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Preface
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and Prof. Edward de Haan who were head-supervisors of the project. | greatly appreciate
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that in its entirety is the product of my development as a researcher.

This development would not have come as far, however, without the dedicated support that
| felt I could always count on from Michiel Doorman, Dolly van Eerde, and Jo Nelissen.
Their patience, expertise, and committed role as supervisors guided me along the ups and
downs of the research trajectory. Their encouragement and moral support was an enor-
mous driving force. | thank each of my supervisors for all their help and hope they can
catch up on their free time.

All along the data collection phase of the research, | realized how fortunate | was to be
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From the very beginning, the staff and parents acknowledged the importance of the re-
search and went out of their way to help me schedule and collect the data. | greatly admire
the staff’s energy and passion for teaching. The repeated warm welcomes at school made
me even more motivated to contribute to ways of helping the children learn and supporting
the teachers in improving their teaching practices.



Mathematics education research at the Freudenthal Institute was a new field of research to
me when | started working on this project. | thank my colleagues at the institute who, each
in their own way, taught me about Realistic Mathematics Education and procedures for
performing design research. Many thanks also to all those people who made it possible for
me to present and discuss my work both at and outside of the institute. Coming into contact
with people from different backgrounds in different settings gave an extra dimension to the
issues that | encountered in mathematics education research.

I had a lot of help finishing the manuscript. In particular, | thank Han Hermsen for his help
in learning to work with Adobe FrameMaker, Nathalie Kuijpers for editing the book, Bas
Holleman for his advice on the screenshots and pictures, and Reyndert Guiljam for his il-
lustrations. Betty Heijman was a great support in finalizing the lay-out and organizing the
publication of the book.

I would like to thank the other “young” researchers (Klasje008) at the institute for their
companionship in working on our projects. During countless lunchtime walks and tea
talks, they encouraged me and brightened up the more demanding times. | wish them all
good luck and enjoyment in completing their research. Thank you, Sylvia van den Boo-
gaard and Iris Verbruggen, for also reminding me that there can be more to a day than
working on a Ph.D. thesis.

This brings me to the people whom | hold most dear to me, my family and friends. | put
them in the spotlight for their endless “behind the scenes” encouragement and enthusiasm.
Koen, | dedicate this book to you for your unconditional support, your enlightening per-
spectives, and, above all, your patience.



Table of Contents

Introduction

1.1 Young children, young scientists

1.2 Young children’s spatial structuring ability
1.3 Structure of the book

Theoretical Background and Research Questions
2.1 Number sense

2.2 Spatial sense

2.3 Spatial structures

2.4 Motivation for and purpose of the research

2.5 Context of the research

2.6 The research questions

Methodology

3.1 Design research

3.2 Setting

3.3 Procedure

3.4 Data analysis

3.5 Research validity and reliability

Developing a Conceptual Schema, the Interview Tasks,

and the Strategy Inventory

4.1 Relating spatial sense and number sense through spatial structure
4.2 The interview tasks

4.3 The strategy inventory

4.4 The final conceptual schema

The Strategy Inventory as a Foundation for the
Hypothetical Learning Trajectory

5.1 Condensing the strategy scores

5.2 Four phases in spatial structuring ability

5.3 Relating four phases in a developmental trajectory
5.4 Quantitative outcomes of the pre-interviews

Refining the HLT and Developing Classroom Instruction Activities

6.1 The global HLT and learning goals

6.2 Identifying learning moments and defining corresponding
classroom instruction activities

6.3 Optimizing the HLT and instructional sequence for
Round 1 of the instruction experiment

6.4 The final instructional sequence

11
12
14

17
19
22
27
29
35

37
42
45
51
56

61
63
73
84

90
93
97
100

103

105

118
122



7 Analysis of Round 1 of the Instruction Experiment

7.1 Reinterpreting micro and macro cycles in design research 131
7.2 The classroom social norms 132
7.3 Key observations from Round 1 133
7.4 RME in a Kindergarten setting 157
7.5 An overarching context 160
7.6 Improvements to the instruction activities for Round 2 162

8 Analysis of Round 2 of the Instruction Experiment

8.1 Retrospective analyses of the HLT 172
8.2 Unexpected issues in learning 189
8.3 The pro-active role of the teacher 200
8.4 General retrospective analysis of the instruction experiment 204

9 The Post-interview and Teacher Evaluations
9.1 Quantitative comparison of the post-interview to

the pre-interview and the LVS scores 207
9.2 Qualitative analysis of the post-interviews 212
9.3 Conclusions from the post-interviews 217
9.4 Teacher evaluations 218
9.5 Summary 225

10 Conclusions, Discussion, and Future Research
10.1 Research question 1: Early spatial structuring ability 227
10.2 Research question 2: Developing a local instruction theory 231
10.3 Discussion 237
10.4 Suggestions for future research 248
References 251
Summary 263
Samenvatting 277
Appendices 293
Curriculum Vitae 353

Index 355



Introduction

1 Introduction

This thesis documents the development and outcomes of a mathematics education research
that was carried out between 2005 and 2009 at the Freudenthal Institute for Science and
Mathematics Education, with the support of a grant from the Netherlands Organization for
Scientific Research (Nwo; project number 051.04.050). It is part of the Mathematics Edu-
cation and Neurosciences (MENS) research project which is concerned with young chil-
dren’s emerging mathematical abilities from a combined mathematics education and neu-
ropsychological perspective (see Appendix 1). The purpose of our research is to contribute
to knowledge about young children’s mathematical development with an investigation into
the role of young children’s spatial structuring ability in fostering their insight into numer-
ical relations. In this introductory chapter, we sketch the background of the research and
its setting within the MENS research project.

1.1  Young children, young scientists

What repeatedly stands out from studies on early childhood development is how young
children (three to six years old) may be characterized by their natural drive to go out and
explore the world. In fact, children’s early competencies have been compared to the be-
havior of scientists (e.g., Gopnik, 2004; Gopnik, Meltzoff, & Kuhl, 1999). This suggests
that children are born with certain conjectures about the world, which they continuously
test and revise through new insights from daily experiences. Parallels are also drawn be-
tween children, scientists and poets who share a sense of wonder and an intense way in
which they experience the world (Gopnik et al., 1999). As Dijkgraaf (2007) observes: “It
is often said that young children are ideal scientists. They are curious about the world
around them. They ask questions, make up theories, and carry out experiments”. This is
what is said to give both scientists as well as children their drive to learn (Gopnik, 2004).

Research has shown what mathematical understanding children possess before they start
formal schooling, and that much of this knowledge is derived from their everyday settings
(Anghileri, 1989; Ginsburg, Inoue, & Seo, 1999; Ness & Farenga, 2007). Recent studies,
however, have expressed concern about how the cognitive capacities of young children are
not sufficiently valued. A report from the National Research Council (NRC, 2005) conclud-
ed that:

... early childhood education, in both formal and informal settings, may not be helping all chil-
dren maximize their cognitive capacities. (p. 3)

11



Chapter 1

De Lange summarizes that the “curious minds of young children” have to be stimulated
(De Lange et al., 2008). It is therefore disconcerting that a gap exists at the start of formal
schooling between children’s informal, intuitive knowledge and interests, and formal
learning opportunities in school (Griffin & Case, 1997; Hughes, 1986; Murphy, 2006). In-
deed, many early elementary mathematics curricula focus mainly on teaching number
sense (Casey, 2004; Clements & Battista, 1992; Ness & Farenga, 2007). Gopnik (2004)
put the problem as follows:

If we could put children in touch with their inner scientists, we might be able to bridge the divide
between everyday knowledge and the apparently intimidating and elite apparatus of formal sci-
ence. We might be able to convince them that there is a deep link between the realism of eve-
ryday life and scientific realism. (p. 28)

In answer to these issues, a national research program called Curious Minds (Talenten-
Kracht) was initiated (Van Benthem, Dijkgraaf, & De Lange, 2005). Several universities
and institutions in the Netherlands collaborate in this program to gain a better understan-
ding of what talents young children exhibit as they perform scientific activities, how these
talents may be enhanced, and how they may be intertwined and possibly connected to lan-
guage development. Talent in this project concerns qualitative characteristics that relate to
high learning potential, environmental characteristics that relate to talent supporting sur-
roundings, and individual characteristics. What makes the definition unique for this pro-
gram is that it is prospective, looking ahead towards stimulating and supporting the expres-
sion and development of talent (De Lange et al., 2008). Hence the goal of the program is
to bring scientists from various research perspectives together with parents and teachers,
to chart the talents of young children and to scientifically underpin how these talents may
be optimally cultivated.

The essence of the Curious Minds Program is foundational to the MENS research project.
Through acknowledging young children’s early competencies in spatial and geometric ac-
tivities and through concentrating on what the children already can do and understand, we
expect to contribute to an understanding of the development of mathematical thinking and
learning. This research perspective may help to foster children’s innate curiosity and ea-
gerness to learn mathematics.

1.2  Young children’s spatial structuring ability

Much research is concerned with how children’s early numerical and spatial abilities may
influence the development of their mathematical thinking. Most of these studies focus on

12



Introduction

the learning of numbers and operations in early childhood, making it perhaps the best-de-
veloped area in mathematics education research (e.g., Clements, 2004). Yet, early research
has demonstrated a significant relationship between spatial thinking skills and mathemat-
ics achievement (Bishop, 1980; Guay & McDaniel, 1977; Tartre, 1990a, 1990b). This gen-
erates questions about how the development of children’s spatial and numerical abilities
may be related (cf. Clements & Battista, 1992). Indeed, the National Council of Teachers
of Mathematics (NCTM) standards (1989, 2000) have strongly recommended increasing the
emphasis on the development of spatial thinking in education.

Several more recent studies have specifically related elementary students’ spatial structur-
ing abilities to their counting skills (Battista & Clements, 1996; Battista, Clements, Arnoff,
Battista, & Van Auken Borrow, 1998) and their early school mathematical performance
(Mulligan, Prescott, Papic, & Mitchelmore, 2006b; Mulligan, Mitchelmore, Martson,
Highfield, & Kemp, 2008). Our research contributes to this body of research in two ways.
First, we investigate young children’s spatial structuring ability to (a) gain greater insight
into the role of spatial structuring in the development of early number sense, particularly
in terms of numerical relations, and to (b) design a local instruction theory that outlines an
instructional setting which may stimulate the development of young children’s spatial
structuring ability. Second, it involves kindergartners because Kindergarten children (aged
four to six years) are in the process of building solid foundations for number sense (Griffin,
2004b). At the same time, they are challenged to bridge their relatively intuitive and infor-
mal mathematical knowledge with the more complex mathematics that they encounter in
formal schooling (Clements & Sarama, 2007).

On a scientific level, the importance of the research is that it should contribute to under-
standing how spatial structuring ability may support the development of number sense,
particularly with regard to insight into numerical relations. On a more practical level, the
research may offer teachers a sequence of interview activities for gauging young children’s
level of spatial structuring ability and number sense at a very early stage in the children’s
development. In addition, teachers may find inspiration in the classroom instruction activ-
ities that are designed to help children learn to make use of spatial structures for abbrevi-
ating numerical procedures.

This acknowledges the importance of a focus on spatial structuring in mathematics educa-
tion (Clements, 1999a). In effect, the earlier children can be supported in learning to rec-
ognize and make use of spatial structures, the better they are prepared for the higher-order
mathematical procedures that they learn as soon as they enter formal schooling.

13



Chapter 1

1.3 Structure of the book

This thesis is about the development and outcomes of the mathematics education research
in the MENS research project. In Chapter 2, we discuss relevant literature that describes
the constructs of number sense, spatial sense, and spatial structure, and we present our con-
jectures about how these may be related. This theoretical framework is then embedded into
the domain-specific learning instruction theory of Realistic Mathematics Education and
into the socio-constructivist theory on learning. This leads to a definition of the research
questions at the end of the chapter.

Chapter 3 sets out the methodology of the research. Design research is explained and the
considerations for applying this methodology are outlined. After presenting the setting of
the research, including the preparations, the participants, the type of school that was in-
volved, and what role the teachers played in performing the research, we turn specifically
to the procedures for conducting the interviews and for performing the instruction experi-
ment. Next, we discuss how the software program ATLAS.ti was used for retrospective
analyses on the data from the interviews and from the instruction experiment. Finally, the
measures that were taken to improve the internal and external validity and reliability of the
data analysis for both the interviews and the instruction experiment, are described.

Chapter 4 begins with a description of how the first versions of the conceptual schema for
relating early spatial sense, emerging number sense, insight into numerical relations and
spatial structuring abilities came about. This is followed by an explanation of how the in-
terview tasks were designed, and what finally became the set of interview tasks. Analo-
gously, in the second part of this chapter, we discuss how the strategy inventory was cre-
ated and how it was used both as an instrument and as an interpretative framework for in-
vestigating children’s performance on the interview tasks. The chapter concludes with an
explanation of the final version of the conceptual schema which is founded in part on this
interpretative framework.

In anticipation of the instruction experiment, we turn to the strategy inventory in
Chapter 5 and set out the method that was developed to condense children’s interview
scores. This method led to the identification of four phases that describe a general trajec-
tory in children’s development of spatial structuring ability within this interview setting.
We refer to the Overlapping Waves Theory (Siegler, 2002, 2005) to illustrate how these
phases are interpreted in terms of children’s development. The chapter concludes with sev-
eral quantitative outcomes of the pre-interviews that give insight into the children’s level
of spatial structuring ability at the start of the instruction experiment, as well as the reli-
ability and validity of the interviews as compared to standardized tests.

14
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In Chapter 6 we describe how a conjectured local instruction theory with its correspon-
ding classroom instruction activities emerged during our exploratory and literature studies.
This is followed by a documentation of how the hypothetical learning trajectory and the
instructional sequence of activities were developed and revised before they were tried out
in the instruction experiment.

Chapter 7 offers the main outcomes of each instruction activity after they were performed
in Round 1 of the instruction experiment. Five patterns are distilled from these observa-
tions that describe what characterizes an effective instructional sequence and what revi-
sions were necessary in preparation for Round 2 of the instruction experiment. An over-
arching context that unites each instruction activity is presented as one of the most signif-
icant changes that was made to the instructional sequence. The chapter concludes with a
description of the conjectured local instruction theory in terms of the final sequence of in-
struction activities that was designed for Round 2.

The retrospective analyses of Round 2 of the instruction experiment are discussed in
Chapter 8. We begin with observations that support and supplement the conjectured learn-
ing moments that were presented in Chapter 6. Then observations that demonstrate the
pro-active role of the teacher are discussed. Finally, a general retrospective analysis is con-
ducted in which we define nine learning insights for the development of children’s spatial
structuring ability.

In Chapter 9 we conclude the research by presenting the qualitative and quantitative out-
comes of the post-interviews. These outcomes are interpreted in light of the pre-interviews
to gain insight into how the children reflect on the instruction experiment and whether their
spatial structuring ability may have improved as a result of their participation in the in-
struction activities. The chapter closes with a section on how the teachers evaluated the in-
struction experiment and what they thought may have changed in the children’s mathemat-
ical insight as a result of the instruction experiment.

The conclusions of the study are presented in Chapter 10. The answers to the research
questions culminate in a local instruction theory for teaching and learning about spatial
structure. We conclude with a discussion on spatial and number sense, what constitutes an
effective instructional setting, limitations to the research, and implications for educational
practice. This leads to suggestions for future research.
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Theoretical Background and Research Questions

2 Theoretical Background and Research Questions?!

In Chapter 1 we indicated that the purpose of this research is to gain insight into how young
children’s spatial structuring ability can support the development of their number sense,
particularly regarding insight into numerical relations. This chapter begins with a discus-
sion about number sense and then turns to early spatial sense and how studies have put spa-
tial structuring forward as an essential factor in early numerical development. Next, we
present the domain-specific instruction theory of Realistic Mathematics Education (RME)
and a socio-constructivist instruction theory on learning as the underlying context for the
research. This takes us to the last section of the chapter in which the research questions are
formulated.

2.1 Number sense

The concept of number sense can broadly be defined as the ease and flexibility with which
children operate with numbers and quantities (Gersten & Chard, 1999). Berch (2005)
states that:

Possessing number sense ostensibly permits one to achieve everything from understanding
the meaning of numbers to developing strategies for solving complex math problems; from
making simple magnitude comparisons to inventing procedures for conducting numerical op-
erations; and from recognizing gross numerical errors to using quantitative methods for com-
municating, processing, and interpreting information. (p. 334)

Early quantitative abilities include children’s ability to subitize (defined as an automated
perceptual process that all people can apply only to small collections up to around four ob-
jects; see also perceptual subitizing, Clements 1999a) and to compare quantities by laying
correspondences (Clements & Sarama, 2007; Van den Heuvel-Panhuizen, 2001). Cogni-
tive research has extended findings about children’s early quantitative abilities to mathe-
matics operations (Gelman & Gallistel, 1978; Hughes, 1986). Recently, Berger, Tzur and
Posner (2006) found that six-month old infants can recognize simple addition errors (i.e.,
a doll added to another doll, followed by an incorrect solution of one doll versus a correct
solution of two dolls) and that the corresponding brain activity can be compared to that of
adults detecting an arithmetic error. These early abilities, however, may not involve expli-
cit number concepts.

1. This chapter is based on a previous publication in TMME (Van Nes & De Lange, 2007)
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Chapter 2

The development of counting abilities is supported by the knowledge of five counting prin-
ciples (Gelman & Gallistel, 1978; see also Clements & Sarama, 2007 for a review): the
stable order principle (always assign numbers in the same order), the one-to-one corre-
spondence principle (assign only one number word to each object; synchronous counting),
the cardinal principle (the last count indicates the number of objects in the set; resultative
counting), the order irrelevance principle (the order in which objects are counted is irrele-
vant), and the abstraction principle (all the other principles can apply to any collection of
objects). As children progress in their ability to count, they explore easier ways to manip-
ulate quantities and they come to understand that quantities can be represented by numbers
in various ways which can also function as different points of reference (Berch, 2005;
Gravemeijer, 1998; Griffin & Case, 1997; Freudenthal, 1973; Van den Heuvel-Panhuizen,
2001).

At first, numbers only play a role in the counting sequence, while counting is still a mea-
ningless procedure. Then, in the process of mastering cardinality, children come to per-
ceive numbers as adjectives that describe quantities. Finally, children learn to generalize
number meanings for counting quantities and for relating quantities to each other. Because
numbers are perceived as independent objects, a number has meaning in terms of its rela-
tionship to other numbers. This requires insight into numerical relations which can be
achieved through the structuring (e.g., splitting or decomposing and composing) of quan-
tities (Hunting, 2003; Steffe, Cobb, & Von Glasersfeld, 1988).

To better understand the importance of a well-founded number sense for children’s lear-
ning and understanding of higher-order mathematical skills and concepts, we turn to the
Central Conceptual Theory (Griffin & Case, 1997; Griffin, 2004a). Griffin and Case
(1997) consider young children’s ability to compare quantities and to count as two initially
separate cognitive schemas. At the age of four, children have difficulty integrating these
competencies, as if “the two sets of knowledge were stored in different “files’ on a com-
puter, which cannot yet be ‘merged’” (p. 8). A “revolutionary” developmental step is said
to occur by the age of five or six, in which these two schemas merge into “a single, super-
ordinate conceptual structure for number” (Griffin, 2004b, p. 40). This structure interre-
lates children’s knowledge of the counting words, their one-to-one synchronous counting
ability, their familiarity with finger patterns, and their ability to translate these insights to
objects (Griffin, 2005). Such a conceptual structure is important because it builds on “the
intuitive knowledge that appears to underlie successful learning of arithmetic in the early
years of formal schooling” (Griffin & Case, 1997, p. 8).

The Central Conceptual Theory is an example of a theory that underlines the interrelated-
ness of four aspects in the development of number sense: recognizing and naming how
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Theoretical Background and Research Questions

many items are in a small configuration, learning names and eventually ordered lists of
number words, enumerating objects, and establishing cardinality (Clements & Sarama,
2007). The progress of the first aspect (recognizing and naming the number of objects in
a small configuration) can be summarized as developing from the nonverbal recognition
of one to two objects, to the quick recognition of three to four objects (subitizing), to the
decomposition and composition of larger groups (Clements & Sarama, 2007). In our re-
search we specifically focus on this development because of its importance in developing
numerical insight for higher-order arithmetic abilities. The ability to (de)compose quanti-
ties is essential for learning to differentiate, for example, greater and lesser magnitudes
(Hunting, 2003; Steffe et al., 1988). Knowing that six, for example, is composed of four
and two, helps to understand that four is a lesser quantity than six. This, in turn, establishes
insight into numerical relations which underlie arithmetic skills that children learn in for-
mal schooling (Van Eerde, 1996; Van den Heuvel-Panhuizen, 2001). The strategy of coun-
ting on, for example, where children continue adding on two from four to obtain six, de-
pends on children’s ability to conceptually embed the four inside the total to abbreviate the
addition procedure (Steffe et al., 1988).

Early quantification has also been referred to as “spatial quantification” (Mix, Huttenloch-
er, & Levine, 2002, p. 139) to highlight the importance of recognizing specific configura-
tions, and of (de)composing quantities in the development of insight into numerical rela-
tions. In the next section we turn to early spatial sense to investigate its role in “spatial
quantification”.

2.2  Spatial sense

Spatial sense can be defined as the ability to “grasp the external world” (Freudenthal, in
National Council of Teachers of Mathematics [NCTM], 1989, p. 48). It is one of the many
terms associated with spatial thinking, that has been the topic of much discussion among
researchers, including speculations about its relationship to stimulating mathematical per-
formance (see Chapter 1). Clements (1999b) proposes spatial abilities and spatial sense as
the fundamental components of spatial thinking. Spatial sense, in turn, is said to presup-
pose the development of spatial orientation, spatial visualization and imagery. Alternative-
ly, Van den Heuvel-Panhuizen and Buijs (2005) distinguish geometry, orientation and na-
vigation, and constructing with shapes and figures as central factors for early spatial edu-
cation.

