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CHAPTER 1 General introduction

United Nations’ Fundamental Principles of Official Statistics, Principle 1:

Official statistics provide an indispensable element in the information
systems of a democratic society, serving the Government, the economy
and the public with data about the economic, demographic, social and
environmental situation. To this end, official statistics that meet the test
of practical utility are to be compiled and made available on an impartial
basis by official statistical agencies to honour citizens’ entitlement to
public information (United Nations Statistics Division, 2014).

1.1 Introduction

The quotation above, Principle 1 from the United Nations’ Fundamental
Principles of Official Statistics, illustrates that statistics has become
indispensable in today’s society. Due to the emergence of powerful digital
tools to collect, store, analyze, and represent big datasets, statistical analysis
has become tremendously important for governments and companies to
inform decisions. Consequently, people nowadays are confronted more and
more with statistical information in the media. Moreover, statistical methods
are essential for conducting research in almost all scientific disciplines.
Because of this ubiquity of data and statistics, education needs to prepare
students for conducting and interpreting statistical analyses. Introductory
statistics courses are, therefore, an essential element in many university
study programs (Castro Sotos, Vanhoof, Van den Noortgate, & Onghena,
2007).

With the advancement of technology and the resulting changes
in statistical practice, the goals and nature of statistics education have
been changing as well (Chance, Ben-Zvi, Garfield, & Medina, 2007).
Only a few decades ago, being able to use formulas to calculate statistics
(e.g., means, standard deviations, or t-values) was a valuable skill for
a statistician. Nowadays, however, statisticians usually outsource such
calculations to calculators and computers. Meanwhile, the multitude of
statistical techniques currently available requires knowledge and skills to
choose the appropriate techniques, given the context and the questions
at stake. Developing such knowledge and skills requires learning some
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statistical techniques, but it is more important to understand the statistical
concepts and principles underlying these techniques (Carver et al., 2016).
Rather than knowing exactly how to manipulate statistical formulas,
students, as well as professionals and citizens, need to know why data
and statistical formulas are needed, how these can inform decisions and
how variability in data can influence the results that statistical formulas -
or software using these formulas — produce. We refer to this combination
of knowing, using, and reasoning with statistical concepts as statistical
proficiency. This includes, but is not limited to, statistical literacy, which
can be described as knowing basic statistical terms, understanding simple
statistical symbols, and being able to interpret different representations of
data (Garfield et al., 2008).

Developing statistical proficiency is not easy. Success rates
for introductory statistics courses are regularly low, meaning that for
many students these courses are obstacles in obtaining their bachelor’s
degree (Murtonen & Lehtinen, 2003; Tishkovskaya & Lancaster, 2012).
Students struggle to understand the large number of abstract concepts,
such as probability distributions, sampling variability and confidence
intervals (Castro Sotos et al., 2007). Even more problematic is the ability
to integrate such abstract concepts into complex chains of reasoning
involving uncertainty (Falk & Greenbaum, 1995). As an example, consider
the method of null hypothesis significance testing, which is widely applied
in scientific research. In addition to knowledge of, among other things,
sampling variability, significance level, and p-values, applying this method
requires the ability to reason using conditional statements (e.g., “under
the assumption that the null hypothesis is true, this outcome, or a more
extreme one, is very unlikely”). A final issue that may hinder students
in appropriately applying statistical techniques to reason about real-
world problems is that formal definitions of statistical concepts, such as
variability, often conflict with students’ prior, informal knowledge and their
view of the real world (Garfield & Ahlgren, 1988).

It is because of these issues that many students still perceive
statistics as a disconnected collection of methods and techniques, rather
than as a problem-solving and decision-making process that uses these
methods and techniques (Carver et al., 2016). In higher education, matters
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are even more complicated, because of the typically large student group
sizes in introductory statistics courses. This makes it unachievable for
teachers to provide individual guidance and feedback, which could support
students in developing statistical proficiency. Apart from teachers, there
is, however, another agent that could provide sophisticated individual
guidance and feedback: the computer.

1.2 Feedbackincomputer-basedlearningenvironments

Over the past decades, many computer-based learning environments have
been developed to facilitate learning of many topics at all educational
levels. One of these environments’ largest promises for enhancing
learning is the provision of individualized and timely feedback on
student work (Pardo, 2018; VanLehn, 2011). Fulfilling this promise is
not straightforward, though, because there are many design choices to
make when implementing feedback, regarding specificity, timing, type and
complexity of information provided, and visual presentation (Shute, 2008).
These design choices have been found to influence feedback effects: while
feedback from computer-based learning environments mostly influences
student learning in a positive way, implementations with negative effects
have been reported as well (Van der Kleij, Feskens, & Eggen, 2015). In
this thesis, therefore, we explore whether and how feedback by computer-
based learning environments can support students in developing statistical
proficiency.

Before turning to the specific domain of statistics, we start by
outlining how theory postulates that feedback may contribute to student
learning in general. To this end, we consider the following feedback
definition by Pardo (2018):

A process to positively influence how students engage with
their work in a learning experience so that they can improve
its overall quality with respect to an appropriate reference and
increase their self-evaluative capacity. (Pardo, 2018, p. 433)

An important aspect of this definition is that feedback is considered
a process. More specifically, it involves phases of evidence collection,
information delivery and feedback assimilation. Information delivery may



Chapter 1

be the element of the feedback process that comes to mind first when
thinking of feedback: an agent (which may be a teacher, but in our case is
a computer-based learning environment) provides information to a student
concerning the student’s learning process. Before information can be
delivered, though, evidence about the student’s learning process needs to
be collected, to allow for tailoring the feedback information to the student'’s
individual needs (Gikandi, Morrow, & Davis, 2011). After information
delivery, the feedback process enters a new phase: the student needs to
assimilate the information and decide which, if any, subsequent actions
to carry out (Timmers, Braber-van den Broek, & Van den Berg, 2013).
This assimilation phase may result in changes in the student’s knowledge,
skills, beliefs, attitudes, goals, strategies, and tactics (Pardo, 2018), which
can be seen as the ultimate goal of providing feedback.

Let us now consider how this feedback process can be shaped
within computer-based learning environments. As well as inducing changes
in statistical practice, as discussed in section 1.1, the advancement of
technology has also incited the development of artificial intelligence
techniques to provide sophisticated intelligent feedback. Computer-based
learning environments that employ artificial intelligence techniques to
generate feedback are called Intelligent Tutoring Systems (ITSs). In ITSs,
two general feedback types can be distinguished: inner loop feedback on
steps within tasks, and outer loop feedback over complete tasks or multiple
tasks at once (Santos & Jorge, 2013; VanLehn, 2006). Inner loop feedback
typically provides information about the correctness of a (partial) solution,
combined with guidance on how to resolve mistakes and how to proceed
in solving the current task. Outer loop feedback concerns the student’s
current knowledge state regarding the domain and, possibly, the selection
or suggestion of appropriate subsequent tasks or study activities. For both
types, positive effects on student learning have been reported (see, for
example, VanLehn (2011) for inner loop feedback and Bull & Kay (2016)
for outer loop feedback). It is, therefore, not surprising that both feedback
types have been implemented in computer-based learning environments
that are used in educational practice today.
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1.3 Aims and research question

Given the promising general affordances of automated feedback in
computer-based learning environments, the main aim of this research
project was to investigate whether and how these techniques could also
be employed to foster the development of students’ statistical proficiency.
To this end, we implemented automated inner and outer loop feedback in
two university statistics courses for first-year social sciences students. The
guiding research question for this investigation was:

How can automated intelligent feedback support first-year
university students in developing statistical proficiency?

To answer this research question, we focused on three aspects of the
implementation process: feedback design, students’ use of the feedback,
and the effects of feedback use on the students’ statistical proficiency. We
outline the goals related to these three aspects below.

Concerning the first aspect, feedback design, the goal was to
investigate how artificial intelligence techniques - such as model-tracing,
constraint-based modeling and user modeling - could be employed to
generate feedback that addressed statistical proficiency. This raised
questions related to the first and second phase of the feedback process
described in section 1.2: which evidence about student learning can
be collected and how can this evidence be automatically analyzed to
generate useful feedback information? Addressing statistical proficiency
was regarded as a challenge, since ITSs have a reputation of promoting
procedural skills rather than conceptual understanding (Salden, Aleven,
Renkl, & Schwonke, 2009). Therefore, recommendations from statistics
education literature, such as the use of real contexts and datasets (Ben-
Zvi, 2000; Carver et al., 2016), were deemed important to enable a
focus on statistical proficiency. Incorporating these recommendations was
expected to result in instructional content that contained many clusters of
closely related tasks referring to the same context.

The instructional design structure that ITSs typically use is quite
different: a collection of mutually independent, interchangeable items. The
question was whether in these two different instructional design structures,
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students’ knowledge could be inferred from students’ answers in the same
way. In other words, a goal concerning feedback design was to investigate
whether applying artificial intelligence techniques on an instructional design
of clusters of tasks would yield valid inferences about student knowledge.
Another point for consideration, in the context of university statistics
education, was that teachers in higher education are usually responsible
for designing their own courses. To do so, these teachers need to be able
to adopt the designed system and to adjust course contents to address
the specific needs and interests of their students. Hence, the feasibility of
adopting the designed feedback implementations for university teachers
was an important consideration during the design.

The second aspect of feedback implementation concerned
evaluating the students’ use of the feedback. As illustrated by Pardo’s
feedback definition in section 1.2, the feedback process does not stop once
feedback information has been generated and delivered to the student. To
benefit from the available feedback, students need to actively notice its
availability, assimilate the information and use it to decide what to do next
(Timmers et al., 2013). Various factors, such as motivation and accessibility
of feedback information, may influence whether and how students engage
in such behavior. At this point, the goal was to investigate whether and
how the students used the available inner and outer loop feedback during
their engagement with the computer-based learning environment in
their statistics course. This entailed the quantity as well as the quality of
their feedback use. Quantity of feedback use is straightforward to define
and observe, in terms of the frequency and duration of interactions with
the feedback. Quality of feedback use is somewhat more implicit: it can
be inferred from the students’ actions in the computer-based learning
environment that occur immediately after interacting with the feedback.
These actions could reflect changes in student knowledge evoked by the
feedback, for example when a student corrects a mistake after receiving
inner loop feedback. They could also reflect feedback effects on students’
strategies, for example when a student starts to work on a new task
concerning a specific topic immediately after receiving outer loop feedback.
In this sense, these subsequent actions are considered indications of how
feedback use may influence both students’ knowledge and their learning
behavior.
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Regarding the third aspect of feedback implementation, changes in
students’ learning behavior were expected to eventually result in changes
in students’ statistical proficiency as well, which was the ultimate goal of
implementing automated intelligent feedback in this research project. In
the case described above, by evoking a decision to start working on a certain
task, the feedback may encourage the student to practice more, which, in
turn, may lead to more opportunities for learning. To assess whether the
feedback did indeed induce such changes, we wanted to consider the effects
of the implemented feedback on students’ statistical proficiency. The goal
here was to evaluate whether students receiving the designed automated
intelligent feedback indeed developed better statistical proficiency than
students who did not receive such feedback. The two types of implemented
feedback, inner and outer loop feedback, were evaluated separately as
well as in combination. This allowed for identifying the effects of both
types, but also for evaluating whether the two interacted and whether
students benefited from the combination of both types.

1.4 Methods and educational setting

The goals of designing, providing and evaluating automated intelligent
feedback to address statistical proficiency in higher education align well
with characteristics of design-based research. In this research paradigm,
the development of theories about domain-specific learning and the design
of means to support that learning go hand-in-hand (Bakker & Van Eerde,
2015). Design-based research is a cyclic process of repeated design,
implementation and evaluation. In this process, theoretical ideas about
student learning inform the design and are subsequently adapted, informed
by the implementation and evaluation.

In our research project, both inner and outer loop feedback were
designed and implemented in cycles: one cycle for inner loop feedback
only, two cycles for outer loop feedback only, and one final cycle for the
two feedback types combined. The two cycles involving only outer loop
feedback were explorative in nature, to investigate the feasibility of the
selected design approaches and to identify the various ways in which
students used the outer loop feedback. The most important data source
for these explorations were the logs of the students’ interactions with the
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computer-based learning environment. These data were supplemented
by students’ answers to a questionnaire and their exam results. Data
analysis in these cycles focused on identifying patterns in these data
through, among other methods, learning curve analysis (Martin, Mitrovic,
Koedinger, & Mathan, 2011) and categorization of students according to
the quantity and quality of their feedback use. The other two cycles, that
is, the cycle involving only inner loop feedback and the final cycle for the
two feedback types combined, had an evaluative nature. To evaluate the
effects of the designed feedback on student learning, these cycles were set
up as randomized controlled experiments. Like in the exploratory cycles,
logs of student work in the computer-based learning environment were an
important data source. Based on these logs, student-specific measures such
as time-on-task and number of solved tasks were calculated. Additionally,
exam results were used as the final measure of the students’ statistical
proficiency. Multiple linear regression models were used to assess the
effects of feedback types, student characteristics and their interactions on
the students’ learning processes and their statistical proficiency.

The educational setting for this research project was formed by two
first-year statistics courses for students enrolled in social sciences bachelor
programs at Utrecht University: Methods and Statistics | and Methods and
Statistics Il. Design and implementation cycles within these courses took
place in 2016, 2017 and 2018. In the first inner loop and first outer loop
cycles, participants in this study were subgroups of the students enrolled
in the courses, resulting in groups of 160 to 300 students. In the second
outer loop cycle and in the final cycle for both feedback types all students
enrolled in the courses were asked to participate in the research project.
This resulted in groups of between 500 and 600 participating students.
In all three years, students received weekly online homework sets
about statistical topics. These homework sets were offered in the Digital
Mathematics Environment (DME), a computer-based learning environment
developed by the Freudenthal Institute (Drijvers, Boon, Doorman, Bokhove,
& Tacoma, 2013). Tasks in the homework sets addressed, for example,
selecting appropriate measures of center and spread for given variables
and testing hypotheses for given situations and samples. The tasks were
designed by the teachers of the course and used a variety of interaction
types, such as number input, multiple choice tasks and drag-and-drop
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tasks. Students received immediate verification feedback in all tasks,
informing them on whether their answer was correct, but not about what
the correct answer was. The courses were concluded with a final exam
consisting of multiple choice items.

The two feedback types designed in the context of this research
project were added to these homework sets. Inner loop feedback was
designed in the form of a domain reasoner for hypothesis testing (Goguadze,
2011). The topic of hypothesis testing is central in many introductory
statistics courses, but especially understanding the logic of the stepwise
hypothesis-testing procedure and the role of the abstract statistical
concepts involved is challenging for students (Falk & Greenbaum, 1995).
The aim of implementing the domain reasoner was, therefore, to especially
address this logical reasoning within the hypothesis-testing procedure. The
domain reasoner feedback was used in nine tasks on hypothesis testing
in the homework sets. Originally, these tasks provided pre-structured
hypothesis tests to students, in which students were asked to complete all
pre-defined steps. For this research project, these tasks were replaced by
open-ended versions, in which students were challenged to construct the
hypothesis tests step-by-step. Inner loop feedback provided information
about the correctness of each step and hints on how to proceed in adding
a next step.

Outer loop feedback was designed in the form of inspectable student
models (Bull & Kay, 2016). Informed by the students’ correct and incorrect
attempts on all tasks in the homework sets, these student models provided
the students with an overview of their current estimated knowledge level
concerning important statistical topics. The student models were not
automatically shown to students, but students always had access to their
student models while working in the DME. Furthermore, on the final page
of each homework set, students were encouraged to view their student
models and to use them to decide on subsequent study steps.

