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 This article explores elementary school teachers' mathematical knowledge for
 teaching and the relationship between such knowledge and teacher characteristics.
 The Learning Mathematics for Teaching project administered a multiple-choice
 assessment covering topics in number and operation to a nationally representative
 sample of teachers (n = 625) and at the same time collected information on teacher
 and student characteristics. Performance did not vary according to mathematical topic
 (e.g., whole numbers or rational numbers), and items categorized as requiring special-
 ized knowledge of mathematics proved more difficult for this sample of teachers.
 There were few substantively significant relationships between mathematical knowl-
 edge for teaching and teacher characteristics, including leadership activities and
 self-reported college-level mathematics preparation. Implications for current policies
 aimed at improving teacher quality are addressed.
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 This article outlines an effort to describe, on a broad scale, elementary teachers'
 mathematical knowledge for teaching. Few other topics have been the focus of such
 concern and resource investment over the past dozen years. Rarely can a national
 mathematics panel or commission meet without pointedly noting that teachers
 require strong knowledge of content to be effective and making recommendations
 for how that knowledge should be acquired (e.g., Greenberg & Walsh, 2008;
 NCTM, 2000; National Commission on Mathematics and Science Teaching for the
 21st Century, 2000; National Mathematics Advisory Panel [NMAP], 2008).
 Financial resources have accompanied this policy concern. For example, between
 2002 and 2007, the National Science Foundation and the U.S. Department of
 Education Mathematics and Science Partnerships spent nearly $1.2 billion1
 providing content-focused mathematics and science learning experiences for
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 preservice and in-service teachers. Spending by states, districts, and teachers them-
 selves has no doubt matched or exceeded this amount.

 Anecdotal evidence suggests that there is good reason to make such investments.
 Both observations and interview data suggest that U.S. elementary teachers vary
 widely in their grasp of the mathematics required to teach this subject. Some
 scholars approach the problem as one of deficits or constraints: Teachers lacking
 mathematical knowledge are less likely to present material clearly and provide
 error-free content (Ball, 1990a; Borko et al., 1992; Cohen 1990; Heaton, 1992; Ma,
 1999; Putnam, Heaton, Prawat, & Remillard, 1992; Stein, Baxter, & Leinhardt,
 1990). Other scholars have studied this problem from the perspective of what
 knowledge affords teachers, noting that mathematically stronger teachers can do
 many tasks beyond simply solving problems in front of students. These tasks
 include sensibly interpreting and responding to student mathematical productions
 and producing more conceptually grounded mathematics lessons (Fennema &
 Franke, 1992; Fennema, Franke, Carpenter, & Carey, 1993; Lloyd & Wilson, 1998;
 Sowder, Philipp, Armstrong, & Schappelle, 1998; Swafford, Jones, & Thornton,
 1997).

 Despite this evidence, very little is known about the nature and predictors of
 elementary teachers' mathematical knowledge for teaching. In fact, most studies
 on this topic focus on a single teacher or a handful of nonrandomly sampled
 teachers. Although this permits a depth of analysis not enabled by other methods,
 it leaves open questions regarding the representativeness of findings. For instance,
 Ma (1999) conducted a multiple-case comparison of U.S. and Chinese teachers.
 She reported that mathematics problems evoking conceptual understanding of
 division of fractions, area and perimeter, and even place value proved difficult for
 a small sample of beginning and experienced U.S. elementary teachers. Whether
 this finding holds in the larger population and across more mathematical topics and
 tasks is not known.

 Thus, we argue that there is a need for descriptive information regarding elemen-
 tary teachers' mathematical knowledge for teaching. Teacher education programs
 must be focused where they will be most useful, and knowing which topics and
 tasks teachers find to be challenging provides one source of guidance. Identifying
 predictors of teacher knowledge could help district and school hiring officials, who
 often do not have access to mathematics-specific teacher test scores, identify more
 able candidates. And increasingly, new programs and policies come with implicit,
 but testable, assertions regarding the content knowledge of teachers: that teacher
 leaders have content expertise to help their peers and that alternatively certified
 teachers possess or quickly develop better mathematics knowledge than tradition-
 ally certified teachers. Policymakers also have focused recently on putting the best
 teachers in front of the most at-risk children (U.S. Department of Education, 2009).

 In light of professional education needs and the assertions embedded in policy,
 we use data from a nationally representative sample of elementary mathematics

 1 Retrieved December 21, 2007, from www.nsf.gov/awardsearch/ and www.ed.gov/programs/
 mathsci/awards and totaled by my research assistant.
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 teachers to investigate teachers' performance on a set of mathematical knowledge
 for teaching (MKT) measures focused on number and operations. We chose MKT
 because there exist a set of measures in this domain that have been validated vis-

 à-vis instruction and linked to student outcomes (Hill, Blunk, et al., 2008; Hill,
 Rowan, & Ball, 2005). The MKT measures also have the advantage of focusing on
 job-embedded tasks, such as responding to students' mathematical productions and
 selecting accurate representations and explanations, rather than more abstract or
 higher level mathematics. Our expectation is that this job-embedded knowledge
 matters more in teachers' daily performance. We chose number and operations
 because it constitutes the majority of mathematics instruction in the elementary
 school grades (Rowan, Harrison, & Hayes, 2004). Our specific questions include
 the following:

 1. What does elementary teachers' performance on a paper-and-pencil assess-
 ment suggest about the nature of their:

 a. Knowledge within the strand of number and operations?
 b. Knowledge of specific tasks of teaching?

 2. Are there predictors of teachers' mathematical knowledge for teaching (MKT)?

 a. How are teachers' reports of their own educational background related
 to their MKT?

 b. Are those who have taken leadership positions in mathematics espe-
 cially qualified in the area of mathematical content?

 c. Do alternatively certified teachers possess greater amounts of MKT?

 3. Are students of different socioeconomic status assigned to teachers who have,
 on average, lower MKT?

 Finally, by comparing test performance of this sample to that of previous nonrep-

 resentative samples (e.g., teachers attending mathematics professional development
 programs) and to teachers' own reports of their mathematical knowledge, we can
 also address an important methodological question: how best to measure teachers'
 mathematical knowledge. We report on the study's grounding, methods, and results
 in subsequent sections.

 LITERATURE REVIEW

 In-service teacher knowledge of mathematics - and other subjects, for that
 matter - is seldom directly measured, particularly on a large scale. Although
 prospective elementary teachers in the majority of states take the Praxis II (ETS,
 2010a), which contains a subscale composed of mathematics items (ETS, 2010b),
 this exam is calibrated to the knowledge requirements of beginning teachers and
 the results are not public. Few other efforts exist. One reason for the lack of large-
 scale research into elementary teacher mathematical knowledge involves issues
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 that surround assessments of teacher knowledge, including potential resistance
 from teachers and the need for a large number of items to achieve a reliable
 measure. Including a measure of teacher knowledge on the Schools and Staffing
 Survey conducted by the U.S. Department of Education (NCES, 2010), for instance,
 would not be feasible, given the comprehensive nature ofthat instrument. Another
 involves the expense of conducting a large-scale assessment. Although convenience
 samples are often free, it is unclear whether results from these samples generalize
 to the broader population of U.S. teachers. And obtaining broader samples requires
 a sampling strategy, efforts to strengthen response rate, and compensation for
 teachers' time investment - putting the acquisition of a representative sample
 beyond the budgets of many research projects investigating teacher knowledge.
 Another complication is a lack of agreement on the knowledge teachers need for