In reflecting on the myriad of terms and definitions for spatial sense and how they could
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embody the term “spatial quantification” (Mix, Huttenlocher, & Levine, 2002), we focus
our research on spatial visualization (including transformations), spatial orientation (in-
cluding navigation), and shape (including constructing with shapes and figures) as the
three main components of spatial sense that enable young children to “grasp the world”
(cf. Clements & Sarama, 2007). In what follows, we describe each of the components to
explain how specifically these components may play a role in young children’s number
sense. It is important to keep in mind that in practice these components are far less disso-
ciable and that their developments are intricately related to each other and often manifested
even before these children begin their formal schooling. A cognitive study with four- and
five-year old children, for example, provided evidence that at this age children can already
compare proportions and figures (Sophian, 2000). The children in this study were able to
match the correctly shrunken picture to the original picture without being distracted by pic-
tures that not only were smaller, but also disproportionate to the original picture. Studies
such as this one illustrate the remarkably developed spatial sense of many children prior
to the start of formal schooling.

Spatial visualization. Spatial visualization involves the ability to mentally picture the
movements of two- and three-dimensional spatial objects. In spatial visualization tasks, all
or part of a representation may be mentally moved or altered (Bishop, 1980; Clements,
2004; Tartre, 1990a), requiring object-based transformations where the frame of reference
of the observer stays fixed (Zacks, Mires, Tversky, & Hazeltine, 2000). Cognitive research
suggests, for example, an early competency for judging distances that is manifested re-
gardless of the presence or absence of references in the direct surroundings of the child
(Huttenlocher, Newcombe, & Sandberg, 1994). This requires spatial visualization skills
for creating a mental image of the location of the object.

Mental images are “internal, holistic representations of objects that are isomorphic to their
referents” (Battista & Clements, 1992, p. 446). Owens and Clements (1998) modified
Presmeg’s (1986) categories for different types of imagery to differentiate the following
types of representations in spatial problem solving in the elementary classroom: concrete
imagery (recognize a concrete, holistic picture), dynamic imagery (change shapes into new
related shapes), pattern imagery (recognition of properties of concrete images and their re-
lationships), action imagery (use of mental ideas to search for new shapes without expli-
citly identifying them), and procedural imagery (able to repeat a procedure of putting to-
gether pieces that form a composite shape). In developing a framework of imagery for as-
sessing children’s early spatial mathematics learning, Owens (1999) concluded that visu-
alization strategies are a key to the development of spatial sense.

Spatial orientation. The second component of spatial sense that we focus on is spatial ori-
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entation. This is what Clements (2004, p. 284) refers to in describing how we “make our
way” in space. In spatial orientation, the self-to-object representational system is at work
because the viewer reorients the imagined self (Hegarty & Waller, 2004). This is dissocia-
ble from the object-to-object representational system that is involved in mentally rotating
and manipulating a mental image in spatial visualization tasks. An example is when one
examines two photographs to compare the position of the camera. This involves changing
the egocentric frame of reference with respect to the environment while the relation be-
tween object-based and environmental frames of reference stays fixed (Hegarty & Waller,
2004). One can navigate through space by operating on relationships between different po-
sitions in space with respect to one’s own position (Clements, 2004; Tartre, 1990a, 1990b).

Spatial orientation is considered to be a “core domain” in children’s development. It is an
early cognitive strength that is necessary for localization, for navigating one’s environ-
ment, for spatial thought (i.e., reflecting about the spatial world), for operating with mod-
els and maps, for using a coordinate system and for spatial structuring (Clements & Sara-
ma, 2007; Tartre, 1990a, 1990b; Van den Heuvel-Panhuizen & Buijs, 2005). The term spa-
tial structuring in this context, is reserved for organizing two- and three-dimensional
concepts (Battista & Clements, 1996; Battista et al., 1998; Outhred & Mitchelmore, 1992).
It has to do with selecting, coordinating, unifying, and registering in memory a set of men-
tal objects and actions (Clements & Sarama, 2007).

Shape. We refer to the third component of spatial sense as shape. Similar to spatial visua-
lization, it has to do with mentally manipulating spatial forms from a fixed perspective
(McGee, 1979; Owens & Clements, 1998). Young children can separate these forms from
the figure in which they are embedded using gestalt principles. Several studies have related
the gestalt laws to early numerical development. Spelke, Breinlinger, Jacobsen, and Phil-
lips (1993), for example, found that adults’ perceptions of simple, unfamiliar visual dis-
plays, were strongly influenced by the gestalt relations of color, texture similarity, good
continuation, and repetition and structural symmetry. The perceptions of five- and nine-
month old babies, however, were only weakly affected by these particular gestalt relations,
and the perceptions of three-month old babies were not at all affected. These differences
suggest a development in these particular gestalt relations (Quinn, Burke, & Rush, 1993;
Quinn, Bhatt, Brush, Grimes, & Sharpnack, 2002), showing that even infants as young as
three months old are capable of distinguishing particular elements and of establishing
crude perceptual coherence (i.e., a spatial structure).

Insight into shapes and their relations enables children to make reference to familiar fi-
gures such as one’s own body, to geometrical figures such as mosaics, and to geometric
patterns such as dot configurations on dice or dominoes. As such, patterning involves rec-
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ognizing similarity, symmetry, and regularity and using characteristics of spatial shapes for
building and analyzing spatial constructions (Papic & Mulligan, 2005). School geometry
can help young children learn about shape through position, ordering, and comparing spa-
tial objects (Clements & Battista, 1992). Children come to improve their ability to relate
objects in space, they extend the size of that space, and they link primary meanings (treat-
ing the spatial relations as one with their environment) to secondary meanings (taking the
perspective of an abstract frame of reference) and uses of spatial information (Clements,
20044, p. 281). Moreover, the communication that is involved in learning and teaching
spatial relations helps to increase children’s vocabulary, enrich their imagination, and
sharpen their perceptions (Casey, 2004; Newcombe & Huttenlocher, 2000; Van den Heu-
vel-Panhuizen & Buijs, 2005). This explains why NCTM (1989, p. 48) described spatial
sense as necessary for interpreting, understanding, and appreciating our inherently geo-
metric world.

In the first section on number sense (2.1), we described how the ability to (de)compose
quantities is essential for the development of insight into numerical relations. In this sec-
tion on spatial sense, we zoom into a relationship that we note between the three compo-
nents of spatial sense, and part-whole relations and the (de)composition of spatial objects
(cf. Clements & Sarama, 2007). First, in spatial visualization, the ability to manipulate
mental images can support children in rearranging objects to explore their composition.
Second, the spatial structuring factor in spatial orientation involves integrating previously
abstracted items to form new structures. Third, insight into shapes helps children perceive
parts and wholes of geometric patterns, congruence, symmetry, and transformations. In the
next section we suggest that the three components share a spatial structuring ability. As
such, the focus of our research is on spatial structuring to see how it may influence young
children’s ability to (de)compose quantities for gaining insight into numerical relations.

2.3  Spatial structures

Several studies have emphasized children’s spatial structuring ability as an essential factor
in their mathematical development (e.g., Battista & Clements, 1996; Battista et al., 1998;
Mulligan, Prescott & Mitchelmore, 2004; Mulligan et al., 2006b, 2008). Considering the
importance of young children’s ability to (de)compose quantities for insight into numerical
relations, we suggest in our research that spatial structuring is a factor of spatial visualiza-
tion, spatial orientation, and shape that appears to support this ability and that should there-
fore be fostered.
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Defining spatial structuring. The act of spatial structuring as introduced in the section on
spatial sense, can be defined as:

... the mental operation of constructing an organization or form for an object or set of objects.
Spatially structuring an object determines its nature or shape by identifying its spatial compo-
nents, combining components into spatial composites, and establishing interrelationships be-
tween and among components and composites. (Battista & Clements, 1996, p. 503)

Spatial structuring in enumeration. In order to organize and make sense out of visual in-
formation, the process of perceiving structure requires a child to spatially visualize and
flexibly recognize the structure both as a composite of parts and as a whole. As Smith
(1964, as cited in Tartre, 1990a) put it:

The process of perceiving and assimilating a gestalt...[is] a process of abstraction (abstracting
form or structure)... It is possible that any process of abstraction may involve in some degree
the perception, retention in memory, recognition and perhaps reproduction of a pattern or
structure. (p. 218)

The mental extraction of structures from spatial configurations (i.e., identifying a gestalt)
is also what Arcavi (2003) found to aid older students’ counting processes. For Arcavi’s
students, the gestalt could involve “breaking and rearranging the original whole” or “im-
posing an ‘auxiliary construction’ whose role consisted of providing visual ‘crutches’,
which in themselves were not counted, but which supported and facilitated the visualiza-
tion of a pattern that suggested a counting strategy” (Arcavi, 2003, p. 229). Analogously,
young children could use gestalts to, for example, rearrange a set of objects that is to be
counted. The spatial structure that subsequently arises can help the child recognize (part
of) the quantity and consequently abbreviate the counting procedure (\Van Eerde, 1996).

Battista and Clements (1996; see also Leake, 1995; Outhred & Mitchelmore, 1992) put
forward that students do not “read off” structure but rather construct structure according to
how an object is perceived. Clements (1999a) refers to this as conceptual subitizing, since
such spatial structures can support the advanced organization of a quantity. While percep-
tual subitizing refers to the natural ability to recognize a number without using other math-
ematical processes, conceptual subitizing requires the child to view number and patterns
(spatial but also temporal, rhythmic or auditory) in terms of units of units, or part-whole
relationships. As such, the ability to read off a small quantity develops from preattentive
but quantitative, to attentive (perceptual) subitizing, to imagery-based subitizing, to con-
ceptual subitizing (Clements 1999a; Steffe, Von Glasersfeld, Richards, & Cobb, 1983).

In studying how third, fourth, and fifth grade students count squares in two- and three-di-
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mensional rectangular arrays, Battista and Clements (1996) and Battista et al. (1998) found
students’ spatial structuring abilities to provide the necessary input and organization for
the numerical procedures that the students use to count an array of squares. The develop-
ment of spatial structuring may be based on how students’ perceptual and physical actions
during counting become input for the structuring process (Battista & Clements, 1996).
This underlines how attempts at enumeration sometimes engender spatial structuring and
restructuring, which in turn provides the input and organization for enumeration. Hence,
Battista and Clements suggest that spatial structuring precedes meaningful enumeration
and that spatial structuring is therefore “an essential mental process underlying students’
quantitative dealings with spatial situations” (Battista et al., 1998, p. 503). Their follow-
up research highlighted how structuring two- and three-dimensional space is essential for
geometric and visual thinking, which underlies an understanding of early algebra such as
multiplication and area formulas (Battista et al., 1998). As such, spatial structuring as a
form of organization through composition is considered to contribute to insight into im-
portant mathematical procedures and concepts such as patterning, algebra, and the recog-
nition of geometric shapes and figures (see also Carraher, Schliemann, Brizuela, & Ear-
nest, 2006; Clements & Sarama, 2007; Mulligan, Mitchelmore, & Prescott, 2006a; Papic
& Mulligan, 2007; Waters, 2004).

Additional support for associating spatial visualization, spatial orientation, and space with
young children’s emerging number sense, comes from research by Mulligan et al. (2006a).
They based their research on Goldin’s (2002) model of cognitive representational systems
and found that children with a more sophisticated awareness of patterns and structures ex-
celled in mathematical thinking and reasoning compared to their peers and vice versa. Al-
though the correlations could not reveal causal effects, their conclusion was that young
children are capable of understanding more than unitary counting and additive structures
alone. They suggest that instruction in mathematical patterns and structures could stimu-
late children’s learning and understanding of mathematical concepts and procedures. This
coincides with Battista et al.’s (1998) views about how students must learn to construct a
meaningful structure themselves, and that students could improve their own use of struc-
ture if they recognize errors in their counting that result from inadequate spatial structur-

ing.

Early advantages of spatial structuring. The process of determining a quantity includes a
situation that is recognized (a collection of countable objects), a goal (find out how many),
an activity (counting), and a result (unitary whole of counted items; Steffe et al., 1988).
Hence, when asked to determine the quantity of a randomly arranged set of objects, young
children initially tend to count each object. As the set grows, however, children are con-
fronted with the time-consuming process and the difficulties of keeping track of which ob-
jects have already been counted. Therefore, the advantage of applying spatial structure to
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abbreviate numerical procedures becomes evident, for example, when reading off a quan-
tity (i.e., recognizing the quantity of six as three and three, Steffe et al., 1988; Van den Heu-
vel-Panhuizen, 2001; Van Eerde, 1996; Van Nes & De Lange, 2007), when comparing a
number of objects (i.e., one dot in every one of four corners is less than the same configu-
ration with a dot in the centre, Clements, 1999a), when extending a pattern (i.e., repeating
the structure, Papic & Mulligan, 2005, 2007) and when building a construction of blocks
(i.e., relating the characteristics and orientation of the constituent shapes and figures, Bat-
tista et al., 1998; Van den Heuvel-Panhuizen & Buijs, 2005). For this reason, children’s
ability to grasp spatial structure appears essential for gaining insight into numerical rela-
tions and for using this insight to develop mathematical abilities such as ordering, compar-
ing, and generalizing (NCTM, 2000; Papic & Mulligan, 2005; Steffe et al., 1988; Waters,
2004). In fact, Mulligan, Mitchelmore and Prescott (2006a) state that “the development of
pattern and structure is generic to a well-connected conceptual framework in early mathe-
matics” (p. 214).

More formal mathematical abilities that depend on insight into numerical relations require
even further understanding and use of spatial structures. This is particularly the case for
arithmetic abilities such as counting and grouping, for part-whole knowledge in addition,
multiplication and division (e.g., 8 + 6 = 14 because 5+5=10and 3+1=4s010+4 =
14), for using variables in algebra, for proving, predicting and generalizing, and for deter-
mining the structure of a shape in order to subsequently mentally rotate or manipulate it
(Anghileri, 1989; Buijs, 2008; Carraher et al., 2006; Papic & Mulligan, 2007; Steffe et al.,
1988). In fact, studies have shown that children with difficulties in learning mathematics
tend to focus on non-mathematical features and prefer to count objects unitarily without
using any form of structure (Butterworth, 1999; Mulligan, Mitchelmore, & Prescott, 2005;
Pitta-Pantazi, Gray, & Christou, 2004). Clements and Sarama (2007, p. 473) noted that
children who cannot conceptually subitize, are handicapped in counting on (e.g., temporal
patterning) or addition (e.g., finger patterning).

Spatial structuring in practice. An anecdote of Richardson (2004) about the children in
her preschool classroom illustrates how the abstraction of spatial structures may occur in
practice. Richardson’s children worked with cards showing dot configurations like those
on dice so that they could learn to recognize amounts in such arrangements. When she
asked the children to count out a certain number of counters, instead of correctly counting
out the counters, the children made an “X” shape to match what they recognized to be the
shape of five dots on a card, and they made a square shape to match what they recognized
to be the arrangement of nine dots. These children apparently abstracted a shape from the
individual dots and used the shape as a representation of a particular quantity.

25



Chapter 2

Richardson (2004) concludes from this experience that teachers must always interact with
the children to check whether what they are doing makes sense to them, because perform-
ing without understanding interferes with their mathematical development. Moreover, it is
a practical example of how children are able to abstract a shape from individual elements.
It also adds to the finding that infants make use of gestalt principles to make sense of the
real world and to establish perceptual coherence. As such, the ability to process the gestalt,
the whole, from its component parts is an important requirement for mathematical skills;
it can support children in gaining insight into numerical relations which, in turn, could help
to abbreviate children’s strategies for determining, comparing and operating with (e.g.,
adding, subtracting, and multiplying) quantities (Van Eerde, 1996). These conclusions
about children’s tendencies to organize the world through the use of spatial structures,
should encourage researchers and instructors to take care to attend to children’s early spa-
tial structuring abilities in mathematics curricula. To date, many teachers are unaware of
spatial structuring and many textbooks still present quantities that discourage subitizing
(Clements, 1999a).

Development of spatial structuring ability. In an analysis of structure present in 103 first
graders’ representations for a variety of mathematical tasks, Mulligan and colleagues
(2004, 2006a) found that mathematical structure in children’s representations transfers
across various mathematical domains. In addition, the researchers were able to code the
individual profiles of these children as one of the following four broad stages of structural
development:

(1) Pre-structural stage: representations lack any evidence of mathematical or spatial struc-
ture; most examples show idiosyncratic features.

(2) Emergent (inventive-semiotic) stage: representations show some elements of structure
such as use of units; characters or configurations are first given meaning in relation to pre-
viously constructed representations.

(3) Partial structural stage: some aspects of mathematical notation or symbolism and/or spa-
tial features such as grids or arrays are found.

(4) Stage of structural development: representations clearly integrate mathematical and spa-
tial features. (Mulligan et al., 2004, p. 395-396)

This developmental trajectory for spatial structuring inspired the researchers to develop
the Pattern and Structure Awareness Program (PASMAP). The pattern-eliciting tasks were
designed to improve students’ visual memory, the ability to identify and apply patterns,
and to seek structure in mathematical ideas and representations. It was found that young,
low-achieving students (aged 5 to 12 years) can be taught to seek and recognize mathema-
tical structure and that this can lead to an improvement in their overall mathematics
achievement (Mulligan et al., 2006b). In a subsequent study, Mulligan and colleagues
(2008) implemented pASMAP with ten Kindergarten children and found that “explicit as-
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sessment and teaching of structure, using instructional approaches suitable for low-achiev-
ing students, has the potential to effectively improve students’ abstraction of mathematical
processes within a relatively short time frame” (p. 135). These findings are extended by a
case study in which four-year-olds excelled in patterning and structuring after a six-month
intervention (Papic & Mulligan, 2007).

In short, the research above gives reason to suggest that spatial structuring ability should
be fostered as a key factor in the development of number sense, particularly regarding in-
sight into numerical relations. Hence, the assumption of our research is that children can
improve their numerical understanding by helping them associate numerical procedures
with spatial structuring using spatial structures such as finger patterns, dice configurations
and double-structures.

2.4  Motivation for and purpose of the research

Considering the role of spatial structuring in (de)composing quantities, we explain the mo-
tivation for the research and its purpose.

Focus on Kindergarten children. Most research on patterning and structuring with respect
to early algebraic thinking has been concerned with children who are at least six years old.
Relatively little is known about the developmental trajectories of younger children. Yet,
studying and stimulating the mathematical development of particularly kindergartners is
important because kindergartners’ progress in mathematics throughout their formal
schooling strongly depends on the extent to which school instruction succeeds at relating
to the child’s level of understanding, and at bridging the child’s initially informal learning
methods with relatively formal teaching methods (Aubrey, Dahl, & Godfrey, 2006; Ba-
roody, 1987; Clements & Sarama, 2007). This is crucial for fostering learning progression
as well as for preventing learning difficulties that may arise at a later stage in formal
schooling (Allsopp et al., 2003; Freudenthal, 1991; Henry & Brown, 2008; Jordan et al.,
2007; Starkey, Klein, & Wakeley, 2004).

More specifically, the importance of studying the development of kindergartners’ number
sense has to do with the “revolutionary changes” that children at this age are said to expe-
rience in their understanding of numbers and quantities (Griffin, 2004a; Griffin & Case,
1997; see also section 2.1). The conceptual structure that develops by the age of five or six
integrates children’s intuitive understanding of quantity with number, and provides them
with the conceptual foundation for number sense which is believed to underlie all higher-
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level mathematics (Griffin, 2004b). This alludes to a crucial period in the development of
mathematical thinking. As such, our focus on young children and their emerging number
sense can help to support children in attaining and maintaining “central conceptual struc-
tures”. A greater understanding of the development of kindergartners’ spatial and number
sense may help to design instruction that can support the development from very early on-
wards.

In analyzing structure in children’s representations as they solved pattern-eliciting tasks,
Mulligan et al. (2006b, 2008) were particularly concerned with the progress of low-achie-
ving children. Our focus is less on low-achievers and more on the numerical procedures of
kindergartners in general as they solve tasks that cohere with RME principle in a regular
classroom setting. This should provide an understanding of developmental trajectories as
they are manifested in a relatively ecologically valid setting. By exploring the strategies
that children use to solve the specially designed interview tasks (Chapter 3), we may find
support for the developmental trajectory for spatial structuring ability that Mulligan and
colleagues defined. This may contribute to a greater understanding of what characterizes
the development of young children’s spatial structuring ability.

A classroom instruction experiment. As Mulligan et al. (2006b) noted, “there is a real need
to develop classroom-based studies that seek to identify teaching and learning influences
that promote the development of structure and generalization in children’s mathematics
learning” (p. 376). Therefore, to not only contribute to an understanding of the develop-
mental trajectory of spatial structuring, but to also gain insight into factors that may influ-
ence this trajectory, we used design research and performed a sequence of instruction ac-
tivities in a classroom during an instruction experiment (Chapter 3). Our instruction expe-
riment included instruction activities that mainly involve conceptual subitizing, and it spe-
cifically focused on understanding how a particular instructional setting could stimulate
greater awareness and use of spatial structures. The classroom implementation of the ac-
tivities created a concentrated and therefore powerful instructional setting in which the
children could interact with each other and with the teacher (Cobb & Yackel, 1996). This
setting helped to understand the influence of a particular intervention on children’s aware-
ness of spatial structuring, and on their ability to make use of spatial structures for abbre-
viating numerical procedures such as determining and comparing quantities.

Purpose of the present research. Research on the development of young children’s struc-
turing and patterning ability has fuelled many questions that require further investigation.
After identifying four stages in structural development, Mulligan et al. (2004, 2005), for
example, ask why some children do and why others do not develop structure in their rep-
resentations of mathematical concepts. This requires more insight into the characterization
of the developmental trajectory, as well as into the influences that the instructional setting
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may have on children’s development of spatial structuring ability. Indeed, Papic and Mul-
ligan (2007) state that more research is needed to understand the effects of the curriculum
and teacher pedagogy that is more focused on encouraging representation, abstraction, and
generalization of repeating and growing patterns, on young children’s mathematical deve-
lopment. Furthermore, Henry and Brown (2008) identified a need to “design, implement,
and then study curricula that help students move beyond counting to memorization and de-
rived-fact strategies during first grade” (p. 179). Translated to the Kindergarten setting,
this means that research must concentrate on designing interventions that stimulate the de-
velopment of children’s understanding of quantities, numbers and numerical procedures.