1.5 Thesis outline

The four design research cycles outlined in section 1.4 are discussed in
separate chapters of this thesis. We now outline how these four cycles



Chapter 1

align with the goals concerning the three implementation aspects we
discussed in section 1.3: feedback design, students’ use of the feedback
and feedback effects on students’ statistical proficiency. For a schematic
overview, see Figure 1.1.

In Chapter 2 we address the design, the use by students and the
direct effects of inner loop feedback: the domain reasoner for hypothesis
testing. This chapter concerns a randomized controlled trial with 314
first-year psychology students, 163 receiving domain reasoner feedback
and 151 receiving stepwise verification feedback only. It addresses the
following research question:

2.1 Does automated intelligent feedback about the logic of
hypothesis testing contribute to student proficiency in
carrying out hypothesis tests?

Although all three implementation aspects were addressed in this cycle, no
exam results were used yet. In this cycle, feedback effects only concerned
direct effects on the students’ work within the DME. More specifically, we
compared the number of hypothesis-testing tasks students solved and the
number of errors students made in these tasks between students who
did and did not receive domain reasoner feedback. Longer-term feedback
effects were assessed in the final cycle, in combination with outer loop
feedback effects, and are discussed in Chapter 5. Before moving to this
final cycle, we first address the design and implementation of outer loop
feedback.

The design of outer loop feedback, in the form of inspectable
student models, is discussed in Chapter 3. As outlined in section 1.3,
the homework sets in our study contained many sets of tasks that were
clustered around the same real datasets and contexts, while many ITSs
rely on sets of mutually independent tasks. In Chapter 3, we investigate
the feasibility and validity of implementing inspectable student models
in this different instructional design. In this exploratory study, DME log
files and questionnaire results from 160 first-year students in educational
studies were used to address the following research questions:
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3.1 Areinspectable student models suitable forimplementation
in didactically grounded, sequential statistics modules
consisting of closely related tasks?

3.2 How can didactical analysis inform design of inspectable
student models and, vice versa, how can student model
evaluation methods inform didactical design?

The findings here informed a new design research cycle for the inspectable
student models. In this cycle, our research focused on the students’ use
of the inspectable student models. Chapter 4 discusses feedback use of
599 first-year social sciences students and is guided by three research
questions:

4.1 How do first-year university students in social science
seek feedback from inspectable student models in an
introductory statistics course?

4.2 How does feedback from inspectable student models inform
these students’ decisions about subsequent actions?

4.3 How does these students’ feedback-seeking and decision-
making behavior relate to performance on a statistics
exam?

After having discussed feedback design and students’ use of the designed
feedback for both inner and outer loop feedback, in Chapter 5 we turn to
an evaluation of feedback effects on students’ statistical proficiency. In a
randomized controlled trial with 521 participants (first-year social sciences
students) and a factorial 2x2 design (inner loop feedback vs. no inner loop
feedback and outer loop feedback vs. no outer loop feedback), the effects
of both feedback types and their interaction on the students’ learning
processes and course performance were evaluated. The research question
for this evaluation is:
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5.1 What effects does providing both inner and outer loop
feedback on online homework have on students’ learning
process and course performance in a university statistics
course?

As this research question indicates, in Chapter 5 we do not only focus on
feedback effects on students’ statistical proficiency, but also on effects that
offering both inner and outer loop feedback have on the students’ learning
processes. This allows us to verify and corroborate findings from the earlier
cycles. The main findings of all four cycles combined are summarized and
interpreted in Chapter 6. This final chapter also discusses the study’s
contributions, limitations, implications, and directions for future research.

Figure 1.1 Alignment of chapters with feedback implementation aspects
(design, use and effects) and feedback type (inner and outer loop)
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Abstract Hypothesis testing involves a complex stepwise procedure
dealing with statistical concepts and uncertainty and is, therefore, challenging
for many students in introductory university statistics courses. In this paper
we assess whether and how feedback from an Intelligent Tutoring System
addressing the logic of this procedure can contribute to first-year social
sciences students’ proficiency in carrying out hypothesis tests. Students in an
experimental group (N = 163) received intelligent feedback addressing the
logic of the hypothesis-testing procedure, while students in a control group
(N = 151) only received stepwise verification feedback. Immediate feedback
effects were measured by comparing time on task and numbers of attempted
tasks, complete solutions, and errors between the groups. Transfer of feedback
effects was measured by student performance on follow-up tasks. Results
showed that students receiving intelligent feedback spent more time on the
tasks, solved more tasks and made fewer errors than students receiving
only verification feedback. These positive results did not transfer to follow-up
tasks, which might be a consequence of the isolated nature of these tasks.
We conclude that intelligent feedback may stimulate students to devote more
effort to hypothesis-testing tasks and may support them in learning to solve
such tasks independently.

Keywords Domain reasoner ¢ Hypothesis testing @ Intelligent tutoring
systems & Statistics education
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2.1 Introduction

Hypothesis testing is widely used in scientific research, and is therefore
covered in most introductory statistics courses in higher education (Carver
etal., 2016). This topicis challenging for many students, because it requires
the ability to follow a complex line of reasoning involving uncertainty (Falk &
Greenbaum, 1995; Garfield et al., 2008). Additionally, this line of reasoning
involves several complex concepts, such as significance level, test value
and p-value (Castro Sotos, Vanhoof, Van den Noortgate, & Onghena,
2007). Students struggle to understand the role and interdependence of
these concepts in the hypothesis-testing procedure, or, in other words, the
logic of hypothesis testing (Vallecillos, 1999). Appropriate feedback could
support students in comprehending this logic, by focusing the student’s
attention to currently relevant aspects and thus reducing cognitive load
(Shute, 2008). To address the logic of hypothesis testing, feedback should
address all aspects of a solution: not only the content of a current step, but
also its relations to earlier steps.

Since groups in introductory statistics courses are often large, it is
difficult for teachers to provide such sophisticated feedback to individual
students. Intelligent Tutoring Systems (ITSs) could offer a solution: like
human tutors they can provide feedback on the level of steps, as well as
detailed diagnostics of student errors (Nwana, 1990). Some ITSs have been
found to be as effective as human tutors and, generally, ITSs that provide
feedback on the level of steps have been found to be more effective than
ITSs that provide feedback on the level of complete solutions (VanLehn,
2011). However, ITSs are highly domain dependent and while ITSs have
been designed for the domain of hypothesis testing (Kodaganallur, Weitz,
& Rosenthal, 2005), to our knowledge no critical evaluations of their
effectiveness for learning have been reported up to date.

The contribution of this paper is a thorough evaluation of the
impact of ITS feedback, which especially addresses the logic of hypothesis
testing, on students’ ability to carry out hypothesis tests. This evaluation
is guided by the question: Does automated intelligent feedback about the
logic of hypothesis testing contribute to student proficiency in carrying out
hypothesis tests?
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2.2 Stepwise feedback in Intelligent Tutoring Systems

Although ITSs vary considerably in design, they generally contain the
following four components: an expert knowledge module, a student
model module, a tutoring module, and a user interface module (Nwana,
1990). Of these four, the expert knowledge module is mainly responsible
for diagnosing errors in student solutions and is, hence, highly domain
dependent. It contains information about domain knowledge required to
solve tasks in the domain (Heeren & Jeuring, 2014), and is therefore also
referred to as domain reasoner (Goguadze, 2011). Two important paradigms
for constructing domain reasoners are model-tracing (Anderson, Corbett,
Koedinger, & Pelletier, 1995) and constraint-based modeling (Mitrovic,
Martin, & Suraweera, 2007).

In the model-tracing approach, the ITS checks whether a student
follows the rules of a model solution (Anderson et al., 1995). The domain
reasoner contains a set of expert rules, which an expert would apply to
solve tasks in the domain. It may also contain buggy rules: incorrect
rules reflecting incorrect domain knowledge. Finally, the domain reasoner
contains a model tracer that can identify which expert and buggy rules
a student has applied to arrive at a (partial) solution. A student’s step is
marked as an error if it either does not match any expert rule, or matches
a buggy rule (Mitrovic, Koedinger, & Martin, 2003). Furthermore, model-
tracing domain reasoners can provide hints for appropriate next steps.

Constraint-based modeling concentrates on partial solutions, rather
than on the solution process. The underlying idea is that incorrect knowledge
emerges as inconsistencies in students’ partial solutions (Mitrovic et al.,
2007). Domain knowledge is represented as a set of constraints, consisting
of a relevance condition and a satisfaction condition. Errors in student
solutions emerge as violated constraints, that is, constraints for which the
relevance condition is satisfied, but the satisfaction condition is not. If a
student’s partial solution does not violate any constraints, it is diagnosed
as correct.

ITSs that support hypothesis testing have been designed based on
either of these approaches (Kodaganallur et al., 2005). We do not believe
that one or the other is a superior paradigm, but rather concur with Mitrovic
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and colleagues (2003) that both have their strengths and weaknesses. We
therefore combined the two paradigms within an ITS supporting hypothesis
testing, similarly to what Goguadze and Melis (2009) did for arithmetic. To
illustrate the merits of both paradigms for hypothesis testing, in the next
section we discuss how the paradigms separately would diagnose typical
student errors in carrying out hypothesis tests. This pedagogical discussion
is followed by the description and evaluation of our ITS combining both
paradigms.

2.3 Stepwise feedback on hypothesis testing

Feedback typically signals a gap between a student’s current performance
and desired performance, the feedback-standard gap (Kluger & DeNisi,
1996). In the case of hypothesis testing, a feedback-standard gap can
manifest itself in several ways:
e an error within a single step, such as an erroneous value of the
test statistic;
e missing information, such as a solution that contains a value for
the test statistic, but no hypotheses to test;
e inconsistent information, such as a right-sided rejection region for
a left-sided test.

The latter two are especially related to the logic of the hypothesis-testing
procedure, since they concern the order of steps and the relations between
steps. Model-tracing and constraint-based modeling typically approach
these gaps in different ways, which we illustrate with two examples.

The first example concerns a student who starts the solution process
with calculating a value of the test statistic, without stating hypotheses.
Although technically possible, from a pedagogical perspective this step
is not desirable, because the meaning and interpretation of a value of
the test statistic depend on the hypotheses that are tested. A constraint-
based tutor, on the one hand, typically contains constraints that check for
necessary elements in the solution (Mitrovic et al., 2003). For hypothesis
testing, such a constraint could have relevance condition “the solution
contains a value of the test statistic” and satisfaction condition “the solution
contains hypotheses”. In this example, this constraint would be violated
and a feedback message could encourage the student to first formulate



Chapter 2

hypotheses before proceeding with carrying out the test. A model-tracing
tutor, on the other hand, would contain a rule for adding hypotheses as
well as a rule for calculating the value of the test statistic. In this example,
adding hypotheses would be an expected step, whereas calculating the
value of the test statistic would not. Depending on the implementation,
the student’s step of calculating the test statistic could be recognized as
a detour from the expert strategy and this could be given as feedback to
the student. However, why it is a detour (in this case, because hypotheses
are missing) would be much more difficult for a model-tracing tutor to
diagnose. Hence, providing explicit feedback about missing elements of a
(partial) solution is generally more straightforward in the constraint-based
paradigm.

The second example concerns inconsistent information in a solution.
Suppose a student has almost finished the task: the hypotheses, critical
value, rejection region and value of the test statistic comprise a logical line
of reasoning. In the final step, however, the student draws an incorrect
conclusion about the hypotheses. If the correct answer would be to reject
the null hypothesis, then two conceptually different incorrect conclusions
are possible: “Do not reject the null hypothesis” and “Accept the alternative
hypothesis”. The first reflects an inconsistency between the previous steps
and the final conclusion, while the second concerns a misunderstanding
of the convention in hypothesis testing to draw conclusions about the null
hypothesis and not about the alternative hypothesis. In a constraint-based
tutor, these two pieces of domain knowledge could be captured in two
constraints. The first would have relevance condition “the test statistic lies
inside the rejection region and a conclusion is drawn” and as satisfaction
condition “the conclusion is to reject the null hypothesis.” This constraint is
violated by both errors described above. The second constraint, addressing
the convention, would have as relevance condition “a conclusion is drawn”
and as satisfaction condition “the conclusion concerns the null hypothesis”
and is only violated by the second incorrect answer. Here, the prioritization
of constraints is important to distinguish between such errors. The model-
tracing approach for this situation is more straightforward: a model-tracing
tutor can contain buggy rules for each of the two error types and provide
appropriate feedback for each one of them (Mitrovic et al., 2003).



Intelligent feedback on hypothesis testing

To summarize, both the constraint-based and the model-tracing
paradigm have their merits for addressing the logic of hypothesis testing. A
final typical feature of model-tracing tutors that is much less straightforward
to achieve in constraint-based tutors is the provision of hints on next steps
(Goguadze & Melis, 2009). More specifically, hints by model-tracing tutors
can be expressed in terms of what a student needs for a logical next step
in the current line of reasoning, while advice from constraint-based tutors
typically focuses more on desired features of the solution (Mitrovic et al.,
2003). Together, these two aspects can help students gain understanding
of the steps that are essential for hypothesis testing and the order in which
they are typically carried out. From a pedagogical perspective, therefore,
combining both paradigms into a single ITS for hypothesis testing seems
promising. In the following sections we turn to a design study evaluating
this combination in practice.

2.4 Methods

2.4.1 Design of the domain reasoner

The technical design of the domain reasoner evaluated in this study is
based on the Ideas framework (Heeren & Jeuring, 2014), which uses a
model-tracing approach to calculate feedback and hints. For this study,
this framework was expanded to also support constraints. The final domain
reasoner contains 36 expert rules, 16 buggy rules, and 49 constraints.

Each time a student adds a step to a hypothesis-testing procedure,
such as defining an alternative hypothesis or calculating the value of a test
statistic, the domain reasoner checks the student’s solution so far. Figure
2.1 illustrates the domain reasoner’s checking procedure, which results
in a diagnosis about the current partial solution. First, all constraints are
checked. The constraints are assumed to be complete, which means that
together they separate correct from incorrect (partial) solutions: a partial
solution is correct if and only if it does not violate any constraint. If a
solution violates one or more constraints, the domain reasoner determines
whether a buggy rule was applied. If so, a feedback message specific
to this buggy rule is displayed to the student, and otherwise a general
message for the violated constraint is reported. For example, a partial
solution that contains a rejection region but no alternative hypothesis
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violates the constraint with relevance condition “the solution contains
a rejection region” and satisfaction condition “the solution contains an
alternative hypothesis.” The corresponding feedback message addresses
the role of the hypotheses: “To which hypotheses does this rejection region
correspond? First state hypotheses.”

Figure 2.1 Domain reasoner’s diagnose feedback service

If no constraints are violated, there is no need to check the buggy rules,
because of the completeness of the constraints: if a buggy rule was
applied, then at least one constraint would have been violated as well.
Therefore, the domain reasoner only needs to attempt to discover which
rule the student has applied to arrive at the current partial solution. If no
rule is identified, the student’s partial solution is marked as a correct, but
unknown, step. This is an advantage of the constraints structure: students
can add multiple steps at once and, as long as no constraints are violated,
this is regarded correct. In a tutor based solely on model-tracing, to allow
adding multiple steps at once all possible combinations of steps should
be checked. If a rule is identified, the domain reasoner checks whether
this is an expected rule in the expert strategy, so that detours from this
strategy can be signaled. In the implementation in this study, though,
no distinction was made between rules following the strategy and not
following the strategy. In both cases, a feedback message for the identified
rule is displayed, for example: “Your rejection region is correct”. Besides
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checking partial solutions, the domain reasoner can also provide hints
on next steps to take, by identifying a rule that would be appropriate to
apply for the current partial solution. This feature could also be used to
generate a worked-out solution, which is a strength of the model-tracing
approach. In this study, though, the possibility of worked-out solutions was
not exploited.

