ŏŀƴ ōŜ 
ǊŜǾŜŀƭŜŘΦ {ŜǾŜǊŀƭ ǎǘǳŘƛŜǎ ǎǳƎƎŜǎǘ ǘƘŀǘ ŀǎƪƛƴƎ ǎǘǳŘŜƴǘǎ ǘƻ ŎƻƳǇǳǘŜ ƻǊ ŜǎǘƛƳŀǘŜ 
ǘƘŜ όŀǊƛǘƘƳŜǘƛŎύ ƳŜŀƴ ŦǊƻƳ ǾŀǊƛƻǳǎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴǎ Ŏŀƴ ǊŜǾŜŀƭ ǘƘƛǎ 
ǳƴŘŜǊǎǘŀƴŘƛƴƎ όŜΦƎΦΣ DŀƭΣ мффрύΦ !ǎ ǎǘǳŘŜƴǘǎ ǘȅǇƛŎŀƭƭȅ Řƻ ƴƻǘ ŎƻƴƴŜŎǘ ǘƘŜ ƳŜŀƴ 
ǘƻ ƎǊŀǇƘǎΣ ǘƘŜ ŀŘǾƛŎŜ ƛǎ ǘƻ ōǳƛƭŘ άƻƴ Ǿƛǎǳŀƭ ǎǘǊŀǘŜƎƛŜǎ ōŜŦƻǊŜ ƻǊ ƛƴ ŎƻƴƧǳƴŎǘƛƻƴ 
ǿƛǘƘ ǘƘŜ ƛƴǘǊƻŘǳŎǘƛƻƴ ƻŦ ǘƘŜ ώŀǊƛǘƘƳŜǘƛŎϐ ƳŜŀƴέ ό²ŀǘǎƻƴ ϧ {ƘŀǳƎƘƴŜǎǎȅΣ нллпΣ 
ǇΦ млтύΦ ¢ƘŜ ŎƻƴŎŜǇǘ ƻŦ ƳŜŀƴ ƛǎ ŘƛŦŦƛŎǳƭǘ ǘƻ ƭŜŀǊƴ όDǊƻǘƘΣ нллфύΣ ŜǾŜƴ ŦƻǊ ƘƛƎƘπ
ŀŎƘƛŜǾƛƴƎ ǎǘǳŘŜƴǘǎ όDŀǊŦƛŜƭŘ ϧ .Ŝƴπ½ǾƛΣ нллтύΦ CƻǊ ŜȄŀƳǇƭŜΣ ǎƻƳŜ ǎǘǳŘŜƴǘǎ
ǘƘƛƴƪ ǘƘŜ ƳŜŀƴ ƛǎ ǘƘŜ ōŜǎǘ ōŜǘ ŀƴŘ ǘƘŜ άƳƻǎǘ ƭƛƪŜƭȅ ǊŜǎǳƭǘ ǘƻ ƻŎŎǳǊ ƛƴ ŀ ǎŀƳǇƭŜΣ
ŜǾŜƴ ƛŦ ǘƘŜ ƳŜŀƴ ƛǘǎŜƭŦ ƛǎ ƴƻǘ ŀ ǇƻǎǎƛōƭŜ Řŀǘŀ Ǉƻƛƴǘέ ό{ƘŀǳƎƘƴŜǎǎȅΣ нллтΣ ǇΦ
фсфύΦ ¢ƘŜ άōŀƭŀƴŎŜ ώƳƻŘŜƭϐ ƛǎ ŀ ŎǊƛǘƛŎŀƭ ƳŀǘƘŜƳŀǘƛŎŀƭ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎ ƻŦ ǘƘŜ
ƳŜŀƴέ όaƻƪǊƻǎ ϧ wǳǎǎŜƭƭΣ мффрΣ ǇΦ ооύ ŀƴŘ Ŏŀƴ ōŜ ƭƛƴƪŜŘ ǘƻ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ŦƻǊ
ŦƛƴŘƛƴƎ ǘƘŜ ŜǉǳƛƭƛōǊƛǳƳ όƳŜŀƴύ ƻŦ ƳƻƳŜƴǘǎ όŦƻǊŎŜǎ ǘƛƳŜǎ ŘƛǎǘŀƴŎŜύ ƛƴ ǇƘȅǎƛŎǎΦ
!ƴƻǘƘŜǊ ǇƛŜŎŜ ƻŦ ŀŘǾƛŎŜ ƛǎ ǘƻ ƘŀǾŜ ǎǘǳŘŜƴǘǎ ŜȄǇƭƻǊŜ ǘƘŜ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ƻŦ ǘƘŜ
ƳŜŀƴ όƴƻǘ ƳƻŘŜύ ŀƴŘ Ƙƻǿ ƛǘ ƛǎ ŀŦŦŜŎǘŜŘ ōȅ ŘƛŦŦŜǊŜƴǘ ǘȅǇŜǎ ƻŦ ŘŀǘŀǎŜǘǎ ŀƴŘ
ŘƛǎǘǊƛōǳǘƛƻƴǎ όDŀǊŦƛŜƭŘ ϧ .Ŝƴπ½ǾƛΣ нллуŀύΦ ¢ƘŜǎŜ ŀǳǘƘƻǊǎ ǎǳƎƎŜǎǘ ǘŀƪƛƴƎ
ǎǘǳŘŜƴǘǎ ŦǊƻƳ ǎŜŜƛƴƎ ǘƘŜ ƳŜŀƴ ŀǎ ŀ ǇǊƻŎŜǎǎτŎƻƳǇǳǘŀǘƛƻƴΣ ŀƭƎƻǊƛǘƘƳτǘƻ ŀƴ
ƻōƧŜŎǘΣ ŀ ǎƛƎƴŀƭ ƛƴ ŀ ƴƻƛǎȅ ǇǊƻŎŜǎǎΦ

6.2.3 Lessons learned from our previous studies 

!ǎ ŘƛŦŦƛŎǳƭǘƛŜǎ ǿƛǘƘ ǘƘŜ ƪŜȅ ŎƻƴŎŜǇǘ ƻŦ Řŀǘŀ ƳƛƎƘǘ ŜȄǇƭŀƛƴ Ƴƻǎǘ ǎǘǳŘŜƴǘǎΩ 
ǇŜǊǎƛǎǘŜƴŎŜ ƛƴ ƳƛǎƛƴǘŜǊǇǊŜǘƛƴƎ ƘƛǎǘƻƎǊŀƳǎΣ ǿŜ ƘŀǾŜ ǎǘǳŘƛŜŘ ǘƘŜƛǊ 
ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ǎŜǾŜǊŀƭ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ƻŦ ǘƘƛǎ ŎƻƴŎŜǇǘ ƛƴ ƳƻǊŜ ŘŜǘŀƛƭ ƛƴ ŀƴ 
ŜȅŜπǘǊŀŎƪƛƴƎ ǎǘǳŘȅ ǿƛǘƘ рл ǇǊŜπǳƴƛǾŜǊǎƛǘȅ ǘǊŀŎƪ мрςмф ȅŜŀǊǎ ƻƭŘ ό.ƻŜƭǎ Ŝǘ ŀƭΦΣ 
нлмфŀΤ ǎŜŜ ŀƭǎƻ /ƘŀǇǘŜǊǎ о ŀƴŘ пύΦ Lƴ ǘƘŀǘ ǎǘǳŘȅΣ ǿŜ ŀǎƪŜŘ ǘƘŜƳ ǘƻ ŜǎǘƛƳŀǘŜ ƻǊ 
ŎƻƳǇŀǊŜ ƳŜŀƴǎ ŦǊƻƳ ǎǘŀǘƛǎǘƛŎŀƭ ƎǊŀǇƘǎΣ ǎǳŎƘ ŀǎ ƘƛǎǘƻƎǊŀƳǎΣ ŎŀǎŜπǾŀƭǳŜ ǇƭƻǘǎΣ 
ŀƴŘ ŘƻǘǇƭƻǘǎ ŀƴŘ ǿŜ ǘǊŀŎŜŘ ǿƘŜǊŜ ǘƘŜȅ ƭƻƻƪŜŘ ƻƴ ǘƘŜ ǎŎǊŜŜƴ ǿƘƛƭŜ ǎƻƭǾƛƴƎ ǘƘŜ 
ǘŀǎƪǎΦ ¢Ƙŀǘ ǎǘǳŘȅ ŎƻƴŦƛǊƳŜŘ ǘƘŀǘ ǎŜǾŜǊŀƭ ǎǘǳŘŜƴǘǎ ƛƴǘŜǊǇǊŜǘŜŘ ƘƛǎǘƻƎǊŀƳǎ ŀǎ ƛŦ 
ǘƘŜǎŜ ǿŜǊŜ ŎŀǎŜπǾŀƭǳŜ ǇƭƻǘǎτǎƻƳŜǘƛƳŜǎ ŜǾŜƴ ŀŦǘŜǊ ǊŜŀŘƛƴƎ ŀȄƛǎ ƭŀōŜƭǎ όŜΦƎΦΣ 
ǿŜƛƎƘǘύτΣ ǳƴŘŜǊǇƛƴƴƛƴƎ ǘƘŀǘ ǿŜ ƴŜŜŘ ǘƻ ŘŜǾŜƭƻǇ ǎǘǳŘŜƴǘǎΩ ƴƻǘƛƻƴ ƻŦ Ƙƻǿ 
ƘƛǎǘƻƎǊŀƳǎ ŘŜǇƛŎǘ ŘŀǘŀΦ {ǘǳŘŜƴǘǎΩ ŜȅŜǎ ƳƻǾŜŘ ƘƻǊƛȊƻƴǘŀƭƭȅ ŀŎǊƻǎǎ ǘƘŜ ƎǊŀǇƘ 
ŀǊŜŀ ƻŦ ƘƛǎǘƻƎǊŀƳǎ ŀƴŘ ŎŀǎŜπǾŀƭǳŜ ǇƭƻǘǎΣ ŀƴŘ ǎǘǳŘŜƴǘǎ ƛƴŘƛŎŀǘŜŘ ǘƘŀǘ ǘƘŜȅ 
ƳŀŘŜ άŀƭƭ ōŀǊǎ Ŝǉǳŀƭέ ǘƻ ŜǎǘƛƳŀǘŜ ǘƘŜ ƳŜŀƴΦ hǘƘŜǊ ǎǘǳŘŜƴǘǎΩ ŜȅŜǎ ƳƻǾŜŘ 
ǾŜǊǘƛŎŀƭƭȅ ŀŎǊƻǎǎ ǘƘŜ ƎǊŀǇƘ ŀǊŜŀ ŀƴŘ ǘƘŜǎŜ ǎǘǳŘŜƴǘǎ ǊŜŦŜǊǊŜŘ ǘƻ ŀ Ǉƻƛƴǘ ƻƴ ǘƘŜ 
ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎ άǿƘŜǊŜ ǘƘŜ ƎǊŀǇƘ ƛǎ ƛƴ ōŀƭŀƴŎŜΦέ {ŜǾŜǊŀƭ ǎǘǳŘŜƴǘǎ ǘƘƻǳƎƘǘ ǘƘŀǘ ŀ 
ōŀǊ Ŏƻƴǘŀƛƴǎ ǘƘŜ ǎŀƳŜ ƳŜŀǎǳǊŜŘ ǾŀƭǳŜǎ όŜƛǘƘŜǊ ƳƛŘŘƭŜ ǾŀƭǳŜ ƻǊ ƭŜŦǘπ ƻǊ ǊƛƎƘǘπ
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hand border value). We also learned that messy dotplots could create 
readiness for learning (Chapter 5; Lyford, 2017). 

6.2.4 Advice for the content of tasks 

The following advice can be extracted for the content of tasks from the 
statistics education literature. Use realistic problems (e.g., Biehler, 1997). Start 
with graphs in which all measured values are visible, such as dotplots (delMas 
& Liu, 2005), and then coordinate them with histograms, for example, via an 
overlay (e.g., Bakker, 2004a). Have students sort histograms (Garfield & Ben-
Zvi, 2008a). Develop students’ conceptions of mean, spread, and variability 
informally and in context first (Garfield & Ben-Zvi, 2008a). Have students 
explore histograms containing small and large variation and remove or add 
outliers. Students first need to predict or estimate the mean before 
determining or calculating it (themselves or by technology). Other 
recommendations for the content of tasks are to work with small and large 
data sets (Garfield & Ben-Zvi, 2008a), give feedback (e.g., by confronting 
students with results), have students construct graphs themselves (e.g., from a 
table, Eshach & Schwartz, 2002), let students flexibly use multiple 
representations (e.g., Lem et al., 2013c) and have them estimate or predict 
(e.g., what the mean is) before feedback is given. In doing so, students must be 
“forced to record and then compare,” as otherwise, they tend to see only 
confirmatory evidence in the results (Garfield & Ben-Zvi, 2008a, p. 41). Many 
studies advise using measures of central tendency (e.g., Gal, 1995). We 
address this separately in the next section.  

6.3 Theoretical framework for the design 

We think the persistence of students’ difficulties with histograms is partly due 
to a lack of sensorimotor experiences. Vygotsky stated that mathematical 
thinking is grounded in such experiences (1926/1997):  

When thinking of something round […] we realize through the 
movements of our eye muscles the very same adaptive 
movements, the very same focusing on objects which we had 
once perceived in actuality. Even the most abstract thoughts of 
relations that are difficult to convey in the language of 
movements, like various mathematical formulas, […] even they 
are related ultimately to particular residues of former movements 
now reproduced anew. (p. 162) 
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¢ƘŜƻǊƛŜǎ ŀōƻǳǘ ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ ŀǊƎǳŜ ǘƘŀǘ ŎƻƎƴƛǘƛƻƴ ƛǎ ƴƻǘ ƻƴƭȅ ǎƛǘǳŀǘŜŘ ƛƴ 
ǘƘŜ ōǊŀƛƴ ōǳǘ ŀƭǎƻ ƛƴ ǘƘŜ ōƻŘȅ ŀƴŘ ƛƴ ǘƘŜ ǳǎŜ ƻŦ ŀǊǘƛŦŀŎǘǎ όŜΦƎΦΣ ǘƻƻƭǎΤ Iǳǘǘƻ Ŝǘ 
ŀƭΦΣ нлмрύΦ CƻǊ ŜȄŀƳǇƭŜΣ Ƴƻǎǘ 5ǳǘŎƘ ǇŜƻǇƭŜ ƪƴƻǿ Ƙƻǿ ǘƻ ǊƛŘŜ ŀ ōƛƪŜ όŀƴ 
ŀǊǘƛŦŀŎǘύΣ ōǳǘ Ƴƻǎǘ Řƻ ƴƻǘ ƪƴƻǿ Ƙƻǿ Ƴŀƴȅ ŘŜƎǊŜŜǎ ǘƘŜȅ ƴŜŜŘ ǘƻ ǘƛƭǘ ǘƘŜ ōƛƪŜ ǘƻ 
ƳŀƪŜ ŀ ǘǳǊƴΣ ŀƭǘƘƻǳƎƘ ǘƘŜƛǊ ōƻŘȅ ƪƴƻǿǎ ƛǘΦ tŜǊ ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ ǘƘŜƻǊƛŜǎΣ 
ƻǳǊ ǘƘƛƴƪƛƴƎ ƛǎ ōŀǎŜŘ ƻƴ ǎǳŎƘ ǎŜƴǎƻǊƛƳƻǘƻǊ ŜȄǇŜǊƛŜƴŎŜǎ όŜΦƎΦΣ ǘƻǳŎƘΣ 
ƳƻǾŜƳŜƴǘύΦ !ƭǘƘƻǳƎƘ ǘƘŜǊŜ ŀǊŜ ǾŀǊƛŀǘƛƻƴǎ όŜΦƎΦΣ !ōǊŀƘŀƳǎƻƴ Ŝǘ ŀƭΦΣ нлнлύΣ 
Ƴŀƴȅ ŜƳōƻŘƛŜŘ ŀǇǇǊƻŀŎƘŜǎ ǎƘŀǊŜ ǘƘŜ ƛŘŜŀ ǘƘŀǘ ƳŀǘƘŜƳŀǘƛŎŀƭ ƳŜŀƴƛƴƎ Ŏŀƴ 
ŜƳŜǊƎŜ ŦǊƻƳ goal-oriented ōƻŘƛƭȅ ƳƻǾŜƳŜƴǘǎτƳǳƭǘƛƳƻŘŀƭ ǎŜƴǎƻǊƛƳƻǘƻǊ 
όƛƴǘŜǊύŀŎǘƛƻƴǎτŀƴŘ Ƙƻǿ ǎǘǳŘŜƴǘǎ ǇŜǊŎŜƛǾŜ ǘƘŜǎŜ όǎƻƳŜǘƛƳŜǎ ƛƳŀƎƛƴŜŘύ 
ŀŎǘƛƻƴǎΦ  

Lƴ ƻǳǊ ŘŜǎƛƎƴΣ ǿŜ ǳǎŜ embodied instrumentation theory ό5ǊƛƧǾŜǊǎΣ 
нлмфύΦ 9ƳōƻŘƛŜŘ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴ ǘƘŜƻǊƛȊŜǎ ǘƘŜ ƛƴǾƻƭǾŜƳŜƴǘ ƻŦ ǘƻƻƭǎ ŀƴŘ ǘǊƛŜǎ 
ǘƻ ǊŜŎƻƴŎƛƭŜ ƴƻǘƛƻƴǎ ŦǊƻƳ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴ ŀƴŘ ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ ǘƘŜƻǊȅΦ 
!ŎŎƻǊŘƛƴƎ ǘƻ ǘƘƛǎ ǘƘŜƻǊȅΣ ƭŜŀǊƴƛƴƎ ƛǎ developing ŀ ōƻŘȅπŀǊǘƛŦŀŎǘ ŦǳƴŎǘƛƻƴŀƭ 
ǎȅǎǘŜƳ ό{ƘǾŀǊǘǎ Ŝǘ ŀƭΦΣ нлнмύ ōȅ ƎǳƛŘŜŘ ǊŜƛƴǾŜƴǘƛƻƴ ƻŦ ƳŀǘƘŜƳŀǘƛŎŀƭ ŀǊǘƛŦŀŎǘǎΦ 
DǳƛŘŜŘ ǊŜƛƴǾŜƴǘƛƻƴ ƳŜŀƴǎ ǘƘŀǘ ǎǘǳŘŜƴǘǎ ǊŜŎƻƴǎǘǊǳŎǘ ǘƘŜ ƪƴƻǿƭŜŘƎŜ 
ǘƘŜƳǎŜƭǾŜǎ ŀƴŘ ŀǎ ŀ ǊŜǎǳƭǘ άǊŜƎŀǊŘ ǘƘŜ ƪƴƻǿƭŜŘƎŜ ǘƘŜȅ ŀŎǉǳƛǊŜ ŀǎ ǘƘŜƛǊ ƻǿƴ 
ǇǊƛǾŀǘŜ ƪƴƻǿƭŜŘƎŜΣ ƪƴƻǿƭŜŘƎŜ ŦƻǊ ǿƘƛŎƘ ǘƘŜȅ ǘƘŜƳǎŜƭǾŜǎ ŀǊŜ ǊŜǎǇƻƴǎƛōƭŜΦέ 
όDǊŀǾŜƳŜƛƧŜǊ ϧ 5ƻƻǊƳŀƴΣ мфффΣ ǇΦ ммсύΦ Lƴ ŜǎǎŜƴŎŜΣ ŀ ōƻŘȅπŀǊǘƛŦŀŎǘ ŦǳƴŎǘƛƻƴŀƭ 
ǎȅǎǘŜƳ Ƙŀǎ ƴƻ ŎŜƴǘǊŀƭ ƳŜŎƘŀƴƛǎƳ ǘƘŀǘ ŘƛǊŜŎǘǎ ƭŜŀǊƴƛƴƎΣ ŀǎ learning Ŏŀƴƴƻǘ ōŜ 
ǎŜǇŀǊŀǘŜŘ ŦǊƻƳ acting with an artifactΦ CƻǊ ŜȄŀƳǇƭŜΣ ƭŜŀǊƴƛƴƎ ǘƻ ŎȅŎƭŜ Ŏŀƴƴƻǘ 
ōŜ ǎŜǇŀǊŀǘŜŘ ŦǊƻƳ ǘƘŜ ŀŎǘ ƻŦ ŎȅŎƭƛƴƎ ƻƴ ŀ ōƛŎȅŎƭŜ όŀƴ ŀǊǘƛŦŀŎǘύΤ ƛǘ ƳŀƪŜǎ ƴƻ 
ǎŜƴǎŜ ǘƻ ŎȅŎƭŜ ǿƛǘƘƻǳǘ ŀ ōƛŎȅŎƭŜΦ ²ƘŜƴ ǎƻƳŜƻƴŜ ŎȅŎƭŜǎΣ ǘƘŜ ōƛŎȅŎƭŜ ŀƴŘ ōƻŘȅ 
ŦƻǊƳ ŀ ōƻŘȅπŀǊǘƛŦŀŎǘ ŦǳƴŎǘƛƻƴŀƭ ǎȅǎǘŜƳΦ  

bƻǘ Ƨǳǎǘ ŀƴȅ όǇŜǊŎŜƛǾŜŘύ ŀŎǘƛƻƴ Ŏŀƴ ǎŜǊǾŜ ŀǎ ŀ ǎǳōǎǘǊŀǘŜ ŦƻǊ ŘŜǾŜƭƻǇƛƴƎ 
ƳŀǘƘŜƳŀǘƛŎǎΦ 5ŜǎƛƎƴŜǊǎ ǳǎƛƴƎ ǘƘŜ ŜƳōƻŘƛŜŘ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴ ǘƘŜƻǊȅ ǘǊȅ ǘƻ 
ǘǊŀŎŜ ōŀŎƪ ǘƘŜ goal-oriented ŀŎǘƛƻƴǎ ό{ƘǾŀǊǘǎ ϧ !ƭōŜǊǘƻΣ нлнмύ ǘƘŀǘ ŎƻǳƭŘ ƘŀǾŜ 
ŎƻƴǎǘƛǘǳǘŜŘ ǘƘŜ ǘŀǊƎŜǘ ƪƴƻǿƭŜŘƎŜτǘƘŜ ƳŀǘƘŜƳŀǘƛŎŀƭ ŀƴŘ ǎǘŀǘƛǎǘƛŎŀƭ ŎƻƴŎŜǇǘǎ 
όŜΦƎΦΣ ŘŀǘŀΣ ŘƛǎǘǊƛōǳǘƛƻƴύ ό{ƘǾŀǊǘǎ Ŝǘ ŀƭΦΣ нлмфύΦ !ǊǘƛŦŀŎǘǎ ŀǊŜ ŎǊȅǎǘŀƭƭƛȊŜŘ ŦƻǊƳǎ ƻŦ 
ŀŎǘƛƻƴǎ ό[ŜƻƴǘȅŜǾΣ нллфΤ wŀŘŦƻǊŘ Ŝǘ ŀƭΦΣ нлммύΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ŀ ōŀǊ 
ƛƴ ŀ ƘƛǎǘƻƎǊŀƳ όƴǳƳōŜǊ ƻŦ ƳŜŀǎǳǊŜŘ ǾŀƭǳŜǎ ǿƘŜƴ ōƛƴ ǿƛŘǘƘǎ ŀǊŜ Ŝǉǳŀƭύ 
ƻǊƛƎƛƴŀǘŜǎ ŦǊƻƳ ǘƘŜ ŀŎǘƛƻƴ ƻŦ ǎǘŀŎƪƛƴƎ όŜΦƎΦΣ ǿƛǘƘ ōƭƻŎƪǎύΦ ¢ƘŜ ǘŀǎƪ ƻŦ ŘŜǎƛƎƴŜǊǎΣ 
ƛƴ ƻǳǊ ǾƛŜǿΣ ƛǎ ǘƻ Řƻ ŀ ǘƘƻǳƎƘǘ ŜȄǇŜǊƛƳŜƴǘ ƻŦ ǊŜǾŜǊǎƛƴƎ ǘƘƛǎ ŎǊȅǎǘŀƭƭƛȊŀǘƛƻƴ 
ǇǊƻŎŜǎǎΣ ǘƻ ǘƘƛƴƪ ǘƘǊƻǳƎƘ Ƙƻǿ ǎǘǳŘŜƴǘǎ Ŏŀƴ ōŜ ƛƴǾƛǘŜŘ ƛƴ ŀŎǘƛƻƴǎ ǘƘŀǘ ŎƻǳƭŘ ōŜ 
ŎǊȅǎǘŀƭƭƛȊŜŘ ƛƴǘƻ ǘƘŜ ŎƻƴǾŜƴǘƛƻƴŀƭ ǎȅƳōƻƭ ƻŦτƛƴ ǘƘƛǎ ŎŀǎŜτŀ ƘƛǎǘƻƎǊŀƳΦ .ŀƪƪŜǊ 
όнллпŀύ Ƙŀǎ ŎŀƭƭŜŘ ǘƘƛǎ ŘŜǎƛƎƴ ǇǊƻŎŜǎǎ ΨƭƛǉǳŜŦȅƛƴƎΩΣ ǿƘƛƭŜ {ƘǾŀǊǘǎ ŀƴŘ !ƭōŜǊǘƻ 
όнлнмύ ǎǇŜŀƪ ƻŦ ΨƳŜƭǘƛƴƎ ŀǊǘƛŦŀŎǘǎΩΦ 
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¦ƴŘŜǊǎǘŀƴŘƛƴƎ ƘƛǎǘƻƎǊŀƳǎ ƛƴ ǳǇǇŜǊπǎŜŎƻƴŘŀǊȅ ǎŎƘƻƻƭ 

нмф 

.ŀǎŜŘ ƻƴ ǘƘŜǎŜ ǘƘŜƻǊƛŜǎΣ ǿŜ ǿƻǊƪŜŘ ƻǳǘ ŀ ŘŜǎƛƎƴ ŦǊŀƳŜǿƻǊƪ ǿƛǘƘ ŦƛǾŜ ǘŀǎƪ 
ŘŜǎƛƎƴ ƎǳƛŘŜƭƛƴŜǎ ŦǊƻƳ ŀƴ ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ ŀƴŘ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴ 
ǇŜǊǎǇŜŎǘƛǾŜΦ ²Ŝ ŦƻŎǳǎ ƻƴ ǘƘŜ ǘŀǎƪ design ǇǊƻŎŜǎǎ ŀƴŘ ǎƻ Řƻ ƴƻǘ ŀŘŘǊŜǎǎ 
ŀǎǇŜŎǘǎ ƻŦ ǘŜŀŎƘƛƴƎ ŀƴŘ ƭŜŀǊƴƛƴƎ ǘƘŀǘ Ƴŀȅ ŀƭǎƻ ōŜ ǿƻǊǘƘ ǎǘǳŘȅƛƴƎ όŜΦƎΦΣ 
ŜƴŀŎǘƛǾŜ ŜƳǇŀǘƘƛȊƛƴƎΣ ƳǳƭǘƛƳƻŘŀƭ ǊŜǾƻƛŎƛƴƎΤ !ōǊŀƘŀƳǎƻƴ Ŝǘ ŀƭΦΣ нлнмύΦ bƻǘŜ 
ǘƘŀǘ ǿŜ ŦƛǊǎǘ ŎƻƴŎŜƴǘǊŀǘŜ ƻƴ ǘƘŜ ŎƻƴŎŜǇǘǎ ƛƴ ǘƘŜ ǘŀǊƎŜǘ ƪƴƻǿƭŜŘƎŜΣ ǿƘƛŎƘ ƛǎ ƛƴ 
ƭƛƴŜ ǿƛǘƘ {ƪŜƳǇ όмфтсύ ǿƘƻ ŜƳǇƘŀǎƛȊŜŘ ǘƘŀǘ ǎǘǳŘŜƴǘǎ ƴŜŜŘ ǘƻ ƭŜŀǊƴ ǿƛǘƘ 
ǳƴŘŜǊǎǘŀƴŘƛƴƎ ŀƴŘ ƭŜŀǊƴ ŀ ƪŜȅ ŎƻƴŎŜǇǘ όŜΦƎΦΣ ǘƘŜ ƳŜŀƴύ ǊŀǘƘŜǊ ǘƘŀƴ ƻƴƭȅ 
ǇǊƻŎŜŘǳǊŜǎ ƻǊ ŀƭƎƻǊƛǘƘƳǎ όŜΦƎΦΣ how ǘƻ ŎŀƭŎǳƭŀǘŜ ǘƘŜ ƳŜŀƴύΦ  

όмύ Identify the actions that could have constituted the target artifact
όƘƛǎǘƻƎǊŀƳύΦ CƻǊ ŜȄŀƳǇƭŜΣ ŀǎ ǘŀǊƎŜǘ ƪƴƻǿƭŜŘƎŜΣ ǎŜǾŜǊŀƭ ǘŀǎƪǎ ƛƴ ƻǳǊ ŘŜǎƛƎƴ 
ƘŀǾŜΥ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ Řŀǘŀ ǊŜǇǊŜǎŜƴǘŜŘ ƛƴ ŀ ƘƛǎǘƻƎǊŀƳΦ ²Ŝ ŘƛǎǘƛƴƎǳƛǎƘ ǘƘǊŜŜ 
ŀǎǇŜŎǘǎ ƻŦ ǘƘƛǎ ŘŜǎƛƎƴ ƎǳƛŘŜƭƛƴŜΥ όŀύ 5ƛǎǘƛƴƎǳƛǎƘ ǘƘŜ ǘŀǊƎŜǘ ŀǊǘƛŦŀŎǘǎ ǊŜƭŜǾŀƴǘ ǘƻ 
ǘƘŜ ǘŀǊƎŜǘ ƪƴƻǿƭŜŘƎŜΣ ŦƻǊ ŜȄŀƳǇƭŜΣ ŀ ƘƛǎǘƻƎǊŀƳ ŀƴŘ όōύ ƳŜƭǘ ǘƘŜǎŜ ŀǊǘƛŦŀŎǘǎ 
ōŀŎƪ ǘƻ ŀŎǘƛƻƴǎ ŦǊƻƳ ǿƘƛŎƘ ǘƘƻǎŜ ŀǊǘƛŦŀŎǘǎ ŎǊȅǎǘŀƭƭƛȊŜŘ ό{ƘǾŀǊǘǎ ϧ !ƭōŜǊǘƻΣ 
нлнмύ ǎƻ ǘƘŀǘ ǘƘŜȅ ōŜŎƻƳŜ ΨŦƭǳƛŘΩ ŀƎŀƛƴ ό.ŀƪƪŜǊΣ нллпŀύΦ CƻǊ ƛƴǎǘŀƴŎŜΣ ƛƴ 
ƘƛǎǘƻƎǊŀƳǎ ǿƛǘƘ Ŝǉǳŀƭ ƛƴǘŜǊǾŀƭǎΣ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ōŀǊǎ ŀǊŜ ǘƘŜ ǊŜǎǳƭǘǎ ƻŦ ƳŀǊƪƛƴƎ 
ǘƘŜ ƴǳƳōŜǊ ƻŦ ŎŀǎŜǎ ƛƴ ŜŀŎƘ ƛƴǘŜǊǾŀƭΦ CƻǊ ŜȄŀƳǇƭŜΣ ŀ ǎǇƻƻƴ ƛǎ ŀ ǊŜƛŦƛŎŀǘƛƻƴ ƻŦ 
ǘƘŜ ŀŎǘƛƻƴ ƻŦ ŜŀǘƛƴƎ όǎƻǳǇΣ ǎǘŜǿύΦ {ƛƳƛƭŀǊƭȅΣ ŀ ŘƻǘǇƭƻǘ ǊŜƛŦƛŜǎ ŀƴ ŀŎǘƛƻƴ ƻŦ 
ǇƻǎƛǘƛƻƴƛƴƎ ŎŀǎŜǎ όƳŜŀǎǳǊŜŘ ǾŀƭǳŜǎύ ŀƭƻƴƎ ŀ ǎŎŀƭŜΦ .ȅ ǳǎƛƴƎ ǎǘǳŘŜƴǘǎΩ 
ǇŜǊŎŜǇǘǳŀƭ ŀōƛƭƛǘƛŜǎ ǘƘŀǘ ŜƳŜǊƎŜŘ ŦǊƻƳ ǇǊŜǾƛƻǳǎ ŀŎǘƛƻƴǎ όŜƴŀŎǘƳŜƴǘύ ǿƛǘƘ 
ŀǊǘƛŦŀŎǘǎ όŜΦƎΦΣ ǊǳƭŜǊǎύΣ ǎǳŎƘ ŀǎ ƳŜŀǎǳǊƛƴƎΣ ǘƘŜ ǇŜǊŎŜǇǘǳŀƭ ŀōƛƭƛǘȅ ǘƻ ǎŜŜ ǘƘŜ 
ŎƻǊǊŜǎǇƻƴŘŜƴŎŜ ōŜǘǿŜŜƴ ŀ Ǉƻǎƛǘƛƻƴ ƻƴ ŀ ǎŎŀƭŜ ŀƴŘ ŀ ǘŀǊƎŜǘ ŎŀǎŜ όŀ ǎǘǳŘŜƴǘύ ƛǎ 
ŘŜǾŜƭƻǇŜŘ ǘƻǿŀǊŘ ŎǳƭǘǳǊŀƭ ŦƻǊƳǎ ƻŦ ǇŜǊŎŜǇǘƛƻƴ όƘŜǊŜΣ ƻŦ ǎǘŀǘƛǎǘƛŎǎΤ DƻƻŘǿƛƴΣ 
мффпΤ wŀŘŦƻǊŘΣ нлмлύΣ ǎǳŎƘ ŀǎ ǇŜǊŎŜƛǾƛƴƎ ǘƘƛǎ Ǉƻǎƛǘƛƻƴ ŀǎ ŀ ǾŀƭǳŜ ƻŦ ǘƘŜ ǘŀǊƎŜǘ 
ǾŀǊƛŀōƭŜ όǎǘǳŘŜƴǘΩǎ ōƻŘȅ ƘŜƛƎƘǘύ ŦƻǊ ƻƴŜ ŎŀǎŜΦ Lƴ CƛƎǳǊŜ сΦм ǿŜ ǇǊƻǾƛŘŜ ŀƴ 
ŜȄŀƳǇƭŜ ƻŦ Ƙƻǿ ǘƘƛǎ ǿŀǎ ŘƻƴŜ ŦƻǊ Řŀǘŀ ƛƴ ƘƛǎǘƻƎǊŀƳǎΦ όŎύ ¦ǎŜ ƎŜƴŜǊƛŎΣ ƴƻƴπ
ƛŎƻƴƛŎ ŀǊǘƛŦŀŎǘǎ ό!ōǊŀƘŀƳǎƻƴ Ŝǘ ŀƭΦΣ нлнмύ ŀƴŘ ŀǎ ŦŜǿ ŀǎ ǇƻǎǎƛōƭŜΣ ƘŜƴŎŜΣ ƻƴƭȅ 
ǘƘƻǎŜ ǘƘŀǘ ŀǊŜ ŀƭǊŜŀŘȅ ǇŀǊǘ ƻŦ ǎǘǳŘŜƴǘǎΩ ƭƛǾŜŘ ǿƻǊƭŘ όǘƘǳǎ ƛƴŎƻǊǇƻǊŀǘŜŘ ƛƴǘƻ 
ǘƘŜƛǊ ōƻŘȅπŀǊǘƛŦŀŎǘ ŦǳƴŎǘƛƻƴŀƭ ǎȅǎǘŜƳǎΣ ŜΦƎΦΣ ƴǳƳōŜǊ ƭƛƴŜΣ ŀȄŜǎ ƭŀōŜƭǎΣ ǘŀōƭŜǎύΦ 
²ŜΣ ǘƘŜǊŜŦƻǊŜΣ ǎǘŀǊǘ ǿƛǘƘ Řƻǘǎ ŀƴŘ ǎŎŀƭŜǎ όƎŜƴŜǊƛŎ ŀǊǘƛŦŀŎǘǎύ ŀƴŘ ƘŀǾŜ ǎǘǳŘŜƴǘǎ 
ǇŀǊǘƛŀƭƭȅ ōǳƛƭŘ ŘƻǘǇƭƻǘǎ ŦǊƻƳ ǘƘŜǎŜ όŘƻǘǇƭƻǘǎ ŀǊŜ ƴƻǘ ǘŀǳƎƘǘ ƛƴ Ƴƻǎǘ 5ǳǘŎƘ 
ǘŜȄǘōƻƻƪǎύΦ Lƴ ŎƻƴǎŜŎǳǘƛǾŜ ǘŀǎƪǎΣ ǿŜ ƛƴǘǊƻŘǳŎŜ ŀǊǘƛŦŀŎǘǎ ǊŜƛƴǾŜƴǘŜŘ ōȅ ǎǘǳŘŜƴǘǎ 
όŜΦƎΦΣ ƛƴ ǘŀǎƪ р ǎǘǳŘŜƴǘǎ Ŏŀƴ ƛƳƳŜŘƛŀǘŜƭȅ ōǳƛƭŘ ŀ ƘƛǎǘƻƎǊŀƳ ŦǊƻƳ ƎƛǾŜƴ Řŀǘŀ 
ǿƛǘƘƻǳǘ ǘƘŜ ƴŜŜŘ ǘƻ ŦƛǊǎǘ ōǳƛƭŘ ŀ ŘƻǘǇƭƻǘύΦ  

όнύ Design motor control or perception tasks to which these actions are
the answerΦ ¢Ƙƛǎ ƛƴŎƭǳŘŜǎ ŦƛǾŜ ŀǎǇŜŎǘǎΥ όŀύ /ǊŜŀǘŜ ƳƻǘƻǊ ŎƻƴǘǊƻƭрр ƻǊ ǇŜǊŎŜǇǘƛƻƴ 
ǘŀǎƪǎ ǘƻ ǿƘƛŎƘ ǘƘŜ ǘŀǊƎŜǘ ŀŎǘƛƻƴǎτǊŜǾŜŀƭŜŘ ƛƴ ǇǊŜǾƛƻǳǎ ŀƴŀƭȅǎƛǎ ōȅ ƳŜƭǘƛƴƎ 
ŀǊǘƛŦŀŎǘǎτŀǊŜ ǘƘŜ ŀƴǎǿŜǊ όŎƻƴŎŜǇǘǎ ŀǎ ǘƻƻƭǎΤ !ōǊŀƘŀƳǎƻƴ Ŝǘ ŀƭΦΣ нлнмύΦ ²Ŝ 

рр CƻǊ ǊŜŀǎƻƴǎ ƻŦ ŎƻƳǇƭŜǘŜƴŜǎǎΣ ǿŜ ŀŘŘŜŘ ƳƻǘƻǊ ŎƻƴǘǊƻƭΣ ōǳǘ ǘƘƛǎ ǊŜŦŜǊǎ ǘƻ ŀŎǘƛƻƴπōŀǎŜŘ ŘŜǎƛƎƴǎΦ 
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applied this in one task by having students drag measured values to their 
correct position on a horizontal scale. (b) Create productive struggle 
(Abrahamson & Bakker, 2016; Kapur, 2014; Roth, 2019). For this, some 
ambiguity in task (formulation) might be needed (Foster, 2011). For example, 
we used a body height context which is associated with the vertical axis while 
these body heights are depicted along the horizontal axis. (c) Support students 
by reducing the complexity of the environment through limiting degrees of 
freedom (Bakker, Shvarts, & Abrahamson, 2019; Bernstein, 1940/1967), which 
makes tasks manageable and focuses the students’ attention on the target 
knowledge. For example, in several tasks, students can change the height of a 
bar in a histogram—to see how this influences the mean—but not its position 
or bin width. Also, in the first tasks on the mean, we used histograms with only 
two bars. (d) Guide students to gradually reinvent mathematics through 
sensorimotor actions and/or perceptions. To accomplish this, in consecutive 
tasks, (mathematical and statistical) artifacts such as axis, numbers, bars or line 
segments are added that can guide students toward the mathematical and 
statistical discourse. Abrahamson et al. (2021, p. 168) call this “mathematical 
appropriation.” For example, in several tasks, students drag a vertical line to 
their estimated mean. (e) Start with a macro learning problem that triggers 
intentionality within body-artifacts functional systems. 