Taken together, the present study contributes to the body of research above by:
(a) outlining the development of kindergartners’ spatial structuring ability;
(b) designing a local instruction theory that may foster their spatial structuring ability.

2.5 Context of the research

The research is predominantly based on the domain-specific learning instruction theory of
Realistic Mathematics Education (RME) and the socio-constructivist perspective on learn-
ing. We discuss these frameworks in the following paragraphs.

2.5.1 Realistic Mathematics Education

Realistic Mathematics Education inspires the development of mathematics education by
offering a pedagogical and didactical perspective on mathematical teaching and learning.
It was devised at the Freudenthal Institute in the 1970s and 1980s and has been further de-
veloped and propagated internationally since then (cf. Freudenthal, 1991; Gates & Vistro-
Yu, 2003; Gravemeijer, 1994; Mason & Waywood, 1996; Streefland, 1991; Treffers,
1987). The term realistic implies that the problem situation is set in a context that gives a
problem meaning and that brings forward the mathematics that “begs to be organized”. At
an initial level of learning, “realistic” does not have to be true in real life (e.g., it may be a
context with fairy tale characters or a context in a mathematical setting), as long as it is
“experientially real” to the student, so that it gives meaning to the student’s mathematical
activity. Such a context can be motivating, but it is especially important that it acts as a
model for stimulating personal strategies that can be used as building blocks for the math-
ematics that is the focus of the discussion.
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As such, mathematics in RME is seen as a “human activity” that is driven by the act of
mathematizing (Freudenthal, 1973, 1991). Mathematizing means more than gaining math-
ematical knowledge and becoming adept at performing mathematical operations. Rather,
it involves understanding underlying mathematical abilities such as ordering, classifying,
generalizing and formalizing (Treffers, 1975). Freudenthal (1973, 1991) posits the impor-
tance of guided reinvention for stimulating mathematization. This principle underlies the
construction of knowledge as if the student “reinvented” it. It differs from the discovery
perspective, which states that symbolic systems exist and that children must try to under-
stand them with help from adults. In the (re)invention perspective, the children really
(re)invent the mathematics by being placed in situations that require mathematizing
(Gravemeijer, 1998). Hence, the designer’s role in this “active learning process” is to en-
courage the children’s spontaneous strategies without imposing the mathematical knowl-
edge on them. It is the task of the designer to offer children tools with which to build upon
earlier knowledge for constructing and internalizing new insights. Together, this is implied
by the term “guided”.

In practice, guided reinvention means that the teacher can anticipate the types of mathe-
matical thinking that children may develop at particular moments, and provide the con-
cepts, models and symbols when the children may find them necessary. At a classroom lev-
el, the designer must help the children converge their mathematical ideas with each other
and with the teacher so that a shared mathematical standard can be achieved. For this, con-
cepts, models and symbols are introduced in the (re)invention perspective that are directly
related to what is necessary for the children’s learning and understanding at that particular
moment, and ideally builds upon the children’s present knowledge. Hence, for learning to
occur, mathematizing is said to require a series of steps where:

... the activity of the lower level, that is the organizing activity by means of this level, becomes
an object of analyses on the higher level: the operational matter of the lower level becomes a
subject matter on the next level. (Freudenthal,1973, p. 125)

Importantly, Freudenthal emphasizes that the key to learning is reflection, where students
mathematize their own mathematical activities. This highlights the iterative character of
mathematics; concrete experience helps to validate and test abstract concepts, while feed-
back contributes to a social learning and problem-solving process (De Lange, 1987).
Hence, RME is aimed at supporting conceptual mathematization (development of mathe-
matical concepts and ideas starting from the “real” world) at the level of initial learning,
as well as at the general and formal level of reinforcing mathematical concepts and ideas
through application.
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The RME conception of learning is based on the idea that reality is not only a source for
applying new insights after a transition in learning levels has taken place, but that reality
forms part of the input for students’ understanding that is necessary to facilitate such a
transition. Reality in this sense, is defined as “what common sense experiences as real at a
certain stage” (Freudenthal, 1991, p. 17), and the goal of RME is to support students in cre-
ating a new mathematical reality. The following five design principles outline the funda-
mental characteristics of RME (Treffers, 1987):

(1) Didactical phenomenology: Mathematical ideas are described in terms of what is to be
mathematized. This implies that proper instruction should derive from an in-depth
analysis of what phenomena in reality “beg to be organized” through mathematics
(Freudenthal, 1984). It is the designer’s task to determine how the subject matter
should be presented to optimally support children’s learning.

(2) Bridging learning levels using vertical supporting materials: Where horizontal math-
ematizing involves the transition from a “realistic” context problem to the definitions
of a problem in mathematical terms and the interpretation of the solution in light of a
“realistic” setting, vertical mathematizing supports progressive mathematization
(Freudenthal, 1991; Streefland, 1985; Treffers, 1978). Progressive mathematization
describes every step that underlies the transition from one learning level to another as
part of a general progression towards mathematical understanding (Streefland, 1983).
As such, vertical materials such as models, diagrams, and conceptual schema support
the transition from an initial naive, informal and context-dependent level, towards a
level that requires more formal, systematic and reflective mathematical behavior.

(3) Learning is a constructive activity: In light of the constructive view on learning, this
principle highlights the important role of children’s own solutions as a means for de-
signers to gauge their levels of learning and to subsequently develop appropriate in-
struction that can stimulate the child towards the next learning level.

(4) Learning through interaction: Considering the complex classroom situations in which
learning typically takes place, this principle acknowledges the value of investigating
the different types of strategies that children use in one instructional setting. This ena-
bles children to set examples for each other and to learn from each other, and it provides
input for the teacher for discussing efficient and generalizable strategies.

(5) Learning strands are intertwined: This principle refers to the intricate relationship be-
tween different mathematical concepts and learning strands (e.g., fractions, decimals
and percentages). It highlights how an instructional sequence is not isolated. Instead,
the theoretical conceptualizations must take account of other knowledge that children
acquire both within and outside a particular domain.

To stimulate the transition from informal knowledge to formal knowledge, children are en-
couraged to construct models such as schemes, notations, or descriptions. Such a model is
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at first context-specific and inspired by students’ informal strategies (Gravemeijer, 1994,
1999). Throughout progressive mathematization, students encounter many contexts that
can be represented by a particular model. This supports the generalization of the model
across situations. Hence, rather than being a model “of” a particular mathematical situa-
tion, the model becomes a model “for” the coinciding mathematical conception (Grave-
meijer, 1994, 1999). This transition underlines the bottom-up character of the reinvention
principle. Emergent modeling identifies the following four levels of learning:

(1) Situational level: interpretations and solutions depend on the student’s understanding
of how to act in the setting of the activity

(2) Referential level: the model derives its meaning from the reference to the activity in the
task setting

(3) General level: the focus is on mathematical relations and strategies and the model be-
gins to derive its meaning from these

(4) Formal level: formal arithmetic no longer depends on the support of a model and the
student can work with conventional procedures and notations

4. Formal

3. General

2. Referential

1. Situational

Fig. 2.1 Four levels of learning in emergent modeling (Gravemeijer, 1994)

The emergent modeling heuristic has been used in various design research projects in
mathematics education (Doorman & Gravemeijer, 2009; Gravemeijer, 1999; Rasmussen
& Blumenfeld, 2007). In the next paragraph the principles of RME are supplemented with
insights from the socio-constructivist perspective that inspired the analyses of the influ-
ence of the instruction experiment on children’s learning in a social context.

2.5.2 A socio-constructivist approach to learning and the emergent perspective

The compatibility of socio-constructivism and the emergent perspective with RME lies in
the shared focus on learning as an iterative and constructive process. Socio-constructivism
is derived from (radical) constructivism and social-interaction theories (Bauersfeld, 1980).
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Radical constructivism characterizes knowledge as a model that is made based on experi-
ences. This implies that knowledge is adaptive and that it cannot merely be a reflection of
the objective outside world. For this reason, knowledge cannot be passed on passively
from one person to another, but rather has to be actively constructed by the learner. Yet, if
everyone’s interpretation of the outside world is one that is acceptable, then teachers have
no foundation for defining learning goals and for guiding students in their learning. This
makes constructivism as a theory difficult to apply to education. Socio-constructivism pro-
vides a pragmatic solution to this problem by taking general agreement as the criterion for
knowledge (Cobb & Yackel, 1996; Yackel & Cobb, 1996). The “socio” in socio-construc-
tivism refers to the stimulation of discussions in class for sharing and reflecting on math-
ematical ideas as a means to progress towards a higher level of learning. As such, (math-
ematics) education can be founded upon:

... the taken-as-shared mathematical interpretations, meanings, and practices institutionalized
by wider society. (Cobb, Yackel, & Wood, 1992, p. 16)

The taken-as-shared aspect of mathematical meaning-making, learning and practice, high-
lights how socio-constructivists interpret the type of communication that occurs between
student and teacher in order for learning to take place. The teacher and student must reach
a point in their discussion at which their conceptualizations are synchronized and subse-
quently “taken-as-shared”. In this sense, learning occurs through the interactive process of
readjusting conceptualizations that come to light when teacher and student encounter a
miscommunication.

This socio-constructivist framework puts the social learning environment of a classroom
setting forward as an alternative to analyzing learning processes across a group of students
or for each student individually (Gravemeijer & Cobb, 2006). This framework suits our
instruction experiment where students’ learning processes are regarded as evolving from
interactions and discourse in a social and constructive instructional setting. To gain insight
into the complexity of such an instructional setting, we use design research to study the
intricate relationships between elements that make up the learning ecology and children’s
learning. A learning ecology includes elements such as:

— the tasks or problems that students are asked to solve;

- the kinds of discourse that are encouraged;

- the norms of participation that are established;

- the tools and related material means provided;

- the practical means by which classroom teachers can orchestrate relations among these
elements (Cobb et al., 2003, p. 9).
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A learning ecology can be interpreted in light of the “emergent perspective” (Cobb &
Yackel, 1996; Yackel & Cobb, 1996), a framework that helps to “account for students’
mathematical development as it occurred in the social context of the classroom” (p. 178).
The social perspective in this framework consists of three components: the classroom so-
cial norms, the socio-mathematical norms, and the classroom mathematical practices.

Classroom social norms. The classroom social norms concern “the expected ways of ac-
ting and explaining that become instantiated through a process of mutual negotiation be-
tween the teacher and students” (Gravemeijer & Cobb, 2006, p. 31), and is sometimes re-
ferred to as a “didactic contract” (Brousseau, 1990). Such classroom social norms differ-
entiate different types of classrooms on the basis of, for instance, how the students are ex-
pected to respond to questions or how the teacher evaluates and responds to students’ work
and behavior. The classroom social norms that were identified in the instruction experi-
ment are discussed in section 7.2.

Socio-mathematical norms. The socio-mathematical norms refer to norms of explaining
and acting in class that specifically relate to mathematics. This may involve what students
and teachers consider to be correct, efficient, or different mathematical solutions and ex-
planations. These norms emerge through the process of negotiation in the instruction ex-
periment. Awareness of spatial structure as an alternative to unitary counting, is an exam-
ple of a socio-mathematical norm that is established in our instruction experiment. Socio-
mathematical norms are valuable because they support students’ development of mathe-
matical beliefs and values and therefore “foster the development of intellectual autonomy”
(Cobb & Yackel, 1996, p. 179) of the class.

Classroom mathematical practices. The classroom mathematical practices are “normative
ways of acting, communicating and symbolizing mathematically at a given moment in
time” (Gravemeijer & Cobb, 2006, p. 32). These practices are specific to a particular math-
ematical idea or concept and they evolve during the course of an instruction experiment to
become a new mathematical truth. For example, if a particular strategy, such as organizing
objects into groups to read off their quantity, required an explanation at the beginning of
the instruction experiment, this strategy no longer needs justification at the end (see Chap-
ters 7 and 8). Qualitative differences in children’s mathematical interpretations may exist
as they participate in the same mathematical practices (Cobb & Yackel, 1996). This con-
trasts with the socially accepted mathematical practices and illustrates the association be-
tween the development of individual minds and the social setting in which the children
learn.

The socio-constructivist perspective on learning contributes to design research a way of
analyzing the instructional sequence and students’ learning in a complex classroom set-
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ting. We use the framework for our instruction experiment to organize analyses of chil-
dren’s learning and to inspire the types of revisions of the instructional setting that are nec-
essary to understand the role of the learning ecology in children’s learning.

2.6  Theresearch questions

Based on the literature review described above, we have come to suggest the following.
Young children’s emerging number sense includes insight into numerical relations, which
requires the ability to (de)compose quantities. This ability involves insight into part-whole
relationships, which is also an important factor in three components of spatial sense, name-
ly spatial visualization, spatial orientation and shape. The act of spatial structuring, then,
can help to mentally or physically rearrange spatial objects to elucidate part-whole rela-
tionships. Such insight into part-whole relationships may help to clarify numerical rela-
tions and find ways to abbreviate numerical procedures such as determining, comparing
and operating with small (up to 10) quantities. Hence, we propose that children’s insight
into numerical relations may be supported by learning to recognize and make use of spatial
structures for abbreviating numerical procedures. These conjectures generate the follow-
ing research questions:

1. What strategies for solving spatial and numerical problems characterize young
children’s spatial structuring abilities?

To gain insight into the development of young children’s spatial structuring ability, we
chart and analyze the variety of approaches that children take to perform specially de-
signed spatial and numerical tasks during an interview (Chapters 4 and 5). This operation-
alizes numerical relations in the research. Further, insight into the developmental trajecto-
ry of spatial structuring ability provides an interpretative framework that inspires our ap-
proach to the second set of research questions. The outcomes of the interviews and the
strategy inventory are interpreted in light of the child’s school assessment scores to assess
their reliability and validity. This is to validate the use of these instruments as tools for
gauging the development of young children’s spatial structuring ability and number sense
(Chapter 9).

2a. How can young children be supported in learning to recognize and make use of
spatial structures for abbreviating numerical procedures?

After charting and analyzing the strategies that young children apply to solving numerical
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tasks, the next focus of the research is to see whether and how the development of young
children’s spatial structuring ability can be stimulated. For this we develop a hypothetical
learning trajectory according to design research principles. This inspires the design of a se-
quence of instruction activities for a classroom instruction experiment (Chapters 5 and 6).
The analyses of the classroom instruction experiment help to refine the learning trajectory
with revised instruction activities (Chapters 7 and 8). The final instructional sequence op-
erationalizes spatial structuring in the research. Further, we trace influences of children’s
participation in the instruction experiment on their spatial structuring strategies, by com-
paring children’s spatial structuring ability before and after the instruction experiment (i.e.,
the strategies that they used on the pre- and post-interviews, Chapter 9). The analysis of
converging and challenging observations regarding influences of the instructional se-
quence on children’s learning, culminate in the design of a local instruction theory about
how the development of young children’s spatial structuring ability may be supported
(Chapters 8 and 10).

2b. What characterizes a learning ecology that can facilitate the development of chil-
dren’s spatial structuring ability?

This research question is emphasized separately from research question (2a) to focus on
the role of the learning ecology in supporting children’s learning. Yet, considering the in-
terrelatedness of (2a) and (2b), we first analyze them together and elaborate on question
(2b) separately. Through investigating the influences of the instructional sequence on the
development of children’s spatial structuring ability, we abstract components of the in-
structional setting that contribute to a supportive learning ecology (Chapters 7-10). We
look, for example, at the role of the teacher, at whether and how the class develops a shared
vocabulary, and at the extent to which socio-mathematical norms of spatial structuring are
established. This analysis is to contribute to a greater understanding of the complexity of
such an instructional setting and its influence on children’s learning.

In the next chapter, we describe the methodological approach that was taken to answer
these research questions.
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3 Methodology

Building on the context of the research that was presented in Chapter 2, we first explain
what characterizes design research and why this type of research was appropriate for ans-
wering the research questions that are stated in section 2.6. We present the setting in which
the research took place, including the children and the school that was involved, and what
role the teachers and researchers played in performing the instruction experiment. In sec-
tion 3.3, the procedures for conducting the interviews and the instruction experiment and
for analyzing the data are described. Finally, we discuss the measures that were taken to
improve the validity and reliability of the study.

3.1 Design research

As introduced in Chapter 2, our research is aimed at answering two research questions. The
first question is concerned with charting and analyzing young children’s spatial structuring
strategies. For this, we developed tasks that were administered during one-on-one interview
sessions with the children (see Chapter 4). The second question involves the development
of a learning trajectory for supporting spatial structuring ability. In this section, we describe
design research and explain why it was used to answer the second research question.

3.1.1 Theory development in design research

Design research is based on the procedure for generating empirically based theory that was
first described by Glaser and Strauss (1967). It has further been developed into a method-
ology that is characterized by the cumulative, cyclical process of theory generation and
validation (cf. Freudenthal, 1991; Gravemeijer, 1994; Gravemeijer & Cobb, 2006). This
process involves an iterative procedure of theory-driven adjustments to the intervention
and revisions of the hypotheses which led to an improved theory about learning (Cobb,
Confrey, diSessa, Lehrer, & Schable, 2003; Gravemeijer, 1994).

Design research in mathematics education has both a theoretical and an applied purpose:
theoretical in terms of coming to an understanding of mathematical thinking, teaching and
learning, and practical in terms of using this understanding to improve mathematics in-
struction (Schoenfeld, 2000). Freudenthal (1991) used the term “instruction experiment”
to refer to a type of research design in which an instructional sequence is created to broad-
en the children’s insight into a particular mathematical construct. At the same time the in-
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structional sequence should provide the researchers with a greater understanding of the
children’s learning processes. As such, researchers do not settle for answers that merely
illustrate what works best. Instead, they use methods that both aim to understand why as
well as describe how mathematics instruction works in practice (cf. Freudenthal, 1983;
Gravemeijer, Bowers, & Stephan, 2003; Gravemeijer & Cobb, 2006).

Theory development in design research involves the development of a local instruction
theory (Gravemeijer, 1994; Gravemeijer & Cobb, 2006). This theory includes a learning
trajectory that is based on mathematical, psychological, and didactical insights about how
researchers expect the children to progress towards an aspired level of reasoning. In line
with the emergent perspective on learning (paragraph 2.5.2), such a progression should
take into account both the cognitive development of the individual students, as well as the
social context (i.e., people, classroom culture and type of instruction) in which the instruc-
tion experiment is to take place (Cobb & Yackel, 1996; Gravemeijer & Cobb, 2006). In
practice, a local instruction theory encompasses an instructional sequence, as well as a de-
scription of the coinciding learning processes, the classroom culture, and the proactive role
of the teacher.

The local instruction theory may inspire other researchers and teachers to implement the
instruction experiment in their own settings as a way to evaluate and contribute to the de-
velopment of a more encompassing theory (Gravemeijer, 2004). Since complete replica-
bility is not necessarily desirable or possible, it is the trajectory towards revising and im-
proving the instructional sequence, that is key to generating knowledge about children’s
learning (Simon, 1995). In fact, differences in learning ecologies (e.g., teachers, tasks, and
materials) and their role in influencing the impact of the instructional sequence, may ulti-
mately contribute to the ecological validity of the research (Gravemeijer & Cobb, 2006).

The cyclical process that characterizes design research (Gravemeijer, 2004) is illustrated
in Fig. 3.1. To come to a local instruction theory, researchers conduct thought experiments
to define a hypothetical learning trajectory (HLT, Simon, 1995) that shapes the design of
each activity in the instructional sequence and that determines the type of data that is to be
collected. Then an instructional sequence is tried out during an instruction experiment, ret-
rospective analyses are performed on the transcripts from these sessions, their hypothetical
learning trajectories are adjusted accordingly in a thought experiment, and the instruction-
al sequence is improved to cohere with the revised hypotheses. Finally, the procedure is
repeated by trying out the new instructional sequence in a subsequent cycle, and by learn-
ing from the class-experiences to, once again, begin the next thought experiment.

38



Methodology

Conjectured Local Instruction Theory

Thought Experiment Thought Experiment Thought Experiment

Instruction experiment Instruction experiment

Fig. 3.1 The cyclical procedure of design research (Gravemeijer, 2004)

Design research is characterized by the interaction between data analysis and theory de-
velopment. At the level of analyzing the raw data, Jacobs, Kawanaka and Stigler’s (1999)
model of the cyclical analytical process for analyzing video data illustrates the (re)orga-
nizing, (re)examining, and (re)coding of data that occurs in one cycle of analyses. In Fig.
3.2, we embed Jacobs et al.’s (1999) model into Gravemeijer’s (2004) relatively theoretical
model to come to a more encompassing schema that describes the intricate interactive pro-
cesses of data analysis that are essential for theory development in design research.

In design research, the RME design principles (see section 2.5.1) interplay to help the re-
searcher find ways of supporting students’ progressive mathematization (Gravemeijer,
Bowers, & Stephan, 2003). Regarding guided reinvention, the researcher anticipates the
thinking trajectory that children may experience during a particular activity. Inspired by
practical classroom experiences or by prior knowledge from literature, the researcher de-
fines a learning trajectory, and develops instruction activities that can guide the students
towards the learning goals.

In the initial stages of conceptual mathematization, the context of the instruction activities
must at least be “realistic”. This implies that the context is meaningful to the children al-
though it may not be set in a real world. The setting may even be a mathematical one. Yet,
as higher levels of conceptual mathematizing are approached, the context must be experi-
entially real so that students can validate and test the mathematical concepts and ideas in
more real life settings.
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Emerging Local Instruction Theory

1 >
/ (re)organize \
(re)code (re)examine

Instruction experiment Instruction experiment Instruction experiment

Fig. 3.2 Figure of the model that integrates Jacobs et al.’s (1999) model of the cyclical analytical
process for analyzing video data with Gravemeijer’s (2004) model for describing the cumulative cyclic
process of design research

Hence, rather than searching for a context that suits a particular mathematical problem that
must be covered in class as dictated by the mathematics curriculum, the researcher should
first look for phenomena that “beg to be organized” and that trigger mathematical ques-
tioning (Freudenthal, 1991). For this, the researcher must engage in a didactical phenom-
enological study to investigate what and how phenomena are organized by mathematical
concepts or procedures (Gravemeijer et al., 2003). Such knowledge can then contribute to
defining a hypothetical learning trajectory.