The design of expert rules, buggy rules and constraints was
informed by discussions with four teachers of introductory university
statistics courses about the logic of hypothesis testing and common errors
by students. Furthermore, textbooks were consulted. Based on this input,
we decided to support two methods for logical reasoning in carrying out
a hypothesis test: the conclusion about the hypotheses can be drawn
based on comparison of the test statistic with a critical value, or based
on comparison of a p-value with a significance level. In each method, a
complete solution should include four essential steps: (1) state hypotheses,
(2) calculate a test statistic, (3) either find a critical value or find a p-value,
and (4) draw a conclusion about the hypotheses. Although crucial for the
logic of hypothesis testing, stating a significance level and selecting an
appropriate statistical test were not regarded as essential steps, because
they were specified in all task descriptions. Besides these essential steps,
students could include several other steps, such as a summary of sample
statistics and a specification of whether the test was left-sided, right-sided
or two-sided.

To identify and resolve technical flaws and unclarities in the design,
a first version of the domain reasoner was piloted with five students. After
the pilot, several improvements were made to feedback formulation and
prioritization of rules and constraints.

2.4.2 Study design

The study consisted of a randomized controlled experiment that was
embedded in a compulsory course on Methods and Statistics for first-year
psychology students at a Dutch research university. In five weeks of this
ten-week course students received online homework sets containing 7 to
13 tasks, which were designed in the Digital Mathematics Environment
(DME, see Drijvers, Boon, Doorman, Bokhove, & Tacoma, 2013). The DME
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supports various interaction types, such as formula input and multiple
choice items, and was connected to the domain reasoner to enable
intelligent feedback on hypothesis-testing tasks.

The third, fourth and fifth homework set concerned hypothesis
testing. Each of these homework sets contained two tasks specifically
aimed at developing the students’ proficiency in carrying out hypothesis
tests, by asking the students to select steps from a drop-down menu and
to complete these steps. An example is shown in Figure 2.2: after selecting
a step from the drop-down menu called “Action”, it appears as next step
in the step construction area. Next, the student can complete the step by
filling in the answer boxes and use the check button to check the procedure
so far. After finishing the hypothesis-testing procedure, the student should
state the overall conclusion in the final conclusion area below the drop-
down menu with steps.

Figure 2.2 Hypothesis-testing task in the DME (translated)

Two versions of the homework sets were designed: an experimental
version in which intelligent feedback on the steps in the hypothesis-testing
procedure was provided by the domain reasoner, and a control version that
only provided verification feedback on the individual answer boxes in the
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steps. Hence, in the experimental condition students received elaborate
feedback on fallacies in the logic of their hypothesis tests, while in the
control condition students only received feedback on the correctness
of their current step, irrespective of previous steps. Figure 2.3 shows
an enlarged version of the feedback in the experimental condition that
is shown in Figure 2.2 and Figure 2.4 shows the feedback for the same
partial solution in the control condition. This example illustrates how the
domain reasoner feedback addresses the student’s error in relation with
the statistical concepts involved, while in the control condition the error is
only flagged, without further elaboration.

Figure 2.3 Example of feedback in the experimental condition
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Figure 2.4 Example of feedback in the control condition, for the same partial
solution as in Figure 2.3

Because of the differences in feedback students received, assessment
criteria for correct solutions differed between conditions: in the experimental
version, correct solutions needed to include all four essential steps, since
otherwise one or more constraints would be violated. Since in the control
condition the relations between steps were not checked, students only
needed to include a correct conclusion about the null hypothesis for a
solution to be correct. A final difference between the two versions was
the presence of a hint button in the experimental version, which students
could use to request a hint on which next step to take. All other tasks were
equal in both versions.

2.4.3 Participants

Participants in this study, the first-year psychology students enrolled in the
Methods and Statistics course, were divided randomly into an experimental
and a control group. From the 310 students in the experimental group
226 students worked on the hypothesis-testing tasks, of which 163 gave
consent for the use of their work in this study. From the 309 students in
the control group 216 students worked on the tasks, of which 151 gave
consent. The participants were between 17 and 31 years old (M = 19.3,
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SD = 1.7) and 77% were female. To reduce research participation effects,
i.e. students possibly behaving differently because they were part of an
experiment (McCambridge, Witton, & Elbourne, 2014), the students, both
in the experimental and the control group, were not given all information:
they were told that they were part of an experiment and asked for their
consent, but they were not told about the different conditions and which
condition they were assigned to.

2.4.4 Data collection and analysis

Data for this study consisted of logs of the students’ actions on the
online homework sets. These logs included all attempts students made to
construct correct answers to the tasks, and all feedback and hint requests.
After exporting the logs from the DME, logs from students who did not give
consent were deleted and all other logs were anonymized.

Data analysis focused on three aspects of the students’ work:

Al. The amount of work students in the ITS feedback condition and the
control condition did and the amount of feedback they received on
the six hypothesis-testing tasks;

A2. Performance on the six hypothesis-testing tasks, as measured by
(1) number of tasks attempted, (2) number of tasks solved and (3)
number of errors concerning the logic of hypothesis testing;

A3. Performance on follow-up tasks about hypothesis testing without
intelligent feedback.

The first aspect, A1, was deemed relevant, because students can only
learn from feedback if they indeed receive it. And to receive feedback,
students need to work on the tasks. The time students worked on the tasks
and mean number of steps students selected were compared between
groups. Since samples were large (more than 100 students in each group),
independent samples t-tests were used for all comparisons between groups
(Field, 2009). Welch two sample t-tests were used when variances were
not equal in both groups, as tested by Levene’s test. Furthermore, for
students in the experimental group the number of feedback messages
received and hints requested were calculated per task.
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Regarding A2, three measures were used to assess student
performance on the six tasks: (1) number of tasks in which students
attempted to construct steps, (2) number of tasks that students solved
completely, and (3) number of errors students made concerning the logic
of hypothesis testing. The first measure (A2, measure 1) was regarded as
indicator of feedback effectiveness, since the domain reasoner feedback
was designed to support students in the step construction process.
Students who did not attempt to construct steps in later tasks apparently
did not perceive the feedback on steps in earlier tasks as helpful (Narciss
et al., 2014). While the more elaborate feedback by the domain reasoner
was expected to encourage students to attempt constructing steps, at the
same time it required students to include steps in a correct order, which
could lead to frustration and giving up on tasks.

’

Since the feedback was intended to contribute to the students
ability to solve the tasks, the number of solved tasks (A2, measure
2) is also an indicator of feedback effectiveness (Narciss et al., 2014).
Students’ solutions in the control group were assessed twice: according
to their own group’s criterion of stating a correct conclusion about the null
hypothesis and according to the experimental group’s criterion of including
all four essential steps. Due to the intelligent feedback, students in the
experimental group were expected to solve more tasks than students in
the control group. Due to the difference in assessment criteria, however,
students in the control group could be expected to solve more tasks under
their own assessment criteria than students in the experimental group.
The comparison between groups with a t-test was complemented with a
logistic multilevel regression model (Hox, Moerbeek, & Van der Schoot,
2018) to assess the progression of the difference between groups over
time. The regression model was built in the software program HLM using
full maximum likelihood estimation, as described in Hox et al. (ibid.).

The final measure of student performance on the six tasks was
the number of errors that students made in the logical reasoning of their
hypothesis tests (A2, measure 3). The domain reasoner was especially
designed to provide students with feedback about the logic of hypothesis
testing, that is, the order of and relations between steps. The number of
errors concerning this logic was expected to decrease over time in both
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groups, but more strongly in the experimental than in the control group.
To assess the evolution of the difference between groups over time, we
employed a t-test and a multilevel regression model (Hox et al., 2018).

Concerning A3, we notice that promising effects of feedback on
student performance on the tasks for which feedback is provided do not
automatically guarantee transfer to new tasks (Shute, 2008). We therefore
also assessed student performance on follow-up tasks about hypothesis
testing, in which no intelligent feedback was provided. From the online
homework sets 31 follow-up sub-tasks on hypothesis testing were selected.
For all students who received feedback on constructed steps at least once
the ratio between the number of these 31 sub-tasks that they answered
correctly on their first attempt and the number of sub-tasks they attempted
was calculated and these ratios were compared between groups.

2.5 Results

2.5.1 Results on A1: summary of steps done and feedback received
Table 2.1 summarizes the average number of steps that students in both
groups made and the number of feedback messages and hints students in
the experimental group received. Students in the experimental group made
slightly but significantly more steps (M = 8.0, SD = 5.4) than students
in the control group (M = 6.7, SD = 3.9, t(293.7) = 2.41, p = .016,
Cohen’s d = 0.27). This is also reflected in the total time students worked
on the six hypothesis-testing tasks: in the experimental group, this was
41 minutes (SD = 27 minutes) and in the control group, it was 32 minutes
(SD = 19 minutes), a significant difference (t(291.8) = 3.41, p < .001,
Cohen’s d = 0.38). In both groups, the number of steps decreased over
tasks. It should be noted that in the final two tasks the test statistic
was given, so fewer steps were needed for a complete solution than in
earlier tasks. Finally, the number of feedback messages per student in the
experimental group is quite high, especially in the first two tasks, implying
that students received feedback on a regular basis. Students also regularly
made use of the hints, with an average of two hint requests per student
per task.
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Table 2.1  Steps in both groups and feedback messages and hints in experimental

group

Experimental group Control group

Task N Steps per Feedback messages  Hints per N Steps per
student (SD)  per student (SD) student (SD) student (SD)

3.4 154  14.0 (10.3) 23.2 (21.2) 3.7 (7.5) 143 11.3 (7.9)
3.6 111 11.2 (6.7) 22.3 (23.3) 2.4 (4.6) 105 9.1 (6.9)
4.7 134 6.8 (6.7) 11.4 (13.4) 1.3 (4.2) 130 6.5 (5.8)
4.8 118 7.1 (6.2) 16.2 (23.1) 2.5 (5.0) 115 6.1 (5.5)
5.3 134 4.9 (5.6) 7.7 (14.2) 1.5 (4.0) 127 4.1 (5.0)
5.6 127 3.9 (4.8) 5.6 (7.7) 1.4 (3.7) 123 3.3 (4.0)
All 163 8.0 (5.4) 14.1 (12.7) 2.0 (3.5) 151 6.7 (3.9)

2.5.2 Results on A2: performance on six hypothesis-testing tasks

The average number of tasks students worked on, i.e., tasks in which they
filled in the final answer box, and the average number of tasks in which
students tried to construct steps (A2, measure 1) are summarized in Table
2.2. In both groups, students attempted to construct steps using the drop-
down menu for almost 80% of the tasks they worked on. For the other
20% of the tasks, students may have used other means than the stepwise
construction area to solve the task or may have collaborated with a peer.
The numbers of tasks students worked on and attempted step construction
for did not differ significantly between groups.

Table 2.2  Student results on the six hypothesis-testing tasks

Experimental Control t (df = 312) p

group group

(N = 163) (N = 151)
Tasks worked on 4.8 (1.5) 4.9 (1.5) 0.86 .391
Tasks tried constructing steps 3.8 (1.7) 3.9 (1.6) 0.62 .537
Tasks with complete solution 1.7 (1.8) 2.0 (1.7) 1.33 .184
Tasks with correct essential steps 1.7 (1.8) 1.4 (1.6) -1.59 113

InTable 2.2, the third and fourth line summarize the average number of tasks
that students solved completely (A2, measure 2). Students succeeded in
solving the task in approximately half of the cases in which they attempted
to construct steps. Over all six tasks, students in the control group solved
slightly more tasks than students in the experimental group. This could be
a consequence of the stricter assessment criterion for complete solutions
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in the experimental group, that required students to include all essential
steps in their solution. When assessed following this stricter criterion, the
number of complete solutions in the control group dropped to an average
of 1.4 per student. Over all six tasks together, these differences between
groups were not significant, as the results in Table 2.2 show. Given that
students started off with the same prior knowledge, however, differences
between groups were expected to emerge over time. A logistic regression
model was created to take this effect of time into account. The model is
summarized in Table 2.3.

Table 2.3 Logistic multilevel regression model predicting the probability of

solving a task from task number, domain reasoner availability and
their interaction

M1: M2: M3: + interaction
Baseline + condition  condition/task
Predictor coefficients
Intercept 0.23 0.46% 0.79%**
Task number -0.24%%* -0.24*** -0.41%**
Domain reasoner -0.43 -1.07%%*
Domain reasoner x Task number 0.32%%*
Model fit
Deviance 3762.80 3759.10 3745.18
Estimated parameters 3 4 5
Deviance change 3.70 13.92%**
Explanatory power
Proportion solved tasks predicted .51 .60 .60
correctly
@ correlation coefficient .16 .17 .17

*p < .05; *¥*p < .01; ***p < .001.

The baseline model in Table 2.3 only included task number as predictor for
solving the task. It reveals that the probability of solving a task decreased
with task number, meaning that, generally, for higher task numbers the
proportion of students who solved the task decreased. Including domain
reasoner availability (M2) did not significantly improve the model: the
deviance change was 3.70, which, with one degree of freedom for one
extra estimated parameter, results in a p-value of .054. This aligns with our
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previous finding that over all tasks together domain reasoner availability
did not make a difference for the number of tasks students solved. The
explanatory power of M2 was slightly higher than that of M1, though.
Especially, while M1 only predicted 51% of the solved tasks correctly, M2
predicted 60% correctly. The addition of an interaction effect between task
number and domain reasoner availability (M3) improved the model further:
the deviance change was 13.92, which, with one degree of freedom for
one extra estimated parameter, results in p < .001, hence a significant
improvement to the model. The regression equation for this final model is:

logit(p,;) = 0.79 - 0.41 - (i - 1) - 1.07 - domain reasoner,; +

0.32 - (i - 1) - domain reasoner; + u,
with:
Py the estimated probability that student j solved task i correctly
domain reasoner; equal to 0 (control group) or 1 (experimental group),
i representing the task number (between 1 and 6), and
u, a residual variance term for student j.

As in the baseline model M1, the negative regression coefficient for task
number in the final model indicates that the probability of solving tasks
decreased for later tasks. Filling in i = 1 and taking the inverse logit shows
that the estimated probability of solving the first task was on average
logit*(0.79) = 0.69 in the control group and logit*(0.79 - 1.07) = 0.43 in
the experimental group, showing that initially students in the experimental
group had more difficulty solving the tasks than students in the control
group. This could be a consequence of the stricter assessment criteria in
the experimental group, which students needed to get used to. Finally, the
coefficient for the interaction term between domain reasoner availability
and task number is positive. Hence, while for students in the control group
the logit decreased by 0.41 per task, for students in the experimental
group it only decreased by 0.41 - 0.32 = 0.09 per task. This suggests
that the domain reasoner feedback more effectively supported students
in persevering to solve tasks than the control feedback, even though the
assessment criteria for their solutions were stricter.
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Figure 2.5 Percentage of students who correctly solved tasks according to group’s
assessment criteria (left) and mean number of errors concerning the
logic of hypothesis testing (right)

This is also reflected in Figure 2.5 (left), which displays the percentage
of students who found complete solutions to each task, as percentage
of students who attempted constructing steps for each task. For the first
three tasks the percentage was smaller for students in the experimental
group than for students in the control group, but for the latter three tasks
this was reversed. Hence, over time, students in the experimental group
seemed to become relatively more proficient in solving hypothesis-testing
tasks than students in the control group.

