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CHAPTER 



 

 

Introduction 

 
Haarlem, December 1999 
 

Mara: Dad, dad, please give me a problem to solve! 
 
When I was young, my two younger brothers and I would sneak into my parents’ 
bed early in the weekend mornings. During those moments, I often asked my father 
for a problem to solve. Every time he came up with new problems and as I got older 
the problems got more complicated. The ones I liked most were the problems that 
were some sort of a puzzle to me. For example, one day he came up with a problem 
related to my favorite computer game: RollerCoaster Tycoon©. The purpose of this 
computer game was to create a theme park by building attractions and taking care 
of the visitors. These visitors had to pay an entrance fee and in addition they had to 
pay for each ride. 
 

Dad: Yesterday you were playing RollerCoaster Tycoon, right? Now imagine 
the following problem: A family of four comes to visit your theme park. They 
all pay the entrance fee and they all go three times into the same rollercoaster. 
The price of one rollercoaster ride is half the entrance fee. In total, they have 
to pay 100 guilders. Can you figure out the price of one rollercoaster ride? 

 
In this example, my father made use of an attractive problem, situated in a context 
that was very meaningful to me. Due to the many experiences I had playing this 
computer game, as well as other experiences such as going somewhere with my 
own family and having to pay a total price for several things combined, I could 
imagine what this problem implied. In other words, I already had an intuitive 
understanding of the problem, which was helpful to deduce the underlying 
mathematical structure. The problem, which could be represented by two linear 
equations (four entrance tickets and twelve rides together cost 100 guilders; the 
price of one ride is half the price of an entrance ticket), could be solved in different 
ways. As a little girl, I solved the problem by making use of various context-
connected strategies. I started, for example, with reasoning that if four people had to 
pay 100 guilders, the costs per person thus had to be 25 guilders. As each person 
paid the entrance fee and three rollercoaster rides, this implied that these four things 
combined had to cost 25 guilders. While keeping in mind that the price of one ride 
was half the price of an entrance ticket, from this point on, I could try various prices 
until obtaining the total price of 100 guilders. After solving the problem, my dad 
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and I would discuss the steps I had taken to solve it and which alternative solution 
strategies would have been possible. In this case, for example, replacing a part of 
the first equation on the basis of information from the second equation (i.e., making 
use of substitution) could have been a strategy as well. 
 
What I did not know at that time, but what I do realize now, is that by solving these 
puzzles, I was actually doing mathematics. The problems my father gave me 
required all kinds of elements of informal forms of algebraic reasoning, such as 
understanding of relationships, combining relationships, examining ideas, drawing 
inferences, justifying actions, and reasoning logically. While, at that time (I was 
about nine years old), I had not received instruction on algebra at school, I was very 
well able to reason about and to solve such problems — which also have been 
described as “early algebra” problems (Carraher et al., 2008). 
 
Developing algebraic reasoning is one of the major goals of mathematics education 
(e.g., National Council of Teachers of Mathematics [NCTM], 2000). Algebra is 
considered a gateway to understanding of science, statistics, business, or technology 
(Katz, 2007; Schoenfeld, 1995). It moreover is viewed as crucial for later 
achievements in our global economy of the 21st century (Vogel, 2008). Acquiring 
these rather sophisticated reasoning skills, which have also been referred to as 21st 
century skills (e.g., Binkley et al., 2012) or higher-order thinking (HOT) skills (e.g., 
Lewis & Smith, 1993) has recently received increased attention, also within the 
domain of mathematics (e.g., Alexander et al., 2011). Internationally, there is 
consensus that a foundation for HOT skills should be laid in primary school 
(Common Core State Standards Initiative [CCSSI], 2010; Goldenberg et al., 2003; 
NCTM, 2000; Organization for Economic Co-operation and Development [OECD], 
2003). For the domain of algebra, several studies have provided evidence that 
primary school students can be engaged in algebraic reasoning activities and that 
algebraic reasoning can be integrated in the primary school mathematics classrooms 
(e.g., Brizuela & Schliemann, 2004; Kaput et al., 2008). In this way, students’ HOT 
skills can be fostered at an early stage.  
 
Compared to the international situation, in the Netherlands it took a little longer 
before attention was paid to offering elementary-grade students opportunities for 
developing mathematical reasoning through, for example, engaging them in solving 
informal algebraic problems or other non-routine problems. Only when a small-
scale study (Van den Heuvel-Panhuizen & Bodin-Baarends, 2004) revealed that 
even the highest achievers in mathematics in grade four had difficulties to solve 
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problems like the “theme park” problem, it became clear that this was a blind spot 
in the Dutch primary school curriculum. A textbook analysis of six primary school 
mathematics textbook series confirmed this (Kolovou et al., 2009). The textbooks 
contained almost no problems for developing students’ HOT skills. To explore 
possibilities for how primary school students can be engaged in algebraic reasoning 
activities, an online game was developed, evoking students to deal with covarying 
quantities. Participating in this game resulted in positive effects on students’ 
performance on early algebra tasks (Kolovou et al., 2013; Van den Heuvel-
Panhuizen et al., 2013). 
 
This PhD thesis emerged more or less from these earlier studies. The main goal was 
to gain insight in whether, in what ways, and to what extent primary school 
students’ early algebraic reasoning can be fostered as an approach to incorporate 
HOT in Dutch classrooms. Within this thesis, we focused on fifth-grade students’ 
reasoning about solving linear equations; a topic of which various studies have 
revealed that primary school students can deal with it (e.g., Blanton et al., 2015; 
Brizuela & Schliemann, 2004). 
 
1. Theoretical background 

 

1.1 Higher-order thinking skills in primary education 

In today’s rapidly changing world, with an abundance of information available and 
with advanced communication technologies all around, it is essential to develop 
sophisticated skills such as interpreting information and drawing conclusions, 
identifying and analyzing arguments, synthesizing information, evaluating 
statements, making inferences, and explaining and justifying procedures (Binkley et 
al., 2012; Forster, 2004). These skills are important in this time and age and are 
therefore frequently referred to as 21st century skills (Binkley et al., 2012; Dede, 
2010). Developing 21st century skills requires HOT, and the expressions 21st 
century skills and HOT skills are often used interchangeably. Resnick (1987) 
defined HOT as “a cluster of elaborative mental processes requiring nuanced 
judgement and analysis” (p. 44). Thomas and Thorne (2009) provided the following 
definition of HOT: 
 

Higher order thinking (HOT) is thinking on a level that is higher than 
memorizing facts or telling something back to someone exactly the way it 
was told to you. HOT takes thinking to higher levels than restating the facts 
and requires students to do something with the facts — understand them, infer 
from them, connect them to other facts and concepts, categorize them, 
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manipulate them, put them together in new or novel ways, and apply them as 
we seek new solutions to new problems (p. 1). 

 
Within both these definitions, it comes to the fore how HOT differs from lower-
order thinking skills such as memorization or routine application of previously 
learned knowledge (Newmann, 1991). A similar division can be found in the 
Taxonomy of Educational Objectives of Bloom et al. (1956), which is also often 
referred to in the context of HOT. This taxonomy consists of an ordering of 
cognitive skills, knowledge, comprehension, application, analysis, synthesis, and 
evaluation, with the last three levels being classified as higher order. 
 
Most conceptualizations of HOT highlight the historical tendency to conceptualize 
HOT in a domain-general way, reflecting the view that HOT is about applying 
general principles of (logical) reasoning to any academic domain (e.g., Leighton, 
2004). Yet, others have taken an opposite position, advocating that thinking 
becomes higher-order due to expertise people have within a particular academic 
domain (e.g., Alexander et al., 2011; Ericsson, 2003). Per this domain-specific 
view, HOT originates from — and is entangled with — specific academic domains, 
such as the domain of mathematics. Alexander and et al. (2011) therefore 
emphasize the necessity of including the role of the domain in the description of 
HOT. In their view, HOT “exhibits distinctive qualities arising from the nature of 
the domain within which the task or activity is situated” (p. 53).  
 
Challenging mathematics activities could offer a fruitful starting point for teaching 
HOT. Several researchers have pointed out that activities which are prone to elicit 
HOT, such as non-routine problem-solving activities, should be part of mathematics 
education (e.g., Goldenberg et al., 2015; Schoenfeld, 2013). In order to gain 
knowledge about how HOT can be supported within mathematics education, the 
research within this thesis focussed on stimulating primary school students’ 
reasoning related to solving linear equations. This domain offers many possibilities 
for developing HOT. Consider, as an example, the “theme park” problem in the 
beginning of this chapter. Reasoning about such an informal mathematical problem 
requires skills like understanding of relationships, interpreting and connecting 
information, reasoning adaptively, and drawing inferences. Such skills, especially 
for young students without experience in algebra, can be considered HOT skills 
(e.g., Goldenberg et al., 2015). 
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1.2 Early algebra and linear equation solving  

Early algebra refers to the introduction of algebraic thinking in the elementary 
grades (Kaput, et al., 2008). In this way, algebra is treated as a longitudinal strand 
throughout K-12 mathematics, starting in the elementary grades with solving 
informal algebraic problems that build on students’ natural ways of thinking and 
understanding of mathematical patterns and relationships and evolving into more 
formal algebra in later grades (e.g., Carraher et al., 2008; Kieran et al., 2016; 
NCTM, 2000). Introducing early algebra activities within the elementary grades and 
connecting these experiences with advanced algebraic concepts in later grades, 
provides students a basis for developing algebraic understanding in the course of 
school education (e.g., Carraher & Schliemann, 2014).  
 
Kaput (2008) proposed that algebraic thinking comprises two core aspects: making 
and expressing generalizations in increasingly formal and conventional symbol 
systems, and reasoning with symbolic forms. He further argued that these two 
practices can take place within three content strands: generalized arithmetic, 
functional thinking, and modeling. Within the first content strand, the generalized 
arithmetic strand, the focus is on the structures and relations arising in arithmetic. It 
includes generalizing arithmetic operations and their properties, and building 
generalizations and reasoning about numbers or relationships. Examples of 
algebraic concepts that are embedded in this content strand are numbers, operations, 
properties, equality, expressions, and equations (Chimoni et al., 2018; Kieran et al., 
2016). Within the functional thinking strand, the focus is on generalizing towards 
the idea of function. Activities with identifying and completing patterns often take a 
central position within this strand, with a key role for the ideas of systematic 
variation and change (Kaput, 2008). Associated algebraic concepts are, for 
example, change, covariance, variable, and equation (Chimoni et al., 2018; Kieran 
et al., 2016). Lastly, the third content strand contains different types of modeling 
activities. This strand is often interwoven with the first two strands by means of 
various problem contexts (Kieran et al., 2016), making that all the above concepts 
are also incorporated in this content strand (Chimoni et al., 2018). Engaging 
students in early algebra activities implies that, from early on, students can be 
involved in problem-solving activities related to these content strands. 
 
Linear equation solving is an important topic within school algebra. An equation is 
a mathematical statement in which the expressions on both sides of the equal sign 
represent the same value. In that sense, both sides of the equation are equal (e.g., 
Kieran, 1981). The use of context-based problems, which can be represented by an 
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equation, opens up possibilities for stimulating young students’ reasoning related to 
linear equation solving (e.g., Brizuela & Schliemann, 2004; Van Reeuwijk, 1995). 
The “theme park” problem presented at the beginning of this chapter is an example 
of a context-based problem which, in this case, can be represented by two linear 
equations. When solving this problem, students first can come up with a hypothesis 
or an idea about the underlying problem statement, which can be translated into a 
mathematical relationship. Subsequently, students can solve this problem through 
reasoning which is still closely linked to the problem context (like I did as a little 
girl). When students get experience in algebra and improve in their level of 
understanding, they can transform a context problem into a symbolic problem (for 
the “theme park” problem: 4x + 12y = 100 and 0.5x = y, with x representing the 
entrance fee and y representing the price of one rollercoaster ride) and solve it by 
symbolic manipulations.  
 
When solving an equation, the goal is to determine the relationships between 
unknowns and numbers for which the expressions on both sides of the equation are 
equal. To this aim, the unknown needs to be isolated, which can be achieved 
through performing operations on the expressions on both sides of the equation 
while making sure that their equality is maintained. The notion of equality and the 
strategies for maintaining this equality fulfill a crucial role within linear equation 
solving (e.g., Bush & Karp, 2013; Kieran et al., 2016). Students’ understanding of 
this concept is particularly reflected in their understanding of the equal sign; 
students need to have a relational understanding of the equal sign, which means that 
they perceive it as a symbol reflecting the sameness of the expressions on both sides 
(Knuth et al., 2006). A relational understanding of this symbol is positively related 
to performances in linear equation solving (Knuth et al., 2006). However, students 
often hold an operational view, meaning that they perceive the equal sign as symbol 
directing them to calculate an answer (e.g., Behr et al., 1980; Carpenter et al., 2003; 
Falkner et al., 1999).  
 
When solving a system of linear equations with multiple unknowns, relationships 
between unknowns and numbers need to be determined, making sure that all 
equations within the system are satisfied. This requires understanding of the 
relationship between the unknowns and their pattern of covariation, that is, how 
changes in the value of one unknown must result in changes in the value of the 
other unknown in order for their sum to remain the same (Thompson & Carlson, 
2017). Often-used strategies for solving a system of equations are substitution, 
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replacing an expression by another expression of the same value, or elimination, 
subtracting equations from each other (Arcavi et al., 2016).  
 
1.3 Fostering students’ understanding of linear equations 

Realistic Mathematics Education (RME) is a domain-specific instruction theory for 
mathematics (e.g., Treffers, 1978, 1987; see also Van den Heuvel-Panhuizen & 
Drijvers, 2020), which has its roots in Freudenthal’s (1973) idea of mathematics as 
a human activity. Per this view, mathematics should be perceived as an activity of 
mathematizing, which means that mathematics can be seen as the activity of solving 
problems in our surrounding world, or more generally, as the activity of 
mathematically organizing and structuring reality (Freudenthal, 1968). Within 
RME, “realistic” situations, situations (or: contexts) of which students can imagine 
what is happening, serve as a source for developing understanding of mathematical 
concepts and procedures. Within these realistic contexts, students can solve 
problems with context-connected strategies, which later can gradually evolve into 
more formal solution processes (Van den Heuvel-Panhuizen & Drijvers, 2020). 
This process of progressive mathematization can be supported by making use of 
models: representations of mathematical problem situations in which the essential 
mathematics concepts and relevant aspects of the problem situation are reflected. 
Such models can bridge the gap between informal context-connected understanding 
on the one side and understanding of formal systems on the other (Van den Heuvel-
Panhuizen, 2003). By first being a model of a particular situation in which the 
model has a close connection to a specific problem and later involving into a model 

for similar problem situations in other contexts, the model can be used to organize 
and solve new problem situations (Streefland, 1985, 2003). Allowing students to 
play an active role in their learning process, letting them explore the model and 
invent (informal) mathematical strategies, can moreover support their development 
in understanding (e.g., Van den Heuvel-Panhuizen & Drijvers, 2020). 
 
Models that can be used to teach students linear equation solving include area 
models, linear models, and balance models. In area models (e.g., Filloy & Rojano, 
1989; Van Amerom, 2002), the areas of rectangular shapes are used to represent the 
elements in equations. In the case of linear models, the unknown quantities are 
represented by the length of a line or strip (e.g., Dickinson & Eade, 2004; Warren & 
Cooper, 2009). Balance models (e.g., Van Amerom, 2002; Vlassis, 2002) are based 
on the idea of having a scale with equal weights on both sides. The balance model 
has a long didactical history. The philosopher and mathematician Gottfried Wilhelm 
Leibniz (1646-1716) already referred to the correspondence between equality in a 
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mathematical situation and a balance with equal things on both sides (Leibniz, 
1989). The balance model can be used for demonstrating the idea of equality in an 
equation (e.g., Taylor-Cox, 2003), an idea which is often enforced by referring to 
the metaphor of two sides being “in balance” (Antle et al., 2013). This model is 
therefore also deemed suitable for enhancing understanding of the equal sign as a 
symbol for representing equality (e.g., Pirie & Martin, 1997). The way in which 
balance models are represented varies, ranging from physical models (or: concrete 
models) being very close to real-world balance scales on which students’ can 
perform operations, to abstract representations (e.g., Warren & Cooper, 2005).  
 
We all have some sort of intuitive understanding of what “balance” means. Our idea 
of balance is understood through a set of closely related everyday-life experiences, 
such as walking without falling, standing up and sitting down, holding objects of 
similar and different weights, and so on (Alessandroni, 2018). In other words, we 
primarily understand balance “with our bodies and not by grasping a set of rules or 
concepts” (Johnson, 1987, p. 74). The idea that higher-order cognitive processes 
such as mathematical thinking processes, are influenced and shaped by our body 
and its interaction with the environment, is more broadly reflected in theories of 
embodied cognition (e.g., Barsalou, 2008; Gallese & Lakoff, 2005; Lakoff & 
Johnson, 1980; Núñez et al., 1999; Wilson, 2002). Conceptual metaphor theory 
(e.g., Lakoff & Johnson, 1980) provides an explanation for how mathematical 
reasoning and the understanding of abstract mathematical concepts can develop 
through physical experiences that we acquire by constant interaction with our 
environment. According to this theory, we form so called image schemas, 
knowledge structures that are derived from repeated perceptual-motor experiences 
within our surrounding world (Johnson, 1987), which can be used to give meaning 
to more abstract domains (Gibbs Jr, 2006). The linking between the bodily based 
experience of being in balance and the concept of equality in an equation can be 
explained by looking into conceptual metaphor theory: repeated bodily experiences 
related to maintaining balance together give rise to the “balance” image schema 
(Gibbs Jr, 2006; Johnson, 1987), which helps to understand the abstract idea of 
equality in an equation (Antle et al., 2013).  
 
The idea that physical experiences are beneficial for learning mathematics has 
implications for teaching. Embodied learning environments (Duijzer et al., 2019) 
are environments in which students’ physical experiences are a vital part of the 
learning activities. In this way, students are provided opportunities to ground 
abstract (mathematical) concepts in concrete bodily experiences (e.g., Abrahamson, 
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2017; Glenberg, 2010). In the case of teaching linear equation solving, physical 
experiences related to maintaining balance, for example by means of a physical 
balance model, might thus be beneficial for understanding equality and the equal 
sign in a linear equation.  
 
2. The PhD thesis 

 
The research described in this PhD thesis is part of the Beyond Flatland project. 
This research project was carried out with a grant (405-14-303) from the 
Netherlands Initiative for Education Research (NRO). The aim of this research 
project was to explore the possibilities for enriching the Dutch “flat” primary school 
mathematics curriculum as an approach to stimulate primary school students’ HOT. 
In this way, this research project is in line with the recently launched 
recommendations of the Dutch Association for the Development of Mathematics 
Education (Nederlandse Vereniging voor de Ontwikkeling van Reken-
WiskundeOnderwijs [NVORWO], 2019; 2020) to support students’ development of 
mathematical HOT within the primary school classroom, and with the current ideas 
for the revision of the Dutch curriculum for primary and secondary education 
(curriculum.nu, 2019). 
 
The Beyond Flatland project consisted of three part-projects, which each addressed 
another mathematical content domain: graphing motion, probability, and early 
algebra. This PhD thesis is the result of the part-project on early algebra. The main 
goal of this project was to gain insight in how primary school students’ algebraic 
reasoning can be stimulated, and in how this can create opportunities for fostering 
students’ HOT in the mathematics classroom. In this project, we concentrated on 
students’ reasoning related to linear equations. In order to stimulate fifth-grade 
students’ algebraic reasoning, a six-lesson teaching sequence about linear equations 
was developed in which a balance model played a key role. During the lessons, 
students’ explorations were taken as a basis for developing their reasoning related 
to solving (systems of) linear equations. The empirical data collected in this 
research project comprised students’ reasoning on lesson-specific assessment tasks 
administered at the end of each lesson (i.e., data about students’ reasoning on 
micro-level) and students’ reasoning on assessment tasks administered four times 
over the school year (i.e., data about students’ reasoning on macro-level). 
 
Overall, in this PhD project we aimed to investigate (1) the role of the balance 
model in teaching linear equation solving; (2) the potential of using (various 
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representations of) the balance model for supporting primary school students’ 
algebraic understanding of linear equations; and (3) whether stimulating primary 
school students’ algebraic reasoning related to solving linear equations also offers 
opportunities to promote students’ reasoning in a related mathematical domain: 
graphing motion. 
 
3. Structure of the PhD thesis 

 
This PhD thesis comprises a number of journal articles, formatted as chapters, each 
addressing a different part of this research project on stimulating primary school 
students’ algebraic reasoning related to linear equation solving as an approach to 
incorporate HOT in the mathematics classroom. Table 1 illustrates the structure of 
this thesis and provides for each chapter the title and the research question.  
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Table 1 
Structure of the PhD thesis 

Chapter Title Research question(s) 
1 Introduction 

 
 

2 The balance model for teaching 
linear equations: A systematic 
literature review 
 

What role does the balance model play in 
studies on teaching linear equation 
solving? 
 

3 Developing algebraic reasoning in 
primary school using a hanging 
mobile as a learning supportive tool 

How does fifth-grade students’ algebraic 
reasoning for solving linear equations 
develop in an embodied learning 
environment? 
 
How are students’ experiences in the 
learning environment related to their use 
of algebraic strategies? 
 

4 Are physical experiences with the 
balance model beneficial for 
students’ algebraic reasoning? An 
evaluation of two learning 
environments for linear equations 

What is the effect of an intervention 
program based on the balance model on 
students’ development of algebraic 
reasoning? 
 
How does the representation of balance 
model influence the development of 
students’ algebraic reasoning? 
 

5 Fifth-grade students’ reasoning on 
linear equations and graphs of 
motion 

To what extent does a teaching sequence 
on linear equations affect the development 
of students’ algebraic and graphical 
reasoning? 
 

6 Summary and discussion  
 
A systematic literature review was conducted in order to learn more about the often-
used balance model as an aid for teaching linear equation solving. This review is 
described in Chapter 2. The purpose of this review was to gain more insight on why 
the balance model is used for teaching linear equation solving, what types of 
models are used, and when this model is used. In addition, we were interested in 
students’ learning outcomes when teaching linear equation solving by means of this 
model. This chapter presents an overview of the role of the balance model in 
teaching linear equation solving, which can be a source for teachers, researchers, 
and developers of instructional materials for making informed instructional 
decisions about choosing this model for teaching linear equation solving.  
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Chapter 3 reports on the development of fifth-grade students’ algebraic reasoning 
during an intervention consisting of a six-lesson teaching sequence about linear 
equations. The aim of this teaching sequence was to stimulate students’ algebraic 
reasoning by providing them a learning environment in which they were able to 
invent, in an informal way, strategies for solving linear equations. A physical 
balance model, in the form of a hanging mobile, played a key role within this 
learning environment. Students’ perceptual-motor experiences with this physical 
balance model were expected to be beneficial for the development of their algebraic 
reasoning. To examine students’ reasoning, videos of classroom interactions, 
students’ written work during the lessons, and students’ responses to lesson-specific 
assessment tasks were analyzed. In this way, we could investigate the development 
of students’ reasoning and their writing down of this reasoning over the lessons, and 
the relationship between students’ experiences in the learning environment and their 
use of algebraic strategies such as restructuring, isolation, and substitution. 
 
In a quasi-experimental study, described in Chapter 4, we further examined the 
effect of our six-lesson teaching sequence with the balance model on the 
development of students’ HOT, operationalized as their algebraic reasoning related 
to solving systems of informal linear equations. Students of three classes 
participated in the teaching sequence with only pictorial representations of the 
balance model, students of three classes participated in the teaching sequence with 
physical and pictorial representations of the balance model, and students of the 
three classes participating in the control condition did not receive any instruction on 
linear equation solving. A staged comparison design was used: students’ algebraic 
reasoning was repeatedly assessed four times over the school year and the teaching 
sequence was provided to the students in between two of these measurements in 
three successive cohorts, one class per cohort for each condition. In this study, we 
investigated the effect of participating in the intervention with the balance model on 
the development of students’ algebraic reasoning over the school year. Moreover, 
we were particularly interested in whether different representations of the balance 
model had a differential effect on the development of students’ reasoning.  
 
Chapter 5 reports on a study in which we investigated whether our teaching 
sequence stimulating students’ domain-specific mathematical HOT related to linear 
equation solving also offers opportunities to promote HOT within the related 
mathematical domain of graphing motion. HOT within both these mathematical 
domains is characterized by reasoning about covariation. As described in Chapter 4, 
students’ algebraic reasoning was assessed four times over the school year, while 
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students in between two of these measurements participated in the teaching 
sequence. At these same measurement moments students’ graphical reasoning 
related to interpreting and constructing graphs of motion was examined as well. 
This allowed us to investigate the effect of our teaching sequence on students’ 
reasoning in this other mathematical domain. With this study we aimed at knowing 
more about whether and how mathematical HOT can be stimulated across 
mathematics domains. 
 
Finally, in Chapter 6, the findings from all four studies belonging to this PhD 
project are summarized and related to each other. Implications of the findings are 
discussed, limitations of this thesis are addressed, and suggestions for further 
research are proposed.  
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The balance model for teaching linear equations:  

A systematic literature review  

 
Abstract 

 

This paper reports a systematic literature review of the balance model, an often-
used aid to teach linear equations. The purpose of the review was to report why such 
a model is used, what types of models are used, and when they are used. In total 
34 peer-reviewed journal articles were analyzed, resulting in a comprehensive 
overview of described rationales for using the balance model, its appearances, 
situations in which it was used, and the gained learning outcomes. Some trends 
appeared about how rationales, appearances, situations, and learning outcomes are 
related. However, a clear pattern could not be identified. Our study shows that this 
seemingly simple model actually is a rather complex didactic tool of which in-depth 
knowledge is lacking. Further systematic research is needed for making informed 
instructional decisions on when and how balance models can be used effectively for 
teaching linear equation solving. 
 
 
Keywords: Algebra, Teaching linear equations, Balance model.  
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1. Introduction 

 

A substantial component of learning algebra is learning to solve algebraic 
equations. Within the algebra curriculum, solving linear equations is one of the 
foundational topics in which students make the transition from reasoning with 
numbers to reasoning with unknowns (e.g., Filloy & Rojano, 1989). Similarly, early 
algebra has been described as a “shift from thinking about relations among 
particular numbers and measures towards thinking about relations among sets of 
numbers and measures, from computing numerical answers to describing and 
representing relations among variables” (Carraher et al., 2008, p. 266). Solving 
linear equations as a basic skill (Ballheim, 1999) is a substantial part of the middle 
school mathematics program (Huntley & Terrell, 2014). However, many students 
do not achieve mastery of this basic skill and experience difficulties in learning the 
concepts and skills related to solving equations (e.g., Kieran, 2007). 
 
Solving linear equations means that the values of the unknown quantities have to be 
found based on the equality of two given mathematical expressions — one on each 
side of the equal sign. The essence of an equation is that these mathematical 
expressions represent the same value (Alibali, 1999), which makes equality a key 
concept in solving linear equations (e.g., Bush & Karp, 2013) and understanding 
equality one of the main conceptual demands associated with equation solving 
(Kieran, 1997; Kieran et al., 2016). Students need to understand that in an equation 
the expressions on both sides of the equal sign have the same value and that this 
equality should always be maintained in the process of solving an equation (e.g., 
Kieran et al., 2016). 
 
Misconceptions related to the concept of equality in linear equation solving are well 
documented. These misconceptions are particularly reflected in students’ 
interpretations of the equal sign. Instead of perceiving it as a relational symbol 
meaning “is the same as”, students often have an operational view of the equal sign, 
that is, they view it as a sign to “do something” or to “calculate the answer” (e.g., 
Knuth et al., 2006). For example, when solving the problem 8 + 4 = __ + 5, a 
common mistake is adding the numbers on the left side of the equation and putting 
a 12 in the blank (Falkner et al., 1999). Such interpretation of the equal sign can 
begin in the elementary grades and can persist through middle school (e.g., Alibali 
et al., 2007). 
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One way to help students gain conceptual understanding in equation solving is 
through the use of models as “ways of thinking about abstract concepts” (Warren & 
Cooper, 2009, p. 77). Such didactical models can be seen as representations of 
mathematical problem situations in which the essential mathematical concepts and 
aspects of the problem situation are reflected, and through which the concrete 
situation is connected to the more formal mathematics (Van den Heuvel-Panhuizen, 
2003). By first being a model of a concrete situation where the model is very closely 
related to a specific problem and later evolving to a model for similar problems that 
are situated in another context, the model can be applied for solving all kinds of 
new problems (Streefland, 2003). 
 
In mathematics education, several didactical models are used to give students 
access to particular mathematical concepts, such as the number line or the bar 
model for teaching fractions. The balance model is another commonly used 
didactical model. This model is often used to support students’ understanding of 
linear equation solving. Characteristic of the balance model is that its form serves as 
a model for its function in solving linear equations: the balance can be used to refer 
to the situation of equality of the expressions on the two sides of an equation. The 
philosopher and mathematician Gottfried Wilhelm Leibniz (1646-1716) already 
made this connection when he mentioned the relation between equality in a 
mathematical situation and a balance with equal things on both sides (Leibniz, 
1989). 
 
In the context of a larger research project on algebraic reasoning, we wanted to find 
indications for setting up a teaching sequence on linear equation solving. We 
searched for information about the use of the balance model as a possible aid to 
assist students in developing understanding of solving linear equations. The diverse 
and scattered picture we got from this initial search prompted us to investigate this 
more systematically. Therefore, we planned to carry out a systematic review of the 
literature of how the balance model turns up in the large body of research and 
professional articles that has been published about teaching linear equation solving. 
With this review, we aimed at answering the following research question: What role 
does the balance model play in studies on teaching linear equation solving? 
 
In general, to learn more about a didactical model for teaching students 
(mathematical) concepts, it is essential to gain insight in various important aspects 
of a model. The specific way of representing the model is important to take into 
account, but also information related to possible reasons for choosing this particular 
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model and timing of using the model in a teaching and learning trajectory contribute 
to getting a complete picture of how the model can be used. Lastly, to be able to 
evaluate the use of a didactical model for fostering students’ conceptual 
understanding, it is important to incorporate students’ learning outcomes as well. To 
determine the role balance models play in studies on teaching linear equation 
solving, we looked into what authors reported about why such a model is used, what 

types of models are used, when they are used, and what learning outcomes are 
associated with its use. Knowing this can be helpful for teachers, researchers, and 
developers of instructional material for making informed decisions about choosing 
the balance model for teaching linear equation solving. 
 
2. Method 

 
2.1 Article search and selection 

For selecting articles for the review, we searched in 93 peer-reviewed research 
journals in the areas of mathematics education, educational sciences, pedagogics, 
developmental psychology, special education, and technology in education. The 
search was conducted in Scopus and ERIC for articles in English. The search query 
consisted of terms such as equation*, equal sign*, equality, equivalence, balanc*, 
algebra*, mathematic*, unknown*, and solv*, and combinations thereof (see 
Appendix 2.1 for the complete search queries). There was no limit with regard to 
the date of publication. 
 
The search, conducted in March 2017, resulted in 932 hits in Scopus and in 723 hits 
in ERIC, together resulting in 1655 hits (see Figure 1). After merging, 
333 duplicates were identified and removed, resulting in 1322 articles from 
92 journals. Thirty-two articles were removed either because they, despite our 
search query, turned out to be not in English, or because they did not originate from 
peer-reviewed journals (e.g., were book chapters), resulting in 1290 articles. 
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Figure 1. Flow chart illustrating the systematic search process, resulting in 
34 articles. 
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In a six-step procedure, titles and abstracts were screened. Articles that were not in 
the field of mathematics education, did not touch upon the domain of algebra, did 
not address equations, were not about linear equations, or did not address teaching 
or learning linear equations, were excluded. This resulted in 287 articles. In the 
sixth and final step, the 282 articles of which we could obtain the full text were 
inspected to make an accurate decision on whether the concept of balance was 
discussed in relation to linear equation solving. Based on this reading, 29 articles 
were selected in which the balance model was used to teach linear equation solving. 
Lastly, snowballing was used to ensure that possible other relevant literature was 
covered as well, which resulted in five additional articles. Thus, the final collection 
comprised 34 articles from 22 journals. 
 
2.2 Data extraction 

For each of the 34 articles, information was extracted related to the rationales and 
the limitations of using the balance model, the appearances of the model, the 
situations in which the model was used, and students’ learning outcomes. 
Information was extracted in case at least one sentence of the article was devoted to 
either of these four categories. After the inventory of all rationales (in 26 articles) 
and appearances (in 34 articles), patterns were identified to see whether classes of 
rationales and types of models could be created. Multiple rationales for using the 
model and multiple appearances could be extracted from one article. To describe 
the situations in which the balance model was used (in 34 articles), information was 
extracted regarding the grade level of the students, the duration of the intervention, 
the type of tasks students worked on, and the type of instruction. Students’ learning 
outcomes when using a balance model for teaching linear equation solving were 
discussed in 19 articles. These different aspects of the reviewed articles are 
summarized in Table 1. 
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3. Results 
 
3.1 Why was the balance model used? 
Rationales for using the balance model were provided in 26 articles. Three main 
classes of rationales could be identified, which were all related to the specific 
features of the context of the balance model. Articles constituting the Equality class 
of rationales all directly referred to using the balance to enhance students’ 
understanding of the concept of equality. Direct references to equality are directly 
focused on the mathematical equality, by emphasizing the analogy between the 
balance model and equality in an equation. Articles in the remaining two classes of 
rationales made more indirect references to using the balance model for enhancing 
students’ understanding of equality. Indirect references to equality are, for example, 
offering students physical experiences when manipulating a balance model and thus 
feel, through the experience of balancing, the concept of equality. Such articles that 
made a reference to previous or concurrent physical experiences related to the 
balance model fell in the Physical Experiences class of rationales. Articles that fell 
into the Models and Representations class of rationales referred to the use of 
models and representations for enhancing students’ conceptual understanding in 
linear equation solving. Finally, limitations of using the balance model for teaching 
linear equation solving were also extracted. 
 
3.1.1 Rationales related to the equality concept 
A majority of 15 articles (three from the same research project) mentioned 
rationales for using the balance model related to the concept of equality. It was 
often stated that understanding the concept of equality can be enhanced by making 
use of the model of a balance (e.g., Gavin & Sheffield, 2015; Leavy et al., 2013; 
Mann, 2004; Taylor-Cox, 2003; Warren et al., 2009). Because both sides of a 
balance model are of equal value and thus exchangeable, the model was described 
as being very suitable for demonstrating the idea of equality or equilibrium 
(Figueira-Sampaio et al., 2009) and quantitative sameness (e.g., Warren & Cooper, 
2005). In line with this, several authors referred to the use of the balance model to 
enhance the understanding of the equal sign as a symbol for representing equality 
(e.g., Vlassis, 2002; Warren & Cooper, 2009). Accordingly, the balance model has 
often been described as suitable to demonstrate the strategy of doing the same thing 
on both sides of the equation, in which emphasis on the concept of balance is 
crucial (e.g., Andrews & Sayers, 2012; Figueira-Sampaio et al., 2009; Marschall & 
Andrews, 2015), thereby helping students in forming, according to Vlassis (2002), a 
mental picture of the operations they have to apply. Another mentioned advantage 
of the balance model is the possibility to keep track “of the entire numerical 
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relationship expressed by the equation while it is being subjected to 
transformations” (Linchevski & Herscovics, 1996, p. 52), which makes it suitable 
for demonstration of the cancelation of identical terms on both sides of the equation 
(e.g., Filloy & Rojano, 1989). 
 
3.1.2 Rationales related to the physical experiences 
The second class of rationales that was identified, mentioned in 11 articles (all from 
different research projects), was related to learning through physical experiences. In 
several articles, a reference was made to previous physical experiences related to 
maintaining balance. Araya et al. (2010) argued that the process of maintaining 
balance has a primary biological basis and is therefore common physical knowledge 
for all human beings. Through using the balance model, this biologically primary 
knowledge can be connected to the abstract idea of maintaining equality in an 
equation. Others emphasized the similarity between the model and a teeter-totter (or 
see-saw) and referred to children’s (playing) experiences with this object (Alibali, 
1999; Kaplan & Alon, 2013). 
 
In other articles, the contribution of concurrent physical experiences with the 
balance model was pointed out as being beneficial to the learning of linear 
equations. Warren and Cooper (2009) underlined the importance of movement (for 
example by acting out a balance) and gestures during the learning trajectory to 
develop mental models of mathematical ideas. They argued that referring to these 
experiences in later stages of the learning process can be beneficial. Also, the 
importance of physical experiences with concrete objects for developing 
understanding of linear equations was mentioned in several articles. Offering young 
students experiences with manipulation of balance scales, because through this 
manipulation, equality can be recognized, defined, created, and maintained, could 
enhance students’ understanding of this concept (Taylor-Cox, 2003). Suh and 
Moyer (2007) mentioned that using manipulable concrete objects have a sense-
making function, through connecting procedural knowledge (manipulations on the 
objects) and conceptual knowledge of algebraic equations. However, at the same 
time these authors pointed out that caution with using such manipulatives for 
teaching formal equation solving is necessary, because not all students 
automatically connect their actions on manipulatives with their manipulations on 
abstract symbols. Also Orlov (1971) commented that the balance model as a 
physical instrument can help in forming abstract mathematical thought, because it 
represents an intermediate degree between immediate sensory data and 
mathematical abstraction. In this same line, Fyfe et al. (2015) recommended a 
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sequence based on fading concreteness, where instruction begins with concrete 
material and fades into abstract mathematical symbols. The real-time feedback 
some models provide about being in balance, which allows students to verify the 
results of their manipulations and their reasoning processes and as such to construct 
knowledge, was also deemed important (Austin & Vollrath, 1989). When combined 
with social experiences, physical experiences were also said to contribute to the 
construction of knowledge (Figueira-Sampaio et al., 2009), for example, because it 
creates shared meaning between teacher and students (Perry et al.,1995). 
 
3.1.3 Rationales related to learning through models and representations 

The third class of rationales, mentioned in eight articles (four from the same 
research project), included a more general argumentation and referred to learning 
through the use of models and representations. According to Filloy and Rojano 
(1989), models such as the balance model can provide an opportunity to 
semantically and syntactically set a foundation for linear equation solving. Here, the 
meaning of equality and algebraic operations can first be derived from the context, 
while after students have gone through a process of abstraction, meaning at 
syntactic level is linked to this meaning of the context. Researchers involved in the 
Australian Early Algebraic Thinking Project (Cooper & Warren, 2008; Warren & 
Cooper, 2009) argued that, through models, mathematical ideas are presented 
externally as concrete material, by iconic representations, language, or symbols, 
while comprehension of these ideas occurs internally, in mental models or internal 
cognitive representations of mathematical ideas underlying the external 
representations. From this point of view, mathematical understanding is determined 
by the number and strength of the connections in the student’s internal network of 
representations. Also the use of multiple representations in teaching abstract 
mathematical concepts or strategies was advocated (e.g., Berks & Vlasnik, 2014), 
because experiencing different modes of representation and making connections 
between and within these different modes of representation could enhance deep 
mathematical understanding (Suh & Moyer, 2007). The sense-making function of 
representations was elaborated on by Caglayan and Olive (2010), who reasoned that 
students can make sense of abstract symbolic equations through connecting this 
symbolic equation with the equation as expressed by its representation. 
 
Also other reasons for using representations of the balance model were suggested. 
For example that it can create a shared language base which students can use when 
explaining their solutions (Berks & Vlasnik, 2014; Warren & Cooper, 2005; Warren 
et al., 2009) or that it is supposed to lower students’ cognitive load during equation 
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solving processes (Araya et al., 2010). The latter contrasts with Boulton-Lewis et al. 
(1997), who hypothesized an increased processing load caused by the use of 
concrete representations. This might depend on the students’ experience and the 
type of equation problems they have to solve: if students do not really need the help 
of a concrete representation of the balance model anymore and they still have to use 
it, this could indeed increase processing load. 
 
3.1.4 Limitations of the balance model 

Limitations of the balance model were described in eight articles (all from different 
research projects). In her well-known article, Vlassis (2002) described how eight-
grade students were taught formal linear equation solving by making use of the 
balance model and concluded that although the balance model was able to provide 
students an “operative mental image” (p. 355) of the to-be-applied equation solving 
strategies, this model also had some shortcomings. For example, the model was not 
helpful for equations containing negative numbers or for other equations that are 
“detached from the model” (p. 354) and that no longer refer to a concrete model. 
Also, several other articles referred to the restricted possibilities the model has to 
represent equations with negative quantities or subtractions (e.g., Filloy & Rojano, 
1989; Linchevski & Herscovics, 1996). As soon as negative values are involved, 
such as in the case of the equation x + 5 = 3, or equations with subtraction, such as 
2x - 3 = 5, the solution is difficult to express in terms of physical weight which 
makes it difficult to construct meaning for these equations (Caglayan & Olive, 
2010). 
 