Taken together, the researcher’s assumptions about the students’ learning trajectories, cou-
pled with the search for experientially real contexts, should help find ways to model stu-
dent’s informal strategies. In turn, these mediating models should support the formalization
of children’s mathematical conceptions and operations along the four levels of learning (Sit-
uational, Referential, General and Formal, see section 2.5). These design research guide-
lines underlie the design of the interview tasks and instruction activities in our research.

3.1.2 Differences with traditional experimental designs

It is important to understand the differences between the design research methodology and
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traditional experimental design so that the choice for design research is grounded from the
start of the research (Collins, Joseph, & Bielaczyc, 2004; Shavelson, Phillips, Towne, &
Feuer, 2003). In comparing qualitative and quantitative methodologies, it becomes appa-
rent that the two research traditions have strong reasons for adhering to their particular
methodologies. The quantitative methodology in a traditional experimental setting, for ex-
ample, results in quantitative findings that have the advantage of allowing the aggregation
and generalization of data (Strauss & Corbin, 1998). Factors that are essential in a con-
trolled experiment are the random allocation of the participants to experimental condi-
tions, identifying and controlling key variables and excluding others, providing a particu-
lar treatment to the experimental group while holding other variables constant for all
groups of participants, comparing control and experimental groups after the treatment, and
generalizing the results (Cohen, Manion, & Morrison, 2007).

Purely quantitative methodologies cannot adequately accommodate design research out-
comes for several reasons (Van Nes & Doorman, 2006; Van Nes, in press). One reason is
that the complex qualitative data has to be reduced and transcribed to a more manageable
amount before any analysis can take place (Strauss & Corbin, 1998). Strauss and Corbin
(1998, p. 13) highlighted the need to organize the raw data in qualitative data analysis,
since the process of organizing itself contributes: (a) to building rather than testing theory,
(b) to providing researchers with analytic tools for handling masses of raw data, (c) to hel-
ping analysts consider alternative meanings of phenomena, (d) to being systematic and
creative simultaneously, and (e) to identifying, developing, and relating the concepts that
are the building blocks of theory. In this way, the type of data that is to be collected in de-
sign research should help the researcher gain insight into behavioral patterns that may con-
firm or challenge the hypotheses and contribute to answering the research questions
(Gravemeijer & Cobb, 2006; Powell, Francisco, & Maher, 2003).

Another reason why a quantitative methodology can be inadequate for design research, is
that, to keep the complex qualitative data manageable, a qualitative study is limited in size,
with not enough data to perform generalizable statistical procedures (Strauss & Corbin,
1998). Given the small-scale and often exploratory type of studies in qualitative design re-
search, it is also challenging to guarantee external validity of emerging (theoretical) con-
jectures (Jacobs et al., 1999). This is because qualitative analysis “draws on both critical
and creative thinking” and relies on “the interplay between researchers and data” (Strauss
& Corbin, 1998, p. 13). In theory, qualitative researchers may enlarge their pool of data,
but in practice, the time-consuming data collection and analyses often place limits on the
size that the study can grow to.

A question is whether it may be desirable to study mathematics education from a tradition-
al experimental perspective (Freudenthal, 1991; Schoenfeld, 2000). Statistical analyses in-
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dicate whether significant difference exist in performance between the two groups. This
methodology depends on prior theories and hypotheses as well as on previously developed
and validated measures (Jacobs et al., 1999), which contradicts the exploratory theory-
building that is inherent to trying to understand the complex processes that arise during in-
structional interventions. As a result, such outcomes have limited value in design research
where the object of the research extends beyond establishing merely whether or not an in-
tervention works. The value of small-scaled design research is that it acknowledges the
complexity of a learning ecology and therefore allows for an in-depth analysis of an in-
structional setting to generate a theory about why the instructional design works and how
it may be adapted to new settings (Cobb et al., 2003).

After interpreting the qualitative design research methodology against traditional experi-
mental methodologies, we conclude that the formative (rather than confirmative) charac-
teristics of design research are most appropriate for answering the research questions (Col-
lins, Joseph & Bielaczyc, 2004).

3.2  Setting
3.2.1 The participating children

The instruction experiment was conducted in one of the four Kindergarten classes of a lo-
cal Jenaplan elementary school. The class consisted of 21 children ranging in age from
four to six years. The children came from mixed social and cultural backgrounds, several
of whom spoke Dutch as a second language. The children’s school standardized test scores
were very heterogeneous. The children mostly scored in the highest and lowest percentiles
with very few scores in between. This concerned the school director and he therefore wel-
comed research that could improve the level of mathematics education at his school.

The pre- and post-interviews were conducted with the children who participated in the in-
struction experiment (i.e., the intervention group, “1G”) as well as with a comparable Kin-
dergarten class (i.e., the non-intervention group, “NG”) of 17 children who only participa-
ted in the pre- and post-interviews and not in the instruction experiment. Even though this
group is not a strict control group, it was included in the research to increase the data set
for at least developing and analyzing the interviews and the strategy inventory. In addition,
the analyses on the 1G children’s post- compared to pre-interview performances could be
enriched by seeing whether these outcomes showed any striking differences with the out-
comes of the NG. The teachers of the NG were not informed about the instruction experi-
ment that was conducted in the IG class. Instead, they continued teaching the standard cur-
riculum, and the teachers of the 1G group were asked to not talk about their experiences in
the instruction experiment.
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Five children in the 1G were appointed as a focus group. The focus group sessions were
intended to supplement the classroom discussion with more detailed observations of chil-
dren’s strategies and social interaction (Cobb, Stephan, McClain, & Gravemeijer, 2001).
These sessions also provided the children with more opportunities for social interaction
that could evoke a greater variation of strategies. Based on experiences in previous explor-
atory studies, the focus group consisted of five instead of seven children. A smaller focus
group was expected to minimize distractions and improve the quality of the work. The five
focus group children were selected on the basis of several criteria. Most importantly, the
children had to have shown evidence of a spatial structuring ability that fit the description
of the second (Recognition) and third (Usage) phases in the pre-interview (see Chapter 5).
Children who fit the Recognition phase, recognized regular spatial structures, but did not
make use of these structures to abbreviate numerical procedures such as determining, com-
paring and operating with small quantities. Children who fit the Usage phase not only re-
cognized particular spatial structures, but also made use of available structures to circum-
vent unitary counting procedures. What differentiates these children from children in the
fourth (Application) phase, is that they did not yet show their own initiative to spontane-
ously apply structure to unstructured arrangements of objects in a goal-directed effort to
abbreviate numerical procedures.

The reason why Recognition phase and Usage phase children were selected for the focus
group, is that these children were expected to benefit from the instructional setting for
learning to make use of spatial structures within the time frame in which the instruction
experiment was to take place (cf. Siegler, 2005). It would require much more time and in-
struction to support children in the first (Unitary) phase, who could not yet count resulta-
tively and synchronously. Conversely, fourth (Application) phase children were apparently
already at the level of strategy usage that the other children were expected to reach through
participating in the activities in the instruction experiment. Other selection criteria for the
focus group were that the children were between 4.5 and 5.5 years old, that they had re-
sponded openly during the pre-interview (e.g., no language barriers), that the group would
consist of both boys and girls, and that the parents of the children gave permission for not
only involving the children in the research, but for also having it recorded on video. Final-
ly, the selection of children was based on the teachers’ impression of which children they
thought would be a good representation of the class.

3.2.2 The Jenaplan school

The school that participated adheres to the Jenaplan teaching approach. According to Jena-
plan principles, children take part in several classroom activities and discussions through-
out the day, but the emphasis is on letting the children work and learn at their own pace.
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This implies that the children are used to working in small groups. The teaching is based
on what is called “world orientation” which means that it focuses specifically on what the
child needs to cope in society. As such, much of the work concerns projects that relate to
real life situations and that emphasize interactions between the children and the position
of the child in the world (Van Noorden, 2005).

This teaching approach at the school is important to take into account when interpreting
the activities. At one point, for example, the teachers suggested that the classroom activity
should not take too much time nor require too much effort on the part of the children be-
cause the children are not used to long centralized discussions. They preferred to work in
small groups. Indeed, towards the end of the classroom discussions, several children were
asking when they were allowed to “work”, making reference to small projects that they
wanted to get back to. This was spurred on by the fact that the children’s age and develop-
mental levels were sometimes so different that the classroom discussions could not always
keep all the children involved at the same time anyway.

The children’s experience with working on theme-related projects resembles how, in line
with the principles of RME, the activities in the instruction experiment were set in a context.
The context was important to support the children in their understanding of how spatial
structuring can help them solve numerical problems. Moreover, in agreement with the
Jenaplan teaching approach, a context was important to relate the activity to real life situ-
ations as a way to give meaning to the questions that the teacher was asking. Hence, the
RME and Jenaplan perspectives converge in the way children are regarded as the construc-
tors of their own knowledge in practical, real-life settings. However, the Jenaplan back-
ground of this school was not the reason for including this school in the research; the
school was one of the few schools in the area that welcomed researchers and that was open
to suggestions for improving their mathematics education.

3.2.3 The role of the teachers in the instruction experiment

Two teachers were in charge of the intervention group. Teacher Alice? taught the class for
the first three days of each week and Teacher Tracy taught the class for the remaining two
days. The teachers performed the same instruction activities in both rounds of the instruc-
tion experiment. To prepare for the instruction experiment, the teachers were provided
with a manual that described in detail the aims, requirements and instructions for each of
the instruction activities (see Appendix 5). This manual was also used to discuss each of
the activities with the teachers before the instruction experiment. After introducing the

1. All names of participants in this thesis are anonymized
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principles of RME, the manual outlines the instructions, the procedure and the questions
that the teacher can ask the children during the activity. This procedure allowed the re-
searcher time to prepare the teachers and to help them become aware of the important con-
textual and conceptual connections that exist between the instruction activities. This made
the teachers responsible for guiding the classroom discussions.

The teachers took their role very seriously and asked critical questions about the theoreti-
cal background of the activities. The teachers made suggestions about how the activities
could work better in their classroom setting. These suggestions also gave an impression of
the classroom social norms which later helped to interpret the outcomes of this instruction-
al experiment. One particularly important suggestion concerned the duration of the class-
room discussions. Since the children were used to working in small groups, the teachers
preferred to use the classroom discussions as an introduction to the activity before continu-
ing in smaller groups for a more effective setting with in-depth discussions.

Based on this suggestion, each of the classroom discussions was conducted in a way that
would introduce the children to the activity without requiring too much continuous atten-
tion and time. The implication for the research is that the classroom discussions could not
be expected to result in as much in-depth analysis as was originally anticipated. That could
occur more in the focus group. On the other hand, it strengthens the ecological validity of
the research because this instructional setting is more true to typical classroom social
norms such as the types of interactions and discourse that normally occur.

3.3 Procedure

3.3.1 The pre- and post-interviews

To answer the first research question, several interactive tasks were compiled that the chil-
dren performed on two separate occasions (the pre- and the post-interviews) in a one-on-
one interview setting with the researcher (see Appendix 2). The development of the inter-
view tasks will be described in Chapter 4. The outcomes of the pre-interview were to con-
tribute insight into a general developmental trajectory for children’s ability to recognize
and make use of spatial structures in numerical procedures (see Chapter 5). They also of-
fered an important starting point for gauging the children’s initial approaches to the tasks
and the role of their prior instruction therein. The post-interviews were meant to gain in-
sight into the influences of children’s participation in the instruction experiment on their
advancements in spatial structuring ability.

45



Chapter 3

The interview technique was based on the clinical research method, proposed originally by
Piaget and elaborated later for educational research purposes (Van Eerde, 1996). By asking
the child to perform tasks and answer questions in a non-standardized setting, the research-
er can gain insight into how the child approaches a particular problem (e.g., Battista et al.,
1998). Next to observing the children’s behavior, the researcher may ask additional ques-
tions to ascertain the observations and to encourage the children to elaborate on or to clar-
ify their explanation (Van den Brink, 1989; Van Eerde, 1996). This offers children a chance
to rephrase their explanations or to rethink and reflect on their answers. It also gives them
the benefit of the doubt about whether, for example, they may have made an unsystematic
or careless error that would otherwise give a wrong impression about their actual level of
understanding. These qualities of the interactive setting contrast with a paper-and-pencil
setting in which the questioning occurs less flexibly. As a result, much of (young) chil-
dren’s conceptual knowledge may remain obscure.

Each child was interviewed by the researcher for 20-30 minutes in a separate room where
the video-camera was installed and the activities were set out on the table (Fig. 3.3). All
the children performed every task, and both the pre- and the post-interviews spanned a
two-week period. The understanding between the researcher and the child was that the in-
terview would be conversational in style; the researcher told the child that she was curious
to know how the child solved the questions, she encouraged the child to explain his/her
thinking as he/she was working, and she casually responded to the child’s comments and
stories while manoeuvring the focus back to the interview task.

Fig. 3.3  The video set-up for the interviews
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The researcher made use of a script of the opening questions for each task. These were
asked identically in each interview (see Appendix 2). Our experiences in the exploratory
studies had helped to formulate these questions in a way that would encourage the children
to interpret them properly and to increase the chances of answering the question correctly.
As soon as the researcher noticed that the child misunderstood the question, the question
was clarified without providing any additional information. When it became apparent that
the questions were too difficult for the child (usually the youngest children during the pre-
interview), the task was simplified and the researcher made note of the changes in the
script for the analyses. The researcher proceeded analogously when the tasks did not seem
challenging for the child (i.e., for several bright and/or older students).

As the researcher was taking notes of what the children were saying and of how they were
rearranging the objects, the children were given the opportunity to correct the researcher’s
interpretations and to explain why they approached the task in their particular way. Al-
though children typically vary in the types of strategies that they use to solve a problem,
and although studies have suggested that such reflection can further stimulate the chil-
dren’s learning (Siegler, 2002; Cheeseman & Clarke, 2007), our objective was to gain a
general impression of the children’s level of spatial structuring ability through an as valid
as possible interview procedure.

Due to the circumstances, only one researcher was available to conduct the interviews.
Still, the value of having only one person, is that it added a consistency in following the
script and in asking additional questions. It also offered the opportunity to spend a consid-
erable amount of time with each of the participating children which contributed to the va-
lidity of the data collection. The researcher took great care to follow the script and to keep
the interviews separate from each other. That is why we only reflected on the interviews
and started analyzing the videos after every child had participated.

Every additional question that was asked after the standardized question in the script, was
meant to gain as much insight into the child’s conceptual knowledge of the problem as pos-
sible. This supported the intricate process of analyzing the children’s responses in light of
the strategy inventory. This inventory was developed during the exploratory studies to
chart the strategies that the children applied to solve the interview tasks (Chapter 4, see Ap-
pendix 4), giving an impression of the children’s level of spatial structuring ability and
number sense.

3.3.2 The instruction experiment

In parallel with studying the developmental trajectories of children’s spatial structuring

47



Chapter 3

ability, we designed a hypothetical learning trajectory and a corresponding instructional
sequence to answer the second research question. This sequence was tried out with the in-
tervention group during two rounds of an instruction experiment. The first round included
six activities while the second round was adjusted to five activities (see Chapters 6 and 7).
These rounds spanned two weeks each, and they were conducted in between the pre- and
post-interviews. The purpose of this instruction experiment is (a) to better understand how
children learn to make use of spatial structures for abbreviating numerical procedures such
as determining, comparing and operating with small (up to 10) quantities, and (b) to high-
light ways to improve the instructional sequence so that the instruction activities better in-
terweave with the children’s mathematical reality, and promote spatial structuring to sup-
port children’s numerical development.

Several meetings were held with the two teachers to discuss the general plan for the study.
During the first meeting, the researcher asked the teachers of both the intervention and
non-intervention groups to create mind maps of the constructs “number sense” and “spatial
thinking”. This was before the intervention group teachers were informed about the focus
on spatial structuring in the instruction experiment. The idea was to get an impression of
how the teachers interpreted these constructs, how their approaches to the constructs dif-
fered, and whether or not and in what way their approaches may be reflected in their teach-
ing. The mind maps are discussed in section 9.4.

A two-week period was reserved for the instruction experiment to minimize disruptions by
other school activities or holidays. The activities were also scheduled during schooltime
(early in the morning or after playtime) to keep the children most concentrated. Before
each session, the researcher met with the teachers to discuss and prepare the instruction
activity. The total time for preparing, performing and discussing the activity took approx-
imately one hour. Following the activity, the teacher was asked to complete a questionnaire
about her impression of the classroom session and the activity itself. This debriefing was
important to develop a shared interpretation between the researcher and the teacher about
what was happening in the classroom (Gravemeijer & Cobb, 2006). The teacher included
the activity in her notes to the other teacher so that the teachers could relate the activities
to each other. The researcher reflected on the activity by working out the field notes into a
report and by using this report to prepare for the next session.

Each activity in the instruction experiment started with a classroom discussion. The chil-
dren were sitting on their chairs in the middle of the classroom in a U-shaped arrangement,
facing the teacher who was sitting on her chair. The camera was set up just behind the
teacher to record the expressions of the children as they responded to the activity. The
teachers prepared the activity for themselves before the session and they made use of the
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manual to guide them through the activity during the session. The teacher agreed to end
the classroom discussion as soon as she noticed that the children lost their interest and con-
centration. The researcher, in turn, was free to interrupt with suggestions for questions that
could help to optimize the activity.

The role of the researcher during the classroom discussions was to observe and take notes
of the class performing the activity, to coordinate the data collection and to provide sug-
gestions for improving the discussion or the classroom interaction. This time, in contrast
to the previous exploratory studies, the researcher guided the focus group while the teacher
entertained the rest of the class. The researcher was fully in charge of the focus group, be-
cause teacher effects were sometimes noticed in the exploratory studies (e.g., “pulling”
rather than “guiding” the children towards a particular solution, without reflecting on the
meaning of the activity). The disadvantage of not having the teacher present during the fo-
cus group sessions, however, is that the researcher had to put in more of an effort to keep
the children disciplined and focused on the tasks.

The researcher’s active involvement in standing by the teacher during the instruction ex-
periments did not go unnoticed. Considering the impact of being a stranger and onlooker
with a camera in a classroom, the researcher therefore decided to make use of her role and
interact with the children whenever that was appropriate. When children turned to her to
show her how they had solved a task, for example, the researcher responded encouraging-
ly. Sometimes she also asked the children questions from behind the camera when an op-
portunity arose for stimulating the children’s thinking, which the teacher could not attend
to at that time. The children became less intimidated by the camera, as they became in-
creasingly comfortable with the researcher’s presence in class.

The focus group sessions immediately followed the classroom discussions. In two of the
sessions, the researcher took the focus group into a different room so that the rest of the
class could continue working in the classroom, and in the other sessions the focus group
stayed in the classroom while the rest of the children went to play outside. In the focus
group setting, the researcher asked the questions, described the context, and guided the
children in discussing the role of spatial structure in each of the activities. One child was
absent during the fourth activity and another child missed the classroom discussion about
that activity. The researcher ended a focus group session as soon as the discussion was be-
coming fruitless with the children being too tired and distracted. Typically, this happened
after about twenty minutes. After each focus group setting, the researcher recapitulated the
session with the teacher, gave the teacher a questionnaire with questions to reflect on the
session and the instruction activity, and wrote a report about the classroom and focus group
session, with an analysis of the instruction activity itself.
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The time between the first and the second round of the instruction experiment was neces-
sary for conducting retrospective analyses. This involved revising the hypothetical lear-
ning trajectory (HLT) and the instruction activities based on analyses of the field notes,
analyses of the videos using ATLAS.ti (see section 3.4), the teacher’s suggestions, more lit-
erature, expert meetings, and a better formulated research perspective. This resulted in five
improved activities that were tried out in the second round of the instruction experiment
(see Chapter 7). The second round of the instruction experiment was performed in the
same way as the first round. In preparing the teachers for the second round, the researcher
highlighted the differences between the design of the activity in the first compared to the
second round. In the debriefing talk, she also asked the teachers whether they found that
the activity had improved and, if not, what further revisions they would suggest. Two
months after the instruction experiment, the teachers were interviewed to determine what
they retained from the intervention and whether they continued to perform similar activi-
ties with a focus on spatial structuring (see section 9.4).

Intervention Non-Intervention
Group Group
Pe | —— — — — — — | pre
Instruction
Experiment
Focus
Group
i v
Post | & — — — — — — — | Post

Fig. 3.4  The chronological procedure for performing the interviews and the instruction experiment

Taken together, the data gathered from the interviews with the teacher, the two rounds in
the instruction experiment and the reflective analyses, all serve as input for more insight
into how the instructional setting can support the development of children’s spatial struc-
turing ability. Fig. 3.4 summarizes the chronological procedure for the interviews and the
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instruction experiment in the study. The vertical arrows indicate the progression of the
study from pre-interviews to post-interviews, with the addition of the instruction experi-
ment and focus group for the intervention group. The curved arrows indicate the compar-
isons between the outcomes of the pre-interviews and the post-interviews between and
within the 1G and NG (see Chapters 5 and 9). The dotted horizontal arrows indicate the care-
ful (i.e., not controlled) comparisons between the pre-interview outcomes and the post-in-
terviews outcomes of the 1G and NG.

3.4 Dataanalysis

The children were video-taped during the interviews and the classroom instruction activi-
ties. This resulted in more than fifty hours of video recordings. The multimedia data ana-
lysis program ATLAS.ti was an essential tool for organizing the raw video data. This visual
qualitative data analysis software program allows for the interactive coding of rich text,
image, audio and video materials. After importing raw data in the form of, for example, a
video, screenshots or scans of written work into the program, the researcher can organize
the data in ATLAS.ti by segmenting the data into “quotations” (i.e., video clips or “mean-
ingful chunks”; Stigler, Gallimore & Hiebert, 2000). By adding comments to quotations,
creating codes to label the quotations and linking the appropriate codes to specific quota-
tions, we could make sense of how the children were solving the problems, how they were
developing in their understanding, how the researcher, the teachers and the instruction ac-
tivities had played a role in this development, and how proactive individual and classroom
instruction could ultimately support the children’s learning. The insights were supplement-
ed with data from the debriefings with the teachers and reflections on the interviews with
the children and the classroom activities.