The final measure of student performance on the six tasks was
the number of errors that students made in the logical reasoning of their
hypothesis tests (A2, measure 3). The domain reasoner could diagnose
15 different errors concerning hypothesis-testing logic, such as a missing
alternative hypothesis. On average, students in the experimental group
made 1.12 (SD = 0.79) different errors per solution, while students in
the control group made 1.42 (SD = 0.86) different errors, which was
significantly more (t(312) = 3.22, p = .001, Cohen’s d = 0.36). The graph
in Figure 2.5 (right) displays the mean number of errors by students in both
groups for each task. It shows that in both groups the number of errors
decreased over tasks, but this trend was stronger in the experimental
group. Fitting a multilevel regression model confirmed this impression.
The resulting model is summarized in Table 2.4.
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Table 2.4  Multilevel regression model predicting number of errors concerning
hypothesis-testing logic from task number and task number squared,
domain reasoner availability and interaction between task number and
domain reasoner availability

M1: M2: + M3: + M4: -
Baseline condition interaction condition
condition/task
Fixed part
Intercept 2.18*** 2.33%%* 2.12%*x* 2.17*%**
Task -0.49%%* -0.49%** -0.42%%* -0.43%**
Task quadratic 0.04**x* 0.05*** 0.05*** 0.05***
Domain reasoner -0.29%** -0.10
Domain reasoner x task -0.13%%* -0.11%%*

Random part

O. 1.208 1.207 1.189 1.190
2 0.238 0.219 0.227 0.227

Ouo

Model fit

Deviance 3827.82 3816.12 3804.75 3805.22

Estimated parameters 4 5 6 5

Deviance change 11.70%** 11.37%%* -0.47

*p < .05; **p < .01; ***p < .001.

The baseline model (M1) included a linear and quadratic term for task
number as predictors and showed that, generally, the number of errors
decreased over time. The significance of the quadratic term suggests
that the number of errors decreased quickly for the first tasks and more
slowly for later tasks. In M2, domain reasoner availability was added
to the baseline model, which resulted in a significantly better model fit
(p < .001). The coefficient for domain reasoner availability was negative
and significantly different from 0, confirming that the number of errors
concerning hypothesis-testing logic was lower in the experimental group
than in the control group. The variance at the student level decreased
by 0.019, or 8.0% of the initial variance of 0.238. Hence, experimental
condition explained 8% of the variance in number of errors per student.
Adding the interaction effect between task number and domain reasoner
availability (M3) again yielded a significantly better model fit (p < .001).
In this model, the effect of domain reasoner availability itself became non-
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significant. This implies that for the first task, domain reasoner availability
did not have a significant effect on the number of errors students made.
Meanwhile, the significant interaction effect between domain reasoner
availability and time implies that, over time, students in the experimental
group made significantly fewer errors concerning the logic of their hypothesis
tests than students in the control group. Removing the non-significant
predictor domain reasoner availability (M4) yielded an equally good model
- the deviance change is very small and not significant (p = .493) - with
fewer estimated parameters. Comparing this model to the baseline model
shows that the interaction between domain reasoner availability and task
number explained 1.5% of the variance at task level and 4.6% of the
variance at student level. In other words, the domain reasoner feedback
resulted in a slightly stronger decrease in number of errors for students in
the experimental group than for students in the control group.

2.5.3 Results on A3: transfer of feedback effects to follow-up tasks
Students in the experimental group (N = 158) and the control group
(N = 147) performed similarly on the selection of follow-up hypothesis-
testing tasks: the mean ratio of correct answers was 0.72 (SD = 0.07) in
the experimental group and 0.71 (SD = 0.08) in the control group. The time
students worked on these tasks was also very similar in the experimental
and control group: 49 minutes (SD = 17 minutes) for both groups. Hence,
the effects of the domain reasoner feedback did not transfer to the follow-
up tasks that students were offered in the course. For comparison, though,
we note that the mean ratio of immediately correct answers over all tasks
that were identical in both groups (i.e., all tasks except for the six tasks
concerning stepwise hypothesis testing) was 0.67 (SD = 0.05). Hence,
compared to other tasks the students in both groups performed relatively
well on the follow-up tasks on hypothesis testing.

2.6 Conclusion and discussion

In this paper we have evaluated the influence of ITS feedback addressing
the logic of hypothesis testing, guided by the research question: Does
automated intelligent feedback about the logic of hypothesis testing
contribute to student proficiency in carrying out hypothesis tests? Students
in an experimental and a control group worked on six hypothesis-testing
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tasks, in which they received a substantial amount of feedback and hints.
While the ITS feedback did not seem to influence the number of tasks
students attempted to construct steps in, it did affect their success in
solving tasks. The first three tasks were solved by relatively fewer students
in the experimental than in the control group, while for the later three
tasks students in the experimental group persevered and succeeded more
in solving the tasks. This suggests that after a period of familiarization
with the ITS feedback students started to benefit from it. Furthermore, the
number of errors students made in the logical reasoning of the hypothesis-
testing procedure decreased significantly stronger over time for students
receiving ITS feedback than for students receiving verification feedback
only. Hence, the ITS feedback seemed to effectively support students in
resolving their misunderstandings and, in this way, to contribute to student
proficiency in carrying out hypothesis tests. Despite these promising
results, no differences between groups were found in performance on
follow-up tasks, which implies that there was no automatic transfer from
the positive ITS feedback effects.

Although such a lack of transfer is often found (Shute, 2008), in the
case of this study it could be due to the design of the follow-up tasks. This
was a limitation of the study: contrary to the six hypothesis-testing tasks,
none of the follow-up tasks specifically addressed the logical reasoning in
the hypothesis-testing procedure. Instead, the steps of the hypothesis-
testing procedure were already given and students were only asked to fill
in contents of individual steps. From a research perspective, availability of
tasks addressing the logical reasoning could have provided more insight
into transfer of the positive ITS feedback effects to other tasks. From
an educational perspective, availability of such tasks would have been
valuable as well, to avoid that students rely too much on the ITS feedback
(Shute, 2008).

A second limitation of this study was that, despite serious testing
and pilots, in this first large-scale implementation of the domain reasoner
inevitably some unclarities and technical flaws became apparent. A small
number of feedback messages provided incorrect or unsuitable information
about current errors, and hints could only suggest a next step to take,
regardless of whether the student’s current partial solution was correct.
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For incorrect solutions, a hint containing guidance on how to resolve the
current error would have been more appropriate. Nonetheless, the large
collection of student data did provide a strong basis to inform improvements
to the domain reasoner, and especially for designing a hint structure that
suits the combination of the model-tracing and constraint-based modeling
approach. Furthermore, even though sometimes encountering confusing
feedback messages and hints, students in general kept attempting to
construct steps and, as the results above show, did still benefit from the
feedback.

Despite these limitations, combining the model-tracing and
constraint-based paradigm seems to have resulted in a useful ITS for
hypothesis testing. The constraint-based characteristics of the ITS enabled
identifying missing elements and inconsistencies in students’ solutions,
and thus addressing fallacies in the logic of the students’ hypothesis tests.
Simultaneously, model-tracing elements allowed to address common errors,
for example related to the convention to draw conclusions about the null
hypothesis, and to provide hints. Combined, these characteristics have not
only supported students in solving more of the later tasks and making fewer
errors in these tasks, but also to work significantly longer on the tasks and
make significantly more steps. As Narciss and colleagues (2014) argue,
doing more work may result in more opportunities to practice, meaning
that the ITS feedback may stimulate students to engage more deeply with
the concepts and logical reasoning involved in hypothesis testing. Finally,
the finding that students in the experimental group made fewer errors
in later tasks than students in the control group indicates that students
became less and less dependent on the feedback for solving the tasks.
This effect is in line with earlier findings for ITS feedback effectiveness
(Steenbergen-Hu & Cooper, 2014; Van der Kleij, Feskens, & Eggen, 2015)
and the effect size found in this study, Cohen’s d = 0.36, is similar to those
reported in Steenbergen-Hu and Cooper’s review on the effectiveness of
ITS feedback in higher education (Steenbergen-Hu & Cooper, 2014).

Overall, this study suggests that combining the model-tracing and
constraint-based modeling paradigms is not only promising in theory, but
also in educational practice. An additional aspect of this approach that is
worth mentioning is that, albeit after a considerable initial design effort,
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it allows for easy adjustment of tasks to create new tasks. Once a start
situation for a task is given, the model-tracing components of the domain
reasoner can generate the solution and all steps towards the solution. This
means that, contrary to the design in the control condition, the designer
does not need to provide answers for all intermediate steps. Hence, even
if the results do not transfer to follow-up tasks, with the ITS feedback
available less design effort is needed for similar learning results. This invites
the design of more tasks, offering students who need it more practice. In
future designs, the domain reasoner’s potential for generating worked-out
solutions, as well as the possibility to distinguish between expected steps
and steps that deviate from the expected strategy, could be exploited
further. Finally, a challenging aspect of hypothesis testing that is not yet
addressed by the ITS feedback in this study is the role of uncertainty in
the interpretation of the results from hypothesis tests (Falk & Greenbaum,
1995). Future research could focus on broadening the scope of the domain
reasoner for hypothesis testing to include this reasoning with uncertainty.
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Abstract Statistics is a challenging subject for many university
students. In addition to dedicated methods of didactics of statistics, adaptive
educational technologies can also offer a promising approach to target this
challenge. Inspectable student models provide students with information
about their mastery of the domain, thus triggering reflection and supporting
the planning of subsequent study steps. In this article, we investigate the
question of whether insights from didactics of statistics can be combined with
inspectable student models and examine if the two can reinforce each other.
Five inspectable student models were implemented within five didactically
grounded online statistics modules, which were offered to 160 Social Sciences
students as a part of their first-year university statistics course. The student
models were evaluated using several methods. Learning curve analysis and
predictive validity analysis examined the quality of the student models from
the technical point of view, while a questionnaire and a task analysis provided
a didactical perspective. The results suggest that students appreciated the
overall design, but the learning curve analysis revealed several weaknesses in
the implemented domain structure. The task analysis revealed four underlying
problems that help to explain these weaknesses. Addressing these problems
improved both the predictive validity of the adjusted student models and the
quality of the instructional modules themselves. These results provide insight
into how inspectable student models and didactics of statistics can augment
each other in the design of rich instructional modules for statistics.

Keywords Inspectable student model ¢ Open student model ¢ Statistics
education & Higher education @ Learning curve analysis
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3.1 Introduction

Statistical methods are highly relevant for conducting research in many
fields of science. Therefore, many university programs include introductory
statistics courses (Castro Sotos, Vanhoof, Van den Noortgate, & Onghena,
2007), which are often challenging for students (Murtonen & Lehtinen,
2003; Tishkovskaya & Lancaster, 2012). This is partly due to the complexity
of the domain itself (Castro Sotos et al., 2007), and partly to the large size
of the groups of students to whom these courses are taught, which greatly
reduces teachers’ ability to provide individual guidance to students.

From the field of statistics education research, various suggestions
for enhancing statistics education have emerged in the past decades. A
major change that has taken place concerns the main goals of statistics
courses. Whereas traditionally the primary focus was on deriving statistical
formulas and carrying out calculations, nowadays much more attention
is paid to the interpretation of data and the ability to reason statistically
about real-world problems, also referred to as “statistical literacy” (Lovett
& Greenhouse, 2000). This shift in goals is partly evoked by the large-
scale availability of statistical software that can take care of calculations.
Accomplishing this shift asks for specific didactical considerations in
instructional design, such as using real contexts and data for promoting
meaningful statistical reasoning (Ben-Zvi, 2000).

Another possible enhancement of statistics education, which is
especially relevant when individual guidance by teachers is difficult to
achieve, comes from a different area: adaptive educational technologies
(Herder, Sosnovsky, & Dimitrova, 2017). These technologies help convert
results of automated assessment into detailed information for students
and teachers, including diagnostic feedback (Stacey & Wiliam, 2013). In
the case of statistics education, with its challenging number of concepts to
master, it seems particularly promising to provide students with information
on their mastery of these individual concepts. One popular adaptive
educational technology for providing such information is the inspectable
student model (Bull & Kay, 2007).

A student model is a structured collection of information about the
individual student’s characteristics, such as knowledge, difficulties and
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misconceptions, in the domain of study. Adaptive educational systems
elicit this information based on students’ interaction with learning
content: solving tasks, taking tests, studying examples, etc. Presenting
this information to students as feedback and allowing them to inspect it
freely is known to promote reflection, increase motivation and provide
metacognitive support for self-regulated learning (Bull & Kay, 2007).
In other words, an inspectable student model can support a student in
forming an opinion about his or her current progress and making a well-
considered decision about the next learning step (which concepts to focus
on, which task to attempt, etc.).

However, the effectiveness of such an enhancement of the learning
process in many respects depends on whether inspectable student models
can be combined with the employed didactical approach. In the context of
this article, the question is: how can the fields of didactics of statistics and
inspectable student models be integrated? And can they strengthen each
other?

To address these questions, inspectable student models were
implemented in five modules containing practice exercises on introductory
statistics. These modules were embedded in an online educational system
and were offered to 160 students in the Social Sciences as a part of their
first-year, introductory statistics course. The inspectable student models
were evaluated from two standpoints: the perception of the students who
worked with them and their internal quality. Students’ perceptions were
collected through a questionnaire and served to evaluate whether combining
the fields of didactics of statistics and inspectable student models was
appreciated by students. For the quality analysis, evaluation methods from
both fields were used. This quality analysis served two goals: to evaluate
whether the implemented student models were successful and to explore
how this implementation could be improved. Four main problems in the
implementation were identified, for which solutions were sought both in
the student model design and in the instructional design of the statistics
modules.
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3.2 Theoretical background

Before attempting to combine the two fields of didactics of statistics and
inspectable student models, we would like to explore both fields separately.
In this exploration, we explicate the difficulties that students experience
in statistics education and examine how these difficulties are addressed
both by didactical methods (i.e. methods informed by domain-specific
pedagogical considerations) and by the information provided to students
through inspectable student models. Moreover, we look for differences
between the two fields that might lead to challenges in integrating them.

3.2.1 Didactics of statistics

Research in statistics education has identified several causes for the
challenging character of statistics. First of all, the field of statistics involves
a large number of abstract concepts, such as probability distributions,
sampling variability and confidence intervals. Second, constructing sound
statistical conclusions requires the ability to integrate such abstract
concepts both into calculations and into complex chains of reasoning
(Castro Sotos et al.,, 2007). For example, understanding the method
of hypothesis testing requires knowledge of probability distributions,
sampling variability and significance level, as well as the ability to reason
using conditional statements (e.g., “under the assumption that the null
hypothesis is true, this outcome, or a more extreme one, is very unlikely”).
Finally, abstract definitions of statistical concepts such as variability often
conflict with students’ prior, informal knowledge and their view of the real
world (Garfield & Ahlgren, 1988).

To support students in overcoming these challenges — that is, in
gaining understanding of these abstract concepts, calculations and chains
of reasoning — various strategies are prevalent in statistics education.
Recommendations by Ben-Zvi (2000) and the GAISE college report
(Garfield et al., 2005) include the use of real data sets and a focus on
conceptual understanding and statistical reasoning, rather than mere
knowledge of procedures. Real data sets can engage students in thinking
about the data and relevant statistical concepts. The recommendation to
focus on conceptual understanding and statistical reasoning rather than
on procedures is based on the assumption that students with a good
conceptual foundation will easily grasp new procedures and techniques,
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whereas procedural knowledge without conceptual understanding tends to
be too superficial and not well integrated (Garfield et al., 2005).