 teaching and, thus, the types of items that should compose such an assessment.
 Some policymakers (Greenberg & Walsh, 2008; Massachusetts Department of
 Elementary and Secondary Education & Pearson Education, 2008) have designed
 tests composed mainly of pure content items representing more advanced mathe-
 matical topics than what teachers actually teach. In this view, knowing content "up
 the curriculum" is the most crucial component to producing high-quality mathe-
 matics in classrooms. Other researchers focus on the unique mathematical knowl-
 edge teachers may have in their specific grade range. This knowledge may be purely
 mathematical, yet specific to the work of teaching - what some call specialized
 content knowledge (Ball, Thames, & Phelps, 2008). It may also consist of peda-
 gogical content knowledge - knowledge of how students learn content or of ways
 to teach specific topics (Shulman, 1986; Wilson, Shulman, & Richert, 1987).
 Together with basic grade-level content knowledge, Ball et al. (2008) term these
 teaching-specific forms of knowledge mathematical knowledge for teaching.
 Notwithstanding debates over what to measure, the literature provides several

 warrants for a large-scale inquiry into elementary teachers' mathematical knowl-
 edge. One such warrant is that teachers' knowledge is arguably related to important
 educational processes and outcomes. Although the National Mathematics Advisory
 Panel argued that "research that has used teacher test scores and other ad hoc
 measures [to predict student achievement] has produced mixed results" (NMAP,
 2008, p. 5-16), the panel also observed that the closer the measure of teacher
 knowledge to the work done in the classroom, the more likely a positive result will
 occur. For instance, Harris and Sass (2007) found no effect of teacher SAT scores
 on student achievement. By contrast, Hill et al. (2005) found that a measure of
 MKT predicted student achievement. And a recent study of first-year teachers in
 New York City (Rockoff, Jacob, Kane, & Staiger, 2008) showed specialized math-
 ematics knowledge to be a better predictor of student mathematics outcomes than
 a series of other indicators, including general cognitive ability. Using a representa-
 tive sample of German Grade 10 classes and their mathematics teachers, Baumert
 and colleagues (2010) found that teachers' pedagogical content knowledge was
 more predictive of student learning gains than content knowledge. Overall, this
 developing evidence suggests that teachers' mathematical knowledge - particularly
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 when conceptualized as more than a grasp of basic facts and procedures or even
 advanced knowledge - acts as a resource for student learning.
 The literature also supports claims that teachers' mathematical knowledge relates
 to the quality of their classroom work. In one study, strong correlations character-
 ized the relationship between 10 teachers' mathematical knowledge for teaching
 and mathematical elements of classroom work, such as the presence of teacher
 mathematical errors, the richness of mathematical work, and the depth of teacher
 interpretations of student mathematical productions (Hill, Blunk, et al., 2008).
 Studies using smaller samples and more in-depth analyses of specific topics (e.g.,
 Ball, 1990b; Charalambous, 2010; Cohen, 1990; Heaton, 1992; Lloyd & Wilson,
 1998; Wilson, 1990; see Fennema & Franke, 1992 for a review) found similar
 correspondences.
 A second warrant for this study concerns the research questions left open by
 scholarly inquiry into teachers' mathematical knowledge. For instance, to our
 knowledge there has been no comprehensive comparison of content difficulty; even
 within relatively narrow topics, such as fractions, it is common for studies to focus

 on only a subset of problem types (e.g., Newton, 2008). Working with small teacher
 samples has also meant that inferences regarding what teachers find difficult are
 tenuous. Nevertheless, there is a general sense from reviewing this literature that
 rational number is particularly challenging for teachers of the elementary grades
 (see An, Kulm, & Wu, 2004; Ball, 1990a; Borko et al., 1992; Leinhardt & Smith,
 1985; Ma, 1999; Sowder et al., 1998; Tirosh, 2000), but that problems may arise in
 any content area for at least some teachers. Additional and more comprehensive
 information about content difficulty would enable a firmer judgment about how to
 design teacher education curricula.
 There are also questions regarding which dimensions of mathematical knowledge
 for teaching teachers find easier and which they find more difficult. Again, one
 might surmise that mathematical elements such as interpreting and using represen-
 tations, providing mathematical explanations, and interpreting and responding to
 student productions are more difficult for teachers than simply solving mathematics

 problems (Borko et al., 1 992; Ma, 1 999; Thompson & Thompson, 1 994; Hill, Blunk,
 et al., 2008). However, there is no comprehensive evidence for this point either.
 The literature also provides few investigations of the predictors of teachers'
 mathematical knowledge. For instance, although there is considerable - and
 conflicting - evidence regarding the effect of mathematics coursework, teaching
 methods, and professional development on student outcomes (NMAP, 2008), little
 is known about whether such coursework is associated with teacher mathematical

 knowledge. Likewise, there is little information regarding whether teachers' own
 mathematical self-concept is related to their knowledge as objectively measured.
 This is a key methodological point, as many professional development evaluations
 and research programs rely principally upon teacher self-reports of knowledge or
 learning (e.g., Garet, Porter, & Desimone, 2001). Principals and district officials
 may also benefit from knowing whether any of these background characteristics
 and/or self-reports can help identify mathematically knowledgeable teachers.
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 Similarly, many current policies are based on seldom-investigated assumptions
 about the characteristics of individuals entering and leading the profession. For
 instance, many argue that relaxing teacher education and certification requirements
 will encourage better-qualified candidates to enter teaching (e.g., Hess, 2002;
 Paige, 2002), and research suggests that many prospective teachers have taken
 advantage of alternative programs (Peterson & Nadler, 2009). However, existing
 research (Cohen- Vogel & Smith, 2007; Tournaki, Lyublinskaya, & Carolan, 2009)
 suggests few differences among traditionally and alternatively certified teachers in
 general qualifications and teaching styles. Likewise, the qualifications of those
 assuming mathematics leadership positions deserve attention. Although the current
 literature is rife with talk of career ladders, math coaches, and peer assistance and
 mentoring (e.g., Knight, 2009; Showers & Joyce, 1996), little is known about the
 intellectual capabilities of the individuals holding those positions.
 The last warrant for this study involves equity. Several studies (Hill, 2007; Hill

 & Lubienski, 2007; Hill et al., 2005; Loeb & Reininger, 2004) suggest that knowl-
 edgeable teachers are inequitably distributed across student populations, with
 mathematically stronger teachers serving more affluent and less racially mixed
 populations. There is some indication that the mechanisms that support such ineq-
 uities result from teachers' preferences regarding employment. Recent research
 (Boyd, Lankford, Loeb, & Wyckoff, 2003) shows that teacher labor markets are
 largely local; for example, nearly "83% of teachers entering the New York State
 public school workforce took jobs within 40 miles of their home" (p. 71). If the
 results from this study generalize to other locations, graduates from weaker school
 systems may tend to return to teach in those school systems, perpetuating the cycle
 of unequal access to educational resources.
 To extend existing knowledge and address the need for information regarding

 the effects and potential effects of current policies, we conducted a large-scale study
 of elementary teachers' mathematical knowledge for teaching. We describe this
 study in the following sections.

 METHOD

 Although this study was quantitative, this article is fundamentally descriptive.
 We wish to know: What can be said about elementary school teachers' knowledge
 of specific topics within number and operations? Which types of mathematics
 teaching tasks prove easier and which prove more difficult for teachers? Which
 teacher characteristics can be associated with possession of more or less of this
 knowledge? How are teachers distributed across schools and students? Because we
 employ a cross-sectional design, we cannot make causal statements regarding
 relationships between these variables. However, we think of descriptive inference
 as more than the poor cousin of causal inference: For sensible instructional policies
 and future research to proceed, an accurate portrayal of the state of elementary
 teacher mathematical knowledge is necessary.
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 Sample

 The goal of sample selection was to represent the population of elementary
 school teachers with mathematics teaching responsibilities in the 48 contiguous
 states. To do so, our data contractor, the Institute for Social Research at the
 University of Michigan (ISR), determined the appropriate final target sample size
 to be approximately 1,090, stratified the elementary schools in the 2005-2006
 Common Core Database by geographic region and urbanicity, then drew an initial
 random sample of schools from each stratum to total 1,200 schools. Next, ISR
 consulted a database maintained by Quality Educational Data, a firm that develops
 and maintains a list of teachers in each school. Using this list, ISR staff telephoned
 each school to confirm and/or update the roster of grades 1 through 6 teachers with

 instructional responsibilities in mathematics. These calls resulted in 1,1 10 schools

 confirming or updating their rosters. From this set, 1 ,090 schools were sampled to
 take part in the study and one teacher was sampled at random from within each
 school. Twenty teachers left their school prior to the first mailing, leading to a final
 sample size of 1,070 schools.