3.4.1 Multimedia video data analysis in the interviews

In analyzing the interviews, the focus was on the types of strategies that the children used
to solve the tasks before compared to after participating in the instruction experiment. The
children’s responses to each of the tasks in the interviews were classified using the strategy
inventory (see also Chapter 4). The strategies are listed in the order of their complexity so
that each strategy can be interpreted as a particular level of sophistication in the children’s
spatial structuring and numerical ability.

The role of ATLAS.ti in this part of the research was to provide a mould for organizing the
raw video data, as well as for helping to create a user-friendly and reliable method for co-
ding the interview questions. We used the program as follows:
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(1) We segmented each main question in the interviews into one quotation.

(2) We entered each category of the strategy inventory into the program as a preliminary
list of codes.

(3) We analyzed the interviews by linking the relevant codes to each quotation.

The coding procedures supported the tracing of general trends in children’s level of strat-
egy use. This contributed to insight into variations in young children’s spatial structuring
abilities that outline a developmental trajectory for children’s spatial structuring ability
(see Chapter 5).

3.4.2 Multimedia video data analysis in the instruction experiment

Compared to the deductive analyses of the interviews, the analyses of the instruction ex-
periment were inductive. ATLAS.ti helped to configure and organize the often large
amounts of raw qualitative data into quotations that mark critical events. This occurred in
the following steps.

Defining the unit of coding and clipping quotations. Several studies have suggested ma-
king quotations of each activity (Stigler et al., 2000), lesson event (Clarke, 2003), or epi-
sode (Andrews et al., 2004). The unit of data that is appropriate depends, however, on the
nature and goals of the research. Stigler and colleagues (2000), for example, studied cross-
cultural differences in teaching patterns and devised a coding scheme based on the activi-
ties in a classroom session. Clarke (2003) analysed the same data in terms of the “form”
and “function” of various lesson events across more than just one lesson. In response to
Clarke, Andrews and colleagues (2004) stated that such lesson events are too broad and
that, instead, cross-cultural studies, for example, can suffice with coding episodes within
one lesson. These studies aim to compare several lessons across several studies. Our re-
search is more limited in scope because it concerns one classroom at one school. There-
fore, we settled on using codes that illustrate whether, and if so, how each of the children
that took part in the instruction experiments met the observation criteria.

Observation criteria are descriptions of how, based on literature and on the previous ex-
ploratory studies, the instruction activity is expected to proceed in terms of how the chil-
dren respond to the instruction activities and what teachers can do to improve the learning
ecology (see sections 6.2 and 6.4). These observation criteria are defined in terms of both
verbal (e.g., the child may say “it looks like the five on dice”) and nonverbal behaviors
(e.g., the child arranges the eggs into two rows of three). Hence, the unit of coding the vid-
eos of the instruction activities was based on the observation criteria. This implies that the
intervals of footage vary in length and can be part of an activity, an episode (defined as “a
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sequence of observed interactions, negotiations and activities with a single didactic or
managerial purpose”; Andrews et al., 2004, p. 7), or a lesson event (defined as “a form of
classroom interaction occurring within a lesson, but at a level of social complexity greater
than just a statement or action taken by an individual; Clarke, 2003, p. 10).

Defining codes and supercodes. The codes and supercodes (i.e., clusters of codes) that
were defined during the analyses for Round 1, concerned the child, the teacher, or the re-
searcher. Examples of the codes are “the child makes a connection to a preceding instruc-
tion activity”, “the child expresses insight verbally”, “the teacher makes a supportive re-
mark”, and “the researcher re-formulates the question”. The supercode “creating links” re-
fers to the collection of codes that relate to connecting insights between and within
activities. Most of the codes and supercodes were already defined after the analyses of
Round 1. This spurred the analyses of Round 2 because the coding could begin as soon as

an episode was clipped.

Refining the codes. As the coding continued, it became apparent that more focus was put
on particular codes and less on others. Some codes became less essential in the second than
in the first round, while inspiration for other codes kept emerging from the second round.
For example, in Round 2 we coded less thoroughly whether the children were distracted
and we focused less on the difference between the teachers’ teaching styles because the
focus was more on instances that related to the activities and spatial structuring of the chil-
dren. Apparently, during the first round of analyses, far more codes were differentiated
than was necessary or relevant for answering the research questions.

Towards tracing behavioral patterns. Multimedia data analysis can relieve researchers
from the cognitive strain that may be associated with trying to keep track of all the thoughts
and observations that could be shaping the conjectures and contributing to the theory. This
coincides with the method of constant comparison (Glaser & Strauss, 1967; Strauss &
Corbin, 1998) which was applied to systematically reflect on the codes to assess their rele-
vance to the research questions. In this method, incidents of participants’ activity are do-
cumented and compared to one another to give rise to general themes or patterns. The pro-
cess of constantly comparing incidents to current conjectures leads to ongoing refinements
to the theoretical categories that are developed from the data. Indeed, as more behavioral
patterns emerged in the data, so-called memos were defined which served as notes of our
developing conjectures. These memos joined similar observations and ideas throughout
the instruction experiment.

Refining, organizing and analyzing the memos. The defining of memos continued during
the analyses of the second round of the instruction experiment. With an increasing number
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of quotations that fit particular codes and memos, several memos started to overlap (e.g.,
memo “type of question” and “questioning”) so we combined some of them to elucidate
the coding process. The memos themselves were linked to each other in the same way that
the codes and supercodes had been linked. A diagram of the corresponding network helped
to define and focus on the physical and theoretical connections between the clips and on
the conjectures that emerge during the process of organizing and making sense of the data
(Fig. 3.5). Importantly, such a network view is as close to a “picture” for answering the
research questions as it can get using ATLAS.ti. Although working with the program took
an excessive amount of time, the final outcome was not a presentation of the theory for
answering and providing illustrations for all the research questions. Still, the long-term ad-
vantage of using this program outweighed its short-term tediousness because each time the
data was analyzed or prepared to share with others, the quotations and descriptions made
it significantly easier and less time consuming to find those particular instances that were
referenced.

€3 LA: Stelt hoofdvraag {109-1}~
Leerkracht

Stelt een hoofdvraag, geeft een
opdracht:

Een vraag volgens het instructieboekje
Een vraag die zelfstands staat en reet
per se gesteld wordt om de essentie van
de activiteit te verduidelijken

A

£3 K: Onjuist antwoord {37-2}~
Het kind maakt des] uit van de focus Kind
groep

$3 K: Focusgroep {286-2}~
Kind geeft een antwoord dat niet juist is
(en als basis dient voor verdere

» discussie):
. Telt 5 stippen als &
Zet niet het juiste kind in de rij
Pakt een eierdoos met 6 eieren om de 5
te laten zien

is part of

«
» is cause of

. H K €3 K: Inzicht in de taak Niet {64-5}~
$3 K: Groep 1 {297-1}~ 5 ' S Kind begrijpt de taak niet, kjkt geen
Hetkind dat reageert zit in Groep 1 " r inzicht in de essentie van de activiteit te
hebben of heeft geen antwoord.

..

[1:11] Activiteit 1_Raad mijn Regel.w..

Fig. 3.5  An example of a network of nodes for the quotation 1:11 in Activity 1, “Guess my Rule”.
Each node signifies a code that is attached to this quotation and two sets of nodes are linked to each
other (“is cause of” and “is part of”) to illustrate their underlying relationship

Towards theory generation. The entire process of first organizing and coding, then re-co-
ding, noting patterns in memaos, condensing, expanding and redefining memos greatly con-
tributed to the theory generating process that marks this design research. Through con-
stantly comparing the rapidly growing list of memos, differences were noticed in the way
that the various memos could be prioritized. It was decided to categorize the list, which up
to now consisted only of memos, and change the memo type either to commentary, memo
or theory (Fig. 3.6).
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A commentary is a type that is broader than a code because it acts like a piece of notepaper
for the researchers’ thoughts. The commentary refers to one and possibly more instances
that are interesting to keep in mind, but that are still difficult to make sense of or to place
in the research perspective. A memo is type that refers to logistic issues and to issues that
should be kept in mind while developing the theory. A theory is a type that directly con-
tributes to the theory generating process of the research. It is supported mostly by memos
and illustrated by quotations.

Commentary-type memo:
Dori repeatedly confuses the 6 and the 9. Is this because she is making counting errors?

Memo-type memo:
The teacher makes use of the children’s confusion to explain the essence of the activity to
the whole class

Theory-type memo:

The context generates surprise and enthusiasm, the teacher creates a mysterious and excit-
ing setting, the children are keen to participate in the activity, they refer to the context spon-
taneously

Fig. 3.6 Examples of the three types of memos (commentary, memo and theory) as defined in
ATLAS. ti for the instruction experiment

The more the clips were studied and the codes and various types of memos were shuffled,
the more it put weight on the theory-type memos, and the more the theory-type memos
converged towards a coherent understanding of how the instruction activities contributed
to answering the research questions. This iterative process resulted in the articulation of
learning moments (see section 6.2 and Chapter 8). Learning moments are a collection of
observations (i.e., quotations contributing to a theory-type memo) that either contribute to
the conjectured learning moments (section 8.1) or supplement them with perspective
broadening insights (section 8.2). Finally, during reflective analyses, these learning mo-
ments were summarized into nine broad cumulative learning insights that underlie the hy-
pothetical learning trajectory (section 8.4), and that contribute to a local instruction theory
for supporting the development of young children’s spatial structuring ability.

3.5 Research validity and reliability

A wealth of intricate data resulted from the interviews and the instruction experiment. In
the following paragraphs we describe the measures that were taken to ensure the validity
and reliability of the instruments and the analyses of this data. Validity may be defined as
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the absence of systematic bias, and reliability as the absence of unsystematic bias (Maso
& Smaling, 1998). Each paragraph relates first to the analyses of the interviews and then
to those of the instruction experiment.

3.5.1 Validity

The internal validity of the research concerns the quality of the data collection and the cred-
ibility of the outcomes. We first discuss the interviews. The reasoning behind the design of
each interview task and the underlying theoretical framework is discussed in sections 4.2
and 4.3. Several measures were taken to prevent self-fulfilling prophecies from influencing
the analyses. The analyses of the interviews began by noting observations that were of in-
terest to the research incentives. Only later were the episodes reinterpreted with regard to
the specific research questions. In addition, the children’s individual analyses were con-
stantly compared to each other to keep using the strategy inventory in the same way for
each child. Expert researchers were also regularly consulted, and interpretations were com-
pared to interpret the episodes from different perspectives. Since the purpose of the study
was mainly to develop a theory (rather than to test a hypothesis), as much input as possible
was gathered. This helped to attend to both converging and diverging observations.

To improve the quality of the data collection and the accuracy with which the conclusions
were drawn for internal validity of the interviews, we discussed our experiences with try-
ing out the tasks with different children of varying age levels, and we compared the se-
quence of tasks with similar studies. Children’s general level of performance on the tasks
also agreed with their performance on two standardized tests: the Leerling Volgsysteem
Test (Lvs) and the Utrecht Numeracy Test (UNT; Van Luit, Van de Rijt, & Pennings, 1994).
The Lvs test is a standardized school based assessment with tasks that cover shapes, clas-
sification, seriation, comparisons, counting and numbers. The UNT is a standardized test
that covers topics such as comparing, classifying, correspondence, seriation, using count-
ing words, synchronized and shortened counting, resultative counting, and applying num-
ber knowledge. During one of the exploratory studies, each child completed the UNT in an
additional half-hour session. The children’s Lvs scores were provided by the teacher. In-
sights about some of the children could sometimes also be supplemented with the teachers’
impressions.

We acknowledge that other factors outside of the pre- and the post-interview will influence
children’s development. Similarly, the children’s development in age and experience in be-
tween the two interviews cannot be ignored. Yet, regarding threats to the internal validity
of the interviews, the non-intervention group was included to highlight that outside factors
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will influence both the intervention and the non-intervention groups. Despite the non-con-
trolled research setting, by qualitatively studying the interview outcomes of both groups,
we looked for possible differences in the group’s performance regarding their spatial struc-
turing development in particular.

It was assumed that the children would not remember the details of the interview questions
after a period of four months, and that this would result in minimal testing effects. Even if
the children would recognize the contexts and the questions in the tasks, this would be
equally the case for the intervention group as well as the non-intervention group. Some of
the quantities that were involved in the tasks were also changed to certify that the children
would have to give different answers from the pre-interview. This is in line with preventing
statistical regression because no more difficult questions were structurally devised for the
post-interviews. Rather, the same level of difficulty was kept, while ways to simplify the
questions or to challenge the children were defined. We expected statistical regression be-
cause the aim of the interviews was to gauge children’s spatial structuring ability up until
the last phase in the development of spatial structuring ability (see section 5.2). Children
whose repertoire of strategies fit this phase, appeared to be prepared to develop more formal
mathematical procedures based on a strong foundation of spatial structuring ability. In this
research we were particularly interested in children who had not reached this stage yet and
who might benefit from instructional support to develop their spatial structuring ability.

Regarding the internal validity of the instruction experiment, the observation criteria were
approached with a questioning attitude (see section 3.4). Since the unit of coding was
based on observation criteria that were devised for the purposes of the instruction experi-
ment, it would be tempting to focus only on these criteria and to neglect other behaviors
that may add to the observation criteria or challenge the criteria and the conclusions that
we would draw. Since the observation criteria are a part of our theory (i.e., what is expected
to be observed as children learn), open-mindedness was necessary towards what kind of
behavior in the videos may be indicative of children’s learning processes. This corresponds
to the developmental characteristics of design research in which the data itself can revise
and improve our theory.

Considering the external validity of the interviews, we acknowledge that the interview set-
ting will offer a moment’s impression of a child’s mathematical understanding. Neverthe-
less, the process of developing the tasks and constructing the strategy inventory occurred
at three different schools, with children from six different classrooms who participated
both alone and sometimes in pairs and who ranged in age from four to six years. Moreover,
the interviews evolved on the basis of tasks that have been evaluated and reported in pre-
vious research, and many of the strategies that are listed in the inventory can be traced back
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to generally accepted developmental trajectories of particular mathematical abilities of
young children (e.g., the counting stages, Gelman & Gallistel, 1978). Further, many of the
issues that were encountered during the process of creating the inventory (e.g., identifying
and distinguishing components of spatial structuring ability and number sense), are sup-
ported by other research (e.g., Van den Heuvel-Panhuizen & Buijs, 2005; Mulligan et al.,
2005).

The interview contains questions that repeatedly tap a particular ability within spatial
structuring and number sense, in various contexts, at different instances during the inter-
view, and in different words. Together, the collection of codes for the strategies that the
children used to solve these questions should provide a general impression of the chil-
dren’s spatial structuring ability and number sense. In this respect we agree with Bruce and
Threlfall (2004), who in their research have suggested a developmental sequence in the
cardinal and ordinal aspects of number, and who conclude that the developmental levels
may raise:

... awareness of what may have preceded and what may follow the current approach used by
the child, so that appropriate input and intervention can be shaped to enable the child to move
forward. (p. 24)

Finally, the children’s performance on the post-interview and their participation in the
classroom instruction activities during the instruction experiment should shed more light
on their performance during the pre-interview and contribute to the external validity of
both interviews.

As only three schools (two pilot schools and one for the instruction experiment) took part
in this research, we contend that the outcomes of the research cannot yet be generalized.
Instead, the study is an exploratory (rather than confirmative) study into the learning tra-
jectories of the children at this particular school. Still, the interaction between this specific
instructional setting and the researcher strengthens the ecological validity of the study. The
conclusions that are drawn deduce from the observations so other researchers can under-
stand the reasoning that underlies the conclusions that are drawn. This should contribute
to the trustworthiness of the research: “the reasonableness and justifiability of inferences
and assertions” (Gravemeijer & Cobb, 2006). To approach generalizability, the next step
in the research is to adapt the learning trajectory to other classrooms, by studying the ef-
fects in those settings and by revising the trajectory accordingly.

Ultimately, the integration of the outcomes of the trajectory as tried out in various settings,
should contribute to a conjectured local instruction theory about young children’s spatial
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structuring ability. In time, the final instruction activities could be tested in a larger scaled
traditional experimental setting to determine differences in effects on students’ learning
due to their participation in the instruction experiment.

3.5.2 Reliability

To determine the internal reliability of analyzing children’s performance on the interviews
using the strategy inventory, several interrater reliability analyses (Cohen’s Kappa) were
conducted with expert colleagues. This occurred on various occasions throughout the de-
velopment of the inventory (see section 4.3). Much time was spent discussing any discrep-
ant scores so that remaining ambiguities in the strategy inventory could be removed. Fur-
ther, the large data set that resulted from the combined intervention and non-intervention
group’s pre- and post-interview outcomes, contributed to the creation of an increasingly
reliable and refined strategy inventory.

For the instruction experiment to come to internally reliable results, we combined several
data sources through a method called triangulation; collecting data either from various
sources (data triangulation), through various methods (method triangulation) or by various
people (researcher triangulation), to approach the research situation from more than just
one, relatively subjective or instantaneous, perspective. As such, the primary data sources
in the instruction experiment consisted of video recordings of each of the instruction ac-
tivities, the questionnaires that the teachers completed for debriefing, the log that was writ-
ten about what happened during the activity, and additional notes from discussing the ac-
tivity with the teacher before and after the session. The data from these sources was ana-
lyzed against the background of the research questions and the insights from the pre-
interviews.

Regarding the external reliability of the research, it is necessary to establish the “trackabi-
lity” of the conjectures (Gravemeijer, 1994; Gravemeijer & Cobb, 2006; Maso & Smaling,
1998); the research is documented in such a way that it could be retraced or virtually rep-
licated (Maso & Smaling, 1998) by other researchers. This elucidates how the research
was conducted, what choices were made and for what reasons, what conclusions were
drawn from what kinds of observations, and how this affected the local instruction theory.
Working with ATLAS.ti contributed to the reliability of the research because the quotations
made it easier to mark and refer to specific events and instances during the interview and
instruction activities. As described in section 3.4, the use of ATLAS.ti helped to organize
the data and keep track of the theory development. Moreover, the progression of the design
was regularly discussed with experts to reflect on experiences in the classroom and to eval-
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uate the choices that were subsequently made. Such explicit and justifiable reasoning was
necessary for such discussions to be fruitful.

In the next chapter, we discuss the development of the conceptual schema that is based on
the literature review of Chapter 2. This underlies the design of tasks for an interview and
an inventory for charting the types of strategies that the children used to solve the tasks.
The development of the interviews and the inventory, together with the analysis as de-
scribed in Chapter 5, contribute to answering the first research question about what spatial
structuring strategies children use to solve spatial and numerical problems.
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4 Developing a Conceptual Schema, the Interview Tasks,
and the Strategy Inventory

This chapter marks the beginning of the development of a plan for the study. In the first
section we describe how an outline of the conjectured relationship between spatial sense,
number sense, and young children’s spatial structuring ability was made based on the li-
terature review as outlined in Chapter 2. This initial conceptual schema was fundamental
to the design of the interview tasks and the strategy inventory, which are discussed in sec-
tions 4.2 and 4.3. The process of revising the interview tasks and refining the strategy in-
ventory, shed more light on the role of spatial structuring ability in the development of nu-
merical insight. This is reflected in the final conceptual schema that is presented in section
4.4,

4.1 Relating spatial sense and number sense through spatial
structure

To organize the ideas about how young children’s spatial structuring ability may be related
to their emerging number sense (Chapter 2), we studied relevant research (e.g., Griffin &
Case, 1997; Van den Heuvel-Panhuizen & Buijs, 2005), discussed our ideas with experts
and observed Kindergarten children at a local elementary school as they performed spatial
and numerical tasks during one-on-one interviews. Our general perspective on how spatial
sense, number sense and spatial structure may be related is summarized in the first version
of the conceptual schema as in Fig. 4.1:

Spatial sense \ / Number sense

Spatial structure

Fig. 4.1  The first version of a conceptual schema relating spatial sense to number sense through
spatial structure

A second version of this conceptual schema was necessary to clarify that the supposed in-
fluence of early spatial sense on the development of number sense is (a) but one of many
possible influences, and that (b) the influences may be reflexive. Another factor that plays
an important role in the development of both spatial sense and number sense, is language.
The words and symbols that children learn to use, offer them a tool to, for example, express
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their thinking and communicate their reasoning (Hughes, 1986). Language also bridges
children’s conceptual understanding and promotes the development of vocabulary; the
more children know how to use language to verbalize their insights, the more they can
evaluate their own insights in light of those of others, and the richer their understanding of
mathematical ideas becomes (Freudenthal, 1984; Van Eerde, Hayer, & Prenger, 2008).
This illustrates the mutual relationship between mathematical abilities and language.

Another factor that deserves attention in the conceptual schema, is the influence of, for ex-
ample, early perceptual subitizing skills for recognizing parts of a whole spatial structure
to facilitate conceptual subitizing (Clements, 1999a). In addition, children must have mas-
tered at least a resultative level of counting if they are to learn to make use of spatial struc-
tures to move away from unitary counting procedures (Battista et al., 1998). To cover such
external influences and to clarify that the focus of the study (i.e., fostering children’s spa-
tial structuring abilities) is one of many possible factors that can support the development
of number sense, we proposed a second version of the conceptual schema (Fig. 4.2):

— Spatial structure
Insight into For organizing and
° apattern recognizing configurations
* an arrangement like finger patterns or the
*a C_OHStI’UCtIOH P | arrangement of dots on a die
* afigure
Early spatial sense Early number sense
Emerging Numerical relations for

(1) determining a quantity

(2) comparing quantities

(3) basic addition and
subtraction

(1) spatial visualization
(2) spatial orientation
(3) shape

Other factors
(e.g., language)

Fig. 4.2  The second version of a conceptual schema that specifically relates early spatial sense,
early number sense, and spatial structure, while acknowledging influential effects of other factors
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The ongoing process of revising this conceptual schema, contributed greatly to the tuning
and refining of the research focus; it provided insight into how the three components of
early spatial sense relate to spatial structuring, and, in turn, how spatial structuring could
influence the development of number sense. It also inspired the development of an inter-
view to gauge children’s spatial structuring and numerical strategies.