(3) Have students (digitally) perform these actions with feedback. This 
guideline contains two aspects: (a) have students perform the actions and (b) 
provide students with feedback. For persistent problems like students’ 
conceptual difficulties with histograms, it is worth looking at who is doing the 
mathematical actions—the student or the software? In most statistical 
software, actions are hidden—for example, a histogram appearing directly 
when an option is clicked (e.g., InZight, Minitab56, minitools) or displayed, such 
as moving dots in a dotplot to the correct bin (e.g., TinkerPlots, Fathom, 
CODAP57). Sometimes, both are available (e.g., VUstat, GeoGebra58). However, 
in embodied design, students initially perform the actions themselves (e.g., 
build a dotplot or histogram from data). Hence, the construction of target 
artifacts is not outsourced to the (digital) environment until students have 
reinvented and established each artifact themselves (Chase & Abrahamson, 
2015). For instance, height of bars in a histogram is not outsourced until 
reinvented. Therefore, the unit height in our histogram overlay onto a dotplot 
in our first tasks is not equal to the height of a dot, and a stacked dotplot is 
avoided. We chose to give feedback after the students answered: a check box 

 
56 https://www.stat.auckland.ac.nz/~wild/iNZight/; https://www.minitab.com/en-us/ 
57 http://tinkerplots.com/; https://Fathom.concord.org/; https://CODAP.concord.org/ 
58 https://www.vustat.eu/; https://www.geogebra.org/ 
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ŦƻǊ ŎƻǊǊŜŎǘκƛƴŎƻǊǊŜŎǘΤ ŀ ōŀƭŀƴŎŜрф ǘƻƻƭ ŀǎ ŦŜŜŘōŀŎƪ ƻƴ ǎǘǳŘŜƴǘǎΩ ŜǎǘƛƳŀǘƛƻƴ ƻŦ 
ǘƘŜ ƳŜŀƴ όƛƴ ƭƛƴŜ ǿƛǘƘ ǎǘǳŘŜƴǘǎΩ ǇŜǊŎŜƛǾŜŘ ŀŎǘƛƻƴǎ ŘǳǊƛƴƎ ƻǳǊ ǇǊŜǾƛƻǳǎ ŜȅŜπ
ǘǊŀŎƪƛƴƎ ǊŜǎŜŀǊŎƘΣ /ƘŀǇǘŜǊ оύΦ bƻǘ ŜǾŜǊȅ ŀǊǘƛŦŀŎǘ ƴŜŜŘǎ ǘƻ ōŜ ǊŜƛƴǾŜƴǘŜŘ ōȅ 
ǎǘǳŘŜƴǘǎΤ ƻƴƭȅ ǘƘƻǎŜ ǘƘŀǘ ǎŜŜƳ ŎǊǳŎƛŀƭ ŦƻǊ ŘŜǾŜƭƻǇƛƴƎ ǘƘŜ ǘŀǊƎŜǘ ƪƴƻǿƭŜŘƎŜΦ 
CƻǊ ŜȄŀƳǇƭŜΣ ŀǎ ǎǘǳŘŜƴǘǎ ƭŜŀǊƴŜŘ ŀōƻǳǘ ƛƴǘŜǊǾŀƭǎ ƛƴ ǇǊŜǾƛƻǳǎ ƎǊŀŘŜǎΣ ǿŜ 
ŜȄǇŜŎǘŜŘ ǘƘŀǘ ǘƘƛǎ ƛƴǘŜǊǾŀƭ ŀǊǘƛŦŀŎǘ ǿŀǎ ŀƭǊŜŀŘȅ ŀŎǉǳƛǊŜŘΦ 

όпύ Stimulate reflection on actions. IŀǾŜ ǎǘǳŘŜƴǘǎ ǊŜŦƭŜŎǘ ƻƴ ƭŀǘŜƴǘ ǊǳƭŜǎ
ƻǊ ǇǊƻǇŜǊǘƛŜǎ ŀŦǘŜǊ ŜŀŎƘ ǘŀǎƪ ǘƘǊƻǳƎƘ ŎƻƭƭŀōƻǊŀǘƛƻƴ ǿƛǘƘ ŀ ǇŜŜǊ ƻǊ ǘǳǘƻǊΣ ƻǊ ōȅ 
ŜȄǇƭŀƛƴƛƴƎ ǘƘŜ ǘŀǎƪ ǘƻ ǎƻƳŜōƻŘȅ ό!ōǊŀƘŀƳǎƻƴ Ŝǘ ŀƭΦΣ нлнлΤ !ƭōŜǊǘƻ Ŝǘ ŀƭΦΣ 
нлннύΦ hǳǊ ŘŜǎƛƎƴ ǳǎŜŘ ǊŜŦƭŜŎǘƛƻƴ ƻƴ ǇŀǇŜǊ ŀƴŘ ŎƻƭƭŀōƻǊŀǘƛƴƎ ŀƴŘ ŘƛǎŎǳǎǎƛƴƎ 
ǿƛǘƘ ŀ ǇŜŜǊΦ tǊƻŘǳŎǘƛǾŜ ǎǘǊǳƎƎƭŜ όǇƻƛƴǘ нύ Ŏŀƴ ŀƭǎƻ ŎǊŜŀǘŜ ǊŜŦƭŜŎǘƛƻƴΦ 

όрύ Create possibilities for transfer of actions by varying contexts and
environmentsΦ /ƻƎƴƛǘƛƻƴ ƛǎ ǎƛǘǳŀǘŜŘ ό!ōǊŀƘŀƳǎƻƴ Ŝǘ ŀƭΦΣ нлнлύΦ ¢ƘŜǊŜŦƻǊŜΣ όŀύ 
IŀǾŜ ǎǘǳŘŜƴǘǎ ŜȄǘŜƴŘ ǘƘŜƛǊ ŀŎǘƛǾƛǘƛŜǎ ǳǎƛƴƎ ŘƛŦŦŜǊŜƴǘ ǘƻƻƭǎ ŀƴŘ ŜƴǾƛǊƻƴƳŜƴǘǎτ
ǎǳŎƘ ŀǎ ǎƻŦǘǿŀǊŜΣ ǇŀǇŜǊΣ ŀƴŘ ǇŜƴŎƛƭτǘƻ ŎǊŜŀǘŜ ǎǘŀǘƛǎǘƛŎŀƭ ΨŜƭŀōƻǊŀǘƛƻƴ ŀƴŘ 
ŀƴŀƭȅǎƛǎΩ ό!ōǊŀƘŀƳǎƻƴ Ŝǘ ŀƭΦΣ нлнмΤ !ƭōŜǊǘƻ Ŝǘ ŀƭΦΣ нлннύΣ ǎŜŜΣ ŦƻǊ ŜȄŀƳǇƭŜΣ 
ǇŀǇŜǊ ¢ŀǎƪǎ муςнл ŀƴŘ ннΦ CǳǊǘƘŜǊƳƻǊŜΣ όōύ ǾŀǊȅ ŀǊǘƛŦŀŎǘǎ ŀƴŘ ǘŀǎƪǎΣ ǿƘƛƭŜ 
ŀƛƳƛƴƎ ŦƻǊ ǘƘŜ ǎŀƳŜ ǘŀǊƎŜǘ ƪƴƻǿƭŜŘƎŜ ό.ŜǊƴǎǘŜƛƴΣ мффсΤ hŜƘǊǘƳŀƴΣ нллуΤ 
{ƘǾŀǊǘǎ Ŝǘ ŀƭΦΣ нлнмύΦ ¢Ƙƛǎ ƛƴŎƭǳŘŜǎ ǳǎƛƴƎ ǾŀǊƛƻǳǎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴǎ όŀǊǘƛŦŀŎǘǎύ ƻŦ ŀ 
ŎƻƴŎŜǇǘ όŜΦƎΦΣ ǘŀōƭŜ ǿƛǘƘ ŀƭƭ Řŀǘŀ ǾƛǎƛōƭŜ όŜΦƎΦΣ ¢ŀǎƪ рύΣ ŦǊŜǉǳŜƴŎȅ ǘŀōƭŜ όŜΦƎΦΣ 
¢ŀǎƪ тύΣ ƘƛǎǘƻƎǊŀƳ ό¢ŀǎƪ о ŀƴŘ ǳǇύΣ ŘƻǘǇƭƻǘ ōǳǘ ǇǊŜŦŜǊŀōƭȅ ŀƭǎƻ ǇƘȅǎƛŎŀƭ 
ƻōƧŜŎǘǎύΦ  

6.4 Method 
Lƴ ǘƘƛǎ ŎƘŀǇǘŜǊΣ ǿŜ ŘŜǎŎǊƛōŜ ŀ ƳǳƭǘƛǇƭŜ ŎŀǎŜπǎǘǳŘȅ ŀǎ ŀ ŦƛǊǎǘ ŎȅŎƭŜ ƛƴ ŀ ƭŀǊƎŜǊ 
ŘŜǎƛƎƴ ǊŜǎŜŀǊŎƘ ǇǊƻƧŜŎǘΦ Lƴ ŘŜǎƛƎƴ ǊŜǎŜŀǊŎƘΣ ǘƘŜ ŘŜǎƛƎƴ ƻŦ ŜŘǳŎŀǘƛƻƴŀƭ ƳŀǘŜǊƛŀƭǎ 
ƛǎ ŀƴ ŜǎǎŜƴǘƛŀƭ ǇŀǊǘ ƻŦ ǘƘŜ ǊŜǎŜŀǊŎƘ όaŎYŜƴƴŜȅ ϧ wŜŜǾŜǎΣ нлмнύΦ ¢ƘŜ ŀƛƳǎ ƻŦ 
ŘŜǎƛƎƴ ǊŜǎŜŀǊŎƘ ŀǊŜ ōƻǘƘ ǘƻ ǘŜǎǘ ǘƘŜƻǊƛŜǎ ŀƴŘ ǘƻ ŎƻƴǘǊƛōǳǘŜ ǘƻ ŦǳǊǘƘŜǊ 
ǘƘŜƻǊƛȊŀǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘ ōȅ ǇǊƻǾƛŘƛƴƎ ƛƴǎƛƎƘǘ ƛƴǘƻ Ƙƻǿ ǘƘŜ ƭŜŀǊƴƛƴƎ ƻŦ ŀ 
ǇŀǊǘƛŎǳƭŀǊ ǘƻǇƛŎ όƘŜǊŜΥ Řŀǘŀ ŀƴŘ ŘƛǎǘǊƛōǳǘƛƻƴ ƛƴ ƘƛǎǘƻƎǊŀƳǎύ Ŏŀƴ ōŜ ǇǊƻƳƻǘŜŘΦ 
/ƻƴǎŜǉǳŜƴǘƭȅΣ ǿŜ ŀǊŜ ŘŜǎƛƎƴƛƴƎ ōŀǎŜŘ ƻƴ ǘƘŜƻǊȅ ŀƴŘ ǊŜǎŜŀǊŎƘΣ ǘŜǎǘƛƴƎ ǘƘƛǎ 
ŘŜǎƛƎƴ ƛƴ ŀ ƳǳƭǘƛǇƭŜ ŎŀǎŜ ǎǘǳŘȅΣ ŀƴŘ ŀǎ ǎǳŎƘΣ ŎƻƴǘǊƛōǳǘƛƴƎ ǘƻ ōƻǘƘ ǊŜŘŜǎƛƎƴ ŀƴŘ 
ǘƘŜƻǊƛŜǎ όŜΦƎΦΣ ƭƻŎŀƭ ǘƘŜƻǊȅΥ Ƙƻǿ ǘƻ ǘŜŀŎƘ ŀƴŘ ƭŜŀǊƴ ǘƻ ƛƴǘŜǊǇǊŜǘ ƘƛǎǘƻƎǊŀƳǎΣ 
Ǝƭƻōŀƭ ǘƘŜƻǊȅΥ ŜƳōƻŘƛŜŘ ŎƻƎƴƛǘƛƻƴ ŀƴŘ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴύΦ hǳǊ ŎŀǎŜǎ ŀǊŜ 
ǎǘǳŘŜƴǘǎ ŀǎ ǘƘŜȅ ǊŜŀǎƻƴ ǿƘƛƭŜ ǿƻǊƪƛƴƎ ǘƘǊƻǳƎƘ ǘƘŜ ŘŜǎƛƎƴŜŘ ǘŀǎƪǎ ǎǳǇǇƻǊǘŜŘ 
ōȅ ŀ ǘŜŀŎƘŜǊΦ ²Ŝ ǳǎŜŘ ŀƴ ŜƳōŜŘŘŜŘ ŎǊƻǎǎπŎŀǎŜǎ ŀƴŀƭȅǎƛǎ ό/ǊŜǎǿŜƭƭΣ нлмоύ ŀƴŘ 

рф !ƭǘƘƻǳƎƘ ǘƘƛǎ ƛǎ ƴƻǘ ǇŀǊǘ ƻŦ ǘƘŜ 5ǳǘŎƘ ƳŀǘƘŜƳŀǘƛŎǎ ŎǳǊǊƛŎǳƭǳƳ ƴƻǊ ƛƴ 5ǳǘŎƘ ƳŀǘƘŜƳŀǘƛŎǎ 
ǘŜȄǘōƻƻƪǎΣ ǿŜ ǎŀǿ ƛƴ ƻǳǊ ǇǊŜǾƛƻǳǎ ŜȅŜπǘǊŀŎƪƛƴƎ ǊŜǎŜŀǊŎƘ ǘƘŀǘ Ƴŀƴȅ ǎǘǳŘŜƴǘǎ ǎǇƻƴǘŀƴŜƻǳǎƭȅ 
ŘŜǾŜƭƻǇŜŘ ǘƘƛǎ ƴƻǘƛƻƴ ƻŦ ΨƳŜŀƴΩ ό/ƘŀǇǘŜǊ оύΦ ²ŜΣ ǘƘŜǊŜŦƻǊŜΣ ŀŘŘŜŘ ƛǘ ŀǎ ŀƴ ŀǊǘƛŦŀŎǘΦ 
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analyzed the HLT step by step. For each step of the HLT (Simon & Tzur, 2004), 
we analyzed each student’s reasoning in relation to the conjectured learning 
and aligned this with extra information about each case. Furthermore, we 
merged the gained information about each HLT step by comparing and 
contrasting the cases—in line with the method of cross-cases analysis. Typical 
tasks for each step in the HLT are described in a section including results; an 
overview of the HLT is found in the data analysis section and some tasks are 
described in Appendix A of this chapter. 

6.4.1 Participants 

Participants were five, pre-university track students in Grades 10 and 12, see 
Table 6.1. They all took the Mathematics A course on applied analysis in 
economics and health contexts, and statistics (Daemen et al., 2020). Their 
mean self-reported mark for mathematics was 6.7 on a ten-point scale (10 is 
highest, 1 is lowest; 6.9 for females, 6.5 for males), indicating normal 
mathematical abilities. Participants were given a 30-euro fee for their 
participation. Approval from the Science-Geosciences Ethics Review Board was 
obtained under number Bèta S-21578, and written consent of participants and 
their legal representatives (if necessary) was obtained.  

The participants’ primary experiences were based on the most 
common textbooks that introduce histograms in Grade 9 after introducing 
stem plots and frequency tables. In Grades 10–12, students with Mathematics 
A re-encounter histograms. Textbooks sometimes confuse histograms and 
case-value plots and pay no attention to relevant differences. Students use a 
calculator for standard deviation, mean, median, first and third quartiles, and 
interquartile range and learn to read off values from histograms and boxplots 
and to draw these graphs. Comparing graphs (samples) is done through 
calculations in hypothesis testing only. 

Table 6.1 Participant characteristics 

Student Age Grade Sex 
S1 15 10 Female 
S2 16 10 Female 
S3 16 10 Male 
S4 18 12 Male 
S5 18 12 Female 

6.4.2 Data collection 

Students filled in a questionnaire on their characteristics and pre-knowledge. 
Students’ discussions were audio and videotaped. The students’ worksheets 
and grid papers were also collected.  
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6.4.3 Setting of the intervention 

{ǘǳŘŜƴǘǎ ǿŜǊŜ ƛƴǾƛǘŜŘ ǘƻ ǘƘŜ ¢ŜŀŎƘƛƴƎ ŀƴŘ [ŜŀǊƴƛƴƎ [ŀō ό¢[[ύ ƻŦ ¦ǘǊŜŎƘǘ 
¦ƴƛǾŜǊǎƛǘȅΦ ¢ƘŜȅ ǿƻǊƪŜŘ ƛƴ ǇŀƛǊǎ ƻǊ ŀƭƻƴŜΣ ƻƴ ŀ ŘƛƎƛǘŀƭ ǿƘƛǘŜōƻŀǊŘ όCƛƎǳǊŜ сΦнύ 
ŎƻƴƴŜŎǘŜŘ ǘƻ ŀ ƭŀǇǘƻǇ ŀƴŘ ƻƴ ǇŀǇŜǊ όƭŜǎǎƻƴ ƳŀǘŜǊƛŀƭ ŀƴŘ ƎǊƛŘ ǇŀǇŜǊύ ǇǊƻǾƛŘŜŘ 
ōȅ ǘƘŜ ǘŜŀŎƘŜǊΦ ¢ƘŜ ŦƛǊǎǘ ŀǳǘƘƻǊΣ ǿƘƻ ǿŀǎ ŀƭǎƻ ŀ ǎŜŎƻƴŘŀǊȅ ǎŎƘƻƻƭ ǘŜŀŎƘŜǊΣ 
ŦǳƴŎǘƛƻƴŜŘ ŀǎ ŀ ǘŜŀŎƘŜǊπǊŜǎŜŀǊŎƘŜǊΦ ¢ƘŜ ǎŜŎƻƴŘ ŀǳǘƘƻǊ ǿŀǎ ŀƴ ƻōǎŜǊǾŜǊΦ !ƭƭ 
ǎǘǳŘŜƴǘǎ ǳǎŜŘ ǘƘŜ ƳŀȄƛƳǳƳ ŀǾŀƛƭŀōƭŜ ǘƛƳŜ ƛƴ ǘƘŜ ¢[[ όƛƴŎƭǳŘƛƴƎ ŀ ōǊŜŀƪύΣ оΦр 
ƘƻǳǊǎΣ ŀƴŘ ŦƛƴƛǎƘŜŘ όŀƭƳƻǎǘύ ŀƭƭ нн ǘŀǎƪǎ ŀƴŘ ǘƘŜ ǉǳŜǎǘƛƻƴƴŀƛǊŜ ƻƴ ǇǊŜπ
ƪƴƻǿƭŜŘƎŜΦ ²Ŝ ŜȄǇŜŎǘŜŘ ǘƘƛǎ ǎƛƴƎƭŜ ǎŜǎǎƛƻƴ ǘƻ ǘŀƪŜ ŦƻǳǊ ǘƻ ŦƛǾŜ ƭŜǎǎƻƴǎ ƛƴ ŀ 
ŎƭŀǎǎǊƻƻƳ ǎŜǘǘƛƴƎ όпрςрл ƳƛƴǳǘŜǎ ŜŀŎƘύΦ ¢ƘŜ ǘŀǎƪǎ ǿŜǊŜ ǇǊƻƎǊŀƳƳŜŘ ōȅ ǘƘŜ 
ǎŜŎƻƴŘ ŀǳǘƘƻǊ ƛƴ bǳƳǿƻǊȄслΣ ǿƘƛŎƘ ŀƭƭƻǿǎ ǎǘǳŘŜƴǘǎ ǘƻ ŘǊŀƎ Řƻǘǎ ŀƴŘ ǎƭƛŘŜǊǎΤ 
ǘƘƛǎ ƛǎ ǳǎŜŘ ǘƻ ƎǳƛŘŜ ǎǘǳŘŜƴǘǎ ǘƻ ǊŜƛƴǾŜƴǘΣ ŦƻǊ ŜȄŀƳǇƭŜΣ ǘƘŀǘ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ŀ ōŀǊ 
ƛƴ ŀ ƘƛǎǘƻƎǊŀƳ ƛǎ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ ƴǳƳōŜǊ ƻŦ ŎŀǎŜǎ ǊŜǇǊŜǎŜƴǘŜŘ ōȅ ǘƘŀǘ ōŀǊΦ {ŜŜ 
ǘƘŜ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ ǘƘŜ ǘŀǎƪǎ ƛƴ ǘƘŜ ƳŀǘŜǊƛŀƭǎ ǎŜŎǘƛƻƴ ŦƻǊ ƳƻǊŜ ŘŜǘŀƛƭǎΦ  

Figure 6.2 {ǘǳŘŜƴǘǎ ǿƻǊƪŜŘ ƛƴ ǇŀƛǊǎ ƻƴ ŀ ŘƛƎƛǘŀƭ ǿƘƛǘŜōƻŀǊŘΣ ƘŜǊŜ ƻƴ ¢ŀǎƪ н 

6.4.4 Data analysis—hypothetical learning trajectory 

Lƴ ǘƘƛǎ ǎǘǳŘȅΣ ǿŜ ǳǎŜŘ ŀƴ I[¢ ό¢ŀōƭŜ сΦнύΦ Lǘǎ ŀƛƳ ƛǎ мύ ǘƻ ƳŀƪŜ ŜȄǇƭƛŎƛǘ Ƙƻǿ ǿŜ 
ŀǇǇƭƛŜŘ ƻǳǊ ŘŜǎƛƎƴ ƎǳƛŘŜƭƛƴŜǎ ŀƴŘ ƭƛǘŜǊŀǘǳǊŜ ǊŜǾƛŜǿ ƛƴ ǘŀǎƪǎΣ нύ ǘƻ ǿƻǊƪ ŀǎ ŀ 

сл ƘǘǘǇǎΥκκŜƳōƻŘƛŜŘŘŜǎƛƎƴΦǎƛǘŜǎΦǳǳΦƴƭκŀŎǘƛǾƛǘȅκƘƛǎǘƻƎǊŀƳǎκ ŀƴŘ ƘǘǘǇǎΥκκǿǿǿΦƴǳƳǿƻǊȄΦƴƭκŜƴκ 
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guideline for teachers and software designers both for the teaching 
experiment and for future use and 3) to analyze what actually happened 
compared to what we conjectured would happen. When conjectures are 
supported, tasks are kept; if not, we try to explain why and how tasks could be 
improved in a future redesign. In addition, the first author held mini-interviews 
with some (pairs of) students, with questions—Can you describe what the 
similarities and differences are between those graphs? (case-value plot and 
histogram, Task 1)—addressing H1a: By comparing means and variation of 
data in two graphs, students experience that they focus on most apparent 
features that are similar for both graphs (such as shape, number, and position 
of bars), but irrelevant for this comparison. The mini-interviews, together with 
students’ written materials, and videotaped discussions, were to verify 
whether the conjectures of the HLTs were met. Some relevant conjectures are 
discussed in the next section. 
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4 Reinventing arithmetic means in 
histograms 
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6.5 Materials, conjectures, results, and ideas for redesign 
Lƴ ǘƘƛǎ ǎŜŎǘƛƻƴΣ ŦƻǊ ŜŀŎƘ ǎǘŜǇ ƛƴ ǘƘŜ I[¢Σ ǿŜ ǇǊŜǎŜƴǘ ŜȄŀƳǇƭŜ ǘŀǎƪǎΣ ŎƻƴƧŜŎǘǳǊŜǎΣ 
ǊŜǎǳƭǘǎΣ ŀƴŘ ƛŘŜŀǎ ŦƻǊ ǊŜŘŜǎƛƎƴΦ ²Ŝ ŘŜǾŜƭƻǇŜŘ ǎƛȄǘŜŜƴ ŘƛƎƛǘŀƭ ǘŀǎƪǎ ŀƴŘ ǎƛȄ 
ǇŀǇŜǊπŀƴŘπǇŜƴŎƛƭ ǘŀǎƪǎΣ ǘƘŜ ƭŀǘǘŜǊ Ƴŀƛƴƭȅ ŀƛƳƛƴƎ ŀǘ ǘǊŀƴǎŦŜǊ ǘƻ ƻǘƘŜǊ ǎƛǘǳŀǘƛƻƴǎΦ 
!ƭƭ ǘŀǎƪǎ ŀƛƳ ǘƻ ǘŀŎƪƭŜ ŘƛŦŦƛŎǳƭǘƛŜǎ ŘƛǎǘƛƴƎǳƛǎƘŜŘ ƛƴ ǊŜǎŜŀǊŎƘ ƻƴ ƘƛǎǘƻƎǊŀƳǎΦ Lƴ 
ƻǳǊ ŘƛƎƛǘŀƭ ŘŜǎƛƎƴΣ άǎŜǉǳŜƴŎƛƴƎ ƛǎ ƛƳǇƻǊǘŀƴǘέ ό.ŀƪƪŜǊΣ нлмуΣ ǇΦ ртύΦ 

6.5.1 HLT step 1: Learning initiation–experiencing not understanding 

Materials and conjectures HLT step 1: Task 1 

Figure 6.3 Lƴ ¢ŀǎƪǎ м όǘƻǇύ ŀƴŘ нл όōƻǘǘƻƳύΣ ǎǘǳŘŜƴǘǎ ǿŜǊŜ ŀǎƪŜŘ ǘƻ ŎƻƳǇŀǊŜ ŀƴŘ 
ŘŜŎƛŘŜ ǿƘŜǊŜ ƳŜŀƴ ŀƴŘ ǾŀǊƛŀǘƛƻƴ ƻŦ ǿŜƛƎƘǘǎ ƛƴ ŀ ƘƛǎǘƻƎǊŀƳ ŀƴŘ ŎŀǎŜπǾŀƭǳŜ Ǉƭƻǘ ǿŜǊŜ 
ƘƛƎƘŜǊ 

{ǘǳŘŜƴǘǎ ƻŦǘŜƴ Řƻ ƴƻǘ ƪƴƻǿ ǘƘŜȅ Řƻ ƴƻǘ ǳƴŘŜǊǎǘŀƴŘ ƘƛǎǘƻƎǊŀƳǎ όŜΦƎΦΣ /ƘŀǇǘŜǊ 
нύΦ ¢ƘŜǊŜŦƻǊŜΣ ¢ŀǎƪ м ŀƛƳǎ ŀǘ ŜȄǇŜǊƛŜƴŎƛƴƎ ƳƛǎǳƴŘŜǊǎǘŀƴŘƛƴƎ όŎŦΦ .ǳǊǊƛƭƭΣ нлмфύ 
ōȅ ŀǎƪƛƴƎ ǎǘǳŘŜƴǘǎ ǘƻ ŎƻƳǇŀǊŜ ŀǊƛǘƘƳŜǘƛŎ ƳŜŀƴǎ ŀƴŘ ǾŀǊƛŀǘƛƻƴ ƛƴ ŀ ƘƛǎǘƻƎǊŀƳ 
ŀƴŘ ŎŀǎŜπǾŀƭǳŜ Ǉƭƻǘ ǘƘŀǘ ōƻǘƘ ŘŜǇƛŎǘ ǿŜƛƎƘǘ όCƛƎǳǊŜ сΦоύ ŀƴŘ ǎƘŀǊŜ ǎŜǾŜǊŀƭ Ƴƻǎǘ 
ŀǇǇŀǊŜƴǘ ŦŜŀǘǳǊŜǎ όƴǳƳōŜǊΣ ƘŜƛƎƘǘΣ ŀƴŘ ŎƻƭƻǊ ƻŦ ōŀǊǎΤ ƭŜƴƎǘƘ ƻŦ ǿŜƛƎƘǘ ǎŎŀƭŜύ 
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ōǳǘ Ŏƻƴǘŀƛƴ ǘƻǘŀƭƭȅ ŘƛŦŦŜǊŜƴǘ ŘŀǘŀΦ ¢ƘŜ ǘŀǊƎŜǘ ƪƴƻǿƭŜŘƎŜ ƛǎ ǘƘŜ ƪŜȅ ŎƻƴŎŜǇǘǎ ƻŦ 
Řŀǘŀ ŀƴŘ ƻŦ ŘƛǎǘǊƛōǳǘƛƻƴΦ !ǎ ¢ŀǎƪ м ŀƴŘ нл ŀǊŜ ǎƛƳƛƭŀǊΣ ǿŜ ǊŜǇƻǊǘ ǘƘŜƛǊ ǊŜǎǳƭǘǎ 
ǘƻƎŜǘƘŜǊ ό¢ŀōƭŜ сΦоύΦ IƻǿŜǾŜǊΣ ǘƘŜ ŀƛƳ ƻŦ ¢ŀǎƪ нл ƛǎ transfer όǎŜŜ I[¢ ǎǘŜǇ рύΦ 
¢ŀǎƪ м ŎƻƴŎŜƴǘǊŀǘŜǎ ƻƴ ŎǊŜŀǘƛƴƎ ǇǊƻŘǳŎǘƛǾŜ ǎǘǊǳƎƎƭŜ ŀƴŘ ƛƴǘŜƴǘƛƻƴŀƭƛǘȅ ƛƴ 
ǎǘǳŘŜƴǘǎΩ ōƻŘȅπŀǊǘƛŦŀŎǘ ŦǳƴŎǘƛƻƴŀƭ ǎȅǎǘŜƳΦ ¢ƘŜ ŎƻƴƧŜŎǘǳǊŜǎ ŀǊŜΥ 

IмŀΥ  .ȅ ŎƻƳǇŀǊƛƴƎ ƳŜŀƴǎ ŀƴŘ ǾŀǊƛŀǘƛƻƴ ƻŦ Řŀǘŀ ƛƴ ǘǿƻ 
ƎǊŀǇƘǎΣ ǎǘǳŘŜƴǘǎ ŜȄǇŜǊƛŜƴŎŜ ǘƘŀǘ ǘƘŜȅ ŦƻŎǳǎ ƻƴ Ƴƻǎǘ ŀǇǇŀǊŜƴǘ 
ŦŜŀǘǳǊŜǎ όǎǳŎƘ ŀǎ ƴǳƳōŜǊ ŀƴŘ ƘŜƛƎƘǘ ƻŦ ōŀǊǎύ ǘƘŀǘ ŀǊŜ ǎƛƳƛƭŀǊ ŦƻǊ 
ōƻǘƘ ƎǊŀǇƘǎ ōǳǘ ƛǊǊŜƭŜǾŀƴǘ ŦƻǊ ǘƘƛǎ ŎƻƳǇŀǊƛǎƻƴΦ 
IмōΥ  .ȅ ŜȄǇŜǊƛŜƴŎƛƴƎ ƛƴƛǘƛŀƭ ŎƻƴŦǳǎƛƻƴ ƻǊ 
ƳƛǎǳƴŘŜǊǎǘŀƴŘƛƴƎΣ ǎǘǳŘŜƴǘǎΩ ƛƴǘŜƴǘƛƻƴŀƭƛǘȅ ŀƴŘ ƳƻǘƛǾŀǘƛƻƴ ŦƻǊ 
ǳǇŎƻƳƛƴƎ ǘŀǎƪǎ ƛǎ ŜǎǘŀōƭƛǎƘŜŘΦ 

Results HLT step 1 

Table 6.3 CǊŜǉǳŜƴŎȅ ƻŦ ŀƴǎǿŜǊǎ ŦƻǊ ¢ŀǎƪǎ м ŀƴŘ нл όN Ґ р ǇŜǊ ǘŀǎƪύ 

¢ŀǎƪ м ¢ŀǎƪ нл 
aŜŀƴ ±ŀǊƛŀǘƛƻƴ aŜŀƴ ±ŀǊƛŀǘƛƻƴ 

[ŜŦǘ 2 о н л 
wƛƎƘǘ о 2 3 5 
{ŀƳŜ л л л л 

NoteΦ /ƻǊǊŜŎǘ ŀƴǎǿŜǊǎ ƛƴ boldΦ 

¢ƘŜ ŘƛǎŎǳǎǎƛƻƴ ōŜƭƻǿ ƛƭƭǳǎǘǊŀǘŜǎ ǎǘǳŘŜƴǘǎΩ ƛƴƛǘƛŀƭ ŎƻƴŦǳǎƛƻƴ ǿƘƛƭŜ ǎƻƭǾƛƴƎ ¢ŀǎƪ мΥ 

{мΥ ¢ƻ ƳŜΣ ƻƴ ǘƘŜ ǊƛƎƘǘΣ ǘƘŜ ǊƛƎƘǘ ŦǊŜǉǳŜƴŎȅ ƛǎ ƭŜǎǎΣ ǎƻ ǘƘŜƴ ȅƻǳ ƘŀǾŜ ƭŜǎǎΦΦΦ ²ŀƛǘ 
ƪƛƭƻ ȅƻǳ ƘŀǾŜ ǳǇ ǘƻ мл ǘƘŜǊŜ ŀƴŘ ǘƘŜǊŜ ƛǘ ƎƻŜǎ ǳǇ ǘƻ фΦ IƳΚ ώΦΦΦϐ 

{мΥ hƴ ǘƘŀǘ ƭŜŦǘ ƻƴŜ ƛǘΩǎ ƧǳǎǘΦΦΦ hƘΣ ǿŀƛǘΦ Wǳǎǘ мл ƻŦ мΣ н ƻŦ п ƭƛƪŜ ǘƘŀǘΦ ²ŀƛǘΦ 
{нΥ ¦ƳΣ L ŘƻƴΩǘ ǊŜŀƭƭȅ ƎŜǘ ƛǘΦ ώǇŀǳǎŜϐ  
{мΥ hƘΣ ǘƘŜȅΩǊŜ ǎǿƛǘŎƘŜŘΦ hƴ ǘƘŜ ƻǘƘŜǊ ƻƴŜ ƛǘΩǎ ƪƛƭƻƎǊŀƳǎ ƻƴ ǘƘŜ ƭŜŦǘ ŀȄƛǎ ŀƴŘ ƻƴ 

ǘƘŜ ƻǘƘŜǊ ƻƴŜ ƛǘΩǎ ƪƛƭƻƎǊŀƳǎ ƻƴ ǘƘŜ xπŀȄƛǎΦ 
{нΥ ¸ŜŀƘΦ [ƻƻƪ L Ƨǳǎǘ ŘƛŘΣ ƻƴ ǘƘŜ ǊƛƎƘǘ ƻƴŜ L Ƨǳǎǘ ƘŀǾŜ с Ҍ т Ҍ у Ҍ ф Ҍ ф Ҍ ф Ҍ у Ҍ т Ҍ 