3.1.5 Discussion of the findings regarding why the model was used 

Although the three classes of rationales all have unique characteristics based on 
which they can be differentiated, they are also interrelated. The most often 
mentioned rationale was related to equality; understanding equality is regarded as 
one of the main conceptual demands associated with linear equation solving (e.g., 
Kieran et al., 2016). Inherent properties of the balance were connected to the 
concept of equality and the strategies that can be applied while maintaining the 
balance. The two remaining rationales were less often mentioned. These rationales 
contained indirect references to using the balance model for enhancing students’ 
understanding of equality in an equation, through referring to learning through 
physical experiences or to learning through models and representations. 
 
Articles in the class of rationales related to physical experiences referred either to 
the biological basis of maintaining balance or to other physical experiences with 
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balance (such as with a teeter-totter), which, through using the balance model, could 
be connected to the idea of maintaining the balance in an equation. These previous 
physical experiences with balance could foster students’ understanding of equality 
in an equation. This can be explained from the perspective of embodied cognition 
theory, stating that the connection of perceptual and physical experiences that we 
have when we interact with the world is fundamental for developing conceptual 
knowledge and cognitive learning processes (e.g., Barsalou, 2008; Wilson, 2002). 
Perceptual-motor experiences are considered essential for developing mathematical 
concepts (e.g., Alibali & Nathan, 2012; Núñez et al., 1999), and mathematical 
reasoning is viewed as intricately linked with embodied actions (Abrahamson, 
2017; Alibali & Nathan, 2012). When applying embodied cognition theory to 
teaching and learning solving linear equations, it is assumed that perceptual-motor 
knowledge about the action of balancing is a necessary foundation for developing 
understanding of the mathematical concept of equality (e.g., Antle et al., 2013). 
This perceptual-motor knowledge is built up from the very pervasive physical 
experiences we have with balancing from a young age on (Gibbs Jr, 2006), through 
walking without falling, standing up and sitting down, or holding objects of 
different weights (Alessandroni, 2018). Furthermore, the other articles in this class 
of rationales stressed the contribution of concurrent physical experiences with the 
balance model to the learning of linear equations. Through manipulation of the 
model, students explore how to maintain its balance; these strategies for 
maintaining the balance of the model could later be connected to strategies for 
maintaining equality in an equation. This is also in line with embodied cognition 
theory: offering students opportunities to revitalize the basic perceptual-motor 
knowledge through making use of a model of a balance through which they can 
imagine (or experience anew) the situation of balancing, could be beneficial for 
supporting students’ understanding of equality in an equation and therefore for 
teaching linear equation solving. 
 
Articles in the class of rationales related to learning through models and 
representations included more general arguments for enhancing students’ 
understanding of equality in an equation. However, these rationales have some 
overlap with the rationales related to physical experiences. Both classes are related 
to perceptual-motor experiences with balance. In the case of the Models and 

Representations class, this experience is more related to what the balance looks 
like. The balance as a device with two arms and a fulcrum in the middle can be used 
to represent an equation with on two sides of the equal sign an expression of equal 
value. Learning through models and representations can be connected to ideas of 
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Realistic Mathematics Education (RME). One of the main instructional principles 
of RME is the use of didactical models with the purpose to bridge the gap between 
informal, context-related solution methods and the more formal ones, and in this 
way, to stimulate students to come to higher levels of understanding (e.g., Van den 
Heuvel-Panhuizen, 2003). 
 
3.2 What types of balance models were used? 

Three types of appearances of the balance models came forward in the reviewed 
articles: physical, virtual, and drawn balance models. Physical balance models are 
concrete balance scales. On these scales, students can represent equations by 
placing real objects, standing for knowns and unknowns, on both sides of the 
model. Characteristic for these models is that they are dynamic, which means the 
students can operate on them and get real-time feedback on their actions. In virtual 
balance models, the balance is implemented in a digital environment. These models 
are mostly dynamic, in that sense that the balance tilts in response to students’ 
(digital) manipulations and in this way gives real-time feedback. In drawn balance 
models, a schematic version of a balance is presented on paper or on the 
blackboard. The representations of these balance models are static: students cannot 
manipulate them and cannot receive real-time feedback. Whereas in most articles 
only one type of appearance of the balance model was used, in other articles 
different types appeared (e.g., Figueira-Sampaio et al., 2009) or a sequence of 
different appearances was presented, starting with the use of a physical model 
followed by a drawn balance model (e.g., Fyfe et al., 2015). 
 
3.2.1 Physical balance models 

Physical balance models appeared in 14 articles (three from the same research 
project). We drew schematic versions of several of these physical balance models. 
These drawings are shown in Figure 2. The balance displayed in Figure 2a was used 
by Fyfe et al. (2015) to represent, for example, 3 + 2 = 1 + 1 + __. Here, students 
could put three red and two yellow bears on the left side and one red and one yellow 
on the right, and then add the missing number to get the scales to balance (for 
similar models, see e.g., Warren et al., 2009). In Austin and Vollrath’s balance 
model (1989; Figure 2b), the equation 3x + 5 = 11 is portrayed by, on the left side, 
three containers with unknown content and five washers and eleven washers on the 
right side (for similar models, see e.g., Andrews, 2003). A more complex example 
of a balance scale was utilized by Orlov (1971; Figure 2c). His model contains four 
scales, two on each side. For example, by putting a weight on the left tray of the left 
part of the scale, the left arm of the balance scale goes up. In this way, negative 
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numbers and unknowns can also be handled by this model. The last type of 
described physical balance model is a balance model in which the distance of the 
objects to the fulcrum can be adapted to represent linear equations such as 
8 + 4 + 2 = 4 + 4 + __ (Perry et al., 1995; Figure 2d; for a similar model, see Smith, 
1985). Here all objects have the same weight, but by putting them at a particular 
position on the beam they represent a particular value. 
 

 
Figure 2. Physical balance models, examples from four articles (a-d). 
 
3.2.2 Virtual balance models 

Virtual balance models appeared in three articles (from different research projects). 
Drawings of the used virtual balance models are shown in Figure 3. Most of these 
models display a balance scale quite similar to the physical balance models. 
However, the digital environment enables more possibilities in representations and 
functions of the model. 
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Figure 3. Virtual balance models, examples from two articles (a-b). 
 
In the digital model used by Figueira-Sampaio et al. (2009; Figure 3a), the equation 
5x +50 = 3x + 290 is represented by cans with the letter X depicting the unknowns, 
and small labeled weights (e.g., 50 g, 100 g) depicting the numbers (for a similar 
model, see Suh & Moyer, 2007). Here, while students manipulate the virtual 
balance scale, the corresponding equation is shown in formal algebraic symbols, 
which makes the link between these manipulations and the changes in the 
corresponding symbolic equation explicit. A further type of virtual balance model 
was found in the article of Kaplan and Alon (2013; Figure 3b). In this model, 
students can explore relationships between different shapes of unknowns and find 
new equations based on given ones. For example, on the basis of the 
equations▲▲ = ●●● and ▲▲ = ●●■■, a third equation can be created.  
 
3.2.3 Drawn balance models 

Drawn balance models appeared in 26 articles (four and three from the same 
research projects). Drawings of the used drawn balance models are shown in 
Figure 4. Here, it is noticeable that some drawn balance models are depicted more 
realistically (Figure 4a-c) and others more schematically (Figure 4d-f), with pictures 
of objects or symbolic expressions to represent the knowns and unknowns. 
 
While drawn balance models were present in many articles (e.g., Brodie & Shalem, 
2011; Mann, 2004; Vlassis, 2002), the way in which the equations are represented 
in these models varied widely. In the drawn balance model found in the article of 
Vlassis (2002; Figure 4a), the equation 7x + 38 = 3x + 74 is represented by squares 
for each x and circles in which the numbers are indicated. The unknowns in this 
model are depicted in an expanded way (i.e., 7x and 3x are represented as seven 
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separate x’s and three separate x’s). While in most models all unknowns are 
depicted separately, in the model of Linchevski and Herscovics (1996), the 
unknowns and knowns in the equation 8n + 11 = 5n + 50 are partially shown in an 
expanded, respectively decomposed way, leading to the equation 
5n + 3n + 11 = 5n + 11 + 39. In this way, students can see that the terms 5n and 11 
appear on both sides of the equation, which can cancel each other out. In the 
balances of Marschall and Andrews (2015; Figure 4b) and Warren and Cooper 
(2009; Figure 4c), equations with negative values and subtractions can also be 
represented. In Figure 4b, the subtraction in the equation 4x - 3 = 2x + 5 is 
represented by an arrow going down from one of the scales, so that the action of 
“taking away” is made visible. Alternatively, in Figure 4c, a minus sign is included. 
 

 
Figure 4. Drawn balance models, examples from six articles (a-f). 
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Another way in which drawn balance models appeared in the articles is as an 
abstract drawing. Here, the balance functions as a metaphor to point students’ 
attention to the concept of equality. In Rystedt et al. (2016, Figure 4d) the equation 
4x + 4 = 2x + 8 is represented with boxes for unknowns and dots for numbers. In 
articles in which such a metaphorical use of the balance model was present (e.g., 
Caglayan & Olive, 2010), this use was often accompanied by the instruction that the 
balance in the equation had to be maintained when solving the equation (Boulton-
Lewis et al., 1997), or by gestures representing a balance scale (Rystedt et al., 
2016). The use of a drawn balance model, especially for models with an abstract 
drawing, often went together with the use of manipulatives. For example, in the 
model of Boulton-Lewis et al. (1997; Figure 4e), the schematically notated equation 
2x + 3 = 7 is represented by two white cups and three green counters on the left-
hand side (indicated by LHS) and seven green counters on the right-hand side 
(indicated by RHS), while other colored cups and counters are used to represent 
subtractions or negative unknowns and numbers (for a similar approach, see e.g., 
Suh & Moyer, 2007). Another example is the drawn balance model used by 
Caglayan and Olive (2010; Figure 4f), where in the equation 4x - 3 = x + 6 the “-3” 
is represented by gray tiles instead of black ones. Moreover, the equal sign is 
directly represented in this model. 
 
3.2.4 Discussion of the findings regarding the types of used balance models 

Drawn models appeared the most and virtual models the least, while the use of a 
physical model was often followed by the use of a drawn model. When looking into 
the relationship between the rationales and the appearances of the models, it seems 
that the use of a physical balance model most often goes together with rationales 
related to learning through physical experiences and the equality aspect. For the 
virtual models, all rationales appear more or less equally often, and the drawn 
balance models go most often together with the equality aspect rationale and 
rationales related to learning through models and representations. Except for 
rationales related to learning through physical experiences, the remaining two 
classes of rationales most often go together with the use of a drawn balance model. 
The drawn model appears to be the most flexible model, which means that it was 
used with all classes of rationales. 
 
Although all three appearances of the model have the balance as a basic concept, 
they differ in their nature. Whereas the physical balance model and partly the 
virtual balance have a dynamic nature and as such can provide real-time feedback to 
the students about their actions, the drawn balance model is static. Drawn models, 
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either presented on paper or on the blackboard, can nonetheless be extended with 
dynamic aspects by using manipulatives. For all three types of appearances of the 
model it applies that most models consist at least of a fulcrum, a horizontal 
balancing beam, and on both sides a scale. In addition to this configuration of the 
balance model, in other models, extra features are added. Through the addition of 
these features, the reach of the balance model is extended to represent a wider range 
of problems. For example, the additional scales in the physical model of Orlov 
(1971; Figure 2c), the arrow going down from the scales of the drawn balance 
model in the article of Marschall and Andrews (2015; Figure 4b), and the different 
colored manipulatives added to the drawn model of Boulton-Lewis et al. (1997; 
Figure 4e), are all examples of variations of the balance model allowing the 
representation of negative numbers and unknowns. Such additional features provide 
a solution for the restricted possibilities that this model has (e.g., Vlassis, 2002), for 
example by allowing for the representation of equations with negative quantities or 
subtractions. In fact, this flexibility of the balance model is exactly how models 
should work. When used as didactical models (Van den Heuvel-Panhuizen, 2003), 
models should be flexible and not only suitable for solving one type of equation. 
One way of ensuring this flexibility is by allowing for adaptations without losing its 
primary function. However, bearing in mind the concept of model of … – model for 

… (Streefland, 2003), didactical models are not meant as a tool that everlasting has 
to be used for problem solving at a concrete, context-connected level. Instead, the 
idea is that in a later phase of the learning process, when a basis is laid for solving 
linear equations and the students have to solve more difficult equations, the 
student’s thinking can still be supported by, and related to, the model without 
concretely representing the equation in a physical model. 
 
3.3 When was the balance model used? 

The situations in which the balance model was used in the articles when describing 
the teaching of linear equation solving, varied considerably with respect to the 
grade level of the students involved, the duration of the intervention with the model, 
the type of equation problems that students worked on, and the type of instruction 
that was provided to the students.  
 
3.3.1 Grade levels and intervention duration 

The balance model was used to teach linear equation solving to students from 
Kindergarten to Grade 9. Students up to Grade 6, who do not have previous 
experience with algebra, had their first encounter with linear equations through the 
balance model, which came forward in different studies (e.g., Warren & Cooper, 
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2005). In studies with students from Grades 7-9, who already have some basic 
experience with linear equation solving (with the exception of the seventh-grade 
students in the study by Araya et al., 2010), the balance model was introduced as a 
tool for solving equations (Vlassis, 2002) or used to illustrate the balance method 
(i.e., perform the same operations on both sides of the equation; Ngu & Phan, 
2016). The duration of the interventions in which the balance model was used was 
also very diverse. The shortest interventions comprised one activity or one lesson 
(e.g., Figueira-Sampaio et al., 2009; Rystedt et al., 2016), while in other studies the 
balance model was integrated in a multiple-year teaching trajectory (e.g., Orlov, 
1971; Warren & Cooper, 2009).  
 
3.3.2 Type of equation problems 

With very young students (e.g., Kindergarten, Grades 1-2), the balance model was 
mostly used for exploration of the first ideas of equality and the equal sign (e.g., 
Taylor-Cox, 2003; Warren et al., 2009). Students’ task was, for example, to weigh 
different objects to find out which were the same and which were different. For 
somewhat older students (e.g., Grades 3-6), the balance model was, for example, 
used to assist them in solving simple addition problems such as 8 = __ + 3 (e.g., 
Leavy et al., 2013). Here, eight objects were put on the left side of the balance and 
three objects on the right side, and the students’ task was to figure out what they 
could do to make both sides equal. The model was also used to introduce algebraic 
symbols to students without prior algebra experience, so that they could link the 
model to the abstract symbols. Then students’ task was, for example, to manipulate 
the objects on the scales in such a way that they could determine the weight of the 
unknown object, while in the meantime in the digital environment the 
corresponding symbolic equation was shown (e.g., Figueira-Sampaio et al., 2009, 
see Figure 3a; Suh & Moyer, 2007). In research with students with some algebra 
experience (i.e., from Grade 7 on), students’ task was, for example, to represent 
symbolic equations by making use of the balance model and to use this 
representation to transform and solve the equations (Caglayan & Olive, 2010; see 
Figure 4f). Or students’ task was to solve an equation by making use of a physical 
balance model, while subsequently to represent the equation and the solution steps 
symbolically (Andrews, 2003). There were also articles in which two balance 
models with different unknowns were presented simultaneously to create a system 
of equations and to evoke the algebraic strategy of substitution (e.g., Austin & 
Vollrath, 1989; Berks & Vlasnik, 2014). Here, students’ task was to combine the 
information of the equations to find the values of the unknowns.  
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In most studies, students’ task was to determine the value of the unknown(s). 
However, there were also articles in which the main purpose was to discover 
different possibilities to maintain the balance of the model, without focusing on 
finding values of unknowns. For example, in the study by Kaplan and Alon (2013), 
the goal was to create multiple balanced scales and to analyze the relationships 
between unknowns (see Figure 3b). Also in other articles, the balance model was 
used to discover different possibilities to maintain equality (Orlov, 1971) or to 
discover which “legal moves” (Raymond & Leinenbach, p. 288) could be made 
without disturbing the balance. 
 
Lastly, there were large varieties between studies concerning maintaining the 
balance model when teaching equations. For example, in Warren and Cooper 
(2005), first a physical balance model and later a drawn balance model were used to 
model equations containing positive values and additive operations (e.g., 
? + 7 = 11). After some lessons, these students also solved equations containing 
subtraction (e.g., ? - 4 = 13), but these equations were not represented with the 
balance model. In other studies the use of the balance model was maintained longer 
during the learning process. For example, one of the teachers in the study by 
Marschall and Andrews (2015) did not only use the model for teaching equations 
containing positive values and addition, but extended the use of the model to 
represent equations such as 4x - 3 = 2x + 5 (see Figure 4b; for using the model for 
other type of equations, see e.g., Boulton-Lewis et al., 1997, see Figure 4e; Orlov, 
1971, see Figure 2c). 
 
3.3.3 Type of instruction 

When working with the balance model, students either received classroom 
instruction by a teacher (e.g., Warren & Cooper, 2009) or via a learning movie 
(Araya et al., 2010), or they received individual instruction by a teacher (e.g., Perry 
et al., 1995), through instruction sheets (Ngu et al., 2015), or through working 
individually or in pairs with the balance (e.g., students working with the virtual 
balance in Figueira-Sampaio et al., 2009). Classroom instruction often concerned 
the teacher manipulating a balance model in front of the classroom (e.g., students 
working with the physical balance model in Figueira-Sampaio et al., 2009), while 
during individual instruction, students more often got opportunities to actively work 
with the balance model themselves (e.g., Suh & Moyer, 2007). 
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3.3.4 Discussion of the findings regarding when the balance model was used 
In what situations the balance model was used was very diverse in the different 
studies. For what equation problems the balance model was used appeared to be 
related to students’ experience with solving linear equations. For students up to 
Grade 6, without previous experience with algebra, most tasks concentrated around 
exploring the basic ideas of balance and solving simple equations (e.g., 8 = __ + 3), 
which went hand in hand with the rationale that such activities can be beneficial for 
developing understanding of equality and a relational understanding of the equal 
sign. Physical and virtual balance models were relatively often used to teach linear 
equation solving to students without prior algebra experience. In most of these 
studies, equations only contained positive values and additive operations. The 
studies conducted with students without prior experience in general underpinned the 
use of the balance model for teaching linear equation solving more thoroughly than 
studies with students with some algebra experience. The rationale that was 
relatively often mentioned in relation to teaching students without prior algebra 
experiences is the rationale related to the physical experiences, which fits the using 
of the physical balance model to teach these students. This also aligns with the 
common trend of using concrete materials for teaching young students rather than 
for teaching older students and with research showing that the use of concrete 
materials in mathematics education is in particular beneficial for children aged 
7-11, in the mathematical domains of fractions and algebra (Carbonneau et al., 
2013). 
 
With regard to studies conducted with students with prior algebra experience (in 
general students from Grades 7 and higher), students’ tasks when working with the 
balance model were most often to model, to transform, and to solve equations by 
means of the balance model. Also in these studies, the rationale related to the 
equality aspect was most prominent. On the contrary, most of the studies in which 
no rationale for using the model was provided were also conducted with students 
with prior algebra experience. Most studies in which a limitation of using the 
balance model was mentioned involved these students. Drawn balance models were 
mostly used to teach students with prior algebra experience and in more than half of 
these studies, students were also taught equations containing negative values and 
subtraction. 
 
3.4 Learning outcomes 

Nineteen articles evaluated students’ learning outcomes related to the use of the 
balance model. The research design of these studies and the most important learning 
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outcomes are summarized in Table 1. Most studies were descriptive in nature and 
less than one-third of the studies used a pre-posttest design combined with a 
comparison group. As described in section “3.3 When was the balance model 
used?”, the studies showed large variations as regards the age and algebra 
experience of the students in their sample, the duration of the intervention, the tasks 
students worked on, and the type of instruction students received. Similar variations 
were detected upon examining the learning outcomes of the different studies. For 
example, Araya et al. (2010) found very positive results of using a learning movie 
with a drawn balance model in Grade 7 with students without prior algebra 
experience. These students outperformed students in the comparison group who 
received symbolic linear equation solving instruction. Also, Suh and Moyer (2007) 
reported positive effects of using balance models to teach third-grade students linear 
equation solving. Contrastingly, Boulton-Lewis et al. (1997) found that eighth-
grade students had difficulties with modeling and solving linear equations when 
making use of the balance model. These students preferred not to use the model. 
The studies by Ngu et al. (2015, 2016, 2018) consistently showed similar or lower 
performances for Grade 7-9 students who used the method of performing the same 
operations on both sides of the equation, which was taught by making use of an 
instruction sheet with the balance model, compared to students who used the 
inverse method, which was taught as by referring to the change side, change sign-
rule for solving equations. In this latter approach, in which, for example, x - 4 = 6 
becomes x = 6 + 4, students can conceptualize the inverse operation of -4 becoming 
+4 as a means to preserve the equality of equations. Therefore, the understanding of 
this inverse principle at a structural level is considered to be very relevant for 
students’ learning of algebraic thinking (e.g., Ding, 2016). Interesting to notice here 
is that, although viewed superficially, the balance method differs from the inverse 
method, this latter method bears much resemblance to “doing the same on both 
sides”. When taking the example of x - 4 = 6, then this rule means that on both sides 
4 has to be added. This makes x - 4 + 4 = 6 + 4, which after simplifying results into 
x = 6 + 4. In other words, the main difference between “doing the same things on 
both sides” and “change sides, change sign” involves that one comes directly to the 
result by skipping the intermediate step of adding 4 on both sides. However, despite 
the close relationship between these two approaches and the related underlying 
principles, in only a few articles of our review study when authors refer to the use 
of the balance model, they also refer to the inverse method. This indicates that there 
has not been much research in which both approaches have been put in relation or 
contrasted. 
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The large variation between studies in which the balance model was used and the 
lack of studies with an experimental research design make it very difficult to draw 
unequivocal conclusions about the effects of using the balance model on students’ 
learning outcomes. Nevertheless, some trends can be identified. Overall, most 
mixed and negative results are found for studies with somewhat older students 
(Grades 7-9) who already had some (basic) experience in solving linear equations 
(e.g., Ngu et al., 2018; Vlassis, 2002). The main reasons for this finding could be 
that the balance models in these studies, which were all drawn, were used for 
teaching a broad range of equations, including more difficult equations such as 
equations containing negative numbers and unknowns (e.g., Boulton-Lewis et al., 
1997; Caglayan & Olive, 2010, Vlassis, 2002). In general, more positive results 
were found for studies conducted with younger students (e.g., Suh & Moyer, 2007; 
Warren & Cooper, 2005) or with students without prior knowledge on equation 
solving (e.g., Araya et al., 2010). In these studies more often a physical model (e.g., 
Perry et al., 1995; see Figure 2d) or a virtual model (e.g., Figueira-Sampaio et al., 
2009; see Figure 3a) was used, which in some cases in later stages was followed by 
a drawn model (e.g., Warren & Cooper, 2005). In most of these studies, the balance 
model was used to teach linear equations containing only positive values and 
addition. However, there were some exceptions. For example, Orlov (1971) found 
positive results for teaching different types of linear equations (including negative 
values and subtraction) to eighth-grade students by making use of a physical 
balance model (see Figure 2c). 
 
3.4.1 Discussion of the learning outcomes 

Overall, the balance model seems to have more positive effects on learning 
outcomes related to linear equation solving for (younger) students without prior 
knowledge on linear equation solving. A possible explanation might be that for 
younger students, the balance model is used for laying a conceptual basis for linear 
equation solving, while for older students, who already have such a basis in solving 
linear equations, the model is more often used to revitalize this basis. Younger 
students have their first experience with exploring the concept of equality and with 
linear equation solving by means of the balance model. The tasks of older students 
when working with the balance model are more often to model, to transform, or to 
solve equations. In other words, the balance model then is used to revitalize their 
knowledge on linear equation solving and assist in solving all kinds of new 
equations. Warren and Cooper (2005) provide an example of using the balance 
model to support students in solving equations containing subtraction. In their 
teaching sequence, they first used a physical model to let students develop 
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understanding of the concept of equality as “balance” and the strategy of doing the 
same things on both sides. Later, students could use this strategy for solving 
symbolically notated problems on paper, which also contained subtraction.  
 
4. Conclusion 

 

Our systematic review reveals a rather kaleidoscopic image of the balance model as 
an aid for teaching linear equations. The findings on why a balance model was used, 
what types of models were used, when they were used, and what learning outcomes 
were associated with its use, are diverse. Nevertheless, we could identify some 
trends within this scattered picture. Physical and virtual balance models were more 
often mentioned in the articles for teaching students during their first encounter 
with linear equation solving. Also, authors of these articles were more explicit 
about their rationales for using the balance model, with most rationales related to 
the equality aspect and students’ physical experiences. The equations taught to 
these students mostly only contained positive values and addition, and these studies 
in general reported positive effects of using the balance model on students’ learning 
outcomes of linear equation solving. Drawn balance models were more often used 
for students who already had some previous algebra experience. Additional features 
(such as manipulatives) were often added to these models, so that a wider range of 
problems could be represented, such as equations with negative values and 
subtraction. Articles in which drawn balance models were used were less explicit 
about their reasons for using the balance model, and in general reported more mixed 
and negative effects of using the balance model on teaching linear equation solving. 
However, it is important to note that within these trends, there were still many 
differences between studies, for example concerning the duration of the intervention 
and the type of instruction provided to the students. 
 
These trends should of course be interpreted with caution. First of all, our results 
are entirely based on what the authors of the articles reported. In some articles, the 
authors did not explicitly report their rationales for using the balance model, which 
meant that they could not be identified by our analysis. Secondly, although we 
searched for articles in which the use of the balance model was discussed in 
93 peer-reviewed journals to ensure a good coverage of the research literature, we 
only had a relatively small final sample of 34 articles that met our inclusion criteria. 
In addition, within the limited time we had available for this study, we could not 
consider including textbooks or other curriculum documents. Furthermore, we 
decided to do the review on articles in which the balance model was used for 
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teaching linear equation solving and leave out other mathematical topics in which 
the balance model could be used. Lastly, a limitation that also should be mentioned 
is that our study only focused on the balance model and we did not compare it with 
other often used methods for helping students to solving linear equations such as the 
change side change sign-rule. Clearly, more research is necessary in this respect. 
 
Our study was meant to create an overview of the role the balance model plays in 
teaching linear equation solving that might provide teachers, researchers, and 
developers of instructional materials with a source for making informed 
instructional decisions. Our analysis of the 34 peer-reviewed journal articles shows 
that there exists a considerable diversity in the rationales for using the model, the 
appearances of the model, the situations in which the model is used, and the found 
learning outcomes. This offers many possibilities for making use of the balance 
model. However, at the same time, our study reveals a clear lack of in-depth 
knowledge about when which type of balance models can be used effectively. For 
gaining this knowledge more research is necessary, in particular (quasi-) 
experimental studies, allowing to investigate the effects of using models of different 
appearances (e.g., physical, virtual, and drawn models, with or without additional 
features such as added scales or the use of manipulatives) and the effects of 
different situations of using the model (e.g., for students with or without prior 
algebra experience, a short-time use of the model or a more extensive intervention, 
with one type of instruction or another) on students’ learning outcomes. To provide 
a more theoretical grounding for the use of the balance model as an aid for teaching 
linear equations, it is important that the type of model that is used and the situations 
in which it is used are explicitly related to the rationales for using them. In 
summary, we can conclude that the balance model, which at first sight may seem to 
be a rather simple model — and maybe therefore is often used to teach students 
linear equation solving — is actually a rather complex model, of which still a lot 
has to be discovered to be used optimally in education.  
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Developing algebraic reasoning in primary school using a 

hanging mobile as a learning supportive tool  

 
Abstract 

 
In this study, we investigated the development of algebraic reasoning in 65 fifth-
grade students who never had algebra instruction before. In the six-lesson teaching 
sequence on solving linear equations, a hanging mobile, a physical balance model, 
played the central role. We expected students’ perceptual-motor experiences with 
this hanging mobile to be beneficial for the development of their reasoning related 
to linear equation solving. To investigate how students’ reasoning developed, we 
analyzed videos of classroom interactions, students’ written work during the lessons 
and students’ responses to lesson-specific assessment tasks. Our results reveal that 
students showed progress in their level of algebraic reasoning and in their writing 
down of strategies. While working with the hanging mobile, students applied 
algebraic strategies such as restructuring, isolation and substitution. They later used 
these algebraic strategies for solving linear equations in new contexts. This suggests 
that the experiences students gained in the embodied learning environment provided 
a basis for algebraic reasoning, which appeared to support them when solving 
systems of symbolically presented linear equations.  
 
 
Keywords: Early algebra, Solving linear equations, Algebraic reasoning, 
Embodiment, Qualitative data analysis   
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1. Introduction 

 
Early algebra refers to the introduction of algebraic thinking in the elementary 
grades (Kaput et al., 2008) and aims for building a foundation for providing 
students access to more advanced algebraic concepts in later grades (e.g., Carraher 
& Schliemann, 2014). Early algebra does not simply mean “teach algebra earlier” 
and teaching formal algebra to young students (Carraher et al., 2008). Instead, 
algebra is conceived as a longitudinal strand of thinking and problem solving, 
starting in kindergarten and continuing in the higher grades (e.g., Kaput, 2008). 
Early algebra entails a number of big ideas such as equivalence and equations, 
variable and proportional reasoning (Blanton et al., 2015). From early on, students 
can be involved in problem-solving activities related to these ideas by drawing on 
their existing knowledge of skills and procedures in the domain of number (Blanton 
et al., 2007). Furthermore, it takes students’ everyday experiences and their 
“intuitive and informal ways of reasoning” (Stephens et al., 2017, p. 143) as the 
basis for eliciting and developing algebraic thinking that is, for example, necessary 
for solving elementary linear equations. In this article, we describe how, through 
participating in embodied activities over the course of a six-lesson teaching 
sequence on linear equation solving, elementary school students developed context-
based algebraic strategies which ultimately enabled them to solve a system of two 
linear equations with two unknowns. 
 
1.1 Linear equation solving 

The main characteristic of an equation is that the expressions on both sides of the 
equal sign represent the same value. In this sense, both sides of the equation are 
equal — though they might look different. In the process of solving an equation, 
this equality should be maintained. Equality is therefore deemed a key concept in 
linear equation solving (e.g., Bush & Karp, 2013; Knuth et al., 2005; Li et al., 
2008). Understanding this concept is one of the main demands when solving linear 
equations (Kieran, 1997; Kieran et al., 2016). 
 
When solving an equation, the goal is to find the relationships between or the 
value(s) of the unknown(s) for which the expressions on both sides of the equal sign 
are equal. This goal can be reached by isolating the unknown. In order to achieve 
this, students have to operate with the expressions in such a way that their equality 
is maintained. This is often emphasized by referring to the metaphor of the equation 
being in balance (Ngu & Phan, 2016) and implies performing transformations 
under the principle of “doing the same on both sides”. Among other things, this 
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involves the preparatory activity of restructuring the given equation by, for 
example, changing the order of the terms in the expressions by using the 
commutative and associative properties, replacing expressions by equivalent 
expressions, or exchanging the two sides, which is possible due to the symmetry of 
the equality. At a formal level, this restructuring can entail notating unknowns in an 
expanded (e.g., A + A) or condensed (e.g., 2A) way. Further simplifying an equation 
to isolate the unknown can, for example, be done by taking away the same elements 
from both sides or by halving the expressions on both sides. A less targeted method 
for solving equations is guessing-and-checking. This implies that different values 
for an unknown are put in an equation until the correct answer is obtained (e.g., 
Stacey & MacGregor, 1999). 
 
When solving a system of linear equations with multiple unknowns, the information 
from more than one equation has to be used to find the values of the unknowns. In 
this case, the isolation method can be applied by eliminating one unknown by 
means of, for example, subtracting one equation from the other. Yet, the most 
prominent method to solve a system of linear equations with multiple unknowns is 
the method of substitution (replacing an expression with another expression of the 
same value). 
 
Crucial in using these strategies is that students have a good understanding of the 
concept of equality and the properties of operations. Many of the difficulties 
students experience when solving (systems of) linear equations have to do with an 
incorrect interpretation of the equal sign. Students consider it as a symbol for “here 
comes the answer” or as a sign to “add” (e.g., Behr et al., 1980; Carpenter et al., 
2003), instead of as a symbol reflecting the sameness of the expressions on both 
sides (e.g., Knuth et al., 2006). This latter, proper conception of the equal sign as a 
relational symbol is positively related to competence in solving linear equations 
(e.g., Alibali et al., 2007; Knuth et al., 2006; Matthews et al., 2012). Other well-
known difficulties for students related to linear equation solving are difficulties with 
understanding the formal, symbolic representations of equations (e.g., Koedinger & 
Nathan, 2004) and difficulties with performing operations on the unknowns when 
solving equations (e.g., Filloy & Rojano, 1989; Herscovics & Linchevski, 1994). 
 
1.2 Teaching linear equation solving 

Approaches that have been developed for teaching linear equation solving are all 
trying, in one way or another, to overcome the aforementioned difficulties. Within 
Realistic Mathematics Education (RME; e.g., Van den Heuvel-Panhuizen & 
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Drijvers, 2014), this means starting with meaningful situations in which the students 
can solve informal equation-like problems with context-connected strategies and 
then, through a process of progressive mathematization, come to more formal and 
standard solution processes. In a study by Van Reeuwijk (1995), students were 
asked to figure out what a T-shirt cost and what a soda cost, when two T-shirts and 
two sodas cost $44 and one T-shirt and three sodas cost $30. Students are more 
prone to solving such a problem that is meaningful to them. When students can 
make sense of a problem, or in other words, when they can imagine what happens 
in the problem, it can open their action repertoire for solving it (Van den Heuvel-
Panhuizen & Drijvers, 2014). In this case, by halving the first set of T-shirts and 
sodas, students know what one T-shirt and one soda cost, and then they can find 
that two sodas cost $8. The strategies of isolation (by elimination) and substitution 
developed for solving this problem can later be used for solving other systems of 
linear equations. In other words, the meaningful context of the T-shirts and the 
sodas can become a model for solving other problems. 
 
In addition to this context model, other mathematical models are used for teaching 
linear equation solving as well, such as area models, linear models and balance 
models (Van Amerom, 2002). These models are also meant to help students in 
understanding what it means to solve an equation and develop strategies to find the 
values of unknowns. Of these models, the balance model has a long didactical 
history. It was already used by Leibniz (1646-1716), who mentioned the relation 
between equality in a mathematical situation and a balance with equal things on 
both sides (Leibniz, 1989). 
 
A recently conducted literature review (Otten et al., 2019, see Chapter 2 of this 
thesis) showed that in teaching linear equation solving, various appearances of the 
balance model are used. It can be a concrete physical device, a drawn balance on a 
work sheet or a virtual balance in a digital environment. These types of balance 
models, which in some studies are used in combination, each have their own 
affordances. Concrete balances are chosen because the physical experiences that 
students can have when working with such a device are considered to be beneficial 
for the learning process. A recent meta-analysis on the efficacy of using concrete 
manipulatives for teaching mathematics found small to moderate effect sizes in 
favor of using manipulatives compared to providing abstract symbolic instruction 
(Carbonneau et al., 2013). A theoretical perspective on the working mechanisms 
behind learning with manipulatives is provided by embodied cognition theory (e.g., 
Pouw et al., 2014). This theory states that bodily experiences can be advantageous 
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for cognitive learning processes (e.g., Wilson, 2002). Cognition is formed not only 
by and in our brains, but also by perceptual-motor experiences that we have when 
our bodies interact with the world (e.g., Gallese & Lakoff, 2005; Wilson, 2002). 
Therefore, embodied learning environments (short for: learning environments based 
on embodied cognition theory) are regarded as essential for learning mathematics 
(Abrahamson, 2017; Lakoff & Núñez, 2000; Núñez et al., 1999). By coupling 
action and perception, perceptual-motor experiences form the basis for the 
emergence of mathematical concepts and mathematical reasoning, mediated by 
conceptual metaphors (Lakoff & Johnson, 1980) and representational redescription 
(Karmiloff-Smith, 1992). In this way, for example, through physical experiences 
with a concrete balance, students can revitalize their conception of equality and 
their physical experiences of how to maintain the balance, and may shift both to a 
more abstract understanding, which is necessary for linear equation solving at a 
formal level. 
 
Research in which the balance model was used for teaching linear equation solving 
indeed has shown that the balance model can be helpful for students. Yet, positive 
results were not found for all types of balance models. The most positive results 
have been reported for physical balance models (e.g., Perry et al., 1995; Warren & 
Cooper, 2005) and for virtual balance models (Figueira-Sampaio et al., 2009; Suh & 
Moyer, 2007). For drawn balance models, some studies mainly found positive 
results (e.g., Araya et al., 2010; Cooper & Warren, 2008) while others reported both 
positive and negative results (e.g., Linchevski & Herscovics, 1996; Vlassis, 2002), 
or even only negative results (e.g., Ngu & Phan, 2016). 
 
A characteristic of physical balance models is that they are dynamic, which means 
that students can operate on them and get real-time feedback on their actions. This, 
in turn, can help students develop strategies for keeping the scale in balance. 
However, studies in which a physical balance model was used (e.g., Perry et al., 
1995) mostly showed only what equations students learned to solve and scarcely 
revealed how their algebraic reasoning for equation solving developed. The same is 
true for the algebraic strategies that were used in connection with their working 
with the physical model. The present study aims to contribute to knowing more 
about what an embodied learning environment with a physical balance will bring 
about in students’ reasoning. 
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1.3 Current study 

The study made use of a six-lesson teaching sequence on linear equation solving, 
based on an embodied cognition theory approach and the RME principle of starting 
with a meaningful context that can evolve into a model for eventually solving a 
system of two symbolically presented linear equations with two unknowns. In the 
teaching sequence, algebraic reasoning was elicited by a number of activities in 
which students were offered embodied experiences with a physical hanging mobile: 
a concrete balance model with, on each side, a number of bags hanging on a chain 
to represent an equation with unknowns. Bags with different colors were used, 
which each had a different weight (e.g., white = 50 grams, red = 100 grams, 
black = 150 grams). These weights were unknown to the students. Students were 
challenged to discover ways to maintain the balance of the mobile while 
manipulating the differently colored bags. 
 
We theorized that when students worked with the hanging mobile trying to keep its 
balance, the pervasive everyday-life experiences of balancing (Gibbs Jr, 2006) 
could be revitalized and linked to the experiences of maintaining the balance of the 
mobile, representing equality in a linear equation. In this way, students’ 
understanding of the concept of equality could be grounded in the bodily based 
experiences of maintaining balance, which is also in line with Piaget’s statement 
that children “can only “abstract” the idea of such a relation as equality on the basis 
of an action of equalization” (Piaget & Inhelder, 1967, p. 43). The possible physical 
manipulations that maintain the balance of the hanging mobile could act as a 
metaphorical mapping (Lakoff & Johnson, 1980; Núñez et al., 1999) of the 
algebraic strategies that can be used to maintain equality in equations. In particular, 
consider that students’ manipulations of the bags can result in the hanging mobile 
being in or out of balance. Students, for example, can take away similar bags from 
both sides of the mobile. By doing this, they feel the similar weights of the bags in 
their hands and concurrently perceive the beam of the hanging mobile remaining in 
balance. Thus, students physically experience the principle of “doing the same on 
both sides”, which is an important strategy for solving equations (e.g., Arcavi et al., 
2016). When working with the hanging mobile, students directly perceive the 
influence of their actions — such as removing bags — on the status of the balance. 
In line with embodied cognition theory, we hypothesized that these perceptual-
motor experiences could promote the grounding of the concept of equality in the 
bodily based experience of maintaining balance. 
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Through maintaining the balance of the hanging mobile, students could intuitively 
apply informal context-connected algebraic strategies which underlie the 
conventional strategies for solving equations, such as changing the order of the 
colored bags (restructuring), taking away bags from both sides of the mobile to 
isolate bags of one color (simplification/isolation), and replacing bags with bags of 
other colors (substitution). We hypothesized that through exploring what could be 
done while keeping the hanging mobile in balance, combined with a number of 
challenging tasks, students could come more or less spontaneously to the strategies 
that form the basis of the key algebraic strategies necessary for solving equations. 
This approach, in which the students have a main role in learning algebraic 
reasoning, also reflects the didactics of RME, namely that instead of the teacher 
transferring the strategies to the students, they are active participants in developing 
these algebraic strategies. 
 