 A first wave of surveys reached teachers in late February 2008; teachers were
 reminded up to three times to return their surveys, and each was paid $50 for
 completing the survey. This resulted in a dataset of 625 teachers, a 59% response
 rate. Nonresponders were concentrated in the south (56%) and west (54%), as well
 as in large cities (44%). Although this response rate may be considered low by
 industry standards, it is routine for studies of this kind, which require that teachers

 spend between 60 and 90 minutes solving mathematics problems. In addition,
 descriptive data suggest that our respondents did not differ - in at least demographic

 characteristics - from those in a 2000 survey done by Horizon Research (Weiss,
 Banilower, McMahon, & Smith, 2001). In fact, our respondents included more
 nonwhite teachers than the earlier study and were roughly similar in experience
 and gender (see Table 1 ). Weights calculated to take both sampling and nonresponse
 into account are applied to the analysis reported subsequently, and we comment on
 the potential effect of the low response rate in the Results section. For more infor-

 mation on the weighting procedure used, Hubbard (2008) is available upon request
 from the author.

 The result is a sample that is fairly typical of the U.S. elementary teacher popula-
 tion. Table 1 shows the distribution of respondent characteristics, including experi-
 ence, race, gender, and grade. The sample is overwhelmingly white, female, and
 relatively inexperienced; over half the sample has been teaching 10 or fewer years.
 Very few teachers - less than 5% - reported a first language other than English.

 Measures

 Measures development took place in the context of a larger project intended to
 provide instruments to evaluators, scholars, and others studying the impact of
 preservice education and professional development on teacher knowledge. This



 Table 1

 Teacher Characteristics

 Percent of K-4
 math teachers in

 Percent of Weiss et al. (200 1 )
 teachers with this with this

 characteristic characteristic

 Experience

 0-4 years 26.6% 32% (0-5 years)

 5-10 years 28.4% 18% (6-10 years)

 11-20 years 23.4% 26% (11-20 years)

 20+ years 2 1 .7% 29% (2 1 +)
 Race

 Hispanic 6.5% 3%

 Black, not of Hispanic origin 4.5% 4%

 White, not of Hispanic origin 79.7% 90%
 Asian or Pacific Islander 1 .4% 0%

 American Indian or Alaska

 Native 0.4% 2%

 Multiracial/biracial 1.1%

 Other 0.9%

 No response 7.6%
 Sex

 Female 89.5% 96%

 Male 8.6% 4%

 Grade

 1 25.5%

 2 22%

 3 20.2%

 4 17.5%

 5 18.3%

 6 5.7%

 7-8 1%

 9 or higher 0.3%

 Not currently teaching
 mathematics 4.7%

 Note. Percentage totals do not sum to 100 due to rounding. In the case of grade level,
 some teachers taught more than one grade level.
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 intended use of these measures conditioned their design in two important ways. First,

 we wanted to design a set of measures with strong reliability - that is, measures that

 can accurately differentiate between two individuals only slightly apart on the under-

 lying trait, mathematical knowledge for teaching. Thus, we targeted the assessment
 such that, by design, the average teacher would score only 50% correct. Assessments
 on which nearly all teachers get nearly all items correct or incorrect are neither reli-

 able nor usable in the context of research programs. To reach our 50% goal, we aimed

 to produce items with a wide range of difficulties, from ones that nearly all teachers

 answered correctly to ones that nearly all could not answer correctly. This approach
 differs from criterion referencing, which includes the creation of a detailed construct

 map and the establishment of benchmarks for performance. Although one might
 draw conclusions about teacher proficiency levels from a criterion-referenced test,
 one cannot do so from the design we adopted. Thus, this study cannot make claims
 about the overall strength and appropriateness of elementary teachers' mathematical

 knowledge for teaching; instead, as represented in the first research question, the
 article examines the nature of that knowledge (e.g., which topics the sampled
 teachers found easier or more difficult).
 Second, we wanted to write items that would measure teachers' mathematical
 knowledge for teaching (Ball et al., 2008) rather than their knowledge of high
 school or college mathematics (e.g., calculus, trigonometry, differential equations)
 or their pure mathematical aptitude or skill. We chose to use the MKT framework
 over other possibilities (e.g., one based on the NCTM standards, high school or
 college coursework, or various commission reports' findings) for several reasons.
 To start, it was based in the real work teachers do in classrooms, with children. In

 fact, it was developed from a grounded study of mathematics teaching that involved

 observing teachers, students, and their interactions with mathematical content in
 real classrooms. The MKT framework also specifies a way of thinking about the
 various mathematics-related tasks teachers are asked to complete in classrooms, as
 opposed to a list of topics that teachers should master and upon which they should
 be assessed.

 Finally, MKT incorporates multiple forms of teacher knowledge that may affect
 instruction, in line with Shulman and colleagues' observations about the nature of
 teacher knowledge (Shulman, 1986; Wilson et al., 1987). One element of MKT is
 common content knowledge (CCK) - an ability to correctly recall and execute
 grade-level appropriate ideas and procedures (Ball et al., 2008). CCK represents
 the knowledge that we expect mathematically literate nonteaching adults to hold
 and also represents the content traditionally taught to elementary school students.
 However, we also sought to assess teachers' specialized content knowledge (SCK),
 the mathematical knowledge that lies beyond that held by a well-educated adult.
 Examples include knowing mathematical explanations for common rules or proce-
 dures; constructing and/or linking nonsymbolic representations of mathematical
 subject matter; interpreting, understanding, and responding to nonstandard math-
 ematical methods and solutions; deploying mathematical definitions or proofs in
 accurate yet also grade-level-appropriate ways; and diagnosing errors in student
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 work. This knowledge, like CCK, is wholly mathematical; to get SCK items correct,
 one need not know about students, instructional methods, or materials.

 The first two sample items in Appendix A provide examples of these two aspects
 of teachers' content knowledge. These items, as with others discussed below, were
 released from older forms because they do not perform well in psychometric
 analyses; nevertheless, they are instructive for the types of knowledge we wish to
 assess. In the first item, a teacher is thinking about the number zero and asks her
 sister about specific statements in a new textbook. This item then asks respondents
 to determine whether 0 is a number (yes), whether it is even (yes), and whether the
 number 8 can be written as 008 (yes). Although this is not knowledge that every
 U.S. adult may possess, it is purely mathematical knowledge, common across
 professions such as accounting, computing, and engineering.
 By contrast, the next item, which asks teachers to choose a diagram that does not

 represent

 calls on knowledge and skills unlikely to be held by nonteachers. Whereas most
 adults would know a conventional algorithm for multiplying these fractions, we
 expect that few would have had experiences identifying the unit (parts [a], [b], and
 [d]) and "seeing" the multiplicands and products. In part (b), for instance, one might
 see each large rectangle as a unit, note that 1 1/2 of those units are shaded gray, and

 then identify the hash marks as 2/3 of the originally stated quantity, 1 1/2. More
 important, many adults might fail to notice that the 1 1/2 m Part (<0 is not represented

 with the same unit, and thus we cannot define 1 and 1 1/2. This knowledge is math-

 ematical in nature - the respondent does not need to possess knowledge about how
 students learn content or about the best way to represent content to learners (see
 Shulman, 1986). However, it is different from the common knowledge evoked
 previously, and thus, Ball et al. (2008) categorize it as SCK.