4.2 The interview tasks

Based on the research literature, discussions with experts, and the conceptual schema, a
sequence of tasks was designed for a one-on-one interview setting. The original purpose
of conducting the interviews was to chart and gain insight into the strategies the children
used to solve spatial structuring and numerical tasks. This was to indicate the extent to
which a child made use of spatial structures for abbreviating numerical procedures in the
interview tasks (cf. Battista et al., 1996, 1998; Mulligan et al., 2006a). The strategy inven-
tory contributes to answering the first research question about what spatial structuring
strategies children use to solve spatial and numerical problems (see section 5.3). Although
the development of the interview tasks and the strategy inventory are indissolubly connect-
ed, we focus in this section on the explorations that were involved in designing the inter-
view. The details of the strategy inventory are described in section 4.3.

4.2.1 Designing the interview tasks

The process of constructing the interview involved iterative cycles of designing the tasks,
trying them with several children, reflecting on the observations in light of the conceptual
schema, revising the schema if necessary, incorporating the children’s strategies into the
initial strategy inventory, and adjusting the tasks so that they would reflect more of chil-
dren’s conceptual knowledge about spatial structuring and number sense.

The first period of the development was particularly important for exploring the setting of
the research in terms of questions such as what level of mathematical reasoning can be ex-
pected from 4-, 5-, and 6-year olds, what level and type of language do children of this age
typically use, what level and type of language can they be expected to understand, and
what kinds of differences exist in how kindergartners are approached within and across
classrooms. It was also necessary to explore what contexts are experientially real for these
children so that the interview tasks would be meaningful and inspiring to them (section
2.5).
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With more experience in working with kindergartners, the focus shifted towards impro-
ving the quality of the tasks and constructing an inventory of the types of strategies that
the children used to approach the tasks. The first set of tasks was divided into a sequence
of spatial tasks and a sequence of number sense tasks that were to gauge the children’s spa-
tial sense and number sense. The tasks were administered in two separate half hour ses-
sions. The number sense tasks involved comparing quantities, counting and dividing up
quantities, sequencing numbers, adding quantities, and determining large quantities. The
spatial tasks involved mosaics, constructing with blocks, counting blocks, determining a
route, and classifying shapes. The choice for these mathematical concepts and processes
was based on previous research (cf. Battista & Clements, 1996; Bruce & Threlfall, 2004;
Clements et al., 1999b; Owens, 1999; Van den Heuvel-Panhuizen, 2001; Van den Heuvel-
Panhuizen & Buijs, 2005) and discussions with experts. Each task was embedded in an ap-
pealing context that was meaningful to the children. A script was made of the questions
(Appendix 2).

We discuss the first number sense task as an example of how the tasks were evaluated and
revised with regard to the first try-outs. In the first task, two blue sheets of paper represent-
ed two ponds. A number of ducks were swimming in the ponds in either a structured or an
unstructured arrangement. The children were to determine in which pond the greatest num-
ber of ducks were swimming (Fig. 4.3). Most children only used the area that was taken
up by the ducks to compare the quantities. What was missing from the task was a standard
counting question. That would guide the focus of the interview tasks more towards deter-
mining quantities rather than perceptual comparisons.

&
o >

Fig. 4.3  Astructured and an unstructured example of an arrangement of ducks in a pond. Children
are asked to compare the number of ducks in each pond

In the revised activity, the children were asked to determine the number of ducks in the
pond and to explain how they came to their answer. The 5, 6, 7, or 8 ducks were placed
either in a structured or an unstructured arrangement in the pond. The reason for choosing
these quantities is that the five and six can directly be related to familiar spatial structures
such as dice configurations (cf. perceptual subitizing, Clements, 1999a), while the 7 and 8

64



Developing a Conceptual Schema, the Interview Tasks, and the Strategy Inventory

challenged the children to search for and to construct their own structures (cf. conceptual
subitizing, Clements 1999a). For determining smaller quantities, the children were expect-
ed to rely more on their perceptual subitizing (i.e., recognizing a quantity without using
other mathematical processes) rather than on their conceptual subitizing skills (i.e., recog-
nizing a pattern based on higher-order organization of a composite of parts; Clements,
1999a). Larger quantities were included to maximize the chance that all children within
this age range would succeed at determining the quantities either by unitary counting or by
spatial structuring strategies.

The activity about comparing quantities was revised to contrast the spatial structures more.
In the previous version of the comparison task, children could easily see the difference be-
tween four and five ducks in the pond because one of the ducks was missing in the middle
of one pond. This time the spatial structure for four ducks, for example, was changed to
three ducks in a diagonal with one on the side. This configuration required more mental
manipulation and quantity comparison than just a perceptual comparison between the two
sets of ducks (cf. Clearfield & Mix, 2001; Wood & Spelke, 2004).

In summary, what became clear through analyzing this activity, is how strongly related
specific characteristics of a task and children’s resultant behavior are. Hence, in designing
the tasks, instead of concentrating mainly on what kinds of tasks cover the important com-
petencies that are inherent to early spatial and number sense, the focus had to lie more on
what kind of behavior the task would invoke. Hence, the reciprocal question was what kind
of behavior would provide sufficient insight into children’s understanding of certain math-
ematical concepts and the strategies that they use to solve the tasks. As such, the next step
in the developmental process was to study the behavior and language that the children used
to solve the tasks. We then had to determine which types of behavior best reflect children’s
spatial and number sense, and examine whether this type of behavior was appropriately op-
erationalized in the tasks.

To illustrate this developmental process of designing tasks and reflecting on their rele-
vance for the research, we note how the set-up for the interviews was initially concentrated
on the two general domains of space and number (see the upper part of the conceptual
schema in Fig. 4.18). Literature studies inspired the conjecture that early spatial abilities
could play a stimulating role in the development of number sense based on observations
and literature about children’s remarkable early spatial sense (e.g., Ness & Farenga, 2007).
Yet, this research focus was still very broad, so we started looking for ways to narrow down
the research scope.
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After testing several practical adjustments to the tasks, we became increasingly intrigued
by the role that spatial structures may play in determining and comparing quantities. Some
children, for example, explained how they determined or compared quantities by making
reference to how the objects were arranged. Moreover, some children described how they
abstracted a structure to elucidate the process of determining a large quantity. At the same
time, some children could “see” and conveniently make use of a particular structure in one
context, while they became confused in another context. There also appeared to be a
marked distinction between recognizing and actually making use of a particular spatial
structure in a task. Some children recognized six if it was presented to them in an arrange-
ment such as the dice configuration. Yet, when asked to arrange the objects in such a way
that someone else could “easily see” that there are six, these children would not spontane-
ously make us of the dice configuration. Instead, sometimes they would leave the objects
as they were, in a pile or in a line, and revert to unitary counting procedures, explaining
that that was an “easy way to see how many there are”. This may imply that the children
did not understand the question. In general, however, children who not only seemed to be
familiar with spatial structures, but who also made an effort to use the structures, tended
to perform better on the interview tasks than children who were not familiar with the struc-
tures or who did not apply the structures.

Observations such as these motivated us to narrow down the research focus; they inspired
the investigation into whether and how children’s spatial structuring ability could be cul-
tivated to foster early numerical abilities such as determining and comparing quantities. In
practice, this meant that the operationalization of each task was evaluated in terms of its
relevance to spatial structuring ability. A task about ordinality, for example, became rela-
tively less relevant to the research than patterning tasks. From this perspective, a series of
tasks was developed that involved the essential components of the number sense and spa-
tial sense domains in terms of spatial structuring. Hence, the spatial and numerical tasks
were no longer separated and the tasks were administered in one interview session.

Throughout the process of developing the interview tasks, we teased out the spatial structur-
ing abilities that are necessary for recognizing, using, and extending spatial structures (i.e.,
patterning), and the number sense abilities that are necessary for determining, comparing,
and operating with small quantities. These form the foundations of the strategy inventory,
which was used to analyze the children’s strategies on the interview tasks (see section 4.3).

4.2.2 The resultant sequence of interview tasks

In this paragraph we discuss the resultant sequence of interview tasks and describe their
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contribution to the research. To highlight the distinction between recognizing spatial struc-
tures, knowing how to use readily available spatial structures, and knowing how to spon-
taneously apply spatial structures to abbreviate numerical procedures such as determining,
comparing and operating with small quantities, the interview started with several assess-
ment tasks (see Fig. 4.4 for an outline of Part 1 of the interview). First, the children were
asked to show “how well they could count to fifteen”. This task was to assess children’s
counting ability while it usually also broke the ice and encouraged the children to share
their reasoning with the researcher (see section 3.3 for details about the procedure).

Flashcard Task

Underlying Question

General Evaluation

Quantities up to 15

Can the child count to 15?

Errorless and without guidance,
but with room for corrections

Finger patterns

9

Does the child recognize the fin-
ger patterns? Can the child pro-
duce finger patterns him/
herself?

Recognizes and can produce
the 1 to 6 and 10 finger patterns

Dice configurations

(]
R

Does the child recognize dot
configurations on dice?

Recognizes all the dice configu-
rations, but may have trouble
with the 5-structure

Corners of shapes

AOOCO

Does the child recognize the
number of corners in a shape?

Recognizes at least the triangle
and square. The pentagon and
hexagon provide additional
information about insight into
symmetry for double-structures
(e.g., “3 corners here and the
same on the other side makes
67)

Structures composed of two
sets of 3 and two sets of 4
dots

Does the child recognize dou-
ble-structures of dots?

Provides additional information
about the child’s insight into
compositions of structures

Fig. 4.4
ticular spatial structures

Part 1 of the interview: flashcards were used to evaluate children’s ability to recognize par-
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A set of flashcards was used to determine which children recognized what types of spatial
configurations. This set included eight cards with three to ten raised fingers for recogniz-
ing finger patterns, four cards with either a triangle, a square, a pentagon or a hexagon on
them, and four cards, each with three to six dots structured as dot configurations on dice.
Since one and two are trivial quantities, they were omitted from the configurations. The
cards were presented one-by-one for no longer than three seconds. This was enough to see
whether the child recalled the spatial structure or whether the child had to count each of
the fingers or dots unitarily to determine the quantity.

Assuming that the children are familiar with most finger patterns, these were presented
first to them. Then the children were asked to raise their own fingers to show four and six.
We took note of the spontaneity with which they showed a particular finger pattern. Next,
the cards with the dot configurations were presented and the children were asked to deter-
mine the number of dots on the die. For each of the geometric shapes on the cards, the chil-
dren were to determine how many corners the shape has. In this task, we were particularly
interested in observing whether the children counted each corner, or whether they were fa-
miliar enough with the shape to either recall the number of corners (as in the case of the
triangle and square) or to apply gestalt-like principles for analyzing the shape, recognizing
symmetry, and for abstracting the quantity through conceptual subitizing (Clements,
1999a). One child, for example, explained how she saw three corners on one side and three
on the other, and reasoned that that makes six corners in total. The last two tasks in the
flashcard section were included to challenge the children in abstracting a particular spatial
structure from a relatively unfamiliar arrangement. One card pictured six dots that were
arranged in two groups of three, and the other card pictured eight dots that were arranged
in two groups of four.

Fig.45  Noddy the Dwarf ®, the main character of the interview tasks, with block houses
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Part 2 of the interview involved the interactive tasks that were developed to gauge chil-
dren’s spatial structuring and numerical strategies. First, Noddy the Dwarf® was intro-
duced to the children (Fig. 4.5). Noddy is a toy that accompanied the children as they
worked on the tasks. The idea behind involving Noddy is that children tend to feel more
comfortable when they can share their ideas with a toy rather than with a relatively intim-
idating researcher (c.f. Van den Heuvel-Panhuizen & Buijs, 2005).

The story was about Noddy the Dwarf® who went to pick flowers to decorate his home
for his birthday party. The children were first asked to use a finger pattern to show that
Noddy had turned eight years old. In the meantime, the researcher arranged four sets of
plastic flowers on the table in front of the child (Fig. 4.6). The top-left set contained five
flowers, the bottom-right set had twelve flowers and the flowers of both sets were placed
in an unstructured group arrangement. The top-right set contained eight flowers, the bot-
tom-left set had eleven flowers and the flowers of these sets were arranged in a structure:
two rows of four and three rows of three with two on the side.

LR R K

¥ wud B

L
>
»

LR

&

 J
&
*®

Fig. 4.6 The flowers in a task that required the children to determine, compare and operate with
structured and unstructured quantities

The questions in this task originate from the task with ducks in a pond that was discussed
in paragraph 4.2.1. The first question was about helping Noddy find the group that con-
tained eight flowers, which is just as many as his age. Then the child was asked to find the
group(s) that contained more than eight flowers. Both questions were aimed at observing
how the child determined and compared quantities. The researcher asked as many addi-
tional questions as necessary to understand what strategy the child had used.

For the third question, the four groups of flowers were removed and replaced with a bunch
of five flowers. After first asking the child to determine how many flowers were in this
bunch, the next task was to determine how many flowers would be necessary so that the
bunch would have twelve flowers. After recognizing and using structures in the first three
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questions, the child was expected to possibly be more aware of using spatial structures to
simplify the procedures. This implied that the child would either physically or mentally
add-on flowers to come to a total of twelve. The child may, for example, count using the
fingers or physically or cognitively add flowers. Alternatively, the child could apply a dou-
bling strategy with two sets of five flowers and add another two flowers to come to twelve.

Finally, the child was asked to arrange the group of eight flowers in a way for Noddy to
also quickly and efficiently be able to see that there are eight flowers. For this question,
the child was not only expected to recognize and make use of spatial structures, but also to
spontaneously apply spatial structures to an unstructured arrangement. This would be a
way for the child to communicate insight and understanding of the convenience of spatial
structuring.

The questions for the second task revolved around Noddy’s house. Two houses were con-
structed out of Duplo® blocks (Fig. 4.7). Both houses were made up of ten blocks but the
blocks of one house were structured while the other house was unstructured. In this con-
text, “structured” implies a degree of symmetry and a pattern in how the layers of blocks
are placed on top of each other. The structured house in this task was made up of three lay-
ers of two rectangular blocks, topped with a layer of one rectangular block, two squared
blocks and another squared block. The unstructured (i.e., asymmetrical) house was just as
wide and tall as the structured house, but with the blocks piled up in a way that made it
difficult to understand the construction.

Fig. 4.7  Two side views of the structured (to each left) and unstructured (to each right) block con-
structions

This task illustrates the practical connection between spatial insight into a construction of
blocks and ways to determine a quantity (Clements & Sarama, 2007; Ness & Farenga,
2007). It resembles the task in Battista and Clements’ (1996) research in which the aim was
to describe how students’ spatial thinking is related to their enumeration strategies as they
dealt with 3-D rectangular arrays of cubes. In the first question, the children were asked
which of the two “houses” they thought was larger. The children’s explanations could show
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how they perceived the houses and whether or not they took note of the structures. Next, the
children were asked how many blocks they thought would be necessary to build Noddy’s
(i.e., the structured) house, and then his neighbor’s (i.e., the unstructured) house. The pur-
pose was not for the children to count the blocks, but rather to see whether just by examining
the structure of the structured house, they could find a way to determine the quantity.

Only after they attempted to determine the quantity without pointing to the blocks, were
the children allowed to count the number of blocks. The children’s counting procedures
give an impression of the extent to which the children recognized and made use of the spa-
tial structure of the structured house and whether they may have noted a difference be-
tween the two houses based on their structure. Finally, the children were asked to build
Noddy’s house using another set of blocks. The way the children approached this building
task offered another indication of whether the children were aware of the structure of Nod-
dy’s house, and whether they were able to make convenient use of this structure. Finally,
the children were asked to also rebuild the neighbor’s (unstructured) house. This was ex-
pected to be a more challenging task for the children. Therefore, the last question was to
compare the two houses to stimulate a discussion about the convenience of using structure
for building the construction.

The third interview task was a patterning task. Following Mulligan and colleagues
(2006a), we define a pattern to be a “numerical or spatial regularity”, while “the relation-
ship between the various components of a pattern constitutes its structure” (p. 209). Previ-
ous versions of this activity involved patterning with beads on necklaces, but the difficulty
with such a context was that the children remained too attached to the specific length of
the chain and to what they thought would look attractive, regardless of what the pattern
looked like. Instead, to fit Noddy’s context, the story in the present task was about his
birthday party. Noddy’s friends had lined up their dwarf hats outside the house (Fig. 4.8).

e A A9
A A A A AA A
V. A A A

Fig. 4.8  The three patterns of red, blue and white colored dwarf hats that the children were asked
to extend
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The problem arose when a gust of wind blew part of the line of hats away, mixing up the
order of the hats. The child was asked to help the dwarves reconstruct the line of hats so
that the dwarves could find their hat again (A. Roodhart, personal communication, July 11,
2006).

For each of the three patterns, the child was asked to describe to Noddy what the sequence
looked like (i.e., in terms of the colors of the hats) before the wind blew the hats away, so
that Noddy could continue the pattern by himself. The first pattern (a, b, a, b ...) was rela-
tively simple so that the children would quickly understand the task. The second one was
more complex in that the child had to see the variation in the number of blue hats in be-
tween the single red hats. The last pattern offered the child several options in that it could
be extended by increasing the number of the next elements (a, bb, ccc, dddd ...) or that the
sequence could start again from the beginning (a, bb, ccc, a, bb, ccc ...). Through discuss-
ing the pattern with the children, the researcher tried to understand whether the child rec-
ognized the structure that is repeated to create a pattern. As such, by having the children
describe the pattern, they were encouraged to think about and reflect on the characteristics
of the pattern. This highlights the importance of part-whole relationships in understanding
patterns and spatial structure (e.g., Mulligan et al., 2006a).

The third and final part of the interview (Part 3) involved a task on spatial orientation. The
reason for including this component in the interview was to see how the children perform
on the spatial structuring tasks relative to, not only their spatial visualization and shape
abilities, but also to their localization and navigation abilities. This was to gain additional
insight into other components of spatial orientation, apart from spatial structuring (Battista
& Clements, 1996; Battista et al., 1998; Clements & Sarama, 2007) that could be influen-
tial in the development of number sense. In this spatial orientation task, the children were
presented with a simple map of the Kindergarten classrooms (Fig. 4.9).

o

Fig.4.9  The map of the Kindergarten classrooms that was used for the spatial orientation task
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First, the map was discussed with the children so they could become familiar with its no-
tations. The children were then asked what room they thought the researcher was pointing
to on the map. Next, the children were asked to trace how they would walk from one par-
ticular room on the map to another. This requires the children to picture in their minds the
route that they normally take, and then translate that image to the the map (Van den Heu-
vel-Panhuizen & Buijs, 2005).

Although this task assumes a high level of spatial orientation, it offered a valuable oppor-
tunity for some children to show their competence on this aspect of the spatial tasks that
was not related to their performance on the enumeration tasks. If the questions for the tasks
were too difficult, the children were asked to point in the air in the direction of a particular
room in the school. This question was more accessible to most children because it elimi-
nated the step of translating a mental picture to a map. To conclude the interview, the chil-
dren were asked whether they had enjoyed the tasks, which task they liked best and whe-
ther or not they thought the questions were difficult.

4.3  The strategy inventory

As the tasks for gauging kindergartners’ spatial structuring ability and number sense were
(re)designed, an inventory was constructed of the types of strategies that the children used
to solve the interview tasks. This inventory became the instrument that served to chart chil-
dren’s spatial and number sense in terms of their spatial structuring ability. By comparing
the children’s repertoire of strategies in the post-interview to that of the pre-interview, we
also expected to gain additional insight into the development of children’s spatial structur-
ing ability in relation to their participation in the instruction experiment (see Chapter 9).
In this section we present some of the developments that were necessary to optimize the
reliability and validity of the inventory.

4.3.1 Creating the strategy inventory

The original list of strategies was compiled from a literature review (e.g., Battista & Clem-
ents, 1996; Bruce & Threlfall, 2004; Buijs, 2003; Gelman & Gallistel, 1978; Nunes & Bry-
ant, 1996; Siegler & Araya, 2005; Van Eerde, 1996). The strategies that were observed dur-
ing the exploratory studies contributed to elaborating this initial list so that strategies for
each type of task (e.g., counting small structured amounts) could be ordered from relative-
ly unsophisticated (e.g., pointing to each object and counting out loud) to more complex
(e.g., perceptive counting).
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First versions: Extensive, task related strategies within the two domains. Initially, the fo-
cus of the research was on the two broad domains of spatial sense and number sense.
Therefore, the inventory first contained a cumulative list of strategies for each interview
task within each of the two domains. With more experience in observing children’s ap-
proaches to the tasks, more details were included in the strategy inventory. The strategies
gradually became less specific to a particular task, and more oriented towards general as-
pects of children’s mathematical development. Fig. 4.10 is an excerpt from one of the first
versions of the strategy inventory.