In this study, our aim was to put this teaching sequence to the test and investigate 
how students’ algebraic understanding and reasoning develops, and whether 
characteristics of their algebraic understanding and reasoning are related to what 
they are offered in the teaching sequence. More precisely, this resulted in the 
following two research questions: 
 

(1) How does fifth-grade students’ algebraic reasoning for solving linear 

equations develop in an embodied learning environment? 

(2) How are students’ experiences in the learning environment related to their 

use of algebraic strategies? 

 
Over the teaching sequence, we expected students to improve their algebraic 
reasoning for solving linear equations. Moreover, we expected students’ perceptual-
motor experiences with the hanging mobile to be beneficial when solving equations 
in the context of the hanging mobile, in new informal contexts and when they are 
formally presented. We therefore expected to find references to (experiences with) 
the hanging mobile when analyzing students’ reasoning. 
 

2. Method 

 

2.1 Participants 

To answer these research questions, a study was carried out involving 69 students 
of three fifth-grade classes in three schools in the Netherlands. Two of the schools, 
a public one and a Catholic one, were situated in urbanized areas, and the third 
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school was a public school situated in a suburbanized area. The study was approved 
by the ethical committee of the Faculty of Social and Behavioural Sciences of 
Utrecht University. Active informed consent was provided by the parents of the 
students. Permission to use the data was obtained for all students except three. 
These students were excluded from the analyses. One other student was excluded 
from the analyses because he missed most of the lessons. This resulted in the final 
number of 65 students: 27 boys (42%) and 38 girls (58%), with ages between 9 and 
11 years old (M = 10.02, SD = 0.45). They had received no prior instruction on 
equation solving or other algebra topics, which is in accordance with the Dutch 
mathematics curriculum, in which teaching algebra starts in the first year of 
secondary school. 
 
2.2 Materials 

2.2.1 Teaching sequence 

The teaching sequence (see Figure 1) consisted of six lessons. These lessons were 
clustered in four episodes, each with their own focus and content. In each of these 
episodes, the aim was to develop algebraic strategies related to linear equation 
solving. 
 

 
Figure 1. The teaching sequence and its content. 
 
In Episode 1, students gained physical experiences with a physical hanging mobile. 
The tilting beam of the mobile could be in or out of balance, thus providing students 
real-time feedback on their actions while manipulating the bags on the mobile. 
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While students were working with the hanging mobile, the teacher asked questions 
like: “Can you explain why the beam of your hanging mobile is straight?”; “Can 
you explain why the hanging mobile remains straight after the manipulation you 
just carried out?”; or “Would it be possible to remove something from your hanging 
mobile in such a way that it remains straight?” During the ensuing classroom 
discussion, one hanging mobile was positioned in front of the classroom. The 
students were asked to mention all possible actions they could perform on the 
hanging mobile while keeping it straight. These actions were carried out on the 
mobile, and the teacher registered the possibilities on the blackboard, making use of 
the students’ own wording (e.g., “one color of bags could be changed for another 
color of bags” instead of “substitution”). Because students worked with one 
hanging mobile in this first episode, they were reasoning about one equation. 
 
In the following episodes, the information from two equations had to be combined 
to discover relationships between unknowns to solve the problems, so that students 
were reasoning about a system of equations. In Episode 2, problems were still posed 
in the context of the hanging mobile, both physically and on paper. The teacher 
started by asking whether it would be possible to combine the information from the 
two hanging mobiles in front of the classroom, to create a new mobile. After 
gathering students’ thoughts, the teacher invited a student to manipulate the bags on 
the two existing mobiles to find a new relationship between unknowns and display 
that on a third mobile. Then, students worked on paper-based tasks in which the 
information from two mobiles had to be combined. 
 
In Episode 3, the information from two equations had to be combined to discover 
relationships between unknowns in new contexts, such as a tug-of-war situation. In 
this episode, the teacher started with a classroom discussion about the similarity 
between the new context of the tug-of-war situation and the familiar context of the 
hanging mobile, namely, that in both contexts it is all about maintaining equality. 
Then, all possible actions to maintain the balance of the hanging mobile were 
recalled, before students started with solving problems in the new tug-of-war 
context. Moreover, in this episode students were gradually challenged to use more 
symbolic notations, such as letters to notate the strength of the animals participating 
in the tug-of-war game. This was evoked by asking the students to think about 
alternative ways to notate their explanations, as such avoiding the time-consuming 
process of drawing the animals or writing down the entire reasoning process. 
 

72

3     Chapter 3



 

 

In the final episode, Episode 4, instead of discovering relationships between 
unknowns, students had to find the values of unknowns in a system of two linear 
equations with symbolically notated unknowns. As an introduction, the teacher 
again discussed the analogy between the hanging mobile and these new, 
symbolically notated equations. Moreover, she discussed the meaning of the 
symbolic notations, leading, for example, to discussions about whether “2N” would 
be the same as “N + N” or whether “1N” would be an alternative way to notate “N”. 
 
During our teaching sequence students encountered many different equations in 
which different quantities were used. For example, when students were working 
with the hanging mobile (Episodes 1 and 2), they were working with the quantity of 
weight (e.g., three white bags are as heavy as one black bag). In the case of the tug-
of-war situations (Episode 3), they were working with the quantity of strength (e.g., 
one sheep is as strong as three chickens). In Episode 4, they were working with 
objects and prices (one apple and one banana together cost eight euros), and they 
ended up with formally notated equations with an equal sign and with unknowns 
presented as letters (M + 3L = 25 and M = 2L), which were not related to a given 
quantity such as weight, strength and cost per object. 
 
2.2.2 Assessment of algebraic reasoning 

Students’ level of algebraic reasoning related to linear equation solving was 
assessed by means of paper-and-pencil assessment tasks administered at the end of 
each lesson (see Appendix 3.1, Figures A1-A3, for examples of the assessment 
tasks of Episodes 2-4). Each assessment task reflected the goal of the corresponding 
lesson. The assessment task of Episode 2 contained two balanced hanging mobiles 
including circles, rectangles and stars, informally representing the formal algebraic 
equations 3X = Y + 5Z and Y = X + Z. On the basis of these mobiles, the students 
had to determine for two other mobiles (X = 3Z and 4Z = Y) whether they were 
balanced. In the assessment task of Episode 3, the same equations were used, but 
with strawberries, bananas and pears, and with an equal sign instead of a hanging 
mobile. Lastly, in the fourth episode, students had to solve a system of two 
symbolically presented equations. In this assessment task, they had to discover the 
values of unknowns M and L by using the equations M + 3L = 25 and 2M = 4L. 
 
For all tasks, in addition to giving the answer to the problem, students were asked to 
explain their thinking and thus to reveal their reasoning. Answers were scored as 
incorrect (0) or correct (1), and this dichotomous scoring was used to calculate the 
success rate — that is, the percentage correct per assessment task. Students’ 
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explanations were categorized on their level of reasoning by means of a coding 
scheme (see section 2.4 Data analysis). 
 
2.3 Procedure 

The 50-minute lessons were each taught in six consecutive weeks by the first author 
of this article, with the assistance of a teaching assistant during the two lessons of 
the first episode. Episode 1 took place in a separate room in which five hanging 
mobiles were positioned. In this episode, students worked together in small groups 
of two or three students. The remaining episodes took place in the students’ 
classroom. During each episode, at least one physical hanging mobile was present 
in the classroom, even in the case that it was not used for instruction. After the first 
episode, students worked individually, in pairs or in small groups. Individual or 
group work alternated with whole-class discussions. In between the lessons the 
students followed their regular program. 
 
In the first episode, in one class, two pairs of students were video-recorded, so that 
their manipulations on the physical hanging mobile and their reasoning could be 
followed more closely. These particular students were recorded because their 
parents provided permission for this. During the rest of the episodes in this class, 
the camera was placed in the back of the classroom to give a global overview of the 
lesson activities. For the other two classes, two pairs of students were video-
recorded in the first episode, and also in the following episodes the video-recording 
of the work and conversations of these students was continued. As such, we could 
follow these students’ reasoning over time. In addition to the focus on these two 
pairs of students, from Episode 2 an extra camera was placed in the back of the 
classrooms to give a global overview of the lesson activities in these two classes as 
well. 
 
2.4 Data analysis 

The data consisted of students’ responses to the problems to be solved during the 
lessons and to the assessment tasks, and audio- and video-recorded interactions. To 
analyze how students’ algebraic reasoning developed over time (Research 
Question 1), we focused on the three consecutive episodes in which students solved 
systems of linear equations (Episodes 2-4). For each episode, the assessment task 
that was given to the students at the end of that episode was analyzed (see 
Appendix 3.1, Figures A1-A3, for examples). 
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For calculating the success rate on each of these assessment tasks, a student’s 
response was scored as correct when both problems of the task were answered 
correctly. The task belonging to Episode 4 was scored as correct when students 
correctly reported the value of both unknowns. 
 
To categorize students’ explanations on the assessment tasks, a coding scheme was 
developed that was applicable to each of the tasks. The development of this coding 
scheme followed an iterative process, inspired by the constant comparative method 
(Glaser, 1965). We commenced with a coding scheme on the basis of the work of 
only a couple of students. This coding scheme was then taken as a starting point to 
code the remainder of the data. When examples of student work were encountered 
that did not fit into the existing scheme, the scheme was adapted. As such, the final 
coding scheme was established after several rounds of careful examination of the 
data and the reaching of consensus between the researchers. Subsequently, there 
was a final round of coding in which all data were recoded on the basis of the final 
coding scheme. 
 
In each assessment task in Episodes 2-4, students had to solve the problem by 
reasoning on the basis of a given system of two equations. In the final coding 
scheme, we distinguished between students who did not use any of these equations 
in the description of their reasoning (Level R0), students who reasoned on the basis 
of only one of the two given equations (Level R1) and students who reasoned on the 
basis of both given equations by combining the information of both of them 
(Level R2). Within the Levels R1 and R2, we furthermore distinguished between 
(1) students who did not make clear how they came to their answer or which 
strategies they used, and (2) students who did give this information. The coding 
scheme, with examples of students’ responses for each assessment task and each 
level of reasoning, can be found in Appendix 3.2. 
 
Additionally, for each episode, the association between students’ level of reasoning 
and their success rate was evaluated by means of a chi-square test of independence. 
 
To analyze the possible relation between the affordances of the embodied learning 
environment and students’ development of algebraic reasoning (Research 
Question 2), we looked into the algebraic strategies elicited in each episode by 
analyzing students’ written work and the video- and audio-recorded interactions, 
and searched for events in which students made use of algebraic strategies when 
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solving the problems in the classroom. In this way, we could relate the students’ 
strategy use to what happened in the lessons during that particular episode. 
 
3. Results 

 

3.1 Students’ development of algebraic reasoning in an embodied learning 

environment 

In the course of the teaching sequence, students more often provided the correct 
answer as shown by the increase in the success rates on the respective assessment 
tasks, from 44% in Episode 2, through 57% in Episode 3, to 77% in Episode 4. 
Furthermore, students’ level of algebraic reasoning increased over time, as shown in 
Figure 2. The percentage of students showing reasoning without using the given 
equations (Level R0) decreased, from 57% in Episode 2 to 20% in Episode 4. 
Students who showed this type of reasoning provided, for example, the explanation 
that they “just knew the answer”, provided a general description that they “looked 
at the example” without stating explicitly which information was used to come to 
that answer, or did not write down anything. The percentage of students that 
showed reasoning reflecting the use of only one of the given equations (Level R1) 
remained more or less stable, between 23% and 28%. Julia’s answer on the 
assessment task of Episode 2 (see Appendix 3.1, Figure A1) is an example of 
reasoning which was categorized as Level R1. She assigned values to the unknowns 
on the basis of the second given equation alone, while ignoring the information 
from the first equation. Finally, the percentage of students that showed reasoning in 
which both given equations were used (Level R2) increased over time, from 17% in 
Episode 2 to 52% in Episode 4. Julia’s reasoning on the assessment tasks of 
Episodes 3 and 4 (see Appendix 3.1, Figures A2 and A3) are two examples of this 
level of reasoning. For example, on the assessment task of Episode 4 (see 
Appendix 3.1, Figure A3), she first transformed the equation 2M = 4L into M = 2L. 
Subsequently, she used this information to substitute the unknown M in the other 
equation by 2L. In this way, she combined the information of both given equations 
to come to an answer, which belongs to reasoning Level R2. 
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Figure 2. Percentages of students performing at a level of reasoning over the three 
episodes (NEpisode 2 = 63; NEpisode 3 = 65; NEpisode 4 = 61). 
 
The association between students’ level of reasoning and their success rate differed 
between the episodes. In Episode 2 (χ2 (2, n = 63) = 2.37, p = .306) and Episode 3 
(χ2 (2, n = 65) = 5.97, p = .051), providing a correct answer was unrelated to 
students’ demonstrated level of reasoning, while in Episode 4 (χ2 (2, n = 61) = 8.70 
p = .013), a high level of reasoning occurred more often with a correct answer and a 
low level of reasoning with an incorrect answer. 
 
Additionally, the development in level of reasoning was analyzed for each student 
individually. One student was excluded from this analysis, because she was absent 
for two of these three assessment tasks. In total, 31 students (48%) showed a pattern 
of reasoning which improved at least one level over time, while no decline was 
shown. The level of reasoning of four students (6%) only decreased. Fourteen 
students (22%) showed reasoning that remained at the same level over time. 
Finally, the remaining 15 students (24%) showed a fluctuating reasoning pattern, 
which over time was both increasing and decreasing. 
 
In addition, we also found that there was an increase in the number of students who 
were able to write how they derived their answer and/or show their applied 
strategies when solving the problems. This was especially the case for the students 
in Level R2. Whereas in Episode 2, 16% of the 63 students who belonged to 
Level R2 gave a description of their reasoning, this percentage increased to 42% for 
the 61 students involved in Episode 4. For the students performing at Level R1, 
these percentages ranged from 17% in Episode 2 to 12% in Episode 4. 
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3.2 Relation between the students’ experiences in the learning environment 

and their use of algebraic strategies 

3.2.1 Episode 1: physical experiences with the hanging mobile 

In the first episode, all students started with the same, balanced, physical hanging 
mobile (see Figure 1, Episode 1). Students were not provided with information 
about how the bags were related. In the first task, students were asked to change the 
hanging mobile in such a way that it would look different, but would still be 
hanging straight, while using the same bags. This led students to use different 
restructuring strategies. For example, Eva commented, as follows, to her partner 
Jailey: 
 

Eva: We can do exactly the same, but then on the other side. So these bags  [1] 
[points to the bags on the left side] to the other side, and these ones [points to the  [2] 
bags on the right side] also all to the other side. So all these bags to that side and  [3] 
all these bags to the other side as well. Then it is different, but also the same  [4] 
[laughs]! [5] 

 
Another restructuring strategy was shown by Iris and Zara. They changed the order 
of the bags on the right side of the hanging mobile by grouping them by color. Kees 
and Julia also restructured their hanging mobile, but instead of exchanging all the 
bags from one side to the other or grouping them by color, they brought three white 
bags to the left side of the mobile and in exchange one black to the right side. The 
restructuring strategies identified by the three pairs of students already in their first 
attempt working with the hanging mobile correspond to important algebraic 
strategies. Eva and Jailey’s strategy of exchanging all the bags between the sides of 
the hanging mobile corresponds to the symmetry property of equations 
(a = b ⇔ b = a). The strategy of Iris and Zara, who changed the order of the bags 
on one side of the hanging mobile, reflects the commutative law of addition. Kees 
and Julia discovered how the white and the black bags are related and applied 
already a substitution strategy in restructuring the composition on their hanging 
mobile. This last way of restructuring was actually shown by most groups of 
students when working on this task. 
 
After a short group discussion about the resulting compositions on the hanging 
mobiles after the transformations, students were tasked to find everything that could 
be done while keeping the hanging mobile straight, and this time they were also 
allowed to add bags and take away bags. The following conversation between Kees 
and Julia exemplifies the emergence of their use and understanding of the isolation 
strategy, by first removing identical unknowns from both sides of the equation 
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(Lines 6-7) and then removing different unknowns from both sides based on the 
ratio (Lines 9-10). Furthermore, in the second part of the interaction in their 
discussion with the teacher (T), their use of the substitution strategy is exemplified, 
as they describe it in words (Lines 13-15) and illustrate it by physically substituting 
bags on the hanging mobile (Lines 24-25). 
 

Kees: These two [points to the two red bags on the left side] are the same as  [6] 
these two [points to the two red bags on the right side]. They are equally heavy … [7] 
Julia: … so then it must be that these two blacks are the same as 1, 2, 3, 4, 5 …  [8] 
6 [white bags] [counts the white bags on the right side of the hanging mobile]! So  [9] 
then one [black] equals three [whites] [10] 
Kees: Yes!  [11] 

 
A little later, they had created a balanced hanging mobile with, on the left side, two 
black bags and, on the right side, two white and two red bags. 
 

T: Can you tell me why this hanging mobile is straight? [12] 
Kees: Because this one [points to one red bag] counts for two whites [a ratio  [13] 
they had previously discovered]. And three whites together equal one black. So  [14] 
one red and one white together must be one black. [15] 
T: [looks at Julia] Do you agree? [16] 
Julia: Yes! [17] 
T: So, you actually say, if I would replace this one [points to one red bag] with two  [18] 
whites … [19] 
Kees: … it’s exactly the same!  [20] 
T: Yes? Are you sure? [21] 
Kees: [nods] [22] 
T: Let’s try!  [23] 
Kees: [replaces one red bag with two whites and watches the mobile coming back  [24] 
into balance, see Figure 3] Look! [25] 
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Figure 3. Kees and Julia substitute a red bag for two whites and watch the physical 
hanging mobile coming into balance (Episode 1). 
 
In these activities, maintaining the balance of the mobile represents maintaining 
equality in an equation. The interactions clearly illustrate that students used 
different algebraic strategies, with which they were gaining perceptual-motor 
experiences. By restructuring the mobile through exchanging all the bags from one 
side to the other, the students could physically experience that both sides of the 
equation are interchangeable and that changing the order of the bags on a side does 
not disturb the balance. Moreover, by taking away similar bags on both sides, the 
students could physically experience the possibility of cancelling identical terms 
from both sides, which can be used to isolate particular unknowns. The third 
strategy, the substitution strategy, allowed the students to further simplify the 
composition on the hanging mobile, thus bringing them closer to finding all the 
ratios. By means of the real-time feedback the tilting beam of the hanging mobile 
provided, students were constantly able to verify, and if necessary adjust, their 
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reasoning, which was, for example, shown by Kees and Julia when replacing the 
red bag with two white ones (Lines 24-25). 
 
After students worked with the physical hanging mobile in small groups, in the 
classroom discussions students shared experiences. During these discussions it 
came to the fore that most groups of students shared the experience of maintaining 
balance by using similar strategies. 
 
3.2.2 Episode 2: combining the information from two hanging mobiles 

Next, the students were given a task in which they had to combine the information 
from two hanging mobiles, with the goal of fostering their further development of 
algebraic strategies, in particular the substitution strategy. The teacher introduced 
the task by placing three physical hanging mobiles in front of the classroom (see 
Figure 4). 
 

 
Figure 4. Three hanging mobiles in front of the classroom (Episode 2). 
 
In one classroom, Florien raised her hand when the teacher asked whether it would 
be possible to combine the two hanging mobiles (A and B) to create the third 
one (C). 
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Florien: If you double the red one,  

 

[26] 

then it becomes one yellow [points to the hanging mobile A].  

 

[27] 

And if you then double the blues as well, it results in four  

 

[28] 

blues .So then you know that four blues equal one yellow. 

 

[29] 

 
Florien’s strategy was one of the strategies that also came up in the other classes. 
She prepared her use of the substitution strategy by transforming the first 
equation (A) by doubling. This enabled her to substitute one side (two red bags) of 
the equation as a whole, by making use of the information from the second 
equation (B). After explaining her strategy to the rest of the class, she made it 
visible to the other students on the physical mobiles in front of the classroom. A 
second example of substitution was put forward, in which students, based on the 
information of the first hanging mobile (A), replaced one red bag in the second 
equation (B) with two blue bags. So here, instead of substituting one side of the 
equation at once, one unknown (or element) in the equation was substituted for 
another unknown. Most students used this strategy. Finally, instead of replacing 
unknowns with other unknowns, a few students also used substitution of unknowns 
by values, which was exemplified by Mats. He assigned the value of 1 to each blue 
unknown, the value of 2 to the reds and the value of 4 to the yellow unknowns, 
which resulted in both sides of each equation adding up to the same number. 
Although Mats did not explain how he came to these values, his choice for the 
particular values evidenced that he took all equations into account. 
 
3.2.3 Episode 3: a new context 
In this episode, the students were presented with problems that were far away from 
the problems with the hanging mobile, but nevertheless had some similarity with 
them. Two groups of animals played a tug-of-war game, and the question was 
which group would win (see Figure 5). Also, here the focus was on the equality of 
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both sides and figuring out which group was stronger by applying all kind of 
transformations while keeping the balance. 
 

 
Figure 5. Tug-of-war problem (Episode 3). 
 
Milan explained his strategy for solving this problem to the rest of the class. First, 
he combined both equations by adding them, as such creating one new equation 
(Line 30). Subsequently, he applied isolation strategies to solve the equation, by 
first taking away a horse on both sides (Lines 30-31), then a sheep on both sides 
(Lines 31-32), and then by removing different unknowns based on the ratio by 
dividing both sides of the equation by two (Line 33). 
 

Milan: I added the lower row to the upper one. Then I was able to take away both [30] 
horses. Then on the right side, six chickens and one sheep remained. So, you [31] 
could take away a sheep at both [sides]. Then there are six [chickens] and two [32] 
sheep left. Dividing makes three [chickens].  [33] 

 
Julia used another strategy for solving this problem. She first converted the problem 
into two equations with letters, by writing S + S + S | C + C + C + C + C + H and 
H | S + C. Then, she substituted the H in the first equation for a C and an S, 
resulting in S + S + S | C + C + C + C + C + C + S. Subsequently, to isolate the 
chickens, she crossed out the S on both sides, and lastly she crossed one S on the 
left side and three Cs on the right side, leaving S | C + C + C. She rewrote this as 
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“1S = CCC3”. A third strategy that again some students used to solve the problem 
was assigning values to the unknowns, which was already described in Episode 2. 
 
In this episode, where the students were presented with equation-like problems in a 
new context, again different strategies for combining the information from both 
equations came forward. Milan (Lines 30-33), for example, added both equations to 
create a new equation with some identical unknowns on both sides that he could 
take away, to subsequently isolate one unknown and express it in another. However, 
Milan was one of the few students that used this smart way of combining both 
equations to constitute a new one. Most students used the substitution strategy to 
solve this problem. This strategy was also used a lot while working with the 
physical hanging mobile. In Episode 3, this strategy was, for example, shown by 
Julia, who converted one type of unknown (the horse) to two other types (a sheep 
and a chicken). She also used this process of substitution of one type of unknown 
into other types when working with the physical hanging mobile in Episode 1 
(Lines 9-10). 
 
The strategies that came up in this episode to solve the new type of equation-like 
context problems are equivalent to the strategies the students had developed while 
working on the hanging mobile. When explaining their answers, some students 
explicitly referred to their experiences of working with the hanging mobile, for 
example, through expressions such as “the horse can be seen as a green bag”. In one 
classroom, when the teacher did not pay attention for a short time, the students even 
used the colored bags of the hanging mobile, which were not used at that moment, 
to represent the tug-of-war situation on their table. Additionally, students often 
explained their solving strategies in terms of actions, such as “I replace the horse by 
a sheep and a chicken, then I take away a sheep on both sides, and then I take half 
of both sides”. The combination of students using similar algebraic strategies, 
explicitly referring to the hanging mobile context, and providing explanations on 
solving the problem in terms of actions suggests that students’ experiences of 
working on the hanging mobile might have formed a foundation for this later stage 
of solving linear equations in a new context. 
 
3.2.4 Episode 4: solving a system of symbolic equations 

In the last episode of the teaching sequence, students were presented with a system 
of two symbolic linear equations with two unknowns. As discernible in Figure 6, 
Kees (see also Episode 1) could solve this problem by showing that F = 6 and 
H = 12. He first converted the equations into hanging mobiles, notating the 
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unknowns in an expanded way. Then, by connecting the Fs on both sides of the 
hanging mobile, he showed the presence of identical terms on both sides of the 
equation. Moreover, he crossed these unknowns to reveal the process of 
cancellation, resulting in the isolation of one F on the right side of the equation. 
Subsequently he could derive the value of this unknown by solving 19 - __ = 13. 
Lastly, by substituting the value 6 for the unknown F in the second hanging mobile 
(representing the second equation), he was able to calculate the value of H. 
 

 
Figure 6. Kees’ solution of a system of two symbolic linear equations, combined 
with the answer that F = 6 and H = 12 (Episode 4). 
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Like Kees, many students first converted the equations into a hanging mobile before 
showing cancellation of identical terms. Some other students reasoned directly on 
the basis of the symbolically notated equation. For example, Kira first repeated the 
first symbolic equation, and then wrote down “1F is added” implying that she 
noticed that in the first equation on the left side there are two Fs, whereas on the 
right side there are three. She then reasoned that she could do the subtraction 
“19 - 13 = 6” to arrive at the value of “1F = 6”. Finally, she used this finding to 
determine the value of “H: 2F = 12”. 
 
In this last episode, it was revealed that most of these students, who were taught 
linear equation solving in an embodied learning environment, were able to solve 
systems of two symbolic linear equations. Most students did not seem to have 
difficulties with understanding the symbolic way of notating the unknowns. Kees, 
for example, showed understanding that 2F is an abbreviated way of notating F + F. 
Nevertheless, he did not solve this problem in a symbolic, formal way. Instead, 
before applying the isolation strategy and then the strategy of substituting of values, 
he first went back to the model of the hanging mobile. This is an example showing 
that at least some students experienced the model of the hanging mobile as a 
powerful tool that they applied when solving linear equations at a formal level. 
Some other students, like Kira, reasoned directly on the basis of the symbolic 
equations. 
 
Kees and Kira, for example, are students who, like most students in our study, did 
not seem to have difficulties with equations not written in the standard form (e.g., 
a + b = c), such as equations containing unknowns on both sides of the equation 
(e.g., 2F + 19 = 3F + 13 or H = 2F). The students did not seem to have 
misconceptions about the equal sign, meaning that instead of interpreting the equal 
sign as a symbol for “here comes the answer”, they considered it as a symbol 
reflecting the equality of the expressions on both sides. The tasks with the hanging 
mobile, in which our main focus was to let students develop strategies related to 
maintaining the equality in equations and as such to provide them with a basis for 
solving equations later on, seem to have contributed to their understanding of the 
equal sign, even in formally notated equations. 
 
4. Discussion 

 

In this study, we investigated the development of students’ algebraic reasoning in 
an embodied learning environment and the possible relation between the 
characteristics of the learning environment and the applied algebraic strategies. In 
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the three consecutive episodes in which students worked on problems involving 
systems of two linear equations, they clearly showed progress in level of reasoning 
and success rate. At first more than half of the 65 students reasoned without making 
use of the information in the given equations. Over the teaching sequence, this 
decreased to about one-fifth of the students. Similarly, whereas in the beginning 
less than one-fifth of the students showed the highest level of reasoning, in which 
they combined the information from both given equations, after the lessons more 
than half of the students attained this level of reasoning. The individual learning 
progresses confirmed these findings. The reasoning of most students improved over 
time without any decline. For 14 students no change was found, 15 students showed 
a fluctuating pattern, and only four students decreased in their level of reasoning. 
Further investigation of the students’ written work on the assessment tasks revealed 
that they also improved in their ability to explain their reasoning and their applied 
strategies to solve these tasks. 
 
Many students appeared to be reticent in writing down their reasoning. In each 
class, during the teaching sequence, we observed fluctuations regarding students’ 
willingness to write down their reasoning. This is a possible explanation for the 
declining or fluctuating reasoning pattern of some of the students. Another 
explanation concerns the nature of the assessment task of Episode 4. Whereas in the 
assessment tasks of Episodes 2 and 3 students had to find relationships between 
unknowns, in the assessment task of Episode 4 they had to identify the values of 
unknowns. It could be that asking students to identify the values of unknowns 
(compared to asking them about relationships between unknowns) made it 
seemingly easier for them to find a correct answer, while at the same time they did 
not write down their reasoning. Because our categorization of students’ levels of 
reasoning was based on their written explanations, we had to assign them to 
Level R0 (“student does not use any of the given equations”) if they did not write 
anything down. Of the 19 students that showed a fluctuating or declining pattern of 
reasoning, 11 declined in their level of reasoning from Episode 3 to Episode 4, 
while 10 of these 11 students answered the assessment task of Episode 4 correctly. 
This seems to support the latter explanation. 
 
We found some indications for the existence of a relation between the 
characteristics of the embodied learning environment and the students’ algebraic 
reasoning. Particular ways of reasoning, uses of strategies and forms of notations 
could be related to the students’ (physical) experiences of working with this 
hanging mobile. The influence of these experiences seemed to be present when the 
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problems were posed in different contexts, and students often used similar strategies 
to solve the problems as when they were working with the hanging mobile. Thus, 
the acquired strategies appeared to form a base for solving new problems. This 
came even more to the fore when students used restructuring, isolation and 
substitution strategies to solve systems of two symbolic linear equations. The 
hanging mobile seemed to evolve into a model on which students could rely for 
solving equations at a formal level. This was exemplified by Kees’ reasoning in his 
solution of the assessment task in Episode 4 (see Figure 6), in which he clearly 
made use of the model of the hanging mobile to solve a system of two formally 
notated linear equations. 
 
In line with embodied cognition theory (e.g., Wilson, 2002), we assumed that 
students’ perceptual-motor experiences with the hanging mobile would be 
beneficial for their linear equation solving abilities. During the teaching sequence, 
students could directly perceive how the status of the balance — representing 
equality in a linear equation — was influenced by their manipulations of the bags 
on the hanging mobile. This action-perception coupling was expected to ground 
students’ understanding of equality, a crucial concept in linear equation solving 
(e.g., Bush & Karp, 2013; Knuth et al., 2005; Li et al., 2008), in the bodily based 
experiences of maintaining balance. The result of such a possible coupling appeared 
to be exemplified by students’ reasoning in Episode 3, in which students used the 
algebraic strategies and provided explanations in terms of actions that could be 
related to their working on the hanging mobile. However, the design of our study 
precludes us from truly deciding about the veracity of our assumptions about the 
working mechanisms governing students’ development of algebraic reasoning in 
interaction with the physical hanging mobile. 
 
In addition to these findings, it was remarkable that most of our students, when they 
had to solve linear equations, did not seem to show difficulties that are often 
reported in other studies. For example, students did not show a lack of relational 
understanding of the equal sign (e.g., Behr et al., 1980; Carpenter et al., 2003). 
Students showed this relational understanding in the assessment tasks of Episodes 3 
and 4 by correctly interpreting the equal sign as a signal for equality instead of as a 
“to-do” signal. This is striking, because based on the mathematics curriculum, 
students only have experience with the equal sign in tasks in the standard form (e.g., 
a + b = c). Tasks in a non-standard form (e.g., c = a + b or a + b = c + d) that could 
promote a relational interpretation of the equal sign are scarcely addressed in the 
curriculum. Obviously, our approach with the hanging mobile, in which the focus 
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was on developing strategies in order to maintaining the equality in equations, 
helped the students in acquiring a relational understanding of the equal sign. 
 
Furthermore, the students in our study also did not show difficulties with the 
formal, symbolic way of notating equations (e.g., Koedinger & Nathan, 2004), nor 
with operations on unknowns (e.g., Filloy & Rojano, 1989; Herscovics & 
Linchevski, 1994). Being proficient at solving this type of problem means that the 
students do not only have to understand the given equations, but also have to be 
able to manipulate and combine them to use this newly gathered information about 
the unknowns in solving the problems. For students at the primary school age, who 
have never been taught linear equation solving, this requires significant higher-
order thinking. In this way, the findings of our study plainly support the generally 
agreed ambition (e.g., National Council of Teachers of Mathematics [NCTM], 
2000) to lay the foundation for higher-order thinking already in primary education. 
 
In interpreting the results of our study it is important to take several limitations into 
consideration. First of all, the exploratory nature of this study enabled us to explore 
the development of algebraic reasoning of the students in our study. However, there 
are some limitations associated with this design, such as the lack of a control group, 
that imply the results should be interpreted carefully. Additional research with an 
experimental study is therefore necessary to further evaluate the influence of 
experiences in an embodied learning environment, such as the hanging mobile, on 
algebraic reasoning. 
 
A second issue concerns how we measured students’ reasoning. Our classification 
of students’ level of reasoning was based on written answers and not on think-aloud 
protocols. This means that we might not have fully captured their reasoning. As 
such, their level of reasoning may have been underestimated. This is also suggested 
by the observation that some students were very well able to verbally explain their 
reasoning during the lessons but did not write their thoughts with the same level of 
sophistication on the assessment tasks. A further aspect to consider is the repeated 
assessment of solving linear equations, which could have given students more 
opportunities to learn how to solve these problems. Therefore, it is important to 
acknowledge that, in addition to the effect of the experiences with the hanging 
mobile, the mere use of the assessment tasks could have contributed to students’ 
progress in their level of reasoning. Moreover, having assessment tasks that directly 
followed after the teaching activities and that focused on the same content as 
addressed in the lessons could have influenced the students’ results on the tasks. A 
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delayed assessment might have provided a better view on what the students gained 
from the lessons. 
 
A next issue of concern is that although our study was carried out in a regular 
classroom setting, it was the researcher who taught the lessons. This means that one 
might wonder whether this kind of algebra instruction with concrete apparatus is 
feasible to be carried out in regular educational practice. In addition one might 
wonder to what extent primary school classroom teachers are prepared for, and feel 
confident in, teaching such lessons. 
 
A question that we also did not answer is whether the teaching of linear equation 
solving by means of the hanging mobile can be implemented in the longer trajectory 
of teaching algebra. In our study, the topic of linear equation solving was also rather 
shortly dealt with and consisted only of teaching equations with positive numbers 
and addition. Additional research is necessary to investigate how the support by the 
hanging mobile works out for other types of equations including negative numbers 
or subtraction that cannot be modelled by such a concrete model. As other authors 
have emphasized (e.g., Fyfe et al., 2014), a process of concreteness fading might be 
necessary, beginning with visual representations and fading into abstract symbols. 
 
Notwithstanding the aforementioned limitations, our findings illustrate that fifth-
grade students can successfully apply algebraic strategies such as restructuring, 
isolation and substitution when solving linear equations. Thus, the embodied 
learning environment in our study seems to have laid a basis for mathematical 
reasoning in later stages when solving systems of symbolically presented linear 
equations. 
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Are physical experiences with the balance model beneficial 

for students’ algebraic reasoning? An evaluation of two 

learning environments for linear equations 

 
Abstract  

 

The balance model is often used for teaching linear equation solving. Little research 
has investigated the influence of various representations of this model on students’ 
learning outcomes. In this quasi-experimental study, we examined the effects of two 
learning environments with balance models on primary school students’ reasoning 
related to solving linear equations. The sample comprised 212 fifth-graders. 
Students’ algebraic reasoning was measured four times over the school year; 
students received lessons in between two of these measurements. Students in 
Intervention Condition 1 were taught linear equation solving in a learning 
environment with only pictorial representations of the balance model, while 
students in Intervention Condition 2 were taught in a learning environment with 
both physical and pictorial representations of the balance model, which allowed 
students to manipulate the model. Multi-group latent variable growth curve 
modelling revealed a significant improvement in algebraic reasoning after students’ 
participation in either of the two intervention conditions, but no significant 
differences were found between intervention conditions. The findings suggest that 
the representation of the balance model did not differentially affect students’ 
reasoning. However, analyzing students’ reasoning qualitatively revealed that 
students who worked with the physical balance model more often used 
representations of the model or advanced algebraic strategies, suggesting that 
different representations of the balance model might play a different role in 
individual learning processes. 
 
 
Keywords: Early algebra, Linear equation solving, Balance model, Representations, 
Physical experiences 
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1. Introduction 

 

Mathematical reasoning is an essential aspect of learning and doing mathematics 
(Cai et al., 1996; National Council of Teachers of Mathematics [NCTM], 2000). It 
involves making and evaluating mathematical conjectures, identifying mathematical 
patterns and relationships, and justifying mathematical thinking and actions (Stein 
et al., 1996; Thom, 2011). Well-developed mathematical reasoning entails noticing 
relations both in mathematical contexts and in the world around us, which makes 
mathematical reasoning a powerful way to gain insight into a wide range of real-
world phenomena (NCTM, 2000). This mathematical reasoning is considered “a 
habit of mind, and like all habits, it must be developed through consistent use in 
many contexts” (NCTM, 2000, p. 56). Unfortunately, the development of 
mathematical reasoning is often overlooked in primary mathematics education. 
Here, the emphasis is predominantly on arithmetic skills, performing operations 
with particular numbers and quantities, while there is less attention for 
mathematical reasoning, focusing on relationships between variables or sets of 
values (e.g., Kilpatrick et al., 2001). 
 
Algebraic reasoning has been recognized as a powerful vehicle to develop 
children’s mathematical reasoning (e.g., Blanton et al., 2015; Brizuela & 
Schliemann, 2004; Kaput et al., 2008). Learning to reason algebraically means 
learning to make generalizations on the basis of particular instantiations of 
mathematical ideas as well as building, justifying, and expressing conjectures about 
mathematical structures and relationships (e.g., Blanton & Kaput, 2005; Cai & 
Knuth, 2011). Algebraic reasoning of young students can be fostered by engaging 
them in solving problems that draw on their existing knowledge and skills (e.g., 
Blanton et al., 2007; Smith & Thompson, 2008; Stephens et al., 2017). The “Candy 
Problem” is an example of such a problem which can elicit algebraic reasoning (see 
Brizuela & Schliemann, 2004). In this problem, two children have the same number 
of candies: the first child has one box, two tubes, and seven loose candies; the 
second child has one box, one tube, and 20 loose candies. The number of candies in 
each of the boxes is the same and the number of candies in each of the tubes as 
well; the students’ task is to figure out the number of candies in a box and a tube. 
Such a problem, which is meaningful to students (i.e., they can imagine what 
happens in the problem) and which draws on comprehension and skills they already 
have, can elicit natural, intuitive context-connected reasoning, which can be 
considered a first step towards more abstract algebraic reasoning (in this case, 
solving linear equations with unknowns on both sides of the equal sign). 
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The current study was initiated to investigate how primary school students’ 
algebraic reasoning could be stimulated. We focused on one particular aspect of 
algebraic reasoning: reasoning related to solving linear equations (Kaput et al., 
2008). To this end, we developed an intervention program consisting of a series of 
six lessons. In these lessons we aimed to foster students’ algebraic reasoning by 
providing them with a learning environment in which they were able to invent, in an 
informal way, strategies for solving linear equations. A balance model played a 
central role in this teaching sequence. More specifically, we used a hanging mobile, 
a physical balance model consisting of a dynamic beam with on each side a number 
of bags hanging on a chain, representing an equation with unknowns (see for a 
similar approach the mobile puzzles used by Goldenberg et al., 2015). In an earlier 
study, we established that students developed informal context-connected algebraic 
strategies which underlie conventional equation solving strategies such as 
restructuring, isolation, and substitution through working with this physical hanging 
mobile (Otten, Van den Heuvel-Panhuizen, Veldhuis, & Heinze, 2019, see 
Chapter 3 of this thesis). Students eventually used these strategies for solving 
informal linear equations in new contexts and even for solving systems of 
symbolically presented linear equations. 
 
In the current study, we quasi-experimentally investigated the effect of our 
intervention program with the balance model on students’ linear equation solving 
performance. More specifically, we examined the effect of using a physical balance 
model in comparison with a pictorial representation of the balance model. 
 