сΦ .ǳǘ ǘƘŀǘ ƻƴŜ ƛǎ ƛƴŘŜŜŘΦ
{мΥ {ƻ ǘƘŜƴ ȅƻǳ ƘŀǾŜ м ƻŦ мнΣ н ƻŦ мпΣ о ƻŦ мс ŀƴȅǿŀȅΦ

bƻǘŜ ǘƘŀǘ {м ǘŀƭƪǎ ŀōƻǳǘ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ōŀǊǎ ƛƴ ǘƘŜ ƘƛǎǘƻƎǊŀƳ ŀǎ ƛŦ ǘƘŜǎŜ ŀǊŜ ǘƘŜ 
ƳŜŀǎǳǊŜŘ ǾŀƭǳŜǎ όмнύ ŀƴŘ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ όǿŜƛƎƘǘύ ǎŎŀƭŜ ŀǎ ŦǊŜǉǳŜƴŎƛŜǎ όάм ƻŦ 
мнέύ ƛƴ ƘŜǊ ŘŜǎŎǊƛǇǘƛƻƴΦ [ŀǘŜǊΣ ǘƘŜ ǎŀƳŜ ǘǿƻ ǎǘǳŘŜƴǘǎ ŦƛǊǎǘ ǎŀƛŘ ŀōƻǳǘ ǘƘŜ 
ŘƛŦŦŜǊŜƴŎŜǎ ōŜǘǿŜŜƴ ǘƘŜ ƎǊŀǇƘǎ ǘƘŀǘ ǘƘŜǊŜ ǿŜǊŜ ǎǇŀŎŜǎ ōŜǘǿŜŜƴ ōŀǊǎ ƛƴ ƻƴŜ 
ƎǊŀǇƘ ŀƴŘ ƴƻǘ ƛƴ ǘƘŜ ƻǘƘŜǊΦ ¢ƘŜƴΥ 

{мΥ ǘƘŜ ǿŜƛƎƘǘ ΦΦΦ ǿŀǎ ƻƴ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎ ώƎŜǎǘǳǊŜǎ ƘƻǊƛȊƻƴǘŀƭϐ ǿƛǘƘ ƻƴŜ 
ώƘƛǎǘƻƎǊŀƳϐ ŀƴŘ ƻƴ ǘƘŜ ǾŜǊǘƛŎŀƭ ŀȄƛǎ ǿƛǘƘ ǘƘŜ ƻǘƘŜǊΚ ώƎŜǎǘǳǊŜǎ ǾŜǊǘƛŎŀƭϐΦ ώΧϐ 
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{мΥ aƘƳΦ ²ƛǘƘ ƻƴŜ ƛǘ ǿŀǎ ƴŀƳŜ ώƎŜǎǘǳǊŜǎ ƘƻǊƛȊƻƴǘŀƭϐ ŀƴŘ ǿƛǘƘ ǘƘŜ ƻǘƘŜǊ 
ŦǊŜǉǳŜƴŎƛŜǎ ώƎŜǎǘǳǊŜǎ ǾŜǊǘƛŎŀƭ ΦΦΦϐ ƛƴ ōƻǘƘ ƎǊŀǇƘǎΣ ǘƘŜ ōŀǊǎ ǿŜǊŜ ǘƘŜ ǎŀƳŜ 
ƘŜƛƎƘǘΦ 9ŀŎƘ ǘƛƳŜ ǿƛǘƘ ǘƘŜ ǎŀƳŜ ƛƴŎǊŜŀǎŜǎ ŀƴŘ ŘŜŎǊŜŀǎŜǎ ōǳǘ ōŜŎŀǳǎŜ ƛǘ ǿŀǎ 
ǳƳ ŘƛŦŦŜǊŜƴǘ ǘƘƛƴƎǎ ŀǘ ǘƘŜ Ȅ ŀƴŘ ǘƘŜ ώǇŀǳǎŜϐ ŀǘ ǘƘŜ ŀȄŜǎΣ ƛǘ ǿŀǎ ǎǘƛƭƭ ŘƛŦŦŜǊŜƴǘ 
ώǘȅǇŜ ƻŦ ƎǊŀǇƘǎϐΦ 

¢Ƙƛǎ ŘƛǎŎǳǎǎƛƻƴ ƛƭƭǳǎǘǊŀǘŜǎ Ƙƻǿ ǎǘǳŘŜƴǘǎ ƛƴƛǘƛŀƭƭȅ ŦƻŎǳǎ ƻƴ Ƴƻǎǘ ŀǇǇŀǊŜƴǘ 
ŦŜŀǘǳǊŜǎ όŜΦƎΦΣ ǘƻǳŎƘƛƴƎ ōŀǊǎύ ōŜŦƻǊŜ ǘƘŜȅ ƎŜǘ ǘƻ ǘƘŜ ŜǎǎŜƴŎŜΥ ǘƘŜ ŀȄŜǎ ŘŜǇƛŎǘ 
ŘƛŦŦŜǊŜƴǘ άǘƘƛƴƎǎέΣ ŀƴŘΣ ǘƘŜǊŜŦƻǊŜΣ ǘƘŜ ƎǊŀǇƘǎ ŀǊŜ ŘƛŦŦŜǊŜƴǘΦ Lƴ ǘƘŜ ǿǊƛǘǘŜƴ 
ƳŀǘŜǊƛŀƭǎΣ ǎǘǳŘŜƴǘ {р ǎǘŀǘŜǎ ŦƻǊ ¢ŀǎƪ мΥ άCǊŜǉǳŜƴŎȅ ƛǎ ƘƛƎƘŜǊ ƻƴ ƎǊŀǇƘ ƭŜŦǘ ǘƘŀƴ 
ǊƛƎƘǘ ǎƻ ǘƘŜ ŀǾŜǊŀƎŜ Ƴǳǎǘ ōŜ ƘƛƎƘŜǊΦέ !ƭǘƘƻǳƎƘ ōŀǊǎ ŀǊŜ Ŝǉǳŀƭƭȅ ƘƛƎƘΣ ǘƘŜ 
ǾŜǊǘƛŎŀƭ ŦǊŜǉǳŜƴŎȅ ǎŎŀƭŜ ƛƴ ǘƘŜ ƘƛǎǘƻƎǊŀƳ ƻƴ ǘƘŜ ƭŜŦǘ ƛǎ ŦǊƻƳ л ǘƻ муΣ ǿƘŜǊŜŀǎ 
ǘƘŜ ǾŜǊǘƛŎŀƭ ǿŜƛƎƘǘ ǎŎŀƭŜ ƛƴ ǘƘŜ ŎŀǎŜπǾŀƭǳŜ Ǉƭƻǘ ƻƴ ǘƘŜ ǊƛƎƘǘ ƛǎ ŦǊƻƳ л ǘƻ ф 
ƪƛƭƻƎǊŀƳǎΦ 5ŜǎǇƛǘŜ ƴƻǘƛŎƛƴƎ ŦǊŜǉǳŜƴŎȅ ƛǎ ƻƴ ǘƘŜ ǾŜǊǘƛŎŀƭ ŀȄƛǎΣ ǎƘŜ ǎǘƛƭƭ ǳǎŜŘ ŀƴ 
ƛƴŎƻǊǊŜŎǘ ŎƻƳǇŀǊƛǎƻƴ ƻŦ ǘƘŜ ƳŜŀƴǎΦ CǳǊǘƘŜǊƳƻǊŜΣ ŀƭƭ ŦƛǾŜ ǎǘǳŘŜƴǘǎ ǳǎŜŘ ǊŀƴƎŜ 
ǘƻ ŜǎǘƛƳŀǘŜ ǘƘŜ ǾŀǊƛŀǘƛƻƴΣ ǿƘƛŎƘ ƛǎ ŀƴ ƛƴŦƻǊƳŀƭ ƳŜŀǎǳǊŜ ŦƻǊ ǾŀǊƛŀǘƛƻƴ ǘƘŀǘ Ŏŀƴ 
ōŜ ǎŜŜƴ ŀǎ ŀ ǇǊŜŎǳǊǎƻǊ ŦƻǊ ƳƻǊŜ ŦƻǊƳŀƭ ƳŜŀǎǳǊŜǎ ƭƛƪŜ ǎǘŀƴŘŀǊŘ ŘŜǾƛŀǘƛƻƴΦ ¢ƘŜ 
ǾƛŘŜƻ ŦǊŀƎƳŜƴǘǎΣ ǎǘǳŘŜƴǘǎΩ ǿǊƛǘǘŜƴ ƳŀǘŜǊƛŀƭǎΣ ŀƴŘ ǘƘŜ ƳƛƴƛπƛƴǘŜǊǾƛŜǿǎ ǎǳƎƎŜǎǘ 
ǘƘŀǘ ŎƻƴƧŜŎǘǳǊŜǎ Iмŀō ŀǊŜ ƳŜǘΦ 
Ideas for redesigning HLT step 1 
¢ƻ ŦǳǊǘƘŜǊ ǎǳǇǇƻǊǘ ǎǘǳŘŜƴǘǎΩ ŜȄǇŜǊƛŜƴŎŜ ƻŦ ƳƛǎǳƴŘŜǊǎǘŀƴŘƛƴƎΣ ƛƴ ŀ ŦǳǘǳǊŜ 
ǾŜǊǎƛƻƴ ƻŦ ¢ŀǎƪǎ м ŀƴŘ нлΣ ǿŜ ǿƻǳƭŘ ƘŀǾŜ ǎǘǳŘŜƴǘǎ ǊŜŦƭŜŎǘ ƻƴ Ƙƻǿ Ƴŀƴȅ Řŀǘŀ 
Ǉƻƛƴǘǎ ŜŀŎƘ ƎǊŀǇƘ ŘŜǇƛŎǘǎΦ Lƴ ŀŘŘƛǘƛƻƴΣ ǎǘǳŘŜƴǘǎ Ŏŀƴ ōŜ ŀǎƪŜŘ ǘƻ ŀǾƻƛŘ 
ŎŀƭŎǳƭŀǘƛƴƎΣ ƻǊ ǘƻ ŦƛǊǎǘ ŜǎǘƛƳŀǘŜ ǘƘŜ ƳŜŀƴΣ ŀǎ ǿŜƭƭ ŀǎ ǘƻ ŀƭǎƻ describe ǘƘŜ 
ǾŀǊƛŀōƛƭƛǘȅ ƛƴ ōƻǘƘ ƎǊŀǇƘǎ !ŦǘŜǊ ǎƻƭǾƛƴƎ ¢ŀǎƪ мΣ ǘƘŜȅ ŎƻǳƭŘ ōŜ ŀǎƪŜŘ ǘƻ ǊŜŦƭŜŎǘ ƻƴ 
ŎƻƴŦƭƛŎǘƛƴƎ ǎǘŀǘŜƳŜƴǘǎ ōȅ ƻǘƘŜǊ ǎǘǳŘŜƴǘǎ ŀōƻǳǘ ǘƘŜ ƎǊŀǇƘǎΦ 

6.5.2 HLT step 2: Reinventing the role of the horizontal scale in 
univariate graphs 

Materials and conjectures HLT step 2: Task 2 
I[¢ ǎǘŜǇ н ƛǎ ŎƻƴŎŜƴǘǊŀǘŜŘ ƛƴ ¢ŀǎƪ н όǎƻƳŜ ǘǊŀƴǎŦŜǊ ƛƴ ¢ŀǎƪ пύΦ ¢ƘŜ ǘŀǊƎŜǘ 
ƪƴƻǿƭŜŘƎŜ ŦƻǊ ǎǘǳŘŜƴǘǎ ƛǎ ǘƻ ǇŜǊŎŜƛǾŜ ǘƘŀǘ ǘƘŜ ƳŜŀǎǳǊŜŘ ǾŀƭǳŜ ƛǎ positioned 
ŀƭƻƴƎ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ǎŎŀƭŜ όCƛƎǳǊŜ сΦпύ ōȅ ŦƛƴƛǎƘƛƴƎ ŀ ŘƻǘǇƭƻǘΦ ²Ŝ ŘŜǘŜǊƳƛƴŜŘ 
ŎƻƴǘŜƴǘ ŀƴŘ ŦƻǊƳ ōȅ ŎƘƻƻǎƛƴƎ ŀ ŎƻƴǘŜȄǘ όōƻŘȅ ƘŜƛƎƘǘ ƻŦ ǎǘǳŘŜƴǘǎύ ǘƘŀǘ ƛǎ 
ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ǘƘŜ ǾŜǊǘƛŎŀƭ ŘƛǊŜŎǘƛƻƴ ƛƴ ǘƘŜ ǿƻǊƭŘ ŀƴŘ ƘŀǾƛƴƎ ǎǘǳŘŜƴǘǎ ǇŜǊŦƻǊƳ 
ŀ ƎƻŀƭπƻǊƛŜƴǘŜŘ ǎŜƴǎƻǊƛƳƻǘƻǊ ŀŎǘƛƻƴ ŀƭƻƴƎ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎ ƻƴ ǘƘŜ ŎŀǊǘŜǎƛŀƴ 
ǇƭŀƴŜΣ ǿŜ ŜȄǇŜŎǘ ǘƻ ŎǊŜŀǘŜ ŀ ǎƳŀƭƭ ǇǊƻŘǳŎǘƛǾŜ ǎǘǊǳƎƎƭŜΦ CǊƻƳ ǘƘƛǎ ǎǘǊǳƎƎƭŜΣ ǿŜ 
ƘƻǇŜ ŀ ƴŜǿ ǇŜǊŎŜǇǘƛƻƴ ǿƛƭƭ ŜƳŜǊƎŜ ǘƘŀǘ ǘƘŜ ƳŜŀǎǳǊŜŘ ǾŀƭǳŜǎ ƻŦ ǘƘŜ ǎǘŀǘƛǎǘƛŎŀƭ 
ǾŀǊƛŀōƭŜ ŀǊŜ ŘŜǇƛŎǘŜŘ ƻƴ ǘƘŜ ƘƻǊƛȊƻƴǘŀƭ ŀȄƛǎΦ !ƴ ŜǎǎŜƴǘƛŀƭ ŀǎǇŜŎǘ ƻŦ ǘƘŜ ŘŜǎƛƎƴ 
ƻŦ ǘƘƛǎ ǘŀǎƪ ƛǎ ǘƘŀǘ ǘƘŜ Řƻǘǎ ŀǊŜ ƴƻǘ ǎǘŀŎƪŜŘ ƛƴ ōƛƴǎ ƛƴ ƻƴŜ ǇƛƭŜΦ ²Ŝ ŜȄǇŜŎǘ ƻǳǊ 
ΨƳŜǎǎȅΩ ǎǘŀŎƪƛƴƎ ŎƻƴǘǊƛōǳǘŜǎ ǘƻ ǘƘŜ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ǘƘŀǘ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ŀ ōŀǊ ƛƴ ŀ 
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histogram is related to the number of cases, not to the measured value ‘body 
height.’ When all dots are placed, a check button is available. The conjectures 
are: 

H2a: By moving dots, students perceive that every dot in 
a bar stands for one measured value. 
H2b: By horizontally moving dots to their correct position 
on a horizontal scale, students notice that the position of a dot 
depicts the measured value. 

Figure 6.4 In Task 2, the body heights of ten students are already depicted in a dotplot. 
Students are asked to position the heights of the six students at the far right by sliding 
these dots to their correct place on the number line. The labels on these six dots are 
(from left to right): 191, 176, 161, 185, 174, and 164 

Results HLT step 2 
Despite our design guidelines, we did not see much productive struggle. All 
students immediately tried to move the dots to their correct position. Students 
understood that the values along the horizontal axis were depicting body 
height. One student noticed he cannot choose the vertical position of balls: 

S4:  Well, you can’t choose in height. 
S5:  No, he adjusts it himself. 

One of the mini-interviews illustrates that the conjectures were met for these 
students:  

S1: That determines the [body] height. Of the student.  
T: And how, um, how do you see that it has a certain height? 
S2: What do you mean? Where it is located? Like, on the x-axis [gestures 

horizontally with index finger] or something? 

Ideas for redesigning HLT step 2 
The action of connecting the data points with the table is missing in the 
current design of this task. In the next cycle, student names rather than 
numbers will be put on the balls so that students need to use the table. 
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6.5.3 HLT step 3: Reinventing the role of the vertical scale in 
histograms 

Materials and conjectures HLT step 3: example Task 3 
Tasks 3 and 4 both aim at reinventing histograms. The target knowledge is 
some aspects of the key concept of data, such as the number of cases and the 
measured values. The context is creating a histogram that supports a school 
principal in deciding which two chair sizes to buy. Each chair size is suitable for 
students with certain body heights. The histogram depicts students’ heights. As 
chair sizes are related to students’ heights, the histogram could be used for 
taking an informed decision about what chair sizes to buy. Both tasks 
concentrate on the following content: the height of a bar in a histogram 
depicting the number of cases in it (only when bin widths are equal). In Task 3 
(Table 6.2 and Figure 6.5), students first drag down sliders to make the bins. 
Next, a pulled-up strip creates the height of the bar. In this task, a goal-
oriented sensorimotor action aims to facilitate the perception of the height of 
the bar depicting the number of cases. When all bars are done, there is a check 
button with a green v or red x as feedback. The size (height) of the dots is 
purposefully not chosen as a unit height in the histogram, as we want students 
to think about what the height of each bar represents. 

Tasks 3 and 4 have a similar layout. In Task 4, we created a context in 
which students need to move some dots to a new position based on changes in 
the data. As this influences the histogram, students also need to adjust the 
bars’ heights. Task 4 aims to ensure that students understand the relation 
between the height of a bar and the number of dots (cases) in it. After Tasks 2–
4, we expect students to understand these three most important aspects of 
the key concept of data: perceive that there is only one statistical variable 
(students’ height), that the values of this variable are along the horizontal axis, 
and that the height of the bar is related to the number of cases in each bar 
(equal bin widths only). The conjectures are: 

H3a:  By dragging the (grey) separating lines down, 
students notice that there are different measured values 
(students’ height) depicted in one bar.  
H3b:  By moving the (orange) sliders up, students notice 
that the height of the bars is related to the number of cases in a 
bar when class intervals are equal.  

Results HLT step 3 
All students mention that they do not know what a histogram is. S5 slightly 
hesitates when discussing the 10 cm steps. She first gestures horizontally to 
indicate which axis this 10 cm refers to and then states: “Yes, that’s right”. 



Chapter 6  

232 

Note that this gesture matches the enactments in the previous task and helped 
this student to rethink what runs along the horizontal axis. In addition, S4 
dragging down sliders—creating bins—was enough for S5 to see it boxed as 
shown by her bimanual gesture, in which she uses her thumb and index finger 
as if grabbing two boxes, and moves these down, repeating S4’s action. Her 
gestures grounded her understanding. The teacher intervenes a bit later to 
explain they can pull the orange slider up. Guided by S5, S4 immediately pulls it 
up to the correct height for each bar. S1 and S2 understood the horizontal 
binning (“from 170 to 180 is one size [of students’ length for which chairs are 
to be bought]”), but did not know what the height of each bar represents. 
Their first attempt was to make all bars as high as the dotplot (Figure 6.5, left). 
Next, they used the context: two bars for the chosen chair sizes (Figure 6.5, 
middle). S2 plays with the middle bar and raises it all the way up to the 
maximum height possible (seven). This movement allowed for a new 
perception, as now S1 says: "Oh, maybe you should put as far up … as there 
are people in the box”. Once the histogram is constructed, they discuss the 
graph: 

Figure 6.5 Several attempts of S1 and S2 to construct a transparent histogram over a 
messy dotplot; the right one being correct 

 

S2: What is this scan? [Figure 6.5, right] 
S1: This is a histogram.  
S2: Huh, but he [the school principal] could only order two, right?  
S1: Yes, but this may help him, because now he knows.... now he can see that he has 

to be in those first three [she means the middle three] then he needs anyway 
that one [points to the middle bar] and then he can choose between those other 
two [left and right of the middle bar] because he knows how many people are in 
there.  

S2: Oh, that’s clever. 
 

In the mini-interview, the teacher-researcher asked: “And is everyone in such a 
bar the same height?” Both S1 and S2 pertinently answered no, in line with 
H3a. S4 and S5 said the height of each bar represents the number of people in 
that bar. S3 worked alone. He first used the context and created a histogram 
with two bars: each bar representing the number of chairs to be ordered 
(Figure 6.6), but he could not get the bar at the height he wanted (eleven). S3: 
"Wait. There are sixteen students [reads the text again] … and I can specify a 
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ноо 

ƳŀȄƛƳǳƳ ƻŦ ŦƻǳǊǘŜŜƴ ŎƘŀƛǊǎ ƛƴ ǘƻǘŀƭΦϦ ¢ƘŜƴΣ ǘƘŜ ǘŜŀŎƘŜǊ ǎŀƛŘ ƎǊŀǇƘǎ ŀǊŜ ǳǎŜŘ 
ŦƻǊ άǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ǎƛǘǳŀǘƛƻƴ ŀǎ ƛǘ ƛǎΣέ ŜƴƻǳƎƘ ŦƻǊ ǘƘŜ ǎǘǳŘŜƴǘ ǘƻ ǳƴŘŜǊǎǘŀƴŘ 
Ƙƻǿ ǘƻ ŎƻƴǎǘǊǳŎǘ ǘƘŜ ƎǊŀǇƘΦ !ƭǘƻƎŜǘƘŜǊΣ ǘƘƛǎ ǎǳƎƎŜǎǘǎ ǘƘŀǘ Iоō ƛǎ ŎƻƴŦƛǊƳŜŘΦ 

Figure 6.6 {ǘǳŘŜƴǘ {о ŦƛǊǎǘ ǘǊƛŜǎ ǘƻ ǊŀƛǎŜ ǘƘŜ ōŀǊǎ ŀǎ ƘƛƎƘ ŀǎ ǘƘŜ ƴǳƳōŜǊ ƻŦ ŎƘŀƛǊǎ ǘƘŀǘ 
ƴŜŜŘ ǘƻ ōŜ ƻǊŘŜǊŜŘΣ ƘŜƴŎŜ ǳǎƛƴƎ ǘƘŜ ǇǊƻōƭŜƳ ŎƻƴǘŜȄǘ ŦƻǊ ŎǊŜŀǘƛƴƎ ǘƘŜ ƎǊŀǇƘ 

Ideas for redesigning HLT step 3 
tŀǊǘ ƻŦ ǘƘŜ ǎǘǳŘŜƴǘǎΩ ǎǘǊǳƎƎƭŜ ŎŀƳŜ ŦǊƻƳ ǘǊȅƛƴƎ ǘƻ ŎǊŜŀǘŜ ŀ ƎǊŀǇƘ ǘƘŀǘ 
ŀƴǎǿŜǊŜŘ ǘƘŜ ǉǳŜǎǘƛƻƴ ƻŦ ǿƘƛŎƘ ǘǿƻ ŎƘŀƛǊ ǎƛȊŜǎ ƴŜŜŘŜŘ ǘƻ ōŜ ƻǊŘŜǊŜŘ ƛƴǎǘŜŀŘ 
ƻŦ ŎǊŜŀǘƛƴƎ ŀ ƘƛǎǘƻƎǊŀƳ ǿƛǘƘ ǘƘŜ ŘŀǘŀΦ bŜȄǘ ǘƛƳŜΣ ǿŜ ǎǳƎƎŜǎǘ ŀǎƪƛƴƎ ǎǘǳŘŜƴǘǎ ǘƻ 
ŎǊŜŀǘŜ ŀ ƘƛǎǘƻƎǊŀƳ ŘŜǇƛŎǘƛƴƎ ǘƘŜ ƴǳƳōŜǊ ƻŦ ǇŜƻǇƭŜ ŜŀŎƘ ŎƘŀƛǊ ǎƛȊŜ ƛǎ ǎǳƛǘŀōƭŜ 
ŦƻǊΦ CǳǊǘƘŜǊƳƻǊŜΣ ǘƘŜ ǊŜǎǳƭǘǎ ǎǳƎƎŜǎǘ ƻǳǊ ƛƴƛǘƛŀƭ ŘŜǎƛƎƴ ŘŜŎƛǎƛƻƴ ǘƻ ƳŀƪŜ ǘƘŜ 
ǳƴƛǘǎ ƻƴ ǘƘŜ ǾŜǊǘƛŎŀƭ ŀȄƛǎ ƴƻǘ Ŝǉǳŀƭ ǘƻ ǘƘŜ ǎƛȊŜ ƻŦ ǘƘŜ Řƻǘǎ ŎƻƴǘǊƛōǳǘŜŘ ǘƻ ǘƘŜ 
ǇǊƻŘǳŎǘƛǾŜ ǎǘǊǳƎƎƭŜ ŀōƻǳǘ ǿƘŀǘ ǘƘŜ ǾŜǊǘƛŎŀƭ ŀȄƛǎ ƛǎ ŘŜǇƛŎǘƛƴƎΦ ¢ƘŜǊŜŦƻǊŜΣ ǿŜ 
ǊŜŎƻƳƳŜƴŘ ƪŜŜǇƛƴƎ ǘƘƛǎΦ  

6.5.4 HLT step 4: Reinventing arithmetic means in histograms 

Materials and conjectures HLT step 4: example Task 8 
¢ŀǎƪǎ рςмо ŀǊŜ ŘŜǎƛƎƴŜŘ ǘƻ ƎǳƛŘŜ ǎǘǳŘŜƴǘǎ ǘƻ ǊŜƛƴǾŜƴǘ ƻǊ ŘƛǎŎƻǾŜǊ ǎƻƳŜ 
ǎǇŜŎƛŦƛŎ ŀǎǇŜŎǘǎ ƻŦ ǘƘŜ ƪŜȅ ŎƻƴŎŜǇǘ ƻŦ ŘƛǎǘǊƛōǳǘƛƻƴ ƛƴ ƘƛǎǘƻƎǊŀƳǎΥ ǘƘŜ ŀǊƛǘƘƳŜǘƛŎ 
ƳŜŀƴ ŀǎ ŀ ŘŜǎŎǊƛǇǘƛǾŜ ƳŜŀǎǳǊŜ ƻŦ ŀ ŘƛǎǘǊƛōǳǘƛƻƴ ŀƴŘ ƛǘǎ ǊŜƭŀǘƛƻƴ ǘƻ ǘƘŜ ǾŀǊƛŀǘƛƻƴ 
ƛƴ ǘƘŜ ŘŀǘŀΦ ²Ŝ ǾŀǊƛŜŘ ǘŀǎƪǎ ŀƴŘ ŀǊǘƛŦŀŎǘǎ ό.ŜǊƴǎǘŜƛƴΣ мффсΤ {ƘǾŀǊǘǎ Ŝǘ ŀƭΦΣ 
нлнмύΦ !ǎ ŀƴ ƛƭƭǳǎǘǊŀǘƛƻƴΣ ǿŜ ŘƛǎŎǳǎǎ ¢ŀǎƪ уΣ ǘƘŜ ŀƛƳ ƻŦ ǿƘƛŎƘ ǿŀǎ ǘƻ ƭŜŀǊƴ ǘƘŀǘ 
ǘƘŜ ƭŀǊƎŜǊ ǘƘŜ ŘƛǎǘŀƴŎŜ ƻŦ ŀ ƳŜŀǎǳǊŜŘ ǾŀƭǳŜ ƛǎ ŦǊƻƳ ǘƘŜ ƳŜŀƴΣ ǘƘŜ ǎǘǊƻƴƎŜǊ ƛǘǎ 
ƛƴŦƭǳŜƴŎŜΦ {ǘǳŘŜƴǘǎ ŎƻƴǎǘǊǳŎǘ ŀ ƘƛǎǘƻƎǊŀƳ ŦǊƻƳ ŀ ǘŀōƭŜ ǿƛǘƘ ƳŀǊƪǎ όǘǿƻ ǘƛƳŜǎ р 
ŀƴŘ ŜƛƎƘǘ ǘƛƳŜǎ фύΦ !ŦǘŜǊ ŜǎǘƛƳŀǘƛƴƎ ǘƘŜ ƳŜŀƴΣ ǎǘǳŘŜƴǘǎ ǘƛŎƪ ǘƘŜ ōŀƭŀƴŎŜ 
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button. Then, a line with a blue triangle underneath it appears (Figure 6.7, 
left). The triangle can slide horizontally. To reach the task’s aim, students 
untick the balance button and alternately add high (10) and low (1) marks 
(Figure 6.7, middle and right) and estimate and check means in between. 
During estimation, the tool was not visible. The idea of a balance tool is based 
on what students spontaneously described when solving similar tasks in our 
previous eye-tracking research (Chapter 3). Based on our design guidelines, 
we, therefore, introduced this artifact. The conjectures are: 

H8a:  By adding low and high numbers alternately, 
students experience that higher numbers do not contribute more 
to the mean than lower numbers. 
H8b:  By adding lower numbers further away from the 
mean and higher numbers closer to the mean, students perceive 
that numbers further away from the mean influence the mean 
more than numbers closer to the mean.  

Figure 6.7 Example stages Task 8. Dotted line: students’ estimation. Blue line: balance. 
Checking the estimation (left), adding a new mark (middle, balance tool not ticked), 
comparing estimated and actual mean (right). The solid vertical line and the dotted line 
are bolded here for clarity 

 

Results HLT step 4 
While performing Task 8, S1 and S2 spontaneously formulated three ideas. We 
speculate that these were provoked by having students repeatedly estimate 
the balance point, write their estimation down, and then check it. 
Furthermore, the question “What do you notice about the balance points?” 
may have helped to form their ideas: 

• If you add a ten and a one the mean stays the same (S1) 
• Alternately adding tens and ones moves the mean toward 5.5 (S2) 
• Adding a ten increases the mean (which is then around 7) by 0.2 and 

adding a one decreases the mean by 0.4. (S1) 



¦ƴŘŜǊǎǘŀƴŘƛƴƎ ƘƛǎǘƻƎǊŀƳǎ ƛƴ ǳǇǇŜǊπǎŜŎƻƴŘŀǊȅ ǎŎƘƻƻƭ 

нор 

¢ƘŜ ǎǘǳŘŜƴǘǎ ǘŜǎǘŜŘ ǘƘŜƛǊ ŦƛǊǎǘ ǘǿƻ ƛŘŜŀǎ ōȅ ŀŘŘƛƴƎ ǘƘŜ ƳŀȄƛƳǳƳ ǇƻǎǎƛōƭŜ 
ƴǳƳōŜǊ ƻŦ ǘŜƴǎ όƴƛƴŜύ ŀƴŘ ƻƴŜǎ όƴƛƴŜύΦ .ȅ ǳǎƛƴƎ ǘƘŜ ōŀƭŀƴŎŜ ǘƻƻƭΣ ǘƘŜȅ 
ŎƻƴŦƛǊƳŜŘ ǘƘŜ ǎŜŎƻƴŘ ƛŘŜŀΦ ¢ƘŜƴ {м ǘǊƛŜǎ ǘƻ ǳƴŘŜǊǎǘŀƴŘ ǿƘȅΥ 

{мΥ .ǳǘ ǿƘȅ ǿƻǳƭŘ ƛǘ Ǝƻ ƳƻǊŜ ǘƻ рΦрΚ hƘ ȅŜǎΣ ōŜŎŀǳǎŜ ƻŦ ŎƻǳǊǎŜ ƛǘ ƎƻŜǎ ǘƻ ǘƘŜ 
ƳƛŘŘƭŜ ƻŦ ǘŜƴ ŀƴŘ ƻƴŜΦ  

{нΥ ¸ŜǎΦ 
{мΥ hƘƘΦ 
{нΥ 9ȄŀŎǘƭȅΗ 

¢ƘŜȅ ƭƻǿŜǊŜŘ ǘƘŜ ǘŜƴǎ ŀƴŘ ƻƴŜǎ ŀƴŘ ǘŜǎǘŜŘ ǘƘŜ ǘƘƛǊŘ ƛŘŜŀ ōȅ ŀƭǘŜǊƴŀǘŜƭȅ ŀŘŘƛƴƎ 
ŀƴƻǘƘŜǊ ǘŜƴ ŀƴŘ ŀƴƻǘƘŜǊ ƻƴŜΦ CŜŜŘōŀŎƪ ŦǊƻƳ ǘƘŜ ōŀƭŀƴŎŜ ǘƻƻƭ ŎƻƴŦƛǊƳŜŘ ǘƘŜƛǊ 
ƛŘŜŀΣ ǿƘƛŎƘ ǘǳǊƴŜŘ ƻǳǘ ǘƻ ōŜ ŀ ƎƻƻŘ ŀǇǇǊƻȄƛƳŀǘƛƻƴΦ {ƛƴŎŜ ǘƘƛǎ ǿŀǎ ǘƘŜ ŜƴŘ ƻŦ 
ǘƘŜ ǘŀǎƪΣ ǘƘŜȅ ŘƛŘ ƴƻǘ ŜȄǇŜǊƛŜƴŎŜ ǘƘŀǘ ǘƘƛǎ ƛŘŜŀ ǿŀǎ ŦŀƭǎŜΦ ¢Ƙƛǎ ǘŀǎƪ ǇǊƻǾƻƪŜŘ 
ƳƻǊŜ ŀƴŀƭȅǘƛŎŀƭ ǊŜŀǎƻƴƛƴƎ ŀōƻǳǘ ǘƘŜ ƳŜŀƴ ŘǳŜ ǘƻ ǘƘŜ Ǌŀǘƛƻ ƻŦ ǘƘŜ ƘŜƛƎƘǘǎ ƻŦ 
ǘƘŜ ōŀǊǎΦ CƻǊ ŜȄŀƳǇƭŜΣ ŀŦǘŜǊ ǇƭŀŎƛƴƎ ǘƘŜ ŦƛǊǎǘ ǘǿƻ ōŀǊǎ όǘǿƻ ŦƛǾŜǎ ŀƴŘ ŜƛƎƘǘ 
ƴƛƴŜǎύΣ {р ǊŜŀǎƻƴŜŘ ŀǘ ŦƛǊǎǘ ǘƘŀǘ ƻƴŜ ōŀǊ ƛǎ ŦƻǳǊ ǘƛƳŜǎ ǘƘŜ ƻǘƘŜǊ ŀƴŘΥ  

{рΥ CƻǳǊ ǘƛƳŜǎ ōŜǘǿŜŜƴ ǘƘƻǎŜ ǘƘƛƴƎǎΦ bƻΣ ƴƻǿ Ƴȅ ŎŀƭŎǳƭŀǘƛƻƴǎ ŀǊŜ ƴƻǘ ŎƻǊǊŜŎǘΦ 
ώΦΦΦϐ hƘΣ ǘƘƛǎ ƛǎ ŘƻƴŜ ǘŀŎǘƛŎŀƭƭȅΣ ǘƘƛǎ ƛǎ ŘƻƴŜ ǘŀŎǘƛŎŀƭƭȅ ώǎƻǳƴŘǎ ŜȄŎƛǘŜŘϐΦ Lƴ ǘƘŜ 
ƻƴŜ ŦƻǳǊ ǘƛƳŜǎ ŀƴŘ ƛƴ ǘƘŜ ƻǘƘŜǊ ŦƻǳǊ ƛǎ ŀŘŘŜŘΦ ώŎƻǳƴǘǎ ŀƴŘ Ǉƻƛƴǘǎ ǿƛǘƘ ǇŜƴϐ 
ŦƻǳǊΦ {ƘƻǳƭŘ ǘƘŀǘ ΦΦΦ ōŜ ƻƴ ǘƘŜ ŜƛƎƘǘΣ ŀƴȅǿŀȅΦ  

¢ƘŜ ǘŜŀŎƘŜǊ ŀǎƪŜŘ ǿƘȅΦ ¢Ƙƛǎ ƭŜŘ ǘƻ ƳƻǊŜ ŘƛǎŎǳǎǎƛƻƴ ōŜǘǿŜŜƴ ǘƘŜ ǎǘǳŘŜƴǘǎΣ ǿƘƻ 
ǘƘŜƴ ŘŜŎƛŘŜŘ ǘƘŀǘ ƛǘ ǎƘƻǳƭŘ ōŜ ƳƻǊŜ ǘƘŀƴ ŜƛƎƘǘ ŀƴŘ Ǉǳǘ ǘƘŜ ǾŜǊǘƛŎŀƭ ƭƛƴŜ ŦƻǊ ǘƘŜ 
ŜǎǘƛƳŀǘƛƻƴ ƻƴ уΦн ōŜŦƻǊŜ ǘƛŎƪƛƴƎ ǘƘŜ ōŀƭŀƴŎŜ ǘƻƻƭΦ {о ƳŜƴǘƛƻƴǎ ƛƴ Ƙƛǎ ǿǊƛǘǘŜƴ 
ƳŀǘŜǊƛŀƭǎΥ άL ǘƘƻǳƎƘǘ ǘƘŀǘ ǘƘŜ м ŀƴŘ мл ΨǿŜƛƎƘǘŜŘΩ ǘƘŜ ǎŀƳŜΣ ώƴƻǿ Lϐ ƪƴƻǿ ώƛǘ ƛǎϐ 
ƴƻǘ ŎƻǊǊŜŎǘΣ ǿƘƛŎƘ ƳŀŘŜ ƳŜ ǿǊƻƴƎΦέ Iƛǎ ǿǊƛǘǘŜƴ ƳŀǘŜǊƛŀƭǎ Ŏƻƴǘŀƛƴ ŀ ǘŀōƭŜ ǿƛǘƘ 
мǎΣ млǎΣ ŀƴŘ ŀǾŜǊŀƎŜǎΦ IŜ ŜȄǇƭŀƛƴǎ ǘƘŀǘ ŀŘŘƛƴƎ ŀ мл ƛƴŦƭǳŜƴŎŜǎ ǘƘŜ ƳŜŀƴ ƭŜǎǎ 
ǘƘŀƴ ŀŘŘƛƴƎ ŀ мΦ ¢ŀƪŜƴ ǘƻƎŜǘƘŜǊΣ ǘƘƛǎ ǎǳƎƎŜǎǘǎ ǘƘŀǘ Iуŀō ŀǊŜ ƳŜǘΦ 
Ideas for redesigning HLT step 4 
Lƴ ŀ ŦǳǘǳǊŜ ŘŜǎƛƎƴ ŎȅŎƭŜΣ ǿŜ ƳƛƎƘǘ ŜȄǇƭƛŎƛǘƭȅ ŀǎƪ ŦƻǊ ǎǘǳŘŜƴǘǎΩ ƛŘŜŀǎ ŀƴŘ 
ŜƴŎƻǳǊŀƎŜ ǘƘŜƳ ǘƻ ǘŜǎǘ ǘƘŜǎŜΦ ¢ƘŜ ǘƘƛǊŘ ƛŘŜŀ όŦǊƻƳ {мύ ŎƻǳƭŘ ƘŀǾŜ ōŜŜƴ 
ŎƘŀƭƭŜƴƎŜŘ ƛŦ ǘƘŜ ƳŀȄƛƳǳƳ ǇƻǎǎƛōƭŜ ŦǊŜǉǳŜƴŎȅ ŎƻǳƭŘ ōŜ ƘƛƎƘŜǊΦ !ƴƻǘƘŜǊ 
ǊŜŦƭŜŎǘƛƻƴ ƛǎ ǘƘŀǘ ǿŜ Ƴŀȅ ƘŀǾŜ ƛƴǘǊƻŘǳŎŜŘ ǘƘŜ ōŀƭŀƴŎŜ ǘƻƻƭ ǘƻƻ ŜŀǊƭȅΣ ŀǎ 
ǎǘǳŘŜƴǘǎ ƘŀŘ ƴƻ ǘǊƻǳōƭŜ ŦƛƴŘƛƴƎ ǘƘŜ ōŀƭŀƴŎŜ Ǉƻƛƴǘ ŀƴŘ ǊŜƛƴǾŜƴǘƛƴƎ ƛǘ ŀǎ ǘƘŜ 
ƳŜŀƴ ōǳǘ ŘƛŘ ƴƻǘ ǳǎŜ ƛǘ ƛƴ ǘǊŀƴǎŦŜǊ ǘŀǎƪǎ όŜΦƎΦΣ ¢ŀǎƪǎ му ŀƴŘ нлΤ ǎŜŜ I[¢ ǎǘŜǇ рύΦ 
Lƴ ƭƛƴŜ ǿƛǘƘ ƻǳǊ ŘŜǎƛƎƴ ƎǳƛŘŜƭƛƴŜΣ ǿŜ ǇǊƻǇƻǎŜ ǘƻ ǇƻǎǘǇƻƴŜ ǘƘƛǎ ƳŀǘƘŜƳŀǘƛŎŀƭ 
ŀǊǘƛŦŀŎǘ ǳƴǘƛƭ ǎǘǳŘŜƴǘǎ άƎŜǘέ ŀ ǇŜǊŎŜǇǘƛƻƴ ƻŦ ǘƘŜ ƳŜŀƴΦ hƴƭȅ ǘƘŜƴ ƳƛƎƘǘ ŀ 
ōŀƭŀƴŎŜ ōŜ ƛƴǘǊƻŘǳŎŜŘ ŀǎ ŀ ǊŜƛŦƛŎŀǘƛƻƴ ƻŦ ǘƘŜƛǊ ƛƴƛǘƛŀƭ ǇŜǊŎŜǇǘƛƻƴΦ 
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Figure 6.8 Possible redesign of Task 5 from action-based embodied design perspective 
(left: incorrect, as mean is not in the correct position, right: correct, as mean and 
heights of bars are at a correct position). The left bar can be moved up and down only; 
the right bar is fixed. The triangle (mean) can only be moved horizontally 

 

As an example, we could redesign Task 5—the first task that uses the mean (by 
asking for the balancing point in a bimodal histogram). One option is to 
introduce the mean through an action-based embodied design (Abrahamson et 
al., 2020) by using a motor-control problem. For example, one bar could have 
been drawn already (right, black bar, Figure 6.8) and one could have the 
students manipulate the height of a second (left, red) bar as well as the 
horizontal position of the (blue) triangle (mean) until they hit a correct 
combination of both. Students can then be asked to keep the task green while 
adjusting the bar and triangle continuously. Furthermore, a green/red frame 
(or screen) might be preferable over colored bars, as colored bars in the foveal 
view area might hinder the creation of perceptual structures (Bakker, Shvarts, 
et al., 2019). Having students fluently solve one or more motor-control 
problems regarding the mean, allows them to reinvent the balance artifact 
themselves before we introduce it. Therefore, in our example, the horizontal 
strip of the balance is removed and only the triangle is kept as a preparation 
for future introduction of this balance. Some applications use the horizontal 
axis as a balance (e.g., TI, 2015). As the digital environment we used would 
require too much reprogramming, we used a horizontal strip below the axis 
instead. It is left for future research to investigate how the placement of the 
balance (and triangle) influences students’ conceptualization of the mean. 