These insights may guide instructional design. Taking real data sets
from real contexts as a starting point for instructional design results in
clusters of tasks that are related to each other through these contexts.
A single context may, for example, be used for comparing different
representations of the data, calculating and interpreting confidence
intervals and carrying out hypothesis tests. The sequencing of such closely
related tasks is crucial (Drijvers, Boon, Doorman, Bokhove, & Tacoma,
2013). Deliberate task sequencing can serve to introduce concepts
gradually, first informally and only later in a more formal way (e.g.
Aberson, Berger, Healy, & Romero, 2003), or to evoke crises to promote
deeper reflection (Bokhove & Drijvers, 2012). When exploring a context,
earlier tasks are typically aimed at becoming acquainted with the context
and data, whereas in later tasks the by now familiar context can serve as a
concrete example, and hence support understanding of abstract concepts
and their interrelationships. In other words, well-considered clustering
and sequencing of tasks in the instructional design is essential both for
engaging with real contexts and addressing conceptual understanding and
statistical reasoning.

3.2.2 Inspectable student models

Student models are the core components of adaptive intelligent educational
systems. They infer, store and update a system’s estimations of the current
knowledge state of each individual student, thus providing a basis for
adaptively optimized support that the system can offer. A frequently used
student model organization is an overlay model, which computes individual
student mastery scores for a set of knowledge components: important
concepts, methods, or other coherent pieces of domain semantics (Carr &
Goldstein, 1977). In combination, these knowledge components constitute
a model of the domain under study. A (partial) example of such a domain
model is shown in the left-hand column of the inspectable student model
displayed in Figure 3.1. In this example, the knowledge components are
grouped into five categories and for two of these categories individual
knowledge components are shown.
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Figure 3.1 An inspectable student model on descriptive statistics

The knowledge components of different domain models can differ in
several aspects, thus allowing for tailoring the domain model design to
specific characteristics of the domain and the educational setting at hand.
First of all, knowledge components can represent elements of procedural
knowledge (“how” knowledge) that define procedures or skills in the
domain or they can represent declarative knowledge (*what” knowledge)
that define important concepts and facts (Brusilovsky & Millan, 2007).
For statistics education, in which a focus on conceptual understanding
is advocated, the latter type seems more appropriate. A second layer of
diversity comes from the degree of granularity. A designer of a model
might decide to break the knowledge in the domain into as small elements
as possible, thus improving the potential precision of the model. She might
also decide to define knowledge components at the level of larger categories
and topics, thus facilitating easier content modeling — connecting learning
tasks to knowledge components.

The student’s mastery of the knowledge components (KCs) in
the domain model is represented in an overlay: a set of scores that is
usually based on the student’s performance on learning tasks associated
with corresponding KCs. The connection between tasks and KCs can be
represented by a so-called Q-matrix (Barnes, 2005; Tatsuoka, 1983), with
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a row for each KC and a column for each task. The entry (i, j) is equal to
1 if the jth task is connected to the ith KC, i.e. if the ith KC is relevant for
solving the jth task, and 0 otherwise. The scores in the overlay may be
either qualitative (poor, medium, good), simple numeric (a percentage, for
example) or uncertainty-based (Brusilovsky & Millan, 2007). An example
of an overlay is displayed in the right-hand column of the student model
in Figure 3.1.

The main purpose of student models in adaptive educational systems
is usually to provide a basis for adaptation. However, the information that
the student model contains can also be used as valuable feedback for the
student: if shown to the student, a student model can promote reflection
and support planning and navigation (Bull & Kay, 2007). Reflection may for
instance be promoted by a low score on a concept that a student thought
she already mastered, and as such the open student model may reveal
gaps in the student’s knowledge of the domain. For these purposes, a
fairly simple student model design may suffice. Although sophisticated
methods exist for enabling students to edit or negotiate with their student
model (e.g. Dimitrova, Self, & Brna, 2001; Zapata-Rivera & Greer, 2002),
for the purpose of reflection, planning and navigation, promising results
have been obtained with much simpler inspectable student models (Arroyo
et al., 2007; Long & Aleven, 2011; Mitrovic & Martin, 2002) that do not
allow a student to adjust the contents of the model (Bull, 2004). Moreover,
Bull and Kay (2007) argue that in student models with the purpose of
promoting reflection the scores can be presented in a simple way, without
mentioning the uncertainties surrounding them. Reflection is most likely
evoked by differences between the model and the student’s own view,
which are presumably larger if uncertainty is omitted.

A final remark on student models concerns their relation to the
instructional design. Student models are often used to inform adaptation.
In such cases, the instructional design includes variation of the order of
tasks, depending on student achievement so far. To this end, the tasks need
to stand alone rather than to be organized in a pre-structured sequence.
Even in many cases where student models are made inspectable, they have
initially been designed to inform adaptation, and are therefore connected
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to a set of independent tasks, rather than to a sequence of closely related
tasks that share contexts or build on one another.

To summarize, the main difficulties for students in statistics education
are the large number of abstract concepts involved and the ability needed to
integrate these concepts into calculations and chains of reasoning. Methods
from the field of didactics of statistics to address these difficulties are the
use of real data sets and contexts and a focus on conceptual understanding.
Inspectable student models provide an additional method by supporting
students in gaining insight into the structure of the domain of statistics
and revealing knowledge gaps. An important difference between the
methods from the two fields lies in the instructional design: the didactical
methods result in sequences of closely related tasks that share contexts
and build on one another, whereas inspectable student models traditionally
are connected to sets of rather independent tasks. Therefore, the first
question from the introduction, whether the fields of didactics of statistics
and inspectable student models can be combined, can be explicated as
follows: (RQ1) Are inspectable student models suitable for implementation
in didactically grounded, sequential statistics modules consisting of closely
related tasks? The second question, whether the two fields can strengthen
each other, focuses on the evaluation methods available in both fields:
(RQ2) How can didactical analysis inform design of inspectable student
models, and, vice versa, how can student model evaluation methods
inform didactical design?

3.3 Methods

To address these research questions, inspectable student models were
designed and implemented in five didactically grounded modules which
were used in an introductory statistics course at Utrecht University. In
the following sections, we first describe the educational setting for this
study, including a description of the online educational system that was
used. Next, we discuss the didactical design of the modules and student
model design. Lastly, we outline data collection and describe the methods
we have used for analyzing the quality of the different components of the
student models.
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3.3.1 Educational setting and the Digital Mathematics Environment
The participants in this study were 160 first-year students in the Social
Sciences at Utrecht University. In the fall of 2016, these students took
part in a mandatory statistics course as one of the first courses in their
bachelor’s degree program. This course lasted ten weeks, and covered the
following five topics:

. Descriptive statistics

. z-values and sampling distributions

1

2

3. Hypothesis testing: z-tests

4. Hypothesis testing: t-tests for one sample and dependent samples
5

. Hypothesis testing: t-tests for independent samples

Each topic consisted of a lecture followed by practice in a digital statistics
module. Students were allowed to work on the modules individually or in
groups and could choose to work at home or in supervised lab sessions.

The five digital modules were offered in the Freudenthal Institute’s
Digital Mathematics Environment (DME, see Drijvers et al., 2013). The
DME offers support for a variety of interactions, such as number and
formula input, multiple choice tasks, drag-and-drop tasks, and interactive
animations. Immediate verification feedback is provided on students’
answers, telling students whether their answer is correct, but not what
the correct answer is. Moreover, for most task types, elaboration feedback
is available to explain errors that have been made. Students are allowed
to attempt tasks multiple times, and usually continue trying to solve each
task until they succeed.

A typical DME page is shown in Figure 3.2. The circles in the
bottom bar of the page indicate the student’s progress in the module.
These indicators turn green once the student has solved all tasks on the
page correctly while they remain red as long as this is not the case. As
suggested in literature (Brusilovsky, Sosnovsky, & Yudelson, 2009), such
coloring of progress indicators has a strikingly motivational effect: in order
to obtain green progress indicators students keep attempting tasks until
finding the correct answer. In Figure 3.2, the indicators reveal that this
student has completed pages 2, 3 and 4 correctly, and still has to work
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on pages 5 to 11. Since page 1 only contains an introductory text and no
tasks, its indicator is grey.

Figure 3.2 Translated DME page from the third module, on hypothesis testing

3.3.2 Didactical design

The modules used in this study were designed by the teachers of the
statistics course, supported by DME experts. Each module consisted of
a series of pages containing sets of closely related tasks. The number of
pages varied between 12 and 22 and the number of tasks in the modules
varied between 98 and 232. The page shown in Figure 3.2 is a translated
version from the fifth page of the third module. It contains a context
description on the left-hand side of the page and three sets of tasks on
the right-hand side. Each individual interaction component is regarded as
a task.

DME pages have a very flexible layout, which allows for different
numbers of tasks on each page. Moreover, the DME facilitates initially hiding
information that might not be needed by all students. The teachers made
extensive use of this option to include hints and extra tasks serving as
intermediate steps. On the page shown in Figure 3.2, hidden information
is available through the hint buttons. The information that is revealed upon
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clicking the topmost hint button is shown in Figure 3.3. Whereas students
were obliged to complete all tasks on the main pages, the use of these
hints and intermediate tasks was optional. Moreover, use of the hidden
information did not affect the page indicators, so these would turn green
once all tasks on the main page were completed correctly.

Figure 3.3 I3ni2tially hidden intermediate steps for the DME page shown in Figure
As recommended in literature, the modules made extensive use of real data
sets and contained many tasks that focused on conceptual understanding
and statistical reasoning. Most tasks in the modules were connected to a
context and all contexts were based on real research projects and contained
real data. In the modules, students were invited to engage deeply with these
contexts. Contexts were used to address multiple concepts and to highlight
aspects of the relations between concepts. On the example page from
Figure 3.2, students are asked to carry out a hypothesis test, determine
the effect size and report the results as would be done in a research article.
Furthermore, contexts were deliberately varied to confront students with
various applications and appearances of the different concepts: testing
left-sided, right-sided or two-sided, positive and negative values of the test
statistic, known and unknown population variances, significant and non-
significant results and so on. Conceptual understanding was for example
addressed by tasks asking students to interpret the rejection of a null
hypothesis in the given context, or to describe the influence of sample
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size on concepts like effect size or power. The number of procedural tasks
was kept low by using SPSS-output regularly, instead of asking students
to calculate the test statistic themselves in all tasks on hypothesis testing.

The use of real data sets and a focus on conceptual understanding
and statistical reasoning had consequences for the ordering of tasks on
each page and for the ordering of the pages themselves. In Figure 3.2,
the ordering of the three sets of tasks is determined by their content: the
hypothesis test needs to be carried out before calculating effect size or
reporting the results. In the ordering of pages, difficulty level was taken
into account, for example by introducing the more complicated t-test
for independent groups after sufficient exposure to the easier z-test and
t-tests for one group and for dependent groups. Finally, whereas on earlier
pages concepts were typically addressed in isolation, later tasks required
more and more understanding of combinations of and relations between
concepts. For example, early pages contained separate sets of tasks for
stating hypotheses, finding a critical value and calculating a test statistic,
whereas later pages contained only one set of tasks asking the student
to carry out the complete hypothesis test. After finishing the module,
students were presented with their student model, which they could revisit
any time after that.

3.3.3 Design of inspectable student models

Student models were implemented in all five modules. The student models
were devised by the first author, in collaboration with two experts: the
main teacher of the course and the fifth author. Three separate components
were designed: domain models, Q-matrices with connections between KCs
in the domain models and tasks in the modules, and a calculation method
for calculating overlay scores.

The first step in domain model design was formulating KCs based
on the tasks. Taking the tasks as the starting point may seem a reversed
approach, since tasks are designed to cover a certain domain rather than
vice versa. However, it is also an approach that teachers or designers could
easily pursue. Because of the large responsibility that university teachers
have for designing their own instructional material, design feasibility was
deemed important in the context of this study. Since the purpose of the
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student model was to promote conceptual understanding, KCs were mainly
designed to represent declarative rather than procedural knowledge. To
ensure that the domain model completely covered the domain in the
end, the second step consisted of adding and adjusting KCs based on
a consultation of already available domain models (ALEKS!') and other
instructional material on the same topic (SURF?). In the third and final
step of domain model design, the two experts were consulted and KC
definitions were fine-tuned based on their comments.

A rather coarse-grained approach was adopted to design KCs,
which means that KCs were relatively broad in scope. For example, instead
of defining KCs for calculating different test statistics (z-test, t-test for
one sample, and so on), a single KC was defined for calculating the test
statistic. Although finer-grained domain models generally allow for more
sophisticated diagnoses (Sosnovsky & Brusilovsky, 2015), we had two
decisive reasons to opt for a coarse-grained approach. The first reason was
student model comprehensibility, since the main purpose of the models
was to offer students insight into their understanding of the domain. The
second reason was, again, design feasibility; in this approach a quick
analysis of tasks suffices to determine the KC(s) involved.

For each module a separate domain model was designed. However,
since modules 3, 4 and 5 all covered hypothesis testing, their domain
models overlapped to a large extent. The final domain models contained
between 8 and 19 KCs. To improve comprehensibility of the student models,
the KCs in each domain model were grouped into two to five categories.

Design of the Q-matrices was straightforward. Tasks were connected
to all KCs that were related to the task. For example, tasks that involved
finding a critical value were connected to both the KC on the critical value
and the KC on the significance level, since the significance level is needed
to find the critical value. The majority of tasks was connected to only
one KC, but for some up to six KCs were judged relevant. To improve
Q-matrix consistency, the two experts were invited to connect a subset of

1 Course materials downloaded from www.aleks.com/about_aleks/course_
products, on October 16, 2015.
2 http://bit.ly/surfstat
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the tasks to the domain models. Most expert connections were equal to the
researcher’s, and differences were discussed until consensus was reached.

The final component in student model design was the calculation
method for overlay scores. This method was based on the number of
attempts students needed to finish the tasks connected to each KC. A
straightforward, simple numeric, implementation was chosen, in which
each task connected to a KC contributed equally to its score. The formula
used for calculation of the overlay scores is: formula used for calculation
of the overlay scores is:

m
n Z j=1 At

z i=1 m

n

sco reKC,student:

with:

t: the ith task connected to this KC (i in {1, ..., n})
a.;: the jth attempt score by this student for task t, (j in {1, ..., m}).

This formula can be explained as follows: for each task a task score was
calculated as the mean attempt score over all attempts by this student
on this task. The attempt score was 0 for incorrect attempts, 0.5 for half
correct attempts (for example, if the answer still needed to be rounded off)
and 1 for correct attempts. For instance, the task score for a student who
first gave two incorrect answers before answering correctly was 0.33. The
student’s score for a KC was then calculated by averaging the task scores
for all tasks connected to the KC.

Giving all tasks equal weight in the calculation of overlay scores
may seem unfair, since students are likely to learn and hence perform
better on later tasks than on earlier tasks. However, tasks also tended
to become more complicated throughout the modules, requiring students
to combine several concepts rather than using them in isolation. Since
students were invited to study their student model only at the end of the
modules, a final difficult task could easily result in an underestimation of
the student’s knowledge, if more recent tasks were assigned larger weight.
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A translated example of a student model for the first module is
presented in Figure 3.1. The domain model for this module contained five
categories. In the inspectable student model, students could unfold each
category (by clicking the + button) to view the individual KCs and their
overlay scores. Category scores were calculated as the weighted mean of
the KC scores in the category, weighted by the number of tasks to which
they were connected.

3.3.4 Data collection

After the student models were implemented in the instructional modules,
they were offered to the Social Sciences first-year students. Data collection
focused on student perception (RQ1) and student model quality (RQ1 and
RQ2). To investigate student perceptions about the student models, a short
questionnaire was added at the end of each module, on the page in which
students could inspect their student model. In this questionnaire, students
were asked to respond to three statements, concerning the match between
the tasks and the KCs, the clarity of the KC descriptions, and the scores in
the overlay. Students could indicate their agreement with each statement
on a five-point Likert scale.