 In this survey, we also sought to measure two dimensions typically associated
 with pedagogical content knowledge. The first - knowledge of content and students
 (KCS) - is exemplified by the third item in Appendix A. In it, a teacher is consid-
 ering problems that can be used to introduce students to proportional reasoning. In
 considering these problems, the teacher might note that options (a) and (c) contain
 scale factors that lend themselves to simpler solutions. In (a), for instance, students
 might notice that they can increase the number of buttons by half to arrive at Mr.
 Tail's height, as the scale factor is 1.5. Option (c) is similar. In (b) students might
 notice that the scale factor between Mr. Short and Mr. Tall is 1 .2; however, there is

 no easy way to "scale up" 7 by this factor. The teacher examining these problems
 may decide that because students often discover this method for solving propor-
 tional reasoning problems before more formal cross-multiplication, she will not
 assign (b) in her introductory problem set.

 The second category of pedagogical content knowledge covered by this survey
 was knowledge of content and teaching (KCT). Items categorized here ask teachers
 to design instruction based on considerations of both content and likely student
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 responses to content. This includes choosing and sequencing representations and
 examples, constructing problems with similar interpretations (e.g., partitive model
 of division), and deciding how to select student responses to highlight and move
 mathematical discussions forward. Item 4 in Appendix A illustrates this type. Ms.
 Miller has a very specific instructional purpose: she wants her students to develop
 an initial definition for triangle and then improve that definition by testing it on
 different shapes. Each poster affords general information about shapes and thus
 could be instructionally useful. However, only one is useful for the purpose she has
 chosen. Poster (a) would enable students to use their initial definitions to decide
 that circles, squares, and rectangles are not triangles. Most elementary students
 would easily recognize these as not-triangles, and the definitions would not be
 challenged. Poster (d) includes only triangles and an inaccurate set of descriptors.
 Poster (c) contains only triangles, and although it might promote students' under-
 standings of triangles that are not oriented parallel to the sides of the page, it would

 do little to help other aspects of the definition-building process. Poster (b) contains
 triangles and other polygons, some strategically designed to provoke confusion or
 uncertainty in students (e.g., the lightning bolt). Although other triangles meet the
 definition, many students would not recognize them as triangles because of their
 orientation or dimensions (e.g., the wedge). Only the poster with this variety should
 allow students to fulfill the goals of instruction and improve their definition of
 triangle (see Clements, Swaminathan, Zeitler-Hannibal, & Sarama, 1999).
 Finally, this assessment focused only on number and operations (arithmetic)
 content. We did so because evidence from large-scale studies indicates that this
 topic comprises roughly 50% of the instruction delivered in elementary schools
 (e.g., Rowan et al., 2004) and because including all topics across the curriculum
 would mean insufficient power to carefully compare the difficulty of item content
 and knowledge associated with particular tasks of teaching. This form included 20
 items involving whole numbers, 6 involving integers, and 39 involving rational
 numbers.

 Based on the categories in Ball et al. (2008), this form contained 6 CCK items,
 23 SCK items, 1 KCS item, and 7 KCT items. The imbalance was driven by our
 preference for specialized over common content items and a notable lack of success
 in writing KCS and KCT items (see Hill, Ball, & Schilling, 2008). A discussion of
 the implications of this imbalance for the analyses follows.
 Prior to conducting the study, these items were reviewed by both internal project
 members (including one mathematician) and four external mathematicians for
 mathematical accuracy. To understand better what we were measuring, we under-
 took a variety of validation work. A set of cognitive tracing interviews indicated
 that teachers' answers do, in general, reflect their underlying mathematical thinking
 (Hill, Dean, & Goffiiey, 2007). Only a small fraction of teacher responses (roughly
 8%) demonstrated inconsistencies between their thought process and the multiple-
 choice answer ultimately selected. A study of 10 elementary teachers showed the
 mathematical quality of their instruction, estimated by analyzing nine videotaped
 lessons per teacher, to correlate highly with their MKT scores (r = 0.74,/? < 0.05;



 524 Nature and Predictors of Elementary MKT

 Hill, Blunk, et al., 2008). A similar study of 26 middle school teachers (Hill,
 Umland, & Litke, 2010) demonstrated moderate to strong correlations between
 specific dimensions of mathematics teaching (teacher errors [-0.65,/? < 0.01],
 richness of the mathematics [0.32, p > 0. 05], responding to students productively
 [0.51,/? < 0.05]) and MKT score. We and others have also linked teachers' perfor-
 mance on the elementary MKT measures, and more specifically two different sets
 of common and specialized knowledge items, to gains in student achievement on
 standardized assessments; the students of teachers who answered more items
 correctly gained more over the course of a year of instruction, controlling for
 student background and classroom composition (Hill et al., 2005; Rockoff et al.,
 2008). Finally, we have conducted content validity checks, ensuring that our item
 pools provide fair coverage of the topics (e.g., number and operations) they are
 intended to represent. Although by no means definitive, these validity checks
 suggest that this survey-based measure of teachers' mathematical knowledge for
 teaching is a strong predictor of the quality of their classroom practice and, to a
 lesser degree, student outcomes.
 In addition to measuring mathematical knowledge for teaching, our survey

 carried a series of questions intended to gauge teachers' backgrounds and activities.
 Some descriptors, such as grade level; years of experience; specific leadership
 activities; and content, methods, and professional development experiences, were
 measured with single items. An open-ended question asked teachers who did not
 attend traditional teacher education programs to report their mode of entry.
 Responses included district internship programs overseen by local universities,
 state internship programs, Teach for America, and a variety of specific programs
 (e.g., Preparing Responsive Educators Program). This question was then hand-
 coded to either traditional mode of entry (teacher education program) or alternative
 program. Two other constructs were measured via Likert scale. The first measured
 teachers' self-reported instructional practices in the area of student explanation,
 analysis, and proof. Three separate items required teachers' estimates of how
 often students engaged in each activity. These items were averaged to form a scale
 in which more positive values indicate more of these mathematical practices
 (a = 0.82). The second construct measured teachers' mathematical self-concept
 of ability (Newton, 2009), including three items that gauged their estimates of
 their own mathematical knowledge, one item that tapped whether they believe that
 their mathematical knowledge is sufficient for teaching the subject to students, and
 one item that asked whether they consider themselves a master (expert) mathe-
 matics teachers. A factor analysis found these items scaled well together, and they
 were combined into a common scale in which positive scores indicate a better
 mathematical self-concept (a = 0.81).

 Data Analysis

 We began by conducting a factor analysis to determine the structure of the data
 and to ascertain whether items loaded as we expected. MKT items were categorized
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 a priori as CCK or SCK, KCS, or KCT using Ball and colleagues' (2008) defini-
 tions of knowledge types; this categorization was then compared to exploratory
 factor analysis results. We used ORDFAC (Schilling, 2005), a program written
 specifically for our MKT data that enabled the inclusion of testlets, or stems with
 multiple related items beneath. Results of the factor analysis were not clear-cut;
 items did not, in fact, load cleanly onto hypothesized factors or even come close to
 doing that.

 Because of this, we elected to combine all items into one indicator, which we
 named mathematical knowledge for teaching (MKT). We chose to do this for
 several reasons. First, we did not have a sufficient number of items to return
 adequate person-level reliabilities for most subscales. Second, although we might
 have omitted the one KCS item or constructed a measure of only SCK items, this
 would have had the effect of decreasing the measure's accuracy and reducing the
 amount of information provided about various aspects of teachers' knowledge. In
 general, omitting items is not warranted unless there is a strong theoretical and/or
 empirical rationale for doing so. Similarly, we could have confined the data to a
 subset, those for which predictive validity has been established (e.g., items
 contained in Hill et al., 2005), yet we would have faced the same problem as
 above - a marked reduction in reliability. Third, the ideal composition of an MKT
 measure is, in fact, unknown; until we have more information regarding which
 dimensions contribute with which weight to student outcomes, we can only guess
 what such a measure should look like. Even with imperfect balance among the
 dimensions, however, we believe that the instrument provides a first approximation
 to a broader measure of MKT.