In retrospect, we note that Task 8 provided an opportunity to further 
mathematize by working toward the algorithm for calculating the mean (the 
process, Skemp, 1976) through the equilibrium of moments. In a future design 
cycle, we could, therefore, have students first estimate and then calculate the 
mean, and have them reflect on the algorithm. The benefits of estimating the 
mean from a histogram for large datasets might then also become more 
evident. 
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6.5.5 HLT step 5: Confirming learning—transfer to other contexts and 
environments 

Materials and conjectures HLT step 5: example Task 18 
The aim of step 5 is to create transfer to other contexts and environments. In 
Tasks 5, 14, and further, we vary contexts. As histograms are specifically 
designed for large datasets, we continued from Task 15 with increasingly large 
sets in realistic contexts. Since several studies show each environment creates 
other challenges (e.g., Alberto et al., 2022), some tasks were delivered on 
paper (Tasks 18–20 and 22). In Task 18, for example, students were asked to 
construct a histogram from a frequency table with given bin widths (annual 
income classes, see Appendix A of this chapter). Students first needed to draw 
a histogram for a given frequency table and then draw lines in it. Context and 
conjectures for this task were: 

If you have less than 1694 euros per month to spend as a family 
with one child, you are officially poor. At 1850 euros you don’t 
have much but just enough […]. Indicate with a blue line in the 
histogram where the poverty line lies. For single people, the 
poverty line is 1039 euros per month. Indicate this with a red line. 

H18a: By drawing a histogram from a frequency table, students perceive how an 
interval (e.g., < -10, 0] ) is represented on the continuous horizontal scale 
in histograms.  

H18b: By drawing a histogram on paper from a frequency table, transfer to 
another environment (paper) is established. 

H18c: By drawing vertical lines for other values than the mean, students notice 
what part of the population is to the left of this line. 

Results HLT step 5 
Students performed as expected on most of the transfer tasks. The results of 
Task 20 (Table 6.3) indicate an improvement compared to Task 1. An exception 
is paper Task 18, which has mixed results. In it, all students but S2 (Figure 6.9, 
bottom left) correctly constructed a histogram with a continuous scale (ratio 
measurement level) along the horizontal axis, suggesting that H18ab is met. S2 
asked S1 if annual income must go along the x-axis, and she horizontally 
gestured out this axis, in line with the newly built body artifact (here: x-axis) 
functional system in Task 2. S2 then gestures a horizontal line while confirming 
“annual income at the x-axis” and gestures a vertical line for “number of 
households on the y-axis.” This gesturing suggests that they consider variables 
as enacted on a coordinate plane, which was what we aimed for in HLT steps 2 
and 3.  

To our surprise, three students drew horizontal lines for income: S1, S4, 
and S5 (Figure 6.9). The other two students corrected their initial horizontal 
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lines. S1 looked at the number [1039], then at S2, put her triangle ruler 
horizontally, looked at the number again, and drew a horizontal red line [at 
1039, the monthly income e.g., Goderis et al., 2019]. She was attracted to the 
more similar numbers along the vertical axis (number of households in 
thousands) rather than the annual income numbers (in thousands, CBS, 2021) 
on the horizontal axis. When finished, S1 and S2 compared graphs, and S2 
gestured a vertical line on the paper, first with her index finger and then with 
her whole hand, saying “you should indicate it like this.” S1 responded: “but it 
is just…” and then paused, with her index finger on the words “X annual 
income thousands,” marking the variable along the horizontal axis. She 
thought, then said: “Oh uh ha-ha,” and then laughed “Oh, but it indeed needs 
to be like this,” and gestured a vertical line. S1 noticed her mistake but did not 
change the drawing. Students S4 and S5 also were attracted to the vertical axis 
and drew these horizontal lines, most likely also using similarity between 
numbers. Again, we see no thinking. One explanation (cf. Kaplan et al., 2014) is 
that the magnitude of the numbers (number of households in thousands) 
along the vertical axis seemed to better match the magnitude of monthly 
income. To avoid this, students should first convert monthly income to annual 
income (e.g., by multiplying by 12 or 13). From an embodied perspective, we 
interpret this as students’ body-artifacts (numbers) functional systems for 
finding similar numbers being so strong that they do not even think about 
what axis the number should go on.  
Ideas for redesigning HLT step 5 
Note that the intervals in the histogram of S2 could indicate that this student 
sees the bins as categories instead of a numerical scale. This conjecture could 
be tested in a future design cycle by presenting students with an unordered 
frequency table or with zero frequencies. Furthermore, to establish a better 
transfer of the measured values positioned along the horizontal axis, we 
suggest adding reflection questions. Next, in step 4 of the HLT, we could design 
some tasks that ask for the position of other values than the mean, with 
feedback. Another option is to extend HLT step 2 to paper before introducing 
step 3. Furthermore, the problem of monthly and annual income could have 
been avoided by providing annual income in all cases. However, for classroom 
use, we would prefer to keep the numbers from the original data sources as 
students could also encounter these in their daily life. Next, we would have a 
classroom discussion on the need to convert some numbers, rather than 
avoiding this problem. In addition, when working toward density histograms, 
using frequency for the height of bars in histograms might hinder further 
conceptualization. Using relative frequencies might solve this problem.  
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6.6 Conclusions and discussion 
In this study, the central question was: What sequence of tasks designed from 
an embodied instrumentation perspective can support students’ 
understanding of histograms and the underlying key concepts? Our answer is a 
5-step hypothetical learning trajectory (HLT). Those steps were designed 
according to an embodied instrumentation approach in which learning is seen 
as enactment: Step 1 sets up a general goal for learning by having students 
experience a lack of understanding; Steps 2–4 aim to fulfill this goal by having 
students become aware of the role of the horizontal scales and reinvent the 
role of the vertical scales and arithmetic means in histograms. Transfer to 
other context and environments in Step 5 was a way for the students—and 
researchers—to confirm whether learning occurred. A sequence of 22 tasks 
was created to foster these steps. The tasks explicitly asked for goal-oriented 
sensorimotor actions that prompt students to perceive the most difficult 
aspects of how data, and their distribution, are depicted in histograms. 
Affordances of the digital environment allowed for direct exploration of 
histograms’ qualities: axes, dots representing cases, histogram bars, and mean 
were directly extending students’ hands in their body-artifacts functional 
systems, thus allowing for instrumented actions of representing data with 
histograms (Shvarts et al., 2021). Furthermore, the students were asked to 
search for the task’s solutions, rediscovering several aspects of a histogram 
and including them in their emerging functional systems. The process of 
searching for the task solution is conceptualized as a productive struggle (e.g., 
Kapur, 2014; Roth, 2019). Productive struggle can be understood as “students 
attempting to make sense of something that is not immediately apparent, 
working toward reconfiguring their understanding of facts, ideas, or 
procedures” (Reitemeyer, 2017, p. ix). An example of this is the unit height for 
bars in histograms not being equal to the size of dots (e.g., Task 3), which 
invited students to explore the situation and notice this height is equal to the 
number of measurements (in the equal bin widths case).  

Comparing students’ performances with the conjectures from the 
anticipated HLT, our case study shows most conjectures were met. Students 
experienced misunderstanding in the first step, had no trouble imagining the 
role of the horizontal scale, struggled but reinvented the role of the vertical 
scale in histograms, seemed to have an easy task estimating the balance point 
of a histogram and stated that its practical relevance is that it is the arithmetic 
mean. The final task showed students mostly could transfer the acquired 
knowledge to paper, so the functional system formed within a digital 
environment could easily re-emerge in a different environment. Students’ 
gestures indicated using actions from previous tasks to solve current tasks. 
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Taken together, the results suggest that embodied experiences with reflection 
contributed to overcoming some well-known misinterpretations. Yet, some 
difficulties occurred when numbers were given that seemed to better match 
the numbers along one of the axes. So, we suggest adding transfer tasks also 
after the steps of the HLT that are dedicated to horizontal and vertical actions. 
In addition, including other mathematical notions into the emerging functional 
systems can be improved, for example, by fostering students’ reinvention of 
the algorithm of calculating the mean based on their sensorimotor 
estimations. To further develop students’ notions of distribution and 
variability, for example, in density histograms, the artifact “area” may need to 
be included in the design, and the artifact “interval” may need to be 
reinvented by students (Boels & Shvarts, 2023). 

A limitation of the study is the small number of students in it and their 
varying previous experiences with histograms. Moreover, in most classrooms, 
there will not be time to spend 4–5 lessons (3.5 hours) on ‘one’ topic. In 
further discussing limitations, “It is important to acknowledge that the 
complexity of students’ […] learning, and of the designed learning 
environments, makes it impossible to specify completely everything that 
transpires in the course of a design study.” (Cobb et al., 2016, p. 40).  

A methodological contribution of our work is our design guidelines. As 
the generalization and value of design guidelines come from the iterative 
process of letting the guidelines do the actual work (Bakker, 2018), we now 
revisit our theory-driven design guidelines based on the empirical tryout. Using 
our first design guideline (identify the actions that could have constituted the 
target artifact), again during the evaluation of the results, we reconstructed 
how we melted artifacts back to the actions that are crystallized in them 
(Figure 6.1). It made us aware that we did not pay enough attention to the 
binning action that histograms reify. For future research, we call researchers to 
question all pre-given aspects of the artifacts they use and to reveal artifacts’ 
origins. 

The second design guideline—to design motor-control or perception 
tasks to which these actions are the answer—helped us think about 
redesigning HLT step 4 (estimating arithmetic mean). This guideline includes 
productive struggle and as we can see from the results, productive struggle can 
create aha moments. Moreover, the absence of such moments for crucial 
steps in the HLT (e.g., step 2) might underlie difficulties during transfer to 
another environment (e.g., positioning lines in Task 18). We, therefore, suggest 
using “create productive struggle for crucial steps in the HLT” as a separate, 
sixth design guideline. Theoretically, it means that tasks that students’ 
emerging functional system is solving should be new enough for the learning 
process—rather than simple recollection—to happen. 
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The third and fourth guidelines—on performing (digital) actions with 
feedback and reflecting on them—need no further elaboration. They are solid 
guidelines matching previous work on embodied design (Abrahamson et al., 
2020; Alberto et al., 2022). In Task 18, we saw that two students did not 
discover their misplacement of poverty lines. This observation makes us 
wonder if further learning would have been induced if we had included 
feedback here.  

The fifth guideline is to create possibilities for transfer of actions by 
varying contexts and environments as we did in steps 4 (different context) and 
5 (paper). The difficulties students encountered on paper Task 18 stress its 
importance. A functional system needs to be flexible and adaptable to various 
environments. Therefore, such a transfer is also desirable within each crucial 
step and not only at the end of an HLT. 

A scientific contribution of our work is that it substantiates the general 
ideas of embodied instrumentation by showing how more complicated 
artifacts (e.g., histograms) can be reinvented from actions with simpler ones 
(e.g., positioning dots on a scale, Figure 6.1). Our HLT can be seen as a further 
step from a general theory of embodied instrumentation toward a domain-
specific instructional framework on teaching how data and their distribution 
are depicted in univariate graphs such as histograms, dot, box, stem-and-leaf, 
and hatplots (Konold, 2007) and histodots (Chapter 2). Unlike other 
researchers who work on general principles of enactive pedagogy (e.g., 
Abrahamson et al., 2021), we try to work out a design framework that helps to 
design for a specific mathematical domain (e.g., statistics) and topic (e.g., 
histograms).  

We now discuss recommendations for future research and design. In 
the previous section, possible improvements of the tasks are suggested based 
on the results. Further solidification of students’ understandings requires 
further enactments with histograms. In line with statistics education literature, 
we suggest adding more comparison tasks for dotplots (messy and stacked) 
and histograms as comparing data of two groups is core to statistics and 
important for developing statistical literacy (e.g., Garfield & Ben-Zvi, 2008a). 
Students could first be asked which group is better (cf. Watson & Shaughnessy, 
2004) and then which group has a higher mean and which has higher 
variability. This task is similar to Tasks 1 and 20 in our HLT, but now with the 
same type of representation. Furthermore, we suggest adding graphs with the 
same ranges to support students proceeding from informal measures for 
variability (range) to more formal ones (e.g., deviation from the mean). 
Students can also be asked to produce at least two different datasets for a 
given histogram or to collect their own data and depict these in univariate 
graphs (e.g., Garfield & Ben-Zvi, 2008a). In future cycles, it is advisable to guide 
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students to reinvent other univariate graphs as “in statistics different […] 
representations are used to identify different aspects of the same data 
(transnumeration)” (Burrill & Biehler, 2011, p. 64). A future design cycle could 
profit from other approaches to embodied designs, such as probability 
(Abrahamson et al., 2020), for example, by having students stack paper cards 
with measured values into bins. 

This leads to several questions for future research and redesign. For 
instance, how should our HLT be placed along the curriculum? Little is yet 
known about how students in Grades 6–8 interpret histograms (e.g., Bakker, 
2004a; Whitaker & Jacobbe, 2017). Are more concrete models, such as the 
balance model with blocks and a ruler, suitable for Grades 4–6 (e.g., O’Dell, 
2012)? What are the benefits or downsides of starting at an earlier age? Our 
HLT guides students in a specific direction. Given our design guidelines to 
carefully add reinvented artifacts in successive steps, this seems appropriate 
for initial learning. How to proceed? Are all suggested tasks needed in Grades 
10–12 or can some tasks be combined? How could—or should—our HLT deal 
with students who have already had experience with the target knowledge as 
well as with several mathematical and statistical artifacts? Students’ 
mathematical backgrounds can hinder the development of new forms of 
perceptuomotor structures (Shvarts & Van Helden, 2021). Could our HLT 
benefit from some flexible adaptation for Grades 10–12 students as well as 
tertiary students, as their mathematical backgrounds can be extremely diverse 
(e.g., Bor-de Vries & Hoogland, 2020)? In addition, design-based 
implementation research (Fishman et al., 2013) recommends that future 
design cycles involve more stakeholders and occur in classrooms. 
Designing from an embodied instrumentation perspective highlights that 
software designers need to think carefully about what kind of actions 
(crystallized in artifacts) they outsource to the software and what actions they 
transform into tasks for the students. For example, most software can 
automatically create histograms but lacks possibilities for students to reinvent 
them. Similarly, software designers might include an option for students to 
freely drag two graphs to a position suitable for comparing the graphs instead 
of presenting graphs in an already comfortable position for comparison. There 
is a risk of outsourcing actions to software too early, which hinders students to 
notice critical aspects of mathematical practice and artifacts. Our study 
exemplifies how designing from an embodied instrumentation perspective can 
help detect such actions. We call on software designers to create opportunities 
for students to perform these actions themselves during initial learning of 
mathematical and statistical concepts. 
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Appendix A HLT and example tasks 
A.1 Hypothetical Learning Trajectory (HLT) (Simon & Tzur, 2004)

.ŜƭƻǿΣ ǘƘŜ I[¢ ƛǎ ŘŜǎŎǊƛōŜŘ ǿƛǘƘ ŀ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ ǘƘŜ ǘŀǎƪǎΣ ƻǳǊ ŎƻƴƧŜŎǘǳǊŜǎ ŦƻǊ 
ǎǘǳŘŜƴǘǎΩ ƭŜŀǊƴƛƴƎ ǇǊƻŎŜǎǎ ŀƴŘ ǎƻ ƻƴΦ ¢ƘŜ ƻǊƛƎƛƴŀƭ 5ǳǘŎƘ ǾŜǊǎƛƻƴ ƻŦ ǘƘŜ ǘŀǎƪǎ 
ǳǎŜŘ ƛƴ ǘƘƛǎ ǊŜǎŜŀǊŎƘ Ŏŀƴ ōŜ ŦƻǳƴŘ ƘŜǊŜΥ 
ƘǘǘǇǎΥκκŀǇǇΦŘǿƻΦƴƭκŜƳōƻŘκΚƭƻŎŀƭŜҐŜƴϧǇǊƻŦƛƭŜҐмлуϧƘŀǎƘҐ҈ноǎ҈о!сфунтрІǎ
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A.2 Description of selected tasks

Some pseudonymized videos as well as the paper version of the lesson 
materials can be found in a data repository (accessible for researchers on 
request). The link to all digital tasks used in this research is (in Dutch): 
https://app.dwo.nl/embod/?locale=en&profile=108&hash=%23s%3A698275#s
:698275. Below, for each task discussed in the article, as well as some other 
tasks, relevant graphs or screen shots are shown to give the reader an 
impression of the tasks.  
A.2.1 Task 1
Task 1 was a paper-and-pencil task. For this research, this task was projected
on a digital whiteboard in a Word document.

International research shows that some graphs from newspapers and 
scientific articles are more difficult to understand than others. The question 
below might appear in such an international test. By the end of this series of 
tasks, you will find it easier to answer the questions below.  

Figure A.1 Graphs used in paper task 1 

Both graphs show weights. On the left, you see the weight of packages 
delivered by postal worker Julia. On the right, you see the weight of beach 
waste collected by different students. Which of the following statements about 
these graphs is true? 

The average weight is larger in the 
• graph on the left,
• graph on the right,
• approximately the same in both graphs.
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The variation in weight is larger in the 
• graph on the left,
• graph on the right,
• approximately the same in both graphs.

Explain how you arrived at your answer and why you think this is so. 
A.2.2 Task 2

Figure A.2 Start and end screen task 2

Note. After solving the task, students are asked to tick the CheckTask2 box on the 
bottom left. The feedback is either a green v (correctly solved) or a red x (incorrectly 
solved).  

A.2.3 Task 3

Figure A.3 Screens task 3 where students advise a school principle (see, for example, 
Eshach & Schwartz, 2002) 

Note. In task 3 students make a histogram overlay on the dotplots. Start screen (left), 
all sliders pulled down and the first one pulled up (middle) and solved and checked 
task (right). The context for the task is given on the left side of the screen.  



Understanding histograms in upper-secondary school 

269 

A.2.4 Task 4

Figure A.4 Task 4 requires moving data points and adjusting the histogram from task 3. 
Screen shot of the task after being correctly solved and checked by the students 

Note. Ticking boxes for keeping track of what has been done (left side of the screen) is 
optional.  

A.2.5 Task 5

Figure A.5 Screen shots of task 5

Note. Start screen with the context (left) and no bars, all bars pulled up and balance 
tool ticked (middle) and solution (right). Students are asked to first pull the bars up 
according to the table, then tick the balancing tool to find the balancing point.  

A.2.6 Task 6

Figure A.6 Screen shots of task 6

Note. Start screen (left) with no bars, bars pulled up and vertical line dragged to the 
estimated balance point (middle), finding the balancing point (right). In addition to the 
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previous task, students are now asked to drag the vertical line to their estimation of 
the balancing point.  

A.2.7 Task 7

Figure A.7 Screen shots of task 7

Note. the vertical dotted line at students drag to the left to indicate their estimation of 
the mean, before they check it with the balance tool.  

A.2.8 Task 8

Figure A.8 Screen shots of task 8. Initial histogram (left) and histogram after alternately 
adding some 1s and 10s (right) 
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A.2.9 Task 9  
Figure A.9 Screen shot of task 9. Possible histogram, estimation (vertical dotted line) 
and balance tool 

 
 

A.2.10 Task 10 

Figure A.10 Screen shot of example histogram, with estimation (dotted line) and 
balance tool 
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A.2.11 Task 18 
The assignment was: Draw a histogram for the table below (use the attached 
grid paper) and then answer the questions. For some of the questions, readers 
are referred to the article.  

Table A.1  

Net annual income in thousands Number of households in thousands 
< -10, 0] 36 
< 0, 10] 299 
< 10, 20] 1690 
< 20, 30] 2471 
< 30, 40] 1822 
< 40, 50] 845 
< 50, 60] 327 
< 60, 70] 134 
< 70, 80] 66 
< 80, 90] 36 
< 90, 100] 22 

 

A.2.12 Task 20 
Enlarge this task to view it on your screen 

Both graphs show weights. On the left, you see the weight of beach waste 
collected by different students. On the right, you see the weight of packages 
delivered by postal worker Ellen. Which of the following statements about 
these graphs is true? 

 
The average weight is larger in the  

• graph on the left,  
• the graph on the right,  
• approximately the same in both graphs.  
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The variation in weight is larger in the 
• graph on the left,  
• graph on the right,  
• approximately the same in both graphs.  

 
Explain how you arrived at your answer and why you think this is so.  
What is the weight of the packages in the most left bar in the graph on the 
right? 
Why? 
 
What is the weight of the garbage on the beach in the most left bar in the 
graph on the left? 
Why? 
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Moving toward new tools for research and teaching 
statistics: General conclusions, discussion, and implications 
“One never notices what has been done; one can only see what remains to be 
done.” 61 
Marie Curie  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter is partly based on 
Boels, L. (2023). Reflections on gaze data in statistics education. Teaching 
Statistics, 1–12. https://doi.org/10.1111/test.12340  

 
61 Marie Curie in a letter to her brother (1894). https://en.wikiquote.org/wiki/Marie_Curie 
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7.1 Research aim and answer to main research question 
The aim of this research was to contribute to an empirically grounded theory 
on how to teach statistical literacy through histograms. As explained in the 
introduction, we expected that a review of the literature and a small-scale eye-
tracking study would both have been input for a larger design study (Bakker, 
2018). However, the topic of this research turned out to be much tougher than 
initially expected, as histograms are used in numerous disciplines, for example, 
to present research outcomes. A search for ‘histograms’ in Google Scholar 
nowadays will lead to millions of hits. It is impossible to summarize all 
literature about how histograms are used in research and education and what 
is known about them. Moreover, from the review study (Chapter 2), it became 
clear that the few interventions in statistics education that had been reported 
were not very successful. Consequently, this provided few starting points for 
the design. Therefore, substantially more of what is known as “front-end” 
work (McKenney, as cited in Bakker, 2018, p. 142) proved necessary before a 
new approach to teaching histograms could be designed. This front-end work 
included better understanding students' conceptual difficulties with 
histograms through an eye-tracking study (Chapter 3), students’ 
interpretations of dotplots (Chapter 5) as dotplots can draw students’ 
attention to the variable being presented along the horizontal axis in both 
graphs, and formulating design criteria (Chapter 6). 

In addition, what emerged was that students lacked experience with 
what and how data are represented in histograms. This suggested that 
students had insufficient embodied grounding. Given the successes of this 
approach in other mathematical topics, we applied an embodied 
instrumentation approach in the intervention for which we conducted the first 
cycle only (Chapter 6). In addition, the first eye-tracking study opened up 
future possibilities for the automatic identification of student strategies on 
histogram tasks (Chapter 4). We explored these opportunities by comparing an 
interpretable mathematical model (IMM) for which a machine learning 
algorithm (MLA) provided a baseline. Our revised overall research question 
was: 

RQ: How can pre-university track62 students in Grades 10–12 be 
supported in understanding histograms?  

We mostly concentrated on students with Mathematics A, as these students 
have statistics in their curriculum. One part of the answer to this question is 
that more attention to the key concept of data is needed, as many difficulties 

 
62 Pre-university track is ‘vwo’ in Dutch. 
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related to this key concept seem to underlie difficulties with the key concept of 
distribution (Chapter 2). This focus includes developing students’ 
understanding of data in graphs of univariate data such as dotplots, stem-and-
leaf plots, and histograms. 

A second part of the answer to the main research question is a 
hypothetical learning trajectory (HLT) (Simon, 2020). We presented the first 
cycle of a future design study (Chapter 6). We formulated and tested design 
criteria that can be used in such a future study. Our HLT can be seen as a 
further step toward a domain-specific instructional theory on how to teach 
students to understand how data and their distribution are depicted in 
univariate graphs such as histograms, dot-, box-, stem-and-leaf, and hatplots 
(Konold, 2007) and histodots (Chapter 2). 

As a third part of answering the main research question, we 
investigated whether it would be possible to identify students’ task-specific 
strategies when estimating means from histograms. This could be a first step 
toward automatic feedback based on students’ scanpath patterns on only the 
graph area of histograms in a future Intelligent Tutoring System. We showed 
that automatic identification is quite possible with a machine learning 
algorithm and an IMM (Chapter 4). 

In the remainder of this chapter, we reflect on the study's scientific 
contributions (7.2) and methodological limitations and contributions of our 
work (7.3) and describe implications and recommendations for future research 
(7.4) and educational practice and design (7.5). 

7.2 Scientific contributions 
Our studies led to several scientific contributions. The most important ones 
concern an emphasis on the key concept of data and task-specific gaze 
patterns, a focus on attentional anchors, and an embodied instrumentation 
approach leading to a local instruction theory and theoretically and empirically 
underpinned task design guidelines. Below, we briefly discuss and elaborate on 
these contributions.  

7.2.1 Emphasis on the key concept of data  

In the review study, we speculated that the persistence of people’s 
misinterpretations of histograms is partly due to overlooking the impact of 
data-related conceptual difficulties. We thought that this might also result in 
underreporting of misinterpretations regarding data-related conceptual 
difficulties, as well as misinterpretations regarding shape and center.  
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1. The key concept of data 
According to literature (Erickson et al., 2019; Garfield & Ben-Zvi, 2004; 
Garfield & Ben-Zvi, 2008a; Gehrke et al., 2021; Gould, 2017; Ridgway et al., 
2011), the key concept of data encompasses: 

• The context of the data, including: 
o Need for data; why they were collected 
o Data as a representation of real-world phenomena 
o Who collected the data and how 

• The different representations of data, including numbers, texts, 
pictures, how data representations in computers can vary, and 
summaries or aggregated forms of data such as graphs and tables.  

• The characteristics of data, including the difference between a 
variable (e.g., weight) and data (e.g., numbers representing the 
measured weights), what the statistical variables are, and the 
measurement level. 

• Why altering data is sometimes needed before analysis is possible, 
including data wrangling or moves such as:  
o Data cleaning, dealing with missing data or outliers 
o Merging data(sets) 
o Constructing new data based on existing data 
o Selecting or generating variables 
o Filtering, grouping, or ungrouping data 
o Aggregating or summarizing data 

 
This is a broader concept of data than that in the GAISE II guidelines 
(Bargagliotti et al., 2020), in which didactical choices have been made. Data 
themselves are not an object but represent a phenomenon in the real world. 
We cannot think about data without thinking about their representation: 
numbers, tables, photos, graphs (cf. Bakker & Hoffmann, 2005; Gal, 1995).  
For graphical representations, the concept of data encompasses how data 
are represented in, for example, histograms, boxplots, and case-value plots, 
including (Chapters 2 and 3): 

• How many statistical variables are depicted in the graph 
• The measurement level of data (e.g., nominal, ordinal, interval, 

ratio) 
• Along which axis the variable is presented 

 

Contributing to statistics education research, we have, therefore, placed the 
statistical key concept of data (Box 1) more to the forefront in the rest of our 
studies. First, we did so by presenting students with several different graphical 
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representations of univariate data during our eye-tracking data collection: 
histograms, messy dotplots, stacked dotplots, and horizontal histograms ( bars 
rotated 90 degrees clockwise). It would be interesting to pay more attention in 
future research to students’ conceptual understanding of data, not only for 
data that fit the sample-population assumptions but also for contemporary 
data or data collected by others. 

Second, we brought ‘data’ more to the forefront by contrasting 
histograms (univariate data) and case-value plots (bivariate data) during the 
eye-tracking data collection and some tasks in the intervention, confronting 
students with their confusion about these two types of graphs (e.g., Burrill, 
2019; Cooper, 2018; Kaplan et al., 2014). In addition, in the intervention study, 
students were given different graphs of univariate data (cf. Bakker, 2004a), 
they were asked to interpret other students’ gaze data using diverse strategies 
on a single histogram task, and they were asked to sort graphs with bars into 
two categories: histograms and ‘other’.  

Data and distribution are related. As we suspected that 
misinterpretations regarding shape63 and center are underreported in 
literature, we addressed both in the eye-tracking data collection by providing 
histograms and case-value plots with different distributions—hence, also 
different shapes—and by asking students to estimate and compare arithmetic 
means. According to Gal (1995), asking students to estimate the arithmetic 
mean from graphs can reveal their conceptual understanding of the data. The 
mean can be regarded as a precursor for variability, as variation is often 
assessed compared to a measure of center (e.g., standard deviation is always 
calculated from the mean). Moreover, variation is barely taught in Grades 10–
12, while the arithmetical mean is familiar to these students. Finally, we 
wanted to be sure that our findings were due to students’ misinterpreting 
where and what data are depicted instead of misinterpretations of variability 
(part of the statistical concept of distribution, Box 2).  

Discussing our contribution, we note that, parallel to our studies, 
research attention of the statistics education research community has 
shifted—partly driven by the emergence of new forms of data and ‘big data’—
to data literacy. Gould argues that data literacy is statistical literacy with more 
focus on being “a critical consumer of data, controlling [ones…] personal data 
trial, finding meaning in data, and taking action based on data” (2017, p. 23). 
Others regard data literacy as part of evidence literacy (e.g., LaPointe-McEwan 
et al., 2017). Evidence literacy includes the ability to “critically evaluate both 
the meaning and strength of evidence that are used to support the claims and 
arguments of experts and other commentators in the media” (Gal & Geiger, 

 
63 Possibly due to too much focus on the shape of distributions, regardless of the type of data. 
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2022, p. 19). Both data and evidence literacy seem to be encompassed by the 
critical stance in statistical literacy and focus on specific aspects of it. We 
embrace the recent awareness of the importance of new forms of data—as 
encompassed in data literacy—and suggest extending it to all existing forms of 
data given students’ difficulties with the key concept of data. 

 

7.2.2 Task-specific gaze patterns on statistical graph tasks 

A substantial part of the research described in this dissertation involves eye-
tracking (Chapters 3–5). A major advantage of eye-tracking is that it can make 
students' strategies visible at a much greater level of detail compared to, for 
example, thinking aloud (e.g., Kaakinen, 2021). In addition, it can make 
strategies visible that participants are unaware of or are unable to articulate. 
However, there is not a simple relation between gaze patterns in general and 
students’ strategies for specific topics (e.g., Kok & Jarodzka, 2017). Moreover, 
not every gaze is part of a student’s strategy (e.g., Schindler & Lilienthal, 2019). 
Therefore, research is needed to reveal how gaze patterns relate to students’ 
task-specific strategies (e.g., Schindler et al., 2021). Therefore, a form of 

2 The key concept of distribution 
Distribution is a lens through which statisticians look at variations in data, 
setting aside individual cases (Wild, 2006). Wild describes that 
distributions can reveal patterns in the data (explained variation) ignoring 
random variation (unexplained variation called noise).  

The key concept (big idea) of distribution of quantitative data 
encompasses center, variability, gaps, clusters, shape, and outliers (e.g., 
Garfield & Ben-Zvi, 2004), density, spread, and skewness (e.g., Bakker & 
Gravemeijer, 2004), relative frequency, probability, proportionality, and 
causality (e.g., Reading & Canada, 2011) but also the difference between 
an empirical versus a theoretical distribution and between a distribution 
of a sample, a population, and a sampling distribution (e.g., Reading & 
Canada, 2011; Wild, 2006). Variability includes pattern, variation, 
randomness, deviation, signal, noise, and range (e.g., Engel et al., 2008).  

In addition, statistical confidence and significance depend on this 
concept of distribution (Reading & Canada, 2011). Theoretical 
distributions come with “considerations of ‘robustness’ and ‘goodness of 
fit’ [of] the data” (Wild, 2006, p. 13). Drawing graphs is important for 
considering variation (Pfannkuch & Reading, 2006). Distribution is an 
organizing conceptual entity to grasp the overall aggregate (Bakker & 
Gravemeijer, 2004). 



Chapter 7  

282 

triangulation, for example through cued recall, will be needed until clear 
patterns have been found for specific tasks and topics and in different 
communities.  

Contributing to statistics education research, we revealed that specific 
perceptual forms of students’ gaze patterns are related to specific strategies 
for estimating and comparing means from histograms and case-value plots for 
university students (Boels et al., 2018), teachers (Boels et al., 2019b), and high 
school students (Chapter 3) in the Netherlands. For example, in estimating 
means from single histograms (and case-value plots), a horizontal gaze pattern 
indicates a strategy for interpreting the graph at hand as if it were a case-value 
plot. 

7.2.3 Interpreting gaze patterns as attentional anchors 

Our contribution is that we theoretically interpreted the perceptual form of 
students’ gaze patterns on the graph area (horizontal or vertical lines) of 
statistical graphs of univariate data as attentional anchors. As such, we 
elaborated and applied the notion of attentional anchors for the case of 
histograms and case-value plots. For this interpretation, we draw on insights 
from theories of enactivism and embodied cognition that suggest that 
cognition emerges from interaction with the environment (e.g., Davis et al., 
1996; Rowlands, 2010). The focus of an actor’s interaction with this 
environment is called an attentional anchor (Hutto et al., 2015; Hutto & 
Sánchez-García, 2015). An attentional anchor is “a real or imagined object, 
area, or other aspect or behavior […] that emerges to facilitate motor-action 
coordination” (Abrahamson & Sánchez-García, 2016, p. 203). The ones we 
found in our research facilitated students’ imagined actions (strategies for 
finding the mean)—regardless of whether these strategies were correct. For 
students, these attentional anchors were like imaginary lines. For example, 
they referred to these imaginary lines as “making all bars equal” and their eyes 
moved horizontally on the graph area. Other students showed vertical gazes 
and referred to a point on the horizontal axis “where the graph is in balance.”  