The log files with student work on the five modules were the most
important data source for evaluating the quality of the student model.
Each week the student work for that week’s module was exported from
the DME. The first module contained a page with information on this study
and asked students for their consent. Work from students who did not give
consent was deleted (N = 26 out of 186 students) and all other log files
were anonymized before further analysis. For each module, all students
who attempted at least one task were included in the analysis. Table 3.1
summarizes properties of the students’ work and provides the number
of tasks in each module and the number of KCs in each student model.
As can be seen in the table, student numbers slowly decreased from 160
students in the first module to 117 in the fifth. This can be attributed to
students quitting the course or choosing other means for studying the
course material.
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Table 3.1 Data collection in the five modules

Module Tasks KCs Students Attempts per % attempted
student (SD) tasks (SD)

1 98 19 160 109 (36) 57 (14)

2 107 8 141 113 (43) 63 (17)

3 110 14 129 89 (40) 45 (17)

4 232 14 127 190 (75) 52 (18)

5 132 16 117 137 (66) 58 (18)

3.3.5 Data analysis

Student perceptions

The questionnaires were used to assess the suitability of the student
models in the statistics modules (RQ1) from the students’ perspective.
Each of the five modules contained a questionnaire on the last page, and
each questionnaire contained three statements, to which students could
respond on a five-point Likert scale. For each of the fifteen statements, a
mean score over all students was calculated as a measure of agreement of
the students to the statement.

Student model quality

For the evaluation of student model quality, methods from both the didactics
of statistics field and the student modeling field were combined. First, a
learning curve analysis (Martin, Mitrovic, Koedinger, & Mathan, 2011) was
carried out to assess domain model quality (RQ1) and to identify weaknesses
in their design and implementation (RQ2). Next, these weaknesses were
further investigated through didactical task analysis, which led to possible
improvements of both the student models and the instructional modules
(RQ2). Finally, predictive validity analyses (Sosnovsky & Brusilovsky, 2015)
were carried out to assess both the quality of the overlays in the original
design (RQ1) and in the design after implementing the improvements
identified in the learning curve analysis and didactical task analysis (RQ2).
In the following, the three methods and our implementation are described
in more detail.

Learning curve analysis
Learning curve analysis is specifically aimed at evaluating the domain
model. The assumption behind learning curve analysis is that learning
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generally follows a power law. When first encountering a concept,
students’ incomplete understanding results in errors on tasks related
to that concept. After more and more encounters with the concept, the
students’ understanding becomes more complete, resulting in a decrease
in the number of errors related to the concept (Martin et al.,, 2011). In
other words, for each KC in the domain model the error rate is expected to
decrease, and if this is indeed the case, the KC is regarded as a valid unit
of knowledge.

To generate learning curves, first for each student and each KC,
the student’s attempts on tasks connected to the KC were sorted in
chronological order. This resulted in lists of attempts, in which, for example,
the sixth attempt could be the first attempt by a student on the sixth task
connected to the KC, the sixth attempt by this student on the first task, or
anything in between. The length of the lists varied over students and KCs,
since students needed different numbers of attempts to finish the tasks on
the different KCs.

After ordering attempts, the correctness of each attempt was
indicated. Because we were interested in the number of errors, we marked
errors as 1 and other attempts as 0. Next, error rates for individual KCs
were calculated for each attempt number, by dividing the number of
students who made an error related to the current attempt number for a
given KC by the total number of students who made an attempt for that
attempt number for that KC:

number of incorrect nth attempts on KC
Error rate nth attempt =

total number of nth attempts on KC

These error rates were plotted against the attempt numbers and a power
law was fitted, using the formula
Error Rate = B-AttemptNo™

with the decay factor o and starting value B as parameters. Moreover, R?
was calculated as measure of goodness of fit.

Since students could attempt tasks multiple times and not all tasks
were obligatory, the number of attempts for the different KCs varied over
students. Consequently, the number of students decreased as the attempt
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number increased. That is, for higher attempt numbers, the error rates
were based on attempts by fewer students.

To ensure reliable error rates, Martin et al. (2011) recommend
cutting off the learning curve after a certain attempt number. They
propose two methods for defining the cut-off point: either by selecting an
acceptable reduction in the number of students or by making a judgement
call on where to cut off after examining where the learning curve seems
to be deteriorating. Martin and his colleagues (ibid.) used a one-half cut-
off, meaning that they cut off once only half of the students remained. In
examining the learning curves for our domain models, we noticed that many
learning curves deteriorated already after losing one third of the students
who made a first attempt. Therefore, we decided to use a two-thirds cut-
off. This higher cut-off level can be explained by the large number of non-
obligatory intermediate steps in the modules: as can be seen in Table 3.1,
the average number of attempted tasks was considerably lower than the
total number of tasks in each module, caused by students skipping the
non-obligatory intermediate steps. Therefore, for high attempt numbers,
error rates were predominantly based on students who made use of the
intermediate steps. This was a smaller, and probably weaker, group of
students than the complete student population and hence the error rate
was likely to increase with this decrease in student numbers.

Additional didactical task analysis

After assessing the quality of all individual KCs, some were found to have
increasing rather than decreasing error rates. To explain these increasing
error rates a didactical inspection of the instructional modules was carried
out. To this end, repeatedly single tasks and sets of similar tasks were
disconnected from the KC and new learning curves were generated. Once
a decreasing learning curve was found, the set of tasks that was currently
disconnected was designated as a possible cause for the originally increasing
learning curve. Next, a didactical analysis of these tasks was performed
to find a sound didactical explanation for the increasing learning curve.
In cases where it did not prove possible to designate just one task or set
of similar tasks as a possible cause, all tasks connected to the KC were
analyzed from a didactical perspective, and especially the concepts judged
to be addressed in the tasks were reconsidered. Through this interplay
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between learning curve analysis and didactical task analysis, we attempted
to improve the quality of both the student models and the instructional
models themselves.

Predictive validity analysis
Both the learning curve analysis and the subsequent didactical task
analysis specifically targeted the domain model and did not address the
overlays. Therefore, overlay quality was assessed through a third method:
predictive validity analysis.

In a predictive validity analysis, student performance is predicted
based on the student’s previous attempts. The correlation between these
predictions and the actual student performances is used as a quality
measure for the overlays. To find this correlation, the following two values
were calculated for each KC involved in each attempt by each student:

e The student’s prior knowledge level for the current KC up to the
current attempt;

e The student’s posterior actual performance for the current KC
after the current attempt.

The prior knowledge levels were calculated based on the tasks that a
student had already attempted, using our calculation method for overlay
scores. Posterior student performance was based on attempts following the
current attempt. Sosnovsky and Brusilovsky (2015) argue that correlating
single step performances with knowledge predictions is problematic and
propose using simple moving averages over five attempts. We followed this
suggestion by selecting the first five attempts after the current attempt
that also involved the current KC. For these five attempts, the average
attempt score was calculated (again, correct = 1, half = 0.5 and incorrect
= 0) as a measure of actual performance.

3.4 Results

We first present the results of the questionnaires about the students’
perceptions of the student models. Next, we present the main quality
assessment of the implemented domain models: learning curve analysis.
The results of this learning curve analysis form a starting point for
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didactical task analysis. This leads to the identification of four problems in
implementing inspectable student models in rich instructional modules for
statistics, and to possible improvements of the domain models, Q-matrices
and the instructional modules to resolve these four problems. Finally, the
results of the predictive validity analysis reveal the quality of the overlays,
as well as the value of the improvements from the didactical analysis.

3.4.1 Student perceptions of the student models

Table 3.2 summarizes the results of the questionnaires at the end of each
module. A score of 1 corresponded with Totally disagree and a score of
5 corresponded with Totally agree. From the table, it can be seen that
students agreed to a large extent with statements 1 and 2, and to a
moderate extent with statement 3. The strong agreement with statements
1 and 2 suggests that students perceived the tasks in the modules and the
KCs in the domain models to match well and that the descriptions of the
KCs were clear. The moderate agreement with statement 3 implies that
students thought the scores from the overlays represented their current
knowledge of the concepts quite well. All in all, students seemed to perceive
the student models as comprehensible and plausible.

Table 3.2 Questionnaire results
Module 1 Module 2 Module 3 Module 4 Module 5

Statement 1: The tasks in the DME match well with the topics in the student model

Mean 4.30 4.42 4.26 4.44 4.43
SD 0.67 0.69 0.68 0.58 0.59
N 125 89 54 27 23

Statement 2: The descriptions of the topics are clear

Mean 4.23 4.21 4.17 4.15 4.22
SD 0.73 0.82 0.91 0.82 0.80
N 125 89 54 27 23

Statement 3: I think the scores on the topics are a good representation of my
knowledge

Mean 3.85 4.08 4.10 4.00 3.90
SD 0.73 0.70 0.77 0.89 0.89
N 120 88 52 26 21
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3.4.2 Domain model quality according to learning curve analysis

To assess the quality of the domain models, learning curves were generated
for 56 out of 71 KCs in the five domain models. For the remaining 15 KCs,
not enough data were available to obtain a learning curve. For each of
these 56 KCs the error rates were computed and a power law curve was
fitted. This resulted in decreasing learning curves for 34 KCs and increasing
learning curves for 22 KCs.

For the 34 KCs with decreasing learning curves the mean goodness
of fit (R?) was 0.49 (SD = 0.29). For the increasing learning curves the fits
were generally weaker, with mean goodness of fit 0.35 (SD = 0.33).

As mentioned before, KCs with learning curves that decrease as a
power function represent cognitively valid units of knowledge. Therefore,
in the initial design 34 out of 71 KCs were well-defined. It may seem
disappointing that only half of the KCs were well-defined, and this indeed
suggests that just implementing student models in didactically grounded
instructional modules does not automatically result in high-quality feedback
to students. But the presence of increasing learning curves also provides a
good starting point for further analysis: didactical inspection of connected
tasks may shed light on prerequisites, opportunities and limitations in
implementing student models in didactically grounded statistics modules.

3.4.3 Underlying problems based on didactical analysis

For the 22 KCs with increasing learning curves connected tasks were
analyzed from a didactical perspective to find underlying problems that
caused the learning curves to increase. Four different problems were
identified; some increasing learning curves were completely explained
by one of these problems, whereas for other KCs two problems applied.
The first problem relates to single tasks distorting the learning curve. The
second concerns groups of tasks that address concepts from different
perspectives and the third problem concerns tasks that involve multiple
concepts. The fourth and final problem concerns a lack of opportunities for
in-depth thinking about the KC in the learning module. This final problem
also applies to the 15 KCs for which not enough data were available to
obtain a learning curve. The four problems are elaborated below.
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Problem 1: Tasks with specific purposes

For 12 out of the 22 KCs, the increasing learning curve could be attributed
to one or two single tasks; disconnecting these tasks from their KC yielded
a decreasing learning curve. Didactical analysis of the disconnected tasks,
compared with the tasks that remained connected, revealed that these
tasks often had a specific purpose in the module.

In six of these cases, the tasks that were disconnected were the
first tasks in which the students encountered the KC. An example is a KC
on the significance level, for which the learning curve is shown in the left-
hand graph in Figure 3.4. The error rate for the first attempt is remarkably
lower than for the subsequent attempts. Disconnecting the first task from
the KC yielded the right-hand learning curve in Figure 3.4. Without the first
task, the learning curve became decreasing with a very high goodness of
fit (R? = .98), indicating that the remaining tasks constituted a valid KC.

Figure 3.4 Error rates for KC Significance level

A didactical inspection of the disconnected task and tasks that remained
connected revealed that the first task was easier than the other tasks. The
first task only asked students to reproduce a value for the significance
level from the problem description. Later tasks required students to use
the significance level for defining the rejection region in a hypothesis test.
Such easy first tasks on a concept occurred more often in the modules.
Apparently, for the designers of these modules it was natural to introduce
concepts in a quite gentle manner. The purpose of these easy first tasks
is to enhance students’ self-confidence, rather than to give students the
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opportunity to practice. This resulted in very low initial error rates and
increasing error rates once tasks became more demanding.

Another specific purpose that tasks could have was to emphasize a
specific aspect or detail of a KC. This was the case for three KCs. At first
sight, the tasks causing the increasing learning curve were very similar to
the tasks that remained connected. A closer didactical inspection revealed
that the disconnected tasks had a slightly different emphasis concerning
the KC. This was, for example, the case for the KC on calculating Cohen’s d
in the third module. The learning curve for this KC is shown in the left-hand
graph of Figure 3.5.

Figure 3.5 Learning curves for KC Cohen’s d

The six tasks connected to this KC required students to calculate or interpret
a value of Cohen’s d, a measure of effect size. Cohen’s d is calculated
as d:%' with M the sample mean, u the population mean and ©
the standard deviation in the population. In four out of the six tasks, M
was larger than pu and hence explicitly taking the absolute value was not
necessary. In the two tasks causing the increasing learning curve, however,
M was smaller than y. Many students forgot to take the absolute value and
erroneously gave a negative effect size as answer. In other words, these
two tasks emphasized the fact that Cohen’s d is always positive, whereas
the other tasks only concerned using the correct values in the calculation.
Since these two tasks were the fourth and fifth task connected to this KC,
the students’ errors on these tasks caused relatively high error rates for
attempt numbers four and higher. Disconnecting these tasks with a slightly
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different emphasis resulted in the decreasing learning curve displayed in
the right-hand graph of Figure 3.5.

Most increasing learning curves that could be attributed to one or
two single tasks could be explained by these specific purposes for tasks.
However, for five KCs the didactical analysis, and especially an inspection
of the errors students made, identified flaws in task design. Although the
modules were thoroughly tested by colleagues of the designers, this was
the first time that students worked with them. Flaws in task design resulted
in confusion among students, and consequently in high error rates.

Problem 2: Concepts addressed from multiple perspectives

For six KCs with increasing learning curves, we have been able to partition
the connected tasks into groups that each had a decreasing learning curve.
These groups were identified by setting up a detailed description of the
concepts addressed and actions required in all connected tasks.

An example is the KC on the mean. Its learning curve is shown
in the top-left graph in Figure 3.6. By analyzing the connected tasks,
three conceptually different task types were distinguished. Of the fifteen
connected tasks, eight concerned calculating or estimating the value of a
mean, based on given data. Four others concerned the appropriateness of
using the mean for different types of variables. The remaining three tasks
concerned the calculation of a standard deviation, for which calculating the
mean is an intermediate step.

The learning curves for each of the three groups of tasks are shown
in the top-right, bottom-left and bottom-right graph in Figure 3.6. While
the learning curve for the complete KC increases, the learning curves for
each of these groups of tasks decrease. This implies that for students
finding the mean, judging the appropriateness of the mean for different
types of variables, and finding the standard deviation involved different
procedures and types of reasoning.
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Figure 3.6 Learning curves for the mean and three subgroups

Problem 3: Tasks involving multiple concepts

In the example above, finding the mean and judging the appropriateness
of the mean are both only related to the concept of mean, but finding the
standard deviation additionally relates to the concept of standard deviation.
This occurs frequently: in many tasks multiple concepts are involved. As
mentioned before, in designing the Q-matrices tasks were connected to all
KCs that were judged to be involved in the task. For four KCs, including
the KC on the mean, this turned out to be problematic. Although these KCs
were involved in all tasks connected to them, not all errors that students
made could be attributed to these KCs. For some of the connected tasks,
different KCs turned out to be the bottleneck KC, that is, the KC that
mainly caused errors on the task. The example with different subgroups
of *mean” above can serve to illustrate this idea of bottleneck KCs: errors
that students made are more likely due to a lack of understanding of the
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standard deviation itself, than to a lack of understanding of the mean.
Therefore, errors that students made on these tasks caused an unfairly high
error rate for the KC on the mean. Since the tasks on standard deviations
appeared later in the module than other tasks involving the mean, this
may have contributed to the increasing learning curve for the mean.