 In total, the MKT measure used in this study included 37 stems and 65 items.
 Items outnumbered stems because some stems (problem situations) have more than
 one question for teachers to answer, as in the case of item 1 in Appendix A. All
 items were used in every analysis unless otherwise noted.

 Teachers' answers to the survey were entered into an Item Response Theory (IRT)
 model using Bilog 3.0 (Zimowski, Muraki, Mislevy, & Bock, 2003). IRT uses
 teachers' correct and incorrect answers to return person parameters, or scores,
 expressed in standard deviations, with mean 0 and standard deviation 1 . Scores
 were normally distributed between -2 and +2 with only a few outliers. Teachers'
 scores are thus interpreted as the distance for a specific teacher from the average
 teacher in the sample, with higher scores indicating higher relative ability and lower
 scores indicating lower relative ability. We chose to express teacher scores in stan-
 dard deviations rather than the more readily interpretable percent correct because
 percentages do not map onto the underlying MKT dimension linearly (e.g., in terms
 of the underlying MKT dimension, the difference between two individuals in the
 5th and 10th percentiles is not the same size as the difference between two indi-
 viduals in the 50th and 55th percentiles). We used a two-parameter IRT model to
 score teacher responses; these models construct individual scores by overweighting
 items with strong person-discrimination indices and underweighting items with
 low person-discrimination - in essence, underweighting items that mainly consist
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 of either noise or different constructs. Finally, although IRT models typically
 describe the accuracy of test scores in terms of test "information" provided at
 different points along the distribution of respondents, Bilog also translates this
 measure into the more interpretable internal reliability coefficient, which we report

 here. The person-reliability estimate for the MKT measure was 0.91 .
 In addition to person-level scores, IRT models also yield information about items.

 Items were described by two parameters, their slope (a discrimination index) and
 difficulty (distance from average of the scale, expressed in standard deviation
 units). Higher slopes indicate items that yield more information about examinees;
 higher difficulties indicate more difficult items. To answer the first research ques-
 tion, about the nature of teachers' MKT, we used a subset of the data consisting
 only of items with an adequate discrimination index (slope above 0.4)2 resulting in
 a subset containing 48 items. We took this approach because the difficulties of items

 with poor discrimination indices are often estimated inaccurately. Descriptive
 analyses of the relationship between teacher characteristics and MKT score used
 all 65 items scaled as described above. We made this decision because two-param-
 eter IRT models underweight the poorly performing items, and because the reli-
 ability of the overall measure was not affected by their inclusion. Analyses consisted

 mainly of calculating frequencies, correlations, and a series of simple regressions.
 In reporting relationships between teacher characteristics, we needed to make a

 decision about the need for a correction in significance level due to the potentially
 large number of estimated correlations (roughly 45, if all teacher characteristics
 are correlated with one another as well as with MKT). One option was to calculate
 significance levels with a Bonferroni correction, which is conservative regarding
 significance levels. Another option was to present only the main correlations of
 interest, between MKT and teacher characteristics, omitting correlations of teacher
 characteristics to each other. On the theory that these correlations may be of interest

 to some readers, we display them in Appendix B, although we do not discuss their
 significance levels.

 RESULTS

 Item Difficulties

 Our goal for item writing had been to design an assessment such that (a) there
 was wide dispersion of item difficulties and (b) the average item was answered
 correctly only 50% of the time. We succeeded in attaining that goal. Using a subset
 of the data that consisted of only those items with a reasonable discrimination index

 (IRT slope > 0.4), roughly half were above and half below the 50% mark. The
 distribution of teacher scores was roughly normal. Because this matches the afore-
 mentioned goal in test development, we cannot make conclusions regarding the
 relative knowledge of U.S. elementary teachers in mathematics.

 2 The decision to use 0.4 was done on the advice of a psychometrician.
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 Continuing to examine items with adequate discrimination indices, we looked
 for patterns in item difficulty. This analysis showed that there were no differences

 in difficulty by content (whole numbers, rational numbers, integers;/? = 0.17), or
 by certain subcategories of specialized knowledge: interpreting nonstandard solu-
 tion methods, using representations, and choosing examples. However, two item
 descriptors were highly predictive of difficulty. First, CCK items were, on average,
 much easier than items designed to represent SCK. There was a difference of 0.68
 standard deviations in item difficulty (p = 0.05). Table 2 shows the distribution of
 item difficulties by content and by knowledge type assessed. Second, the 10 special-
 ized knowledge items that focused specifically on explanations for mathematical
 ideas and procedures were more difficult than the average item in the set as a whole.
 (There was a difference of 0.65 standard deviations,/? = 0.13.)
 Although this project does not release most items to ensure their secure use in
 ongoing program evaluations, a description of specific easier and more difficult
 items can help illuminate this trend. The least difficult dozen items included several

 that asked teachers to work with place value concepts, composing and recomposing
 numbers, and representing decimals. Another two easy items tapped the conceptual
 underpinnings of two whole number procedures, multidigit subtraction and long
 division. For subtraction, respondents were asked to differentiate between student
 responses, one of which provided a conceptual explanation for the standard proce-
 dure and two of which did not. For division, respondents were asked to compare
 two division word problems and select a response that identifies how they differ.
 In this case, the use of the remainder was different in each problem.
 The most difficult dozen items included, notably, an item that asks teachers
 to identify the reason the standard U.S. long division algorithm works, an item
 that asks teachers to identify a correct representation for integer subtraction with

 Table 2

 Average Item Difficulty by MKT Domain and Content

 Item type Average item difficulty Number of items
 MKT Domain

 Common content knowledge -0.45 14

 Specialized content knowledge 0.24 29

 Knowledge of content and 1.05 5
 teaching

 Average/Total 0.12 48

 Content

 Whole numbers 0.46 16

 Rational numbers -0.07 26

 Integers 0.08 6

 Average/Total 0.12 48
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 black-and-white chips, an item that asks how to interpret remainders in a division
 of fractions problem, and one that asks teachers to identify the reason one cannot
 divide by zero. These items are a mix of common and specialized content knowl-
 edge. Some are purely mathematical, although admittedly complex. For instance,
 the problem "Michelle needs 4/5 cups of flour to make a batch of play-dough. How
 many batches can she make if she has 6 cups of flour?" does not require knowledge
 special to teaching, but interpreting the remainder (1/2) as either half of a cup of
 flour or half of a batch of play-dough requires careful thought.
 Other difficult items, such as the integer subtraction representation and explana-

 tion for long division, were categorized according to the map laid out in Ball et al.
 (2008) as tapping specialized content knowledge. Whereas many professionals use
 integers in their daily work, seldom do nonteachers need to represent integers using

 concrete manipulatives. The same is true of the explanation for long division.
 Although most adults are familiar with the long division algorithm, few may under-
 stand why it works.