1.1 Using the balance model for linear equation solving 

Characteristic of an equation is that the expressions on both sides of the equal sign 
represent the same value and, in this sense, are equal (Jones et al., 2012; Kieran, 
1981). This equality should be maintained when solving an equation. Students’ 
understanding of equality is particularly visible in their interpretation of the 
meaning of, and reasoning about, the equal sign. A correct understanding of 
equality and the equal sign is crucial for learning linear equation solving (e.g., Bush 
& Karp, 2013; Kieran et al., 2016). Whereas the most appropriate interpretation is 
considering the equal sign as a relational symbol representing equality, it is often 
misinterpreted with students thinking that the equal sign is a signal for “here comes 
the answer” or a “do something”-signal (e.g., Behr et al., 1980; Carpenter et al., 
2003; Falkner et al., 1999; Knuth et al., 2006; McNeil & Alibali, 2005). Relational 
understanding of the equal sign can be fostered by referring to the two sides of the 
equation being “in balance” (Antle et al., 2013). 
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The balance model is an often-used meaningful context to stimulate and structure 
students’ reasoning related to solving linear equations (e.g., Figueira-Sampaio et al., 
2009; Papadopoulos, 2019; Suh & Moyer, 2007; Warren & Cooper, 2005). It 
resembles familiar objects such as a seesaw (e.g., Alibali, 1999; Kaplan & Alon, 
2013), or a kitchen scale, which makes it so that students can imagine what happens 
when this model is used. The balance model can be used to bring the focus on an 
equation as representing a mathematical structure linking two different algebraic 
expressions. It can be utilized to show that both sides of the equation represent the 
same quantity (or: are in balance) and are thus interchangeable (e.g., Bajwa & 
Perry, 2019; Mann, 2004; Warren & Cooper, 2005). This makes the model 
particularly deemed suitable for promoting relational reasoning around the idea of 
equality in an equation, for example by eliciting strategies which keep the model in 
balance (e.g., Anthony & Burgess, 2014; Vlassis, 2002), and which represent 
strategies that can be carried out on the equation. 
 
A variety of balance models have been used to promote young students’ 
understanding of concepts related to linear equations. For example, Cheeseman et 
al. (2017) reported on the use of a physical balance model with five- to seven-year-
old students. Students experimented with the physical balance model by making use 
of a range of equipment with different weights. Explorations of this physical model 
fostered students’ understanding of equality, which was, for example, reflected by 
one student’s comment, “I add the same to each side and it stays even” (p. 154). In 
another study, a computer-based balance model with known weights (e.g., a weight 
labelled with 50 g) and unknown weights (a weight labeled with X) was used to 
teach sixth-grade students solving equations such as 5x + 50 = 3x + 290 (Figueira-
Sampaio et al., 2009). Manipulations on the virtual model directly resulted in 
changes in the corresponding symbolic equation, which made this model especially 
suitable for demonstrating the relationship between the manipulations on the model 
and the changes in the formal algebraic symbols. Pictorial representations of the 
balance model can also be used for exploring concepts and strategies related to 
linear equation solving, such as puzzles on paper that include collections of 
balanced objects with unknown weights hanging on two sides of a balanced beam 
(i.e., mobile puzzles; see Goldenberg et al., 2015). These puzzles were, for 
example, used with sixth-grade students in a study by Papadopoulos (2019). After 
working with the puzzles, students showed a wide range of reasoning abilities 
which can be considered as first steps towards the algebraic strategies and 
conventional steps for solving (systems of) linear equations, such as adding or 
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taking away similar symbols (i.e., unknowns) on both sides, isolating particular 
symbols, and substitution of symbols by weights or by other symbols.  
 
These studies together indicate the wide variety in representations of balance 
models used. A recent review study confirmed this apparent diversity in 
appearances, and additionally showed the different situations in which the model 
was used for teaching linear equation solving as well as different rationales for 
using the model (Otten, Van den Heuvel-Panhuizen, & Veldhuis, 2019, see 
Chapter 2 of this thesis). In general, most positive effects of using the balance 
model for linear equation solving were reported for (young) students encountering 
this algebraic topic for the first time. What this review also suggested was the 
possibility that different representations of the balance model (e.g., a physical 
model, a virtual model, or a model presented on paper) might result in different 
effects on students’ learning outcomes; at least a few studies provided some 
indications for this. For example, Suh and Moyer (2007) compared the effects of 
using a dynamic virtual balance model on third-grade students’ linear equation 
solving abilities, with the effects of using a static model on paper in combination 
with manipulatives. Students working with either of the two models improved in 
solving linear equations (as shown on a combination of pictorial, numerical, and 
word problems) and gained flexibility in representing their reasoning. However, no 
significant differences between the two interventions regarding students’ learning 
gains on solving equations were reported. Qualitative analyses showed that both 
models had unique learning facilitators, such as immediate feedback and a direct 
link between manipulations on the equation and changes in the corresponding 
symbolic equation for the virtual model, and tactile features for the model on paper 
with manipulatives.  
 
There are further studies using balance models but without comparisons of different 
representation types. For example, Figueira-Sampaio et al. (2009) explored the 
change of students’ activities in the Brazilian classroom when a physical balance 
model is replaced by virtual balance models. They compared the use of one 
physical balance model as a demonstration model in the traditional classroom with 
the use of a virtual balance model in small groups of students. Students using the 
virtual balance model during group work showed higher participation, social 
interaction and dialogue, motivation, and reflection than students who had only seen 
a physical balance model at the front of their classroom. A comparison between the 
effects on students’ ability to solve linear equations of the different representations 
of the model was not made in this study. Bajwa and Perry (2019) investigated the 

102

4     Chapter 4



 

 

effect of using various virtual balance models on students’ ability to solve problems 
such as 3 + 4 + 2 = 3 + __ and the meaning of the equal sign. Students who worked 
with either of the representations of the virtual balance model showed higher 
learning gains compared to students in the control condition who only solved 
symbolic problems. In addition, higher learning gains were found for students who 
worked with a static virtual balance model consisting of only two pans with a 
number of blocks (with feedback provided by means of an equal or unequal sign) 
than for students who worked with a dynamic virtual balance model.  
 
Although in some studies on linear equation solving multiple representations of the 
balance model were used in a sequence starting with a physical model followed by 
a pictorial model on paper (e.g., Fyfe et al., 2015; Warren & Cooper, 2005), a direct 
comparison between the effects of using a physical balance model or a pictorial 
balance model on students’ linear equation solving abilities has not been reported 
on. From the perspective of embodied cognition, this comparison might be 
worthwhile to investigate, because (mathematical) cognition seems to benefit from 
physical experiences of our body in interaction with the world around us (e.g., 
Alibali & Nathan, 2012; Núñez et al., 1999; Wilson, 2002). The physical experience 
of maintaining balance might be helpful for understanding the abstract concept of 
equality in a linear equation (Alessandroni, 2018; Antle et al., 2013; Gibbs Jr, 2006; 
Otten, Van den Heuvel-Panhuizen, Veldhuis, & Heinze, 2019, see Chapter 3 of this 
thesis), because the actions performed on the balance model could act as 
metaphorical mapping for developing strategies to maintain equality in an equation. 
Moreover, it has previously been established that using concrete materials in 
learning algebra can help students to move from concrete physical experiences to 
abstract reasoning (Carbonneau et al., 2013; NCTM, 2000). Additionally, from the 
perspective of the feasibility of using this model in the classroom, it is interesting to 
know whether pictorial balance models are as effective as their physical real-world 
counterparts for teaching linear equation solving.  
 
1.2 Current study 

The goal of our study was to learn more about the relevance of different 
representations of the balance model for developing students’ reasoning when 
solving systems of linear equations. For this, we examined the effect of two 
learning environments consisting of a teaching sequence with a balance model on 
students’ development of algebraic reasoning about linear equations. More 
specifically, our interest was in whether a static version of the balance model 
presented on paper would have a different effect on the development of students’ 
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algebraic reasoning about linear equations than a dynamic physical balance model 
with which students could gain physical experiences with equality. We expected 
students to benefit from the physical experiences when solving linear equations, 
resulting in a more frequent use of the model of a balance when solving linear 
equations in contexts not related to the balance model (either explicitly by making 
use of the representation of the model or implicitly by making use of algebraic 
strategies) and in a larger improvement in their algebraic reasoning. 
 
2. Materials and methods 

 
2.1 Participants 

The study was carried out with a convenience sample. About 40 schools, which 
were easily accessible for us, were contacted by email about whether they would 
like to participate in our study on fostering primary school students’ mathematical 
reasoning. Schools and classes were selected based on availability and on teachers’ 
willingness to participate. Participants included 229 students of nine fifth-grade 
classes in eight schools in the Netherlands, four public and four of Christian 
denomination (Catholic or Protestant). We chose fifth-graders for our study because 
in general Dutch students of this age have no previous experience with solving 
equations. Parental consent was obtained for all students except 12, who were 
excluded from the analyses. Five other students were excluded because they missed 
most of the lessons. The final sample consisted of 212 students (47% boys), with 
ages ranging from 9 to 11 (average: 10 years old). Students of three classes 
participated in Intervention Condition 1, in which a balance model on paper was 
used in the instruction (n = 67, 49% boys), students of three classes were in 
Intervention Condition 2, in which the same intervention program was used with in 
addition a physical balance model (n = 65, 42% boys). We also included three 
classes (n = 80, 50% boys) in a control condition, in which no instruction on 
algebra but on probability was provided. All students had not received prior 
instruction on equation solving or other algebra topics. This remained the case 
throughout the year in which the study took place. 
 
2.2 Conditions 

Two parallel versions of the intervention were created which were identical in terms 
of the length (six lessons), content, task types, and sequence (see Figure 1) but 
which differed in terms of the used representation of the balance model. A static, 
pictorial representation of a hanging mobile as balanced model was used in both 
intervention conditions. In Intervention Condition 1, students only worked with this 
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static version of the hanging mobile on paper. Students in Intervention Condition 2 
were taught the same lessons with the same tasks and were presented with the same 
problems during the lessons, but in addition to the hanging mobile on paper, a 
physical hanging mobile was provided allowing students to gain physical 
experiences. Lastly, the students in the control condition participated in an 
intervention consisting of a six-lesson teaching sequence on probability — a topic 
which is also not taught at primary school in the Netherlands. This control condition 
was included to ensure that possible differences between the intervention conditions 
and the control condition could not be attributed to receiving additional lessons on a 
(to them) new mathematical topic. Adding this control condition, moreover, assured 
us that a possible effect of the intervention could not be attributed to, for example, 
retest effects.  
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2.3 Intervention program 

The intervention program consisted of a six-lesson teaching sequence on solving 
linear equations (see also Otten, Van den Heuvel-Panhuizen, Veldhuis, & Heinze, 
2019, see Chapter 3 of this thesis). In the beginning of this teaching sequence, the 
focus was on solving informal linear equations, that is, equations posed in informal 
contexts that students directly have a good understanding of. Over the course of the 
teaching sequence, more formal equations were introduced gradually. The teaching 
sequence could be clustered into four episodes based on the focus and content of the 
lessons (see Figure 1). In the first episode, students could develop informal 
algebraic strategies related to linear equation solving. Instead of the teacher 
transferring the strategies to the students, the students were active participants in 
developing the strategies. Students worked in small groups (2-3 students) using a 
hanging mobile as balance model and reasoned about relationships between 
unknowns. Their main task was to discover all possible ways to maintain the 
balance of the mobile (i.e., the equality). Students could, for example, exchange the 
balls of the left and right side of the mobile to figure out that both sides are 
interchangeable (i.e., apply a restructuring strategy), take away similar balls from 
both sides (i.e., apply an isolation strategy), or substitute one color of balls with 
another color and as such make use of the relationship between different unknowns 
(i.e., apply a substitution strategy). During the ensuing classroom discussion, 
students could mention all possibilities they discovered to maintain the balance of 
the mobile. The teacher wrote students’ ideas on the blackboard, which resulted in 
an overview of the various possibilities. Students’ own wordings were used in this 
overview (e.g., “change one color of bags by bags of another color” instead of 
“substitution”).  
 
From Episode 2 on, the information from two hanging mobiles had to be combined 
to discover new relationships between unknowns. At this time, students had to 
reason about a system of informal equations in the context of the hanging mobile. In 
Episode 3, problems were posed in new informal contexts which are often used for 
eliciting algebraic reasoning, such as a tug-of-war situation (e.g., Kindt et al., 1998). 
After a classroom discussion about equality being crucial in both the familiar 
context (the hanging mobile) and the new context (the tug-of-war situation), all 
possible strategies for maintaining this equality were discussed. Then, students were 
again invited to discover relationships between unknowns in this new context. In 
the example of the tug-of-war situation presented in Figure 1, students could, for 
example, apply a substitution strategy and replace one horse in the first informal 
equation by a sheep and a chicken (on the basis of the second equation), and take 
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away a sheep from both sides in other to isolate the chickens on the right side of the 
equation. Moreover, in this third episode, students were gradually challenged to use 
more symbolic notations when writing down their reasoning. Finally, in Episode 4, 
students reasoned about systems of formal linear equations. The resemblance 
between the familiar contexts and the new context was discussed again, as well as 
the meaning of the algebraic symbols (e.g., what does W stand for?). Then, the 
students’ task was to use all previously discovered strategies for maintaining the 
equality of an equation, with the goal to combine the information of both 
symbolically notated equations in order to determine the values of the unknowns. In 
the example of the system of two formal linear equations presented in Figure 1, 
students could, for example, restructure the first equation by combining 2N and N 
into 3N, resulting in 3N + 4W = 36, then substitute 3N by 2W on the basis of the 
second equations (resulting in 6W = 36), and then further isolate the unknown W by 
dividing both sides by 6.  
 
2.4 Measures 

2.4.1 Algebraic reasoning 

Students’ algebraic reasoning related to solving linear equations was assessed by a 
paper-and-pencil test. Open-ended problems were used to explicitly invite students 
to explain their thinking and thus reveal their reasoning. The test consisted of four 
problems in which students had to solve (a system of) linear equations. The four 
problems were part of a larger test that also included problems in two other 
mathematical domains, namely graphing (four) and probability (five). In this study, 
we only focus on the problems on linear equation solving. 
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The problems on linear equation solving (see Figure 2) were formulated in such a 
way that prior instruction in formal linear equation solving was not necessary to 
solve the problems. Information presented in two informal equations had to be 
combined. In Problems 1, 3, and 4 a system of two linear equations was presented 
which had to be solved; in Problem 2 the information from a given equation had to 
be compared with the information from two other equations. Whereas in Problems 1 
and 4 the goal was to find the value of the unknowns, in Problems 2 and 3 the task 
was to discover a relationship between unknowns. The algebraic strategies of 
restructuring, isolation, and substitution were needed to solve the problems. 
 

2.4.1.1 Coding 

Students’ reasoning on each of the problems was categorized by means of a coding 
scheme. An iterative process, inspired by the constant comparative method (Glaser, 
1965), was used for its development. The first version of the coding scheme was 
developed by taking the work of a couple of students. We first analyzed students’ 
reasoning based on the strategies of restructuring, isolation, and substitution when 
solving the systems of equations. When students used the strategies of restructuring 
or isolation, this usually meant that in their reasoning they only integrated the 
information from one of the two equations in the problem. When students made use 
of the more advanced substitution strategy, they generally combined the 
information from both given equations in their reasoning. Sometimes substitution 
was separately used, but more often in combination with the restructuring and 
isolation strategies. Another strategy which was often used when combining both 
equations was the strategy of elimination of unknowns by subtracting one equation 
from the other.  
 
There appeared to be an intricate relation between the use of relevant algebraic 
strategies in students’ reasoning and the number of equations they referred to while 
describing their solution of the problem. Focusing on the number of equations in 
students’ reasoning turned out to be the most reliable way of coding students’ 
written work, as this was almost always quite clearly visible, whereas the algebraic 
strategies were much more indirectly mentioned. In the end, we therefore decided to 
distinguish between students who did not use any of the two given equations in 
their reasoning (Level R0), students who reasoned on the basis of only one of the 
two given equations (Level R1), and students who reasoned on the basis of both 
given equations by combining the information of both of them (Level R2). 
Importantly, these levels of students’ algebraic reasoning thus reflected both the 
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straightforward number of equations they referred to in their reasoning and also the 
depth of their reasoning by the use of the algebraic strategies.  
 
After several rounds of coding, 100% consensus was reached between the 
researchers and a final coding scheme was established, which was used for a final 
round of data coding. The final coding scheme, with examples of student responses 
for each problem and each level of reasoning, can be found in Appendix 4.1. 
Examples of responses in which students did not show the use of any of the 
equations in their reasoning (Level R0) were: “I made a guess”, “Because I think 
this should be the answer”, “?”, or “I have no clue”. Student responses in which 
only one of both given equations was used (Level R1), for example in Problem 4 
(see Figure 2), only referred to one equation, such as “5 + 5 = 10, so both must be 
€5”, “this fits in the second one, because 7 + 3 = 10”, or “in the first one you see 
3 socks and 2 pacifiers must be 27, so one sock = 5 and the pacifier = 6”. Examples 
of responses in which students reasoned on the basis of both given equations 
(Level R2) were in Problem 4, explanations like “3 × 7 = 21, 2 × 3 = 6, 6 + 21 = 27. 
And 7 + 3 = 10. So, this must be the answer”, or “€10 + €10 = €20. Then one sock 
is left, so the sock must be €7. Then the pacifier = €3”. When a student did not 
provide any reasoning, this was coded as missing. 
 
Inter-rater reliability was established by having an independent second rater recode 
the responses of 10% of the students. Two or three students were randomly drawn 
from each class, resulting in a sample of 21 students (84 responses for each 
problem, 336 responses in total). Inter-rater reliability between coders was high 
(Cohen’s kappa = .92). 
 
2.4.2 General reasoning ability 

An abbreviated version of Raven’s Standard Progressive Matrices (SPM; Raven et 
al., 1996), consisting of 18 items (Bilker et al., 2012), was used as a measure of 
general reasoning ability. The items, which increased in difficulty, consisted of 
diagrams with one part missing. Students have to reason which part is missing, 
before selecting this missing part to complete the design among six or eight 
alternatives. Answers were scored as incorrect (0) or correct (1), resulting in the 
minimum score of 0 and the maximum score of 18. 
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2.4.3 General mathematics performance 

Students’ general mathematics performance was measured by the CITO Monitoring 
System, a Dutch standardized test for different subjects and grade levels (Janssen et 
al., 2005). The end-term scores of Grade 4 were obtained. 
 
2.5 Research design and procedure 

The study was approved by the ethical committee of Utrecht University. A staged 
comparison design with two intervention conditions and one control condition was 
used (see Table 1). Making use of this staged design made it possible that the same 
teacher taught all experimental lessons in both intervention conditions. We 
distinguished three cohorts which differed in the timing of the teaching sequence, 
and a fourth cohort with the control condition who did not receive algebra 
instruction but lessons on probability. Each of the three cohorts in the intervention 
conditions was made up of matched pairs of classes, based on characteristics such 
as the location of the school, the type of school, and the percentages of students 
going to particular levels of secondary education. Subsequently, within each pair, 
the classes were randomly divided over the two intervention conditions.  
 

Over the school year, the students’ algebraic reasoning related to solving linear 
equations was assessed four times by means of the same algebraic reasoning test, 
with approximately two months in between. In this way, the algebraic reasoning of 
students in each cohort was measured before and after participating in the teaching 
sequence. The teaching sequence consisted of six lessons, of about 50 min each. 
The students were taught one lesson a week, during six consecutive weeks. The 
lessons in both intervention conditions (Cohorts 1-3) were taught by the first author 
of this paper, while the probability lessons in the control condition (Cohort 4) were 
taught by another researcher from the same research group. Raven’s SPM was 
administered in each class before the beginning of the study. 
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2.6 Data analysis 

2.6.1 Qualitative analysis 

To get insight into students’ development in reasoning, we first identified for the 
whole sample, for each cohort of students, and for each problem the most prevalent 
patterns of reasoning. The work of two students, whose patterns of reasoning were 
most prevalent (and thus representative) on that problem, was further analyzed and 
discussed. 
 
We then compared all students’ use of the model after participating in an 
intervention with either a balance model on paper or a physical balance model. In 
this way, we could frame the use of the balance model of the two students whose 
reasoning was analyzed more deeply, and we could shed more light on the effects of 
working with different representations of the balance model. On the measurement 
directly after the intervention we looked into (1) whether students explicitly used a 
representation of the balance model (i.e., a drawing of the model) in their reasoning, 
and (2) whether students implicitly used the model as shown in their use of the 
algebraic strategies. This was only done for Problems 1, 3, and 4, because in 
Problem 2 the representation of a balance model was already part of the question. 
Because not all algebraic strategies were equally easy to discern in the students’ 
reasoning we decided to focus only on the more advanced algebraic strategies for 
combining both equations: substitution of a part of one equation on the basis of the 
information from the other or subtracting one equation from the other in order to 
eliminate unknowns.  
 
2.6.2 Quantitative analysis 

2.6.2.1 Descriptive statistics 

Analyses of variance (ANOVAs) were performed to compare the three conditions 
on general reasoning ability and general mathematics performance. Proportions of 
each level of reasoning (R0, R1, R2) on the algebraic reasoning test were calculated 
for each cohort of each condition on each of the measurements.  
 
2.6.2.2 Multi-group latent variable growth curve modeling 
Latent variable growth curve modeling (LGM) was used to model students’ 
development in algebraic reasoning about linear equations over the four 
measurements. LGM is a powerful and flexible technique for modeling longitudinal 
change using repeated measures (Bollen & Curran, 2006). The core of such an 
LGM is a latent ability, in this case students’ reasoning about linear equations, that 
is different for each participant (inter-individual differences), but which also 
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possibly changes within participants (intra-individual differences) over the four 
measurements. A cohort sequential multi-group LGM (Duncan et al., 2006) was 
used in this study, with the cohorts as groups. 
 
Item response theory (IRT) was used to map the likelihood of a level of reasoning 
(Level R0, R1, or R2) onto students’ latent algebraic reasoning ability. This latent 
ability was modeled as the combination of four partial effects: (1) The intercept 

effect: The baseline over all measurements; (2) The slope effect: The linear change 
from one measurement to the next; (3) The intervention effect: The effect of the 
intervention could only influence the score in the measurements following the 
intervention (e.g., when the intervention took place between M1 and M2, this would 
influence M2, M3, and M4); (4) The weakening effect: The weakening of the effect 
of the intervention could only influence the score in the delayed measurements after 
the intervention (e.g., when the intervention took place between M1 and M2, this 
would influence M3 and M4). The possibility existed that there were baseline 
differences in ability between the different cohorts in our study. Therefore, 
differences between the intercepts of the different cohorts were allowed. Because of 
the different timing of the intervention, the loadings for intervention and weakening 
also systematically differed for Cohorts 1-3. Because there was no intervention in 
Cohort 4, we did not include an intervention or weakening effect in this cohort. All 
other parameters were modelled exactly the same in all cohorts. Using LGM thus 
allowed us to disentangle students’ possible (linear) development over the four 
measurements (represented by the intercept and the slope) from the intervention 
effect. 
 
In addition to these partial effects, three predictors were added to the model: 
(a) Condition was added as a dummy predictor of the intervention effect (coded as –
1 and 1, for Intervention Conditions 1 and 2 respectively); (b) A measure of general 
reasoning ability (Bilker et al., 2012; Raven et al., 1996) was added in a centered 
form as a predictor of the intercept; (c) A measure of general mathematics 
performance (Janssen et al., 2005) was added in a centered form as a predictor of 
the intercept.  
 
The model was fitted in Mplus 8 (Muthén & Muthén, 1998-2017), with the 
weighted least squares means and variances adjusted estimator (WLS-MV). 
Following commonly applied cut-off criteria, model fit was considered acceptable 
with the Root Mean Square Error of Approximation (RMSEA) below .08 and the 
Comparative Fit Index (CFI) and the Tucker-Lewis Index (TLI) above .90 (Little, 
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2013). A PROBIT link was used, which means that differences between difficulty 
and ability are expressed in units that refer to a standard normal distribution with a 
mean of zero, with units representing standard deviations. 
 
2.6.3 Missing data 

There were four students for whom one of the measurements M1-M3 was 
completely missing, while subsequent measure(s) were present. We reasoned that 
the baseline linear change (i.e., the slope effect) could be estimated less reliably 
when one of the measurements in between was missing. We therefore decided for 
each case to replace the missing measurement by the subsequent measurement. 
More specifically, M2 of one student from Cohort 1 was missing; M3 was used as if 
it were M2 (as the measurement directly after the intervention) and M4 as M3. The 
same procedure was applied to the three other students, belonging to the control 
condition, of which M1, M3, and M3 were missing, respectively. Class averages 
were calculated and imputed for students’ missing general mathematics 
performance scores. 
 
3. Results 

 

In this results section, we first give an idea of what students’ development in 
algebraic reasoning included by providing a qualitative analysis of two students’ 
reasoning over the measurements and their use of the balance model. The patterns 
of reasoning of these two students were most prevalent (and thus representative) on 
these two problems. Next, we investigate whether the results of these two students 
can be generalized to the whole sample. We qualitatively investigate the effect of 
working with different representations of the balance model on all students’ use of 
this model when solving systems of informal linear equations in other contexts (i.e., 
contexts not related to the balance model). We distinguish between explicit use (i.e., 
using a representation of the model) and implicit use (i.e., using algebraic 
strategies).  
 
After presenting the results of this qualitative analysis, we continue with the 
findings of the quantitative analysis of students’ level of reasoning. Here, we 
investigate the effects of using the balance model on students’ levels of reasoning in 
both the short term and the long term. In addition, we consider the effects of the 
students’ working with a physical versus a pictorial representation of the balance 
model on their levels of reasoning. 
 

116

4     Chapter 4



 

 

3.1 Results from the qualitative analysis of students’ reasoning 

3.1.1 Case 1 – Noah 

Noah participated in Cohort 1 and worked with the hanging mobile on paper 
(Intervention Condition 1). His reasoning on this problem consisted of the pattern 
R1-R2-R2-R2, a pattern which was the most prevalent in this cohort and displayed 
by 9% of the students. Noah’s answers and his reasoning on the measurements right 
before the intervention (i.e., the pretest M1) and right after the intervention (i.e., the 
direct posttest M2) are displayed in Figure 3.  
 
On the measurement before the intervention, Noah based his answer on the first 
equation, in which two pears are displayed as part of the equation. He ignored the 
rest of the first equation and the entire second equation. This reasoning was 
therefore categorized as Level R1 (reasoning on the basis of only one equation). No 
algebraic strategies came to the fore in his reasoning. On the measurement directly 
after the intervention, Noah first converted both equations into symbols. 
Subsequently, he showed that the first equation could be subtracted from the second 
equation, revealing the relationship between the apples and the pears. This 
reasoning was categorized as Level R2 (reasoning on the basis of both equations). 
Noah’s answer on this problem can be seen as a clear demonstration of the effect of 
the intervention. In his reasoning he showed understanding of how to combine the 
information of both equations in the problem: by subtracting one equation from the 
other, one unknown was isolated. Moreover, he displayed his algebraic reasoning 
by making use of letters. 
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3.1.2 Case 2 – Lea 

As a second example, we zoom in on the reasoning of Lea, a student from Cohort 3 
who worked with the physical hanging mobile (Intervention Condition 2). Lea 
demonstrated a pattern of reasoning consisting of only Level R2 on all four 
measurements of Problem 4. This pattern was most prevalent for this problem in 
Cohorts 1 and 3 (displayed by 23% and 14% of the students respectively). Lea’s 
answers on M1-M3 were very similar; her reasoning on the measurement before the 
intervention (i.e., the pretest M3) and after the intervention (i.e., the direct 
posttest M4) is shown in Figure 4. 
 
On the measurement prior to the intervention, Lea substituted the values in both 
equations and thus showed that these values add up to the right amounts of €10 and 
€27. Because she made use of both given equations, her reasoning was categorized 
as the highest level of reasoning (Level R2). On the measurement after partaking in 
the teaching sequence, Lea started with converting both equations into hanging 
mobiles, making her reasoning visible. She then doubled the second equation and 
subtracted the value of 20 from the first equation. In this way, she isolated the sock 
and determined its value (€7). Subsequently, she substituted this value of 7 for one 
sock in the first equation to reveal that two pacifiers must be equal to €6 so one 
pacifier must be €3. This reasoning was again categorized as Level R2. Although 
the effect of the intervention is not directly visible in Lea’s pattern of reasoning 
levels, we do see an effect when we zoom in on the extensiveness and completeness 
of her reasoning: whereas Lea in M1-M3 proved the correctness of her answer by 
substituting both values in both equations, in M4 she clearly made use of various 
algebraic strategies to come to her answer. She isolated one unknown by subtracting 
the second equation two times from the first equation and used the strategy of 
substituting unknowns by values. By converting the equations into hanging 
mobiles, which she used in combination with pre-formal algebraic symbols, she 
moreover showed her ability to incorporate different representations into her 
reasoning and her flexibility in switching between these representations.  
 
For both students, the effect of working with the balance model during the 
intervention was visible in their algebraic reasoning on the measurement directly 
following the intervention. Both students, either after working with the model on 
paper (Noah) or with the physical model (Lea), displayed algebraic reasoning by 
eliminating unknowns through subtracting one equation from the other (i.e., they 
took away things on both sides of one equation on the basis of the other equation). 
Moreover, Lea explicitly made use of the model of the balance in her reasoning.  
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Examination of the work of all students who worked with the balance model on 

paper (Intervention Condition 1) revealed that 27 students (40%) made use in at 
least one of the problems of an advanced algebraic strategy (i.e., substitution or 
elimination) for combining both equations (like Noah). Only one student (1%) in 
this intervention condition explicitly made use of the representation of the balance 
model in their reasoning. On the contrary, 39 students (60%) who worked with the 
physical balance model (Intervention Condition 2) used at least once such an 
advanced algebraic strategy for combining both equations, and, moreover, 11 
students (17%) explicitly used the model of the balance in their reasoning (like 
Lea).  
 
So far, this analysis demonstrates differences between intervention conditions as 
regards the use of the balance model on the measurement after the intervention. 
There might also be differences between both conditions when focusing on 
students’ levels of reasoning. An analysis of these differences is reported in the next 
section. 
 
3.2 Results from the qualitative analysis of students’ reasoning 
In this section, we will further analyze students’ development in algebraic 
reasoning. We will start with providing the descriptive statistics, and then present 
our LGM model. 
 
3.2.1 Descriptive statistics 

Students’ general reasoning ability (F(2, 209) = 1.11, p = .331, partial ƞ2 = .011) 
and general mathematics performance (F(2, 209) = 1.92, p = .149, partial ƞ2 = .018) 
did not significantly differ between students in the three conditions (see Table 2). 
 
Subsequently, the proportions of each level of reasoning on the four algebraic 
reasoning problems were calculated. Over the course of the school year, students’ 
algebraic reasoning was measured four times. Recall that the three cohorts, in which 
students received the lessons, differed in timing. As a consequence, while 
measurement 2 for students in Cohort 1, for example, was the test given directly 
after the lessons (i.e., the direct posttest), this same measurement 2 for students in 
Cohort 2 was the test given before the lessons (i.e., the pretest). To allow for direct 
(visual) comparison of the measurements and to analyze the change in reasoning of 
all cohorts of the intervention conditions at the same time, we created six virtual 
measurements. Students in Cohort 1 were depicted as having participated in virtual 
measurements 3-6, students in Cohort 2 as having participated in virtual 
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measurements 2-5, and students in Cohort 3 as having participated in virtual 
measurements 1-4. In this way, for all cohorts together, virtual measurement 3 
reflected the measurement directly before the intervention (i.e., the pretest), virtual 
measurement 4 reflected the measurement directly after the intervention (i.e., the 
direct posttest), and the change from virtual measurement 3 to 4 reflected the 
change in reasoning due to the intervention.  
 
Figure 5 shows, for each condition, the proportion of each level of algebraic 
reasoning on each of the six virtual measurements. Here it is visible that in both 
intervention conditions the proportion of levels of reasoning R0 and R1 decreased 
after the intervention compared to before the intervention, while the proportion of 
level of reasoning R2 increased (Figure 5a,b). Thus, students in both intervention 
conditions showed more reasoning on the basis of both linear equations after 
participating in the teaching sequence. Moreover, the proportion of Level R2 
increased more in Intervention Condition 2 (.33 increase in proportion) than in the 
cohorts of Intervention Condition 1 (.18 increase in proportion). Figure 5c shows 
the proportion of each level of reasoning on the four measurements for the control 
condition. No virtual measurements needed to be created for this condition to allow 
for comparison of the reasoning of all students together, because none of the 
students in this control condition participated in the algebra intervention so there 
was no shift in timing of an intervention which needed to be controlled for. 
Figure 5c shows that the proportions of levels of reasoning in the control condition 
remained more or less stable.  
 
Table 2 
Students’ scores on general reasoning ability and general mathematics 

performance for all three conditions 

  General reasoning 
ability 

General mathematics 
performance 

 Cohort M (SD) M (SD) 
Balance model on paper 
[Intervention Condition 1] 

1 11.18 (2.84) 102.05 (9.48) 
2 11.00 (2.17) 96.57 (9.19) 
3 10.08 (2.59) 87.00 (10.82) 
Mean 10.73 (2.56) 94.94 (11.65) 

    
Physical balance model 
[Intervention Condition 2] 

1 9.95 (2.01) 95.76 (9.49) 
2 8.94 (2.78) 92.82 (9.21) 
3 10.92 (2.97) 92.48 (9.38) 

 Mean 10.05 (2.71) 93.68 (9.35) 
    
Control condition 4 10.49 (2.74) 97.32 (12.62) 
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3.2.2 Multi-Group latent growth model 

A multi-group LGM with a PROBIT link was fitted to investigate the overall effect 
of the intervention on students’ reasoning ability in both the short term and the long 
term and to investigate the effect of the two different representations of the balance 
model on this reasoning ability. The model with an intercept, slope, intervention 
effect, and weakening effect, condition as predictor of the intervention effect and 
general reasoning ability as predictor of the intercept had an acceptable fit 
(RMSEA = .066, 90%-CI [.050 - .080], CFI = .926, TLI = .937). Adding general 
mathematics performance as a predictor resulted in a deterioration of the fit and was 
therefore disregarded in this analysis. Table 3 shows the parameter estimates of this 
model. The overall effect of the intervention on students’ reasoning ability was 
significant (M = 0.67, p < .001). Students’ algebraic reasoning thus improved after 
partaking in the teaching sequence. This effect showed weakening on the delayed 
measures after the intervention (M = -0.31, p = .001), which means that students’ 
level of algebraic reasoning decreased a little in the long term. The differential 
effect of condition (physical vs. pictorial balance model) on the intervention effect 
turned out to be nonsignificant (β = .33, p = .136). In other words, the 
representation of the balance model did not differentially affect students’ reasoning. 
Lastly, general reasoning ability was a significant predictor of students’ baseline 
reasoning ability (i.e., the intercept, β = .34, p <.001), which means that a higher 
general reasoning ability was associated with a higher baseline level of algebraic 
reasoning. 
 
Table 3 
Parameter estimates of multi-group LGM model 

Model parameter  M p-value var 

     Intercept      
          Cohort 1  @0  0.59 
          Cohort 2  -0.44   .013 0.59 
          Cohort 3   0.14   .399 0.59 
          Control Cohort   0.10   .534 0.59 
     Slope (mean)   0.06   .048 0.05 
     Intervention (mean)   0.67 <.001 0.09 
     Weaken (mean)  -0.31   .001 @0 
     
Predictor regressions (β)     
     General reasoning ability on intercept    .34 <.001  
     Condition on intervention     .33   .136  
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In order to gauge the effect size of the intervention, it is helpful to visualize the 
results. As an illustration, Figure 6a shows a standard normal distribution (as 
required for a PROBIT model) representing the hypothetical algebraic reasoning 
ability of all students on Problem 1 at the measurement directly before the 
intervention. The total area under the curve is one and is divided in three parts, 
separated by so-called thresholds, which reflect the likelihood of reasoning in 
accordance with Levels R0, R1, and R2 respectively. At the measurement just after 
the intervention, the algebraic reasoning abilities have changed and the curve in the 
figure has shifted to the right (see Figure 6b). The thresholds do not change. Due to 
the intervention, the likelihood of reasoning in accordance with Level R0 decreases, 
as can be seen in Figure 6, while the likelihood of reasoning in accordance with 
Level R2 increases after the intervention. In other words, this figure visualizes that 
after partaking in the teaching sequence students’ reasoning improves: fewer 
students use none of the given equations in their reasoning (Level R0), somewhat 
fewer students reason on the basis of only one of the given equations (Level R1), 
and more students combine the information of both equations in their reasoning 
(Level R2).  
 
The effect size of the intervention determined by the whole test can be computed 
straightforwardly from the model parameters in Table 3. As explained earlier a 
score is based on four components: the intercept, the slope, the intervention effect, 
and the weakening effect. As the intercept only influences the first measurement 
and the weakening effect is still zero at the measurement directly after the 
intervention, the effect size of the score gain (Cohen’s d) is reflected by the sum of 
the intervention and the slope effect from Table 3: 0.67 + 0.06 = 0.73. 
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4. Discussion 

 
In this study, we investigated the effects of two learning environments consisting of 
a teaching sequence with a balance model on the development of primary school 
students’ algebraic reasoning related to linear equation solving. The balance models 
in these learning environments were implemented in two different representations 
(dynamic physical vs. static pictorial on paper). The development of students’ 
algebraic reasoning was examined through four assessments over the school year, 
with students participating in the teaching sequence between two of these 
measurements. In the assessments, students answered four open-ended tasks, each 
representing a system of informal linear equations. The sample in this study had no 
prior instruction on linear equations. 
 
Our results show that fifth-grade students who participated in an intervention based 
on the balance model showed higher levels of algebraic reasoning when solving 
systems of informal linear equations. Students improved in their ability to reason by 
combining the information of both equations (Level R2), instead of reasoning on 
the basis of only one of the two given equations (Level R1) or none of the given 
equations (Level R0). This highest level of reasoning was displayed more 
frequently after the intervention (65%) than before (39%). These results underscore 
previous research showing that primary school students’ algebraic reasoning about 
(systems of) linear equations can be fostered (e.g., Blanton et al., 2015; Brizuela & 
Schliemann, 2004; Van Amerom, 2003; Van Reeuwijk, 1995). It moreover 
underlines the suitability of the balance model for stimulating and structuring this 
reasoning (e.g., Otten, Van den Heuvel-Panhuizen, & Veldhuis, 2019, see 
Chapter 2 of this thesis; Otten, Van den Heuvel-Panhuizen, Veldhuis, & Heinze, 
2019, see Chapter 3 of this thesis; Papadopoulos, 2019; Suh & Moyer, 2007; 
Warren & Cooper, 2005). In addition, we also systematically investigated the 
development in reasoning of all students by making use of repeated measurements. 
This allowed us to examine both the short-term effects of the intervention and its 
long-term effects: resulting in the finding of a small fading out of the intervention 
effect. 
 
However, our main interest was whether a static pictorial representation of a 
balance model had a different effect on the development of students’ algebraic 
reasoning than a physical balance model which students can manipulate and which 
tilts in response to students’ actions. We expected students’ perceptual-motor 
experiences with the physical balance model to be beneficial for their understanding 
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of the abstract mathematical concept of equality in an equation (in line with, e.g., 
Alessandroni, 2018; Antle et al., 2013; Núñez et al.,1999), which we supposed to 
positively influence their reasoning about linear equations. Qualitative analyses of 
students’ written responses on the measurement directly after the intervention 
showed that students who worked with the physical balance model more frequently 
used the balance model when solving systems of informal linear equations in 
contexts not related to the balance model than students who worked with the model 
on paper. This use of the model was either explicit, by making use of the 
representation of the model, or implicit, by making use of substitution of a part of 
one equation on the basis of the information from the other, or subtracting one 
equation from the other in order to eliminate unknowns. For students who worked 
with the physical balance model, 17% used the representation of the model in their 
reasoning and 60% used advanced algebraic strategies, compared to only 1% and 
40% of the students who worked with the model on paper. However, although the 
descriptive values also suggested a larger improvement in level of reasoning for 
students who worked with the physical balance model compared to students who 
worked with the model on paper, the LGM analysis did not yield significant 
differences in the development of students’ levels of algebraic reasoning about 
equations. 
 
There are several possible explanations for this nonsignificant finding. The teaching 
sequence in both intervention conditions might have been too similar to affect 
students’ level of algebraic reasoning differently. After all, apart from the used 
representation, students in both conditions were taught by means of the same 
didactical model. Such models are meant to elicit students’ growth in understanding 
of mathematics (Van den Heuvel-Panhuizen, 2003). Through the balance model, 
students in both types of intervention were primed to the equality concept, which is 
crucial to come up with strategies to solve linear equations and which can assist 
students to bring the focus on an equation as representing a mathematical structure 
that links two different algebraic expressions. Possibly, the balance model is a very 
strong didactical model, which, independent of the representation of the model, is 
very accessible for students and can help them make sense of the problem situation. 
Additionally, the difference between both teaching sequences was present mainly in 
the first three lessons, with students working with only a balance model on paper or 
in addition a physical balance model. This period of three lessons might have been 
too short to induce a different effect on students’ reasoning. Lastly, it is also 
possible that both representations evoke the idea of balance (in line with Alibali & 
Nathan, 2012; Núñez et al., 1999; Wilson, 2002), which is strongly grounded in 
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previous physical experiences (Alessandroni, 2018; Gibbs Jr, 2006). Direct 
perceptual-motor experiences with the physical balance model, or indirect 
experiences through mental simulation or predicting whether the model on paper 
will be in or out of balance, can result in the same neural activation patterns (e.g., 
McCaffrey & Matthews, 2017). 
 