7.2.4 Application of embodied instrumentation in statistics education 

Our research contributes to the theory of embodied instrumentation by 
showing how more complicated artifacts (e.g., histograms) can be reinvented 
from actions with simpler ones (e.g., positioning dots on a scale). Specifically 
new is the explicit attention during the design phase for building on artifacts 
that students are already familiar with (e.g., horizontal scale coming from 
previous experiences with the number scale and the cartesian grid) and that 
once constituted the actions that are nowadays consolidated in the to-be-
acquired artifact (e.g., a histogram). Using these already familiar artifacts, 
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students reinvent artifacts that are new to them or that they did not fully grasp 
yet in previous schooling (e.g., a histogram, estimating the mean from a 
graph).  

Our motivation for applying an embodied instrumentation perspective 
arose from previous research that demonstrated that several students still 
misinterpreted histograms even when they were talked “through the data 
creation process” and had been prepared through dotplots (Bakker, 2004a, p. 
272). The literature (Chapter 2) offered little clue to appropriate interventions 
and, foremost, revealed persistent misinterpretations. Previous studies gave us 
the impression that students lacked experience with dotplots and sufficient 
attention to how artifacts—histograms, dotplots—become tools in statistical 
reasoning. We suspected that students’ education might have lacked an 
embodied grounding of how histograms are constructed. Therefore, using an 
embodied instrumentation approach (Drijvers, 2019) as a theoretical lens, we 
designed a learning trajectory with students reinventing the role of the axes in 
dotplots and histograms through specific tasks and constraints in the software, 
as described in the intervention study in Chapter 6.  

Discussing the contribution of that study, we note that tasks designed 
from an embodied instrumentation perspective are still rare. To the best of our 
knowledge, our study is the first within statistics education. Two types of task 
designs from an embodied cognition approach are currently described in the 
literature: an action-based design (for an overview of recent examples in 
mathematics education, see Alberto et al., 2022) and a perception-based 
design (e.g., Abrahamson, 2009). In an action-based design, students are 
confronted with a motor-control problem such as keeping a screen green while 
moving one or two points or bars with their hands. Through solving this motor-
control problem, students develop new ways of moving that help them to 
understand a mathematical concept. In perception-based designs, students 
solve a perceptual problem. A new type of task is currently being developed: 
incorporation-based tasks. 

For an incorporation-based task, students are first invited to solve a 
sensorimotor task with feedback from some artifacts (e.g., an action-based 
task) or observe perceptual qualities enabled by an artifact (e.g., a perception-
based task), and are then invited to perform the same task without the 
artifact, just with their body (Bos et al., 2021, p. 4).  

Our design is not an action-based design, as none of the tasks require 
motor-control problems to be solved. Students also do not use their bodies to 
solve the tasks and feedback was not imagined, therefore, we do not consider 
it an incorporation-based design, either. Whether it can be considered a 
perception-based design or a new design genre is currently under debate. 

Although, in embodied designs, attentional anchors are usually 
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introduced as artifacts in tasks as a consolidation of students’ actions, in 
hindsight, we might have done this too early for estimating the mean from a 
histogram. We infer that this introduction was too early for students as they 
did not have any struggle with finding the balance point for a histogram and 
linking this point to the mean. Note that in Dutch education, the mean as a 
balance point is absent from the mathematics curriculum for elementary and 
secondary education.  

7.2.5 Task design guidelines from an embodied instrumentation 
perspective 

We worked out a design framework that helps when designing specific 
mathematical and statistical topics. The generalization and value of design 
guidelines lie in the iterative process of letting the guidelines do the actual 
work (Bakker, 2018). Based on the empirical tryout (Chapter 6), we 
reformulated our theory-driven design guidelines: 

• Find the actions—through a logical-historical reconstruction—that 
could have constituted the target artifact 

• Design motor-control or perception tasks to which these actions are 
the answer 

• Create productive struggle for crucial steps in the HLT  
• Have students perform the (digital) actions with feedback 
• Have students reflect on their actions 
• Create possibilities for transfer by varying contexts and environments. 

The guideline to create productive struggle was added as a separate guideline 
during the revision. Theoretically, this guideline means that the tasks that the 
students’ emerging functional systems are solving (Shvarts et al., 2021) should 
be new enough for the learning process—rather than simple recollection—to 
happen. In addition, a functional system needs to be flexible and adaptable to 
various environments. Therefore, transfer is also desirable within each crucial 
step and not only at the end of learning. Unlike other researchers who work on 
general principles of enactive pedagogy (e.g., Abrahamson et al., 2021), our 
design guidelines are for specific topics. 

7.2.6 Contributing to a local instruction theory on teaching and 
learning of histograms 

Our HLT can be seen as a further step from a general theory of embodied 
instrumentation toward a domain-specific instructional framework on teaching 
how data and their distribution are depicted in univariate graphs such as 
histograms, dot, box, stem-and-leaf, as well as hatplots (Konold, 2007) and 
histodots (Chapters 2, 6). A hypothetical learning trajectory “consists of three 



Moving toward new tools for research and teaching statistics 

285 

components, a learning goal, a set of learning tasks, and a hypothesized 
learning process” (Simon, 2020, p. 355). Besides the need for more design 
cycles to test and revise our HLT in practice, an HLT must always be adjusted to 
local circumstances (e.g., Barab & Kirshner, 2001).  

From our proposed learning trajectory (Chapter 6), we would like to 
discuss two things. First, the importance of reflection during and after task 
completion, which is in line with insights from recent literature on embodied 
designs (Abrahamson et al., 2021; Alberto et al., 2022; Shvarts et al., 2021). 
The results of our eye movement research also seem to underline this 
importance, as we suspect that a part of the learners gained insights about a 
correct strategy as a result of reflection during the cued recall in which they 
explained which strategy they used (Chapter 5). Second, the “balance [model] 
is a critical mathematical characteristic of the mean” (Mokros & Russell, 1995, 
p. 33) and can be linked to the algorithm for finding the equilibrium (mean) of 
moments (forces times distance) in physics. Some students started to reason 
about the heights of the bars being somehow proportional to the distance to 
the mean. This was not foreseen. The literature suggests having students 
explore the characteristics of the mean and how it is affected by different 
types of datasets and distributions (Garfield & Ben-Zvi, 2008a). Garfield and 
Ben-Zvi suggest bringing students from seeing the mean as a process (a 
computation, algorithm) to an object, a signal in a noisy process. In this sense, 
the mean can be regarded as a precursor for assessing variability in the data 
(e.g., the standard deviation is compared to the arithmetic mean), and further 
study is needed to develop students’ notions on this key concept as part of the 
key concept of distribution.  

The introduction (Chapter 1) pointed out that descriptive statistics, 
such as the mean, provide limited information—for example, when comparing 
groups—due to several factors, including variability in the data. This is one of 
the reasons why it is important to jointly examine measures of center and 
variability (cf. Shaughnessy, 2007; Bargagliotti et al., 2020). Variability or 
“spread are connected to ‘spread around what’—[with the what being] some 
value indicating a measure of center” (Burrill, 2019, p. 133). Nevertheless, we 
focused in most of our studies on measures of center only. One reason for this 
is captured in the above statement that variability is always a variation relative 
to something, often being the mean. If students do not understand how to 
estimate the mean from a histogram, it is likely that they cannot assess 
variability either. Another reason is that variability is not part of the Dutch 
curriculum, except for some technical skills such as using a calculator to 
calculate a standard deviation. 
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Although our HLT also provided opportunities to work toward the 
algorithm for the mean (Chapter 6), such a route does not seem desirable for 
most students (e.g., with Mathematics A or C). Connecting the algorithm to a 
histogram is an example that is likely to fall under what Ridgway and Nicholson 
describe as a practice that "harks back to the days when calculations had to be 
done by hand with the result that students are required to learn techniques 
that are always automated in professional work" (2019, p. 2). In addition, such 
a route might even hinder the development of students understanding of the 
concept of center (mean) (cf. Tall & Vinner, 1981). 

7.3 Methodological contributions 
We applied three methods that are relatively new in statistics education 
research: eye-tracking, a transparent interpretable model, and MLAs. 
Contributing to eye-tracking research, we show how spatial eye-tracking 
measures can reveal task-specific strategies. Contributing to statistics 
education research, we discuss how several visualizations of gaze data, spatial 
eye-tracking measures, and application of MLAs and an interpretable model 
can be used for analyzing and classifying students’ task-specific strategies. 
Contributing to the discipline of software design, we discuss insights gained by 
applying an embodied instrumentation approach. We finish with 
methodological limitations.  

7.3.1 Spatial eye-tracking measures as a means to reveal task-specific 
strategies 

A methodological contribution is that spatial measures can reveal task-specific 
strategies. After watching videos of students’ gaze behaviors in more than 600 
trials (with histograms or case-value plots)—combined with students’ cued 
recall data—we discovered, in a qualitative study, (Chapter 3) that the 
perceptual form of students’ gaze patterns within one AOI—the graph area—
was relevant for students’ task-specific strategies on these items. In later 
chapters, we used saccadic magnitude and direction (vectors) for this aim 
(Chapters 4 and 5), ignoring the also necessary alignment. Although vectors 
have been used for some time (e.g., Holmqvist et al., 2011), their use in 
education is rare. In addition, we applied them in a new way. When we 
conducted our study in 2018, we knew of only one other empirical study that 
also used vectors for educational purposes (Dewhurst et al., 2012). However, 
in that study, scanpath similarities are compared and related to task difficulty 
instead of inferring students’ strategies from scanpaths as we did. For other 
research questions, for example, on general task performance, the 2012 study 



Moving toward new tools for research and teaching statistics 

287 

used time measures. In contrast to Dewhurst et al., we did not use the position 
of the vector on the screen. 

Discussing this contribution, we note that, although eye-tracking has 
been around for some time, its use in statistics education is still in its infancy. 
Most recent eye-tracking studies, also in statistics education, use quantitative 
gaze measures such as total time spent on an area of interest (AOI) (e.g., 
Cohen & Staub, 2015; Fleig et al., 2017) or number of fixations within an AOI 
(Schreiter & Vogel, 2023), although the latter also used vectors. Fixations are 
the positions on the screen that students looked at. Quantitative measures are 
used in cognitive sciences that usually aim for more general strategies such as 
self-regulated learning. These measures are temporal (e.g., total fixation 
duration or dwell time64, reaction times, time to first fixation, total reading 
time), counts (fixation count, number of saccades between relevant or 
irrelevant parts of the stimuli; Godau et al., 2014), or both (e.g., Kaakinen, 
2021; King et al., 2019; Lai et al., 2013). The advantage of these measures is 
that they can be computed easily. However, quantitative measures can hide 
visual scanning patterns (Goldberg & Helfman, 2010).  

Spatial measures (e.g., scanpath, fixation position) can disclose the kind 
of detailed information Kaakinen (2021) refers to. Spatial measures seem 
better suited for providing detailed information about students’ thinking 
processes (Hyönä, 2010; Schreiter & Vogel, 2023). However, spatial measures 
are still quite uncommon in eye-tracking research: 

Parallel to the findings of Lai et al.’s (2013) study, spatial 
measurements were the least common measure in the reviewed 
studies. Spatial scale comprises fixation positions, fixation 
sequence, and scan path patterns (Lai et al., 2013). It requires 
mostly a qualitative analysis of the scan paths to obtain these 
measurements. Although the scan path analyses reveal how 
learning occurs from moment to moment (Hyönä, 2010), few 
studies investigate them in detail (Krejtz, Duchowski, Krejtz, 
Kopacz, & Chrząstowski-Wachtel, 2016). This could be due to the 
difficulty in qualitative analysis and synthesis of the scan paths 
obtained from different participants. (Alemdag & Cagiltay, 2018, 
p. 419) 

Moreover, when people refer to scanpaths, they usually mean a sequence of 
or transitions between AOIs (e.g., Garcia Moreno-Esteva et al., 2018, 2020; 

 
64 Orquin and Holmqvist (2017) suggest no longer using dwell time—total fixation duration—as 
other measures may be more suitable for measuring the different constructs underlying dwell 
time.  
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Krejtz et al., 2016). For students’ solution strategies, both from the qualitative 
study (Chapter 3) and the quantitative machine learning analysis (Chapter 4), it 
appeared not to be relevant when the horizontal gaze pattern we found was a 
bit higher or lower on the graph area, if a student looked from left to right or 
vice versa, or if there was a slight slope in this gaze pattern or not, as long as 
the pattern was mainly horizontal. The irrelevance of such specific order and 
position on the screen has a potential advantage for future webcam usage. 
Webcams are still imprecise in their calibration. If a horizontal or vertical shift 
of a horizontal gaze pattern still results in a horizontal gaze pattern on the 
graph area, this might still be recognized by an MLA or interpretable model.  

Schreiter and Vogel (2023) may seem to have used the same features 
in the same way as we did: vectors (saccadic magnitude and directions) within 
two AOIs for comparing graphs (they used one AOI for each dotplot including 
the axis; transitions between AOIs were excluded). However, they used the 
magnitude of saccades to distinguish between short (local) and long (global) 
viewing, and similarly used saccadic direction (horizontal for global; vertical for 
local). We used these same features for distinguishing students’ task-specific 
strategies (e.g., a histogram interpretation strategy). For our single and double 
graph items, our approach reveals students’ strategies and whether they 
interpreted the graphs correctly or incorrectly. In the approach of Schreiter 
and Vogel, a correct and incorrect strategy could both be classified as local. In 
addition, for our single items, interpreting vertical saccades as indicative of a 
local view would not make sense as that would be a correct (global) strategy 
when estimating a mean from a histogram. 

7.3.2 Tools for analyzing eye-tracking data: heatmap, raw data, 
videos, and static gazeplots 

Contributing to statistics education research, in the studies in this dissertation, 
we showed how raw gaze data (Chapters 4 and 5) and videos and—to a lesser 
extent--static gazeplots (Chapter 3) can be used for analyzing gaze data to 
reveal students’ strategies. In addition, in a pilot study, we used heatmaps 
(Boels et al., 2018). Here, we reflect on our contribution and provide some 
guidance for methodological choices in future research. 

In our studies, we analyzed the collected gaze data in two ways: a 
qualitative analysis of the videos of the gazes on fifteen tasks (see Chapters 3, 
4, and 5) and quantitative analyses using the raw data of, in total, seven of 
these tasks (five single histogram tasks and two double histograms tasks, 
Chapters 4 and 5). For these analyses, we used two types of data obtained 
through data moves (Erikson et al., 2019) either from the Tobii Studio software 
(n.d.-a) or by us. In the quantitative studies, we used ‘raw’ data that consist of 
x- and y-coordinates of the gazes on the graph area only (sampled with 60 Hz, 
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Figure 7.1 left); fixations are indicated by short lines in a star-like form. For the 
qualitative analysis, we found videos of the gazes to be the best approach 
(Figure 7.1 middle left; also called ‘dynamic gaze visualizations’ e.g., Kok et al., 
2017). In this way, we could see the order of the gazes and what students paid 
attention to. As previously discussed, our attention was mostly on the 
saccades—the thin, long lines between fixations (the latter indicated by circles 
in the gazeplots).  

Other possible data moves (all created with the Tobii software) are 
heatmaps (Figure 7.1, middle) and a static gazeplot (middle right and right). 
Changing representations of gaze data is part of transnumeration (Wild & 
Pfannkuch, 1999) and can help with understanding what gaze data can tell.  

Figure 7.1 Examples of different ways to visualize and use gaze data 

Note. Raw scanpath (left), video still of smoothed gaze pattern (middle left), heat map 
(middle), gaze plot (middle right), and scanpath in gaze plot (right) indicating an 
imaginary horizontal line (here superimposed for the reader). 

Heatmaps have the advantage that they aggregate the gaze data and draw 
attention to the fixations (for example, Schindler et al., 2021) but have the 
disadvantage that time and spatial information gets lost (e.g., the order of the 
fixations or saccades). Fixations on locations where the student spent little 
time are green, and coloring goes to yellow and then red when more time is 
spent in total. 

Static gazeplots (Figure 7.1, middle right) have the advantage that both 
fixations and saccades are shown but the pattern and item can get hidden 
behind the fixations. The most relevant part of the pattern can be isolated 
(Figure 7.1, right) but requires days of manual work as this needs to be done 
for every student for every item separately and requires the judgment of what 
belongs to this pattern and what not. Future research is needed to find out if it 
is possible to infer our students’ strategies from heatmaps or static gazeplots 
in qualitative and quantitative analysis (e.g., through MLAs, Schindler et al., 
2021).  

7.3.3 Machine learning algorithms application in statistics education 

We used our gaze data in combination with machine learning algorithms 
(MLAs) in Chapters 4 and 5. Contributing to the application of data sciences 
tools in statistics education, we showed how gaze data can be used for task-
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specific strategy identification (classification) on tasks with statistical graphs 
(Chapter 4) and for finding strategy-relevant differences in gaze data between 
two similar tasks (Chapter 5). Moreover, we showed that despite the 
idiosyncrasy of gaze patterns, general gaze patterns on tasks can emerge that 
are relevant for teaching specific content or a topic. We showed that 
qualitatively found patterns (Chapter 3) can be captured by MLAs and used for 
identification of similar patterns in gazes of new students, and on new, similar 
tasks (Chapters 4, 5). Similarly, we showed that an interpretable mathematical 
model (IMM, Chapter 4) can be used that is transparent on how it came to its 
decision for an individual student. Furthermore, we showed the importance of 
using expert (teacher, researchers) information—together with students’ cued 
verbal reports—on what part of the gaze pattern is relevant for students’ task-
specific strategies (namely, the pattern on the graph area).  

Discussing the MLA application, we note that when applying a machine 
learning algorithm (MLA) in an educational context, the focus can be either on 
the educational application (Chapter 4) or on tailoring the MLA to the 
educational context (Chapter 5). 

7.3.4 Software for developing statistical literacy—an embodied 
instrumentation perspective 

Teachers can choose the software they use in their classrooms. Often, a 
distinction is made between software for doing statistics (InZight65, Minitab66, 
SPSS67, R and RStudio68), and software for learning to reason in statistics 
education (Fathom69, CODAP70, TinkerPlots71, VUStat72). From an embodied 
instrumentation perspective, we want to add software for initial learning.  
Software designed from embodied instrumentation design principles 
A contribution of our study is that it makes it plausible that software designers 
need to think carefully about what kind of actions (crystallized in artifacts) they 
outsource to the software for initial learning. For example, most software can 
create histograms but lacks possibilities for students to reinvent them. 
Moreover, the way graphs are presented provokes different comparisons. 
Side-by-side comparison elicits the (un)equal heights of bars or dotplots (and 
seems nonsensical for horizontal boxplots), whereas displaying graphs above 

 
65 https://www.stat.auckland.ac.nz/~wild/iNZight/ 
66 https://www.minitab.com/en-us/ 
67 https://www.ibm.com/products/spss-statistics 
68 https://posit.co/products/open-source/rstudio/ 
69 https://Fathom.concord.org/ 
70 https://CODAP.concord.org/ 
71 http://tinkerplots.com/ 
72 https://www.vustat.eu/apps/ 
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each other elicits the comparison of the positions of the data along the 
horizontal axis (which seems more relevant for dotplots, horizontal boxplots, 
and histograms). Software designers often have already chosen the position of 
the graphs. Perhaps they might include an option for students to drag two 
graphs to a position that students find suitable for comparing the graphs. This 
is not to say that such an option is better than given positions, but only that 
when actions are outsourced to the software too early, students might never 
become aware of their relevance until they fail in practice. Moreover, passive 
tasks should be avoided as then “students need just [to] gaze at technological 
elements (no coordination required)” (Alberto et al., 2022, p. 18). This includes 
“readymade examples (students will just imitate them)” (p.18). In addition, 
when “elements of problem solving [are outsourced] to the technology […] 
students will ignore them” (p. 18).  

Furthermore, as tasks designed from an embodied instrumentation 
perspective have students reinvent artifacts before these are incorporated into 
the system in a later stage, this seems to require route-type software tools 
(Bakker, 2002) that are designed for a particular learning trajectory. Therefore, 
we conjecture that for initial learning, route-type software will prevail over 
landscape-type software. A counterargument may be that learning is not linear 
and that routes will differ for various students. In such cases, a tree structure 
with branches for some routes might be more appropriate. In addition, from 
our experience, it is easier for teachers and students who are not so familiar 
with the software to use software with limited possibilities, as there usually is 
little time in classrooms to learn the software (cf. Bakker, 2004a; Van Dijke-
Droogers, 2021). An online tool that has been built as a landscape tool, but 
with the advantage of limited possibilities in each part, is VUstat, as this has 
different apps to fulfill different teaching aims. We hope that the insights from 
the present research will inspire software developers to think about 
incorporating ideas from our learning trajectory as well as from other 
embodied designs. 

Discussing these insights, in the section that follows, we describe some 
important characteristics of software tools from an embodied design 
perspective. We neither review all software (e.g., Abbasnasab Sardareh et al., 
2021; Biehler et al., 2013; Chance et al., 2007; McNamara, 2016, 2018) nor 
compare in-depth Fathom, CODAP, and TinkerPlots (Frischemeier et al., 2023). 
Instead, we compare our design with that of others on who does the statistical 
thinking, in line with our fourth design guideline for embodied instrumentation 
design: Have students perform the (digital) actions with feedback. The purpose 
of this comparison is to provide the reader with an understanding of some 
differences between tools designed from an embodied instrumentation  
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perspective and those designed from a static and dynamic visualization 
perspective. We concentrate on graph construction and interpretation. 
Static and dynamic visualization tools 
In static visualization tools, students press a button and then observe the 
result of a hidden, statistical action. Minitools (Bakker, 2004a), InZight, and 
Minitab are examples of such tools for doing statistics “where the computer 
package is treated as a black box. After parameters have been entered, the 
outcomes are immediately shown, leaving the user [for example] to imagine 
the process of building the sampling distribution” (Meletiou-Mavrotheris, 
2003, p. 269). 

In much software literature, the term ‘dynamic’ actually means 
coupled (e.g., Frischemeier et al., 2023): changing data in one visualization 
(e.g., data card) affects other representations in real time (e.g., dotplot). We 
use a slightly different meaning of dynamic here: when a student manipulates 
something in a representation (clicks an option, moves a slider, drags a point), 
the student sees something happening—such as the transition to another 
representation—or a trace of the changes, for example, in the average (see 
also Wei et al., 2022). In CODAP, for example, students see the dots move after 
they dragged a variable (attribute) to the horizontal axis. Both in statistic and 
dynamic visualization tools, students see the consequences (results) of their 
actions, in line with the “action/consequence principle” (Burrill, 2019, p. 128). 
In dynamic visualization tools the process toward the consequence is visible, in 
static tools it is not. 

TinkerPlots, Fathom, CODAP, and GeoGebra73 are examples of dynamic 
software tools that mostly are (or can be) dynamic in this sense. Some 
statistical processes are still hidden actions, similar to those in statistic 
visualization tools, (e.g., calculation of the mean in CODAP), but the overall 
design principles are based on our definition of dynamic, although the 
developers use the word ‘dynamic’ also in the sense of ‘coupled’ (e.g., Finzer, 
2006). There is also software that has a mixture of static and dynamic features. 
VUstat consists of several educational web-based apps that contain static (e.g., 
data analysis) or dynamic visualizations (e.g., sampling distribution). Similar to 
the minitools design, VUstat has the possibility to have a histogram overlay the 
dotplot in the data analysis tool (a variant of a histodot, see Chapter 2) as well 
as a boxplot. 

Dynamic visualizations once were a major step forward. However, in 
contrast to embodied designs, students’ actions in dynamic visualization 
software are (most often) not directly coupled with statistical actions, which 

 
73 https://www.geogebra.org/ 
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might hinder statistical thinking and conceptualization. For example, sliding a 
dot to the right side of the screen (in TinkerPlots to make more bins) is not an 
action that places this dot on its correct value on the horizontal scale. The 
software does this for you for all dots. The same holds true for the binning in 
histograms. Although students can slide the border of a bin in a histogram, the 
adjustments (for all other bins as well as the height of the bars) are done (and 
shown) by the software. This is not to say that dynamic visualizations lack 
value for education. However, for persistent problems, such as students' 
conceptual difficulties with histograms, it is worth looking at who is doing the 
statistics: the student or the software. In embodied instrumentation design, 
students are doing the statistics. 

7.3.5 Methodological limitations 

A limitation of our review study is that a geographical selection bias seems to 
exist, as many studies were conducted in the United States and Europe. This 
might partly be due to the language (English) and the absence of or only recent 
attention to statistics in many countries (e.g., Burrill & Ben-Zvi, 2019). We 
expect that the misinterpretations we found will also hold for Asian, African, 
Latin-American, and Oceanic peoples. For example, Malaysian 7th and 10th 
graders had similar difficulties (Ismail & Chan, 2015; Lim et al., 2022; Saidi & 
Siew, 2019).  

A limitation of our eye-tracking data collection is the sample size of 50 
students. Although this is considered quite large for an eye-tracking study, for 
applying statistical tests (Chapter 5), it is considered relatively small. Limiting 
the generalizability of our findings about strategies (Chapter 3) is also that we 
mainly tracked the gazes of 10–12 graders—although similar scanpath patterns 
were found for university students (Boels et al., 2018) and STEM teachers 
(Boels et al., 2019b)—and that our sample consisted of Dutch students from 
only one school. 

For the MLA application, we showed that both an ‘off the shelf’ tool 
(random forest implemented in the Mathematica Classify Function, Chapter 4) 
and a tailored MLA (random forest, Chapter 5) worked in classifying which 
students used what strategy (Chapter 4) and whether differences in gaze data 
occurred on histogram items after solving a series of dotplots items (Chapter 
5). A limitation is that we mainly used only single histogram items for this aim 
(Chapter 4), although we used one pair of double histogram items in the 
second study that used an MLA (Chapter 5). A study using double histogram 
items in a similar way to the single histogram items with an MLA is foreseen. 
We consider our three eye-tracking studies as first steps toward uncovering 
students’ task-specific scanpath patterns (Chapter 3), the possible application 
of gaze data in a future intelligent tutoring system in statistics education 
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(Chapters 4 and 5), and revealing micro-level changes in students’ strategies 
that could point at learning—depending on how learning is defined—during 
homework or assessment (Chapter 5). 

As described (Chapter 6), our lesson materials were tried out in a first 
cycle of design, implementation, and evaluation as a first step toward a design 
study. As this first cycle was tried out in a multiple case study, the small 
number of students in this multiple case study and their varying previous 
experiences with histograms is a limiting factor. Moreover, in most classrooms, 
there will not be time for spending 4–5 lessons (3.5 hours) on ‘one’ topic. On 
the one hand, a reduction in time for a next cycle of the HLT can be achieved 
by taking out problems that did not work yet, and, therefore, consumed 
relatively much of the teaching time (e.g., about 20 minutes for one task). 
Moreover, when applied in practice, the pretest will most likely be left out. On 
the other hand, when applied in schools, more time will be needed as starting 
and closing lessons consumes time. In addition, our mini-interviews might have 
made students reflect on their work, which could have speeded up subsequent 
tasks. Future design cycles need not only concentrate on how to further 
develop students’ interpretation of data and distribution in histograms but also 
on what is minimally necessary for such development. 

7.4 Implications and recommendations for future research 
In the next sections, we offer implications and recommendations for statistics 
education research on the need for interventions and design research, how 
gaze data could be used, and on how an IMM, MLAs, and an embodied 
instrumentation approach could be applied. We end with some implications 
for eye-tracking research regarding the application of quantitative and spatial 
eye-tracking measures.  

7.4.1 Need for interventions and design research instead of mostly 
surveys 

An implication of our work is that more research discussing interventions is 
needed. When conducting our literature review (Chapter 2), we noticed that 
only a few studies reported interventions and even fewer of them explicitly 
discussed what such interventions should look like. This finding still stands 
since we completed our review study (e.g., Amaro & Sánchez, 2019; Burrill, 
2019; Rodríguez-Muñiz et al., 2022). Most recent publications assessed 
students’ conceptions (e.g., Cooper, 2018; Reinhart et al., 2022; Setiawan & 
Sukoco, 2021) or reviewed the literature on ensemble perception, 
visualizations, and statistics education with histograms as an example (Cui & 
Liu, 2021). One study only described a possible intervention without applying it 
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(Delport, 2020). However, intervention studies got more attention: “As seen in 
this volume […], research has now moved to trying different strategies and 
inventions that can help address these misconceptions. The hope is that these 
potential strategies will be further researched in different contexts and other 
countries” (Franklin, 2019, p. v).  

Our proposed learning trajectory can be considered an answer to this 
call. Furthermore, the trajectory can help researchers to understand, for 
example, why “students mistake the bar heights in a histogram as the 
observed values in a dataset, and the number of bars as the number of 
observations” (Reinhart et al., 2022, p. 107).  

Research on students’ histogram misinterpretations is hard to find and 
spread across several disciplines. Our overview may assist researchers during 
the design stage of interventions to anticipate students’ interpretations. In 
addition, it may assist them in developing new teaching materials that address 
misinterpretations more broadly—as different manifestations of the same 
underlying conceptual problem—rather than treating or remedying them one 
at a time.  

7.4.2 Gaze data, an interpretable model, and MLAs as research tools 
in statistics education 

Eye-tracking: lessons learned and warning 
We are quite excited about what gaze data can tell. However, before 
continuing to possible future applications in the next sections, we would like to 
highlight two points of attention for those who want to start with eye-tracking 
research. First, the substantial time investment it takes to initiate such 
research as an early researcher—in our case, roughly nine months full-time for 
preparation and data collection and then over half a year for qualitative data 
analysis. Second, the already mentioned necessity to combine data, preferably 
through a cued retrospective think-aloud protocol (own perspective, McIntyre 
et al., 2022; Van Gog et al., 2005) as time on task and eye movements can be 
influenced by concurrent thinking aloud (Van Gog & Jarodzka, 2013). 
Researchers often want to know what students are paying attention to. Posing 
questions during an intervention or experiment can shift students’ attention 
from where they were at that moment to what they think the researcher is 
asking for. Viewing patterns can potentially provide similar insight into what 
students pay attention to without disrupting students’ thought processes.  

Other lessons from reviews of eye-tracking studies in other fields (e.g., 
finance, communication) provided several insights relevant to eye-tracking 
research in statistics education. First, research on task-specific strategies is 
rare, as most studies in education contribute to general theories such as on 
information processing or multimedia learning (e.g., Beach & McConnel, 2019; 
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King et al., 2019). Second, eye-tracking can be used for observing changes in 
students’ strategies that may point at learning as changes in gaze behavior 
occur during learning (e.g., Ashraf et al., 2018). More lessons for newcomers to 
eye-tracking research are provided in Appendix A of Chapter 3. 
Students’ gaze patterns on other graphs or tasks 
An implication of our research is that scanpaths can potentially shed new light 
on tenacious didactical problems in mathematics teaching for other 
misinterpreted graphs, including boxplots (Lem et al., 2013b, 2014a), density 
curves (Batanero et al., 2004), stacked dotplots (Lyford, 2017), function graphs 
(Leinhardt et al., 1990), interpreting the slope or direction field when learning 
to solve differential equations (for an example in physics education, Klein et 
al., 2018), scatterplots (Estepa & Batanero, 1996), and violin plots (a kind of 
density plots), but also for other topics where scanpaths may play an 
important role: increase diagrams, frequency polygons, network topologies, 
line and point symmetry in functions, and the relation between a straight line, 
functions, and axis scales (logarithmic, linear, normally distributed). In 
addition, this could also hold for other mathematical topics, including the 
congruency of triangles, and maybe even the representation of a cube and 
hexagon. 

Future research is needed to find out if the scanpath patterns we found 
for estimating and comparing means from histograms and case-value plots are 
similar in different cultural settings and educational systems around the world. 
Also left for future research is the analysis of some of the other tasks on which 
we collected data. As data were collected on 25 tasks, there are still ten tasks 
left that could be analyzed qualitatively and if successful, analyzed through an 
IMM and MLAs as done in Chapter 4: six messy dotplot tasks, two stacked 
dotplot tasks, and two horizontal histogram tasks. From students’ answers, we 
suspect that students had no difficulties with single dotplots (Boels & Van 
Dooren, 2023) but that comparing arithmetic means from two dotplots was 
more difficult. When looking at students’ gaze data during the assessment, we 
got the impression that some students used the heights of the stacks in 
stacked dotplots. We also got the impression that at least one student used 
the height of the ‘bump’ in a messy dotplot to estimate the arithmetic mean. 
Future research is needed to investigate students’ strategies for solving the 
dotplot tasks. For example, is the gaze pattern on dotplots similar to the gaze 
patterns found for histograms and case-value plots? In hindsight, our messy 
dotplots might not be high enough to induce large vertical eye movements, 
which are typical for one correct strategy for estimating the mean from 
histograms. For future research, it is advised to make sure that the highest 
point in the graph is at least 200 (4.1°), preferably 250 (5.1°) pixels away from 
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the horizontal axis. Students’ gaze data when solving dotplot tasks could 
possibly shed further light on why the research with dotplots had mixed results 
(e.g., Bakker, 2004a; delMas & Liu, 2005; Lem et al., 2013a; Lyford, 2017) and 
on how dotplots could be used in educational designs so that students benefit 
from their use. In addition, training an MLA with double histogram tasks is left 
for future research. 
Revealing productive strategies 
An implication of our research is that gaze data can potentially reveal correct 
reasoning. Many studies infer students’ reasoning toward their answers from 
students’ answers (e.g., Bolch & Jacobbe, 2019; Lovett & Lee, 2019). However, 
students could be using a productive strategy for solving the task at hand and 
still answer incorrectly, or vice versa. As correct reasoning is valued in statistics 
education, this could provide researchers with a new tool to discover such 
correct reasoning. From our experience, it can sometimes even be possible to 
infer from gaze data that a student started with a correct or incorrect strategy 
that was abandoned for some reason.  

A future line of research could be to see how gaze patterns change 
within and over tasks, for example, when students develop a sense of a topic 
(e.g., Schindler & Lilienthal, 2020). Research suggests that a combination of 
students’ actions, perceptions, and reflections results in a change in gaze 
patterns (Abrahamson et al., 2015; Alberto et al., 2022). A delay between a 
change in gaze pattern and students’ verbal reflections can also indicate 
readiness for learning (Church & Goldin-Meadow, 1986). Vygotsky associated 
specific eye movements with thinking processes (1926/1997). Incongruencies 
between gaze and verbal data may be an indication of approaching or getting 
into the zone of proximal development (see also Chapters 3 and 5) where 
collaboration with a more knowledgeable person leads to joint actions and 
mutual understanding (e.g., Shvarts & Abrahamson, 2019). In one study, we 
also found indications of changes in gaze patterns that, combined with other 
data, suggested changes in strategies that could point at a learning effect of 
solving dotplot tasks (Chapter 5). A related future line of research is 
mismatches between gazes, gestures (e.g., students’ hand movements on a 
screen or in a discussion), and speech. In addition, differences in gaze patterns 
between novices and experts could be studied (cf. Brunyé et al., 2019; Khalil, 
2005; Van Marlen et al., 2022). Although we collected some data from experts 
for our tasks, we need to collect more data to investigate differences and 
guarantee anonymity. In addition, the gazes of students, teachers, and experts 
could be combined both in a qualitative study and in a machine learning 
analysis. Along with supervised MLAs, unsupervised MLAs can be considered, 
such as clustering or a combination of both. Furthermore, results from 
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machine learning analysis could be used to validate qualitative eye-tracking 
studies. 
Further possible research directions 
A future line of research could be to find out if students can be grouped 
meaningfully purely based on their scanpaths on the graph area through 
unsupervised clustering (an MLA) or latent class or profile analysis (e.g., 
Hickendorff et al., 2018). Another possible line of research could be the joint 
attention of teacher-student or student-student pairs (Chisari et al., 2020; 
Shvarts & Abrahamson, 2019). Gaze data from such pairs wearing glasses can 
show whether the gazes of a pair have a joint focus (e.g., Shvarts, 2018). 

Future research could also be to investigate how the process of 
interpreting their own or other students’ gaze data can help students’ 
reasoning with data, data representations, center, variability, and so on (see 
Figure 7.2 for green fixations of a student interpreting the red fixations and 
saccades of another student who incorrectly estimated the mean weight from 
a histogram).  

Figure 7.2 Video stills of one student’s gazes (using glasses; green dots) looking at 
another student’s gazes (red dots) 

  
 

7.4.3 An embodied instrumentation approach in statistics education 
research 

An implication of our research is that it is a first step toward a domain-specific 
instructional framework as described in section 7.2.6. We showed how an 
embodied instrumentation approach can be used to design tasks and develop 
an HLT which was evaluated in a first cycle of a design study (Bakker, 2018; 
McKenney & Reeves, 2012). An implication is also that we call researchers to 
question all pre-given aspects of the artifacts they use (e.g., height in 
histograms) and to reveal artifacts’ origins (see Chapter 6). 

Left for future research are follow-up cycles of scaling up in size 
(number of students, teachers, schools involved) and (re)design, 
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implementation, and evaluation. Some suggestions for redesign can be found 
in Chapter 6. A new cycle could work toward understanding variability from 
univariate graphs or toward the algorithm for finding the arithmetic mean 
from histograms. These are probably two different routes between which a 
similar tension may exist as between an uncertainty-based approach within 
statistics and a deterministic approach in mathematics (delMas, 2004; 
Meletiou-Mavrotheris & Stylianou, 2004; Ridgway & Nicholson, 2019). Since 
most students will become consumers of data and statistical models—
including graphs—the first route seems to fit them better.  