 Several other difficult items stand out because they contain content that is poten-
 tially less demanding but ask teachers to make more subtle judgments. Two SCK
 items ask teachers to identify, based on student statements, the student who has the

 most advanced understanding of particular topics (fractions and whole number
 subtraction). Two KCT items ask teachers to identify the best numeric example for
 a particular purpose - demonstrating that the associative property can sometimes
 make expressions easier to evaluate and teaching an initial lesson on primes and
 composites. Although we expect that few teachers would have trouble stating the
 associative property or identifying prime and composite numbers, the additional
 knowledge involved in teaching these topics is, we suspect, nontrivial. For instance,
 the teaching task of showing that the associative property can be helpful in evalu-
 ating certain expressions makes some examples better than others. Consider the
 following four possibilities:

 a. (27 + 54) + 6 =
 b. (833 x 5) x 20 =
 c. (45 + 29) +17 =
 d. 55 x (6 x 37) =

 The associative property can be used to regroup terms for any of these expressions.
 However, for only two of the expressions (a and b) does using the associative prop-
 erty make the expression easier to evaluate. For instance, in (a) students might first
 add 27 and 54, then 6. However, by combining 54 and 6 first, the result (60)
 becomes easier to add to 27. The same principle applies to (b). In the other cases,
 regrouping results in equivalently complex computations. Thus, for teachers who
 wish to demonstrate why the associative property can make certain expressions
 easier to evaluate - an important component of strategic competence (NRC, 2001)
 and a precursor to algebraic thinking - choosing examples strategically (and
 making use of those choices) is a critical skill. In fact, we argue that knowing that
 the associative property (and the commutative and distributive properties as well)
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 has a mathematical purpose beyond simply allowing us to rearrange numbers is a
 key component of teacher knowledge.
 This description of content that was difficult for teachers is not meant to suggest

 that elementary teachers of mathematics are not prepared to teach this subject.
 Because the design of the instrument does not allow inferences regarding teachers'
 performance relative to any benchmark or criterion, we cannot say whether teachers
 require such content knowledge to teach well. Instead, we summarized these results
 to suggest directions for teacher education and professional development, and we
 comment on this issue further in the conclusion.

 Describing Teachers 'MKT

 Shifting now to use all MKT items rather than only a subset of items, as we did
 in the last analysis, we focus on the second and third research questions, which ask
 whether any characteristics and experiences correlate with teachers' MKT.
 Descriptive statistics indicate substantial variance in each of these teacher charac-
 teristic indicators. For instance, Table 3 shows this sample of teachers as actively
 engaged in professional learning activities. Most teachers report having enrolled in
 both mathematics content coursework and mathematics methods coursework. Most

 also engaged in mathematics professional development within the past year,
 although the modal level of engagement, at less than 6 hours, is quite low, particu-
 larly in comparison to those same teachers' reports of professional development in
 other subjects. And a sizeable fraction of the sample - 28% across the three types
 of leadership experiences listed in Table 4 - engaged in a leadership activity of some
 sort within 3 years prior to the survey. Although we enrolled a negligible number of
 mathematics coaches, per se, in the study,3 both peer mentors and in-service
 providers have responsibility for conveying mathematics to other teachers.
 Individuals in these roles are, in our opinion, also likely to become mathematics
 coaches in subsequent years.
 The set of mathematics self-concept of ability items shows teachers appear to
 regard themselves as having adequate, if not exceptional, mathematics knowledge.
 Most agree or strongly agree with statements worded to indicate having sufficient
 mathematical knowledge for their job but are more lukewarm with regard to state-
 ments indicating content and teaching mastery. The mean score is 3.54 on this scale,
 with scores ranging from 1 to 5 and a standard deviation of 0.72. Table 5 shows that
 teachers did report engaging their students in mathematically challenging practices
 (explaining, analyzing, and proving) on a semiregular basis. The mean on this scale
 is 4.08, with standard deviation 1.12 and values ranging from 1 (never for any of
 these activities) to 6 (daily for all activities).
 Turning now to correlations, Table 6 shows that the relationships between teacher
 background and MKT are relatively weak. This is particularly true for indicators
 of teachers' educational background. Teachers who reported taking more

 3 This occurred partly by design; we sampled only practicing classroom teachers. The four coaches
 who participated in our study also had teaching responsibilities.
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 Table 3

 Teacher Participation in Professional Learning Activities

 Mathematics coursework/ Mathematics methods:
 Mathematics methods Mathematics: Graduate Graduate or

 coursework or undergraduate undergraduate
 No classes 5% 13%

 1-2 classes 37% 65%

 3-5 classes 45% 18%

 6 or more classes 1 3% 4%

 Mathematics professional
 development/Other

 professional development
 within the past year Mathematics Other subjects
 None 27% 4%

 Less than 6 hours 37% 1 5%

 6-15 hours 21% 35%

 16-35 hours 9% 26%

 35+ hours

 Note. Numbers in the table are percentages of total sample engaged in each category of
 activity.

 Table 4

 Relationship Between MKT Score and Recent Leadership Experiences

 Percent of
 teachers with

 this leadership Mean MKT score
 experience (in standard deviations)

 No

 Within past 3 years . . .

 Served on a district or school j çO/o q 1 8 -0 05 *
 mathematics committee

 Acted as a peer math coach or
 mentor while continuing my regular 14% 0.13 -0.03
 teaching duties

 Taught an in-service workshop or
 course related to mathematics or 6% 0.17 -0.02
 mathematics teaching

 * Difference between leadership and no leadership means is significant (p < .01).
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 mathematics methods and mathematics coursework scored negligibly higher on the
 measure of MKT (r = 0.06 and 0.09, respectively). Although the correlation with
 mathematics content courses is significant, it is not substantively large. There were
 no significant relationships between MKT and mathematics-related professional
 development experiences, suggesting that extensive professional development
 participation is not an indicator of mathematically knowledgeable teachers. Finally,
 a separate analysis shows that scores from the roughly 30 teachers who entered
 teaching without graduating from a formal teacher education program suggest there

 is no relationship between taking one of these alternative pathways and stronger
 content knowledge (difference of means = 0.09,/? > .50).4 Although the sample size
 of nontraditionally certified teachers is small, these results accord with other studies

 in the field (Cohen- Vogel & Smith, 2007; Tournaki et al., 2009).
 There is no significant correlation between teachers' MKT and their reports of
 engaging students in analysis, explanation, and proof. There are many potential
 reasons for this finding, and the relationship between MKT and the cognitive
 demand of student work merits further study.
 Several positive and significant relationships stand out in Table 6. Teachers'
 reported current grade-level assignment is among the stronger associations with
 MKT, with a correlation of 0.30 (p < .001). K-l5 teachers score almost one half
 standard deviation below the sample average; fifth-grade teachers score a third of

 Table 5
 Mathematics Instructional Practices

 Less
 than 1-3 1-2 3-4
 once times times times

 per per per per Every
 Never month month week week day

 Explain an answer or a
 solution method for a lo/o lo/o 6o/o 22% 31% 39%
 particular problem.

 Analyze similarities and
 differences among repre-
 sentations, solutions, or 4% 9% 19% 29% 26% 12%
 methods.

 Prove that a solution is

 valid or that a method 15o/o 18o/o 18o/o 25% 15% 9%
 works for all similar cases.

 Note. Percentages are rounded to the nearest whole number.

 4 Because regular and alternatively trained teachers differ in average years of experience, we also
 conducted a comparison of alternatively trained teachers with a randomly chosen sample of teach-
 ers with comparable experience. Again, there were no differences in MKT between the two groups.

 3 Anticipating that there may be blended K-l classrooms, our survey asked whether teachers taught
 at K-l rather than first grade.
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 a standard deviation above, with a roughly linear trend in between. This relationship
 may be due to a recency effect - upper-elementary teachers are more likely to have
 taught rational number, which comprises a substantial portion of the test - or may
 reflect teacher selection of and assignment to grade level based, in part, on math-
 ematical ability.
 Teacher experience is modestly related to mathematical knowledge for teaching.
 More experienced teachers - and particularly those with over 20 years of experi-
 ence - have more MKT, and this overall relationship looks approximately linear
 (Table 7). This may occur through one of several paths. One is that teachers learn
 on the job through the various resources available to them: curriculum materials,
 colleagues, students, and professional development. Another possibility is that the
 trend illustrated in Table 7 results from a cohort effect; recent work (Bacolod, 2007;
 Corcoran, 2007) has demonstrated changes in the cognitive skills of entering
 teachers. As employment opportunities opened for women during the 1970s and
 1 980s, fewer top-decile women entered the teaching profession. Finally, the pattern
 shown in Table 7 could result from both learning on the job and a cohort effect.
 Teachers' mathematical self-concept in Table 6 correlates to their MKT score at
 0.25 (p < .001). Although this is among the stronger associations in the data, from
 an absolute perspective, it seems weak. These self-concept questions were placed
 at the end of the survey, after teachers had worked through roughly 1 hour of math-

 ematics problems. The self-concept questions focused mainly on mathematical
 content knowledge rather than mathematics pedagogy or perceived effects on
 student learning (self-efficacy). The reliability of both this set of items and the
 MKT assessment is high, suggesting very little attenuation due to measurement
 error. Finally, this association remains at 0.25 or less regardless of whether question
 wording focuses on mathematical adequacy (e.g., "My knowledge of number and
 operations is adequate to the task of teaching these subjects.") or being a master
 (e.g., "I consider myself a 'master' mathematics teacher.").
 Similar results occur for the relationship between mathematics leadership posi-
 tions and MKT. Table 4 shows that teachers who have taken on leadership roles
 within the past 3 years have only slightly better-than-average MKT. The difference
 is largest for individuals who served on a district mathematics committee (0.23
 standard deviations) and smallest for acting as a peer mentor (0. 16 standard devia-
 tions). The difference between individuals serving and not serving on a mathematics