These explanations for the absence of a significant difference between the 
intervention conditions as regards students’ levels of reasoning are in contrast with 
the differences between conditions as regards students’ use of the balance model, 
reflected by either their use of a representation of the model and/or their use of 
advanced algebraic strategies. A possible explanation for this discrepancy is that 
different representations of the balance model do affect students’ algebraic 
reasoning differently, but only on such a detailed level that our coding scheme was 
not able to capture these differences. Although our three-level coding scheme 
proved to be suitable to capture students’ level of algebraic reasoning (with a high 
inter-rater reliability) and although the different levels of reasoning did reflect, to a 
certain extent, the depth of students’ reasoning by the use of algebraic strategies, 
we, in the end did, lose some of the richness in students’ reasoning by means of this 
straightforward way of coding. Lea’s pattern of reasoning provides a good example: 
although she consistently showed reasoning on the basis of both equations 
(Level R2), her reasoning after participating in the teaching sequence was much 
more elaborate and she clearly used more algebraic strategies (or at least she was 
better able to demonstrate her use of algebraic strategies in her written response). 
Also, because we did not include think-aloud protocols or other types of live 
registration of reasoning, we might not have captured the students’ full reasoning. 
We recommend further research to investigate the effects of different 
representations of the balance model on students’ reasoning while making use of 
live registration of students’ reasoning.  
 
Alternatively, because of practical reasons (all lessons were taught by the same 
teacher) we made use of different cohorts in our study. Within each cohort of each 
intervention condition we included only one class. This might have resulted in too 
little power to detect differences in levels of reasoning between conditions using the 
LGM analysis. The fact that all cohorts of students working with the physical 
balance model showed higher learning gains could be an indication of this. Ideally, 
we would have included more than 212 students in our study. This probably would 
have resulted in a better fitting model and more power to detect potential effects. A 
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design without cohorts or with multiple classes within each cohort would then be 
preferable to enhance the power of the study.  
 
When interpreting the results of our study, one should also keep in mind its quasi-
experimental nature. There was no random assignment of students to conditions. 
However, we did control for initial differences between classes in our analyses, by 
including general reasoning ability and general mathematics ability as covariates. 
Moreover, quasi-experimental designs are considered very appropriate for testing 
the effectiveness of interventions in natural educational environments (Cook & 
Campbell, 1979). On the other hand, the study design also has several strengths. 
First, our staged comparison design with multiple cohorts allowed us to investigate 
not only the short-term but also the long-term effects of the intervention on 
students’ reasoning. It also created the possibility to take into account the effect of 
repeatedly assessing students’ algebraic reasoning. Second, mixed methods (i.e., 
quantitative and qualitative analyses) could be used. We went beyond only looking 
at the correctness of all students’ answers, which is often done from a pragmatic 
point of view, and instead focused on students’ reasoning. LGM was subsequently 
used to model the development of students’ algebraic reasoning ability. Lastly, this 
study could take place in an authentic classroom setting. The high ecological 
validity makes the results of our study quite easy to translate to educational 
practice. 
 
In the current study, we demonstrated the effectiveness of a learning environment 
with the balance model, in a whole-classroom setting, on primary school students’ 
reasoning about solving systems of informal linear equations. Using this model to 
elicit algebraic reasoning aligns with the objective to commence with stimulating 
such reasoning in primary school classrooms (NCTM, 2000). No significant 
differences were found between using a balance model on paper or a physical 
balance model on the development of students’ level of reasoning, suggesting that 
the representation of the model does not play a role. However, having a closer look 
at students’ reasoning revealed that students who worked with the physical balance 
model more often made use of the balance model, either by making use of the 
representation of the model or by making use of algebraic strategies such as 
substitution or elimination, when solving systems of informal linear equations. This 
suggests that different representations of the balance model might play a different 
role in individual learning processes. We recommend for future research to address 
this discrepancy in findings and to further investigate the possibility that different 
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representations of the balance model might affect students’ algebraic reasoning 
differently, for example by making use of live registration of students’ reasoning. 
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Abstract 

 
Higher-order thinking (HOT) within the domains of algebra and graphs involves 
reasoning about covariation. Despite the conceptual overlap between these 
mathematical domains, little research has been conducted about whether stimulating 
reasoning within one domain might also be beneficial for reasoning in the other. In 
this study, we investigated the effect of a six-lesson teaching sequence about linear 
equation solving on the development of 132 fifth-grade students’ reasoning about 
systems of informal linear equations and graphs of motion over the school year. The 
mathematical HOT related to reasoning about covariation across both domains was 
operationalized as extracting, using, and combining sources of information about 

relationships. Results from multi-group latent variable growth curve modelling 
analyses showed that students improved their algebraic reasoning, but not their 
graphical reasoning. These findings show that transfer of HOT from one 
mathematical domain to another, related mathematical domain cannot be taken for 
granted, suggesting that the HOT that students developed during the lessons was 
rather domain-specific. 
 
 
Keywords: Linear equations, Motion graphs, Domain-specific mathematical higher-
order thinking 
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1. Introduction 

 
Lotte buys one pizza and one soda for €10. The next week, she buys three pizzas and 

two sodas for €27. What is the price of one pizza?
1
 

 
In order to solve this problem, a 10-year old student should reason on the basis of 
the first relationship (i.e., the price of one pizza and one soda and the total price of 
€10) and the second relationship (i.e., the price of three pizzas and two sodas and 
the total price of €27), while keeping in mind how the price of the products and the 
total price relate to each other. This task is far from easy. It involves understanding 
of how to solve a system of two informal linear equations with two unknowns. For 
this, the student has to recognize the relationship between the unknowns, meaning 
that a change in the value of one has consequences for the value of the other. The 
student also has to understand the connection between the informal equations. This 
connection entails that both equations include the same unknowns representing the 
same value (i.e., the price of a pizza in the first equation is similar to the price of a 
pizza in the second equation), that the values for the unknowns need to be 
determined in such a way that both equations sum up to the correct price, and that 
both equations in this system of equations are mutually related (in this particular 
example, the first equation can also be been seen as part of the second equation). 
We consider 10-year old students’ skills to understand and work with a system of 
informal linear equations, including manipulating the equations, making 
connections between them, and combining them in novel ways, to be important 
aspects of mathematical higher-order thinking (HOT) skills (e.g., Goldenberg et al., 
2015). This type of task is considered to require HOT due to their non-algorithmic 
nature whereby students cannot simply recall information or apply routine solving 
procedures (e.g., Lewis & Smith, 1993; Murray, 2014).  
 
Developing HOT-skills is of major importance in today’s rapidly changing society, 
in which loads of information is available (Forster, 2004; Miri et al., 2007). 
Therefore, acquiring this HOT is considered to be a major educational goal (Zohar 
& Schwarter, 2005). There is general agreement that the foundation for HOT should 
be laid in primary school (National Council of Teachers of Mathematics [NCTM], 
2000). Because doing mathematics involves solving problems, such as the problem 
described above, for which students have to examine ideas, interpret and connect 
information, and reason logically, mathematics is considered as a suitable domain 

                                                           
1 Adapted example from one of the algebra tasks used in the current study 
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for developing HOT (e.g., Foong, 2000; Murray, 2011). Nevertheless, despite the 
growing attention for incorporating HOT in education, both at the international 
level (Organization for Economic Co-operation and Development [OECD], 2019) 
and within the Netherlands, where this study was situated (e.g., curriculum.nu, 
2019; Thijs et al., 2014), opportunities for students to show and develop HOT are 
still almost absent in primary school mathematics textbooks (Kolovou et al., 2009; 
Van Zanten & Van den Heuvel-Panhuizen, 2018). In two previous studies, we 
designed, implemented, and evaluated a teaching sequence about linear equations, 
which stimulated students’ HOT related to algebra (Otten et al., 2019, 2020, see 
Chapter 3 and 4 of this thesis). In the current study, we focus on whether this 
teaching sequence also fosters students’ HOT in another, related mathematical 
domain: graphing motion. 
 
HOT in linear equation solving involves reasoning about complex mathematical 
concepts. An important example of such a mathematical concept is covariation 
(Thompson & Carlson, 2017). Covariation (or: covarying quantities) is present in in 
an equation such as x + y = 10: when the value of x changes (or: varies), the value 
of y must vary as well for the sum to remain equal to 10. This notion of covarying 
quantities is also important in other mathematical domains. One domain for which 
this particularly holds is the domain of graphing motion. For example, in order to 
understand a distance-time graph, students have to understand the relationship 
between the variables of distance and time represented on the graph’s axes, make 
connections between them, and understand how changes in time relate to changes in 
distance (e.g., Leinhardt et al., 1990). Reasoning about covariation can thus be 
regarded as domain-specific mathematical HOT, used within the domain of algebra 
(e.g., reasoning about the relationship between unknowns in an equation or 
reasoning about the relationship between two equations in a system of equations) or 
within the domain of graphs (e.g., reasoning about the relationship between the 
variables on the x- and y-axis). However, at the same time, this covariational 
reasoning also calls upon processes that are rather similar across mathematical 
domains (i.e., calls on more general mathematical HOT components): covariation in 
terms of extracting, using, and combining sources of information about 

relationships.  
 
The aim of the current study was to investigate whether the domain of linear 
equations offers opportunities to promote reasoning in the domain of graphing 
motion. We analyzed the effect of a teaching sequence about linear equations on 
students’ reasoning about (systems of informal) linear equations and their reasoning 
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about graphs of motion. The teaching sequence targets students’ domain-specific 
mathematical HOT (e.g., reasoning about relationships between unknown values in 
equations and making connections between equations in a system of equations), 
while also touching upon more general components of mathematical HOT (e.g., 
extracting, using, and combining sources of information about relationships). The 
results of this study will contribute to the knowledge about whether and how 
mathematical HOT can be stimulated within and across mathematics domains. 
 
1.1 Nature of higher-order thinking 

There is general agreement that lower-order cognition or thinking skills can be 
distinguished from higher-order cognition or thinking skills (e.g., Lewis & Smith, 
1993). The taxonomy of Bloom et al. (1956) is a hierarchy of cognitive skills which 
is often referred to in the context of HOT. Within this taxonomy, lower-order 
thinking is reflected by the bottom three levels (knowledge, basic comprehension, 
and application of basic knowledge) while the upper three levels (analysis, 
synthesis, and evaluation of information) are often used to operationalize HOT. 
Newmann (1991) defines lower-order thinking as demanding routine, more or less 
mechanistic application of previously acquired knowledge. Such application of 
lower-order thinking takes place when someone recalls information from memory, 
for example in mathematics, to work on closed problems that can be solved through 
arithmetic fact retrieval. In contrast, the application of HOT takes place when 
someone has to organize, interpret, analyze, or manipulate information, to work on 
a problem which cannot be solved through routine application of previously learned 
knowledge. According to Resnick (1987), HOT involves “elaborating [on] the 
given material, making inferences beyond what is explicitly presented, building 
adequate representations, analyzing and constructing relationships” (p. 45).  
 
Most conceptualizations of HOT, such as the one of Bloom et al. (1956), reflect a 
domain-general view on HOT. This means that they consider HOT as being about 
applying general principles such as elaborating, reasoning, analyzing, and 
synthesizing to any academic domain (e.g., Leighton, 2004). Others argue that HOT 
cannot be separated from specific academic topics or domains (e.g., Alexander et 
al., 2011; Ericsson, 2003). This latter view is a domain-specific view on HOT, 
which entails that HOT stems from — and is entangled with — specific academic 
domains. In this respect, Alexander et al. (2011) emphasize the necessity of 
including the role of the domain into the description of HOT, proposing that HOT 
“exhibits distinctive qualities arising from the nature of the domain within which 
the task or activity is situated” (p. 53). Following this view on HOT, we can assume 
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that solving (informal) systems of linear equations (for which students have to 
reason about the relationships between unknowns and about the mutual 
relationships between equations in order to combine their information) is domain-
specific HOT. 
 
1.2 Linear equation solving in primary school mathematics 

In an equation, the expressions on both sides of the equal sign represent the same 
quantity. In that sense, both sides are equal, which makes the concept of equality 
crucial in linear equation solving (Bush & Karp, 2013; Kieran et al., 2016; Knuth et 
al., 2005; Li et al., 2008). Equality in an equation is often explicated by referring to 
the metaphor of two sides being “in balance” (Antle et al., 2013). Students need to 
perceive the equal sign as the symbol denoting an equivalent relationship between 
qualities (e.g., Behr et al., 1980). However, instead of such a relational 
understanding of the equal sign, students often have a more operational 
understanding, meaning that they perceive the equal sign as symbol directing them 
“to-do-something”. This leads to the incorrect belief that the equal sign must always 
be followed by an answer (e.g., Behr et al., 1980; Falkner et al., 1999; McNeil & 
Alibali, 2005). A more relational understanding of the equal sign is associated with 
higher linear equation solving performances (Knuth et al., 2006).  
 
The goal of solving a linear equation is to isolate the unknown so that its value can 
be determined. The equality of an equation should be maintained during this 
process (i.e., the equation should remain balanced). Solving an equation implies 
simplifying the equation by constructing a system of equivalent equations, while 
keeping the target of this isolating process, the unknown quantity, in mind (Kieran, 
1997). The strategy of restructuring the equation, for example, changing the order 
of the terms in the expressions by using the commutative and associative properties 
or exchanging the expressions between the two sides of an equation, is used to 
prepare and simplify the expressions in an equation to facilitate its further solving. 
Isolation of an unknown can subsequently be achieved by doing transformations 
under the principle performing the same operations on both sides of the equation 
(e.g., Arcavi et al., 2016; Pirie & Martin, 1997).  
 
A system of linear equations is a collection of at least two linear equations with the 
same set of unknowns. When solving such a system of equations, the information of 
multiple equations needs to be combined. Students need to reason about the 
relationships between the different unknowns and their pattern of covariation (i.e., 
how changes in the one result in changes in the other). When the value of one 
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unknown varies, it implies that the value of the other unknown must vary as well to 
make sure that the validity of every equation in the system is satisfied. In order to 
solve a system of linear equations, the strategy of substitution is often used, 
whereby an expression in an equation is replaced by another expression of the same 
value or by another particular value. 
 
1.3 Domain-specific HOT in linear equation solving and graphs of motion 

Mathematical functions (e.g., a relationship between x and y) can be represented in 
different ways, for example algebraically (in the form of an equation) or graphically 
(in the form of a graph). In mathematics education, the introduction of algebraic and 
graphical representations of a function represents “one of the earliest points in 
mathematics at which a student uses one symbolic system to expand and understand 
another” (Leinhardt et al., 1990, p. 2). Students need to learn, among others, how to 
create equations to represent relationships between quantities, how to graphs these 
equations, and how to solve (systems of) equations algebraically and graphically 
(Common Core State Standards Initiative [CCSSI], 2010). The mathematical 
domains of algebra and graphs are often addressed together in mathematics 
education. In various research articles the relationship between these domains has 
been a topic of interest. In a study by Schliemann et al. (2012), in which third- to 
fifth-grade students were introduced to algebra, students explored relationships 
between variables through representing them as graphs and as equations and solving 
them algebraically. In another study, students solved a system of two informal 
linear equations by making use of algebraic strategies such as substitution, or by 
making use of the representation of a graph (Berks & Vlasnik, 2014).  
 
In the current research, we were also interested in developing students’ algebraic as 
well as students’ graphical reasoning. However, instead of addressing both domains 
in the same intervention, we took another approach: we investigated whether a 
teaching sequence in the domain of linear equations would also have an effect on 
students’ reasoning about graphs of motion. Solving (a system of) informal linear 
equations requires reasoning about how changes in one unknown result in changes 
in the other (i.e., reasoning about covariation; Thompson & Carlson, 2017). Such a 
system of linear equations can be seen as a complex and demanding problem for 
which there is no fixed solution procedure (Papadopoulos, 2019). Various skills are 
called upon, such as making comparisons between both linear equations and 
integrating the information found in both of them (in the terminology of Bloom et 
al., 1956: synthesizing); skills which can be considered HOT skills. Flexibility to 
switch between multiple representations is moreover necessary, such as pictorial or 
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symbolic representations of the equations, or other ways of representing the data, 
such as a table or a graph.  
 
Within the domain of motion graphs, reasoning about graphically represented 
change is essential. This reasoning about graphically represented change implies 
that a student should be able to reason about the values on the x-axis and y-axis of 
the graph, the respective quantities as well as their pattern of covariation. Graphical 
reasoning involves both graph interpretation and graph construction. Consider the 
following example: Ollie and Eve are going to school. Eve leaves home a little 

earlier than Ollie. Halfway she waits for Ollie to catch up. They continue their 

journey together and arrive at the same time.
2
 To construct a distance-time graph of 

this particular motion situation, a student needs to have an understanding of how the 
relationship between time and distance can be represented as a line in the graph. 
When drawing a line-graph, students should be able to simultaneously coordinate 
the relationship between two changing variables with the graph’s axes as a 
reference.  
 
Covariation can thus be considered a core concept within both the domains of linear 
equations and motion graphs. This covariational reasoning can be regarded as 
domain-specific mathematical HOT: within algebra it involves reasoning about the 
relationship between unknowns or reasoning about the relationships between 
equations, while within graphs it involves reasoning about the relationship between 
the presented variables on both axes. Given this domain-specific nature of the 
concept of covariation, we cannot automatically assume that reasoning about 
covariation within one domain is similar to reasoning about covariation within 
another domain. However, we can describe this essentially domain-specific concept 
as also involving more general mathematical HOT skills, occurring within both 
mathematical domains: reasoning about extracting, using, and combining sources of 
information about relationships. For example, students can extract information 
about linear relationships from the system of equations, take into account the 
interrelatedness, and combine the information to find unknown values or new 
relationships. Likewise, students can extract information about quantities presented 
on a graphs’ axes, take into account the interrelatedness, and combine the given 
quantities into something new. Given the importance of the concept of covariation 
across both domains, it is worthwhile to investigate whether stimulating reasoning 

                                                           
2 Adapted example from one of the graphing tasks in the Beyond Flatland project (see Chapter 1 

of this thesis). 
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about covariation within one domain might also improve reasoning in the other 
domain.  
 
Involving students in challenging domain-specific mathematics activities could 
open up possibilities for stimulating their HOT. For example, the domain of linear 
equations offers a fruitful starting point for such activities which are currently not 
included in the primary school mathematics curriculum. To this end, we developed 
a six-lesson teaching sequence in which fifth-graders explored, reasoned about, and 
solved (systems of) linear equations in informal contexts. In a previous study, we 
found that the activities in this teaching sequence stimulated students’ use of 
algebraic strategies which resulted in higher levels of algebraic reasoning (Otten et 
al., 2019, see Chapter 3 of this thesis). Moreover, students participating in this 
teaching sequence showed more improvement in their algebraic reasoning than 
students participating in an intervention on another mathematical topic, probability 
(Otten et al., 2020, see Chapter 4 of this thesis).  
 
1.4 The current study 

In the current study, we investigated the effect of receiving lessons in linear 
equations on reasoning about graphs of motion. In parallel, another study was 
carried out to investigate the possible transfer of receiving lessons on graphs of 
motion towards students’ reasoning about linear equations (Duijzer, Otten, et al., 
2020). Because reasoning about covariation is important in both mathematical 
domains, we assume that stimulating students’ reasoning in one domain might 
affect their reasoning in the other domain. The following research question was 
formulated: To what extent does a six-lesson teaching sequence on linear equation 

solving affect students’ algebraic and graphical reasoning?  

 
Two sets of four tasks were used to assess primary school students’ development of 
algebraic and graphical reasoning. On the four algebra tasks, students had to reason 
about two informal linear equations. On the four graphing tasks, students had to 
reason about two changing variables (presented on the x- and y-axis of a graph) or 
they had to construct a graph of a relationship between two changing variables. 
Understanding of, or reasoning about, the underlying relationship between the 
covarying variables is required to solve these mathematical problems in both 
domains. We expected that participating in the teaching sequence on linear equation 
solving would not only have a positive effect on students’ ability to reason about 
linear equations, but also on students’ ability to reason about graphs of motion. A 
possible effect of the teaching sequence on students’ graphical reasoning will give 

5

145

Fifth-grade students’ reasoning on linear equations and graphs of motion



 

 

us more insight in the extent to which stimulating students’ domain-specific 
mathematical reasoning can also support students’ reasoning within a different, yet 
related domain of mathematics  
 
2. Method 

 

2.1 Participants 

Participants were 142 students of six classes from six different Dutch elementary 
schools. All schools and classes participated on a voluntary basis. Data from 
five students were excluded because there was no parental consent, and from five 
other students the data were excluded because these students were absent in more 
than half of the lessons. The final sample consisted of 132 students (45% boys), 
with an average age of 10 (age range 9-11). 
 
2.2 Research design and procedure 

The study was approved by the ethical committee of the Faculty of Social and 
Behavioural Sciences of Utrecht University. A staged comparison design with three 
different cohorts was used (see Table 1), allowing that the same teacher taught all 
lessons to all classes. The six-lesson teaching sequence on linear equation solving 
was provided to the students in different time periods during the school year (see 
Table 1): students of the two classes in Cohort 1 received the lessons in the 
beginning of the school year, students of the two classes in Cohort 2 in the middle 
of the school year, and students of the final two classes of Cohort 3 in the end of the 
school year. During the teaching sequence, students received one lesson of 
approximately 50 minutes per week over a period of six weeks. All lessons were 
taught by the first author of this paper, with the first two lessons assisted by a 
teaching assistant.  
 
Table 1 
Staged comparison design 

     Phase    
Cohort   Nov.–Dec. 2016  Feb.–March 2017  May–June 2017  

         

1 (n = 44) M1 
Lessons on 

linear equations 
M2 

 
M3 

 
M4 

         

2 (n = 39) M1 
 

M2 
Lessons on 

linear equations 
M3 

 
M4 

         

3 (n = 49) M1 
 

M2 
 

M3 
Lessons on 

linear equations 
M4 

Note. M1-M4 reflect Measurements 1-4 
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2.3 Teaching sequence 

The aim of the teaching sequence was to foster students’ algebraic reasoning. 
Students were provided with a learning environment in which they were able to 
invent, in an informal way, the strategies that are fundamental for linear equation 
solving (see also Otten et al., 2019, 2020, see Chapter 3 and 4 of this thesis). Over 
the course of this teaching sequence, students could further develop these strategies 
and use them to solve (informal) linear equations in various contexts. The teaching 
sequence could be divided into four episodes based on the focus and content of the 
lessons. In the first episode, students were reasoning about one informal equation, 
represented as a balance model. Through exploration of various ways to maintain 
the balance of this model, which can be seen as representing equality in an 
equation, students could develop informal context-connected algebraic strategies 
which underlie conventional equation solving strategies: restructuring, isolation, 
and substitution. From Episode 2 onwards, students could use these strategies for 
solving systems of linear equations, first in the familiar informal context of the 
balance (Episode 2), then in new informal contexts (Episode 3), and finally 
students’ had to solve a system of two linear equations represented in formal 
algebraic symbols (Episode 4). Table 2 provides an overview of the teaching 
sequence, including the key activities for each of the episodes. Students’ reasoning 
about linear equation solving was constantly stimulated by asking them to 
hypothesize and evaluate their own ideas and to discuss and compare them with 
their peers in small groups and during classroom discussions. 
 
Two parallel versions of the teaching sequence were created, which differed 
regarding how the balance model was represented and used during the lessons: a 
static, pictorial representation of the balance model versus a pictorial representation 
combined with a dynamic physical balance model. In a previous study (Otten et al., 
2020, see Chapter 4 of this thesis), no significant differences in the development of 
students’ level of algebraic reasoning were found between these two versions of the 
teaching sequence. The differences between these two versions of the teaching 
sequence were therefore disregarded in the current study.  
 
2.4 Measures 

2.4.1 General reasoning ability 

As a measure of students’ general reasoning ability an abbreviated version of 
Raven’s Standard Progressive Matrices (Raven SPM; Raven et al., 1996) was 
administered, containing 18 items with increasing difficulty (Bilker et al., 2012). 
Each item consists of a diagram with a missing part. Students have to reason which 
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part is missing and select this missing part among six or eight possibilities. Answers 
can either be correct (1) or incorrect (0), resulting in possible scores between 0 and 
18.  
 
Table 2 
Overview of the six-lesson teaching sequence on linear equation solving 

Lesson Main topics and activities  
   

1+2 Reasoning about one informal linear equation: 

- Maintain the equality of one informal linear equation 
(represented as balance model) 

- Find relationships between unknowns 
- Use informal notations 
- Construct informal equations 

 
 

3 Reasoning about a system of two informal linear equations: 

- Maintain the equality of both informal linear equations 
(represented as balance model) 

- Combine the equations to find relationships between 
unknowns 

- Use informal notations 
 

 

4 Reasoning about a system of two informal linear equations in a 

new, informal context: 

- Maintain the equality of both informal linear equations 
(represented in new informal contexts such as a tug-of-
war situation) 

- Combine the equations to find relationships between 
unknowns 

- Gradually use more formal notations 
 

 

5+6 Reasoning about a system of two formal linear equations: 

- Maintain the equality of both linear equations (represented 
in formal symbols) 

- Combine the equations to find values of unknowns 
Gradually use more formal notations 

 

 
2.4.2 General mathematics performance 

As a measure of students’ general mathematics performance students’ end-term 
Grade 4 scores on the mathematics test of the CITO Monitoring System were 
obtained, a Dutch standardized student monitoring test for different subjects and 
grade levels (Janssen et al., 2005).  
 
2.4.3 Mathematical HOT 

Mathematical HOT was measured by four paper-and-pencil algebra tasks, used as 
an indication of their algebraic reasoning, and four paper-and-pencil graphing tasks, 
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used as an indication of their graphical reasoning. Examples of these tasks are 
provided below (Figures 1 and 2). All tasks were open-ended. By asking the 
question “How do you know?” students were explicitly invited to elaborate on their 
reasoning. 
 
2.4.3.1 Algebra tasks 

The set of algebra tasks consisted of four tasks in which students had to solve a 
system of linear equations. In two tasks students had to find values of unknowns; in 
two other tasks a relationship between unknowns was asked for. In order to find the 
correct solution to each of the tasks, students had to combine the information of two 
given equations. Figure 1 shows two examples of the algebra tasks. Task 1 
(Figure 1, left panel) represents a system of two informal linear equations with two 
unknowns; the value of one unknown (the circle) needs to be determined. Both 
equations contain circles and squares — of which the values are unknown — on the 
one side of the equal sign, and values on the other side of the equal sign. The value 
of the circle needs to be determined, which can be accomplished by isolation of this 
unknown. This can be done by substitution of a part of the first equations by a value 
(i.e., substitution of one square and one circle in the first equation by the value of 9, 
on the basis of the second equation), by subtracting the second equation from the 
first one, or by the substitution of different values for both unknowns in both 
equations. Task 2 (Figure 1, right panel) represents a system of two informal linear 
equations with three unknowns. Both equations contain apples, pears, and bananas 
— of which the values are unknown — on both sides of the equal sign. The 
unknown relationship between apples and pears needs to be determined. This 
relationship can be deduced by isolating the apple. Isolating one apple can be 
accomplished by substituting unknowns in the second equation by other unknowns 
(on the basis of the first equation), by subtracting the first equation from the second 
one, by doubling the first equation and then comparing it with the second one, or by 
the substitution of different values for all unknowns in both equations. Thus, in 
order to solve these two tasks, consisting of a system of informal linear equations, 
students should take into account the relationships represented in both equations 
and combine this information in their reasoning. We consider this reasoning to 
reflect the mathematical HOT component extracting, using, and combining sources 
of information about relationships. 
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Example solution: 
“Square + circle = 9. Then I look how 

many I need, which is 15. There is one 

additional circle. So you what I do: 

square + circle + circle = 15,  

9 + circle = 15. 9 + 6 = 15. Ready” 

 

 Example solution: 
“2 apples is twice as much. So 4 pears 

and 2 bananas. But 1 banana is missing 

and there are 2 additional pears. So 1 

banana = 2 pears. So 2 pears makes four 

pears up there, the banana must go and 

two pears can be added” 

 

Figure 1. Two algebra tasks (translated from Dutch). The complete coding scheme, 
including examples of student responses for each task, can be found in Otten et al. 
(2020), see Chapter 4 of this thesis. 
 
2.4.3.2 Algebra tasks: combining sources of information 

An example solution for the first algebra task is provided in Figure 1 (bottom left). 
Both linear equations are incorporated in the reasoning of this student. First, this 
student compares both equations to see on which aspects they differ. Subsequently 
she combines the information from both equations through substitution of two 
unknowns in the first equation by the value of 9 (on the basis of the second 
equation), so that the unknown circle is isolated and its value can be determined by 
means of a simple calculation (9 + circle = 15). Figure 1 (bottom right) provides an 
example solution for the second algebra task. After comparing both equations, this 
student concludes that the two apples in the second equations are twice as many 
apples as the number of apples depicted in the first equation. Therefore, the right 

= …...

1b. How do you know?

1a. Fill in:

+ + = 15

+ = 9
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part of the first equation is doubled by this student as well. Subsequently, this 
student compares this “newly” constructed equation with the second equation in 
which there are two extra pears and one banana less, resulting in the conclusion 
“1 banana = 2 pears”. Lastly, this finding is used to substitute the banana in the first 
equation by two pears. The students in both these examples combine the 
information from both given equations, and thus show mathematical HOT in terms 
of extracting, using, and combining sources of information about relationships. 
 
2.4.3.3 Graphing tasks 
The set of graphing tasks consisted of four tasks in which students either needed to 
interpret a distance-time graph or to construct one. In all four tasks, students had to 
look at and combine the information from the x-axis and the y-axis in order to find 
the correct solution. Figure 2 provides two examples of these graphing tasks. Task 1 
(Figure 2, left panel) shows a distance-time graph representing the movement of a 
car driving through town. Students should derive at which moment the car goes 
fastest. The speed of the car (i.e., the hidden quantity) can be deduced by a visual 
inspection of the slope of the line or by combining the values presented on the x-
axis and y-axis (i.e., by looking at the distance traveled within a period of time and 
compare this with the other segments of the graph). Task 2 (Figure 2, right panel) 
shows an empty distance-time graph, combined with a description of a motion 
situation of a train ride. This motion situation consists of three separate segments in 
which the train travels at different speeds. These different speeds should be 
quantified and visualized in the graph, while taking into account the relative 
differences in speed between the three “parts” of the train ride. Thus, in order to 
find the correct answer for the graph interpretation task or to construct the distance-
time graph students should take into account the meaning of the variables on both 
the x-axis and the y-axis and compare various segments within the graph.  
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Example solution: 
“He goes from 4 to 12 in 5 minutes, and 

nowhere else he goes faster than that” 

 

 Example solution: 

 
“First you do two squares, and then 1. 

Because 1 is half of 2. And then he stands 

still for one hour, so straight” 

 

Figure 2. Two graphing tasks (translated from Dutch). The complete coding 
scheme, including examples of student responses for each task, can be found in 
Duijzer, Van den Heuvel-Panhuizen et al., (2020). 
 
2.4.3.4 Graphing tasks: combining sources of information 

An example solution for the first graphing task is provided in Figure 2 (bottom left). 
The student states that the car goes from “4 to 12 in 5 minutes”, referring to points 
B and C. This student thus connects the quantities represented on both axes (i.e., 
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time and distance) to draw a conclusion about the speed of the car. Subsequently, a 
comparison with the other features of the graph is made by stating that “nowhere 
else he goes faster than that”. Figure 2 (bottom right) provides an example solution 
for the graph construction task. This solution is a correct translation of the motion 
situation: the student connects the variables represented on both axes in the correct 
way and takes into account the relative differences between the segments of the 
graph (which is also indicated by the explanation: “First you do two squares, and 
then 1. Because 1 is half of 2”). The students in both these examples combine the 
information found on the x-axes and y-axes of the graph, and thus show 
mathematical HOT in terms of extracting, using, and combining sources of 
information about relationships. 
 
2.5 Coding schemes for students’ reasoning showing HOT 

Separate (domain-specific) coding schemes were developed for both the algebra 
tasks (see also Otten et al., 2019, 2020, see Chapter 3 and 4 of this thesis) and the 
graphing tasks (see also Duijzer et al., 2019; Duijzer, Van den Heuvel-Panhuizen, et 
al., 2020), which shared the common structure of qualifying reasoning in terms of 
increasing levels of complexity. For the algebra tasks, students’ reasoning was 
coded on the basis of the number of used equations. A distinction was made 
between students who reasoned about none of the given linear equations that were 
given in the system of equations (i.e., showed no algebraic reasoning, Level R0), 
students who reasoned on the basis of only one of the two given equations 
(Level R1), and students who reasoned on the basis of both given equations by 
combining the information of both of them (Level R2). This latter, highest level of 
reasoning can be considered equivalent to the mathematical HOT skill of extracting, 
using, and combining sources of information about relationships. A similar 
distinction can be found in the coding scheme used to indicate students’ graphical 
reasoning. Here, a distinction was made between students who took none of the 
variables into account in their reasoning (i.e., showed no apparent graphical 
reasoning; Level R01) or students who reasoned only on the basis of iconic or 
superficial characteristics of the graph (Level R02), students who reasoned on the 
basis of only one of the variables (distance, time, or speed; Level R1), and students 
who reasoned on the basis of multiple variables (distance, time, and/or speed; 
Level R2). Also this latter, highest level of reasoning can be considered equivalent 
to the mathematical HOT skill of extracting, using, and combining sources of 
information about relationships. Table 3 shows the alignment between both coding 
schemes and the overarching HOT. 
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Table 3 
Alignment of the coding schemes of algebra and graphs in relation to the 

mathematical HOT extracting, using, and combining sources of information about 

relationships 

Code Algebra Graphs HOT 
R01 No reasoning No reasoning  

 
No reasoning  

R02  Iconic/superficial reasoning 
 

 

R1 Reasoning on the basis of 
one equation  

Reasoning with a single 
variable 
 

Reasoning taking into 
account one source of 
information  
 

R2 Reasoning on the basis of 
two equations  
 

Reasoning with multiple 
variables  

Reasoning taking into 
account more than one 
source of information  

 
2.6 Data analysis 

2.6.1 Descriptive statistics 

Proportions of each level of algebraic reasoning (levels R0, R1, R2) and graphical 
reasoning (R01, R02, R1, R2) on the mathematical HOT test were calculated for 
each cohort on each of the four measurements.  
 
2.6.2 Latent variable growth curve modelling 

Students’ development of algebraic reasoning and graphical reasoning over the four 
measurements was modelled by making use of latent variable growth curve 
modeling (LGM). LGM is suitable for modelling change over repeated measures 
(Bollen & Curran, 2006) and offers more possibilities for modelling longitudinal 
data compared to traditional statistical analyses (Willett & Bub, 2005). The core of 
a LGM analysis is the assumption that each person has underlying latent abilities 
which differ between persons and which can change within persons over time due 
to, for example, experience with certain tasks or participating in an intervention. 
These inter- and intra-individual differences can be modelled by using LGM.  
 
A cohort sequential multi-group LGM (Duncan et al., 2006) was used in this study, 
with the three cohorts as groups. We built an integrated LGM to model both latent 
abilities (i.e., algebraic and graphical reasoning abilities) in one model. Such a 
LGM model allowed us to model students’ development in latent algebraic 
reasoning and graphical reasoning over time and to investigate the relationship 
between these abilities. Both latent abilities were modelled as a combination of four 
partial effects. The intercept (students’ baseline level of reasoning), the slope (a 
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linear change over measurements), the intervention effect (the effect of the 
intervention, influencing only the measurements after the intervention), and the 
weakening effect (any decrease of the effect of the intervention, influencing only the 
delayed measurements after the intervention). This integrated LGM model thus 
contained two intercepts, two slope effects, two intervention effects, and two 
weakening effects, for algebraic reasoning and graphical reasoning ability 
respectively. 
 
In addition, we had to take the different cohorts in our study into account. Because 
the three cohorts differed in the timing of the intervention, loadings for the 
intervention and weakening effects were different for all three cohorts. For 
example, for Cohort 1, in which the intervention took place between 
measurements M1 and M2, the intervention effect only had a possible influence on 
students’ reasoning on measurements after the intervention (thus on M2, M3, 
and M4), and the weakening effect for this cohort only had a possible a possible 
influence on students’ reasoning on the delayed measurements after the intervention 
(M3 and M4). Moreover, to take any possible differences between cohorts in 
students’ baseline levels of reasoning (both algebraic and graphical) into account, 
differences between the intercepts of the different cohorts were allowed. All other 
parameters were constrained to be equal in all cohorts. Measures of general 
reasoning ability and general mathematics performance were added in a centered 
form as a predictor of the intercepts (both for algebraic and graphical reasoning). 
However, adding general mathematics performance resulted in problems with the 
model estimation, because of the high correlation between general reasoning ability 
and general mathematics performance. Therefore, we decided to only include 
general reasoning ability as a predictor in the LGM model.  
 
In order to deal with our categorical data, item response theory (IRT) 
transformation was used to map the likelihood of displaying a certain level of 
reasoning (i.e., Level R0, R1, or R2 for algebraic reasoning and Level R01, R02, R1, 
or R2 for graphical reasoning) onto students’ latent algebraic and graphical 
reasoning abilities. IRT models estimate the probability of reasoning at a particular 
level as a function of the difficulty of the task and the latent ability of the student. In 
order for the model to be estimated, for each of the three cohorts, all levels of 
reasoning on all four tasks on all four measurements should appear at least once 
(i.e., there should be no “empty cells”). For graphing Task 2 this prerequisite was 
not met as empty cells were found for Level R2. We therefore decided to merge 
Level R2 with Level R1 for this task. Also for graphing Task 3 there were some 
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empty cells for Level R01. This level was therefore merged with the other R0 level, 
Level R02.  
 
The model was estimated in Mplus 8 (Muthén & Muthén, 1998-2017) with a 
PROBIT link and Weighted Least Squares Means and Variances (WLS-MV) 
estimation. The advantage of using a PROBIT link is that parameter estimates are 
expressed in units representing standard deviations, which refer to a standard 
normal distribution with a mean of zero. Therefore, the parameter estimates can be 
directly interpreted as standard effect sizes. The overall model fit was evaluated in 
terms of the Root Mean Square Error of Approximation (RMSEA), Comparative Fit 
Index (CFI), and Tucker-Lewis Index (TLI). Conventional recommendations as 
regards the criteria for an acceptable model fit imply an RMSEA below .08 and a 
CFI and a TLI above .90 (Little, 2013).  
 
3. Results 

 

3.1 Descriptives 

There were no differences between Cohort 1, (M = 10.57, SD = 2.51), Cohort 2, 
(M = 10.05, SD = 2.65), and Cohort 3, (M = 10.51, SD = 2.79) in students’ general 
reasoning ability, F(2, 129) = 0.47, p = .629, partial ƞ2 = .007. 
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Proportions of each level of reasoning on the four algebraic reasoning problems and 
on the four graphical reasoning problems were calculated for each of the four 
measurement moments. To allow for direct (visual) comparison of the change in 
students’ algebraic and graphical reasoning for all cohorts together (which differed 
in timing of the received intervention), six virtual measurements were created. This 
means that the students in Cohort 1 were depicted as having participated in virtual 
measurements 3-6, students in Cohort 2 as having participated in virtual 
measurements 2-5, and students in Cohort 3 as having participated in virtual 
measurements 1-4. In this way, virtual measurement 3 is identified as the 
measurement before the intervention (i.e., the pretest) and virtual measurement 4 as 
the measurement directly after the intervention (i.e., the direct posttest). The change 
from virtual measurement 3 to 4 thus reflects the change in reasoning due to the 
intervention, visualized for all cohorts together. Figure 3 shows the proportions of 
each level of algebraic reasoning (left panel) and graphical reasoning (right panel) 
on each of the six virtual measurements. When comparing students’ algebraic 
reasoning on the pretest and on the direct posttest, reasoning on the basis of none of 
the equations (Level R0) or only one of the equations (Level R1) decreased 
(.21 and .05 decrease in proportion respectively), while reasoning on the basis of 
both given equations increased (.26 increase in proportion). For graphical 
reasoning, all proportions of reasoning remained more or less stable from pretest to 
direct posttest: reasoning while not incorporating any of the variables slightly 
decreased (.06 and .04 decrease in proportion for R01 and R02 respectively), 
reasoning on the basis of one variable (Level R1) slightly increased (.02 increase in 
proportion), and reasoning with multiple variables (Level R2) also increased a little 
(.08 increase in proportion). 
 