7.4.4 Quantitative and spatial measures in eye-tracking research 

An implication of our research is that spatial measures (saccadic magnitude, 
direction, and for some strategies also alignment) do seem to provide task-
specific guidance for developing a local instruction theory for learning or 
teaching a specific topic. Other successful attempts with sequences of AOIs 
within statistics and biology education show that compressed scanpaths are 
meaningful to researchers (Garcia Moreno-Esteva et al., 2018, 2020; see also 
our IMM in Chapter 4), and might, therefore, be more informative for 
educational aims than each single student’s scanpath. A possible implication of 
our work is that a specific—uncompressed—order of AOIs and scanpath 
similarity or idiosyncrasy may be less important for uncovering task-specific 
solution strategies. The decision on how, when, and what spatial measures are 
relevant for task-specific strategies in statistics education is also left for future 
research. 

Another implication for eye-tracking research is that, so far, 
quantitative measures in eye-tracking research do not seem to provide task-
specific guidance for the teaching of a specific statistics education topic. Left 
for future research is the question of which of the quantitative metrics (if 
any)—including temporal metrics and counts—are relevant for statistics 
education research.  

Scanpaths are idiosyncratic (Noton & Stark, 1971) and several studies 
found that “an individual’s scanpath was […] more similar within an individual 
than between individuals” (Anderson et al., 2015, p. 1378). At first glance, our 
research seems to contradict this, as we look at similarities between 
individuals. Let us state up front that we do not dispute that scanpaths are 
idiosyncratic. However, there are several reasons why this idiosyncrasy can be 
ignored (or compressed, Garcia Moreno-Esteva et al., 2020). First, for students’ 
solution strategies, we are not interested in differences that are irrelevant to 
those strategies, such as, for example, whether a student first looked at the 
graph title, and then at the graph area or vice versa. Second, for students’ 
solution strategies, our qualitative study revealed that only the gaze pattern on 
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the graph area is relevant. Third, our students were not just looking at a scene 
but were looking to find an answer to the question posed. This is different 
from most studies in, for example, the review of Anderson et al. Although 
scene viewing can also be guided by the question to later describe the picture 
from memory (e.g., Johansson et al., 2006), such a question usually is more 
general than our question to estimate or compare means from the graphs. 
Fourth, if there were no similarities in students’ scanpath patterns, it would 
not have been possible to train an MLA or make an IMM to find such 
similarities. We proved that this was possible with relatively high accuracy for 
single histograms. 

In addition, an implication of our work could be that reading axes and 
graph titles is less important for students’ task-specific strategies than we 
thought. A first indication stems from our first attempts with machine learning 
algorithms (MLAs)—not further reported in Chapters 4 and 5. Adding gaze data 
on graph and axes titles seemed to add noise and reduce MLA accuracy. 
Second, we saw in the videos of the gazes that students sometimes explicitly 
checked the axes titles and then still misinterpreted the graph. More research 
is needed to figure out whether—and if so, how—looking at axes titles is 
related to students’ task-specific strategies. 

7.5 Implications and recommendations for educational 
practice and design 

In the next sections, we offer implications and recommendations for the role 
of histograms in the statistics education curriculum for teacher professional 
development and for future applications of eye-tracking in statistics education. 
In line with the quote of Marie Curie at the beginning of this chapter, we 
notice only what remains to be done.  

7.5.1 Histograms in the statistics education curriculum 

Dutch teachers in Grades 4 and 8 are the most frequent users of textbooks 
according to a Trends in International Mathematics and Science Study (TIMSS) 
(Foxman, 1999). In the Netherlands, similarly to many other countries, 
“textbooks […] are the supporting backbone for most teachers (whether or not 
one believes this should be the case)” (Leinhardt et al., 1990, p. 47). Therefore, 
in the following sections, we provide implications and recommendations for 
teachers, textbook authors, and curriculum designers.  
Histograms are needed for learning key concepts 
We recommend a central role for histograms in a curriculum that also includes 
other graphs of univariate data (e.g., dot-, stem-and-leaf, and boxplots). 
Histograms may play a pivotal role in learning statistical key concepts such as 
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data, distribution, variability or variation, and central tendency (Garfield & 
Ben-Zvi, 2008a). Histograms prepare for other key concepts such as probability 
distribution and density in probability theory (Batanero et al., 2004). Each key 
concept relies on other concepts (e.g., distribution relies on center, density, 
skewness, relative frequency, Bakker & Gravemeijer, 2004). Therefore, a 
histogram can be regarded as a spider in a web of knowledge (Chapter 1), see 
the network of statistical concepts relevant to interpreting histograms 
(Chapter 2). Unfortunately, we cannot learn those key concepts without signs 
(e.g., histograms), as the representation of data as well as how their 
distribution manifests itself (through its shape) strongly depends on the 
specific type of graph (Chapters 1, 2). The underlying conceptual difficulties 
become manifest when students interpret histograms, making histograms a 
good diagnostic instrument for teachers and researchers. 

Given students’ persistent difficulties with histograms, one might 
wonder whether we can do without them in research and education. We think 
we cannot. First, histograms are suitable for large amounts of data because 
they aggregate them, and as such, they can reveal aspects of distributions that 
most other graphs often do not (e.g., Pastore et al., 2017). Second, histograms 
are omnipresent in research and society, and should, therefore, be learned. 
Third, students also exhibit comparable misinterpretations of alternatives such 
as boxplots and stacked dotplots (Bakker et al., 2004; Lem et al., 2013a, 2013b, 
2014a; Lyford, 2017). Fourth, it is the key concepts underlying histograms that 
are hard to grasp. 
Focus on key concepts and bring data more upfront 
An implication of our research is that within the key concepts it is plausible 
that data need to be put more to the forefront in Dutch secondary statistics 
education, and most likely also in other countries (Chapter 2). This plea for 
more emphasis on the key concept of data is in line with developments in data 
science and statistics. These developments required “Re-thinking learners´ 
reasoning with non-traditional data," which was the theme of an international 
conference (SRTL-12) on statistics education that was co-organized by Ben-Zvi, 
Boels, Makar, and Van Dijke-Droogers. In addition, recent statistics education 
research argues for adding data literacy to statistical literacy. Gould considers 
data literacy to be statistical literacy with more focus on being “a critical 
consumer of data, controlling [ones…] personal data trial, finding meaning in 
data, and taking action based on data” (2017, p. 23). Furthermore, analysis of 
media items during the pandemic brought to light that our students need to 
understand that statistics and predictions are tentative and that data, 
analyses, and results can be debatable or may need revision (Gal & Geiger, 
2022). This might challenge the view that scientific findings or statistics are the 
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truth. They suggest adding evidence literacy to the statistics curriculum as part 
of critical thinking (see section 7.21). Teaching examples for incorporating 
critical interpretation of data presented in statistical graphs can be found on 
the website74 What’s Going On in This Graph? 

The review study made us change our focus from how to interpret the 
sign or artifact (histogram) to key concepts in statistics. However, several 
educational systems are still dealing with a previous change from teaching 
students how to construct histograms to how to interpret histograms: 
“didactical research suggests that the emphasis of teaching is often put on the 
construction of such graphs, with little attention to their interpretation” 
(González et al., 2011, p. 188). Since then, little has changed (e.g., Burrill, 
2020). For example, in United Kingdom assessments “there is very little 
emphasis on statistical skills such as interpreting data and drawing conclusions, 
and a great deal of emphasis on technical skills” (Ridgway & Nicholson, 2019, 
p. 1). The choice of software for classroom use can either support or hinder 
refocusing on key concepts (see the methodological contributions section). The 
Netherlands unfortunately is no exception to this international tendency for 
teaching practice to focus primarily on how, for example, to draw a histogram 
from a frequency table or calculate measures of centers (Chapter 1) rather 
than interpreting graphs and developing an understanding of key concepts 
through histograms. This stresses the importance of supporting teachers and 
authors of textbooks in such a refocusing, as textbooks may have a cumulative 
impact on students’ achievement (Van den Ham & Heinze, 2018).  

An implication of our research is also that it confirmed that estimating 
means from graphs can demonstrate students’ conceptual knowledge (e.g., 
Gal, 1995). In addition, our eye-tracking studies showed that students used 
correct strategies for estimating means from case-value plots (Chapter 3) and 
most non-stacked dotplots (Boels & Van Dooren, 2023). Therefore, it is most 
likely not the estimation of means from graphs itself that is causing students’ 
difficulties with histograms. Instead, it is how the data are presented in 
histograms (Chapter 2). We consider estimating and comparing means of data 
in graphs as a first step toward assessing and comparing variability, as 
variability is assessed against some measure, often the mean. For example, the 
standard deviation is a (non-linear) deviation from the arithmetic mean. 
Variability is part of the key concept of distribution. A next step could, 
therefore, be to develop students' knowledge about distribution.  
  

 
74 https://www.nytimes.com/2020/06/10/learning/over-60-new-york-times-graphs-for-
students-to-analyze.html 

https://www.nytimes.com/column/whats-going-on-in-this-graph
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Histograms in the investigative cycle 
Research recommends having graphs play a central role in innovative curricula 
(Garfield & Ben-Zvi, 2008a) and in initial data analyses. This is in line with the 
advice to always graph data first before applying any statistical test (e.g., 
Anscombe, 1973; Matejka & Fitzmaurice, 2017; Pastore et al., 2017). In 
innovative curricula, the investigative cycle (Figure 7.3) plays an important 
role75. In this cycle, histograms may assist during planning, data collection and 
cleaning (e.g., finding outliers), and analysis (e.g., exploration, hypothesis 
generation). So far, we have not found any dataset being used in Dutch Grades 
7–12 textbooks that needs, for example, data cleaning. In addition, histograms 
could be used during inferential reasoning such as testing a hypothesis and 
drawing conclusions (e.g., interpretations, generating new ideas). Garfield and 
Ben-Zvi (2008a) state: 

Today’s more innovative curriculum and courses have students 
constantly revisit and discuss graphical representations of data, 
before any data analysis [e.g., calculating means and standard 
deviations] or inferential procedure [occurs]. In a similar vein, the 
ideas of distributions having characteristics of […] center, and 
spread can be revisited when students encounter theoretical 
distributions and sampling distributions later [on]. (p. 168, 
emphasis added) 

Discussing these recommendations, we note that histograms are part of what 
is often called descriptive statistics. This classification belittles the role of 
histograms in inferential reasoning. For inferential reasoning, research 
suggests starting with qualitative inferences (Van Dijke-Droogers, 2021) 
instead of computations. An example is asking students to estimate center 
(e.g., arithmetic mean) and variation from a graph (Gal, 1995) instead of 
calculating mean and standard deviation from a graph or frequency table. 
It is plausible that the investigative cycle and statistical key concepts, up to 
now, received little attention in Dutch statistics education. For example, if 
teachers follow mathematics textbooks, students will rarely collect data 
themselves. Instead, they will work either with representations of these data 
(e.g., tables, graphs) or with given datasets. As the choice of graphs depends 
on what data are collected (number of variables, measurement level), 
students’ experiences with it are important. However, as it can be time-
consuming, talking students through the data creation process can be an 
alternative:  

 
75 Recently, attempts have been made to incorporate insights from data science (IDSSP, 2019; 
Fry & Makar, 2021).  
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[Several researchers] stress the importance of talking through the 
process of data creation as necessary preparation to seeing data 
as numbers in context. [It can also] address the measurement and 
sampling issues: what variable exactly is measured and how? 
However, such guided discussions alone may not suffice; in our 
view, students should also experience a whole investigative cycle. 
(Bakker, 2004a, pp. 256–257) 

Figure 7.3 Investigative cycle (redrawn from Wild & Pfannkuch, 1999) 

Note. Some research adapted this cycle to include data exploration with “data from 
disparate sources, some of which may not have been mindfully collected or may have 
been collected for a purpose different from the current application” (Gould, 2021, S21; 
see also Wise, 2020). Based on key practices of data scientists, Lee et al. (2022), use 
“consider and gather data” instead of data collection and separate this step from the 
processing of the data (e.g., data management and cleaning) (p. 11). For image-based 
data, Kazak et al. (2022) developed a version of the investigative cycle that starts with 
“data familiarization” and includes an “Identification/Generation of Variables” step  
(p. 5). 

In our quick scan of textbooks (e.g., Moderne Wiskunde, 2015), we did not find 
examples of talking through this data collection process. Although, in recent 
textbooks, it seems that some improvements have been made, such as 
including a task in which students collect data themselves (e.g., Moderne 
Wiskunde, 2019), the full ‘talking through the data creation process’ for the 
many datasets given in the textbooks does not seem to occur. McClain and 
Cobb (2001) provide an example of how this could look for the braking 
distance of cars. This process then includes “what data would be needed to 
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make a good decision or how that data could be generated […]. How one might 
test the effectiveness of a car’s brakes or how that data could be gathered” 
(2001, p. 113). Given the vast amount of data that are nowadays collected by 
others, emphasis on how, why and by whom data are collected becomes more 
and more important for statistical literacy and critical citizenship (Fry, 2019; 
Gal & Geiger, 2022). 
Postponing the introduction of histograms 
Based on our research we suggest postponing the introduction of histograms 
to Grades 9 or 10 as we think that the introduction of histograms comes too 
early in curricula. Many students’ difficulties with histograms continue to exist 
up to tertiary education and in fact, even some teachers have difficulties with 
histograms (e.g., Lovett & Lee, 2019). Bakker (2004a) already advised “against 
introducing histograms in early middle school grades” as students in Grades 7–
8 needed a lot of time to understand center and spread in dotplots; spending 
time on histograms (or boxplots) would take time away from developing these 
notions (p. 261). Currently, the Common Core State Standards for Mathematics 
(CCSSM) introduce histograms (together with dotplots and boxplots) in Grade 
6, and the Pre-K–12 Guidelines for Assessment and Instruction in Statistics 
Education II (GAISE II) gives examples of histogram test items for level A and B 
(“roughly equivalent to elementary, [and] middle […] school “(Bargagliotti et 
al., 2020, p. 2; more assessment examples in Chance et al., 2018; Tintle & 
Vander Stoep, 2018). We think that non-stacked (‘messy’) dotplots (Chapter 6), 
and hatplots (e.g., Allmond & Makar, 2014; Konold, 2002) are preferred for 
Grades 6–9 (cf. Bakker, 2004a; Fielding-Wells & Hillman, 2018). In addition, we 
expect that histodots (Chapter 2) and stem-and-leaf plots can be introduced in 
Grades 8 or 9 as preparation for histograms. These univariate graphs have in 
common that they prepare for proportion-based reasoning (Frischemeier, 
2019). Non-stacked dotplots and hatplots can also be used to build students’ 
intuitions for boxplots (cf. Makar & Confrey, 2003) and prepare for quartile-
based reasoning (Frischemeier, 2019). Boxplots share with histograms that 
they depict univariate data and that many misinterpretations occur (e.g., 
Bakker et al., 2004; Lem et al., 2013a, 2013b, 2014a). Therefore, boxplots need 
to be carefully introduced; we speculate in Grades 10 or 11, and after 
introducing histograms. 

There are hidden conventions and conceptual elements in 
histograms and boxplots: in histograms, the area of the bars is 
relative to the number of values it signifies, and in boxplots 
conceptual elements such as median and quartiles are depicted. 
(Bakker, 2004a, p. 13) 
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Another implication of our eye-tracking study (Chapter 3) is that just telling 
students to carefully read the axes and graph titles will probably not be 
enough (see also 7.4.4). An implication of testing our initial HLT is that pre-
university track (vwo) students in Grades 10–12 seem to be capable of 
correctly estimating means from histograms when this is carefully prepared in 
targeted tasks. We expect students will also be able to compare means from 
histograms and dotplots when properly prepared. We consider such tasks as 
preparation for qualitative assessing and comparing variability from dotplots, 
histodots, and histograms. 
Use different names for different types of graphs with bars 
We recommend using different names for different types of graphs with bars. 
As pointed out in the introduction, in English, different names are used for 
different types of graphs (e.g., Cooper, 2018). When correctly applied, these 
different names can help students to distinguish different types of graphs with 
bars from each other. Unfortunately, our native language—Dutch—only 
distinguishes histograms and bar charts, and some Dutch textbooks do not use 
the word histogram at all (e.g., Moderne Wiskunde, 2015, 2019). Therefore, 
Dutch words were introduced (Boels, 2019) for case-value plots (casus-
staafdiagrammen), distribution bar charts (verdelings-staafdiagrammen), and 
time-plots (tijd-diagrammen). We beg textbook authors worldwide, and in the 
Netherlands specifically, to start using them correctly and avoid ambiguous 
words such as bar graphs or bar charts (in Dutch: ‘staafgrafieken’ or 
‘staafdiagrammen’)76. 

7.5.2 Professional development of mathematics teachers and 
textbook authors 

Provide teachers with professional development opportunities 
In discussing the implications of our work, we note that a change in the 
curriculum implemented in textbooks is not enough to incorporate insights 
from research. Making teachers aware of key concepts in statistics, students’ 
misinterpretations related to these key concepts, their own misinterpretations, 
and effective teaching strategies to prevent such misinterpretations is 
necessary (cf. Pareja Roblin et al., 2018). For current teachers and future 
statistics education curriculum reform, we, therefore, recommend 
implementing it in teacher training.  

First, teachers are the ones who deliver the curriculum. Therefore, it is 
important to not only look at how insights from research could be 

 
76 The distinction is important because they need to be analyzed and interpreted differently. 
Similar to a triangle and a square which are both polygons, but importantly different for 
reasoning. 
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implemented in the curriculum in, for example, mathematics textbooks as we 
did in the previous section, but also how teachers can be supported to enact 
the intended curriculum. Teaching statistics is “less popular among many 
mathematics teachers [… and several of those] in the early years of secondary 
education are inexperienced and not trained to teach inferential statistics” 
(Van Dijke-Droogers, 2021, p. 171). The same seems to apply to those teaching 
statistics in upper grades in the Netherlands. As we will argue below, we think 
this is partly due to a lack of training, not providing topic-specific support and 
overviews for teachers, and a lack of possibilities for many teachers to cross 
boundaries between research and teaching.  

Second, in the Netherlands, as in many other countries, statistics in 
middle and high school is often taught by mathematics teachers. The 
deterministic approach in the mathematics curriculum and the inherent 
uncertainty that exists within statistics do not always align (e.g., Groth, 2015). 
Moreover, “many mathematics and science teachers in the USA have not 
benefitted from the sufficient opportunity to learn statistics in a sense-making 
manner” (Burrill & Ben-Zvi, 2019, p. xiv). The same holds true for several other 
countries, including the Netherlands (Van Dijke-Droogers, 2021). Although 
probability has been part of mathematics education for several decades now, 
statistics was first introduced as a topic in the elective part of the mathematics 
curriculum in 1985 (e.g., Wijers & De Haan, 2020). From 2007 on, a new 
curriculum reform resulted, on the one hand, in statistics playing a larger role 
for students who chose humanities and social studies as a continuation. On the 
other hand, for future science students, statistics became part of an elective 
subject (Mathematics D) that was chosen by only a limited proportion of them. 
Many future mathematics teachers are, therefore, still only introduced to 
statistics for the first time during their training as teachers. It is unclear to what 
extent knowledge about key concepts in statistics is covered, or whether this 
training focuses mainly on procedural or instrumental knowledge, including for 
example, how to find the median by hand or by using a calculator.  

Third, despite in-service teacher training provided during the first years 
of the last reform in 2007, STEM teachers still hold several misinterpretations 
related to key concepts of statistics (e.g., for estimating and comparing means 
from histograms and case-value plots, Boels et al., 2019b). This situation is not 
unique to the Netherlands. High school mathematics teachers with at least five 
years of experience had similar misinterpretations to students about the key 
concept of variability (Vermette & Savard, 2019). Middle- and high-school 
teachers found it difficult to coordinate graphs with calculation procedures, 
such as absolute deviation for the mean (Peters & Stokes-Levine, 2019)—a 
measure that is not part of the Dutch statistics curriculum for secondary 
education. 
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Fourth, design research is needed on how best to organize such 
training in the Netherlands and internationally. That this is not an easy job is 
illustrated by research involving preservice teachers who compared data of 
groups (e.g., monthly income for males and females). After attending a course 
on “developing statistical thinking and reasoning with TinkerPlots” 
(Frischemeier, 2019, p. 292), teachers concentrated “on the production of 
displays and the calculation of summary statistics but [they] do not interpret 
their findings” (p. 301). 

Fifth, given teachers’ dependency on mathematics textbooks, we 
speculate that reforming textbooks might be another effective route to 
increasing the level of knowledge of both teachers and students. 
Supporting teachers in implementing curriculum reform 
Given that teaching statistics does not seem very popular for (Dutch) 
mathematics teachers, we recommend supporting teachers in implementing 
the statistics curriculum after each reform. Currently, we do not know how 
well the implemented statistics curriculum for Dutch secondary schools 
matches the intended curriculum (see also Verschut & Bakker, 2010), although 
there is some analysis of mathematics textbooks (e.g., Huang, 2022; Rodríguez-
Muñiz et al., 2018). As many teachers rely on textbooks, research is needed on 
how the intended statistics education curriculum is implemented in textbooks 
and in teaching practice. Providing teachers with information about the 
matches and gaps between the intended and implemented statistics education 
curriculum in textbooks could help with closing knowledge gaps:  

Providing support for teachers as they form the intended 
curriculum and enact it could help ensure that the intended spirit 
of the curriculum materials […] is not lost. Additionally, as 
curriculum writers interact with teachers, they may find that some 
adaptations teachers make to the written curriculum help to 
improve it. (Groth, 2015, p. 14) 

Providing teachers with exemplary teaching materials (cf. cTWO, 2007) during 
curriculum reform most likely needs to be part of that but will probably not be 
enough. What teachers also need is to know “the intentions of the authors of 
exemplary teaching materials […] Suggestions in the materials for classroom 
activities that stimulate coherent knowledge and make efficient use of time” 
(Verschut & Bakker, 2011, pp. 921–922), explication of the structure of 
exemplary materials, and their connection to the curriculum. We, therefore, 
recommend that the intentions of the materials (e.g., which key concepts and 
misinterpretations they aim to address) and suggestions for classroom 
activities be part of it. Left for future research is also how to best provide 
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teachers with supporting materials during and after reforming the statistics 
education curriculum.  
Crossing boundaries between research and teaching and provide teachers 
with overviews of students’ conceptual difficulties 
We recommend developing supporting materials for teachers teaching 
statistics (cf. cTWO, 2007) as these materials could help cross boundaries. 
Crossing boundaries—here from teaching to research and back—can be 
difficult (Akkerman & Bakker, 2011). Before we started this study, many 
teachers and textbook authors were not aware of students’ difficulties with 
interpreting histograms (Reinhart et al., 2021). In addition, research insights 
are not always used in teaching practice, not only in the Netherlands but in 
many countries (Bakker et al., 2021). We speculate this is partly due to 
inaccessible jargon, a fragmented landscape with detailed studies on specific 
topics, secondary school teachers who instead teach a broad curriculum, and 
the limited time available to teachers to explore topics in depth. Research is 
needed to find out what teachers’ support should look like. One effective way 
to improve teaching practice could be to provide teachers with (replace 
science with statistics): 

…extensive lesson directions and […] activities [that] were 
designed to elicit students’ ideas and many possible 
misconceptions […] questions were provided and teachers were 
given suggestions on how to help […]. The curriculum consists of 
instructional materials for both students and teachers. The suite 
of teacher support materials helps to deepen teachers’ knowledge 
of science content and practices related to the unit. These 
materials include (among other supports) Background Content 
Knowledge, which provides teachers with more advanced 
information on the science content, important observations 
students should make, and any observations teachers might 
emphasize/deemphasize. (Pareja Roblin et al., 2018, p. 276, 
emphasis in original) 

7.5.3 Future applications of eye-tracking in statistics education 

Before continuing to possible future applications of eye-tracking research in 
statistics education, in the next section, we first would like to highlight an 
ethical point of attention regarding the usage of students’ gaze data. 
Ethical considerations 
Although data collection can have advantages, such as music websites offering 
music that you might like based on your previous choices, it has a downside, 
too. Fry (2019) provides several examples of improper use of data to train 
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machine learning algorithms that decide who is to be invited for a job 
interview or who is turned down for a loan. Therefore, an ethical discussion 
needs to be started about gaze data. 

Today, gaze data are already being used in the gaming community (e.g. 
EyewareBeam77) and its introduction into education will probably only be a 
matter of time. Currently, it seems impossible to retrace gaze data to a specific 
person, as for most software, only the gaze position on the screen is registered 
(e.g., Gorilla.sc, n.d.), although some webcam eye trackers do store videos with 
faces on servers as well. In addition, no general relationship seems to exist 
between eye movements and thought processes; this relation needs to be 
established for each situation. However, it is conceivable that in the future, 
faster methods will become available for analyzing data and that the 
idiosyncrasy of gazes could make them retraceable to specific persons. 

It is, therefore, important that an ethical discussion be held now about 
who may collect and use students' eye movement data. Are we going to hand 
this over to large tech companies—just as we did with earlier data—or will this 
remain reserved for non-commercial parties only? Can students—and 
teachers—refuse to make their data available, something that currently seems 
impossible when using, for example, Google Classroom? We strongly 
recommend thinking about such questions now. 
Gaze data in a feedback or information tool 
We discuss several implications for how gaze data can be used as part of a 
feedback or information tool in education. A first possibility is to provide 
students with their own gaze data after solving one or more tasks and ask 
them to describe the strategy they used. Our research and analysis (Chapters 3 
and 5) suggest this may also help students reflect on their chosen strategy. Our 
students seemed to have no difficulties interpreting their own gaze data during 
cued recall. Students’ gazes were shown by illuminating the location where 
students looked—through a kind of spotlight—while making the rest of the 
graph darker. However, this way of having students individually look back at 
their eye movements is time-consuming and not (yet) feasible for regular use 
in classrooms.  

A second possibility is to provide students with other students’ gaze 
data. We have done this with two students in our intervention study, but do 
not report on that in Chapter 6. We have not yet analyzed these data. Both 
possibilities required a time delay between data collection and replay. 

A third possibility is to provide students with immediate, personalized 
feedback based on their gaze data (e.g., Król & Król, 2019). Such automatic 

 
77 https://beam.eyeware.tech/games/ 
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feedback could become possible if a number of conditions are fulfilled. First, 
there need to be distinctive eye movement patterns that can be linked to 
specific strategies (Chapter 3). Second, after developing an IMM or training an 
MLA, such tools need to be able to extract these patterns from the gaze data 
of new students. This condition was met for single histogram tasks (Chapter 4). 
Third, inexpensive equipment is needed to measure eye movements. Further 
research is needed to investigate if webcams could be used (e.g., Knoop-Van 
Campen et al., 2021) as these have less accuracy. Only if sufficient accurate 
eye-tracking becomes inexpensive, can large-scale applications for gaze-based 
personalized feedback become feasible in classrooms, during homework or 
distance learning, and in MOOCs. For all three possibilities mentioned above, 
the question remains in what way feedback should be given: should students 
see their own or others’ eye movements (e.g., Król & Król, 2019), or is another 
form of feedback needed (cf. Tacoma et al., 2019)? 

A fourth possibility is to provide teachers with information based on 
students’ gaze data. Several questions still remain open in that case. Is it better 
if such a system reports back which students are using a correct strategy, 
which students are not, and for which students the strategy is unclear so that 
the teacher can intervene in a targeted way? Is it useful or necessary to then 
provide the teacher with a record of students' eye movements, and if so, in 
what form? This also raises the question of whether teachers can identify 
students' strategies—from students’ gaze data—when students are 
interpreting a statistical graph. Do they need an instruction for that and if so, 
what should such an instruction look like? Teachers could not only be asked 
whether they think a student had performed a correct strategy—or what 
strategy they think the student used—but also, if the strategy was 
inappropriate, what kind of intervention they would do. This is what bachelor 
students did—(re)using students’ gaze data of the study described in Chapter 3 
for single histograms and case-value plots (Benson et al., 2020). To the best of 
our knowledge, this is one of the first studies that provided secondary school 
teachers with the opportunity to interpret and thus reason with this ‘non-
traditional’ data. As this data collection was relatively small and hindered by 
the COVID-19 pandemic, further investigation is needed. 
Gaze data in tertiary education courses 
We suggest developing tertiary education courses that focus on task-specific 
strategies in mathematics and statistics education inferred from gaze data. In 
these courses, students (and teachers) will then collect and analyze gaze data 
themselves. There are already courses on eye-tracking, often taught in 
neurosciences or psychology departments. Students collecting data in these 
courses are, for example, interested in memory and cognitive load theory, self-
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regulated learning, anomalous viewing patterns related to certain health 
problems, or metacognitive skills. In marketing, gaze data are used for inferring 
decision behavior. Currently, courses that focus on the kind of task-specific 
strategies found in our research seem to be rare. 
Gaze data to revise instructional design 
Future research can also use gaze data to revise the instructional design. 
Examples of using multimodal data for revising the design can be found in 
several studies (Alberto et al., 2022), such as on proportions (Shayan et al., 
2017) and trigonometry (Shvarts et al., 2021).  
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Teacher-researcher’s reflections on conducting research 
“Insanity is doing the same thing over and over again and expecting different 
results.” 78 
Rita Mae Brown 
  

 
78 This quote is often misattributed to Einstein. Instead, this version was from Rita Mae Brown in 
Sudden Death, 1983, in which she rephrased a quote from Narcotics Anonymous, 1981. In Van 
Wayenburg, B. (2015). Vijf quotes die Einstein nooit heeft uitgesproken [Five quotes Einstein 
never spoke]. Kijk. https://www.kijkmagazine.nl/artikel/vijf-quotes-die-einstein-nooit-heeft-
uitgesproken/ 
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8.1 Reflections on conducting design research 
As described in the introduction, when I started this research, I intended to 
conduct a design study with input from literature and from an eye-tracking 
study. However, from the literature review it became clear that, in 2016, there 
was not yet an effective intervention for secondary education waiting to be 
tested and tailored to Dutch education. In addition, although eye-tracking had 
been around for several decades, its application in the field of statistics 
education was and is still in its infancy (e.g., Strohmaier et al., 2020). At the 
start of our pilot eye-tracking study, we, therefore, had no idea what to expect. 
I remember very well that I was concerned that we would not find anything at 
all as we constructed graphs (histograms and case-value plots) that contained 
a clear context (weights of packages and garbage) excluding any of the known 
confusing contexts; we used ‘easy’ numbers (below 20), we used axes scales 
and titles, and we explicitly indicated graph titles. It came as a small surprise 
that even master students teaching statistics were sometimes misinterpreting 
histograms, or were overgeneralizing histograms to case-value plots, and that 
clear solution patterns seemed to emerge for single graphs (Boels et al., 2018). 

Conducting a proper eye-tracking study is a lot of work and required 
me to also dive into the literature of that discipline. We benefitted most from 
the data collection by adding extra tasks to the first twelve tasks intended for 
uncovering students’ solutions processes—strategies—for histograms and 
their look-alikes (case-value plots). These rich data formed the basis of three 
studies included in this dissertation and opened up opportunities for taking a 
step toward automatic feedback based on students’ gazes (Chapter 4). 
Although Enrique Moreno-Esteva and Alex Lyford—whom I met at 
international conferences—executed the machine learning analysis, writing up 
the work we did required that I acquired at least some basic knowledge on yet 
another discipline, namely how machine learning algorithms (MLAs) function. 
Getting that work published was not an easy task either, as it is—again—on an 
intersection of disciplines: eye-tracking research related to cognitive sciences, 
artificial intelligence, and statistics education. Since educational research 
journals usually lack specific knowledge about MLAs, a specialist reviewer is 
frequently called in for this purpose. These reviewers often focus on tailoring 
an MLA to the situation, which originates from the discipline of artificial 
intelligence. However, our approach described in Chapter 4 used black-box 
software with an MLA as a tool, as we focused on the educational application. 
It is important to keep boundaries between disciplines permeable, as the 
dialogue between different disciplines can be fruitful for all:  
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Sustained boundary interactions [here: between statistics and 
mathematics education] are vital to preventing insularity from 
contributing to the stagnation of interrelated communities of 
practice (Wenger, 2000). When boundary interactions occur, 
borders between disciplines can become exciting sites for learning 
rather than prohibitive barriers. (Groth, 2015, p. 5) 

By crossing boundaries, practices from different disciplines can be combined 
and lead to new tools, concepts, models and new practices (Akkerman & 
Bakker, 2011). The disadvantage of working at boundaries is that results are 
reported in so many different journals and platforms that this can hinder 
further development (Groth, 2015). 

Although the main contribution of this dissertation lies in the important 
“front-end work” (e.g., McKenney in Bakker, 2018, p. 142), as a teacher I could 
not live with this front-end work only. Therefore, I ended this dissertation with 
a first cycle of a design study, using an approach that was rather new in the 
field of statistics education—embodied cognition and instrumentation—
requiring again getting acquainted with a new body of literature. I am very 
proud that we were able to introduce so many new tools and approaches (e.g., 
eye-tracking, task-specific gaze patterns, machine learning analysis of gaze 
data using vectors, embodied instrumentation design) into the field of 
statistics education.  

8.2 Personal reflections as a teacher-researcher 
I conclude with some personal reflections on the combination of being a 
teacher and a researcher. When I started this research, I dropped several tasks 
at school, including being a ‘technator’ (coordinator) at the Technasium79. 
Although this allowed me to focus on my teaching, it also meant that I had 
fewer connections with colleagues, a process that intensified during the 
COVID-19 pandemic. At the same time, compared to full-time PhD-students, it 
is a luxury to have your own classes for piloting. For example, from this 
experimenting, I learned that even the best-performing pre-university track 
students (‘vwo’, Mathematics D, Grade 11) found it difficult to indicate which 
and how many variables were along the axes for graphs with bars, as well as 
the measurement level of the variables’ attributes. I kept it as a suitable task to 
utilize in professional development courses with high school teachers.  
  

 
79 In a Technasium, students in Grades 6–12 undertake projects in which they conduct STEM 
research or design STEM products. External companies act as principals and bring in existing 
scientific or technological problems from their own practice for students to solve. 
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I have always experimented in my classes, but now I was increasingly 
inspired by specific research. Based on embodied designs for trigonometry 
(Alberto et al., 2019)80, I created a paper task—due to the lack of computers 
with touchscreens in this class—to review the subject in a Grade 12 (6 ‘vwo’) 
Mathematics A class (Boels, 2022a, 2022b). The same research helped me 
choose simulations of the relationship between unit circle and sine more 
carefully (Boels, 2022a). In Grade 10 (4 ‘havo’81), I had students discover the 
relationship between the unit circle and sine graph through embodied tasks 
(cf. Alberto et al., 2019). In the absence of touchscreens, I placed one student 
at a time behind my own touchscreen laptop connected via an online meeting 
environment via the desktop computer to the digital board—digital skills I 
learned during the COVID-19 pandemic. I asked the class to discover the 
hidden rule, and if they knew it, not to tell but to demonstrate it on the 
computer. My impression after the test was that these students understood 
this topic better than other students. 

As an early researcher, I wondered about a number of things as well. 
First, why are mathematics teachers almost absent at conferences on research 
in mathematics and statistics education? Such conferences (e.g., ICME-13) 
opened up a new world to me, as so many problems were discussed that I 
regularly encountered in my classroom. One answer is that the amount of 
travel, lodging, and participation fees for such conferences largely exceeds a 
teacher's annual training budget, a budget I tended to almost fully spend on 
visiting the national conference for mathematics teachers (NWD82). In 
addition, most schools do not allow teachers to be away for five days or more 
for a conference. I am very grateful that my school did, several times. I wish 
that every mathematics teacher could go—at least once every two years—to 
an international conference on mathematics or statistics education. Here are a 
few that seem appropriate, although I am aware that the scientific English 
jargon can be difficult: ICME83, ICOTS84, PME85, CERME86. 

Second, conducting didactic research requires skills from research in 
education and psychology. These are usually not included in science education 

 
80 See also: https://embodieddesign.sites.uu.nl/activity/ 
81 Havo is a pre-college track for Grades 10 and 11. 
82 https://www.uu.nl/en/research/freudenthal-institute/impact/conferences 
83 International Congress on Mathematics Education. Content: all mathematical domains. 
Website: https://www.mathunion.org/icmi 
84 International Conference on Teaching Statistics. Content: statistics, data science and 
probability education. website: https://iase-web.org/Conferences.php 
85 Psychology of Mathematics Education. Content: all mathematical domains. Website: 
https://www.igpme.org/ 
86 Conference of the European Society for Research in Mathematics Education 

https://embodieddesign.sites.uu.nl/activity/
https://www.uu.nl/en/research/freudenthal-institute/impact/conferences
https://www.mathunion.org/icmi
https://iase-web.org/Conferences.php
https://www.igpme.org/
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(e.g., Bakx et al., 2016). I learned these skills on my own time parallel to writing 
the research proposal. I had the luxury of taking off at least one day a week for 
this, in addition to my job, running my own company, and taking care of three 
teenagers. I would wish for future teachers to have the opportunity to gain 
these skills with a teacher grant in a kind of pre-promotion master's program 
(1–2 years, maximum 30–60 credits), in which they also write their research 
proposal. 

Third, I was surprised that so much research at universities is done by 
relatively inexperienced people: bachelor, master, and PhD students, and 
postdocs. By the time they are sufficiently experienced, there is often little to 
no external funding available anymore through, for instance, NWO. As a result, 
experienced researchers mainly teach and supervise, and very rarely conduct 
their own research. Moreover, for the majority of researchers, there is simply 
no place at the university after their PhD or postdoc position. Their research 
experience then gets lost to the scientific world. This is a waste of money, 
talent, and human resources. 