 Table 7

 Years of Experience and MKT

 Years of experience MKT score

 0-4 years -0.09

 5-10 years -0.04

 10-20 years 0.04

 20+ years 0.1
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 committee is significant (p <.O5); for the other two variables, the difference is
 insignificant. This lack of strong correlations is discouraging, in that mathematics-
 specific leadership of any kind - policy leadership, instructional leadership, grade-
 level leadership - requires content expertise. Additional correlations (not shown)
 demonstrate that teachers who served in these leadership roles were not more likely
 to have strong mathematical self-concepts than those who did not (r = 0.02;
 p > .50); they were also only slightly more likely to use higher-demand instructional
 techniques (r = 0.08, p < .05) than those who did not report leadership activities.
 Clearly, individuals may be chosen or volunteer for leadership positions because

 of key nonmathematical areas of expertise, including pedagogical expertise, enthu-
 siasm for mathematics, the ability to work with others, or the ability to navigate the

 politics of mathematics curriculum and instruction. Thus, it is plausible that low-
 knowledge individuals can serve as excellent leaders or mentors in certain situa-
 tions. However, individuals lacking content expertise can provide only limited
 guidance with regard to assisting teachers with representations, explanations,
 student productions, and other mathematics-related classroom practices.
 Finally, there is a slight tendency for lower-knowledge teachers to work in higher-

 poverty school districts (r = -0.09,/? < .05 between student free and reduced-price
 lunch eligibility and MKT). This is similar to estimates from other samples (Hill,
 2007; Hill et al., 2005) and suggests that the students who may be most in need of
 mathematically knowledgeable teachers are slightly less likely, on average, to get
 them.

 Although this is a purely descriptive study, we can learn about several key points
 from a regression. Instead of attempting to discern causality, we instead are inter-
 ested in several factors: the significance of key variables controlling for other
 (potentially correlated) predictors, the overall amount of explained variation in
 teacher knowledge, and how explained variance changes with the addition of
 specific variables. Table 8 shows a set of regressions that provide this information.

 In keeping with the preceding intent for the regression, variables were entered in
 four stages. In Table 8, Model 1 shows a regression of only background character-
 istics - specifically grade level, experience, and school-level free/reduced lunch
 eligibility - on MKT. Two of the three were significant and signed in the direction
 suggested by the preceding discussion; free/reduced lunch eligibility was signifi-
 cant only at the/? < 0. 1 0 level. In Model 2, teachers' reported opportunities to learn
 were included; only teacher participation in additional mathematics coursework
 was significantly associated with the outcome. In Model 3, teachers' self-concept
 and reported use of instructional practices that required students to explain, analyze,
 and prove were entered. Both were significant, although the model shows that
 teachers with higher MKT asked students to do less - not more - explanation,
 analysis, and proof. Finally, in Model 4 we see teachers' reports of serving in lead-
 ership or mentoring roles were unrelated to MKT once other controls were entered.

 In the first model, background characteristics accounted for roughly 10% of the
 variance in MKT in this sample. The addition of other predictors increased the
 explained variation, but not by much; in the final model, the full set explained only
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 Table 8

 Regression of Teacher MKT on Teacher Characteristics and Activities

 Modell Model 2 Model 3 Model 4

 Intercept -0.59**** -1.12**** -1.76**** -1.76****
 (0.12) (0.29) (0.35) (0.36)

 Grade taught 0.18**** 0.18**** 0.17**** 0.18****
 (0.02) (0.03) (0.02) (0.03)

 Years of 0.01* 0.01* 0.01* 0.01*

 experience (0.004) (0.004) (0.004) (0.004)
 School free and -0.26 -0.29 -0.29 -0.28

 reduced lunch (0.i4) (0.15) (0.15) (0.15)
 Mathematics course 0.12* 0.09 0.09

 (0.06) (0.05) (0.06)

 Mathematics methods 0.01 0.02 0.01

 course (0.07) (0.06) (0.07)

 Mathematics profes- 0.00 -0.02 -0.02
 sional development (0.03) (0.04) (0.04)
 Other 0.03 0.04 0.04

 professional (0.17) (0.04) (0.04)
 Development

 Teacher education 0.11 0.03 0.03

 Program (0.17) (0.17) (0.17)

 Instructional practices -0.08* -0.07*
 (0.03) (0.04)

 Mathematics 0.31**** 0.32****

 self-concept (0.06) (0.06)

 Service on a math 0.05

 committee (0.11)
 Peer coach or mentor -0.0 1

 (0.13)

 Taught in-service 0.10 0.01
 (0.17)

 Adjusted r-squared 0.10 0.14 0.14

 n 560 541 537 537

 Note. Standard errors in parentheses. Teachers without mathematics responsibilities
 excluded from the analysis.

 *p< .05. **p < .01. ♦**/?< .001. **♦♦/?< .0001.
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 14% of variation in MKT. This, and the relatively weak regression coefficients for
 many predictors, suggests that those making decisions about hiring, awarding
 tenure, and promoting teachers to leadership positions are provided little informa-
 tion by candidates' formal qualifications, self-reported teaching, and expertise in
 the content area.

 Methodological Issues

 The correlation between teachers' mathematical self-concept and their MKT has
 implications for the measurement of teachers' knowledge and, in particular, the
 measurement of gains in such knowledge as a result of professional education
 efforts. We discuss this in more detail in the conclusion to this article.

 However, one more methodological finding stands out: that this nationally repre-
 sentative sample performs differently from convenience samples used initially to
 pilot items for this survey. A sample of teachers who took the assessment as part
 of teacher professional development programs in 200 1 , for instance, outscored the
 sample here by roughly 3.6% over a group of identical items, with wide variation
 (up to 10%) for a handful of items. A sample of teachers contacted by mail in 2006
 using a list supplied by a commercial publisher outscored this nationally represen-
 tative sample by 5.7%, also with wide variation in item-specific differences. This
 survey featured no sample verification or follow-ups with teachers and thus had a
 lower response rate of 30%. This suggests that the more selective the sample, the
 better overall performance will be on assessments of this type. In the case of this
 survey, the response rate of 59% may make it vulnerable to similar score infla-
 tion - for instance, if more knowledgeable and more confident teachers were more
 likely to respond by a significant margin. However, the differences are, on average,
 not large.

 CONCLUSION

 This study has clear limitations. We assessed teacher knowledge in one area,
 number and operations at the elementary level, rather than a more extended set of
 mathematical topics and grade levels. Also, we do not know the extent to which
 teachers who responded to this survey consulted resources, such as the Internet or

 curriculum materials, in determining their answers. Despite these limitations,
 however, this study contains several lessons for teacher educators and policymakers.