3.2 Multi-group LGM 

A multi-group LGM with the three cohorts as groups was fitted to students’ 
algebraic reasoning and graphical reasoning scores to investigate whether our 
teaching sequence on linear equation solving affected students’ development in 
algebraic reasoning and graphical reasoning. The model had an acceptable overall 
fit in terms of the RMSEA (.073, 90%-CI [.062 - .083]). However, the fit of the 
model in terms of the CFI (.772) and TLI (.795) was insufficient. Additional model 
options were explored. These explorations were guided both by the modification 
indices which Mplus provided, including allowing correlations between partial 
effects and between specific tasks on specific measurements. While these 
explorations did not result in clear improvements of the CFI and TLI fit indices, 
they did reveal robustness of the relevant parameter estimates. We suppose that the 
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small sample size per cohort (44, 39, and 49 students for Cohorts 1-3, respectively) 
in combination with the strict assumptions of our model (necessary to test our 
hypotheses) made it difficult to obtain a better overall model fit. However, because 
commonly applied cut-off criteria for the model fit do not necessarily generalize to 
longitudinal or multi-group models (Little, 2013), and because the fit of our model 
was sufficient in terms of the RMSEA, which is the most reliable fit measure when 
it concerns categorical data (Little, 2013), we considered our model and 
corresponding parameter estimates informative and trustworthy.  
 
Table 4 
Parameter estimates of the final multi-group LGM model  

     Algebra       Graphs   

Model parameter  
M p-value var   M p-value var 

Intercept          

   Cohort 1  @0  0.49  @0  0.02 

   Cohort 2  -0.12   .431 0.49  -0.13   .007 0.02 

   Cohort 3   0.57 <.001 0.49  -0.07   .127 0.02 

Slope  -0.03   .552 0.02  0.03   .017 0.05 

Intervention   0.93 <.001 0.08  0.04   .097 0.01 

Weakening 
 

-0.10   .338 @0  -0.08   .013 @0 
         

Predictor regression (β)  
       

General reasoning ability 
on Intercept  

 
   .32 <.001      .27 <.001  

         

Covariance (β)  
       

Intercept algebra with 
intercept graphs 

 

 
   .79 

 
<.001 

      
 
Table 4 shows the parameter estimates of our model. The positive effect of our 
intervention on students’ algebraic reasoning was strong and significant (M = 0.93, 
p < .001). However, the effect of our intervention on students’ graphical reasoning 
was small and non-significant (M = 0.04, p = .096). Recall that, due to the use of the 
Probit model, these values can be interpreted as standard effect sizes. 
 
Figure 4 visualizes the effect of the intervention on students’ algebraic (left panel) 
and graphical (right panel) reasoning, on algebra Task 1 and graphing Task 1. The 
left panel of Figure 4 shows two standard normal distributions. The left distribution 
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of the left panel represents students’ latent algebraic reasoning ability on the 
measurement directly before the intervention. The total area under the curve is 
divided into three parts, referring to each of the three levels of reasoning, which are 
separated by the so called thresholds. The surface of each area (i.e., of each level of 
reasoning) is proportional to the likelihood of reasoning in accordance with that 
level. The second curve in the left panel of Figure 4 (the curve on the right side) 
shows students’ algebraic reasoning ability directly after participating in the 
intervention. This curve has shifted to the right, which means that on average 
students’ latent algebraic reasoning abilities are higher. Because the thresholds 
remain stable, the changes of reasoning in accordance with Level R0 decrease while 
the likelihood of reasoning in accordance with Level R2 increases. The right panel 
of Figure 4 shows also shows two standard normal distributions: one reflecting 
students’ latent graphical reasoning ability on the measurement directly before the 
intervention (left distribution) and one reflecting this graphical reasoning ability 
directly after the intervention (right distribution). The fact that the difference 
between these two distributions is almost imperceptible shows that the effect of our 
intervention on students’ graphical reasoning is negligible.  
 

160

5     Chapter 5



 

 

 

 
F

ig
u
re

 4
. T

he
 e

ff
ec

t o
f 

th
e 

in
te

rv
en

tio
n 

on
 s

tu
de

nt
s’

 a
lg

eb
ra

ic
 r

ea
so

ni
ng

 (
le

ft
 p

an
el

) 
an

d 
th

ei
r 

gr
ap

hi
ca

l r
ea

so
ni

ng
 (

ri
gh

t p
an

el
).

 

5

161

Fifth-grade students’ reasoning on linear equations and graphs of motion



 

 

4. Discussion  

 
In this study, we focused on the development of primary school students’ 
mathematical HOT across two distinct but related mathematical domains. We 
investigated whether a six-lesson teaching sequence about linear equation solving 
would affect not only students’ algebraic reasoning but also students’ reasoning 
about graphs of motion. Results from our multi-group latent variable growth curve 
modelling analyses showed that fifth-grade students’ algebraic reasoning related to 
solving systems of linear equations improved after participating in the teaching 
sequence, which was a confirmation of the results of a previously conducted study 
(Otten et al., 2020, see Chapter 4 of this thesis). Even though reasoning about 
covariation characterizes HOT in both domains, participating in this teaching 
sequence, however, did not seem to result in an improvement of students’ graphical 
reasoning. The HOT that the students developed in the lessons on linear equation 
solving rather seemed to be domain-specific and linked to the mathematical domain 
of algebra (Alexander et al., 2011, Ericsson, 2003). Hence, our teaching sequence 
did not structurally seem to elicit elements of more general mathematical HOT, 
relevant to both mathematical domains (which in this study was operationalized as 
extracting, using, and combining sources of information about relationships).  
 
It thus appears that the transfer of HOT from one mathematical domain to another 
related mathematical domain can not be taken for granted. In order to stimulate 
students’ HOT across multiple mathematical domains, it seems necessary to 
explicate the conceptual link between both domains. This can, for example, be 
accomplished by intertwining the learning strands of algebra and graphs in 
mathematical activities, as is already common in secondary school. For example, 
students in the eighth grade must develop an understanding of the interrelations 
between various representations of a function (e.g., algebraically and graphically), 
and must be able to find a solution to a system of two linear equations with two 
unknowns by drawing a graph of both equations and then find their point of 
intersection (CCSSI, 2010). Schliemann et al. (2012) showed that the relation 
between algebra and graphs can also informally be stimulated in primary school. 
They reported about an early algebra intervention in which fourth-grade students 
worked on a problem involving the comparison of two linear functions. In this 
problem, two boys, Robin and Mike, each have some money: Mike has $8 in his 
hand and in addition some money in his wallet; Robin has exactly three times as 
much money as the money in Mike’s wallet. Students were given the task to figure 
out the amount of money both boys had. The fourth-grade students participating in 
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this study made use of various representations when solving this problem: they 
created a table with various possible values for the amount of money in the wallet 
and the total amount of money for both boys, they used algebraic expressions for 
representing Mike’s (N + 8) and Robin’s (3N) amounts of money, and they created 
graphs of the amounts of money of both students. We consider the work of these 
fourth-grade students as involving HOT, which provides an example of how 
primary school students’ HOT across the domains of algebra and graphing can be 
stimulated. When algebra would be an explicit part of the mathematics curriculum 
in Dutch primary schools (which is currently not the case), the interrelations 
between both mathematical domains could be made more explicit. 
 
There are some limitations to our study. First, our LGM model allowed us to deal 
with the multiple cohorts, multiple repeated measurements, and categorical outcome 
measures. Nevertheless we encountered some difficulties throughout the process of 
model estimation. Although the fit of our model was sufficient in terms of the 
RMSEA, which is the most reliable fit measure when it concerns categorical data 
(Little, 2013), the CFI and TLI values were low. While the commonly applied cut-
off criteria are said to not generalize to longitudinal or multi-group models (Little, 
2013), preferably these values would have been higher in order to draw reliable 
conclusions on the basis of the parameter estimates of the model. The obtained 
parameters should thus be interpreted carefully. However, an exploration of model 
options did reveal robustness of the effects found in this study. On the one hand, the 
effect of the teaching sequence on students’ algebraic reasoning was consistently 
large and highly significant under different modelling assumptions. On the other 
hand, whereas the effect of the teaching sequence on students’ graphical reasoning 
fluctuated around the significance level, the effect was consistently very small. 
Including more students in our study or making use of one large group of students 
instead of multiple cohorts would probably have resulted in a better model fit and 
more power of our study. 
 
Second, next to covariation as an important concept to attend to, also other concepts 
played an important role within the algebra lessons. This inevitably resulted in only 
partial overlap between the lessons on linear equations and the graphing tasks. The 
main focus of the algebra lessons was to stimulate students’ algebraic reasoning by 
providing them with a learning environment incorporating a balance model in 
which they could reason about the model being in balance (representing equality in 
an equation) and through which they could develop informal context-connected 
algebraic strategies which underlie conventional equation solving strategies such as 
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restructuring, isolation, and substitution. In these lessons, reasoning about the 
concept of equality was crucial. Although the concept of covariation plays a major 
role within reasoning about equality, a more direct relationship between these 
mathematical concepts addressed in the lessons and their expression within the 
graphing tasks (e.g., Berks & Vlasnik, 2014) could potentially have resulted in a 
larger improvement in students’ graphical reasoning. 
 
Furthermore, within this study, we focused on the mathematical HOT component 
combining sources of information about relationships. This HOT component can be 
related to the synthesis component of Bloom’s taxonomy (Bloom et al., 1956; in a 
revised version of this taxonomy this component was called “create”, Anderson & 
Krathwohl, 2001), which can be defined as putting together parts in a new way, or 
synthesizing parts into something new and different to form a coherent functional 
whole (Collins, 2014). However, this is only one possible conceptualization of 
HOT; focusing on alternative HOT components would have been an option as well. 
We propose representational fluency as an alternative HOT component which is 
worthwhile to consider when investigating the domains of linear equation solving 
and graphs of motion in future research. Representational fluency, or 
representational flexibility, is the capability of using multiple representations (such 
as graphs, tables, algebraic expressions, and verbal statements) and the flexibility to 
switch between them (Heinze et al., 2009). Flexible and adaptive use of 
representations is considered a key aspect of learning mathematics.  
 
And finally, our classification of students’ reasoning was based only on their 
written responses. These writings do not always reflect students’ understanding of a 
task. Students possibly did not always write down their entire reasoning, resulting 
in an underestimation of their level of reasoning. Also, we classified students’ 
reasoning by means of a coding scheme consisting of three (algebra) or four 
(graphs) levels of reasoning to allow for an IRT-based LGM analysis of students’ 
reasoning. This classification of students’ reasoning into levels might have resulted 
in a loss of richness of individual students’ answers.  
 
Notwithstanding these limitations, this study provides some insights concerning the 
development of mathematical HOT across two different but related mathematical 
domains. We showed that participating in a teaching sequence on linear equation 
solving resulted in a strong improvement of fifth-grade students’ algebraic 
reasoning, but not of their graphical reasoning. Hence, no transfer to the domain of 
graphing motion appeared to take place. Rather, the HOT that students developed 
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during the lessons seemed to be domain-specific and linked to the mathematical 
domain of algebra. The results of this study are in line with the domain-specific 
view on HOT, indicating that HOT emerges within the domain in which the task is 
situated. Transfer of HOT from one mathematical domain to another can thus not be 
taken for granted, not even when it concerns two related mathematical domains 
(i.e., algebra and graphs) in which similar concepts are addressed (i.e., covariation).  
  

5

165

Fifth-grade students’ reasoning on linear equations and graphs of motion



 

 

References 

 

Alexander, P. A., Dinsmore, D. L., Fox, E., Grossnickle, E. M., Loughlin, S. M., Maggioni, L., 
Parkinson, M. M., & Winters, F. I. (2011). Higher order thinking and knowledge: Domain-
general and domain-specific trends and future directions. In G. Schraw, & D. R. Robinson 
(Eds.), Assessment of higher order thinking skills (pp. 47–88). Information Age. 

Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: 

A revision of Bloom’s Taxonomy of Educational Objectives. Addison Wesley. 
Antle, A. N., Corness, G., & Bevans, A. (2013). Balancing justice: Comparing whole body and 

controller-based interaction for an abstract domain. International Journal of Arts and 

Technology, 6(4), 388–409. https://doi.org/10.1504/IJART.2013.058285 
Arcavi, A., Drijvers, P., & Stacey, K. (2016). The learning and teaching of algebra: Ideas, 

insights and activities. Routledge. 
Berks, D. R., & Vlasnik, A. N. (2014). Working the system. Mathematics Teacher, 107(7), 542–

546. https://doi.org/10.5951/mathteacher.107.7.0542 
Behr, M., Erlwanger, S., & Nichols, E. (1980). How children view the equals sign. Mathematics 

Teaching, 92(1), 13–15.  
Bilker, W. B., Hansen, J. A., Brensinger, C. M., Richard, J., Gur, R. E., & Gur, R. C. (2012). 

Development of abbreviated nine-item forms of the Raven’s standard progressive matrices 
test. Assessment, 19(3), 354–369. https://doi.org/10.1177/1073191112446655 

Bloom, B. S., Englehart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of 

Educational Objectives: Handbook I. Cognitive domain. Addison Wesley. 
Bollen, K.A., & Curran, P. J. (2006). Latent curve models. Wiley.  
Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of 

middle grade students: A review. The Journal of Mathematical Behavior, 32(3), 613–632. 
https://doi.org/10.1016/j.jmathb.2013.07.002 

Collins, R. (2014). Skills for the 21st Century: teaching higher-order thinking. Curriculum & 

Leadership Journal, 12(14).  
Common Core State Standards State Initiative [CCSSI] (2010). Preparing America’s students for 

college and career. National Governors Association Center for Best Practices and the 
Council of Chief State School Officers. Retrieved from  
http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf 

Curriculum.nu (2019, October). Leergebied rekenen & wiskunde [Learning domain mathematics]. 
Retrieved from https://www.curriculum.nu/voorstellen/rekenen-wiskunde/ 

Duijzer, C., Otten, M., Van den Heuvel-Panhuizen, M., Veldhuis, Boom, J., M., Doorman, M., & 
Leseman, P. (2020). Fifth grade students’ reasoning on graphs of motion and linear 
equations. In C. Duijzer, Moving towards understanding: Reasoning about graphs in 

primary mathematics education [Doctoral dissertation]. Utrecht University.  
Duijzer, C., Van den Heuvel-Panhuizen, M., Veldhuis, M., & Doorman, M. (2019). Supporting 

primary school students’ reasoning about motion graphs through physical experiences. ZDM 

Mathematics Education, 51(6), 899–913. https://doi.org/10.1007/s11858-019-01072-6 
Duijzer, C., Van den Heuvel-Panhuizen, M., Veldhuis, M., Doorman, M., & Leseman, P. (2020). 

Moving towards understanding: Students interpret and construct motion graphs. 
Mediterranean Journal for Research in Mathematics Education, 17, 25–51. 

166

5     Chapter 5



 

 

Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent variable growth 

curve modeling. Lawrence Erlbaum Associates. 
Ericsson, K. A. (2003). The acquisition of expert performance as problem solving: Construction 

and modification of mediating mechanisms through deliberate practice. In J. E. Davidson & 
R. J. Sternberg (Eds.), The psychology of problem solving (pp. 31–83). Cambridge 
University Press. 

Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children's understanding of equality: A 
foundation for algebra. Teaching Children Mathematics, 6(4), 232–236.  

Foong, P. Y. (2000). Open-ended problems for higher-order thinking in mathematics. Teaching 

and Learning, 20(2), 49–57.  
Forster, M. (2004). Higher order thinking skills. Research Developments, 11(1), 10–15.  
Goldenberg, P. E., Mark, J., Kang, J., Fries, M., Carter, C. J., & Cordner, T. (2015). Making sense 

of algebra: Developing students’ mathematical habits of mind. Heinemann. 
Heinze, A., Star, J. R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and 

representations in mathematics education. ZDM Mathematics Education, 41(5), 535–540. 
https://doi.org/10.1007/s11858-009-0214-4 

Janssen, J., Scheltens, F., & Kraemer, J. M. (2005). Leerling- en onderwijsvolgsysteem rekenen-

wiskunde [Student monitoring system mathematics]. Cito. 
Kieran, C. (1997). Mathematical concepts at the secondary school level: The learning of algebra 

and functions. In T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An 

international perspective (pp. 133–158). Psychology Press. 
Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early algebra: Research into its nature, its 

learning, its teaching. Springer (open access eBook). https://doi.org/10.1007/978-3-319-
32258-2 

Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle 
school students‘ understanding of core algebraic concepts: Equivalence & variable. ZDM 

Mathematics Education, 37(1), 68–76. https://doi.org/10.1007/BF02655899 
Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the 

equal sign matter? Evidence from solving equations. Journal for Research in Mathematics 

Education, 37(4), 297–312. https://www.jstor.org/stable/30034852  
Kolovou, A., Van Den Heuvel-Panhuizen, M., & Bakker, A. (2009). Non-routine problem solving 

tasks in primary school mathematics textbooks–A needle in a haystack. Mediterranean 

Journal for Research in Mathematics Education, 8(2), 31–68. 
Leighton, J.P. (2004). Defining and describing reason. In J. Leighton & R. Sternberg (Eds.), The 

nature of reasoning (pp. 3–11). Cambridge University Press. 
Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, 

learning, and teaching. Review of Educational Research, 60(1), 1–64.  
 https://doi.org/10.3102/00346543060001001 
Lewis, A., & Smith, D. (1993). Defining higher order thinking. Theory into Practice, 32(3), 131–

137. https://doi.org/10.1080/00405849309543588 
Li, X., Ding, M., Capraro, M. M., & Capraro, R. M. (2008). Sources of differences in children’s 

understandings of mathematical equality: Comparative analysis of teacher guides and student 
texts in China and the United States. Cognition and Instruction, 26(2), 195–217.  

 https://doi.org/10.1080/07370000801980845 
Little, T. D. (2013). Longitudinal structural equation modeling. Guildford Press. 

5

167

Fifth-grade students’ reasoning on linear equations and graphs of motion



 

 

McNeil, N. M., & Alibali, M. W. (2005). Why won’t you change your mind? Knowledge of 
operational patterns hinders learning and performance on equations. Child Development, 

76(4), 883–899. https://doi.org/10.1111/j.1467-8624.2005.00884.x 
Miri, B., David, B. C., & Uri, Z. (2007). Purposely teaching for the promotion of higher-order 

thinking skills: A case of critical thinking. Research in Science Education, 37(4), 353–369. 
https://doi.org/10.1007/s11165-006-9029-2 

Murray, E.H. (2011). Implementing higher order thinking in middle school mathematics 

classrooms [Unpublished doctoral dissertation]. University of Georgia. 
Murray, J. W. (2014) Higher-order thinking and metacognition in the firstyear core-education 

classroom: A case study in the use of color-coded drafts. Open Review of Educational 

Research, 1(1), 56–69. https://doi.org/10.1080/23265507.2014.964297 
Muthén, L.K. & Muthén, B.O. (1998–2017). Mplus User’s Guide (Eighth Edition). Muthén & 

Muthén. 
National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for 

school mathematics. NCTM. 
Newmann, F. (1991). Higher order thinking in the teaching of social studies: Connections 

between theory and practice. In D. Perkins, J. Segal, & J. Voss (Eds.), Informal reasoning 

and education. Lawrence Erlbaum Associates. 
Organization for Economic Co-operation and Development [OECD] (2019). Skills outlook 2019: 

Thriving in a digital world. Paris: OECD Publishing. https://doi.org/10.1787/df80bc12-en 
Otten, M., Van den Heuvel-Panhuizen, M., Veldhuis, M., & Heinze, A. (2019). Developing 

algebraic reasoning in primary school using a hanging mobile as a learning supportive tool / 
El desarrollo del razonamiento algebraico en educación primaria utilizando una balanza 
como herramienta de apoyo. Journal for the Study of Education and Development / Infancia 

y Aprendizaje, 42(3), 615–663. https://doi.org/10.1080/02103702.2019.1612137 
Otten, M., Van den Heuvel-Panhuizen, M., Veldhuis, M., Boom, J., & Heinze, A. (2020). Are 

physical experiences with the balance model beneficial for students’ algebraic reasoning? An 
evaluation of two learning environments for linear equations. Education Sciences, 10(6), 
163, https://doi.org/10.3390/educsci10060163 

Papadopoulos, I. (2019). Using mobile puzzles to exhibit certain algebraic habits of mind and 
demonstrate symbol-sense in primary school students. The Journal of Mathematical 

Behavior, 53, 210–227. https://doi.org/10.1016/j.jmathb.2018.07.001 
Pirie, S. E., & Martin, L. (1997). The equation, the whole equation and nothing but the equation! 

One approach to the teaching of linear equations. Educational Studies in Mathematics, 34(2), 
159–181. https://doi.org/10.1023/A:1003051829991 

Raven, J. C., Court, J. H., & Raven, J. (1996). Manual for Raven’s standard progressive matrices 

and vocabulary scales. Oxford Psychologists Press. 
Resnick, L. B. (1987). Education and learning to think. National Academies Press. 
Schliemann, A. D., Carraher, D. W., & Brizuela, B. M. (2012). Algebra in elementary school. In 

L. Coulange & J. P. Drouhard (Eds.), Enseignement de l’algèbre élémentaire: Bilan et 
perspectives (pp. 107–122). Special Issue of Recherches en Didactique des Mathématiques. 
La Pensée Sauvage.  

Thijs, A., Fisser, P., & Van der Hoeven, M. (2014). 21e eeuwse vaardigheden in het curriculum 

van het funderend onderwijs: een conceptueel kader [21st century skills in the curriculum of 
the foundation of education: a conceptual framework]. SLO.  

168

5     Chapter 5



 

 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational 
ways of thinking mathematically. In J. Cai (Ed.), Handbook of research in mathematics 

education (pp. 421–456). National Council of Teachers of Mathematics. 
Van Zanten, M., & van den Heuvel-Panhuizen, M. (2018). Opportunity to learn problem solving 

in Dutch primary school mathematics textbooks. ZDM Mathematics Education, 50(5), 827–
838. https://doi.org/10.1007/s11858-018-0973-x 

Willett, J. B., & Bub, K. L. (2005). Latent growth curve analysis. In D. Rindskopf (Ed.), 
Encyclopedia of statistics in behavioral science (2nd ed.). Wiley. 

Zohar, A., & Schwartzer, N. (2005). Assessing teachers’ pedagogical knowledge in the context of 
teaching higher‐order thinking. International Journal of Science Education, 27(13), 1595–
1620. https://doi.org/10.1080/09500690500186592 

 
Author contributions: All authors participated in designing the research. MO gave the lessons and 
collected the data. MO, CD, MH, MV, MD developed the assessment tasks and coding schemes. 
MO, CD, MV coded the data. MO, CD, JB analyzed the data. Methods of data analysis were 
frequently discussed with all authors. MO, CD prepared the first draft of the manuscript. All 
authors participated in revising the manuscript and/or provided feedback. All authors read and 
approved the final manuscript. 
 

5

169

Fifth-grade students’ reasoning on linear equations and graphs of motion



Summary and discussion

CHAPTER 



Summary and discussion

CHAPTER 



 

 

Summary and discussion 

 
The importance of including algebraic activities in the primary school mathematics 
curriculum is increasingly being emphasized (e.g., Kaput et al., 2008). Starting in 
the elementary grades with solving informal algebra problems that build on 
students’ intuitive understanding and natural ways of thinking can provide students 
with a conceptual basis for the study of more formal algebra in the later grades 
(e.g., Kieran et al., 2016; Stephens et al., 2017). Although there is abundant 
evidence available that primary school students are capable of algebraic reasoning 
(Blanton et al., 2015; Brizuela & Schliemann, 2004; Kolovou et al., 2013; 
Papadopoulos, 2019; Van den Heuvel-Panhuizen et al., 2013), within the Dutch 
primary school mathematics curriculum algebra currently is virtually absent. This is 
not only a missed opportunity for creating a continuous learning strand from 
primary to secondary school, but also because stimulating young students’ 
reasoning about advanced mathematical topics such as algebra within the primary 
school mathematics classroom has the potential to foster higher-order thinking 
(HOT). The main goal of this PhD project was to gain insight in whether, in what 
ways, and to what extent primary school students’ early algebraic reasoning could 
be fostered. 
 
The research presented in this thesis mainly focused on the evaluation of a six-
lesson teaching sequence on early algebra, specifically on linear equations. A 
hanging mobile (see Figure 1), a physical balance model consisting of a horizontal 
beam with on each side a number of bags hanging on a chain, played a key role in 
this teaching sequence. When working with this hanging mobile, students’ main 
task was to “discover everything which can be done, while keeping the hanging 
mobile straight”. Students could manipulate the bags on the hanging mobile, and 
the beam tilted in response to students’ actions. Keeping this beam of the mobile in 
a horizontal position represented maintaining equality in an equation. 
Understanding of the concept of equality is crucial when learning to solve linear 
equations (e.g., Bush & Karp, 2013; Kieran, 1981). While maintaining the balance 
of the model, students could intuitively apply and develop various informal 
algebraic strategies by changing the order of the bags on one side of the mobile, 
taking away bags with similar colors from both sides, or replacing on color of bags 
by bags from another color. These context-connected algebraic strategies underlie 
the conventional strategies for solving linear equations, such as restructuring, 
isolation, and substitution. In line with embodied cognition theory (e.g., Lakoff & 
Johnson, 1980; Núñez et al., 1999; Wilson, 2002), we assumed students’ 
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perceptual-motor experiences with the model to be beneficial for grounding the 
concept of equality and the strategies for maintaining equality in the bodily-based 
experience of maintaining balance. 
 

 
Figure 1. The hanging mobile, a balance model which played a key role in our 
teaching sequence on linear equations. 
 
Through working with the balance model, students were provided a basis for 
solving equations in various new contexts and eventually even for solving systems 
of linear equations. Solving systems of equations requires sophisticated algebraic 
skills, such as reasoning about the relationship between unknowns in equations and 
about the relationships between equations in the system of equations (i.e., reasoning 
about covariation; Thompson & Carlson, 2017), manipulating these relationships, 
combining them, and reasoning on the basis of newly gathered information (e.g., 
Goldenberg et al., 2015). These skills are also referred to as HOT skills (Lewis & 
Smith, 1993). Reasoning about early algebra problems might thus be a fruitful 
approach for stimulating the development of young students’ HOT.  
 
The first aim of this PhD thesis was to investigate the role of the balance model in 
teaching linear equation solving as reported in the international research literature 
(Chapter 2). The second aim was to investigate the potential of various 
representations of the balance model for supporting primary school students’ 
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understanding of linear equations. To this end, the above mentioned teaching 
sequence was developed and taught in various fifth-grade classes, and its effect on 
students’ algebraic reasoning was evaluated (Chapter 3 and 4). The final aim of this 
thesis was to investigate whether stimulating primary school students’ algebraic 
reasoning related to solving linear equations would also promote students’ 
reasoning in a related mathematical domain which also draws on covariational 
reasoning (Leinhardt et al., 1990): graphing motion (Chapter 5). For this, the effect 
of our teaching sequence about linear equation on students’ graphical reasoning was 
evaluated.  
 
In this final chapter, I first summarize the findings of the studies described in this 
thesis. Then, I will discuss the implications of the findings, discuss the limitations 
of the studies in this thesis, and propose suggestions for further research.  
 
1. Research overview and main findings 

 

1.1 The role of the balance model in teaching linear equation solving 

The first study that was conducted for this PhD thesis was a systematic literature 
review investigating the balance model. This review study is described in Chapter 

2. The purpose of this study was to create an overview of the use of the balance 
model for teaching linear equation solving. Ninety-three peer-reviewed research 
journals were searched through in order to find research articles in which the 
balance model was used for teaching linear equation solving. This resulted in the 
final selection of 34 articles, which were analyzed in terms of the rationales for 
using the model, the appearances of the model, the situations of using the model, 
and the effect of the model on students’ learning.  
 
This review revealed a scattered picture of the use of the balance model for teaching 
linear equations. In terms of the rationales, the balance model was most often used 
for enhancing students’ understanding of the concept of equality in an equation and 
the strategies that can be applied while maintaining this equality (such as: taking 
away similar things on both sides of the equation). Also, previous physical 
experiences related to maintaining balance or concurrent physical experiences with 
a concrete balance model were common arguments for using it. The restricted 
possibilities for representing equations containing negative values and subtractions 
were considered a limitation. Three types of appearances of the balance model 
could be distinguished: physical models (i.e., concrete models), virtual models (i.e., 
models in a digital environment), and drawn models (i.e., models presented on 
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paper). The situations in which the balance model was used varied considerably as 
regards the age and the prior experience of the students involved (from kindergarten 
to Grade 9), the duration of the intervention (from one activity to multiple years), 
the type of equation problems that were taught (e.g., equations with or without 
negative values), and the type of provided instruction (e.g., classroom instruction by 
a teacher or exploring the model individually). Lastly, there were large variations in 
the reported effectiveness of using the balance model for teaching linear equation 
solving.  
 
Notwithstanding the found kaleidoscopic image of the use of the balance model, 
some trends could be identified. Physical and virtual balance models were most 
often used for teaching students without prior algebra experience. These models 
were generally chosen because of their added value for understanding equality in an 
equation and for the physical experiences gained with the model. The equations 
taught with these models mostly only contained positive values and addition. 
Importantly, these balance models in general seemed to have a positive effect on 
enhancing students’ understanding of linear equations. Meanwhile, drawn balance 
models were more frequently used for teaching somewhat older students with prior 
algebra experience. Additional features, such as manipulatives, were often added to 
these models to allow for representing a broader range of equation types (such as 
equations containing negative values and/or subtraction). The reasons for choosing 
these models were less clearly defined and the effects on students’ learning varied 
considerably, with a mixture of positive and negative effects being reported. 
However, it is important to emphasize that the characteristics of the studies included 
in this review greatly differed. The abovementioned trends should therefore be 
interpreted with caution. In-depth knowledge about when which type of balance 
model could best be used effectively is still lacking. Hence, there still remains a lot 
to discover about this didactical model in order to be optimally used for teaching 
linear equation solving.  
 
1.2 The potential of the balance model for supporting primary school students’ 

understanding of linear equations 
In the studies described in Chapter 3 and 4, we addressed this knowledge gap by 
evaluating the effects of an intervention consisting of a six-lesson teaching 
sequence with a balance model. The developed teaching sequence was aimed at 
stimulating primary school students’ algebraic reasoning, with the focus on linear 
equations, as an approach to foster their mathematical HOT. Two parallel versions 
of the teaching sequence were created. In one version, a physical balance model in 
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the form of a hanging mobile (see Figure 1) was used, combined with pictorial 
representations. In the other version, only pictorial representations of this model 
were used  
 
1.2.1 Students’ development over the six-lesson teaching sequence  

The study described in Chapter 3 focused on the development of students’ algebraic 
reasoning over the teaching sequence with the physical balance model. To this end, 
we examined the reasoning of 65 fifth-grade students without prior experience in 
algebra. We analyzed their responses on lesson-specific assessment tasks, which 
were administered at the end of three consecutive episodes of the teaching sequence 
in which students solved systems of two linear equations. Solving systems of two 
equations requires students to take into account both linear equations and to 
combine their information, which can, for example, be accomplished by making use 
of the algebraic substitution strategy. When coding students’ reasoning, we decided 
to focus on the number of equations that students used in their reasoning: none of 
the given equations (Level R0), only one of the given equations (Level R1), or both 
given equations within the system (Level R2). There appeared to be an intricate 
relation between students’ use of algebraic strategies and the number of equations 
they referred to in their reasoning: the higher the level of reasoning, the more 
strategies and the more advanced strategies were used. Distinguishing these three 
levels of algebraic reasoning thus not only reflected the straightforward number of 
equations to which students referred in their reasoning, but also the depth of their 
reasoning by the use of the algebraic strategies.  
 
Results showed that students clearly improved. After participating in the teaching 
sequence, 77% of the students could, for example, find the values of unknowns M 
and L in the system of equations M + 3L = 25, 2M = 4L. Over the course of the 
teaching sequence, the percentage of students that reasoned without making use of 
the given equations decreased from 57% to 20%, while the percentage of students 
that combined the information of both given equations in their reasoning increased 
from 17% to 52%. Students also improved in their ability to explain their reasoning 
and to write down the algebraic strategies they applied. Lastly, also at individual 
level, the reasoning of most students improved over time without any decline.  
 
The relationship between students’ experiences in the learning environment with 
the physical balance model and their use of algebraic strategies was investigated by 
means of an analysis of videos of classroom interactions, students’ written work 
during the lessons, and students’ responses to the lesson-specific assessment tasks. 
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We found multiple indications for a relationship between students’ experiences with 
the physical model and their use of algebraic strategies and forms of notations. 
Students, for example, used the context-connected algebraic strategies which they 
acquired when working with the balance model, such as restructuring, isolation, and 
substitution, to solve problems in other contexts. Moreover, some students 
incorporated a representation of the model in their reasoning when solving systems 
of two symbolic linear equations.  
 
The environment with the physical balance model thus laid a basis for developing 
algebraic reasoning. In line with embodied cognition theory, we assumed students’ 
perceptual-motor experiences with the physical balance model to contribute to the 
development of this reasoning. The design of this study, though, did now allow for 
systematic investigation of the specific contribution of the physical experiences.  
 
1.2.2 Students’ development over the school year 

The quasi-experimental study described in Chapter 4 allowed us to further 
investigate the effects of our teaching sequence on the long-term and to investigate 
the specific contribution of physical experiences with a balance model. In total, 
212 fifth-grade students, without prior algebra experience, participated in the study. 
These students were divided over the two intervention conditions and a control 
condition. Students of three classes received the six-lesson teaching sequence using 
only pictorial representations of the balance model, students of three classes 
received the exact same lessons with the addition of a physical balance model (see 
also Chapter 3), and students of the three classes forming the control condition 
received lessons on another mathematics topic. A staged comparison design was 
used: students’ algebraic reasoning related to solving systems of two informal linear 
equations was assessed four times over the school year, and students participated in 
the teaching sequence in between two of these measurements in three successive 
cohorts, one class per cohort, for each condition. The effect of the intervention and 
the differential effect of both intervention conditions on the level of algebraic 
reasoning were analyzed by means of multi-group latent variable growth curve 
modelling. Qualitative analyses were conducted to further examine possible 
differences between conditions.  
 
Results showed that students reached higher levels of reasoning when solving 
systems of informal linear equations, after having participated in the teaching 
sequence (d = 0.73). Students showed more often reasoning in which they 
combined the information of both given equations in their reasoning, instead of 
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reasoning on the basis of only one equation or none of the given equations. This 
highest level of reasoning was displayed more frequently after the intervention 
(65%) than before (39%). These results emphasized the effectiveness of our 
teaching sequence with the balance model on primary school students’ reasoning 
about systems of informal linear equations. 
 
Participating in the teaching sequence with both a physical and a pictorial balance 
model, however, did not result in a significantly larger improvement in the level of 
algebraic reasoning (frequency of the highest level of reasoning increased 33%) 
than participating in a teaching sequence with only a pictorial balance model (18% 
increase in the highest level of reasoning). Yet, students who worked with the 
physical balance model, compared to students who worked only with a pictorial 
representation of the model, more often used representations of the model in their 
reasoning (17% vs. 1%) and more frequently used advanced algebraic strategies 
such as substitution or elimination (60% vs. 40%).  
 
Taken together, this study showed the effectiveness of our teaching sequence with 
the balance model on primary school students’ reasoning about systems of 
equations. While no significant differences were found between using a balance 
model on paper or a physical balance model on the development of students’ level 
of reasoning, having a closer look on this reasoning revealed that students who 
worked with the physical model more often used representations of the model or 
advanced algebraic strategies when solving systems of equations. This suggests that 
different representations of the balance model might play a different role in 
individual learning processes. 
 
1.3 Promoting students’ reasoning across mathematical domains 

In the studies described in Chapter 3 and 4 we proved the effect of our teaching 
sequence on reasoning about systems of linear equations. Reasoning about and 
solving such systems asks for mathematical HOT. This HOT is, among others, 
characterized by reasoning about covariation, because students have to reason about 
the relationship between unknowns in an equation and about the mutual relationship 
between the equations. Reasoning about covariation is also relevant to other 
mathematical domains, such as the domain of graphs. This begs the question 
whether stimulating reasoning in the domain of linear equations might also be 
beneficial for reasoning about graphs. In the final study, described in Chapter 5, we 
investigated the effect of our teaching sequence about linear equations on 132 fifth-
grade students’ reasoning about both linear equations and graphs of motion, 
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Students’ algebraic and graphical reasoning were assessed four times over the 
school year. During each of these assessments, students solved four algebra tasks 
consisting of a system of two informal linear equations and four graphing tasks in 
which students had to interpret or construct a time-distance graph. Understanding 
the underlying relationship between covarying variables was required to solve the 
problems in both domains.  
 
Students’ reasoning on both sets of tasks was categorized in various levels. An 
integrated multi-group latent variable growth curve model was used in which the 
latent algebraic and graphical reasoning abilities were modelled together. In this 
way, we could investigate the effect of our intervention on both reasoning abilities. 
Our results, which due to the suboptimal fit of our model need to be interpreted 
with caution, showed an improvement of fifth-grade students’ algebraic reasoning 
after participating in the teaching sequence, which was a confirmation of the results 
of the study described in Chapter 4. However, participating in the teaching 
sequence did not result in an improvement of these students’ graphical reasoning. 
These findings seem to indicate that the HOT students developed in the lessons on 
linear equation solving did not transfer to the domain of graphing motion, and was 
rather domain-specific. We thus may conclude that the transfer of HOT from one 
mathematical domain to another related mathematical domain cannot be taken for 
granted.  
 
2. Conclusions and implications 

 

From the perspective of eliciting HOT into the mathematics classroom, students’ 
reasoning related to solving systems of equations with multiple unknowns is 
particularly interesting. Solving these systems requires reasoning about how 
changes in one unknown result in changes in the other (i.e., covariational 
reasoning), making comparisons between both linear equations, and integrating the 
information found in both of them. Participating in our teaching sequence resulted 
in an improvement of students’ ability to reason about systems of equations 
(Chapter 4), confirming the potential of our approach for fostering students’ 
mathematical HOT. In our final study (Chapter 5), we investigated whether this 
HOT transferred to the related mathematical domain of graphing motion. We did 
not find indications for this transfer. Hence, the HOT students developed in the 
lessons on linear equation solving seems to be rather domain-specific, and linked to 
the mathematical domain of algebra.  
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2.1 Stimulating algebraic reasoning in primary school 
When most people hear the word “algebra”, the first association which comes to 
mind is “symbols” such as x and y. When I was giving lectures and workshops 
during my PhD project, the perspective on algebra, as being inextricably linked to 
symbols, also came to the fore multiple times. This was, for example, evidenced by 
a secondary school teacher, commenting on my lecture: “It’s amazing that these 10-
year olds can reason about and solve these problems, but… where exactly is the 
algebra?” The research described in this PhD thesis shows ample evidence that 
primary school students, before having received lessons in algebra, are very well 
able to engage in informal algebraic reasoning (Chapter 3 to 5). Moreover, when 
gradually introducing algebraic symbols, this informal algebraic reasoning can 
evolve into more formal algebraic thinking (Chapter 3). Our research also shows 
that such early algebra activities can be taught in real classroom settings. However, 
as Carraher et al. (2008) aptly described it, this “early algebra is not the same as 
algebra early” (p. 235). In other words, it does not mean that we teach algebra in its 
current form but then to younger students. Early algebra builds on rich problem 
contexts and using natural language to express ideas and to reason about algebraic 
concepts is considered an important starting point, because it allows students to 
make sense of the algebraic concepts (Kaput et al., 2008). An example of the use of 
such natural language to express ideas about the concept of equality (in this case to 
describe the symmetry property of equality; a = b ⇔ b = a) was provided by Eva 
(Chapter 3), who reasoned while working with the physical balance model: “We 
can do exactly the same, but then on the other side. So, these bags to the other side, 
and these ones also all to the other side”.  
 