Problem 4: Lack of opportunities for in-depth thinking about concepts

The final problem that was identified for increasing learning curves
concerns KCs with an overall low error rate. For four KCs with increasing
learning curves the error rates never rose above 0.3. For such small error
rates, slight fluctuations that are likely due to chance may have caused
the learning curve to increase rather than decrease. Although a low overall
error rate indicates that the KC is easy for students, most of these five
KCs were not judged to be easy by the designers of the course. Rather,
they concerned interpreting the meaning of concepts and understanding
the relation between concepts, which are generally considered as difficult
aspects of the statistics domain. In other words, although the designers
included tasks addressing these difficult KCs, they did not succeed in
addressing the actual difficulties that students have regarding these KCs.
This discrepancy can be attributed to task design; apparently the tasks
connected to the KC were easy for students and did not engage them in
thinking about the statistical concepts in depth. Indeed, tasks connected
to these KCs were often multiple choice, with only two options to choose
from. With such little variation in possible answers, any misconceptions
that students may have had were likely to stay unnoticed; students did
not have the opportunity to make many errors and learn from these errors.

Another case in which students did not have enough opportunity
to make errors and reflect on them was formed by the 15 KCs for which
no learning curve could be generated. These KCs were all connected to at
most two tasks, which were often multiple choice tasks with at most four
options to choose from. For these KCs, students just did not make enough
attempts to obtain a learning curve. This suggests that they probably also
did not make enough attempts to gain deeper understanding of the KCs.
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Improving modules and student models

The four problems together provide a basis for improvement of both the
student models and the instructional modules. To obtain a first impression
of the value of these improvements, we carried out a second learning
curve analysis with a revised version of the domain models and Q-matrices.
This evaluation was performed with the same student data as the original
analysis, which means that no adjustments could be made to the tasks.
Therefore, connections to tasks that needed redesign were just removed
from the Q-matrix. Moreover, KCs for which task redesign was needed to
create more opportunities for errors were removed from the domain model
to enable this analysis.

The improvements that we could make, adjustments to the domain
models and Q-matrices, were mostly easy and straightforward. Tasks with
specific purposes that distorted the learning curves were easily recognized
and disconnected from their KCs. For concepts that were addressed from
multiple perspectives, a more thorough analysis was needed to identify the
different perspectives to split the KC into, but subsequently reconnecting
tasks was again straightforward. Similarly, identifying bottlenecks for tasks
needed some analysis, but next disconnecting tasks from non-bottleneck
KCs was easy.

For the new domain models, error rates were again calculated for
all individual KCs and learning curves were fitted. Table 3.3 summarizes
the results of the learning curve analysis for both the original and the new
domain models.

Table 3.3 Comparing individual KCs in the original and new domain models

Module Original New
Increasing Decreasing Too little Increasing Decreasing Too little
data data

1 6 8 5 0 14 0
2 2 4 2 1 0
3 7 4 3 3 0
4 3 9 2 0 14 0
5 4 9 3 1 11 0
Total 22 34 15 5 54 0
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The number of increasing learning curves decreased drastically from
original to new domain models. Moreover, for all remaining KCs in the
new models enough data were available to generate a learning curve, and
hence, for each KC enough tasks were available to provide students with
ample practice opportunities. The five KCs for which the learning curves
were still increasing all had overall low error rates and were regarded
as easy KCs. All in all, the combination of learning curve analysis and
didactical task analysis has led to a marked improvement of the domain
models.

3.4.4 Overlay quality according to predictive validity analysis

Our final analysis is aimed at evaluating the quality of the final part of
the student models, the overlays. To evaluate overlay quality, prior and
posterior student performances were calculated for each attempt by each
student on each KC. The prior student performance was the score the
student model would attribute to that KC for that student, up to that
attempt. The posterior student performance was calculated based on the
five next attempts the student made on that KC. In total, the list of prior and
posterior student performances contained 116729 prior-posterior pairs.
Pearson’s correlation coefficient for this list was r = .315. Although this
value indicates a positive correlation between the students’ understanding
as predicted by the model and the students’ actual performance, the
correlation is regarded as weak (Evans, 1996). One possible explanation
can be found in the formula used, which is, as we discussed earlier, a fairly
naive implementation. But since prior and posterior performances were
calculated for each individual KC, the quality of the KCs themselves is also
likely to influence the quality of the overlays. Therefore, after improving the
domain models and Q-matrices based on the learning curve analysis and
didactical task analysis, we reassessed the overlay scores with a second
predictive validity analysis. For the overlays resulting from the new domain
models, we found a Pearson’s correlation coefficient of r = .423. This is a
moderate positive correlation (Evans, 1996) that is markedly better than
the one for the original domain models. This implies that the improvements
in the domain model indeed contributed to more sound student models for
didactically grounded sequential modules.
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3.5 Conclusion

The two research questions addressed in this study have been:

RQ1 Areinspectable student models suitable forimplementation
in didactically grounded, sequential statistics modules
consisting of closely related tasks?

RQ2 How can didactical analysis inform design of inspectable
student models, and, vice versa, how can student model
evaluation methods inform didactical design?

The suitability of inspectable student models (RQ1) was evaluated at two
levels: a questionnaire asked students about their perception of the student
models, while learning curve analysis and predictive validity analysis were
used to assess the internal quality of the student models.

Results from the questionnaire showed that students valued the
student models for their clarity and close connections to the tasks in
the modules. These results are in line with findings by Bull (2004) that
inspectable student models are useful to students, and suggest that these
findings can be extended to sequential instructional modules. However,
the results from the learning curve analysis and the predictive validity
analysis were less positive. The learning curve analysis revealed that in
the initial domain models, only half of the KCs were immediately well-
defined. Furthermore, in the predictive validity analysis we only found a
weak positive correlation of r = .315 between the predicted and the actual
student performance. These results provided us with a starting point for
improving our design and addressing the second research question of the
article.

Learning curve analysis combined with didactical task analysis
indeed proved to be an insightful approach for identifying weaknesses of
the student models and instructional modules. We identified four specific
problems: tasks with specific purposes in the instructional modules,
concepts addressed from multiple perspectives, tasks involving multiple
concepts and lack of opportunities for in-depth thinking about statistical
concepts.
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The first of these problems is a product of the didactical design of
sequential modules: easy tasks deliberately crafted to introduce a concept
gently or to emphasize a particular aspect of a concept. Although such
tasks are useful in the module, they are not suitable for informing student
models, because their error rates are very different from error rates of other
tasks involving the same KC. Rather than discarding tasks with specific
purposes, which would be the approach for databases of independent
tasks (Pavlik, Cen, & Koedinger, 2009), the most sensible approach for
sequential modules is to exclude connections between such tasks and the
related KCs from the Q-matrix. As a consequence, instructional modules
can contain tasks that are didactically meaningful for the module, but do
not inform the student model.

The second problem, concepts addressed from multiple perspectives,
results from our choice of coarse-grained domain models. Since coarse-
grained KCs accumulate evidence from many underlying atomic KCs, the
models they produce are often messy (Sosnovsky & Brusilovsky, 2015).
Yet, in spite of this low modeling quality, coarse-grained KCs can still
provide good navigational anchors, since they are easy to understand
and interpret for students and easy to design for teachers (Sosnovsky &
Brusilovsky, 2015). Furthermore, learning curve analysis combined with
a didactical inspection of connected tasks has long been recognized as
a useful tool for identifying and splitting KCs with too broad definitions
(Corbett & Anderson, 1995).

The third problem also results from a choice made during the design
of student models, namely connecting tasks to all related KCs. For correctly
answered tasks, this approach works well: a correct answer is a proof that
a student understands all related KCs. However, an incorrect answer can
have as many causes as there are KCs connected to a task (and their
combinations). Didactical task analysis may reveal which KC is the most
likely cause for errors on a task, that is, which KC is the bottleneck for that
task. Since errors on the task may cause unfairly high error rates (and
thus unfairly low overlay scores) for the other connected KCs, it may be
advisable to remove connections between tasks and non-bottleneck KCs.
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Finally, the fourth problem (lack of opportunities for in-depth
thinking about statistical concepts) can manifest itself in two ways: an
overall low error rate, or a lack of sufficient information from which to
generate a learning curve. In both cases, the combined learning curve
analysis and didactical task analysis may reveal weaknesses in the design
of the instructional module itself which would have otherwise stayed
unnoticed. Redesign of tasks should focus on creating more opportunities
for students to make errors that reflect their misconceptions and to learn
from these errors.

We used the findings from the combined learning curve analysis
and didactical task analysis to redesign the instructional modules. The
resulting inspectable student models performed markedly better than
the original ones. In the original models, only 34 out of 71 KCs were
characterized by learning curves that decreased according to a power
law. In the new models, the number of such learning curves is 54 out of
59. Moreover, the combined predictive validity of the new student models
improved considerably compared to the original models: r = .423 vs. the
original r = .315. This shows that didactical analysis can indeed provide
valuable information for designing student models. Moreover, learning
curve analysis did not only provide a basis for improving student models,
but also yielded leads for improving the design of the instructional modules
themselves. In this way, the fields of didactics of statistics and inspectable
student models can strengthen each other in the design of interactive and
engaging instructional material.

3.6 Discussion

The four identified problems together comprised explanations for all
increasing learning curves we found and provided a basis for improving
both the student models and the instructional statistics modules. It can be
noted that whereas the first problem is specific for sequential instructional
modules, the other problems could also apply to sets of independent tasks.
In fact, as mentioned above, Corbett and Anderson (1995) already used
capricious learning curves as motivation for adjusting their domain model
by splitting KCs. Nevertheless, all four problems illustrate how didactical
task analysis can inform explanations for increasing learning curves, and
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vice versa, how increasing learning curves can identify tasks that need
didactical reconsideration.

Although combining the fields turned out to be fruitful in this study,
some remarks are in order. First of all, the setting was a university statistics
course. Since university teachers often have a large responsibility for
designing and arranging their own teaching, we pursued a design approach
that seemed feasible for them. To this end, we designed modest sets of
independent KCs, and connected tasks to all related KCs. This resulted
in several increasing learning curves, which we resolved by removing
connections between KCs and tasks for which that KC did not prove a
bottleneck. Drawbacks of removing this connection are that correct answers
can no longer be used to increase the score for such a non-bottleneck
KC, and that, in fact, different KCs may prove the bottleneck for different
students. A more robust solution would therefore be to implement relations
between KCs (Brusilovsky & Millan, 2007). Further research is needed to
establish the feasibility of this approach for university teachers.

Another drawback of our student model was the rather low predictive
validity, which was probably caused by our choice of a simple numeric
overlay model. An uncertainty-based overlay model seems promising for
improving predictive validity (Sosnovsky & Brusilovsky, 2015). A second
advantage of implementing an uncertainty-based approach may be that
uncertainty can be made visible to the students, which might offer them
useful information for their planning and navigation (Bull & Kay, 2007).

Finally, in our evaluation of possible improvements to the student
models and instructional modules, no tasks were redesigned and no
new data were collected, so further research is needed to fully establish
the value of these improvements. One aspect to specifically consider is
whether identified weaknesses in the instructional modules do indeed
concern the modules themselves, or rather the suitability of the modules
for the implementation of a student model. In other words, otherwise
appropriate learning modules might need adjustment (and addition of
tasks in particular) to also collect enough information for every KC in a
student model.
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Abstract In electronic learning environments, information about
a student’s performance can be provided to the student in the form of an
inspectable student model. While relatively easy to implement, little is known
about whether students use the feedback provided by such models and whether
they benefit from it. In this study, the use of inspectable student models in
an introductory university statistics course by 599 first-year social science
students was monitored. Research questions focused on whether students
sought feedback from the student models, which decisions for subsequent
study steps they made, and how this feedback seeking and decision making
related to results on their statistics exams. Results showed a large variety
among students in feedback-seeking and decision-making behavior. Lower
student model scores seemed to encourage students to practice more on the
same topic and higher scores seemed to evoke the decision to move to a
different topic. Viewing frequency and amount of variety in decision making
were positively related to exam results, even when controlling for total time
students worked. These findings imply that inspectable student models can be
a valuable addition to electronic learning environments and suggest that more
intensive use of inspectable student models may contribute to learning.

Keywords Feedback-seeking behavior ¢ Higher education & Inspectable
student model & Log file analysis  Statistics education
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4.1 Introduction

University education puts high demands on students in taking responsibility
for their learning (Krause & Coates, 2008; Torenbeek, Jansen, & Suhre,
2013). A potentially effective way to support them in doing so is to offer
formative assessment opportunities: assessment of their performance
aimed at improving the learning process prior to grading (Birenbaum et al.,
2015; Timmers, Braber-van den Broek, & Van den Berg, 2013). Whereas
many educators and researchers advocate the potential of formative
assessment for learning, sound empirical evidence for this is lacking
(Hendriks, 2014). Scarce (Robinson, Myran, Strauss, & Reed, 2014) and
ineffective (Bennett, 2011; Heitink, Van der Kleij, Veldkamp, Schildkamp,
& Kippers, 2016) implementations of formative assessment in educational
settings are regularly voiced explanations for this lack. To reach its full
potential, formative assessment should be a cyclical process (Gikandi,
Morrow, & Davis, 2011). Besides gathering information about student
performance, two other elements are part of such formative assessment
cycles, namely providing tailored feedback on performance and deciding
on actions to enhance learning based on the provided feedback (Antoniou
& James, 2014; Black & Wiliam, 2012). Whereas educational practitioners
gather a lot of assessment data (e.g., Tempelaar, Rienties, & Giesbers,
2015), they often experience difficulties in proving tailored feedback and
determining how their students make use of it. To address this, more
insight into the interplay between the provided feedback and students’
feedback-seeking and decision-making behavior is needed. The current
study addresses this by implementing and examining formative assessment
cycles — by means of inspectable student models — in an electronic learning
environment in the context of a university statistics course.

For statistics education, the use of formative assessment — e.g.,
self-tests — has been recommended by several authors (Carver et al.,
2016; Tishkovskaya & Lancaster, 2012). The low-stake assessment setting
might support students in reducing statistics anxiety (Chew & Dillon, 2014)
and procrastination (Onwuegbuzie, 2004 ), two factors that often result in
lower grades for statistics (Paechter, Macher, Martskvishvili, Wimmer, &
Papousek, 2017). By conducting self-tests, students have the opportunity
to gain insight into their current mastery of the study domain (Dirkx, Kester,
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& Kirschner, 2014). For the case of statistics, this study domain involves
a large number of abstract concepts (Castro Sotos, Vanhoof, Van den
Noortgate, & Onghena, 2007). Hence, the tailored feedback element of the
formative assessment cycle should support students in gaining insight into
their mastery of these various concepts. A promising operationalization
of feedback in this respect is the inspectable student model, that can be
offered to students within electronic learning environments. In this study,
we examine students’ use of inspectable student models, i.e., whether and
how students consult inspectable student models and make decisions on
actions after consultation, and its effect on students’ performance on a
statistics exam.