 Inspecting item parameters, we see that MKT domain, rather than mathematical
 content, is associated with differences in item difficulties. That is, difficulties were

 unaffected by whether the item covered whole or rational number; this is a surprise

 in light of the conventional wisdom that elementary teachers find rational numbers

 particularly difficult. We also found that items labeled as common content knowl-
 edge proved easier for this sample than items categorized as belonging to the
 specialized and/or pedagogical content knowledge categories. Among the latter
 group, we found that more subtle mathematics judgments resulted in greater
 item difficulty. We also found that items requiring mathematical explanation were
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 markedly more difficult than items involving representation of content and inter-

 preting nonstandard student work (see also Leinhardt, 2001). This analysis excluded

 items that did not relate well to the underlying construct, rendering it likely that

 these differences reflect true variability in the types of tasks that are easy and diffi-

 cult for teachers. With only a small number of items, replication of this study is

 important. However, we note that the pattern identified here parallels what we found

 in a nationally representative sample of middle school teachers (Hill, 2007).
 These patterns, as well as the description of specific easy and difficult items,
 lead to implications for the professional education of teachers and the measurement

 of professional knowledge. To start, we were able to identify areas of mathematics

 that proved difficult for teachers within the core K-6 curricula. This suggests that

 it is not necessary to use advanced mathematics topics, such as proportional
 reasoning or precalculus, to develop an instrument with adequate measurement
 properties for elementary teachers.

 These results suggest that professional education efforts might focus on the
 specialized and pedagogical content knowledge teachers might use in the course
 of their work. Although the assessment carried a limited number of common content

 knowledge items, these proved easier - a pattern we also saw in our middle school
 data as well (Hill, 2007). This recommendation, however, poses a problem for
 professional education efforts. Specialized knowledge has yet to be fully mapped
 (Ball et al., 2008); without such mapping, addressing these topics coherently in
 professional education efforts will be difficult. Further, the topic of difficult items

 varied widely, from long division to integer operations. It is likely, to our minds,
 that there is more such knowledge than could be reasonably taught in a course or

 several-week professional development setting. Instead, mathematics educators
 will have to implement strategies that enable teachers to learn this content in their

 workplace from more experienced colleagues and/or curriculum materials (Ball &
 Cohen, 1996; Davis & Krajcik, 2005).
 These results also hold implications for public policies aimed at exactly this form

 of professional education. We found that individuals who were active in profes-
 sional leadership activities such as mathematics committee work, peer mathematics
 mentoring, and teaching mathematics in-services had scant advantage on the
 assessment of their MKT. The same held true for individuals who reported attending

 a generous amount of mathematics-specific professional development. These find-
 ings highlight two issues. First, peer math coaches and mentor teachers as well as

 mathematics in-service instructors already have direct responsibility for conveying

 content to teachers. Although such mentoring and professional development may
 have pedagogical benefits (e.g., suggesting good activities, noting how to navigate
 curriculum materials, dealing with more generic pedagogical issues), we are
 concerned that these activities may, in general, lack content focus and strength.
 Second, if full-time mathematics coaches are drawn from this set of individuals

 already active in mathematics leadership without regard for those prospective
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 coaches' level of content knowledge, this popular policy intervention may lack
 promise. These findings accord with and help explain a recent study by Murray,
 Ma, and Mazur (2009). They observed a peer coaching effort among high school
 teachers and found that most coach-teacher interactions were short, overwhelm-

 ingly positive, and lacking in analytic substance.
 That teachers cannot provide accurate descriptors of their own level of mathe-

 matical knowledge is not surprising but still discouraging. With practice largely
 privatized, few see others' instruction or have opportunities to engage in in-depth
 mathematical conversations. Further, there are few opportunities for teachers to
 receive feedback on their mathematical strengths and weaknesses. Students, who
 might form one potent source of feedback, do not hold mathematical authority
 within classrooms. Other adults who view instruction - including administrators
 and math coaches - do not necessarily comment on the mathematics in any depth

 (Murray et al., 2009). Finally, mathematical knowledge is relative. A teacher may
 see herself as the most mathematically knowledgeable second-grade teacher in her

 school and may be correct; however, she may score well below the national average.
 The correlation of 0.25 between teachers' mathematical self-concept and MKT

 has methodological, as well as policy, implications. One implication is that studies

 using teacher self-reports of mathematics knowledge or mathematics knowledge
 gain are estimating this construct with appreciable error. Another is that current

 policy efforts premised on teachers self-identifying as mathematically weak or
 strong - for example, mathematics programs that aim to recruit less able teachers

 or mathematics and science magnet schools that need to recruit mathematically
 talented teachers - will face significant barriers.

 The few and relatively mild significant associations found in this study suggest
 avenues for further research. Studies that specifically focus on the content knowledge

 of mathematics leaders and alternatively certified teachers are urgently needed; the

 information presented here and elsewhere suggests that the premise for these poli-

 cies - that more mathematically skilled individuals can be drawn into the profession
 and that teachers will learn mathematics from others - are suspect. A second avenue
 includes overcoming problems involved in measuring teachers' content knowledge
 directly. If we are to replace teacher self-report as the arbiter of program or profes-
 sional development success, evaluators need tools and procedures for objectively
 measuring different forms of mathematical knowledge. Finally, our descriptions of
 easy and difficult items conflict with the case study literature, in that this literature
 noted general deficiencies in knowledge of rational numbers and our analysis did
 not find the same. Investigating this issue further will help identify topics and math-

 ematical tasks of teaching on which professional education should focus.
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 APPENDIX A

 1 . Ms. Domínguez was working with a new textbook, and she noticed that it gave
 more attention to the number 0 than her old book. She came across a page that
 asked students to determine if a few statements about 0 were true or false.

 Intrigued, she showed them to her sister, who is also a teacher, and asked her
 what she thought.

 Which statement(s) should the sisters select as being true? (Mark YES, NO,
 or I'M NOT SURE for each item below.)

 Yes No I'm not sure

 a) 0 is an even 1 2 3
 number.

 b) 0 is not really al 2 3
 number. It is a

 placeholder in writ-
 ing big numbers.

 c) The number 8 can 1 2 3
 be written as 008.

 2. At a professional development workshop, teachers were learning about
 different ways to represent multiplication of fractions problems. The leader
 also helped them to become aware of examples that do not represent multipli-
 cation of fractions appropriately.

 Which model below cannot be used to show that l-x-= 1, ? (Mark ONE
 v 2 3
 answer.) v

 3. Ms. Abdul is preparing a unit to introduce her students to proportional
 reasoning. She is considering three versions of a problem that are the same
 except for the numbers used. Which version of the Mr. Short and Mr. Tall
 problem below is likely to be the most challenging for students? (Circle ONE
 answer.)
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 a) A picture depicts Mr. Short's height as 4 paper clips and as 6 buttons. The
 height of Mr. Tall (not shown) is given as 6 paper clips. How many buttons
 in height is Mr. Tall?

 b) A picture depicts Mr. Short's height as 4 paper clips and as 7 buttons. The
 height of Mr. Tall (not shown) is given as 5 paper clips. How many buttons
 in height is Mr. Tall?

 c) A picture depicts Mr. Short's height as 2 paper clips and as 9 buttons. The
 height of Mr. Tall (not shown) is given as 5 paper clips. How many buttons
 in height is Mr. Tall?

 d) All three of the problems are equally challenging.

 4. Ms. Miller wants her students to write or find a definition for triangle and then

 improve their definition by testing it on different shapes. To help them, she
 wants to give them some shapes they can use to test their definition.

 She goes to the store to look for a visual aid to help with this lesson. Which of
 the following is most likely to help students improve their definitions? (Circle
 ONE answer.)

 a) I Shapes I b) I Shapes

 DA IKP
 square triangle U

 circle rectangle U <Z^y //

 C) I Triangles I d) I Triangles

 I ^** A triangle has 3 corners, 1 on
 1 ^**yr the top and 2 on the bottom.

 '/ Atrianale is a poh/oon.
 ^-^ V^ A clown's hat is like a triangle.
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