Fourth, I greatly appreciate that a follow-up postdoc grant exists for 
didactical research by secondary and vocational education science and 
mathematics teachers. My wonderment concerns the possible gap of 
sometimes more than a year after completing a PhD trajectory. Although 
certainly not the most important reason, this possible gap played a role in my 
decision not to continue teaching at a secondary school. I was eager to 
continue in didactical research right away, and wanted to write my research 
proposal for continuation as part of my job, instead of on my own time. My 
advice to NRO is to install a post-promotion proposal writing grant that can be 
applied for on an ongoing basis once a dissertation is submitted and a 
promotion date is scheduled. 

I sometimes joke that teachers must be incredibly smart people as they 
conduct a full PhD research in about two full-time years. The grant my school 
got to replace me was for 0.4 FTE87, initially for four years, then for five, and 
thanks to COVID-19, three more months were added. That worked out at 2.1 
FTE. Internal PhD candidates at the university get almost double—four years 
full time, hence, my joke. Of course, there is some room for disagreement with 
this reasoning. To give just one example, the latter have (few) teaching duties, 
although these could include teaching others to conduct qualitative research—
lessons from which young teachers might learn a lot themselves. In addition, 
switching between short-term requirements from school and long-term 
planning of research is challenging (Bakx et al., 2016), hard work and requires a 
lot of energy. I am extremely grateful that I was able to do this research. Still, I   

 
87 Full Time Equivalent. 1 FTE is equivalent to a full time job.  
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hope that my successors will have an easier job, after finishing the proposed 
pre-promotion master's program. 

I end this personal reflection with three more wishes for the future. 
First, as a teacher, I would like to see an analysis of the implemented statistics 
education curriculum in textbooks—in a format accessible for teachers—
compared to the intended curriculum. Textbook analyses have been made 
previously (e.g., for primary education, Van Zanten, 2020; for secondary 
education, Huang, 2022) but this information is scattered, mostly in English, 
difficult for teachers to find and access, contains scientific jargon, and is often 
outdated by new books due to the long duration of research. Second, I am 
curious about the association between Dutch textbooks and final exam results 
for specific domains, as well as students’ results in subsequent education. My 
suspicion is that there is a difference between them depending on the 
textbooks, but I know of no recent research on this for Dutch education. Third, 
I advocate for research-informed advice based on didactical research in 
mathematics and statistics education in a form that has been found effective 
for secondary STEM education, such as an A4-sheet per topic listing the most 
important misinterpretations, best practices, specific points of interest for 
teaching, and so on (e.g., Pareja Roblin et al., 2018), as so-called evidence-
based advice is regularly based on elementary and to a lesser extent, special 
secondary education (e.g., Mason & Otero, 2021) and, due to the necessity of 
meta-analysis and review studies, also sometimes based on past practices that 
might not always fit future needs and innovations. Fourth, I think it would be 
helpful if there were research schools for secondary and vocational education, 
affiliated with an (applied) university, where research is conducted on an 
ongoing basis. This could create a community of mathematics teachers who 
jointly address didactical problems in mathematics and statistics education 
through lesson study and action or design research. In addition, such a 
community could prepare for research-informed teaching and could introduce 
teachers to opportunities to conduct their own doctoral research. Similar to 
what has been done for health research88, I advocate for funding for research 
addressing the didactical—not pedagogical—needs of mathematics teachers in 
that community and beyond. 

 
88 https://www.zonmw.nl/nl/onderzoek-resultaten/preventie/programmas/programma-
detail/alledaagse-ziekten/ 

https://www.zonmw.nl/nl/onderzoek-resultaten/preventie/programmas/programma-detail/alledaagse-ziekten/
https://www.zonmw.nl/nl/onderzoek-resultaten/preventie/programmas/programma-detail/alledaagse-ziekten/
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Summary 
Statistical literacy is an important learning goal for citizens. The studies in this 
dissertation focus on a specific part of it—graph literacy—which includes being 
able to comprehend and interpret graphs of statistical data. Many secondary 
school students are not well prepared to draw justified conclusions from 
statistical data in graphs. For example, in 2022, only 42 percent of Dutch Grade 
11 students correctly selected a graph from which they could draw justified 
conclusions (Cito, 2022). Such problems occur even with seemingly simple 
graphical representations of data, such as histograms. As histograms are 
omnipresent in research, society and education, they are important for 
learning about key concepts such as probability distributions. Therefore, our 
main research question is: How can pre-university track students in Grades 10–
12 be supported in understanding histograms? 

We expected that a review of the literature and a small-scale eye-
tracking study would be sufficient input for a larger design study (Bakker, 
2018). However, the topic of our research turned out to be much tougher than 
initially expected. As histograms are used in numerous disciplines it was 
impossible to summarize all that is known about them for education. 
Moreover, few interventions in statistics education had been reported at the 
start of our research, which, in addition, were not very successful. Hence, the 
literature provided little basis for the design of a new intervention. More 
research was needed before a new approach to teaching histograms could be 
designed. The eye-tracking studies not only examined in more detail how 
students interpreted histograms but also how these interpretations changed 
after solving dotplots. 

In Chapter 1, we elaborated on the important role of graphs in 
statistical literacy. As many people tend to misinterpret histograms, an 
introduction to histograms was also provided. Furthermore, some reflections 
on the position of histograms in the school curriculum as well as a motive for 
doing this research as a teacher were given. Figure 1 shows an overview of the 
studies in this dissertation. We started with a literature review (Chapter 2). We 
conducted several eye-tracking studies, in which we qualitatively (Chapter 3) 
and quantitatively (Chapters 4 and 5) analyzed students’ gaze data. We 
finished with a design study (Chapter 6) for which we developed, empirically 
tested and evaluated our conjectured learning trajectory. 
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Figure 1 Overview of the studies in this dissertation 

Review of literature on interpreting and constructing histograms 

As an overview of the most common misinterpretations of histograms was 
lacking, in Chapter 2 we reviewed 86 publications on people’s difficulties with 
histograms. Given the persistence of these misinterpretations, there is a need 
to reflect on what conceptual difficulties may lie at their basis through the first 
research question:  

RQ1: What are the conceptual difficulties that become manifest in 
the common misinterpretations people have when constructing or 
interpreting histograms? 

The most common conceptual difficulties could be grouped into three 
categories labeled data, distribution, and miscellaneous. The first two each 
relate to a key concept in statistics: data and distribution. Difficulties that 
relate to the key concept of data are, for example, identifying the number of 
statistical variables and the measurement level of their attributes. Distribution-
related difficulties include estimating or comparing centers (e.g., the mean) or 
comparing variation (variability). Although data-related misinterpretations are 
observed more often, research specifically addressing these misinterpretations 
is scarce. A third and more diverse category of misinterpretations is related to 
other conceptual difficulties. This includes having trouble linking the context to 
the histogram, not understanding the difference between a histogram of a 
sample and of a population and the influence of ICT. The analysis of the 
publications in our review also led to the identification of a network of 
statistical concepts specifically relevant to interpreting histograms (Chapter 2, 
Figure 2.2).  
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Students’ strategies for statistical graphs tasks: an eye-tracking study 

The review results allowed for more broadly addressing students’ conceptual 
difficulties that become manifest in most common misinterpretations rather 
than focusing on a specific misinterpretation. Misinterpretations related to the 
statistical key concepts data and distribution can be observed when students 
confuse histograms with look-alikes, including case-value plots. As many 
studies draw conclusions from students’ final answers (e.g., delMas et al., 
2007; Whitaker & Jacobbe, 2017), little was known about students’ strategies 
for reaching these answers, including their micro-level thinking processes. 
Therefore, it was unclear how to intervene effectively. The persistence of 
students’ misinterpretations also called for a closer inspection of students’ 
conceptual difficulties. Hence, in the second study (Chapter 3), we decided to 
figure out on a more detailed level what students’ difficulties with histograms 
were through a larger eye-tracking study, as we thought that students’ gaze 
patterns could provide insight into their approaches. In this second study, we 
posed the research question:  

RQ2: How and how well do Grades 10–12 pre-university track 
students estimate and compare arithmetic means of histograms 
and case-value plots?  

Therefore, in Chapter 3, we observed students’ actions by tracking their gazes 
while they were solving graph tasks, in particular, estimating and comparing 
arithmetic means of histograms and their look-alikes, case-value plots. By 
observing these actions, it becomes clear how students use their conceptual 
knowledge of the data in histograms, hence what strategies they employ. In 
this eye-tracking study, we investigated Grades 10–12 pre-university track 
(VWO) students’ strategies (N = 50) when interpreting graphs. We recorded 
students’ gazes while they solved 12 graph tasks and interviewed them right 
after. Students’ gaze data were combined with verbal data from this cued 
recall to connect specific gaze patterns—the perceptual forms of gazes—to 
interpretation strategies.  

In a qualitative analysis of students’ scanpath patterns, we found five 
strategies. Two hypothesized most-common strategies for single graph tasks 
for estimating the mean as found in our pilot study (Boels et al., 2018) were 
confirmed: a typical case-value plot and a histogram strategy, the latter 
indicating that the student interprets the graph at hand as if it is a histogram 
(Figure 2). A vertical gaze pattern reflected this histogram strategy. A 
horizontal pattern was connected to a case-value plot strategy. In addition, a 
third, new, count-and-compute strategy was found that was only correct for 
case-value plots. Two more strategies were found for comparing case-value 
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plots and histograms—hence, for double graph items: a distribution-informed 
histogram strategy and a distribution-informed case-value plot strategy (Figure 
3). Distribution informed means using specific features of the graph such as 
the same symmetry and positions of the bar, thus, the same mean, or similar 
shape but moved to the right, thus, higher mean; in short, they used ‘shape’ 
and ‘shift’ (cf. Frischemeier & Biehler, 2016).  

Figure 2 Examples of the perceptual form of gaze patterns on single histogram tasks 
(estimating means) with a correct strategy for histograms in the top left and a correct 
strategy for case-value plots in the bottom right  

Note. The circles are places where a student looked longer. The dotted lines indicate 
the perceptual form of the scanpath patterns relevant to the strategy used. 

The percentages of correct strategies varied between on average 43% for 
single histograms and 100% for case-value plots; the latter being distributed 
between a case-value plot strategy (71%) and a count-and-compute strategy 
(29%). These findings were in line with results from a pilot study (Boels et al., 
2018) and a study with teachers rather than students (Boels et al., 2019b). The 
percentages of correct strategies varied between on average 50% for double 
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histograms and 90% for double case-value plots; the latter being mostly a case-
value plot strategy (87% points). To our surprise, in on average 9% of the 
double case-value plots tasks, students used a distribution-informed histogram 
strategy that resulted in an incorrect answer, for example, by using the 
symmetry of the graphs. Furthermore, some students ignored bars with 
frequency or measured value zero even though they looked at them (cf. 
delMas & Liu, 2005). 

Figure 3 A correct distribution-informed strategy for comparing the means of two 
histograms in Item09 using similar shape, shifted to the right and for comparing means 
of two case-value plots in Item07 using shape and number of bars 

Note. Students specifically compared the position of the ‘zero’ bars (black ovals) and 
other bars on similar positions (e.g., purple squares). Correct answer top: Kees; 
bottom: same. 
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Automatic, gaze-based identification of student strategies 

The patterns we found in students’ gaze data for single histograms stimulated 
us to explore, in Chapter 4, whether automatic recognition of students’ 
strategies through a machine learning analysis might be possible. Identification 
of student strategies is a prerequisite for targeted intelligent feedback, for 
example, during online learning. However, it was still unclear how to automate 
real-time identification of task-specific solution strategies based on students’ 
gazes on histograms. The study in Chapter 4 is a first step in this automation 
process.  

RQ3: How can gaze data be used to automatically identify 
students’ task-specific strategies on single histograms? 

We used a software tool (Mathematica Classify Function) which automatically 
prepared the gaze data and fed these into its implementation of a supervised 
machine learning algorithm (MLA; random forest). This MLA was able to 
identify whether students used a histogram interpretation strategy or another 
strategy when estimating the mean from a single histogram. This other 
strategy most often was a strategy that would have been correct if the graph 
had been a case-value plot. The MLA performed acceptably (Figure 4), and 
accuracies varied from around chance level (38%) to well above (88%) 
depending on the validation procedure. Values above 70% are considered 
good as these are well above chance level. One disadvantage of the MLA is 
that it does not explain how it reached its decision for an individual student 
and we, therefore, consider it a black box. The results of the MLA provided a 
baseline for the transparent, interpretable mathematical model (IMM) we 
constructed. This IMM was theoretically meaningful and performed well with 
accuracies between 62% and 84%, acceptable sensitivity, and quite good 
specificity (Figure 4). We also succeeded in training our MLA when we used 
students’ gaze data from one item and had the MLA identify strategies for all 
other items. These results indicate that students’ strategies can be derived 
from their gaze data.  

In the future, the results of such an automated strategy identification 
might be made available to teachers. Our method allows for the design of 
immediate, personalized feedback during online learning, homework, or 
massive open online courses (MOOCs)through measuring gazes with, for 
example, a webcam. 
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Figure 4 Results of the MLA and the IMM 

Note. Ideally, points should be concentrated in the upper left corner of the graph and 
close together for all items. The MLA provided a baseline for the IMM. Although the 
IMM worked well, the plot implies room for improvement. 

Assessing students’ interpretations of histograms before and after solving 
dotplot tasks 

The previous studies revealed students’ solution strategies when solving 
histogram tasks in more detail. A local instruction theory in statistics education 
suggests that solving dotplots can support interpreting histograms (e.g., Bakker 
& Gravemeijer, 2004; Garfield, 2002; Garfield & Ben-Zvi, 2008b) as dotplots 
can draw students’ attention to the variable being presented along the 
horizontal axis in both graphs. We wondered whether interpreting dotplots 
would influence students’ strategies on histogram tasks. Therefore, while 
collecting eye-tracking data, we included six dotplot tasks immediately after 
the first twelve tasks followed by three histogram tasks. In Chapter 5 we 
explored: 

RQ4: In what way do Grades 10–12 pre-university track students’ 
histogram interpretations change after solving dotplot items? 

Students’ gaze data on four histogram items were used as inputs for an MLA 
(random forest). Our MLA can quite accurately classify whether students’ gaze 
data belong to an item solved before or after solving the dotplot items. The 
results indicate that there is a change in students’ gaze patterns. Moreover, we 
found that the direction (e.g., almost vertical) and magnitude (length) of 
saccades (fast transitions between positions where students looked) were 
different on the before and after items. For example, gazes contained more 
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vertical and less horizontal saccades on the histogram tasks after solving the 
dotplot tasks. These changes could indicate a change in strategies.  

We found three indications that students’ histogram interpretations 
changed after solving the dotplot items: a change in students’ gaze patterns 
(from the MLA result), an improvement in students’ estimations of the 
arithmetic means for single histogram items, and a shift in students’ reported 
strategies for solving histogram items. However, the number of correct 
answers did not change significantly. For single histograms this number was 
sensitive to the researchers’ choice of an answer range for correct answers. In 
addition, evidence that the change in gaze behavior indicates learning, that in 
turn can only be attributed to solving the dotplot items, is weak. We consider 
as a most likely explanation for the mixed results that the action of solving 
dotplot items creates readiness for learning (Church & Goldin-Meadow, 1986). 
Reflection on their strategy—induced by the stimulated recall with the adult 
interviewer—then made students realize their misinterpretation of, for 
example, the frequencies as the measured values. This study suggests that 
activities with dotplots may support students in understanding histograms. 
Moreover, Konold (2007) already noted that dotplots can support students’ 
understanding of histograms through actions such as “separate, order, […] 
stack” and “fuse” the dots (p. 282). Fusing dots results in a bar that contains all 
these dots. Taken together, the results could point at a learning effect of 
solving the dotplots tasks—depending on how learning is defined. 

Embodied design of a learning trajectory 

The literature research (Chapter 2) also made clear that existing interventions 
were not sufficiently successful in teaching students to correctly interpret 
histograms. Students’ solution strategies (Chapter 3) showed that many of 
these Dutch students lacked understanding of how and where data are 
represented in histograms. Interpreting dotplots may assist students’ 
understanding of histogram (Chapter 5) as they draw students’ attention to 
the axis along which the data are represented in both histograms and dotplots 
(being the horizontal axis). However, it was still unclear how an intervention 
could be designed that would support students’ learning of statistical key 
concepts through interpreting dotplots and histograms.  

Given the persistence of students’ difficulties with interpreting 
histograms, we assumed that students’ education might have lacked an 
embodied grounding of how histograms are constructed as well as sufficient 
attention to how these artifacts become tools in statistical reasoning. In 
embodied designs, students’ actions play an important role, such as the 
actions described in the previous paragraph (Konold, 2007). Therefore, using 
an embodied instrumentation approach (Drijvers, 2019) as a theoretical lens, 
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we designed a learning trajectory (Chapter 6) using findings and insights from 
previous studies. This design study is a first cycle of a design research project 
on how to teach some of the most important aspects of the key concepts of 
statistics through teaching histograms. The research question for this study 
was: 

RQ5: What sequence of tasks designed from an embodied 
instrumentation perspective can support students’ understanding 
of histograms and the underlying key concepts? 

Figure 5 Saccades of magnitude 200 pixels or more of all participants on Item11 and 
Item21 (double-histograms, top) as well as Item02 and Item20 (single-histogram, 
bottom) 

Note. Notice the difference in whiteness and blackness of students’ saccade directions 
between the before items (left column) and after items (right column). Differences 
between rows are most likely mainly due to differences in tasks and, therefore, most 
probably irrelevant for our research question. 

Our conjectured learning trajectory consists of five stages: (1) learning 
initiation—experiencing a lack of understanding, (2) reinventing the role of the 
horizontal scale in univariate graphs, (3) reinventing the role of the vertical 
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scale in histograms, (4) reinventing arithmetic means in histograms, and (5) 
confirming learning—transfer to other contexts and environments. 

Our multiple case study with five students (Grades 10–12) suggested 
that most conjectures of the learning trajectory were met but transfer can be 
improved. Contributing to further theorization of embodied instrumentation, 
we discussed heuristics for the design process. In addition, we showed how 
more complicated artifacts (e.g., histograms) can be reinvented from actions 
with simpler ones (e.g., positioning dots on a scale, dotplots). 

Figure 6 Example of attempts by students when reinventing that the bars’ heights in 
histograms is equal to the number of measured values in each bar, incorrect (left) and 
correct (right) 

 

Our hypothetical learning trajectory (HLT, Table 1) was used to support 
students in understanding some of the most important aspects of the concepts 
of data and distribution presented in histograms. For data, these aspects were 
where and how the data are depicted in a histogram, including that the vertical 
axis does not represent measured values. For distribution, these aspects were 
how the mean is influenced by the spread in and shape of the histogram as a 
precursor for understanding variation in a histogram. In secondary schools, the 
focus is often on calculating measures of center and plotting histograms (e.g., 
Burrill, 2020). In our design, the focus was on the key concepts that we wanted 
students to grasp instead of only teaching them how to construct histogram. 

What is also new in the design is that we added tasks that required 
instrumented actions (Shvarts et al., 2021). Instrumented actions can be 
understood as actions influenced by digital technology, hence by the specific 
way the digital tasks were designed. An example is the unit height for bars in 
histograms not being equal to the size of dots, which made students 
understand through a productive struggle (e.g., Kapur, 2014; Roth, 2019) that 
this height is equal to the number of measurements (in histograms with equal 
bin widths only). 
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Table 1 Overview of the hypothetical learning trajectory 
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H1b: By experiencing initial 
confusion or 
misunderstanding, 
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on a scale. 

H2b: By horizontally 
moving dots to their 
correct position on a 
horizontal scale, students 
notice the position of a dot 
depicts the measured 
value.  
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Build a 
histogram 
overlay from a 
dotplot. 

H3b: By moving the 
(orange) sliders up, 
students notice the height 
of the bars is related to the 
number of cases in a bar 
when class intervals are 
equal.  
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Establish 
relation 
between data 
and mean; 
discover 
influence of 
outliers, gaps, 
distribution, on 
the mean. 

H5a: By finding the 
balancing point of the 
graph, students perceive 
the mean can be seen as 
the point where the graph 
is “in balance.” 
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Construct and 
interpret 
histograms on 
paper. Sort 
histograms and 
look-alikes. 

H18b: By drawing a 
histogram on paper from a 
frequency table, transfer 
to another environment 
(paper) is established. 
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Comparing students’ performances with the conjectures from the anticipated 
HLT, our case study suggests most conjectures were met. Students 
experienced misunderstanding in the first step, had no trouble reinventing the 
role of the horizontal scale, struggled but reinvented the role of the vertical 
scale in histograms, seemed to have an easy task estimating the balance point 
of a histogram, and stated that it is the arithmetic mean. The final tasks 
showed that students were often able to transfer the acquired knowledge to 
paper, hence, to a different environment. Students' gestures indicated using 
actions from previous tasks to solve follow-up tasks. Taken together, the 
results suggest that embodied experiences followed by reflection contributed 
to overcoming some well-known misinterpretations. However, some 
improvements are suggested for future designs, such as also adding transfer 
tasks after the steps which are dedicated to horizontal and vertical actions of 
the HLT. To further develop students’ notions of distribution and variability, 
the artifact “area” may need to be included in the design, and the artifact 
“interval” may need to be reinvented by students. 

Conclusions and discussion 

An important component of statistical literacy is graph literacy. The histogram 
can be regarded as a spider in a web of knowledge. For example, 
understanding histograms is a good preparation for key concepts such as 
probability distribution and density in probability theory. The aim of this 
research was to contribute to an empirically grounded theory on how to teach 
histograms as a means to contribute to students’ statistical literacy.  

We answered the question of how pre-university track students in 
Grades 10–12 can be supported in understanding histograms. The main 
answer is a hypothetical learning trajectory (HLT) (Simon, 2020) that intends to 
develop students’ notions of some key aspects of first data and then 
distributions in graphs of univariate data. This HLT was based on an extensive 
review of literature and methodologically innovative eye-tracking studies. In 
addition, it was designed from an embodied instrumentation perspective. Our 
HLT is a step toward a domain-specific instructional framework on how to help 
students correctly interpret graphs of univariate data, including histograms, 
dot-, stem-and-leaf, and boxplots, hatplots (Konold, 2007), frequency 
polygons, and histodots (Chapter 2). For future designs, it could be 
investigated whether an Intelligent Tutoring System could be incorporated for 
automatic feedback based on scanpath patterns on only the graph area of 
histograms. Such a system would require webcams that can do eye-tracking. 

A scientific contribution of our work is that we showed how theoretical 
(Chapter 2) and empirical (Chapters 3, 5) insights about students’ difficulties 
with statistical concepts can be incorporated into a sequence of tasks designed 
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from an embodied instrumentation perspective (Chapter 6). This is the first 
design in statistics education using an embodied instrumentation approach. In 
addition, we developed, tested, and evaluated guidelines for an embodied 
instrumentation design. 

A methodological contribution of our work is that we introduced and 
applied several new research tools in statistics education research: eye-
tracking, machine learning algorithms (MLAs), and an Interpretable 
Mathematical Model (IMM) (Chapter 4). These tools can be used for 
investigating details of students’ strategies and informing designs (eye-
tracking, MLA) and for designing intelligent tutoring systems that provide 
feedback (MLA and IMM). In addition, we showed that the perceptual forms of 
scanpaths on the graph area only of statistical graphs can reveal students’ 
strategies when comparing and estimating means from these graphs. 

A methodological limitation of our work is the geographical selection 
bias that seems to exist in the review study (Chapter 2) and the number of 
students in the eye-tracking study (N = 50, Chapters 3–5) and multiple-case 
study (N = 5; Chapter 6). Still, the approach is open to further scaling up and 
the results seem independent of these specific settings.  

An implication for research is that eye-tracking can potentially shed 
new light on tenacious didactical problems in mathematics teaching, as 
students’ scanpaths can reveal correct reasoning even when answers are 
incorrect. In addition, gaze data combined with an MLA and IMM could be a 
powerful tool for validating qualitative research findings.  

An implication for educational practice is that histograms may play a 
central role in learning statistical key concepts such as data, distribution, 
variability or variation, and central tendency, and that more attention is 
needed to the key concept of data. In addition, more emphasis is needed on 
interpreting histograms and less on technical skills such as how to draw them 
and how to compute means of data presented in graphs. For initial learning, an 
embodied instrumentation approach seems a fruitful route for developing 
students’ graphical literacy as part of statistical literacy. With this in mind, we 
call on designers to use our guidelines for embodied instrumentation designs 
for tenacious didactical problems in mathematics teaching and to question for 
all aspects of the artifacts (axes, scale, area) whether the mathematical actions 
and ‘thinking’ should be done by the software or the student. 
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Samenvatting 
Statistische gecijferdheid is een belangrijk leerdoel voor burgers om 
volwaardig mee te kunnen doen in de maatschappij. Dit onderzoek richt zich 
op een onderdeel hiervan: grafische gecijferdheid. Grafische gecijferdheid 
omvat het correct kunnen interpreteren van statistische data die zijn 
weergegeven in diagrammen. Veel leerlingen zijn niet goed voorbereid op het 
trekken van verantwoorde conclusies uit statistische data in diagrammen. In 
2022 kon slechts 42 procent van de Nederlandse 5-havo-leerlingen met 
wiskunde A op hun eindexamen een correct diagram selecteren waaruit zij 
onderbouwde conclusies konden trekken (Cito, 2022). Dergelijke problemen 
doen zich ook voor bij ogenschijnlijk eenvoudige grafische weergaven van data 
zoals histogrammen. Histogrammen worden veel gebruikt in onderzoek, 
maatschappij en onderwijs en zijn daarom belangrijk om te leren. Daarnaast 
zijn histogrammen belangrijk om kernconcepten—zoals kansverdelingen—te 
leren. De hoofdvraag van dit onderzoek is daarom: Hoe kunnen leerlingen in 4–
6 vwo ondersteund worden bij het begrijpen van histogrammen? 

Aanvankelijk hadden we verwacht dat een literatuurstudie en een 
kleinschalige studie van oogbewegingen voldoende informatie zou opleveren 
voor een grotere ontwerpstudie (Bakker, 2018). Het onderwerp van ons 
onderzoek bleek echter veel lastiger dan aanvankelijk gedacht. Ten eerste 
worden histogrammen in tal van disciplines gebruikt. Ten tweede waren er 
weinig interventies in het statistiekonderwijs gerapporteerd, die bovendien 
niet erg succesvol waren. De literatuur bood dus weinig basis voor het ontwerp 
van een nieuwe interventie. Er was daarom meer onderzoek nodig voordat we 
een nieuwe aanpak voor het onderwijzen van histogrammen konden 
ontwerpen. In de oogbewegingsstudies is zodoende niet alleen nader 
onderzocht hoe leerlingen histogrammen interpreteerden maar ook hoe deze 
interpretaties veranderden na het oplossen van stippendiagramtaken. 

Hoofdstuk 1 bespreekt de belangrijke rol van diagrammen bij 
statistische gecijferdheid. Aangezien veel mensen geneigd zijn histogrammen 
verkeerd te interpreteren, is ook een inleiding op histogrammen gegeven. 
Verder beschouwen we kort de plaats van histogrammen in het 
schoolcurriculum en motieven om als docent dit promotieonderzoek te doen. 
Figuur 1 biedt een overzicht van de studies in dit proefschrift. De eerste studie 
is een literatuurstudie (hoofdstuk 2). We voerden verschillende 
oogbewegingsstudies uit waarin we de oogbewegingsdata van leerlingen 
kwalitatief (hoofdstuk 3) en kwantitatief (hoofdstukken 4 en 5) analyseerden. 
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We eindigden met een ontwerpstudie (hoofdstuk 6) waarin we een 
hypothetisch leertraject ontwikkelden, empirisch testten en evalueerden. 

Figuur 1 Overzicht van de studies in dit proefschrift 

Opmerking. MLA betekent machine learning algoritme 

Literatuuronderzoek naar het interpreteren en construeren van 
histogrammen 

Aangezien een overzicht van de meest voorkomende misinterpretaties van 
histogrammen ontbrak, hebben we 86 publicaties bekeken waarin 
moeilijkheden van mensen met het interpreteren van histogrammen 
(hoofdstuk 2) voorkwamen. De hardnekkigheid van deze misinterpretaties 
maakte het nodig om na te gaan welke conceptuele moeilijkheden eraan ten 
grondslag liggen:  

V1: Wat zijn de conceptuele moeilijkheden die tot uiting komen in 
veelvoorkomende misinterpretaties die mensen hebben bij het 
construeren of interpreteren van histogrammen? 

De meest voorkomende conceptuele moeilijkheden kunnen worden 
gegroepeerd in drie categorieën: data, verdeling en overige. De eerste twee 
zijn kernconcepten in de statistiek. Moeilijkheden die gerelateerd zijn aan het 
kernconcept data zijn bijvoorbeeld het bepalen van het aantal statistische 
variabelen en het meetniveau van de bijbehorende metingen. Moeilijkheden 
die gerelateerd zijn aan het kernconcept verdeling zijn bijvoorbeeld het 
bepalen of vergelijken van een centrummaat—zoals het gemiddelde—of het 
vergelijken van variabiliteit. Een derde en meer diverse categorie 
moeilijkheden houdt verband met andere conceptuele moeilijkheden zoals 
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problemen om de context aan een histogram te koppelen, het niet begrijpen 
van het verschil tussen een histogram van een steekproef en van een 
populatie, en de invloed van ICT. De analyse van de publicaties in ons overzicht 
leidde ook tot de identificatie van een netwerk van statistische concepten die 
specifiek relevant zijn voor de interpretatie van histogrammen (hoofdstuk 2, 
figuur 2).  

Leerlingstrategieën voor statistische diagramtaken: een 
oogbewegingsstudie 

Het literatuuronderzoek maakte een bredere aanpak mogelijk van de 
conceptuele problemen van leerlingen die tot uiting komen in de meest 
voorkomende misinterpretaties. Misinterpretaties gerelateerd aan de 
kernconcepten data en verdeling kunnen worden geobserveerd wanneer 
leerlingen histogrammen verwarren met hun evenbeelden, inclusief 
staafdiagrammen. Veel studies trekken conclusies uit de uiteindelijke 
antwoorden van studenten (bv. delMas et al., 2007; Whitaker & Jacobbe, 
2017). Hierdoor was er weinig bekend over de strategieën van studenten om 
tot deze antwoorden te komen, inclusief hun denkprocessen op microniveau. 
Het was daarom onduidelijk hoe een effectieve interventie eruit kon zien. De 
hardnekkigheid van de misinterpretaties van leerlingen vroeg bovendien om 
een nadere inspectie van hun conceptuele moeilijkheden. In een tweede 
onderzoek is daarom op een gedetailleerder niveau uitgezocht wat deze 
moeilijkheden waren in een oogbewegingsonderzoek omdat we verwachtten 
dat de oogbewegingen van leerlingen inzicht konden geven in hun aanpak. In 
deze tweede studie stelden we de onderzoeksvraag:  

V2: Hoe en hoe goed schatten en vergelijken bovenbouw vwo-
leerlingen rekenkundige gemiddelden van histogrammen en 
casusstaafdiagrammen?  

Hiertoe observeerden we in hoofdstuk 3 de acties van leerlingen door hun 
oogbewegingen te volgen terwijl ze diagramtaken oplosten, in het bijzonder 
het schatten en vergelijken van rekenkundige gemiddelden van histogrammen 
en hun ogenschijnlijke evenbeelden, casusstaafdiagrammen. Door deze acties 
te observeren wordt duidelijk hoe leerlingen hun conceptuele kennis van data 
in histogrammen gebruiken en welke strategieën ze daarbij hanteren.  

In deze oogbewegingsstudie onderzochten we de strategieën van 
leerlingen in 4–6 vwo (N = 50) bij het interpreteren van statistische 
diagrammen. We registreerden de oogbewegingen van leerlingen terwijl ze 12 
diagramtaken oplosten en interviewden hen direct daarna. Daarbij lieten we 
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hen hun eigen oogbewegingen terugzien terwijl ze vertelden welke strategie ze 
hadden gebruikt. De oogbewegingsdata van de leerlingen werden 
gecombineerd met deze verbale data zodat specifieke kijkpatronen—de 
perceptuele vormen ervan—konden worden verbonden met 
interpretatiestrategieën. 

Figuur 2 Voorbeelden van de kijkpatronen op enkelvoudige histogramtaken (schatten 
van gemiddelden) met een correcte strategie voor histogrammen linksboven en een 
correcte strategie voor casusstaafdiagrammen rechtsonder 

Opmerking. De cirkels zijn plekken waar een leerling langer keek. De stippellijnen 
geven de vorm van de voor de gebruikte strategie relevante kijkpatronen aan. 

In een kwalitatieve analyse van de kijkpatronen van studenten vonden we vijf 
strategieën. Vooraf vermoedden we dat er twee meest voorkomende 
strategieën zouden zijn waarbij leerlingen het gemiddelde schatten in 
enkelvoudige diagramtaken, zoals we eerder hadden gevonden in onze 
pilotstudie (Boels et al., 2018): een casusstaafdiagram- en een 
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histogramstrategie. Dit vermoeden werd bevestigd. Een histogramstrategie 
houdt in dat de leerling het diagram interpreteert als een histogram (figuur 2). 
Een verticaal kijkpatroon weerspiegelde deze histogramstrategie. Een 
horizontaal kijkpatroon hing samen met een casusstaafdiagramstrategie. 
Daarnaast werd een derde nieuwe tel-en-berekenstrategie gevonden die 
alleen correct was voor casusstaafdiagrammen. Voor het vergelijken van 
casusstaafdiagrammen en histogrammen—dus voor dubbele diagramtaken—
werden nog twee strategieën gevonden: een verdelingsgeïnformeerde 
histogramstrategie en een verdelingsgeïnformeerde 
casusstaafdiagramstrategie (figuur 3). Verdelingsgeïnformeerd betekent dat 
specifieke kenmerken van het diagram werden gebruikt zoals: beide 
diagrammen hebben dezelfde symmetrie en posities van de staven dus is het 
gemiddelde hetzelfde, of de diagrammen hebben een vergelijkbare vorm maar 
de staven zijn naar rechts verschoven dus het gemiddelde is hoger. Ze 
gebruikten dus “vorm” en ”verschuiving” (cf. Frischemeier & Biehler, 2016).  

Het percentage correcte strategieën varieerde tussen gemiddeld 43% 
voor enkelvoudige histogrammen en 100% voor casusstaafdiagrammen; dit 
laatste percentage was verdeeld over een casusstaafdiagramstrategie (71%) en 
een tel-en-berekenstrategie (29%). Deze resultaten waren vergelijkbaar met 
resultaten uit een pilotstudie met studenten (Boels et al., 2018) en een studie 
met docenten (Boels et al., 2019b). Voor dubbele diagramtaken varieerde het 
percentage correcte strategieën tussen gemiddeld 50% voor dubbele-
histogramtaken en 90% voor dubbele-casusstaafdiagrammen; de laatste was 
vooral een casusstaafdiagramstrategie (87% punten). Tot onze verrassing 
gebruikten leerlingen in gemiddeld 9% van de taken met dubbele 
casusstaafdiagrammen een verdelingsgeïnformeerde histogramstrategie die 
resulteerde in een onjuist antwoord, bijvoorbeeld door gebruik te maken van 
symmetrie van de diagrammen. Verder negeerden sommige leerlingen staven 
met frequentie of meetwaarde nul, ondanks dat ze er wel naar keken (cf. 
delMas & Liu, 2005). 
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Figuur 3 Een correcte verdelingsgeïnformeerde strategie voor het vergelijken van de 
gemiddelden van twee histogrammen in taak09 met behulp van vergelijkbare vorm, 
verschoven naar rechts en voor het vergelijken van de gemiddelden van twee 
casusstaafdiagrammen in Taak07 met behulp van vorm en aantal staven 

Opmerking. Leerlingen vergeleken specifiek de positie van de ‘nul’-staven (zwarte 
ovalen) en andere staven op vergelijkbare posities (bijvoorbeeld paarse vierkanten). 
Correcte antwoorden op de vraag waar het gemiddelde gewicht hoger is: boven is dat 
Kees; onder is op beide stranden gemiddeld hetzelfde gewicht geraapt. 

Automatische, op oogbewegingen gebaseerde identificatie van 
leerlingstrategieën 

De patronen die we vonden in de oogbewegingsdata van leerlingen voor 
afzonderlijke histogrammen stimuleerden ons om te onderzoeken of 
automatische herkenning van strategieën van leerlingen mogelijk zou kunnen 
zijn door middel van een analyse met machine learning (hoofdstuk 4). 
Identificatie van leerlingenstrategieën is een voorwaarde voor gerichte 
intelligente feedback, bijvoorbeeld bij online leren. Het was echter nog 
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onduidelijk hoe live identificatie van taakspecifieke oplossingsstrategieën op 
basis van de oogbewegingen van studenten in het statistiekonderwijs 
geautomatiseerd kon worden. De studie in hoofdstuk 4 is een eerste stap in dit 
automatiseringsproces.  

V3: Hoe kunnen oogbewegingsdata worden gebruikt om 
automatisch taakspecifieke strategieën van leerlingen te 
identificeren op enkelvoudige histogrammen? 