Type of Task Strategy

Counting and Comparing Quantities | A | Guessing

Asynchronous 1-by-1 counting

C | Synchronous 1-by-1 counting by
i. pointing to the object
ii. moving the object aside

D | Resultative 1-by-1 counting by
i. pointing to the object
ii. moving the object aside

E | Applying configurations to

i. recognize a specific arrangement (e.g., dots on
dice)

ii. recognize 2 and 3 as 5 (subitizing)

F Arithmetic:

i. recognizing part of the configuration and adding on
the rest

ii. addition (3 + 3 =6)

iii. comparingsums (5+5=10but5+4=9s05>4)

G | Geometry:
i. comparing surface areas in structured situations
ii.comparing surface areas in unstructured situations

Fig. 4.10 Excerpt from one of the first versions of the strategy inventory: strategies relating to count-
ing and comparing quantities within the domain of number sense

Second versions: Task-independent aspects of children’s mathematical development. As
described in section 4.2, following the literature review and our experiences in the explor-
atory studies, we became increasingly interested in children’s spatial structuring ability.
This resulted in a shift from studying children’s behavior from the perspective of the spa-
tial and numerical interview tasks (e.g., counting and comparing quantities of ducks in a
pond), to studying children’s behavior from the perspective of more task-independent as-
pects of their mathematical development (i.e., numerical procedures such as the ability to
determine a quantity) and the role of spatial structuring ability therein (Fig. 4.11).
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Type of task Strategy
Determining a A | i. guessing, no idea
Quantity ii.unclear counting strategy

B | Asynchronous 1-by-1 counting by:

i. moving the object aside

ii. pointing to each object

iii. perceptive (by looking)

How:

i. out loud

ii.mentally

Order:

i. randomly

ii.systematically: rows or groups before single objects

C | Synchronous 1-by-1 counting by:

i. moving the object aside

ii. pointing to each object

iii. perceptive (by looking)

How:

i. out loud

ii.mentally

Order:

i. randomly

ii.systematically: rows or groups before single objects

D | Resultative counting by:

i. moving the object aside

ii. pointing to each object

iii. perceptive (by looking)

How:

i. out loud

ii.mentally

Order:

i. randomly

ii.systematically: rows or groups before single objects

E | Applying spatial structures:
i. subitizing (with < 3 or combinations such as 2 and 3 is 5)
ii. instantly recognizes the configuration (e.g., dice, “1 in the middle”)

F | Combined strategies:

i. abstracting the spatial structure and adding on the rest

ii. (repeated) addition (3 and 3 and 3 is 9) of configurations or already
counted rows; abbreviated counting of larger quantities

Fig. 4.11 Excerpt from the second version of the strategy inventory: the strategies that relate to de-
termining a structured quantity are identical to the strategies that relate to determining an unstructured

quantity

This change of perspective motivated revisions to the tasks to refine the operationalization
of the research focus on spatial sense and the development of number sense in terms of
children’s spatial structuring ability. Hence, each component of spatial sense and number
sense in the second versions of the inventory, consisted of a list of task-independent math-
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ematical concepts and procedures, and each of these topics was described by a cumulative
and increasingly detailed list of strategies.

Third versions: From detailed and overlapping strategies to theoretical concepts. As the
strategies became more and more specific, the strategies within one topic started to overlap
with strategies within another topic. Fig. 4.11 shows part of a version of the inventory
where, within the number sense domain, the strategies for determining structured quanti-
ties were identical to the strategies for determining unstructured quantities. In effect, these
strategies all relate to the overarching concept of cardinality. Hence, in the third versions
of the inventory, the topics were extrapolated further away from the specific tasks and
more towards the theoretical conceptualizations (section 4.1). This resulted in the follow-
ing mathematical concepts and procedures for the domain of number sense: cardinality
(i.e., distinguishing structured and unstructured quantities), creating structure, comparing
quantities, dividing quantities, and early arithmetic skills. For the domain of spatial sense,
the components were patterning, constructing, counting elements of a construction, per-
spective taking, and recognizing figures and shapes. This revised organization of the strat-
egies made it easier to trace the role of spatial structuring strategies in the number sense
and spatial tasks. Excerpt from the second version of the strategy inventory: the strategies
that relate to determining a structured quantity are identical to the strategies that relate to
determining an unstructured quantity

Fourth versions: Tracing the role of spatial structuring in both domains. In the fourth
version of the inventory, the spatial structuring strategies within each component were
marked with “s” (Fig. 4.12). Two important conclusions could be drawn from this. First,
the strategies that were marked, were typically categorized as the highest strategies within
a particular topic. This implies that children who made use of the most complex strategies
for a component, also knew how to make effective use of spatial structures. Moreover or
alternatively, this could mean that children who knew how to make effective use of spatial
structures, were successful at applying relatively complex strategies to solve a particular
task. Hence, this version of the strategy inventory contributed to an understanding of the
role of spatial structures in stimulating children’s performance on the interview tasks

The second conclusion that could be drawn from extrapolating the spatial structuring strat-
egies from the inventory, is that the spatial tasks concerning figures and shapes, perspec-
tive taking and orientation, in contrast to the tasks about constructing with blocks and pat-
terning, did not include strategies that were marked with an “s” and hence did not seem to
involve spatial structuring strategies. Moreover, some of the number sense tasks included
less spatial structuring strategies than others. Therefore, we reflected again on the concep-
tual schema and additional literature to improve the operationalization of spatial sense,
number sense and spatial structuring.
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Type of Task Strategy
Determining structured quantities | A i. guessing, no idea
Cardinality ii.unclear counting strategy
B Asynchronous 1-by-1 counting by:

i. moving the object aside
ii. pointing to each object
iii. perceptive (by looking)
How:

i. out loud

ii.mentally

Order:

i. randomly
ii.systematically

e.g., Rows or groups before single objects
Insight

i. not resultative

ii. resultative

C Synchronous 1-by-1 counting by:
i. moving the object aside

ii. pointing to each object

iii. perceptive (by looking)

How:

i. out loud

ii.mentally

Order:

i. randomly

ii.systematically

e.g., Rows or groups before single objects
Insight

i. not resultative

ii. resultative

D | S | Applying spatial structures:

i. subitizing

e.g., With < 3 or combinations such as 2 and 3 is 5

ii. instantly recognizes the configuration e.g., “like on
dice”, “1 in the middle”, “I've counted it with my fin-
gers once”

E | S | Combined strategies (mostly with >6 quantities):

i. abstracting the spatial structure and adding on the

rest

eg.,“4andlis5”"or“3and3and 1is 7"

ii. (repeated) addition of configurations or already
counted rows; abbreviated counting of larger
quantities

e.g.,“3and 3and 3is 9”

Fig. 4.12 Excerpt from the fourth version of the strategy inventory: the strategies that pertain to spa-
tial structuring for determining quantities within the domain of number sense are marked with “S”
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Van den Heuvel-Panhuizen and Buijs (2005), for example, define orientation and naviga-
tion, construction, and insight into figures and shapes as the three important components
of early geometry. The authors also differentiate measurement and geometry, stating that
measurement is closely related to numerical aspects of space, while geometry is aimed at
the development of skills in spatial visualization and spatial reasoning. This perspective
relates to our study because these components of early geometry are analogous to the spa-
tial visualization, spatial orientation and shape components of spatial sense that were de-
fined in section 2.2. As a result, we organized and clustered the interview tasks in the spa-
tial domain to cohere more with the components of spatial visualization, spatial orientation
and shape so that more strategies would relate to spatial structuring. Regarding the number
sense domain, the next version of the strategy inventory included components that were
specifically associated with spatial structuring within the number sense domain: determin-
ing quantities (cardinality), comparing quantities, applying spatial structure, and basic
arithmetic skills.

Final versions: Associating spatial structuring and number sense strategies. Consider-
ing the increasing focus on spatial structuring rather than spatial visualization, orientation
and shape in general, in subsequent versions of the inventory the spatial structuring strat-
egies were distilled from the number sense and spatial domains. This resulted in three clus-
ters of strategies in the inventory, one for the domain of spatial sense, one for number
sense, and the third for spatial structuring. The domain of spatial sense included strategies
that pertain to spatial visualization, spatial orientation, and shape. The domain of number
sense included strategies related to cardinality (e.g., determining unstructured quantities),
comparing quantities, and basic numerical skills (e.g., adding). The domain of spatial
structuring was defined according to the following general categories of strategies:

— Rest category.

- Uses no type of arrangement to simplify a procedure.

- Uses a type of arrangement to simplify unitary counting.

- Applies a type of organization for unitary counting.

- Applies a type of organization for unitary counting, but sometimes makes use of an al-
ready present spatial structure to determine a quantity.

- Makes goal-directed use of an already present spatial structure, and sometimes applies
structure spontaneously to abbreviate a numerical procedure (e.g., determining, com-
paring and operating with small quantities).

- Spatially structures spontaneously and in a goal-directed way to abbreviate a counting
procedure.

- Spatially structures spontaneously and in a goal-directed way to abbreviate an arithme-
tic procedure for relatively large (>6) quantities.
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- Uses arithmetic independently and in a goal-directed way without having to use the or-
ganization or spatial structure of objects that are physically present.
- Uses abstract structures in a goal-directed way to represent a quantity.

These changes to the design of the inventory marked the beginning of a shift away from
an inventory that focused on spatial sense and humber sense strategies in general with im-
plicit connections in terms of spatial structuring strategies. Rather, by comparing the clus-
ter of spatial structuring strategies to the numerical strategies, we could gain more insight
into the relationship between spatial structuring strategies and numerical performance.
This design helped to narrow the scope of the research to: investigating the role of spatial
structuring in the development of insight into numerical relations for number sense, as a
means to abbreviate numerical procedures such as determining, comparing and operating
with small quantities.

Along this process of (re)designing the strategy inventory, a point was reached where so
much detail was included in the strategies, that it became extremely difficult to use the in-
ventory as a practical and reliable instrument for scoring children’s behavior on the tasks.
Therefore, we tried to generalize the strategies by integrating the spatial strategies with the
spatial structuring strategies. This resulted in two new clusters of strategies, one describing
the domain of spatial structure and one describing the domain of number sense. After dif-
ferentiating spatial structuring strategies and number sense strategies, an attempt was also
made to combine the two lists of strategies into one with parallel codes as pictured in Fig.
4.13.

By limiting the number of strategies (“codes” for purposes of analyzing the data) to eight
(rather than the more than fifty codes and sub-codes which occurred at one point), we
could simplify the coding procedures to make it more accessible to other users and (there-
fore) contribute to the instrument’s reliability. What this new version of the inventory sug-
gests, however, is that the development of strategies concerning spatial structuring occurs
in parallel with number sense strategies.

Hence, although this design helped to make the instrument more user-friendly, the initial
interrater reliability analyses showed that it was not reliable enough. Apparently, too much
detail was eliminated from the original inventory, which confused raters’ understanding of
what characterizes the development of spatial structuring ability and how it may be related
to early number sense. The revisions for the final version of the strategy inventory are dis-
cussed in the next paragraph.

79



Chapter 4

and error) to act in a clear, but not yet an
abbreviated, way and to come to more accu-
rate conclusions

Code Spatial Structuring Number Sense
1 Too unclear to interpret
2 Has no idea of the problem or the way to approach the problem
3 Does not seem aware of organization as a | Counts asynchronously and not resul-
way to clarify an action tative and compares quantities usually
on the basis of perceptual factors
¢ Usually does not recognize spatial * Does not count systematically and
structures. therefore has difficulty keeping count
* Leaves the objects unstructured or moves (e.g., counts ten butterflies one-by-
them without an organizational purpose one and concludes that there are
(e.q., places objects into a shape “because eleven).
that's fun”). e Compares quantities only on a per-
* Has no attention for regularity in a pattern ceptual level, without actively reorga-
and can not verbalize the regularity. nizing the objects (e.g., compares the
general surface
areas and relative positioning of two
groups).

* Exaggerates a quantity in simple ad-
dition tasks (e.g., “there are some
missing, so there must be ten miss-
ing!”).

4 Applies a type of organization (usually by trial | Counts objects verbally from one to ten

usually synchronously and resulta-
tively by numbering them. Starts to
compare quantities on a numerical
basis

* Recognizes context-dependent spatial
structures for small quantities (e.g., finger
patterns representing a particular age; the
four on dice).

¢ Spreads out and organizes objects to clarify
a procedure.

* Sometimes recognizes characteristics of a
pattern, but still has trouble verbalizing them
(e.g., can name the correct colors of a pat-
tern but disregards the order of the colors).

* Counts and does arithmetic
context-dependently and more sys-
tematically to come to more accurate
results.

* Organizes and starts to estimate so
that quantities can be compared not
only on the basis of perceptual fac-
tors, but also numerical factors.
Sometimes compares groups by
physically relating the objects to each
other (e.g., “that group has one more
than that group, so that group is larg-
er’).

¢ Adds by counting all the objects and
adding the rest on. Does this with the
help of the objects and own fingers

Fig. 4.13 Excerpt of a final version of the strategy inventory in which the spatial structuring strategies
are listed together with number sense strategies for each code
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4.3.2 The final strategy inventory

In this paragraph, we discuss the version of the strategy inventory that was used to evaluate
children’s responses to the tasks in the pre- and post-interviews of the instruction experi-
ment. The full strategy inventory can be found in Appendix 4. Although this version in-
cluded less codes than other versions, it kept to the thoroughness of the earlier versions of
the strategy inventory by accompanying each code with as many illustrative examples of
the strategy as possible. This improved the reliability of the instrument; a final interrater
reliability analysis resulted in a very high Cohen’s Kappa value of 0.87.

The development of the strategy inventory is never completed. Even after conducting the
numerous exploratory studies, every newly observed strategy was incorporated into the list
during the instruction experiment. This is necessary for the list to become as conclusive as
possible, and to be able to draw inferences that are accurate and illustrative of how children
approached the tasks. As such, the strategy inventory is not only an instrument for gauging
children’s insight into numerical relations in terms of their spatial structuring ability. It also
forms the basis of a theoretical model about the development of spatial structuring ability
and its relationship to insight into numerical relations for arithmetic skills. Therefore, any
adjustments to the content and organization of the inventory contribute to a more thorough
and accurate theoretical description of this development.

In distinguishing spatial structuring strategies from number sense strategies, it became
possible to trace general mathematical conceptions and processes in both domains. We re-
fer to these as components of a domain. The components of the spatial structuring domain
are the ability to recognize, use, and extend spatial structures. These three components
agree with research on developmental trajectories in spatial structuring ability (e.g., Mul-
ligan et al., 2005). Children must first become familiar with spatial structures before they
can use or apply them to mathematical tasks. The flashcards in the interview helped to exa-
mine the extent to which the children spontaneously recognized particular spatial struc-
tures. The expectation is that, as soon as children recognize spatial structures, they may
come to use the structures that are readily available. Several tasks in the interviews in-
volved readily structured configurations of objects that could stimulate the child to make
use of the structure for determining or comparing quantities. Apart from recognizing and
using spatial structures, children should also learn to recognize structure in a pattern as a
means to extend the pattern (Waters, 2004). This ability is covered by the patterning task
in the interviews. The three components of the number sense domain are the ability to de-
termine, compare and operate with quantities to cover the essence of early numerical pro-
cedures (e.g., Griffin & Case, 1997).
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The strategies for each of the three components within both domains are listed in a cumu-
lative order. This cumulativity requires that if a child’s approach to a task is evaluated as a
particular strategy, then the child should have also mastered the previous strategies in the
list. In Chapter 5 we elaborate on the Overlapping Waves Theory (Siegler, 2005) to illus-
trate the learning progression that is implied in this cumulative compilation of strategies.
Each horizontal level of the inventory is labeled by a number, which is the code that iden-
tifies a strategy. Hence, for a particular component within either the spatial structuring or
the number sense domain, this code denotes the corresponding strategy that the child used
to approach the relevant task.

Importantly, although the strategies for each component within both domains are in col-
umns that are listed parallel to each other, they do not depend on one another. Hence, if a
child scores a particular code (i.e., a strategy) for one of the components in a domain, it
does not imply that the child will have used the same level of strategies on the other two
components or on the components of the other domain. Although it is likely that the chil-
dren will score in the same range of codes across the components, the key is to identify any
discrepancies. For instance, a child may score the highest code for recognizing a particular
structure, but at the same time score a lower code for how the structure is used to determine
a quantity. This gives insight into the extent to which the child recognizes spatial structures
compared to how the child’s spatial structuring strategies contribute to abbreviating nu-
merical strategies.

Main strategy Pp| Can compare quantities

* Knows that a number is greater or smaller
than a certain other number. Has integra-
ted counting abilities with the ability to
compare quantities (cf. Griffin & Case,
1997)

Sub-statement |

e.g., Counts a group of 8 and a group of 6
objects and knows that 8 is greater than 6

Example

¢ Can compare small groups on the basis of
their quantity

Sub-statement | 2

e.g., Seems to randomly identify the group
Example > of five objects as greater than the group of
eight objects, counts the groups, and con-
cludes that “that one has 5, so it's less than
the one with 8 in it”

v

Fig. 4.14 An example of a cell in the strategy inventory
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The main strategy is stated concisely in the top line of each cell (Fig. 4.14). The bullets in
the cell elaborate on the strategy. These sub-statements are accompanied by practical ex-
amples of what a child may have said or done to give the impression that the child’s ap-
proach may be defined by this particular code. As such, in evaluating children’s behavior,
the interpretation of the main strategy must be supported by at least one of the sub-state-
ments and by at least one of the examples.

Although the main research incentive of these interviews is to understand how the children
solved the tasks and to gauge children’s spatial structuring ability and number sense, it is
equally important to take note of how the strategy level coincides with the accuracy of the
child’s responses. We operationalized this type of mastery in terms of the accuracy of chil-
dren’s responses. A child may, for example, apply the most complex strategies to solve a
task, but fail to answer the questions accurately. Conversely, a child may answer all the
questions correctly while using relatively unsophisticated strategies. These behavioral pat-
terns have consequences for how the children’s level of strategy use should be interpreted.
As such, we differentiated three levels of mastery of an interview task (Fig. 4.15).

Code Mastery Description

1 Not mastered * The child understands what is being asked, but does not know how to
approach the problem.

e.g., To add flowers to a group, the child spreads out the flowers (i.e.,

an irrelevant strategy) and gives an incorrect answer.

* The child uses an appropriate strategy, but does not apply it pro-perly
to come to an accurate result.

e.g., To determine the number of flowers in a group, the child starts

counting the flowers, but asynchronously with an incorrect result.

2 Unclear * The child does not understand the question.

e.g., It is unclear whether the child has mastered the task because the

child’s answer or approach to the problem is unclear.

* The instructor’s guidance played too large a role to judge whether the
child understood the task and whether or not the child came to a cor-
rect/incorrect answer independently.

e.g., The child gets too much guidance with too many clues.

3 Mastered * The child (mostly, but possibly with some guidance) performs the task
correctly.

e.g., The child’s answer may first be incorrect, but the child may correct

the answer after the instructor asks a question to check the child’s

understanding (e.g., a careless error).

* The child understands the questions and uses an appropriate ap-
proach.

e.g., The child used a goal-directed strategy and did not guess the

answer

Fig. 4.15 Three levels of mastery for assessing the accuracy of children’s responses to the interview
tasks
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Children’s responses to the interviews were analyzed only after all the children had parti-
cipated in the interviews. As explained in section 3.4, the interviews were first imported
into the multimedia data-analysis software program ATLAS.ti so that quotations could be
made for every question in every task of the interview. These clips greatly simplified the
analyses because they could conveniently be retrieved without searching through the entire
video.

A score sheet was created to analyze the children’s response to every question. Due to the
evolution of the tasks, not every question corresponded to every component in both the
spatial structuring and the number sense domain. Extending a structure, for example, is
only relevant to the patterning task. Likewise, the third part of the interview, the orientation
task, could strictly only be assessed on accuracy because it did not involve spatial struc-
turing or number sense strategies. Therefore, the cells that were not relevant for scoring
were blocked out in the score sheet. Furthermore, the user-guidelines described the inten-
tion of each question and what strategies are considered most relevant to the task.

Using this score sheet to analyze every quotation and the field notes, the child’s approach
to every question was coded with respect to the relevant components of the two domains.
This resulted in a score sheet that was filled with numbers (i.e., the codes/strategies) that
give insight into a child’s spatial structuring ability and number sense regarding the tasks
of this particular interview. In Chapter 5 we describe how these score sheets were con-
densed to simplify the interpretation of the results.

4.4  The final conceptual schema

The process of designing the interview tasks and creating and refining the strategy inven-
tory, was initially based on the conceptual schema in Fig. 4.2. Yet, this version of the con-
ceptual schema was also continuously revised with respect to additional literature studies
and observations of children performing the interview tasks. In fact, the strategy inventory
served as an interpretative framework for redefining and refining ideas about the develop-
ment of spatial structuring ability and about relationships between early spatial sense,
number sense and spatial structuring. In this section we present the final conceptual sche-
ma that is the result of the development of the theoretical model that underlies the strategy
inventory and the interviews.

To support our argument, we outline the conceptual schema in three parts, the first of
which is presented in Fig. 4.16. This part (part A) of the conceptual schema acknowledges
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the domain of space and the domain of number as the foundations for young children’s
emerging spatial sense and number sense. In section 2.2, spatial sense was defined in terms
of three spatial components, namely spatial visualization, spatial orientation and shape.
These three components are interrelated, and each are considered fundamental to chil-
dren’s ability to “grasp the world” for making their way in space. Similarly, in section 2.1,
children’s ability to count and compare quantities was described as two main components
of their early number sense. These components underlie children’s ability to develop from
an intuitive notion of quantity and number to a more formal understanding.

m m
?D Spatial Domain Numerical Domain 5
g =)
=1 =
@ Spatial Spatial Counting Comparing ‘;
B Visualization  Orientation Shape Quantities Quantities 5
2 g
w -

w
2 3
® 3

v i i v

Fig. 4.16 Part A of the final conceptual schema: within the domain of space, spatial visualization,
spatial orientation and shape are defined as major components in the development of spatial sense.
Within the domain of number, counting quantities and comparing quantities are fundamental to the de-
velopment of number sense.

Each of the three spatial components contribute to children’s ability to (de)compose quan-
tities through spatial structuring (Fig. 4.17). By spatially visualizing a set of unstructured
objects, children construct a physical form or mental image that may be more structured
or familiar to them (Markovits & Hershkowitz, 1997). For example, in determining how
many buttons there are in a basket, at first sight the buttons may have no organization that
could help to determine the quantity. Yet, through physically or mentally rearranging the
buttons into a spatial structure, the children may refer to the image to discuss their strate-
gies. Similarly, through recognizing a particular shape or figure in a set of objects, children
can recognize a spatial structure. This may be the case when, for example, the child places
one button in every corner of a sheet of paper, recognizes the rectangular shape and re-
members that that is also what four dots on dice look like (cf. Clements, 1999a). Finally,
children may apply their spatial orientation skills to spatially structure their environment
to become aware of the different structures in their surroundings which may be applied to
organize objects for abbreviating numerical procedures such as determining, comparing
and operating with small quantities.