Searching for possibilities for engaging young students in algebraic reasoning thus 
requires adopting a broad view of algebraic reasoning, perceiving algebraic 
reasoning as including, but certainly not restricted to, reasoning with algebraic 
symbols (see also Kaput et al., 2008). In this way, a longitudinal learning strand 
throughout K-12 mathematics can be created, starting in the elementary grades with 
solving such informal algebraic problems that build on students’ natural ways of 
thinking and understanding of mathematical patterns and relationships and evolving 
into more formal algebra in later grades (e.g., Carraher et al., 2008, Kieran et al., 
2016; NCTM, 2000). In order to prevent abrupt and isolated introduction of algebra 
in secondary school, and to add more depth into the K-8 curriculum by introducing 
activities requiring mathematical HOT, I highly recommend incorporating such 
early algebra activities into the Dutch primary school mathematics curriculum.  
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Incorporating algebra into the primary school mathematics curriculum, however, 
can bring along multiple challenges. This thesis is entitled “Algebraic reasoning in 
primary school: A balancing act”. This “balancing act” can be taken very literally 
(i.e., as a reference to maintaining balance or the balance of a model), but, at the 
same time, it can also be interpreted as a metaphor for the challenges we face when 
incorporating algebraic reasoning into the primary school curriculum. In the 
remainder of this final chapter, I elaborate on four of these “balancing acts”. The 
first balancing act is closely linked to the results of the research described in this 
thesis regarding how to foster primary school students’ algebraic reasoning. 
Balancing acts 2 to 4 widen the perspective and focus on implications of our 
research for educational practice with respect to curriculum, teacher education and 
dealing with heterogenity.  
 
2.1.1 Balancing act 1: How to stimulate young students’ algebraic reasoning? 

In the design of the teaching sequence aimed to foster students’ algebraic reasoning 
about linear equations, we made several decisions based on both a mathe-didactical 
analysis of solving linear equations and insights from the psychology of learning. In 
the lessons making up the teaching sequence these insights were combined. What 
conclusions can be drawn about how to stimulate students’ algebraic reasoning?  
 
The first two main decisions about the design of the teaching sequence resulted 
from a mathe-didactical analysis of solving linear equations. The first decision was 
using the balance model for enhancing students’ understanding of equality and 
strategies for maintaining equality. Starting with a meaningful context and using 
models to bring students to higher levels of mathematical understanding, are key 
principles of the domain-specific instruction theory of Realistic Mathematics 
Education (RME; e.g., Freudenthal, 1973, 1991; Treffers, 1978, 1987; Van den 
Heuvel-Panhuizen, 2001; Van den Heuvel-Panhuizen & Drijvers, 2020). Students 
have an intuitive understanding of what “balance” means, as a result from many 
bodily experiences in everyday life, such as walking without falling, riding a 
bicycle, or holding objects of similar or different weights (Alessandroni, 2018). 
Also, most students have experiences playing with objects in which balancing plays 
a key role, such as a teeter-totter. These experiences together make that students can 
imagine what the problem is about when the model of a balance is used (i.e., the 
model serves as a meaningful context to students). Students can build on their 
intuitive sense of balance when exploring possible ways to maintain the balance of 
the model. When students worked with this model during our lessons, this directly 
resulted in more or less spontaneous ideas of how to approach the problem 
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(Chapter 3). Over the lessons, the model of the balance evolved into a model for 
solving systems of linear equations in other informal contexts (Streefland, 1985; 
2003; see also Chapter 3 and 4) and for solving systems of equations at a formal 
level (Chapter 3). This was directly evidenced by students’ use of the representation 
of the model when solving such problems, or indirectly by students’ applying 
algebraic strategies which could be related to their experiences with the model. Our 
studies thus clearly demonstrate the suitability of the balance model for fostering 
students’ understanding of linear equations. However, as we will further elaborate 
on later in this balancing act, the possible differential effect of using different 
representations of this model (a representation of the model on paper or a concrete 
model with students can gain physical experiences) on students’ reasoning, warrants 
further research.  
 
The second decision, which was linked to our approach of using the balance model 
to foster students’ understanding of linear equations, came down to first starting 
with reasoning about relations between unknowns. Algebra is often treated as an 
elaboration of arithmetic, going from reasoning with numbers to reasoning with 
unknowns (e.g., Filloy & Rojano, 1989). Our approach was to directly start with 
evoking students’ reasoning with unknowns. When learning algebra, students must 
go beyond the mastery of certain computational skills and instead develop new 
ways of thinking, such as the ability to analyze relationships, generalize, notice 
structure, solve problems, and make justifications and predictions (Cai & Knuth, 
2011). This implies that students have to make a “shift from thinking about 
relations among particular numbers and measures toward thinking about relations 
among sets of numbers and measures, from computing numerical answers to 
describing and presenting relationships among variables” (Carraher et al., 2008, 
p. 266). By requiring students to reason about relationships between unknowns, we 
stimulated them to look for logic and coherence and to search for structure, instead 
of to solve the problems by performing calculations. This prompted students to 
come up with context-connected strategies, which can be seen as first steps towards 
fundamental linear equation solving strategies such as restructuring, isolation, and 
substitution (Chapter 3). Students further developed these strategies over the course 
of the teaching sequence and used them to solve other (systems of) linear equations 
(Chapter 3 and 4).  
 
The third decision was to make use of a physical balance model with which 
students could gain perceptual-motor experiences (Chapter 3 and 4). This decision 
was inspired by embodied cognition theory, stating that higher-order cognition, 
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such as mathematical cognition, benefits from such perceptual-motor experiences of 
our body in interaction with the world around us (e.g., Núñez et al., 1999). Students 
who worked with the physical balance model appeared to improve more from 
pretest to posttest than students who worked with the model on paper. However, no 
significant contribution of students’ perceptual-motor experiences with the balance 
model on their level of reasoning about linear equations was found (Chapter 4). 
Different explanations for this finding are possible. First, the balance model could 
be such a strong didactical model, which, independent of its representations, is very 
accessible for students to make sense of the problem situation. Related to this, 
maybe both representations of the model actually result in similar neural activity, 
either directly through perceptual-motor experiences, or indirectly through mental 
simulation. Finally, students working with different representations of the balance 
model mainly took place in the first three lessons; this might have been too short to 
actually affect students’ reasoning differently. 
 
While the differential effect of the representation of the balance model was not 
significant for students’ level of reasoning, zooming in on students’ reasoning did 
reveal differences as regards students’ use of the model. Students who had worked 
with a physical balance model more often used representations of the model or 
advanced algebraic strategies when solving systems of informal linear equations 
(Chapter 4). An alternative explanation for the lack of significant differential 
effects on students’ level of reasoning might therefore be that our coding scheme 
was unable to capture subtle differences between conditions. Hence, further 
research is required to investigate the exact contribution of embodied experiences 
with a physical balance model on students’ reasoning. Live registration of students’ 
reasoning might be an alternative research method for capturing students’ 
reasoning. 
 
So taken together, the use of a balance model with which students had to reason 
about relationships between unknowns, and which prompted them to develop 
context-connected equation solving strategies, has probably been crucial within our 
approach to stimulate students’ algebraic reasoning. At the same time, there is no 
clear-cut conclusion about the contribution of physical experiences. Our approach 
consisted of a six-lesson teaching sequence for Grade 5. These lessons were an add-
on to students’ normal lessons, without making connections to their regular 
mathematics curriculum. This brings me to the second balancing act.  
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2.1.2 Balancing act 2: How to add algebraic reasoning to an already bulging 

mathematics curriculum? 

Incorporating algebra in primary school does not simply imply: add this topic to the 
current curriculum, or “make the curriculum bigger”. Instead, it means that 
activities need to be integrated and that existing topics need to be treated more 
deeply (e.g., Goldenberg et al., 2003; Kaput, 2008). As our teaching sequence 
proved to be viable for stimulating students’ algebraic reasoning about linear 
equations (Chapter 3 to 5), it seems promising to incorporate the main ideas of our 
teaching sequence into the mathematics curriculum and to connect them with 
activities which already take place in mathematics education. This means that, from 
very young ages on, students have to develop understanding of mathematical 
structures and relationships, such as understanding of relationships between 
quantities, of properties of operations (e.g., commutative and associative properties) 
and of the concept of equality (e.g., symmetry property of equality). For this, 
students need many experiences with recognizing, defining, creating, and 
maintaining equality. This can be actualized by various activities with balance 
scales (e.g., Taylor-Cox, 2003). Most kindergartens already use physical balance 
scales in the classroom. These scales are used for all kinds of activities, such as for 
“doing groceries” or during cooking activities. Posing the right kind of question can 
guide students in their process of discovery and bring the focus onto discovering 
and reasoning about equality. Students are, for example, asked to predict what will 
happen with a balance scale when a number of objects, either identical or different, 
are placed on each side of the balance scale. Or what will happen when all objects 
from the right side of the scale switch with the objects on the left side. During these 
activities, students can hold various objects, one in each hand, to experience and 
feel the weights. Students can also spread their arms and enact a balance scale (e.g., 
Mann, 2004). In this way, students can develop basic understanding of equality, 
rooted with meaning in natural language.  
 
Students can also be asked what would be necessary in order to bring an unbalanced 
scale, with, for example, six identical objects on the one side and four of these 
objects on the other side, into balance. Such activities can, in a later stage, be 
connected to solving addition problems such as 6 = 4 + …. In this way, algebra and 
arithmetic get intertwined, and algebra activities can provide rich, meaningful 
contexts in which students can also develop computational skills (e.g., Warren et 
al., 2009). During such activities, though, it is important to keep the focus on 
reasoning, instead of merely on performing calculations.  
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In higher grades, these activities can be further extended to applying algebraic 
strategies for solving other types of equations. Following the ideas of RME a 
process of concreteness fading then might be necessary, starting with the concrete 
model providing a meaningful context and then, via representations on paper, 
fading into abstract symbols (e.g., Fyfe et al., 2014). In this way, the model of the 
balance will become a model for solving new equations. Activities can also be 
intertwined with other learning strands. Students can, for example, learn to use 
other representational tools such as tables and graphs, for solving problems. Such 
activities might also be beneficial for stimulating students’ HOT in related 
mathematical domains (see Chapter 5).  
 
The current primary school mathematics curriculum thus already contains activities 
which can be used for stimulating students’ algebraic reasoning. Yet, full advantage 
of the potential of this type of activities to actually foster this reasoning is currently 
not taken. Further research is necessary to investigate the feasibility of connecting 
these activities to early algebra experiences. In addition, putting these ideas 
regarding long-term sustained algebra experiences into practice, demands much 
from primary school teachers.  
 
2.1.3 Balancing act 3: How to prepare primary school teachers for teaching 

early algebra?  

If primary school students are to have early algebraic reasoning experiences, then 
(prospective) elementary teachers have to be prepared to guide students during such 
activities. This has implications for the teacher education program and professional 
development programs. Research shows that prospective teachers are often unaware 
of students’ common misconceptions related to algebra, for example about the 
meaning of the equal sign (e.g., Stephens, 2006). They also tend to have a rather 
narrow view of algebra: most teachers “equate[d] algebra with the manipulation of 
symbols” (p. 33), and very few characterize other forms of reasoning, such as 
relational reasoning, as algebraic (Stephens, 2008). Moreover, prospective teachers 
experience difficulties regarding how to make algebraic reasoning accessible to 
primary school students (Hohensee, 2017). The findings of these studies are in line 
with the experiences I had when teaching early algebra to prospective teachers 
during this PhD project. When prospective teachers engaged their own students in 
early algebra activities with a hanging mobile, the teachers were inclined to 
stimulate their students to assign values to the unknowns and to make calculations 
(i.e., focus on operations), instead of stimulating their reasoning about the 
relationships between the unknowns (i.e., focus on relations). In addition, most of 
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these prospective teachers underestimated their students’ capabilities to engage in 
early algebra activities (see also Dobrynina & Tsankova, 2005) and commented that 
they considered such activities as being suitable only for high-achieving students 
(see also Zohar et al., 2001). Also, the majority of the teachers had severe doubts 
about their own capacity to reason algebraically. Such low self-efficacy can have a 
negative influence on teachers’ receptiveness to implement reform-oriented 
instructional practices and their persistence in its implementation (e.g., Guskey, 
1988), and on their teaching performances (e.g., Klassen & Tze, 2014).  
 
Teachers’ unawareness of students’ common misconceptions, a narrow conception 
of algebra, and low self-efficacy beliefs might be troublesome when teaching early 
algebra. However, as Hohensee (2017) showed, engaging prospective teachers in 
early algebra activities can help them with developing new insights on how to teach 
algebra to elementary students in a way which is different from the algebra they 
(probably) have been taught themselves. Similarly, in-service teachers might need 
professional development training in order to prepare them for teaching (e.g., 
Wilkie, 2013). Jacobs et al. (2007) reported about the effectiveness of a professional 
development course for elementary school teachers, focusing on relational thinking 
and the equal sign. Teachers participating in this course, compared to non-
participating teachers, were better able to generate possible strategies used by 
students for solving equivalence problems like 8 + 4 = __ + 5. They also were better 
able to use a strategy reflecting relational thinking themselves, and also the students 
of these teachers showed better understanding of the equal sign and showed more 
relational thinking compared to students of non-participating teachers.  
 
Integrating early algebra in primary school thus also requires integrating early 
algebra activities in teacher education and professional development programs, so 
that teachers are adequately prepared for teaching such lessons. Such activities will 
assist teachers in gaining insight in the nature of early algebra, in the importance of 
integrating such activities in the primary school mathematics curriculum, and in 
students’ capabilities to reason algebraically. This latter insight is related to the final 
balancing act. 
 
2.1.4 Balancing act 4: How to make early algebra accessible to all students? 

Extra-curricular materials in the Dutch primary mathematics classroom 
occasionally contain tasks which can be considered as early algebra tasks, and 
which can foster students’ HOT. These materials are typically meant for the high-
achieving students. Teachers often believe that tasks requiring HOT are only 
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appropriate for high-achieving students (Zohar et al., 2001). As a result, in practice, 
mainly only high-achieving students are provided opportunities for developing 
HOT. Zohar and Dori (2003) investigated the relation between student achievement 
and HOT in the science classroom. They showed that both low- and high-achieving 
students benefitted from participating in tasks involving HOT. In one of their 
studies, the gain for low achievers was even significantly higher than the gain for 
high achievers. These researchers strongly recommended involving students of all 
academic levels in HOT. Also Peltenburg et al. (2012) showed that primary school 
students attending special education can develop mathematical HOT. Although 
these studies did not focus on the learning domain of algebra, their results are 
promising. 
 
When integrating early algebra activities in primary school, the goal should thus be 
to provide all students opportunities to engage in such activities and to develop 
HOT. We assume that our approach of stimulating students’ algebraic reasoning 
from early ages on, by means of activities which build on the intuitive 
understanding of balance which is a common ground for all students, is a viable 
approach to realize this goal.  
 
3. Limitations of this PhD research 

 
The first limitation of our research relates to the way in which we measured 
students’ algebraic reasoning. Our classification of students’ level of reasoning 
(Chapter 3 to 5) was fully based on their written responses. Students were asked to 
elaborate on their reasoning and the applied algebraic strategies by answering the 
question “How do you know?” When a student did not provide an answer to this 
question, their answer was by default classified in the lowest level of reasoning. 
However, one cannot be sure that the absence of a written explanation reflected a 
low understanding. A lack of motivation, for example, could also have caused the 
absence of a response. As a consequence, we cannot be sure that students’ written 
answers provided an accurate reflection of their complete understanding (e.g., 
Fagginger-Auer et al., 2015). Based on our video and audio data of classroom 
interactions, presented in Chapter 3, we are inclined to think that focusing on 
students’ written explanations might have led to an underestimation of their 
understanding. Some students were very well able to provide a verbal explanation 
of their reasoning during the lessons, while these students did not write down 
explanations with the same level of sophistication on the assessment tasks. In 
addition, students’ development in reasoning about linear equations over the school 
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year was measured by only four tasks. Although this limited number of tasks 
contributed to the ecological validity of our study, including more tasks might have 
resulted in a more elaborate picture of students’ understanding. Also, within our 
research we only focused on one topic of early algebra (see Chapter 1): linear 
equations. Further research is required to investigate Dutch primary school 
students’ ability to reason about other (early) algebra topics, such as functional 
thinking (e.g., Kaput, 2008).  
 
The second limitation related to our way of analyzing students’ reasoning. The data 
collection of this thesis mainly took place in one school year. Students’ algebraic 
reasoning was measured four times over the school year. In between two of these 
measurements, students participated in the teaching sequence on linear equations. 
This staged comparison design with different cohorts allowed that I taught all 
lessons in all classrooms myself, which was crucial for being able to draw reliable 
conclusions without having to account for the effects of having different teachers. 
For the analysis of students’ development in algebraic reasoning over the school 
year (Chapter 4 and 5), we used an advanced multi-group latent variable growth 
curve modelling technique. This statistical analysis matched our research design 
very well, because it allowed us to model the longitudinal change in algebraic 
reasoning, while taking into account the different cohorts of our study. However, 
there were also drawbacks to this analysis. Ideally, this analysis is conducted with 
larger samples (Little, 2013) so that smaller effects are detected more easily. 
Including more students in our research or making use of one large cohort of 
students instead of multiple cohorts would probably have resulted in a better model 
fit and larger power of our study. This was, however, not feasible from a practical 
point of view. Moreover, the analysis did not allow for a very detailed coding 
scheme, because, in order for the model to be estimated, for each of the cohorts all 
levels of reasoning on all tasks on all measurements had to appear at least once (i.e., 
no empty cells were allowed). This played a role in deciding on a relatively 
straightforward coding scheme for students’ algebraic reasoning. However, the 
decisive argument for using this coding scheme was that focusing on the number of 
equations the students involved in their reasoning turned out to be the most reliable 
way of coding (with a high inter-rater reliability), whereas students’ algebraic 
strategies were often difficult to discern from their written responses. Because there 
appeared to be an intricate relation between the use of algebraic strategies and the 
number of used equations, coding students’ reasoning in this way was our best 
option. Nevertheless, in the end we did lose some of the richness in students’ 
reasoning. This makes it difficult to draw clear-cut conclusions about the results of 

188

6     Chapter 6



 

 

Chapter 4, where we did not find a significant difference between our intervention 
conditions with our advanced statistical analysis on students’ levels of reasoning, 
while we did find some differences when zooming in on students’ reasoning by 
focusing on students’ use of the balance model after participating in the lessons 
(reflected by either their use of a representation of the model or their use of 
advanced algebraic strategies).  
 
Third, the goal of the studies (Chapter 3 to 5) described in this PhD thesis was to 
investigate the effects of the teaching sequence on linear equations in real 

classrooms. While making use of this real classroom setting resulted in a high 
ecological validity, there are also some methodological drawbacks to this study 
design. The study taking place in this natural classroom setting and the assessments 
of the study being spread out over almost the entire school year, made it impossible 
to control for some confounding factors (e.g., people entering the classroom during 
an assessment; extra-curricular activities over the course of the school year). In 
addition, a convenience sample of schools participated in the study, which means 
that no random selection took place. Also, although we did control for initial 
differences between classes, there was no random assignment of students over 
conditions.  
 
And lastly, the limited duration of the research project did not allow us to follow 
these students when receiving algebra lessons in secondary school. Although we 
were able to follow the development of these students over the course of one school 
year, we do not know whether our intervention provided a firm conceptual basis on 
which these students could still rely when participating in algebra classes and study 
more formal algebra. Yet, our findings that most students were able to solve 
systems of formal equations after six lessons (Chapter 3), with seemingly little 
problems with often-reported difficulties related to solving linear equations, such as 
difficulties with understanding the equal sign (e.g., Behr et al., 1980), difficulties 
with understanding algebraic symbols (e.g., Koedinger & Nathan, 2004), or 
difficulties with operating on unknowns (e.g., Herscovics & Linchevski, 1994), 
seems promising. These results warrant further investigation on the long-term.  
 
4. Concluding remarks 

 

In the recent years, discussions have been going on about what Dutch education 
should encompass within this 21st century. In the recently released proposal on 
mathematics education (curriculum.nu, 2019), the importance of creating 
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longitudinal learning strands which start in primary education and continue in the 
higher grades, among others for the mathematical domain of algebra, is endorsed. 
This is in line with the international consensus that a foundation for algebra should 
be laid in primary school and research showing that algebra can be integrated in 
primary school (e.g., Kaput et al., 2008; Kieran et al., 2016). Within the proposal on 
the Dutch future mathematics curriculum (curriculum.nu, 2019), it is moreover 
emphasized that attention should be paid to primary school students’ development 
of higher-order ways of mathematical thinking. Also the Dutch Association for the 
Development of Mathematics Education (NVORWO, 2020) recently launched 
recommendations to put effort in supporting students’ development of HOT within 
the primary school mathematics classroom. Yet, the question remains on how 
stimulating such HOT within the mathematics classroom can be put into practice.  
 
In this PhD thesis, we provided evidence on a particular way to foster students’ 
HOT within the primary school mathematics classroom. The domain-specific 
mathematical HOT targeted in these studies was operationalized as algebraic 
reasoning about linear equations. We showed that partaking in activities with a 
balance model, targeting students’ reasoning about relationships between 
unknowns, resulted in students developing context-connected algebraic strategies, 
which in a later stage could be applied to solve (systems of) equations in other 
contexts and even for solving systems of formal equations. This PhD thesis was part 
of the Beyond Flatland project (see Chapter 1). The aim of this research project was 
to explore the possibilities for enriching the Dutch “flat” primary school 
mathematics curriculum as an approach to stimulate primary school students’ HOT. 
Providing primary school students opportunities for engaging in algebraic reasoning 
is a worthwhile approach to consider and to further explore. 
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Samenvatting (summary in Dutch) 

 
Algebra is in Nederland nog geen onderdeel van het reken-wiskundecurriculum van 
het basisonderwijs. Dit is een gemiste kans, want er is veel bewijs dat jonge 
kinderen in staat zijn om algebraïsch te redeneren, zoals het redeneren over relaties 
tussen onbekenden. Door leerlingen al op de basisschool activiteiten aan te bieden 
waarin algebraïsch redeneren een rol speelt, kan de basis gelegd worden voor begrip 
van de formele algebra die leerlingen in latere klassen onderwezen krijgen. 
Algebraïsch redeneren vraagt om bepaalde hogere-orde denkvaardigheden (HOV), 
zoals het redeneren over relaties, het leggen van verbanden en het oplossen van 
problemen. Het opnemen van algebra in het reken-wiskundecurriculum van het 
basisonderwijs biedt mogelijk aanknopingspunten voor het stimuleren van HOV 
van basisschoolleerlingen. 
 
Het doel van dit promotieonderzoek was inzicht te verkrijgen in of, hoe en in 
hoeverre het algebraïsch redeneren van basisschoolleerlingen gestimuleerd kan 
worden. Dit onderzoek maakte deel uit van het Beyond Flatland project, dat zich in 
bredere zin richtte op het verrijken van het “platte” reken-wiskundecurriculum op 
de basisschool met wiskundige activiteiten die het hogere-orde denken van 
leerlingen stimuleren. Beyond Flatland bestond uit drie deelprojecten, die elk 
gericht waren op een ander wiskundig domein: grafieken, kans en algebra. Dit 
proefschrift gaat over het algebra-deelproject. 
 
De ontwikkeling van een lessenserie over algebra op de basisschool en de evaluatie 
van het effect hiervan op het redeneren van leerlingen stonden centraal in de in dit 
proefschrift beschreven onderzoeken. In deze serie van zes lessen lag de focus op 
het redeneren over, en het oplossen van, informele lineaire vergelijkingen. Dit zijn 
vergelijkingen die zijn weergegeven in een informele context. Een hangmobiel (zie 
Figuur 1), een fysiek balansmodel met een horizontale balk waar aan weerszijden 
twee kettingen met gekleurde balletjes van verschillende gewichten hangen, stond 
centraal in deze lessenserie. De belangrijkste taak voor de leerlingen was om “te 
ontdekken wat je allemaal kan doen, terwijl je zorgt dat de hangmobiel recht blijft”. 
Leerlingen konden verschillende handelingen uitvoeren, wat resulteerde in het al 
dan niet uit evenwicht brengen van de horizontale balk. Het in balans, en dus 
horizontaal, houden van deze balk staat model voor het behouden van de gelijkheid 
in een vergelijking. Begrip van dit gelijkheidsconcept is cruciaal voor het leren 
oplossen van vergelijkingen. Tijdens het in balans houden van het model, konden 
leerlingen op een intuïtieve manier informele algebraïsche strategieën toepassen en 
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ontwikkelen. Zo konden ze bijvoorbeeld de volgorde van de balletjes aan één kant 
van het model veranderen, balletjes met gelijke kleuren aan beide kanten weghalen 
of één kleur balletjes vervangen door balletjes van een andere kleur. Deze context-
gebonden algebraïsche strategieën liggen ten grondslag aan conventionele 
strategieën voor het oplossen van lineaire vergelijkingen, zoals herstructureren, 
isoleren en substitueren. De verwachting was dat de fysieke ervaringen met het 
model zouden bijdragen aan het ontwikkelen van begrip van het concept gelijkheid 
en strategieën om deze gelijkheid te behouden. Het idee dat fysieke ervaringen 
waardevol zijn voor het begrijpen van abstracte ideeën, zoals wiskundige 
concepten, komt terug in theorieën over embodied cognition (vertaling: 
belichaamde cognitie). 
 

 
Figuur 1. De hangmobiel, het balansmodel dat centraal stond in onze lessenserie 
over lineaire vergelijkingen.  
 
Door leerlingen met het balansmodel te laten werken, beoogden we een basis mee 
te geven voor het oplossen van vergelijkingen in verschillende contexten, en 
uiteindelijk zelfs voor het oplossen van systemen van vergelijkingen. Het oplossen 
van systemen van vergelijkingen vraagt om geavanceerde algebraïsche 
vaardigheden, zoals het redeneren over relaties tussen onbekenden in vergelijkingen 
en over de onderlinge relaties tussen vergelijkingen (oftewel, het redeneren over 
covariantie), het manipuleren van deze relaties, het combineren ervan en het 
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redeneren op basis van deze nieuwverworven informatie. Dit soort vaardigheden 
wordt ook wel gezien als een belangrijk aspect van wiskundige HOV. Het 
redeneren over informele vergelijkingen, waarbij wordt voortgebouwd op de 
intuïtieve ervaringen van leerlingen met balans (variërend van leren lopen tot het 
spelen op een wip) en de kennis die ze al hebben, lijkt dus een kansrijke aanpak 
voor het ontwikkelen van de HOV van basisschoolleerlingen. 
 
Het eerste doel van dit proefschrift was om de rol van het balansmodel bij het 
lesgeven over lineaire vergelijkingen in kaart te brengen (Hoofdstuk 2). Hiervoor 
hebben we een literatuurstudie uitgevoerd. Het tweede doel was om de potentie van 
verschillende representaties van het balansmodel voor het bevorderen van het 
begrip van lineaire vergelijkingen bij basisschoolleerlingen te onderzoeken 
(Hoofdstuk 3 en 4). Hiervoor hebben we de eerdergenoemde lessenserie ontwikkeld 
en onderwezen in groep 7 van verschillende basisscholen en hebben we het effect 
van deze lessen op de ontwikkeling van het algebraïsch redeneren van de leerlingen 
bekeken. Het laatste doel van dit proefschrift was om na te gaan in hoeverre het 
stimuleren van het redeneren van basisschoolleerlingen over vergelijkingen 
mogelijk ook bevorderlijk is voor hun redeneren binnen een ander wiskundig 
domein waarin redeneren over covariantie eveneens een rol speelt: grafieken 
(Hoofdstuk 5). Daarom hebben we onderzocht wat het effect was van de lessenserie 
over lineaire vergelijkingen op het redeneren over grafieken van beweging. 
 
Hoofdstuk 2 beschrijft een systematisch literatuuronderzoek naar het balansmodel. 
We zochten in 93 internationale peer-reviewed tijdschriften naar artikelen waarin 
het balansmodel werd gebruikt voor het lesgeven over lineaire vergelijkingen. Dit 
resulteerde in een selectie van 34 artikelen, die we analyseerden wat betreft de 
rationale(s) die werd(en) aangedragen voor het gebruik van het model, de 
verschijningsvorm van het model, de situatie waarin het model werd gebruikt en het 
effect van het gebruik van het model op de leeruitkomsten van de leerlingen. Ons 
doel was om een overzicht te creëren van het gebruik van het balansmodel bij het 
lesgeven over vergelijkingen, dat mogelijk bruikbaar zou kunnen zijn voor 
leerkrachten, onderzoekers en ontwikkelaars van instructiemateriaal voor het maken 
van onderbouwde keuzes om dit didactische model al dan niet te gebruiken. 
 
De resultaten van deze literatuurstudie lieten een zeer gevarieerd beeld zien van het 
gebruik van het balansmodel. Het model werd het meest gebruikt om het begrip van 
gelijkheid in een vergelijking te bevorderen en van strategieën om deze gelijkheid 
te behouden (zoals hetzelfde weghalen aan beide kanten van de vergelijking). 
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Daarnaast werden eerdere fysieke ervaringen met balans of huidige fysieke 
ervaringen met een concreet balansmodel genoemd als argumenten voor het gebruik 
van het model. Als beperking van het model werden de geringe mogelijkheden om 
vergelijkingen met negatieve getallen of aftrekkingen weer te geven aangedragen. 
Drie verschijningsvormen van het model kwamen naar voren: fysieke modellen, 
virtuele modellen en getekende modellen. De situaties waarin het model werd 
gebruikt liepen uiteen wat betreft de leeftijd van de leerlingen (van de kleuterschool 
tot de derde klas van de middelbare school) en hun eerdere ervaringen met algebra, 
de duur van de interventie (van één activiteit tot lessen gedurende een aantal jaar), 
het type vergelijkingen dat werd onderwezen (bijvoorbeeld vergelijkingen die wel 
of geen negatieve waarden bevatten) en het type instructie dat werd gegeven 
(bijvoorbeeld klassikale instructie door een leerkracht of het individueel exploreren 
van het model). Ten slotte liepen ook de gerapporteerde leeruitkomsten van de 
studies erg uiteen, variërend van positief tot voornamelijk negatief. 
 
Binnen dit zeer uiteenlopende beeld waren echter wel enige trends zichtbaar. 
Fysieke en virtuele balansmodellen werden het meest gebruikt voor het lesgeven 
aan leerlingen zonder eerdere ervaring met algebra. Argumenten die hierbij vaak 
werden aangedragen, waren de geschiktheid van het model voor het vergroten van 
het begrip van gelijkheid en de fysieke ervaringen met het model. De modellen 
werden meestal gebruikt voor het onderwijzen van vergelijkingen met positieve 
getallen en optellingen. Het gebruik van dit type modellen leek gemiddeld genomen 
een positief effect te hebben op het leren over vergelijkingen. Getekende modellen, 
daarentegen, werden het meest gebruikt voor het onderwijzen van leerlingen die 
gemiddeld al iets ouder waren en al enige ervaring hadden met algebra. Aan deze 
modellen werden regelmatig extra kenmerken toegevoegd die het mogelijk maakten 
om een bredere range van vergelijkingen te representeren, zoals vergelijkingen met 
negatieve waarden. De rationales voor het gebruik van dit type model waren vaak 
minder duidelijk gedefinieerd. En als laatste liepen de gerapporteerde effecten van 
het gebruik van dit type model op het leren over vergelijkingen behoorlijk uiteen. 
Het is echter belangrijk om te benadrukken dat de kenmerken van geïncludeerde 
studies van dit literatuuronderzoek erg varieerden. De hierboven beschreven trends 
moeten daarom voorzichtig geïnterpreteerd worden. Precieze kennis ontbreekt over 
welk type balansmodel in welke situatie leidt tot de beste leeruitkomsten, en verder 
onderzoek is nodig om dit model optimaal in te kunnen zetten voor het leren 
oplossen van vergelijkingen. 
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De studies beschreven in Hoofdstuk 3 en 4 doen iets aan dit hiaat in de 
onderzoeksliteratuur over het balansmodel. Voor deze studies ontwikkelden we een 
interventie bestaande uit een reeks van zes lessen met een balansmodel. Het doel 
van de lessenserie was het stimuleren van het algebraïsch redeneren van 
basisschoolleerlingen over vergelijkingen. Twee parallelle versies van de 
lessenserie werden ontwikkeld. In de ene versie werd een fysiek balansmodel in de 
vorm van een hangmobiel (zie Figuur 1) gebruikt in combinatie met een 
representatie van het model op papier; in de andere versie werd alleen een 
representatie van het model op papier gebruikt. 
 
De in Hoofdstuk 3 beschreven studie richtte zich op de ontwikkeling van het 
algebraïsch redeneren van 65 leerlingen, zonder eerdere ervaring met algebra, 
gedurende de lessen met het fysieke balansmodel. Hiervoor analyseerden we het 
redeneren van de leerlingen over systemen van twee lineaire vergelijkingen. Om 
een dergelijk systeem van vergelijkingen op te lossen, moet de leerling de 
informatie uit beide vergelijkingen combineren. Voor de analyse van het redeneren 
van de leerlingen hebben we gekeken naar het aantal vergelijkingen dat werd 
meegenomen in het redeneren: geen enkele vergelijking (Niveau R0), maar één van 
beide vergelijkingen (Niveau R1) of beide vergelijkingen (Niveau R2). 
 
Uit de resultaten bleek dat leerlingen duidelijk vooruitgingen gedurende de lessen. 
Na het volgen van de lessen kon bijvoorbeeld 77% van de leerlingen de waarden 
van de onbekenden M en L vinden in het systeem van vergelijkingen M + 3L = 25 
en 2M = 4L. Gedurende de lessenserie nam het percentage leerlingen dat redeneerde 
zonder gebruik te maken van de gegeven vergelijkingen (Niveau R0) af, van 57% 
naar 20%, terwijl het percentage leerlingen dat beide vergelijkingen combineerde in 
hun redeneren (Niveau R2) steeg van 17% naar 52%. Daarnaast werden leerlingen 
beter in het uitleggen van hun redeneren en in het opschrijven van de gebruikte 
algebraïsche strategieën. Ook op individueel niveau verbeterde het redeneren van de 
meeste leerlingen gedurende de lessenserie. 
 
We waren eveneens geïnteresseerd in de relatie tussen de ervaringen van de 
leerlingen in de leeromgeving met het fysieke balansmodel en hun gebruik van 
algebraïsche strategieën. Dit werd onderzocht door een analyse van video’s van 
interacties in de klas gedurende de lessen, het werk van leerlingen tijdens de lessen 
en de antwoorden van de leerlingen op de les-specifieke taken die na afloop van 
elke les werden afgenomen. Er werden verschillende indicaties gevonden voor een 
relatie tussen de ervaringen van leerlingen met het fysieke balansmodel en hun 
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gebruik van strategieën en notaties. Leerlingen gebruikten bijvoorbeeld de context-
gebonden strategieën die ze hadden ontwikkeld tijdens het werken met het 
balansmodel, zoals herstructureren, isoleren en substitueren, om problemen op te 
lossen in andere contexten. Daarnaast maakten sommige leerlingen gebruik van een 
representatie van het model voor het oplossen van een systeem van twee 
symbolische vergelijkingen. 
 
De leeromgeving met het fysieke balansmodel bleek dus een goede context voor het 
ontwikkelen van algebraïsch redeneren. Onze hypothese was dat de fysieke 
ervaringen met het concrete balansmodel hier een belangrijk aandeel in hadden. Het 
design van onze studie was echter niet geschikt om de specifieke bijdrage van deze 
fysieke ervaringen op een systematische manier te onderzoeken. 
 
Hoofdstuk 4 rapporteert over een quasi-experimentele studie waarin we zowel de 
effecten van onze lessenserie op de langere termijn, als de specifieke bijdrage van 
fysieke ervaringen met het balansmodel onderzochten. Aan dit onderzoek namen 
212 leerlingen uit groep 7 deel, die niet eerder les hadden gehad in algebra. De 
leerlingen werden verdeeld over twee interventiecondities en een controleconditie. 
Drie klassen kregen les met een representatie van het balansmodel op papier, drie 
klassen kregen exact dezelfde lessen maar dan met de toevoeging van een fysiek 
balansmodel (zie ook Hoofdstuk 3), en drie klassen in de controleconditie kregen les 
over een ander wiskunde onderwerp, namelijk over kans. In deze studie gebruikten 
we een zogenoemd staged-comparison design. Dit hield in dat het redeneren van 
leerlingen over systemen van twee informele lineaire vergelijkingen op vier 
momenten gedurende het schooljaar gemeten werd. Tussen twee van deze 
meetmomenten kregen leerlingen de lessen, in drie opeenvolgende cohorten, met 
één klas per cohort voor elke conditie. Het effect van de interventie op het 
algebraïsch redeneren en de mogelijke verschillen tussen condities, werden zowel 
kwantitatief (met een latent groeicurvemodel) als kwalitatief onderzocht. 
 
Deelname aan de lessen leidde tot een hoger niveau van redeneren over systemen 
van twee informele lineaire vergelijkingen (d = 0.73; dit betekent een middelmatig 
tot groot effect). De leerlingen werden beter in het combineren van de informatie 
van beide vergelijkingen in hun redeneren: dit hoogste niveau van redeneren kwam 
meer voor na afloop van de interventie (65%) dan ervoor (39%). Het kwam 
tegelijkertijd juist minder voor dat leerlingen geen enkele van de vergelijkingen of 
maar één van beide vergelijkingen gebruikten in hun redeneren. Hoewel leerlingen 
die les hadden gehad met zowel een fysiek balansmodel als een representatie van 
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het model op papier een grotere vooruitgang in redeneren (een toename van 33% in 
het hoogste niveau van redeneren) lieten zien dan leerlingen die alleen les hadden 
gehad met een representatie van het model op papier (toename van 18% in het 
hoogste niveau van redeneren), was dit verschil niet significant (p = .136). 
Inzoomen op het redeneren van de leerlingen liet daarentegen wel zien dat de 
leerlingen die ook met het fysieke model hadden gewerkt vaker een representatie 
van het model gebruiken (17% vs. 1%) en vaker gebruik maakten van geavanceerde 
algebraïsche strategieën zoals substitutie of eliminatie (60% vs. 40%). 
 
In de vorige twee studies toonden we het effect van onze lessenserie op het 
redeneren over systemen van vergelijkingen aan. Het redeneren over en het 
oplossen van dergelijke systemen van vergelijkingen vraagt om wiskundige HOV, 
zoals het vermogen van de leerlingen om te redeneren over covariantie, oftewel, 
redeneren over de samenhang tussen bepaalde variabelen. Dit redeneren over 
covariantie is ook relevant binnen andere wiskundige domeinen, zoals grafieken 
van beweging. Dit roept de vraag op of het stimuleren van het redeneren over 
vergelijkingen mogelijk ook leidt tot een verbetering in het redeneren over 
grafieken. In ons laatste onderzoek, beschreven in Hoofdstuk 5, hebben we het 
effect van onze lessenserie over vergelijkingen op zowel het redeneren over 
vergelijkingen als het redeneren over grafieken van beweging van 132 leerlingen uit 
groep 7 onderzocht. Het algebraïsch redeneren en het grafisch redeneren van de 
leerlingen werd gedurende het schooljaar vier keer gemeten. Tijdens elk van deze 
meetmomenten werkten leerlingen aan vier algebrataken waarin ze een systeem van 
twee informele vergelijkingen oplosten en aan vier grafiektaken waarin ze een tijd-
afstand grafiek interpreteerden of construeerden. 
 
Om het effect van onze interventie op het redeneren over zowel algebra als 
grafieken te onderzoeken, ontwikkelden we een latent groeimodel waarin de latente 
algebraïsche en de latente grafische redeneervaardigheid samen werden 
gemodelleerd. De resultaten, die voorzichtig geïnterpreteerd moeten worden 
vanwege een suboptimale fit van het model, lieten een verbetering zien in het 
algebraïsch redeneren van leerlingen na het deelnemen aan de lessen over 
vergelijkingen. Dit was een bevestiging van onze eerdere bevindingen 
(Hoofdstuk 4). Deelname aan deze lessen leidde echter niet tot een verbetering van 
het grafisch redeneren van deze leerlingen. Op basis hiervan kunnen we voorzichtig 
de conclusie trekken dat het ontwikkelen van HOV gedurende de lessen over 
vergelijkingen niet resulteerde in het ontwikkelen van HOV binnen het domein van 
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grafieken. De overdracht van HOV van het ene wiskundige domein naar een 
(gerelateerd) ander wiskundig domein lijkt dus niet vanzelfsprekend.  
 

In Hoofdstuk 6 worden de resultaten van de verschillende onderzoeken samengevat 
en worden de implicaties van de resultaten besproken. Op basis van de resultaten 
van de afzonderlijke studies kunnen we een aantal algemene conclusies trekken. 
Ons onderzoek laat duidelijk zien dat het mogelijk is om het algebraïsch redeneren 
van leerlingen op de basisschool te stimuleren. We komen dan ook met de sterke 
aanbeveling om algebra op te nemen in het reken-wiskundecurriculum van de 
basisschool. Door al op de basisschool te starten met het aanbieden van activiteiten 
die het (informeel) algebraïsch redeneren van leerlingen bevorderen, kan een 
doorlopende leerlijn gecreëerd worden van de basisschool tot en met de middelbare 
school. Het belang van zulke doorlopende leerlijnen in het reken-
wiskundeonderwijs wordt steeds meer onderschreven op zowel nationaal als 
internationaal niveau. Daarnaast kan het stimuleren van het algebraïsch redeneren 
gezien worden als een manier om het reken-wiskundecurriculum op de basisschool 
te verrijken. Dit algebraïsch redeneren kan gezien worden als een domein-
specifieke operationalisatie van wiskundige HOV binnen het basisonderwijs. 
 