Wij gebruikten een gesuperviseerd machine learning algoritme (MLA; random 
forest) geïmplementeerd in een softwaretool (Mathematica Classify Function) 
met de oogbewegingsdata als input. Dit MLA kon vaststellen of leerlingen een 
histogram-interpretatiestrategie gebruikten of een andere strategie—meestal 
een strategie die correct zou zijn geweest als het diagram een 
casusstaafdiagram was—bij het schatten van het gemiddelde uit een enkel 
histogram. Het MLA had acceptabele prestaties (figuur 4) en de 
nauwkeurigheid varieerde tussen kansniveau (38%) en ruim daarboven (88%), 
afhankelijk van de gebruikte validatie procedure. Waarden boven 70% worden 
als goed beschouwd, aangezien deze ruim boven kansniveau liggen. Een 
nadeel van dit MLA is echter dat het niet uitlegt hoe het voor een individuele 
student tot een beslissing is gekomen en daarom beschouwen wij het als een 
black box. De resultaten van het MLA vormden voor ons een ijkpunt voor het 
transparante, interpreteerbare wiskundige model (IWM) dat wij 
construeerden. Dit IWM was theoretisch zinvol en had goede prestaties met 
nauwkeurigheden tussen 62% en 84%, acceptabele sensitiviteit en erg hoge 
specificiteit (Figuur 4). Wij slaagden er bovendien in om het MLA te trainen 
met de oogbewegingsdata van leerlingen op één taak om daarmee strategieën 
te identificeren op alle andere taken. Deze resultaten wijzen erop dat de 
strategieën van de leerlingen kunnen worden afgeleid uit de 
oogbewegingsdata. 

In de toekomst zouden de resultaten van een dergelijke 
geautomatiseerde strategie-identificatie in aan docenten ter beschikking 
kunnen worden gesteld. Onze methode maakt het mogelijk om directe, 
gepersonaliseerde feedback te ontwerpen tijdens online leren, huiswerk of 
massive open online courses (MOOC’s), door het meten van oogbewegingen 
met bijvoorbeeld een webcam. 
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Figuur 4 Resultaten van het MLA en het IWM 

Opmerking. Idealiter zijn de punten geconcentreerd in de linkerbovenhoek van het 
diagram en liggen ze voor alle taken dicht bij elkaar. Hoewel het IWM goed werkte, 
laat het diagram zien dat er ruimte voor verbetering is. 

Vergelijken van histograminterpretaties van leerlingen voor en na het 
oplossen van stippendiagramtaken 

De voorgaande studies makende details van de oplossingsstrategieën van 
leerlingen bij histogramtaken zichtbaar. Een lokale instructietheorie in het 
statistiekonderwijs suggereert dat het oplossen van stippendiagramtaken het 
interpreteren van histogrammen kan bevorderen, (bv. Bakker & Gravemeijer, 
2004; Garfield, 2002; Garfield & Ben-Zvi, 2008b) omdat stippendiagrammen de 
aandacht van leerlingen kunnen vestigen op de variabele die in beide 
diagrammen langs de horizontale as wordt gepresenteerd. Wij vroegen ons af 
of het interpreteren van stippendiagrammen de strategieën van leerlingen bij 
histogramtaken zouden beïnvloeden. Daarom hebben we tijdens het 
verzamelen van de oogbewegingsdata zes stippendiagramtaken opgenomen 
onmiddellijk na de eerste twaalf taken met histogrammen, gevolgd door 
opnieuw drie histogramtaken. In de studie in hoofdstuk 5 onderzochten we: 

V4: Op welke manier veranderen de histograminterpretaties van 
leerlingen in 4–6 vwo na het oplossen van stippendiagramtaken? 

De kijkgegevens van leerlingen op vier histogramtaken werden gebruikt als 
input voor een MLA (random forest). Onze MLA kan vrij nauwkeurig 
classificeren of de oogbewegingsdata van leerlingen behoren tot een taak die 
is opgelost vóór of na de stippendiagramtaken. De resultaten wijzen erop dat 



Samenvatting 

379 

er een verandering is in het kijkpatroon van de leerlingen. Bovendien vonden 
wij dat de richting (bv. bijna verticaal) en de lengte van de saccades (snelle 
overgangen tussen posities waar leerlingen keken) verschillend waren bij de 
taken voor en na het oplossen van de stippendiagramtaken. Er waren 
bijvoorbeeld meer verticale en minder horizontale saccades in de 
oogbewegingen op de histogramtaken na het oplossen van de 
stippendiagramtaken. Deze veranderingen zouden kunnen wijzen op een 
verandering in strategieën. 

Wij vonden drie aanwijzingen dat histograminterpretaties van de 
leerlingen veranderden na het oplossen van de stippendiagramtaken: een 
verandering in de kijkpatronen (afgeleid uit het MLA-resultaat), een 
verbetering in de schattingen van de rekenkundige gemiddelden voor taken 
met enkelvoudige histogrammen en een verschuiving in de gerapporteerde 
strategie voor het oplossen van histogramtaken. Het aantal correcte 
antwoorden veranderde echter niet significant. Voor enkelvoudige 
histogrammen was dit aantal gevoelig voor de keuze van de onderzoekers 
binnen welk bereik antwoorden correct werden gerekend. Daarnaast is het 
bewijs zwak voor de veronderstelling dat de verandering in het kijkgedrag 
duidt op leren, dat op zijn beurt uitsluitend zou kunnen worden toegeschreven 
aan het oplossen van de histogramtaken. We beschouwen de meest 
waarschijnlijke verklaring voor de gemengde resultaten dat de actie van het 
oplossen van stippendiagramtaken rijpheid voor leren creëert (Church & 
Goldin-Meadow, 1986). Reflectie op hun eigen strategie—opgeroepen door de 
gestimuleerde herinnering aan de gebruikte strategie door het interview met 
een volwassene—deed de leerlingen vervolgens beseffen dat zij bijvoorbeeld 
de frequenties verkeerd interpreteerden als zijnde de gemeten waarden. Deze 
studie suggereert dat activiteiten met stippendiagrammen leerlingen mogelijk 
kunnen ondersteunen bij het begrijpen van histogrammen. Bovendien merkte 
Konold (2007) al op dat stippendiagrammen het begrip van histogrammen 
door leerlingen kunnen ondersteunen door acties als "scheiden, ordenen, [...] 
stapelen" en "versmelten" van de stippen (p. 282). Het samensmelten van 
stippen resulteert in een staaf die al deze stippen bevat. Samengevat zouden 
de resultaten kunnen wijzen op een leereffect van het oplossen van de 
stippendiagramtaken—afhankelijk van hoe leren wordt gedefinieerd. 
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Figuur 5 Saccades van lengte 200 pixels of meer van alle deelnemers op taak11 en 
taak21 (dubbele histogrammen, boven) en taak02 en taak20 (enkel histogram, onder) 

Opmerking. Let op het verschil in witheid en zwartheid van de richtingen van de 
saccades van studenten tussen de taken ervoor (linker kolom) en erna (rechter kolom). 
Verschillen tussen de bovenste en onderste rij zijn zeer waarschijnlijk veroorzaakt door 
verschillen in typen taken en daarom waarschijnlijk irrelevant voor onze 
onderzoeksvraag. 

Ontwerp van een belichaamd leertraject 

Het literatuuronderzoek (hoofdstuk 2) maakte ook duidelijk dat bestaande 
interventies onvoldoende succesvol waren om leerlingen te leren 
histogrammen correct te interpreteren. Uit de oplossingsstrategieën 
(hoofdstuk 3) bleek dat veel van deze Nederlandse leerlingen niet goed 
begrepen hoe en waar gegevens in histogrammen worden weergegeven. Het 
interpreteren van stippendiagrammen kan leerlingen helpen bij het begrijpen 
van histogrammen (hoofdstuk 5), omdat ze de aandacht vestigen op de as 
waarlangs de gegevens in zowel histogrammen als stippendiagrammen 
worden weergegeven (namelijk de horizontale as). Het was echter nog 
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onduidelijk hoe een interventie kon worden ontworpen die het leren van 
statistische kernconcepten door leerlingen zou ondersteunen door het leren 
interpreteren van stippendiagrammen en histogrammen. 

Gezien de hardnekkige problemen van leerlingen met het interpreteren 
van histogrammen veronderstelden wij dat het in het onderwijs wellicht had 
ontbroken aan een belichaamde basis van hoe histogrammen worden 
geconstrueerd. Daarnaast vermoedden wij dat er onvoldoende aandacht was 
geweest voor hoe histogrammen instrumenten worden bij statistisch 
redeneren. Bij belichaamde ontwerpen spelen de acties van leerlingen een 
belangrijke rol, zoals de in de vorige alinea beschreven acties (Konold, 2007). 
Daarom hebben we, met een belichaamde-instrumentatieaanpak (Drijvers, 
2019) als theoretische lens, een leertraject ontworpen (hoofdstuk 6) waarbij 
we gebruikmaakten van bevindingen en inzichten uit eerdere studies Deze 
ontwerpstudie is een eerste cyclus van een ontwerponderzoek naar hoe 
enkele van de belangrijkste aspecten van de kernconcepten van statistiek 
kunnen worden onderwezen via onderwijs in histogrammen. De 
onderzoeksvraag voor deze studie was: 

V5: Welke opeenvolging van taken ontworpen vanuit een 
belichaamde instrumentatie perspectief kan het begrip van 
studenten van histogrammen en de onderliggende kernconcepten 
ondersteunen? 

Ons veronderstelde leertraject bestaat uit vijf fasen: (1) Uitlokken van het 
leren—ervaren van onbegrip, (2) heruitvinden van de rol van de horizontale 
schaal in univariate diagrammen, (3) heruitvinden van de rol van de verticale 
schaal in histogrammen, (4) heruitvinden van rekenkundige gemiddelden in 
histogrammen, en (5) bevestigen van het leren—overdracht naar andere 
contexten en omgevingen. 

Onze meervoudige gevalstudie met vijf leerlingen (4–6 vwo) 
suggereerde dat de meeste vermoedens over het leertraject werden 
bevestigd, maar dat transfer kan worden verbeterd. Als bijdrage aan de 
verdere theorievorming over belichaamde instrumentatie bespraken we 
heuristieken voor het ontwerpproces. Bovendien lieten we zien hoe meer 
ingewikkelde artefacten (bv. histogrammen) kunnen worden heruitgevonden 
uit acties met eenvoudiger artefacten (bv. het plaatsen van stippen op een 
schaal, stippendiagrammen). 
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Figuur 6 Voorbeeld van pogingen van leerlingen bij het heruitvinden dat de hoogte van 
de staven in histogrammen gelijk is aan het aantal gemeten waarden in elke staaf, 
onjuist (links) en juist (rechts) 

Ons hypothetisch leertraject (HLT, tabel 1) werd gebruikt om de leerlingen te 
helpen om enkele van de belangrijkste aspecten van de concepten van data en 
verdeling in histogrammen beter te begrijpen. Voor data waren deze aspecten: 
waar en hoe de data in een histogram worden weergegeven, inclusief dat de 
verticale as geen gemeten waarden weergeeft. Voor verdeling waren deze 
aspecten: hoe het gemiddelde wordt beïnvloed door de spreiding in en de 
vorm van het histogram, als voorloper voor het begrijpen van variabiliteit in 
een histogram. In het voortgezet onderwijs ligt de nadruk veelal op het 
berekenen van centrummaten en het tekenen van histogrammen (bv. Burrill, 
2020). In ons ontwerp lag de nadruk op de belangrijkste concepten die we de 
leerlingen wilden laten begrijpen, in plaats van hen alleen te leren hoe ze een 
histogram moeten construeren.  

Nieuw in onze HLT is dat we een belichaamde-instrumentatieaanpak 
gebruikten. Omdat kernconcepten niet tastbaar zijn, onderscheidden we 
(semiotische) artefacten—of tekens zoals Bakker en Hoffmann (2015) ze 
noemden—waardoor deze geleerd kunnen worden. Artefacten zijn 
bijvoorbeeld stippendiagrammen, intervallen, een stapel. Vervolgens hebben 
we deze artefacten gedeconstrueerd naar acties die tot het ontstaan van deze 
artefacten hadden kunnen leiden. We ontwierpen taken waarin leerlingen 
acties uitvoerden met deze artefacten om het zo zelf ‘nieuwe’ artefacten te 
laten heruitvinden en creëren. Door leerlingen bijvoorbeeld een staaf te laten 
optrekken—een actie—werden leerlingen begeleid om opnieuw uit te vinden 
dat de hoogte van de staven in een histogram staat voor het aantal metingen 
in de staaf (figuur 6). Leerlingen gebruikten artefacten waarmee ze al 
vertrouwd zijn, zoals bijvoorbeeld een verticale schaal. De acties van de 
leerlingen brachten hen ertoe aandacht te besteden aan enkele moeilijke 
aspecten van de weergave van data, en hun verdeling, in histogrammen.  
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Tabel 1 Overzicht van het hypothetische leertraject 

Stap Voorbeeldtaak Activiteiten Voorbeeld van 
vermoeden 

1 
Le

er
in

iti
at

ie
: O

nb
eg

rip
 

er
va

re
n 

  

Vergelijken 
gemiddelde en 
variatie in een 
histogram (links) 
en 
casusstaafdiagram 
(rechts). 

H1b: Doordat 
leerlingen initieel 
verwarring en 
onbegrip ervaren 
wordt 
intentionaliteit 
en motivatie 
voor komende 
taken gecreëerd. 

2 
He

ru
itv

in
de

n 
va

n 
ro

l h
or

izo
nt

al
e 

sc
ha

al
 

in
 u

ni
va

ria
te

 d
ia

gr
am

m
en

 

 Schuiven stippen 
naar hun correcte 
positie op een 
schaal. 

H2b: Door 
stippen 
horizontaal naar 
hun juiste plek 
op een 
horizontale 
schaal te 
schuiven, 
merken 
leerlingen dat de 
positie van een 
stip de gemeten 
waarde 
weergeeft.  

3 
He

ru
itv

in
de

n 
ro

l v
er

tic
al

e 
sc

ha
al

 in
 

hi
st

og
ra

m
m

en
 

 

Over een 
stippendiagram 
bouwen leerlingen 
een histogram. 

H3b: Door de 
(oranje) schuiven 
omhoog te 
slepen, merken 
de leerlingen dat 
de hoogte van de 
staven 
samenhangt met 
het aantal 
metingen in een 
staaf—bij gelijke 
klassenbreedten. 
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Stap Voorbeeldtaak Activiteiten Voorbeeld van 
vermoeden 

4 
Re

ke
nk

un
di

ge
 g

em
id

de
ld

e 
in

 
hi

st
og

ra
m

m
en

 h
er

ui
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n 

 

Versterken relatie 
tussen data en 
gemiddelde; 
ontdekken invloed 
van uitschieters, 
gaten en verdeling 
op gemiddelde.  

H5a: Door het 
evenwichtspunt 
van het diagram 
te vinden, 
ervaren de 
leerlingen dat 
het gemiddelde 
kan worden 
gezien als het 
punt waar het 
diagram “in 
evenwicht” is. 

5 
Le

re
n 

be
ve

st
ig

en
: t

ra
ns

fe
r 

na
ar

 a
nd

er
e 

sit
ua

tie
s  

 

Construeren en 
interpreteren van 
histogrammen op 
papier. Sorteren 
van histogrammen 
en evenbeelden. 

H18b: Door het 
op papier 
tekenen van een 
histogram bij een 
frequentietabel 
wordt transfer 
naar een andere 
omgeving 
(papier) tot 
stand gebracht. 

 

Nieuw in het ontwerp is ook dat we taken hebben toegevoegd die 
geïnstrumenteerde acties vereisen (Shvarts et al., 2021). Geïnstrumenteerde 
acties kunnen worden opgevat als acties die worden beïnvloed door digitale 
technologie, dus door de specifieke manier waarop de digitale taken zijn 
ontworpen. Een voorbeeld hiervan is dat de schaal voor één eenheid bij de 
hoogte van de staven in histogrammen niet gelijk is aan de hoogte van één 
stip, waardoor leerlingen door een productieve worsteling (bv. Kapur, 2014; 
Roth, 2019) begrepen dat deze hoogte gelijk is aan het aantal metingen (in 
histogrammen met constante klassenbreedte). 

Als we de prestaties van leerlingen vergelijken met de vermoedens uit 
het HLT, suggereert onze gevalstudie dat de meeste vermoedens werden 
bevestigd: leerlingen ondervonden onbegrip bij de eerste stap, hadden geen 
moeite om de rol van de horizontale schaal opnieuw uit te vinden, vonden de 
rol van de verticale schaal in histogrammen na enige moeite opnieuw uit, leken 
het schatten van het evenwichtspunt van een histogram gemakkelijk te vinden 
en gaven aan dat dit het rekenkundig gemiddelde is. Uit de laatste opgaven 
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bleek dat de leerlingen meestal in staat waren de verworven kennis ook op 
papier, dus in een andere omgeving, toe te passen. Hun gebaren wezen op het 
gebruik van acties uit eerdere taken om de vervolgtaken op te lossen. Alles bij 
elkaar suggereren de resultaten dat belichaamde ervaringen gevolgd door 
reflectie hebben bijgedragen aan het overwinnen van enkele bekende 
misinterpretaties. Enkele verbeteringen voor toekomstig ontwerp zijn ook 
voorgesteld, zoals het toevoegen van transfertaken na de horizontale en 
verticale acties in het HLT. Om de noties van verdeling en variabiliteit bij 
leerlingen verder te ontwikkelen, is het misschien nodig om in een toekomstig 
ontwerp meer aandacht te besteden aan de begrippen oppervlakte en interval. 

Conclusies en discussie 

Een belangrijke component van statistische gecijferdheid is grafische 
gecijferdheid. Een histogram kan worden beschouwd als een spin in een web 
van kennis. Begrip van histogrammen is bijvoorbeeld een goede voorbereiding 
op belangrijke concepten zoals kansverdeling en kansdichtheid in de 
kansrekening. Het doel van dit onderzoek was bij te dragen aan een empirisch 
onderbouwde theorie over hoe histogrammen kunnen worden onderwezen als 
middel om bij te dragen aan de statistische gecijferdheid van leerlingen. Wij 
beantwoordden de vraag hoe leerlingen in 4–6 vwo ondersteund kunnen 
worden bij het begrijpen van histogrammen. Het belangrijkste antwoord is een 
hypothetisch leertraject (HLT) (Simon, 2020) dat erop gericht is de noties van 
leerlingen over enkele belangrijke aspecten van eerst data en vervolgens 
verdelingen in diagrammen van univariate data te ontwikkelen. Dit HLT is 
gebaseerd op een uitgebreide literatuurstudie en methodologisch innovatieve 
oogbewegingsstudies, en is bovendien ontworpen vanuit het perspectief van 
belichaamde instrumentatie. Het is een stap naar een domeinspecifiek 
instructiekader over hoe leerlingen te leren diagrammen van univariate data 
correct te interpreteren, waaronder histogrammen, stippen-, steel-blad- en 
hoeddiagrammen (Konold, 2007), boxplots, frequentiepolygonen en histodots 
(hoofdstuk 2). Voor toekomstige ontwerpen zou kunnen worden onderzocht of 
een intelligent tutoring systeem kan worden gemaakt voor automatische 
feedback, gebaseerd op kijkpatronen op alleen het diagramgedeelte van 
histogrammen. Een dergelijk systeem zou webcams vereisen die 
oogbewegingen kunnen meten. 

Een wetenschappelijke bijdrage van ons werk is dat we hebben laten 
zien hoe theoretische (hoofdstuk 2) en empirische (hoofdstukken 3, 5) 
inzichten over de moeilijkheden van studenten met statistische concepten 
kunnen worden verwerkt in een opeenvolging van taken die zijn ontworpen 
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vanuit een belichaamd instrumentatieperspectief (hoofdstuk 6). Dit is het 
eerste ontwerp in het statistiekonderwijs dat gebruikmaakt van een 
belichaamde-instrumentatiebenadering. Daarnaast hebben we richtlijnen voor 
een belichaamd instrumentatieontwerp ontwikkeld, getest en geëvalueerd. 

Een methodologische bijdrage van ons werk is dat we enkele nieuwe 
onderzoeksinstrumenten in het statistisch onderwijsonderzoek hebben 
geïntroduceerd en toegepast: oogbewegingsmetingen, machine learning 
algorithmen (MLA’s) en een interpreteerbaar wiskundig model (IWM; 
hoofdstuk 4). Deze gereedschappen kunnen worden gebruikt voor het 
onderzoeken van de strategieën van leerlingen en het informeren van 
ontwerpen (oogbewegingsmetingen, MLA) en voor het ontwerpen van 
intelligente tutoring systemen die feedback geven (MLA en IWM). Bovendien 
toonden wij aan dat de vormen van scanpaden op het diagramgebied van 
statistische diagrammen de strategieën van leerlingen bij het vergelijken en 
schatten van gemiddelden uit deze diagrammen kunnen onthullen. 

Een methodologische beperking van ons werk is de geografische 
selectiebias die lijkt te bestaan in de reviewstudie (hoofdstuk 2) en het aantal 
studenten in de oogbewegingsmetingen studie (N = 50, hoofdstukken 3–5) en 
meervoudige gevalstudie (N = 5; hoofdstuk 6). Toch is de aanpak geschikt voor 
verdere opschaling en lijken de resultaten onafhankelijk van deze specifieke 
omstandigheden.  

Een implicatie voor onderzoek is dat oogbewegingsmetingen mogelijk 
nieuw licht kunnen werpen op hardnekkige didactische problemen in het 
wiskundeonderwijs, aangezien de scanpaden van leerlingen correcte 
redeneringen kunnen onthullen, zelfs wanneer antwoorden onjuist zijn. 
Daarnaast zouden oogbewegingsdata in combinatie met een MLA en IWM een 
krachtig instrument kunnen zijn voor het valideren van kwalitatieve 
onderzoeksbevindingen.  

Een implicatie voor de onderwijspraktijk is dat histogrammen een 
centrale rol kunnen spelen bij het leren van statistische kernbegrippen zoals 
data, verdeling, variabiliteit, en centrale tendentie, en dat meer aandacht 
nodig is voor het kernconcept data. Bovendien wordt het aanbevolen om meer 
nadruk te leggen op het interpreteren van histogrammen en minder op 
technische vaardigheden zoals het tekenen ervan en het berekenen van 
gemiddelden van in diagrammen gepresenteerde data. Voor het initiële leren 
lijkt een belichaamde instrumentatiebenadering een vruchtbare route voor het 
ontwikkelen van grafische gecijferdheid van leerlingen als onderdeel van 
statistische gecijferdheid. Met dit in gedachten roepen wij ontwerpers op om 
onze richtlijnen voor belichaamde-instrumentatieontwerpen te gebruiken bij 
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hardnekkige didactische knelpunten in het wiskundeonderwijs en om zich bij 
elk aspect van de artefacten (assen, schaal, oppervlakte) af te vragen of de 
wiskundige acties en ‘denken’ door de software of de leerling moet worden 
gedaan. 
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Dankwoord 
Het doen van promotieonderzoek is als een reis. Als ervaren docent was het 
wennen om ineens een onervaren onderzoeker in het sociale domein te zijn. 
Zo’n reis kan soms eenzaam zijn. Gelukkig ben ik tijdens mijn onderzoek door 
heel veel mensen gesteund. Ik wil iedereen heel hartelijk bedanken daarvoor. 
Speciale dank gaat uit naar de volgende personen.  

Allereerst diepe dankbaarheid voor mijn copromotor Arthur. Vanaf de 
eerste kennismaking tijdens mijn zoektocht naar een onderwerp en begeleider 
was er een klik. Jouw begeleiding was precies was ik nodig had: intensief als ik 
daarom vroeg, op afstand als ik het minder nodig had. Je reageerde altijd zeer 
vlot op mijn e-mails en vragen. Met jouw rake vragen en kritiekpunten kon ik 
soms dagen bezig zijn. Je hebt een enorm inzicht in de literatuur en kunt goed 
schakelen tussen theorie en praktijk. Onze gesprekken gingen niet alleen over 
de inhoud van het onderzoek, maar bijvoorbeeld ook over hoe docent-
onderzoekers het best konden worden begeleid en hoe ik werk, privé, een 
eigen bedrijf en onderzoek combineerde. Ik heb dat zeer gewaardeerd. Zeer 
veel dank voor je tijd en inspiratie. 

Ook mijn promotor Paul wil ik heel hartelijk danken. Zeker in het begin 
was je begeleiding, zoals ook afgesproken, meer op afstand. Onze band werd 
nauwer toen je tijdelijk de begeleiding overnam omdat Arthur aan een boek 
werkte. Ik ben je verzoeken om mijn artikelen kort te houden steeds meer 
gaan waarderen. Je hebt een scherp oog voor details en kan goed aangeven 
wanneer ze de redeneerlijn onderbreken. Je hebt ook zorg voor de mens 
achter het onderzoek. Je kritiek is opbouwend en stimulerend. Zeer veel dank 
voor je energie en inspiratie.  

Verder wil ik mijn tweede promotor Wim Van Dooren heel hartelijk 
danken. Jouw expertise op het gebied van oogbewegingsonderzoek was zeer 
waardevol. Je hebt net als Arthur de gave om met een paar kritiekpunten mij 
dagen aan het denken te zetten. Ik waardeer het ook enorm dat je juist tijdens 
het schrijven van mijn laatste artikel, op het moment dat Arthur niet 
beschikbaar was, snel en adequaat bent ingesprongen om mij op tijd van 
waardevolle feedback te voorzien. Ik zie ernaar uit om onze samenwerking in 
een project rondom oogbewegingen voort te zetten.  

Voorts bedank ik Nathalie Kuijpers hartelijk voor het controleren van 
het document op APA-stijl en Engels, het verbeteren van Engelse zinnen, voor 
het maken van één lay-out van alle afzonderlijke artikelen en hoofdstukken, 
voor het doorvoeren van alle wijzigingen en de enorme klus om van alle 
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afzonderlijke referentielijsten één lijst te maken. Ciera Lamb dank ik voor het 
controleren van vrijwel alle teksten in dit proefschrift op correct Amerikaans 
Engels. 

Specifiek voor het literatuuronderzoek bedank ik Marianne van Dijke-
Droogers voor de tweede codering van de data, Floris Kooij en Rian Ligthart 
voor hun bijdrage aan het digitaliseren van de classificatie van de 
kernconcepten, het screenen van een aantal dissertaties, het toevoegen van 
aantallen leerlingen, studenten en landen aan de gegevens en het zoeken van 
literatuur om na te gaan of geen belangrijke studies waren gemist (via de 
procedure ‘backward snowballing’). Verder bedank ik ICT ontwikkelaar Kees 
van Eijden voor het schrijven van sommige R-code die gebruikt is voor het 
maken van grafieken, in het bijzonder de ongestapelde dotplot en histodot.  

Specifiek voor het oogbewegingsonderzoek bedank ik medeauteur 
Rutmer Ebbes voor zijn bijdrage aan de pilotstudie voor de oogbewegingen, 
Aline Boels voor het programmeren van de html-bestanden met de items voor 
de oogbewegingsstudie, Juri Boels voor de meeste transcripties van de 
mondelinge data met behulp van geautomatiseerde transcripties als start (Oral 
history software, Yilmaz & Gompel, n. d.), Iljo Boels voor het exporteren van de 
gaze plots en heatmaps, Alex Lyford voor het berekenen van nauwkeurigheids- 
en precisiematen van de oogbewegingsdata, Gerben van der Hoek voor de 
tweede codering van de oogbewegingsdata en Hidde Leplaa voor hulp bij het 
opzetten van een NVivo structuur. Verder bedank ik alle mensen die betrokken 
waren bij de eye-tracking seminars aan de UU en die met me mee hebben 
gedacht, feedback hebben gegeven tijdens presentaties en me behoed hebben 
voor een aantal beginnersfouten (zie de bijlage van hoofdstuk 3). In het 
bijzonder bedank ik Ellen Kok, Margot van Wermeskerken, Roy Hessels, Ignace 
Hooge en Jos Jaspers. Ignace heeft bovendien waardevolle feedback gegeven 
op het onderzoeksvoorstel dat aan dit promotieonderzoek ten grondslag lag. 
Dank ook aan de Faculteit Sociale Wetenschappen voor het lenen van de 
laptop en Tobii-XII-60 eye-tracker voor dit onderzoek. Tot slot ook grote dank 
aan alle leerlingen en docenten die vrijwillig aan mijn onderzoeken deelnamen.  

Ik bedank mijn medeauteurs van de artikelen voor het meedenken over 
het onderzoek, de uitvoering en hun waardevolle feedback. Enrique, bedankt 
voor alle energie die je belangeloos hebt gestoken in de analyses van de 
oogbewegingsdata met modellen en algoritmen. Ik weet dat de herziening van 
ons artikel soms erg slecht voor je uitkwam. Dank dat je dan toch doorging! 
Alex, bedankt voor je geweldige vaardigheden in R waarmee je de 
oogbewegingsdata hebt geanalyseerd om inzicht te krijgen of dotplottaken 
invloed kunnen hebben op hoe leerlingen histogrammen interpreteren. Het is 
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fantastisch om met jou samen te werken en ik zie uit naar ons volgende artikel 
over dubbele histogramtaken. Dank aan jullie beiden dat ik heb mogen leren 
van jullie enorme ervaring op het gebied van machine learning algoritmen. De 
ideeën die we gezamenlijk hebben voor vervolgonderzoek vind ik enorm 
inspirerend en ik zie uit naar onze toekomstige projecten. Anna, bedankt voor 
het assisteren tijdens de laatste dag van de dataverzameling bij het 
oogbewegingsonderzoek, het programmeren in de digitale leeromgeving van 
de belichaamde taken, het meedenken over de ontwerpen ervan en de vele 
sessies over belichaamde ontwerpen en instrumentatie op het FI. Je hebt een 
geweldig theoretisch inzicht, enorm geduld en goede feeling voor wat 
leerlingen kunnen. Ik hoop dat we onze discussies over hoe de theorie 
praktisch kan worden gemaakt nog jaren zullen voortzetten in mooie 
projecten.  

Ik bedank ook mijn kamergenoten op het FI, in het bijzonder Marianne 
van Dijke-Droogers, Rosa Alberto, Nathalie van der Wal, Winnifred Wijnkers en 
Annemiek van Leendert. Met jullie voerde ik inspirerende discussies over 
allerlei onderwerpen, ook buiten het promoveren om. Dank voor jullie steun 
en waardevolle gesprekken. Verder dank ik alle collega-promovendi en andere 
collega’s van het FI met wie ik heb mogen samenwerken of discussies voeren. 
Ik dank Mariozee Wintermans en haar collega’s voor de ondersteuning vanuit 
het secretariaat en het Freudenthal Instituut voor het mogen gebruiken van 
vele faciliteiten, waaronder het Teaching en Learning Lab.  

Ik ben heel veel collega’s op het Christelijk Lyceum Delft dank 
verschuldigd voor hun bijdragen aan mijn onderzoek en onderzoeksvoorstel. 
Dank aan de directie voor het meedenken en mogelijk maken van dit 
onderzoek. Speciale dank aan collega’s die al tijdens het schrijven van mijn 
onderzoeksvoorstel meedachten: Suzanne van der Waal, Inge Verhoev, Remko 
Schoot Uiterkamp, Roel de Rijk, Josje Schokkenbroek, Thalie Beudeker en 
Simon Belder. Dank ook aan de wiskundesectie, het vwo bovenbouwteam en 
alle anderen die regelmatig informeerden hoe het met mijn onderzoek ging en 
die meedachten of werk overnamen omdat ik minder beschikbaar was voor 
school. Ik bedank ook Jos Tolboom voor zijn support bij het schrijven van het 
onderzoeksvoorstel. 

Daarnaast bedank ik de mensen van de SIG27 Earli gemeenschap en de 
statistiekonderwijs-onderzoekers die mij hebben geïnspireerd tijdens 
conferenties. Op het gevaar af mensen tekort te doen of te vergeten, bedank 
ik specifiek Halszka Jarodzka voor haar inspiratie en aanmoediging bij het doen 
van oogbewegingsonderzoek, Dani Ben-Zvi en Katie Makar voor hun 
waardevolle feedback tijdens vele conferenties inclusief de door Marianne en 
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mij georganiseerde pre-CERME conferentie in Utrecht en de SRTL12-
conferentie die uiteindelijk online werd gehouden. Ik bedank ook de anonieme 
reviewers van alle artikelen voor hun behulpzame suggesties en feedback.  

Grote dank gaat ook uit naar mijn beide ouders, Jan en Nolda. Jullie 
hebben mij altijd gesteund en mijn keuzes enerzijds als volstrekt normaal 
beschouwd (studie Elektrotechniek, ook al was ik een van de weinige vrouwen) 
en anderzijds als heel bijzonder gevonden (een universitaire studie, een 
tweede master en vervolgens dit promotieonderzoek). Ik weet dat jullie heel 
trots op me zijn. Het was zwaar om tijdens mijn promotieonderzoek, in de 
coronatijd, afscheid te moeten nemen van mijn vader. Hij had de plechtigheid 
graag bijgewoond maar ik weet dat hij er in gedachten bij is. Het is fijn dat ik 
hem nog uitgebreid heb kunnen bedanken voor alles wat hij voor mij gedaan 
heeft. Nolda, dankjewel dat je me hebt geleerd dat een slimme meid op haar 
toekomst voorbereid is. Hoe jij werk en moederschap combineerde was voor 
mij een inspirerend voorbeeld. Ik denk bovendien dat ik mijn schrijfvaardigheid 
van jou heb. Dank voor al je liefde, steun, aanmoedigingen en de vele hulp in 
huis wanneer dat nodig was.  

Verder bedank ik de liefde van mijn leven. Willem, je hebt me al die tijd 
met raad en daad bijgestaan op alle mooie momenten maar ook op alle 
momenten dat het leven een tegenslag voor mij in petto had. Je hebt me 
gesteund in deze reis ook al wist je bij voorbaat dat het ook van jou offers zou 
vragen. Je nam het grootste deel van het huishouden op je, naast je drukke 
baan. Je hebt vele vakanties in het buitenland alleen gewandeld omdat ik 
overdag aan een artikel voor mijn proefschrift wilde werken. Alleen de 
avonden waren dan voor ons samen. Zelfs dit dankwoord schrijf ik tijdens onze 
vakantie. Dank voor al je liefde, je steun, je opofferingen en je geduld. 

Dank ook aan mijn zussen Daniëlle en Eveline die mij steunden, 
aanmoedigden en regelmatig vertelden hoe trots ze zijn op mijn werk. 
Daniëlle, heel erg bedankt voor het mooie ontwerp van de voorkant van mijn 
proefschrift en de door data (stippen) omgeven nummering bij de 
hoofdstuktitels.  

Daarnaast bedank ik mijn kinderen Juri, Aline en Iljo. Ook jullie hebben 
mij regelmatig moeten missen op belangrijke momenten als ik weer eens niet 
beschikbaar was omdat ik een ingewikkelde Engelse tekst aan het schrijven 
was, aan het lesgeven was of naar een conferentie was. Ditzelfde geldt voor 
mijn pleegkinderen Boris en Adriaan en mijn pleegkleindochter Sofia. Zeker in 
de coronatijd en daarna heb ik de contacten met jullie veel te lang  
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verwaarloosd. Ik hoop dat jullie me dat vergeven en dat ik de draad weer met 
jullie kan oppakken.  

Verder bedank ik Barbara Meinert. Je houdt al jaren ons huis schoon en 
strijkt al onze kleren. Dankzij jouw hulp kon ik me concentreren op mijn werk 
en promotieonderzoek. Ook bedank ik Inge Siebring die mijn bedrijf draaiende 
hield toen ik er steeds minder tijd voor had. Je was zakelijk en persoonlijk mijn 
steun en toeverlaat. Ik bedank ook Gert de Kleuver die mij op een cruciaal 
moment vroeg waarom ik niet nu ging promoveren, in plaats van ooit. 

Tot slot bedank ik al mijn vriendinnen en vrienden. Ik heb jullie flink 
verwaarloosd. Ik hoop dat ik de tijd krijg de komende jaren om dat goed te 
maken. Bedankt voor al jullie steun, aanmoedigingen en liefde. In het bijzonder 
bedank ik Marjanne Klom voor haar inspirerende gesprekken over onderwijs, 
onderzoek en het leven en Afke Posthuma voor haar meedenken over 
academische vereisten. Ik bedank Paul Haima voor de wiskundige grappen die 
hij me steeds stuurde die me hielpen om het luchtig te houden. Ik bedank 
Marianne van Dijke-Droogers voor haar collegiale steun, de fijne conferenties 
samen en haar bijdrage in de rol van paranimf. Heel veel dank ook aan Mariet 
Lohman die al jaren mijn vriendin is. Je hebt een flinke klus gehad aan het 
mede-organiseren van het promotiefeest en het uitnodigen van alle gasten.  

Met de verdediging van dit proefschrift eindigt een intensieve en heel 
leerzame periode. Het is ook het begin van een nieuwe reis in 
onderwijsonderzoek. Ik zie reikhalzend uit naar dat vervolg. 
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Many high school students are unable to draw justified conclusions 
from statistical data in histograms. A literature review revealed various 
misinterpretations. Current statistics education often falls short of 
preventing these. In preparation for new instructional materials, 
several studies were conducted to better understand where these 
misinterpretations come from. Five solution strategies were found 
through qualitative analysis of students’ eye movements on histogram 
and case-value plot tasks. Quantitative analysis of some tasks using 
a mathematical model and a machine learning model confirmed the 
results of the qualitative analysis which implied that the strategies 
could be identified reliably and automatically. Literature suggested 
that lesson materials with dotplot tasks can support students to 
correctly interpret histograms. An analysis of students’ eye movements 
on histogram tasks before and after dotplot tasks suggested that 
students improved their strategies but not their answers. Based on 
the literature and eye-tracking studies, we conjectured that students 
most likely lacked embodied experiences with the actions required to 
construct histograms. Inspired by ideas of embodied instrumentation, 
we designed and tested instructional materials that provide starting 
points for scaling up. Together, the studies contribute to theorizing 
about teaching histograms and the use in statistics education of 
eye-tracking research, quantitative methods from data science, and 
instructional materials designed from the perspective of embodied 
instrumentation.
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