4.2 Inspectable student models in electronic learning
environments

Electronic learning environments are gaining in popularity for realizing
formative assessment in education (Van der Kleij, Timmers, & Eggen,
2011). Due to technological advancements (e.g., open source, interactive
visualizations, learning analytics) implementing such tools in educational
practices nowadays requires less money and effort than in the past, and
these advancements also provide more opportunities for integrating the
complete formative assessment cycle in the educational design. Electronic
learning environments have the advantage that information about student
performance is usually automatically captured and stored (e.g., log files)
by means of a student model: a representation of a student’s current
mastery of important topics in the study domain (Herder, Sosnovsky, &
Dimitrova, 2017). A visualization (e.g., figure, table) of the student model
that students can consult — an inspectable student model — can serve as
the tailored feedback element in the formative assessment cycle. Enriching
electronic learning environments with inspectable student models has the
potential to foster student learning in two ways. First, inspectable student
models provide an overview of the important topics in the domain, which
can support students in understanding the domain structure (Mitrovic &
Martin, 2007). Second, inspectable student models provide an estimate
of the student’s current mastery of the topics included in the model. Low
estimates for topics might stimulate students to exert more effort and
practice on these topics. Furthermore, when estimates conflict with a
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student’s own perception of his or her mastery level, the student is more
likely to consider further practice (Bull & Kay, 2007; Long & Aleven, 2011).
Hence, enriching electronic learning environments with inspectable student
models is an added service, which could support students in deciding on
appropriate subsequent actions (e.g., selecting additional practice tasks).

Earlier studies revealed that students value the presence of
inspectable student models in weekly homework sets (Mitrovic & Martin,
2007; Tacoma, Sosnovsky, Boon, Jeuring, & Drijvers, 2018 (see Chapter 3
of this thesis)). To our knowledge, previous research focused on the effects
of inspectable student models combined with either (1) task selection
adapted by the electronic learning environment based on the content of
the student model (e.g., Brusilovsky, Sosnovsky, & Yudelson, 2009), or
(2) monitoring of and feedback on task selection by the student (Mitrovic
& Martin, 2007). Hence, the potential of integrating inspectable student
models as an added service, to strengthen the formative assessment cycle
through tailored feedback while leaving control over task selection fully
with students, has not been studied extensively. Thus, it remains unclear
how this added service affects student learning, a knowledge gap that this
paper aims to fill.

For feedback to affect student learning, students need to actively
seek for it, process it and decide which, if any, subsequent actions to
carry out (Timmers et al., 2013). Various factors, such as motivation and
accessibility of feedback information, may influence whether and how
students engage in such behavior. To better understand these factors
and, more specifically, how providing inspectable student models might
foster student learning, more insight into students’ feedback-seeking and
decision-making behavior is required.

4.3 Feedback-seeking and decision-making behavior

Feedback-seeking behavior has been defined as the proactive search for
feedback information in one’s environment (Ashford & Cummings, 1983).
Although inspectable student models are intended to foster student
learning, there is no guarantee that students will engage in a proactive
search for the feedback the student models provide, especially when this
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is not a mandatory learning activity. For a student to exhibit feedback-
seeking behavior, the assumed values should outweigh the assumed costs
(Anseel, Beatty, Shen, Lievens, & Sackett, 2015; Ashford & Cummings,
1983). In the context of the present study, students should see the value
of inspecting the student model as well as undertaking subsequent actions
based on the provided feedback. According to Anseel, Lievens and Levy
(2007) students might value feedback for different motives, namely: self-
assessment (i.e., knowing how well one is doing), self-improvement (i.e.,
acquiring a higher mastery level), self-enhancement (i.e., coping with
stress and anxiety), and self-verification (i.e., maintaining consistency
between self-conceptions and new self-relevant information).

Especially students with strong self-improvement motives are
more inclined to exhibit feedback-seeking behavior when they value the
tool’s potential for their learning process. The self-improvement value is
particularly relevant when a student considers appropriate subsequent study
steps, for example immediately after completing an initial set of practice
tasks (Gikandi et al., 2011). Whether and how the provided feedback
affects a student’s decision making at such moments depends on several
factors, such as perceived usefulness of the feedback (Harks, Rakoczy,
Hattie, Besser, & Klieme, 2014) and the student’s desire and intention to
respond to the feedback (Kinicki, Prussia, Wu, & McKee-Ryan, 2004). In
the context of this study, feedback indicating that current mastery is below
the expected standards could lead to more practice and more feedback-
seeking behavior (Hattie & Yates, 2014; VandeWalle & Cummings, 1997).
If, however, the perceived costs of exposing one’s uncertainty and need
for help outweigh the student’s value of self-improvement, such feedback
might also lead to less feedback-seeking behavior, to avoid loss of face and
ego costs of repeated negative feedback (Abraham, Burnett, & Morrison,
2006; Timmers et al., 2013). Yet, for inspectable student models these
costs are relatively low compared to seeking feedback from a tutor or
peer (Timmers et al., 2013). Receiving feedback indicating that the current
mastery level is above the expected standard can also have diverse effects
on both practice and subsequent feedback-seeking behavior. Students
will only be inclined to practice more and exhibit more feedback-seeking
behavior when they expect that the additional time investment will result
in a gain in mastery level.
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Previous studies on feedback-seeking behavior revealed no strong
relationship between feedback-seeking behavior and performance (Anseel
etal., 2015). When one attaches a high value to the feedback, oneisinclined
to proactively seek for (additional) feedback (Morrison & Cummings, 1992;
Tuckey, Brewer, & Williamson, 2002). However, more feedback-seeking
behavior does not automatically result in better performance such as a
higher mastery level (Ang, Cummings, Straub, & Earley, 1993; Ashford
& Black, 1996). Similarly, a review by Crommelinck and Anseel (2013)
questioned the implicit assumption that feedback seeking is positively
associated with performance, since most of the studies pay little empirical
attention to the question whether and how feedback-seeking behavior
affects performance. Consequently, a more in-depth understanding of the
factors that explain whether and how feedback seeking leads to better
performance is needed.

To this end, the current study examines the interplay between
students’ use of inspectable student models, i.e., their feedback-seeking
and decision-making behavior, and their exam grades for the case of a
university statistics course. The study is guided by three research questions:

RQ1 How do first-year university students in social science seek feedback
from inspectable student models in an introductory statistics course?

RQ2 How does feedback from inspectable student models inform these
students’ decisions about subsequent actions?

RQ3 How does these students’ feedback-seeking and decision-making
behavior relate to performance on a statistics exam?

4.4 Materials and methods

4.4.1 Participants

Participants were 599 first-year university students who were enrolled in an
introductory Methods and Statistics course at a Dutch research university.
To be eligible for enrollment at this university, students needed to have
followed a pre-university track in secondary education or at a university
of applied sciences, which means that these students belonged to the top
20% of students their age. The course was mandatory for all bachelor’s
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degree programs in the social sciences. The students were informed about
this study and were asked for their consent. Of the 1025 students who
were enrolled in the course, 599 made use of the electronic learning
environment and gave consent for the use of their work and exam results
for this study. Of the 599 students, 77% was female and 23% was male.
Their ages varied between 17 and 43 years (M = 19.5, SD = 2.2).

4.4.2 Description of the course and the electroniclearning environment
The Methods and Statistics course was an eight-week course in which new
methods and statistical concepts were introduced in week 1, 2, 4, 5 and 7.
Intermediate exams were administered in week 3 and in week 6, and the
final exam was administered in week 8. Learning objectives of the course
were outlined in a course manual. In the weeks in which new concepts
were introduced, a lecture on these concepts was given and students
were offered online homework sets on the statistical topics. Students
could choose to work on these homework sets at home or in lab sessions
supervised by teachers. Tasks from the homework sets and their relations
with the learning objectives were discussed in weekly discussion sessions.

The electronic learning environment in which the homework sets
were made available was the Digital Mathematics Environment (DME,
see Drijvers, Boon, Doorman, Bokhove, & Tacoma, 2013). Tasks in the
homework sets addressed, for example, selecting appropriate measures
of center and spread for given variables, or carrying out hypothesis tests
for given situations and samples. Students received immediate feedback
on the correctness of their answers, but the correct answer itself was not
provided to students. Students could attempt answering tasks until they
found the correct answer. A typical task from the first homework set is
displayed in Figure 4.1. The tasks were designed by a team of teachers in
the university’s Methods and Statistics department.

In the weeks prior to the intermediate and final exams, extra
practice sets were provided in the DME, allowing students to prepare for
the exams. The extra practice sets contained between six and eleven new
practice tasks on all topics covered so far. All homework and extra practice
sets remained available for the students until the end of the course period.
All interactions of the students in the DME were logged.
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Figure 4.1 Example of a practice task in the first homework set in the DME

4.4.3 Design and implementation of the inspectable student models
The DME was enriched with an inspectable student model for each homework
set. Figure 4.2 shows two examples of an inspectable student model for
the first homework set. Each student model contained a list of important
topics in the homework set, grouped into two or three categories. The
number of topics per category varied between two and seven. Most tasks
in the homework sets were connected to the topic(s) they were related
to. Lists of topics, connections between tasks and topics and the tasks
themselves were optimized informed by findings by Tacoma et al. (2018;
see Chapter 3 of this thesis), based on the same course in the previous
academic year. In particular, this previous study showed that some tasks
served a useful function in the homework set (such as introducing a new
topic), but were not appropriate for informing student models, and hence
should not be connected to any topic. Furthermore, new tasks were added
to address topics that had been underrepresented in the previous year,
and a number of multiple choice tasks that had been found to offer too few
opportunities to learn from (i.e., asking students to select one out of only
two options) were redesigned.
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Figure 4.2 Student models for the first homework set when a student has worked
on several categories (left) or on one category only (right)
Scores in the student models were calculated based on the student’s
correct and incorrect attempts on the tasks in the homework set: for each
task a task score was calculated as the number of correct attempts on that
task (usually 1) divided by the total number of attempts the student made
on the task. Topic scores were calculated as the mean task score of all
tasks that were connected to the topic and for which the student had made
at least one attempt. Category scores were a weighted average of topic
scores, weighted by the number of tasks connected to the topic.

Students could access the inspectable student model for a homework
set by clicking on the button “Partial scores” (bottom right corner in Figure
4.1). On the final page of each homework set this service was explicitly
mentioned to students, with the suggestion to use the student model to
select topics for further practice. When students opened the student model,
only the categories and category scores were shown (Figure 4.2, left).
Students could use the plus-buttons to view the topics in each category
and their scores on these topics. Only categories that the student had
worked on were shown and if a student had only worked on one category
yet, this category was shown folded out immediately (Figure 4.2, right).

On the first page of the extra practice sets, students received
instruction that they could either choose to work on all extra practice tasks,
or to make a selection based on their inspectable student models. Links to
the homework sets were included, so that students could easily access the
student models for the different homework sets. In each extra practice set,
the first page also contained an overview indicating which extra practice
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tasks addressed which topics. This enabled students to select extra practice
tasks for topics that needed their attention.

4.4.4 Data collection

Data for this study consisted of log files of the students’ work on homework
and extra practice sets in the DME, including logs of student model views.
Additionally, students’ grades for the final exam were collected. The
possibility to log student’s actions in electronic learning environments
provides an opportunity to monitor meticulously what students do with
inspectable student models that are provided to them. For each student
model view, the DME logged the time of opening and closing the student
model, the corresponding homework set, current student model scores
for all topics and categories in the student model, and categories that the
student opened (if any). After the end of the course period, log files were
exported from the DME. Logs from students who did not give consent were
deleted and all other logs were rendered anonymous. Exam results were
rendered anonymous as well, using the same key to enable connecting
them to the students’ use of the DME. The final exam lasted two hours
and consisted of 30 4-option multiple choice items: 14 about methods and
16 about statistics. Only the students’ results on the statistics items were
included in this study. For these 16 items, Cronbach’s a was .60, which
seems an appropriate value for an exam consisting of relatively few items
that assess a wide range of topics (e.g., normal distribution, confidence
intervals, hypothesis testing) within the domain of statistics (Taber, 2018).
An example question is:

It was investigated whether in the 2010 elections politicians
who were active on Twitter received more preference votes
than their colleagues who were not active on Twitter. The report
mentioned both a p-value (.001) as well as the effect size
(d = .01). What is the correct conclusion when testing with
o= 1%?

Multiple choice options for this item were (@) The result is not significant
and the effect is small; (b) The result is significant, but the effect is small;
(c) The result is significant and the effect is large; (d) The result is not
significant, but the effect is large.
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4.4.5 Data analysis

To answer RQ1 on feedback-seeking behavior, the logged information
was used to describe how often, how long and in how much detail
students inspected their student models. Student model views that lasted
shorter than two seconds were omitted from analysis: these views were
considered too short for students to be able to interpret the contents of
the student model3. This concerned 173 student model views, out of a
total of 2710. Regarding the detailedness of student model inspection, a
Chi-Square proportion test served to examine whether students tended to
select the categories with the lowest scores for further inspection, if they
opened any categories at all. For all statistical tests, a significance level
of .05 was used. To enable an interpretation of the frequency of student
model views, working sessions were defined. Following Chen, Breslow and
DeBoer (2018) working sessions were defined as series of student actions
in the DME in which the time period between two actions was never longer
than one hour. Working sessions were mapped over time to determine
in what proportion of working sessions students viewed the inspectable
student models and to investigate whether students kept inspecting the
student models during the course period. To enable further analysis at
the level of individual students rather than at the level of student model
views, students were assigned to groups based on their feedback-seeking
behavior, as will be explained in the results section.

To answer RQ2 on how consulting a student model affects students’
decision making on subsequent actions, only student model views after
which the student continued working in the DME were included. Three
general decisions were possible for students who continued working after
viewing a student model, namely work on (1) the homework set for which
the student model was viewed ("Homework"), (2) extra practice related to
the homework set for which the student model was viewed (“Practice”), or
(3) a homework set or extra practice on a different topic than addressed
in the student model just viewed (“Other topic”). Students were grouped
based on which of the three decisions they made at least once. This resulted
in seven groups, namely:

3 Assuming a reading speed of approximately 250 msec per word (H. van
Oostendorp, personal communication, April 9, 2019), reading the concepts listed
in figure 4.2 (left) would take two seconds, which makes two seconds a reasonable
lower bound.
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e HPO: Homework-Practice-Other topic, students who made all
three decisions at least once;

e HP: Homework-Practice, students who made the decisions
Homework and Practice at least once and never made the decision
Other topic;

e HO: Homework-Other, students who made the decisions
Homework and Other topic at least once and never made the
decision Practice;

e PO: Practice-Other topic, students who made the decisions
Practice and Other topic at least once and never made the decision
Homework;

e H: Homework, students who always continued to work on the
homework set after viewing the student model;

e P: Practice, students who always worked on an extra practice set
after viewing the student model;

e O: Other, students who always worked on another topic after
viewing the student model.

To compare student model scores between different decisions within each
group, for each student model view a mean student model score was
calculated: the mean of all topic scores currently in the student model.
Next, for each decision within each group, the median of the mean student
model scores preceding that decision was calculated. Medians and non-
parametric tests were used, since the distribution of mean student model
scores was negatively skewed. For group HPO, a Friedman’s ANOVA and
follow-up pairwise Wilcoxon signed rank tests were used to compare median
scores for the three decisions. A Bonferroni correction was used to control
for the inflated chance of a type I error in multiple comparisons (Shaffer,
1995). For groups HP, HO and PO, the median scores were compared using
Wilcoxon signed rank tests.

To examine the relations between feedback-seeking behavior,
decision-making behavior and exam results (RQ3), a Chi-square test was
used to assess whether feedback-seeking and decision-making behavior
were independent. The seven groups for seven possible combinations of
decisions were supplemented with an eighth group, “"Nothing”, for students
who never viewed a student model or who never continued working in
the DME after viewing a student model. A possible confounding variable
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in relations between feedback-seeking behavior, decision-making behavior
and exam results was the students’ activity in the learning environment.
More active students may be more likely to view and use the student
models and may also be more likely to perform well on the exam. To
assess the influence of this confounding variable, the total time students
worked on the tasks in the DME was calculated (including breaks of up
to five minutes). Two one-way ANOVAs were carried out to examine the
relations between feedback-seeking and decision-making behavior on the
one hand, and time on task on the other hand. When the ANOVAs yielded
significant results, they were followed up with p