Het opnemen van algebra in het basisonderwijs brengt echter wel bepaalde 
uitdagingen met zich mee. Of, om in de woorden van de titel van dit proefschrift te 
spreken: op een aantal punten is het nog wel zoeken naar balans. De eerste 
uitdaging is om nog meer zicht te krijgen op hoe het algebraïsch redeneren van 
jonge leerlingen het best gestimuleerd kan worden. Voor het stimuleren van 
redeneren over vergelijkingen blijken activiteiten met een balansmodel waarmee 
leerlingen redeneren over relaties tussen onbekenden waardevol te zijn. Hierdoor 
ontwikkelden leerlingen in ons onderzoek verschillende algebraïsche strategieën, 
die ze in een later stadium konden gebruiken voor het oplossen van (systemen van) 
vergelijkingen in nieuwe contexten en zelfs voor het oplossen van systemen van 
formele vergelijkingen. Daarentegen kunnen we op basis van ons onderzoek geen 
eenduidige conclusies trekken over de toegevoegde waarde van de fysieke 
ervaringen met een concreet balansmodel. Dit moet dan ook verder onderzocht 
worden. De tweede uitdaging is dat het huidige (reken-wiskunde)curriculum op de 
basisschool al overvol is. We moeten ervoor waken dat het opnemen van algebra in 
dit curriculum er niet toe leidt dat het curriculum alleen maar voller wordt. Algebra 
moet dus niet simpelweg toegevoegd worden aan het curriculum; het moet erin 
geïntegreerd worden. Door kleine aanpassingen door te voeren in de activiteiten die 
momenteel al plaatsvinden op de bassischool, kunnen deze worden ingezet om het 
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algebraïsch redeneren van leerlingen te stimuleren. De derde uitdaging is het 
voorbereiden van basisschoolleerkrachten op het onderwijzen van algebra. Hierbij 
is het van belang dat ze meer inzicht krijgen in de aard van dergelijke activiteiten, 
in het belang van het integreren van dit soort activiteiten in het basisonderwijs en in 
het vermogen van basisschoolleerlingen om algebraïsch te redeneren. Dit vereist 
aanpassingen in de lerarenopleiding en het vraagt om nascholingsactiviteiten. Ten 
slotte is de laatste uitdaging om ervoor te zorgen dat alle leerlingen deel kunnen 
nemen aan activiteiten die het algebraïsch redeneren stimuleren, en niet alleen een 
select groepje best-presterende leerlingen. Een manier om dit te verwezenlijken, is 
door (alle) leerlingen al op jonge leeftijd te laten participeren in activiteiten die 
voortbouwen op hun intuïtieve ervaringen met balans, en door dit als basis te nemen 
voor het stimuleren van hun algebraïsch redeneren. 
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Appendix 2.1 (Chapter 2) 

Search queries used in Scopus and Eric 
 

Search query used in Scopus: 

 

( ( TITLE-ABS-KEY ( "equation*" OR "equal sign" OR "equals sign" OR "equality" OR 
"equivalence" ) OR TITLE ( balanc* ) ) AND TITLE-ABS-KEY ( ( "algebra*" OR 
"mathematic*" OR ("equation*" and "unknown*") OR ("equation*" and "balance*") OR 
("equation*" and "solv*") ) ) AND ( SRCTITLE ( "Arithmetic teacher" OR "Australian 
Mathematics Teacher" OR "Australian Primary Mathematics Classroom" OR "Australian Senior 
Mathematics Journal" OR "Canadian Journal of Science, Mathematics and Technology 
Education" OR "Educational Studies in Mathematics" OR "For the learning of mathematics" OR 
"International Journal for Mathematics Teaching and Learning" OR "International Journal of 
Mathematical Education in Science and Technology" OR "International Journal of Science and 
Mathematics Education" OR "International Journal on Mathematics Education" OR 
"Investigations in Mathematics Learning" OR "Journal for Research in Mathematics Education" 
OR "Journal of Computers in Mathematics and Science Teaching" OR "Journal of Mathematical 
Behavior" OR "Journal of Mathematics Teacher Education" OR "Mathematical Thinking and 
Learning" OR "Mathematics Education Research Journal" OR "Mathematics education" OR 
"Mathematics Educator" OR "Mathematics enthusiast" OR "Mathematics Teacher" OR 
"Mathematics Teaching in the Middle School" OR "Research in Mathematics Education" OR 
"Review of Educational Research" OR "Review of Research in Education" OR "School Science 
and Mathematics" OR "Teaching children mathematics" OR "ZDM International Journal on 
Mathematics Education" OR "American Educational Research Journal" OR "British educational 
research journal" OR "Child development" OR "Cognition and instruction" OR "Contemporary 
educational psychology" OR "Digital Experiences in Mathematics Education" OR "Educational 
Researcher" OR "Elementary school journal" OR "Instructional science" OR "International 
Journal of Educational Research" OR "Journal of Educational Psychology" OR "Journal of 
educational research" OR "Journal of pedagogy" OR "Journal of the Learning Sciences" OR 
"Learning and Instruction" OR "Pedagogies" OR "Technology, pedagogy and education" OR 
"Teaching and teacher education" OR "Teacher college record" OR "British Journal of 
Developmental Psychology" OR "Developmental psychology" OR "Developmental science" OR 
"European Journal of Developmental Psychology" OR "Frontiers in psychology" OR "Journal of 
applied developmental psychology" OR "Journal of Cognition and Development" OR "Journal of 
educational and developmental psychology" OR "British journal of educational psychology" OR 
"Educational and Psychological Measurement" OR "Educational psychologist" OR "Educational 
psychology" OR "Journal of Educational Measurement" OR "Journal of Educational Psychology" 
OR "Journal of school psychology" OR "Journal of the learning sciences" OR "American Journal 
of Education" OR "Asia-Pacific Education Researcher" OR "British Journal of Educational 
Technology" OR "Early Childhood Education Journal" OR "European Journal of Education" OR 
"International Journal of STEM Education" OR "Scandinavian Journal of Educational Research" 
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OR "British Journal of Special Education" OR "European Journal of Special Needs Education" 
OR "International Journal of Special Education" OR "Journal of Research in Special Educational 
Needs" OR "Journal of Special Education" OR "Journal of Special Education Research" OR 
"Research Based Journal in Special Education" OR "Journal für Mathematik-Didaktik " OR 
"Recherches en Didactique des Mathématiques" OR "Australasian Journal of Educational 
Technology" OR "Canadian Journal of Learning and Technology" OR "Computers & Education" 
OR " Design and Technology Education: an International Journal" OR "Educational Technology" 
OR "Educational Technology Research and Development" OR "International Journal of 
Educational Technology" OR "Interactive Learning Environments" OR "International Journal of 
Technology and Design Education" OR "Journal of Interactive Technology and Pedagogy" OR 
"Journal of Research on Technology in Education" OR "Journal of Teaching and Learning with 
Technology" OR "Journal of Technology and Teacher Education" OR "Journal of Technology 
Education") ) ) 
 

Search query used in Eric (searched via “advanced search”)  

 

 (("equation*" or "equal sign" or "equals sign" or "equality" or "equivalence").ab. or "balanc*".ti.)  
AND (("algebra*" or "mathematic*" or ("equation*" and "unknown*") or ("equation*" and 
"balanc*") or ("equation*" and "solv*")).ab.) AND ("Arithmetic teacher" or "Australian 
Mathematics Teacher" or "Australian Primary Mathematics Classroom" or "Australian Senior 
Mathematics Journal" or "Canadian Journal of Science, Mathematics and Technology Education" 
or "Educational Studies in Mathematics" or "For the learning of mathematics" or "International 
Journal for Mathematics Teaching and Learning" or "International Journal of Mathematical 
Education in Science and Technology" or "International Journal of Science and Mathematics 
Education" or "International Journal on Mathematics Education" or "Investigations in 
Mathematics Learning" or "Journal for Research in Mathematics Education" or "Journal of 
Computers in Mathematics and Science Teaching" or "Journal of Mathematical Behavior" or 
"Journal of Mathematics Teacher Education" or "Mathematical Thinking and Learning" or 
"Mathematics Education Research Journal" or "Mathematics education" or "Mathematics 
Educator" or "Mathematics enthusiast" or "Mathematics Teacher" or "Mathematics Teaching in 
the Middle School" or "Research in Mathematics Education" or "Review of Educational 
Research" or "Review of Research in Education" or "School Science and Mathematics" or 
"Teaching children mathematics" or "ZDM International Journal on Mathematics Education" or 
"American Educational Research Journal" or "British educational research journal" or "Child 
development" or "Cognition and instruction" or "Contemporary educational psychology" or 
"Digital Experiences in Mathematics Education" or "Educational Researcher" or "Elementary 
school journal" or "Instructional science" or "International Journal of Educational Research" or 
"Journal of Educational Psychology" or "Journal of educational research" or "Journal of 
pedagogy" or "Journal of the Learning Sciences" or "Learning and Instruction" or "Pedagogies" 
or "Technology, pedagogy and education" or "Teaching and teacher education" or "Teacher 
college record" or "British Journal of Developmental Psychology" or "Developmental 
psychology" or "Developmental science" or "European Journal of Developmental Psychology" or 
"Frontiers in psychology" or "Journal of applied developmental psychology" or "Journal of 
Cognition and Development" or "Journal of educational and developmental psychology" or 
"British journal of educational psychology" or "Educational and Psychological Measurement" or 
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"Educational psychologist" or "Educational psychology" or "Journal of Educational 
Measurement" or "Journal of Educational Psychology" or "Journal of school psychology" or 
"Journal of the learning sciences" or "American Journal of Education" or "Asia-Pacific Education 
Researcher" or "British Journal of Educational Technology" or "Early Childhood Education 
Journal" or "European Journal of Education" or "International Journal of STEM Education" or 
"Scandinavian Journal of Educational Research" or "British Journal of Special Education" or 
"European Journal of Special Needs Education" or "International Journal of Special Education" or 
"Journal of Research in Special Educational Needs" or "Journal of Special Education" or "Journal 
of Special Education Research" or "Research Based Journal in Special Education" or "Journal für 
Mathematik-Didaktik" or "Recherches en Didactique des Mathématiques" or "Australasian 
Journal of Educational Technology" or "Canadian Journal of Learning and Technology" or 
"Computers & Education" or "Design and Technology Education: an International Journal" or 
"Educational Technology" or "Educational Technology Research and Development" or 
"International Journal of Educational Technology" or "Interactive Learning Environments" or 
"International Journal of Technology and Design Education" or "Journal of Interactive 
Technology and Pedagogy" or "Journal of Research on Technology in Education" or "Journal of 
Teaching and Learning with Technology" or "Journal of Technology and Teacher Education" or 
"Journal of Technology Education").jn.  
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Appendix 3.1 (Chapter 3) 

 

 
Figure A1. Julia’s solution of the assessment task at the end of Episode 2 (text 
translated from Dutch). Note. Reasoning on the basis of one of the two given 
equations (Level R1), without showing strategies. 
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Figure A2. Julia’s solution of the assessment task at the end of Episode 3 (text 
translated from Dutch). Note. Reasoning on the basis of both given equations by 
combining the information of both of them (Level R2), with showing strategies. 
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Figure A3. Julia’s solution of the assessment task at the end of Episode 4 (text 
translated from Dutch). Note. Reasoning on the basis of both given equations by 
combining the information of both of them (Level R2), with showing strategies. 
 

226

+     



 

 

A
p

p
en

d
ix

 3
.2

 (
C

h
a
p

te
r 

3
) 

C
od

in
g 

sc
he

m
e 

w
ith

 e
xa

m
pl

es
 o

f 
st

ud
en

t r
es

po
ns

es
; t

ex
t i

n 
be

tw
ee

n 
sq

ua
re

 b
ra

ck
et

s 
is

 a
dd

ed
 a

s 
a 

cl
ar

if
ic

at
io

n.
 

 L
ev

el
 o

f 
re

as
on

in
g  

D
es

cr
ip

tio
n 

Su
bt

yp
es

 
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 2

  
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 3

 
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 4

 

 R
0 

 St
ud

en
t d

oe
s 

no
t u

se
 a

ny
 o

f 
th

e 
gi

ve
n 

eq
ua

tio
ns

 
 

 R
0_

em
pt

y 
 -  

 - 
 - 

[N
o 

re
sp

on
se

] 

 
R

0_
do

n”
t k

no
w

 
- 

“?
” 

 
- 

- 
“?

” 

 
R

0_
re

fe
r 

to
 o

r 
re

pe
at

 e
xa

m
pl

e 
- 

“B
ec

au
se

 a
 r

ec
ta

ng
le

 is
 ju

st
 a

s 
m

uc
h 

as
 a

 c
ir

cl
e 

an
d 

a 
st

ar
” 

 
- 

“L
oo

k 
at

 th
e 

ex
am

pl
es

” 
 

- 
“L

oo
k 

at
 th

e 
ex

am
pl

e”
  

- 
“B

ec
au

se
 o

th
er

w
is

e 
it 

is
 n

ot
 

co
rr

ec
t”

 
 

- 
“M

 +
 M

 =
 L

 +
 L

 +
 L

 +
 L

” 
- 

[S
tu

de
nt

 c
on

ve
rt

s 
eq

ua
tio

ns
 in

to
 

ha
ng

in
g 

m
ob

ile
s 

w
ith

ou
t f

ur
th

er
 

re
as

on
in

g]
 

 
 

R
0_

ge
ne

ra
l 

de
sc

ri
pt

io
n 

- 
“W

e 
ha

ve
 le

ar
ne

d 
th

is
!”

 
- 

“B
y 

m
ak

in
g 

a 
gu

es
s”

 
- 

“I
 th

in
k 

so
” 

- 
“B

y 
m

ak
in

g 
th

e 
ri

gh
t c

al
cu

la
tio

n”
 

 

- 
“B

y 
gu

es
si

ng
 w

ith
 n

um
be

rs
” 

- 
“G

ue
ss

 a
nd

 s
ee

” 
 

 
 

R
0_

un
cl

ea
r 

an
sw

er
 

- 
“B

ec
au

se
 I 

di
sc

ov
er

ed
 th

at
 th

e 
co

nt
en

t o
f 

on
e 

st
ar

 e
qu

al
s 

th
re

e”
 

 

- 
“B

ec
au

se
 th

er
e 

ar
e 

no
 f

ou
r 

ba
na

na
s”

 [
qu

es
tio

n 
2]

 
- 

[S
tu

de
nt

 c
on

ve
rt

s 
b

o
th

 e
qu

at
io

ns
 

in
to

 o
n

e 
ha

ng
in

g 
m

ob
ile

 a
nd

 c
ro

ss
es

 
ou

t s
om

e 
un

kn
ow

ns
] 

 
 

 
R

0_
re

m
ai

ni
ng

 
- 

“O
ne

 s
ta

r 
eq

ua
ls

 th
re

e 
ye

llo
w

 
ci

rc
le

s”
 [

qu
es

tio
n 

1]
; “

1 
re

ct
an

gl
e 

= 
4 

ci
rc

le
s”

 [
qu

es
tio

n 
2]

 
 

-”
1x

 s
tr

aw
be

rr
y 

= 
3x

 b
an

an
a”

 
[q

ue
st

io
n 

1]
; “

be
ca

us
e 

4 
ba

na
na

s 
ar

e 
w

or
th

 o
ne

 p
ea

r!
” 

[q
ue

st
io

n 
2]

 
- 

“o
ne

 s
tr

aw
be

rr
y 

sh
ou

ld
 b

e 
tw

o 
pe

ar
s”

 [q
ue

st
io

n 
1]

 
 

- 

+

227

Appendices



 

 

L
ev

el
 o

f 
re

as
on

in
g  

D
es

cr
ip

tio
n 

Su
bt

yp
es

 
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 2

  
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 3

 
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 4

 

 R
1 

 St
ud

en
t 

re
as

on
s 

on
 th

e 
ba

si
s 

of
 o

nl
y 

on
e 

of
 th

e 
tw

o 
gi

ve
n 

eq
ua

tio
ns

 
 

 R
1_

w
ith

ou
t 

sh
ow

in
g 

st
ra

te
gy

 

 - 
[S

tu
de

nt
 a

ss
ig

ns
 v

al
ue

s 
to

 
un

kn
ow

ns
 o

n 
th

e 
ba

si
s 

of
 o

ne
 

pr
ov

id
ed

 e
qu

at
io

n]
 

- 
“T

hr
ee

 s
ta

rs
 th

en
 e

qu
al

 9
 c

ir
cl

es
 

an
d 

on
e 

re
ct

an
gl

e 
eq

ua
ls

 4
 c

ir
cl

es
 

an
d 

th
en

 it
 is

 c
or

re
ct

” 
[r

ef
er

s 
to

 f
ir

st
 

ex
am

pl
e 

eq
ua

tio
n]

 [q
ue

st
io

n 
2]

 
“B

ec
au

se
 th

e 
gr

ee
n 

on
e 

eq
ua

ls
 a

 s
ta

r 
an

d 
a 

ye
llo

w
, a

nd
 a

 s
ta

r 
eq

ua
ls

 th
re

e 
ye

llo
w

” 
[q

ue
st

io
n 

2]
 

 

 - 
[S

tu
de

nt
 a

ss
ig

ns
 v

al
ue

s 
to

 
un

kn
ow

ns
 o

n 
th

e 
ba

si
s 

of
 o

ne
 

pr
ov

id
ed

 e
qu

at
io

n]
 

- 
“B

ec
au

se
 th

en
 y

ou
 n

ee
d 

9 
ba

na
na

s 
in

 th
e 

fi
rs

t e
xa

m
pl

e”
 [

qu
es

tio
n 

1]
 

  

 - 
[S

tu
de

nt
 f

ill
s 

in
 v

al
ue

s 
fo

r 
bo

th
 

un
kn

ow
ns

 in
 o

ne
 e

qu
at

io
n,

 a
nd

 
ch

ec
ks

 w
he

th
er

 it
 is

 c
or

re
ct

] 
- 

“1
M

 =
 2

L
” 

- 
“1

0 
+ 

10
 =

 2
0,

 5
 +

 5
 +

 5
 +

 5
 =

 2
0,

 
20

 a
nd

 2
0 

is
 th

e 
sa

m
e”

 
- 

“1
0 

+ 
5 

+ 
5 

+ 
5 

= 
25

” 
 

 
 

R
1_

w
ith

 
sh

ow
in

g 
st

ra
te

gy
 

- 
“A

bo
ve

 y
ou

 s
ee

 3
 s

ta
rs

 a
nd

 1
 g

re
en

 
an

d 
5 

ye
llo

w
. I

f 
yo

u 
ta

ke
 h

al
f 

of
 th

at
 

yo
u 

do
 n

ot
 g

et
 th

is
” 

[1
 s

ta
r 

eq
ua

ls
 3

 
ci

rc
le

s]
 [q

ue
st

io
n 

1]
 

“O
ne

 s
ta

r 
= 

3 
ci

rc
le

s.
 Y

ou
 c

an
 

di
sc

ov
er

 th
is

 b
y 

ta
ki

ng
 a

w
ay

 tw
o 

st
ar

s 
an

d 
tw

o 
ci

rc
le

s 
an

d 
a 

re
ct

an
gl

e 
in

 th
e 

le
ft

 u
pp

er
 o

ne
” 

[q
ue

st
io

n 
1]

 
- 

[S
tu

de
nt

 ta
ke

s 
aw

ay
 o

ne
 s

ta
r 

an
d 

th
re

e 
ci

rc
le

s 
in

 th
e 

le
ft

 e
xa

m
pl

e 
eq

ua
tio

n]
 “

1 
re

ct
an

gl
e 

[i
n 

th
e 

le
ft

 
ex

am
pl

e 
eq

ua
tio

n]
 e

qu
al

s 
4 

ci
rc

le
s,

 
th

en
 a

dd
 tw

o 
ci

rc
le

s,
 m

ak
es

 s
ix

 
ci

rc
le

s.
 T

w
o 

st
ar

s 
eq

ua
l s

ix
 c

ir
cl

es
, 

so
 o

ne
 s

ta
r 

eq
ua

ls
 3

 c
ir

cl
es

.”
 

[q
ue

st
io

n 
1]

 
 

- 
“Y

ou
 c

an
 e

xc
ha

ng
e 

th
e 

p”
 [

pe
ar

 in
 

eq
ua

tio
n 

1]
  

- 
“I

 lo
ok

ed
 a

t t
he

 f
ir

st
 e

xa
m

pl
e 

an
d 

I 
cr

os
se

d 
on

e 
st

ra
w

be
rr

y 
an

d 
th

re
e 

ba
na

na
s”

 [
qu

es
tio

n 
1]

 
- 

“O
ne

 p
ea

r 
= 

1 
st

ra
w

be
rr

y 
an

d 
a 

ba
na

na
. O

ne
 s

tr
aw

be
rr

y 
eq

ua
ls

 3
 

ba
na

na
s.

 3
 +

 1
 =

 4
.”

 [q
ue

st
io

n 
2]

 

- 
“2

M
 =

 4
L

, d
iv

id
in

g 
by

 2
, 1

M
 =

 2
L

” 
- 

“i
f 

yo
u 

lo
ok

 a
t 2

M
 a

nd
 4

L
, t

he
n 

yo
u 

ca
n 

ta
ke

 h
al

f 
of

 2
M

 to
 g

et
 1

M
 

2L
.”

 

228

+     



 

 

L
ev

el
 o

f 
re

as
on

in
g  

D
es

cr
ip

tio
n 

Su
bt

yp
es

 
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 2

  
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 3

 
A

ss
es

sm
en

t t
as

k 
E

pi
so

de
 4

 

 R
2 

 St
ud

en
t 

re
as

on
s 

on
 th

e 
ba

si
s 

of
 b

ot
h 

gi
ve

n 
eq

ua
tio

ns
 b

y 
co

m
bi

ni
ng

 
th

e 
in

fo
rm

at
io

n 
of

 b
ot

h 
of

 
th

em
 

 R
2_

w
ith

ou
t 

sh
ow

in
g 

st
ra

te
gy

 

 - 
“C

ir
cl

e 
= 

10
, s

ta
r 

= 
30

, 
re

ct
an

gl
e 

= 
40

, 3
0 

+ 
30

 +
 3

0 
= 

90
, 

40
 +

 1
0 

+ 
10

 +
 1

0 
+ 

10
 +

 1
0 

= 
90

. 
R

ec
ta

ng
le

 =
 4

0,
 3

0 
+ 

10
 =

 a
ls

o 
40

” 
 

 - 
“W

ith
 v

al
ue

s”
 [

as
si

gn
ed

 th
e 

va
lu

es
 

pe
ar

 =
 4

, s
tr

aw
be

rr
y 

= 
3,

 b
an

an
a 

= 
1,

 
on

 th
e 

ba
si

s 
of

 b
ot

h 
pr

ov
id

ed
 

eq
ua

tio
ns

]  

 -”
10

 +
 5

 +
 5

 +
 5

 =
 2

5,
 

10
 +

 1
0 

= 
5 

+ 
5 

+ 
5 

+ 
5”

 
- 

“5
L

 =
 2

5”
 

- 
“L

 +
 L

 +
 L

 +
 L

 +
 L

 =
 2

5,
 

5 
× 

5 
= 

25
, 2

 ×
 5

 =
 1

0”
 

 
 

R
2_

w
ith

 
sh

ow
in

g 
st

ra
te

gy
 

- 
[S

tu
de

nt
 s

ub
st

itu
te

s 
re

ct
an

gl
e 

in
 th

e 
le

ft
 e

qu
at

io
n 

by
 a

 s
ta

r 
an

d 
a 

ci
rc

le
, 

cr
os

se
s 

ou
t a

 s
ta

r 
on

 b
ot

h 
si

de
s,

 a
nd

 
ex

pl
ai

ns
:]

 “
tw

o 
st

ar
s 

eq
ua

l 6
 c

ir
cl

es
, 

so
 o

ne
 1

st
ar

 e
qu

al
s 

3 
ci

rc
le

s”
 

- 
[S

tu
de

nt
 a

dd
s 

th
e 

se
co

nd
 e

qu
at

io
n 

to
 th

e 
fi

rs
t o

ne
] 

- 
“B

ec
au

se
 y

ou
 c

an
 r

ep
la

ce
 th

e 
pe

ar
 

by
 a

 b
an

an
a 

an
d 

a 
st

ra
w

be
rr

y,
 th

en
 

yo
u 

ta
ke

 a
w

ay
 th

e 
st

ra
w

be
rr

y 
an

d 
th

e 
st

ra
w

be
rr

y,
 a

nd
 th

en
 y

ou
 g

et
 th

is
 

[s
tr

aw
be

rr
y 

eq
ua

ls
 3

 b
an

an
as

]”
 

[q
ue

st
io

n 
1]

 
- 

“R
ep

la
ce

 th
e 

pe
ar

 a
nd

 ta
ke

 a
w

ay
 1

s 
[s

tr
aw

be
rr

y]
 f

ro
m

 b
ot

h 
si

de
s,

 th
en

 
6:

2 
= 

3,
 s

o 
6b

 [
ba

na
na

] 
= 

2s
, t

ak
e 

ha
lf

 m
ea

ns
 3

b 
= 

1s
.”

 [
qu

es
tio

n 
1]

 

- 
[s

ub
st

itu
te

s 
th

e 
M

 in
 th

e 
eq

ua
tio

n 
M

 +
 3

L
 =

 2
5 

by
 2

L
] 

- 
“2

M
 =

 4
L

, :
2 

m
ak

es
 1

M
 =

 2
L

, t
he

n 
5L

 =
 2

5”
 

- 
“M

 +
 3

L
 =

 2
5,

 M
 =

 2
L

, 5
L

 =
 2

5,
 L

 
= 

25
/5

 =
 5

, 3
L

 =
 1

5,
 1

5 
+ 

…
 =

 2
5,

 
M

 =
 1

0”
 

- 
“I

 r
ep

la
ce

d 
th

e 
M

 b
y 

2L
, s

o 
I g

ot
 

5L
. 2

5/
5 

= 
5,

 s
o 

L
 =

 5
. T

he
n 

3 
× 

5 
= 

15
. 2

5 
− 

15
 =

 1
0.

 S
o 

yo
u 

ha
ve

 1
0 

le
ft

 a
nd

 o
ne

 M
 le

ft
 s

o 
M

 =
 1

0”
 

 

  
 +

229

Appendices



 

 

A
p

p
en

d
ix

 4
.1

 (
C

h
a
p

te
r 

4
) 

C
od

in
g 

sc
he

m
e 

w
ith

 e
xa

m
pl

es
 o

f 
st

ud
en

t 
re

sp
on

se
s 

fo
r 

ea
ch

 p
ro

bl
em

 a
nd

 e
ac

h 
le

ve
l; 

te
xt

 i
n 

be
tw

ee
n 

sq
ua

re
 b

ra
ck

et
s 

is
 a

dd
ed

 
as

 a
 c

la
ri

fi
ca

tio
n.

  
 L

ev
el

 o
f 

re
as

on
in

g 
D

es
cr

ip
-

ti
on

 
Su

bt
yp

es
 

 Pr
ob

le
m

 1
 

 
 

 Pr
ob

le
m

 2
 

 

 Pr
ob

le
m

 3
 

 

 Pr
ob

le
m

 4
 

 
 

 R
0 

 St
ud

en
t 

do
es

 n
ot

 
us

e 
on

e 
an

y 
of

 th
e 

gi
ve

n 
eq

ua
ti

on
s 

 R
0_

em
pt

y 
 

 - 
[n

o 
re

sp
on

se
] 

 
 Id

em
  

Id
em

  
Id

em
  

 
R

0_
do

n’
t 

kn
ow

 
- 

“I
 d

on
’t

 u
nd

er
st

an
d 

it
” 

- 
“I

 d
on

’t
 k

no
w

” 
- 

“?
” 

 
 

Id
em

  
Id

em
  

Id
em

  

 
R

0_
ju

st
 

kn
ow

 
- 

“T
ha

t’
s 

w
ha

t I
 th

in
k”

 
- 

“I
 ju

st
 s

ee
 it

 r
ig

ht
 a

w
ay

” 
 

Id
em

  
Id

em
  

Id
em

  

 
 

R
0_

re
pe

at
 

gi
ve

n 
eq

ua
ti

on
(s

) 
or

 
qu

es
tio

n(
s)

 

- 
 

- 
“3

 s
qu

ar
es

 =
 2

 tr
ia

ng
le

s”
 

[q
ue

st
io

n 
a]

 
- 

“t
he

y 
us

e 
th

e 
sa

m
e 

fi
gu

re
s 

as
 

in
 th

e 
ex

am
pl

e”
 

 

- 
“t

ha
t’

s 
w

ha
t i

s 
w

ri
tte

n 
ab

ov
e”

  
- 

“b
ec

au
se

 th
e 

ex
am

pl
e 

sh
ow

s 
ap

pl
e 

=
 p

ea
r 

+
 p

ea
r 

+
 b

an
an

a”
 

- 
“l

oo
k 

at
 th

e 
pi

ct
ur

e”
 

 

- 
 

 
 

R
0_

re
pe

at
 

an
sw

er
(s

) 
- 

 
- 

 
- 

“o
ne

 a
pp

le
 =

 2
 p

ea
rs

” 
- 

“s
oc

k 
=

 7
, p

ac
if

ie
r =

 3
” 

- 
“b

ec
au

se
 th

e 
so

ck
 c

os
ts

 5
 

eu
ro

s 
an

d 
th

e 
pa

ci
fi

er
 c

os
ts

 2
 

eu
ro

s”
 

 
 

 
R

0_
ge

ne
ra

l 
de

sc
ri

pt
io

n 
- 

“j
us

t l
oo

k 
at

 th
e 

pr
ob

le
m

 f
or

 
a 

w
hi

le
” 

- 
“I

 m
ad

e 
a 

gu
es

s”
 

- 
“I

 ju
st

 tr
ie

d 
so

m
et

hi
ng

” 
 

 

Id
em

  
Id

em
  

Id
em

  

230

+     



 

 

L
ev

el
 o

f 
re

as
on

in
g 

D
es

cr
ip

-
ti

on
 

Su
bt

yp
es

 

 Pr
ob

le
m

 1
 

 
 

 Pr
ob

le
m

 2
 

 

 Pr
ob

le
m

 3
 

 

 Pr
ob

le
m

 4
 

 
 

 R
1 

 St
ud

en
t 

re
as

on
s 

on
 

th
e 

ba
si

s 
of

 
on

ly
 o

ne
 o

f 
th

e 
tw

o 
gi

ve
n 

eq
ua

ti
on

s 
 

 R
1_

w
ith

ou
t 

sh
ow

in
g 

st
ra

te
gy

 

 - 
“3

 +
 6

 =
 9

” 
- 

“5
 +

 5
 +

 5
 =

 1
5”

 

 - 
“2

 s
qu

ar
es

 a
re

 1
 tr

ia
ng

le
, a

nd
 

th
at

’s
 im

po
ss

ib
le

 h
er

e”
 

- 
“o

ne
 s

qu
ar

e 
is

 m
is

si
ng

” 
[q

ue
st

io
n 

a]
 

 - 
”p

ea
r 

= 
1,

 b
an

an
a 

= 
2,

 a
pp

le
 

=
 4

, 4
=1

+
1+

2”
 

- 
“o

ne
 b

an
an

a 
=

 2
 p

ea
rs

, s
o 

on
e 

ap
pl

e 
eq

ua
ls

 2
 +

 2
 =

 4
 

pe
ar

s”
 

 

 - 
“5

 +
 5

 =
 1

0”
 

- 
“3

 s
oc

ks
 =

 2
1,

 2
 p

ac
if

ie
rs

 =
 6

” 
- 

“2
 ×

 9
 =

 1
8,

 3
 ×

 3
 =

 9
, 1

8 
+ 

9 
=

 2
7”

 
 

 
 

R
1_

w
ith

 
sh

ow
in

g 
st

ra
te

gy
 

- 
“t

ak
e 

ha
lf

 o
f 

9”
 

- 
“d

iv
id

e 
15

 b
y 

3”
 

 

- 
“i

t i
s 

th
e 

sa
m

e 
as

 th
e 

ex
am

pl
e,

 o
nl

y 
on

 b
ot

h 
si

de
 

th
er

e 
is

 o
ne

 e
xt

ra
 f

ig
ur

e 
so

 it
’s

 
st

ill
 e

qu
al

” 
 

- 
“y

ou
 c

an
 s

ee
 it

 in
 th

e 
up

pe
r 

on
e 

th
at

 o
ne

 a
pp

le
 is

 tw
o 

pe
ar

s”
 

- 
“2

 a
pp

le
s 

ar
e 

si
x 

pe
ar

s 
so

 if
 

yo
u 

ta
ke

 h
al

f 
yo

u 
kn

ow
 o

ne
 

ap
pl

e 
is

 th
re

e 
pe

ar
s”

 
 

- 
“t

ak
e 

ha
lf

 o
f 

10
” 

- 
“t

ry
 d

if
fe

re
nt

 c
om

bi
na

tio
ns

 to
 

m
ak

e 
10

” 

          

 
 

 
 

 
 

Appendices

+

231



 

 

L
ev

el
 o

f 
re

as
on

in
g 

D
es

cr
ip

-
ti

on
 

Su
bt

yp
es

 

 Pr
ob

le
m

 1
 

 
 

 Pr
ob

le
m

 2
 

 

 Pr
ob

le
m

 3
 

 

 Pr
ob

le
m

 4
 

 
 

 R
2 

 St
ud

en
t 

re
as

on
s 

on
 

th
e 

ba
si

s 
of

 
bo

th
 g

iv
en

 
eq

ua
ti

on
s 

by
 

co
m

bi
ni

ng
 

th
e 

in
fo

rm
at

io
n 

of
 b

ot
h 

of
 

th
em

 

 R
2_

w
ith

ou
t 

sh
ow

in
g 

st
ra

te
gy

 

 - 
“3

 +
 6

 =
 9

, 3
 +

 6
 +

 6
 =

 1
5”

 
- 

“w
he

n 
yo

u 
ad

d 
3 

an
d 

6 
it 

is
 

9,
 a

nd
 3

 p
lu

s 
6 

pl
us

 6
 is

 
fi

ft
ee

n”
 

- 
“i

f 
yo

u 
fi

ll 
in

 3
 a

nd
 6

 in
 

bo
th

, i
t f

its
” 

 

 - 
“y

ou
 n

ee
d 

on
e 

ad
di

tio
na

l 
sq

ua
re

 [
qu

es
tio

n 
a]

; 4
 s

qu
ar

es
 

=
 2

 tr
ia

ng
le

s 
an

d 
ci

rc
le

 =
 

ci
rc

le
” 

- 
“1

 tr
ia

ng
le

 =
 2

 s
qu

ar
es

 a
nd

 
th

e 
ci

rc
le

s 
ar

e 
th

e 
sa

m
e”

 
 

 - 
”p

ea
r 

= 
1,

 b
an

an
a 

= 
2,

 a
pp

le
 

=
 4

, 4
=1

+
1+

2,
 

8=
1+

1+
1+

1+
1+

1+
2”

 
- 

“i
f 

a 
ba

na
na

 =
 2

 p
ea

rs
, t

he
n 

on
e 

ap
pl

e 
=

 4
 p

ea
rs

 a
nd

 2
 

ap
pl

es
 =

 8
 p

ea
rs

” 

 - 
“7

 +
 3

 =
 1

0,
 7

 +
 7

 +
 7

 +
 3

 +
3 

=
 2

7”
 

- 
“3

 s
oc

ks
 =

 2
1,

 2
 p

ac
if

ie
rs

 =
 6

, 
7 

+
 3

 =
 1

0”
 

- 
“I

 tr
ie

d 
th

es
e 

va
lu

es
 in

 b
ot

h 
ex

am
pl

es
 a

nd
 th

is
 w

as
 O

K
” 

 
 

R
2_

w
ith

 
sh

ow
in

g 
st

ra
te

gy
 

- 
“s

qu
ar

e 
+

 c
ir

cl
e 

=
 9

, t
ha

n 
yo

u 
ne

ed
 6

 m
or

e 
to

 h
av

e 
15

. 
So

 c
ir

cl
e 

m
us

t b
e 

6”
 

- 
“1

5 
- 

9 
=

 6
” 

- 
“s

qu
ar

e 
+

 c
ir

cl
e 

=
 9

, s
o 

9 
+

 
ci

rc
le

 =
 1

5”
 

- 
“I

 s
ta

rt
ed

 w
ith

 4
 a

nd
 5

, t
ha

t 
di

d 
no

t f
it 

in
 b

ot
h 

ca
lc

ul
at

io
ns

, 
so

 th
en

 I
 tr

ie
d 

3 
an

d 
6.

 T
ha

t 
w

or
ke

d 
w

el
l”

 

- 
“1

 tr
ia

ng
le

 =
 2

 s
qu

ar
es

, s
o 

2 
tr

ia
ng

le
s 

=
 4

 s
qu

ar
es

, 1
 c

ir
cl

e 
=

 1
 c

ir
cl

e”
 

- 
“t

he
 c

ir
cl

es
 a

re
 e

qu
al

 s
o 

yo
u 

ca
n 

re
m

ov
e 

th
em

. T
he

n 
th

er
e 

ar
e 

2 
tr

ia
ng

le
s 

an
d 

4 
sq

ua
re

s 
le

ft
, d

iv
id

ed
 b

y 
2 

eq
ua

ls
 1

 
tr

ia
ng

le
 a

nd
 2

 s
qu

ar
es

. S
o 

th
at

’s
 c

or
re

ct
” 

- 
“t

he
 tw

o 
ci

rc
le

s 
ar

e 
eq

ua
lly

 
he

av
y 

an
d 

if
 y

ou
 d

ou
bl

e 
th

e 
ex

am
pl

e 
yo

u 
ge

t 4
 s

qu
ar

es
 =

 2
 

tr
ia

ng
le

s”
 

- 
“i

f 
yo

u 
su

bt
ra

ct
 2

 p
ea

rs
 a

nd
 

1 
ba

na
na

 f
ro

m
 th

e 
se

co
nd

 o
ne

, 
fo

ur
 p

ea
rs

 r
em

ai
n.

 S
o 

on
e 

ap
pl

e 
is

 f
ou

r 
pe

ar
s”

 
- 

“i
f 

yo
u 

do
ub

le
 th

e 
ap

pl
es

 th
e 

ot
he

r 
pa

rt
 m

us
t a

ls
o 

be
 

do
ub

le
d.

 S
o 

th
at

 m
us

t b
e 

fo
ur

 
pe

ar
s 

an
d 

tw
o 

ba
na

na
s.

 B
ut

 
th

er
e 

ar
e 

si
x 

pe
ar

s 
an

d 
on

e 
ba

na
na

. S
o 

on
e 

ba
na

na
 =

 tw
o 

pe
ar

s.
 S

o 
an

 a
pp

le
 =

 2
 +

 2
 =

 4
 

pe
ar

s”
 

- 
“t

w
o 

pe
ar

s 
an

d 
1 

ba
na

na
 c

an
 

be
 r

ep
la

ce
d 

by
 o

ne
 a

pp
le

, s
o 

th
en

 th
e 

ot
he

r 
ap

pl
e 

eq
ua

ls
 4

 
pe

ar
s”

 
 

- 
“2

7-
10

-1
0=

7,
 s

o 
pa

ci
fi

er
 =

 7
, 

so
ck

 m
us

t b
e 

3.
” 

- 
“t

ak
e 

aw
ay

 1
0 

tw
o 

tim
es

, t
he

n 
7 

re
m

ai
ns

. 3
 x

 7
 =

 2
1,

 s
o 

so
ck

 =
 

3”
 

- 
“O

ne
 s

oc
k 

an
d 

on
e 

pa
ci

fi
er

 =
 

10
, s

o 
10

 +
 1

0 
=

 2
0,

 s
o 

pa
ci

fi
er

 
=

 7
” 

- 
“I

 f
ir

st
 tr

ie
d 

9 
&

 1
, t

he
n 

8 
&

 2
, 

th
en

 7
 &

 3
. 7

 &
 3

 w
or

ke
d 

fo
r 

bo
th

 q
ue

st
io

ns
” 

 

232

+     






	Blank Page
	Blank Page