Spatial sense is sometimes associated with measurement (e.g., Van den Heuvel-Panhuizen
& Buijs, 2005), but measurement is different from spatial structuring because it involves
organizing a whole rather than abbreviating a numerical procedure through focusing both
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on the whole and on the unit (see also Freeman as cited in Clements, 1999a). This is why,
for purposes of this study, measurement is differentiated from spatial structuring ability.
Measurement can, however, become more relevant as a form of spatial structuring at a later
stage in mathematical development. When children learn about repeated addition and mul-
tiplication, for example, they must first be able to recognize and identify structure, in order
to be able to reason about its repetition (Anghileri, 1989; Steffe et al., 1988). This can be
compared to defining a unit of measurement and repeating (or multiplying) it to find a dis-
tance or a weight.

m Spatial Domain Numerical Domain m
2 :
% Spatial Spatial Counting Comparing ‘g-
@ Visualization ~ Orientation Shape Quantities Quantities g
o z
) 3
g i L g
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Fig. 4.17 Part B of the final conceptual schema: the three components of the spatial domain support
the development of spatial structuring ability while the integration of the ability to count and compare
quantities contributes to emerging number sense with insight into numerical relations.

In the numerical domain of the conceptual schema, the Central Conceptual Theory (Griffin
& Case, 1997; Griffin, 2004a, 2004b) underlies the assumption that development of an
overarching schema for counting and comparing quantities contributes to children’s num-
ber sense. This new conceptual structure for number “connects number with quantity and
enables children to use the counting numbers without needing the presence of physical ob-
jects to make a variety of quantity judgements” (Griffin, 20044, p. 40). In this way, chil-
dren are believed to acquire the conceptual foundation for number sense. As described in
section 2.1, an important part of emerging number sense is children’s insight into numeri-
cal relations. In light of the conjectured role of spatial structuring in the development of
insight into numerical relations and the importance of such insight for mathematical un-
derstanding, this part of number sense is the focus of the present research.

Part C in Fig. 4.18 combines Part A and Part B for an outline of the complete conceptual
schema that underlies the study. Children can gain insight into numerical relations by
learning to associate numbers with specific quantities so that they may, for example, com-
pare their magnitudes and consequently understand the meaning of numbers and operation
signs (Griffin, 2004a). This ability to (de)compose quantities is shared with the spatial do-
main in terms of spatial structuring ability (Battista et al., 1998; Mulligan et al., 2006b).

86



Developing a Conceptual Schema, the Interview Tasks, and the Strategy Inventory

Hence, as explained in Chapter 2, the central issue in this research is how spatial structur-
ing ability may support the development of insight into numerical relations (highlighted
by the darkest arrow in the figure). In Chapter 5 we explain how the development of insight
into numerical relations is operationalized, while the development of the instructional se-
quence illustrates the operationalization of spatial structuring (Chapters 6 and 7).

Spatial Domain Numerical Domain
Spatial Spatial Counting Comparing
Visualization ~ Orientation Shape Quantities Quantities

P——

‘ Spatial Structuring \

asuas [eneds Huibiawg
asuas Jaqunp buibiawg

Numerical Relations ‘

v Higher-order arithmetic abilities v

Fig. 4.18 Part C of the final conceptual schema: children’s spatial structuring ability is expected to
support their insight into numerical relations. In turn, spatial structuring ability and insight into numerical
relations lay the foundations for the development of higher-order arithmetic abilities.

Insight into numerical relations is important for abbreviating and enhancing children’s
ability to determine and compare quantities, which is necessary for higher-order numerical
procedures such as addition, subtraction, and multiplication (Anghileri, 1989; Buijs, 2008;
Van Eerde, 1996). The structures should stimulate the child to “read off” a quantity rather
than revert to unitary counting. The phrase “read off” in this thesis is used differently from
Battista and Clements (1996; see section 2.3). Instead, we use the phrase to refer to what
Clements (1999a) identifies as conceptual subitizing to denote how children may actively
create a structure through mental or physical actions that concern the objects (Battista &
Clements, 1996).

We add a connection between “counting quantities” and “spatial structuring” to acknowl-
edge that children’s spatial structuring ability itself may be influenced by their counting
ability (Clements, 1999a). Children need a preliminary level of unitary counting ability be-
fore they should even concern themselves with trying to abbreviate counting procedures.
This also relates to Battista and Clements’ (1996) conclusion that although spatial struc-
turing provides the input for enumeration, attempts at enumeration can engender spatial
structuring just as well (see section 2.3). However, the difference between the present re-
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search and that of Battista and Clements (1996) is that the type of numerical insight that
we are concerned with, precedes that of the children in grades 3, 4, and 5 who participated
in Battista and Clements’ (1996) study. The perceptual and conceptual subitizing that is
implied by the spatial structures in our research involve small quantities (up to 10) that as-
sist in the development of mental images of spatial structures (Owens & Clements, 1998).
Once such images are established, they may, in turn, help to determine larger and more
complex quantities such as the composition of structures. Hence, our research concerns a
preliminary step to a two-way relationship between children’s spatial structuring ability
and their number sense. It may be conjectured that as children gain more experience with
operating with small quantities, their insight into numerical relations improves, which, in
turn, can help them (de)compose quantities to understand spatial structure. That appears to
be the level at which Battista and Clements studied children’s spatial structuring ability.

In the next chapter, we discuss how children’s scores for the pre-interview were condensed
into one of four phases describing spatial structuring ability. These phases are interpreted
in light of the Overlapping Waves Theory (Siegler, 2002, 2005). Finally, we present the
practical and theoretical outcomes of the pre-interview and explain what they contribute
to the design of the instruction experiment.
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5 The Strategy Inventory as a Foundation for the
Hypothetical Learning Trajectory

In the previous chapter, we discussed the development of the interview tasks, the strategy
inventory and the conceptual schema relating young children’s spatial structuring ability
to the development of their number sense. This chapter focuses on the strategy inventory.
We explain how the coding procedures were simplified so that the inventory could func-
tion as an instrument for evaluating children’s performance on the interview tasks. The
process of condensing the strategy scores and relating them to children’s performance on
the interviews is summarized as follows (Fig. 5.1).

Strategy scores on the interview tasks

condensed into
Four phases in the development of spatial structuring ability:
1. Unitary Phase
2. Recognition Phase

3. Usage Phase
4. Application Phase

Associating the strategies from the inventory with each of the four phases

Procedure for classifying children’s performance on the interviews into one of the four phases

Fig. 5.1 Outline of the process of condensing children’s interview scores (i.e., their strategies) to
come to a general description of the child’s performance on this particular interview in terms of one of
four phases regarding the child’s development of spatial structuring ability

In section 5.1, we describe how the scores were condensed. This leads to section 5.2 in
which we explain how condensing the scores resulted in the identification of four phases
that (a) outline a trajectory for the development of spatial structuring ability in this study,
and that (b) offer an efficient and reliable way for comparing children’s spatial structuring
ability (cf. Mulligan et al., 2005). These phases can be interpreted in light of the Overlap-
ping Waves Theory (Siegler, 2002, 2005) as described in section 5.3. These three sections
operationalize insight into numerical relations in the research, and bridge the first research
question (the development of children’s spatial structuring ability) with the second re-
search question (creating an instructional sequence in a learning ecology that can foster
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spatial structuring). The chapter concludes with several quantitative outcomes of the pre-
interviews. This sets the stage for the comparison between the pre-interviews and the post-
interviews which will be discussed in Chapter 9. In Chapter 6 the hypothetical learning tra-
jectory (HLT) will be defined to underpin the development of a sequence of instruction ac-
tivities.

5.1 Condensing the strategy scores

Children’s approaches to a particular question in the interview were scored both in terms
of the strategy as identified in the strategy inventory (i.e., the procedure) and the accuracy
of the outcome (i.e., the product). This resulted in detailed scores of the strategies that
called for a way to condense the scores, so that more general conclusions could be drawn
about the children’s spatial structuring ability and number sense. The main challenge was
to balance the richness of the descriptions of the strategies as symbolized by the scores,
with a more user-friendly and reliable instrument that can differentiate children’s mathe-
matical understanding on the basis of how they approached the tasks.

The first step to condensing the scores was inspired by patterns of observations of several
children. These children recognized particular spatial structures, but did not tend to make
use of those spatial structures to abbreviate numerical procedures such as determining,
comparing and operating with small (up to 10) quantities. This led to the specification of
three types of children:

(1) children who do not recognize spatial structures and hence do not make use of them in
the task.

(2) children who do recognize particular spatial structures, but do not make use of them.

(3) children who recognize particular spatial structures and who spontaneously make use
of them in a goal-directed way to abbreviate numerical procedures.

As described in paragraph 4.3.1, at one point in the development of the strategy inventory,
the strategies that seemed most related to spatial structuring strategies were highlighted
with “s”. Figure 5.2 shows an excerpt from the number sense domain in the strategy in-
ventory, depicting two kinds of strategies that were highlighted as spatial structuring strat-
egies (“D” and “e”) for determining quantities.

After abstracting the spatial structures from the domain of number sense and spatial sense,
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we specifically focused on the spatial structuring strategies and the number sense strate-
gies (paragraph 4.3.1) to try associate the strategies with each of the three types of children
outlined above. As such, in one of the earlier versions of the strategy inventory, the first
two (relatively unsophisticated) strategies were associated with type (1), the next three
strategies with type (2), and the last four (relatively complex) strategies with type (3). This
created a first impression of children’s level of spatial structuring ability with respect to
the kinds of strategies that they used for the interview tasks.

D S Applying spatial structures:

i. subitizing

e.g., with < 3 or combinations such as 2 and 3is 5

ii. instantly recognizes the configuration e.g., “like on
dice”, “one in the middle”, “I've counted it with my fin-
gers before”

E S Combined strategies (mostly with >6 quantities):

i. abstracting the spatial structure and adding on the
rest

e.g.,“4andlis5"or“3and3and 1is 7"

ii. (repeated) addition of configurations or already
counted rows; abbreviated counting of larger quantities
e.g., “3and3and 3is 9"

Fig. 5.2 Strategies “D” and “E” are highlighted as spatial structuring strategies (“S”) in one of the
earlier versions of the strategy inventory

Such an explicit link between the conjectures about types of children’s spatial structuring
ability and the strategies that were defined in the strategy inventory, marked a first step to-
wards condensing the strategy scores. The next step was to explore ways of aggregating
the scores for each strategy in the first (the flashcards) and second (the interactive tasks)
parts of the interview. Although it was tempting to devise a quantitative method to calcu-
late a grand total, the key to this strategy inventory is that each score refers to a detailed
strategy. Therefore, much information could be lost if the scores are manipulated in a for-
mula. Instead, the scores were manipulated in a qualitative way (i.e., studying counts in
terms of what strategy the scores referred to). It was decided that it would be most mean-
ingful to aggregate the scores by taking the statistical mode (i.e., the statistical measure for
the score that is most often observed) of the scores for each particular component (see also
section 5.3) for Part 1 and Part 2 separately. Hence, for the first part of the interview this
mode mainly indicates the children’s ability to recognize particular spatial structures, and
for the second part of the interview the mode reflects children’s ability to use and apply
spatial structures (i.e., the three components for spatial structuring) to abbreviate proce-
dures for determining, comparing and operating with small quantities (i.e., the three com-
ponents for number sense).
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As more interviews were assessed, however, it became increasingly difficult to summarize
all the scores with a mode that would accurately represent children’s ability for that parti-
cular component (i.e., recognizing, using and applying spatial structures and determining,
comparing and operating with small quantities). First, not all questions were equally rele-
vant for assessing children’s ability on a particular component. For example, it was deci-
ded that in Part 1 of the interview, the ability to recognize spatial structures should be pri-
oritized by the finger patterning cards, the dice configurations on the cards, and the shapes
on the cards because these tasks were more related to recognizing spatial structures than
the relatively more complex tasks that involved differently structured dots on cards or the
construction of finger patterns. The ability to use structures, on the other hand, was more
present in the task with dotted cards because children were expected to have to look for (a
combination of) spatial structures rather than merely recognize the structures. As such, a
manual was created that indicates what interview tasks should be prioritized when analy-
zing children’s total scores.

Spatial structuring Number sense Mastery | Notes
Component | Recog- Use Apply Deter- Com- Oper-
nize mine pare ate

Task
Counting 4 3
1-15
Finger 4 5c 4 3 counts
patterns 6,8,7
Own 7 4b 3 sees all
fingers
Dots on dice 5 7 3
Shapes 4 5c 3
Dots (2 x 3) 3 5 5c 4 3
Dots (2 x 4) 3 5 5c 4 3
Total 4 5 5c 4 3
Notes Context-dependent recognition, synchronous resultative counting

Fig. 5.3  Sample score-sheet for Part 1 of the interview in which the scores (i.e., strategies) for each
task on each component of both domains (i.e., spatial structuring and number sense) and mastery are
condensed into one total score. The notes reflect some of the researcher’s thoughts about the child’s
performance. The scores in this table are taken from the pre-interview of a 5-year old girl.

The second difficulty with attending only to the statistical mode of a series of scores, was
that it did not always reflect children’s ability. Therefore, for each component, the meaning
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of the mode was interpreted qualitatively to determine what strategy in the inventory the
mode was referring to and to evaluate whether that coincided with the teacher and re-
searcher’s impression of the child’s ability. At the same time, the accuracy of the response
was taken into consideration to check whether the strategy was in fact applied properly.
For example, for extending a pattern and for operating with small quantities in the second
part of the interview, it was decided that it would be more accurate to take the most sophis-
ticated (i.e., highest) strategy that had been used to solve the related tasks, rather than the
mode of the strategies. This is because the highest strategy that the children used, appeared
to be a better reflection of their ability on these particular interview tasks. Fig. 5.3 shows
a score-sheet that illustrates this process of condensing the scores for Part 1 of the inter-
view.

With the scores on each of the tasks in the first two parts of the interview condensed to one
strategy per component (i.e., the total), the next step was to develop a way to interpret this
collection of total scores and come to a concise impression of a child’s level of spatial
structuring ability and number sense. For this, we turned again to the three types of chil-
dren’s spatial structuring ability that are defined above.

5.2  Four phases in spatial structuring ability

After condensing the scores for each task into one total score per component for Part 1,
Part 2, and Part 3 (i.e., the spatial orientation task) of the interview, the next step was to
find a way to give meaning to the collections of total scores for each component within the
interview. Building on our initial conjectures about children’s ability to recognize and
make use of spatial structures for abbreviating numerical procedures, we continued to an-
alyze the patterns of strategies in the inventory. At the same time, as the sequence of inter-
view tasks began to take shape, and as the strategy inventory became more reliable and
thorough, our conjectures about children’s spatial structuring ability evolved from three to
four type classifications in a developmental sequence.

Importantly, these classifications are not intended to confine a child to a particular level of
spatial structuring ability. Rather, the types give a general indication of the kinds of stra-
tegies (interpreted in light of spatial structuring) that a child tends to apply most often du-
ring this particular interview. We therefore identify these type classifications as “phases”
(rather than, for example, categories) to highlight their fading beginning and end points.
(see section 5.3). They are listed cumulatively to reflect a progression in spatial structuring
ability. Hence, these phases may be seen as four levels of sophistication in children’s spa-
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tial structuring of the interview tasks. We conjecture that a child’s repertoire of spatial
structuring strategies may, in this particular interview situation, best be described as one
of the following four phases:

(1) Unitary Phase: The child recognizes almost no spatial structures and consequently
neither uses nor applies structures to abbreviate numerical procedures.

This phase is most applicable to the youngest children in the research who are typically
still focused on improving their unitary counting skills. These children may already have
encountered certain spatial structures such as dice or finger patterns, but without being fa-
miliar enough with these structures to associate them with counting procedures. Since
these children barely recognize the spatial structures that are presented in the interview, it
is not surprising that they neither recognize, nor use or apply them in the rest of the inter-
view. It is especially interesting to see whether there are relatively older children who do
not recognize the spatial structures and who may not use or apply them to abbreviate nu-
merical procedures in the rest of the interview. This could shed light on the progress of
their mathematical development. Similarly, it will be interesting to see whether there are
children who do use and apply spatial structures in Part 2 of the interview, although they
appeared to not recognize them in Part 1.

(2) Recognition Phase: The child recognizes several fundamental spatial structures, but
rarely uses or applies spatial structures to abbreviate numerical procedures. Instead,
the child may rationalize the use of spatial structures in hindsight.

Children whose general approach to the interview tasks fits this phase, will tend to use re-
latively sophisticated strategies in the way they recognize several types of spatial struc-
tures and use them to read off the flashcards (Part 1 of the interview). However, they will
experience more difficulty in Part 2 of the interview where they are asked to not only rec-
ognize but also to use and apply the structures to solve the tasks. One subtle feature of this
phase is that, although the children may neither make use of available structures nor apply
their own structures, they may rationalize spatial structuring retrospectively (i.e., only after
they counted). This points to their ability to recognize spatial structures when prompted,
while they otherwise prefer unitary counting procedures over spatial structuring strategies.

(3) Usage Phase: The child recognizes and uses most available spatial structures, but

rarely shows initiative in constructing and applying its own spatial structures as a
means to abbreviate numerical procedures.

Like in the Recognition phase, children in the Usage phase tend to recognize the spatial
structures in the first part of the interview. The difference with the previous phase, howev-
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er, is that children in this phase do not hesitate to make use of the spatial structures that are
readily available to them in Part 2 of the interview; a child will recognize the quantity six
if the objects are arranged like the two rows of three that the child recognizes from, for
example, dice. The challenge for the child, however, is to spontaneously apply structure to
an unstructured group of objects. The child will tend to leave the objects the way they are
or maybe organize the objects into a line because “that makes it easy to count them”. This
suggests that although the child can recognize and make use of spatial structures, the child
may not yet understand the convenience of spatial structuring as an alternative to unitary
counting for abbreviating a numerical procedure.

(4) Application Phase: The child uses spatial structures in a goal-directed way and spon-
taneously constructs and applies spatial structures as a means to abbreviate numerical
procedures.

Children in the Application phase are familiar with various types of spatial structures and
tend to make use of the structures that are readily available to them (“there are six because
they are in 2 rows of 3”). This means that they have come to understand the convenience
of structure as more than the mere organization of the objects for determining, comparing
and operating with small quantities. In addition, these children use this insight spontane-
ously to apply structure to objects that are initially unorganized. These children may spon-
taneously arrange the objects in the same configuration as dots on dice, or as eggs in an
egg carton, for example, because the children understand that such configurations support
numerical procedures. Hence, their spatial structuring is goal-directed. The children may
even arrange objects in one or more organized lines, but their underlying intention is not
to count the objects unitarily. Instead, they use a strategy that abbreviates the procedure for
determining a quantity. This phase is expected to stimulate children’s insight into numeri-
cal relations and prepare them for high-order mathematical learning.

To give meaning to children’s repertoire of strategies for the interview, we first matched
each strategy in the strategy inventory to a phase. For example, for the Unitary phase re-
garding the recognizing structures component in Part 1 of the interviews, it was expected
that the child will have made use of the first three strategies for this component in the in-
ventory (although the second strategy can apply to all four phases, see Fig. 5.4).

A table was constructed that associates each total score for each component of Part 1 and
Part 2 with one of the four phases (see Appendix 3). The extent to which the strategy was
applied properly (i.e., accuracy or mastery of the task, see paragraph 4.3.2) was also taken
into account during the interpretation of the total scores. Further, the spatial orientation
task (Part 3) was evaluated qualitatively and in terms of the accuracy of the response.
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1 Does not seem to know how to approach the problem
2 The strategy is ambiguous, yet the result is acceptable
3 Does not spontaneously recognize spatial structures

* (Usually) does not recognize spatial structures at first sight and must therefore count
quantities

e.g., Counts all the finger patterns; has trouble producing own finger patterns; counts the

dots on all the flashcards; has no (grounded) preference for the structured construction

and finds the structured house easier to count because (e.g.) “it's prettier” or because “it

doesn’t have to be turned around”

Fig. 5.4  These first three strategies for recognizing spatial structures are associated with the Uni-
tary phase (phase 1) in Part 1 of the interviews. The second strategy can apply to each of the four pha-
ses.

Finally, the resultant six phase categorizations that corresponded to the three components
of the spatial structuring domain and the three components of the number sense domain,
were discussed and examined qualitatively to decide how these phases are best summa-
rized into a single phase to describe the child’s overall approach to the tasks in this inter-
view. As such, the strategy inventory provided a qualitative means for gauging children’s
spatial structuring ability and number sense, with a particular focus on insight into numer-
ical relations. It also provided a way to study differences in children’s development of spa-
tial structuring ability and insight into numerical relations.

Supported by Mulligan et al.’s conclusions that “children’s perception and representation
of mathematical structure generalizes across a range of mathematical content domains and
contexts”, and that “early school mathematics achievement was strongly linked with the
child’s development and perception of mathematical structure” (2004, p. 399), the com-
monalities between Mulligan et al.’s stages of structural development and our four phases
contribute to the external validity and reliability of the interviews and the resultant conjec-
tured phases (see also section 10.1).

Mulligan et al. (2005) also found a wide diversity in developmental stages for children of
one particular age, including inconsistent developmental patterns for low-achieving chil-
dren and improvements in structural representations for other children. Hence, before de-
scribing a means to support children in the development of their spatial structuring ability,
we first explain how the four phases may be related to each other in terms of a develop-
mental trajectory.
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5.3 Relating four phases in a developmental trajectory

To illustrate how we interpret the development of children’s spatial structuring ability in
terms of the four phases defined above, we turn to the Overlapping Waves Theory (Siegler,
2002, 2005). The main assumption of this theory is that children typically use a variety of
approaches to one problem at a given time. Therefore, development is seen as a qualitative
shift in the types of strategies that children use to solve a particular problem, and as a quan-
titative shift in the frequency with which children use a particular strategy, the adaptive-
ness of the choice, and the efficiency of the use. Thus, learning and development can be
characterized as processes of variability, choice and change. With age and experience,
some strategies become less frequently used, others become more frequent, some become
more and less frequent, while new strategies are discovered and some older strategies are
eliminated.

The Overlapping Waves Theory inspired the image below (Fig. 5.5). The figure conveys
our conjectures about how children develop throughout the four phases of spatial structur-
ing ability.
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Fig. 5.5  Animage of the conjectures about which phases appear most applicable to each age level.
It is inspired by the Overlapping Waves Theory (Siegler, 2002, 2005).

Each wave in the figure corresponds to one of the four phases that are explained in section
5.2. As such, the dependent variable is not the percentage use of a particular strategy as in
the original Overlapping Waves Theory, but rather the probability of using a strategy re-
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pertoire that belong to a particular developmental phase. The relative estimations for these
probabilities evolved during several thought experiments throughout the exploratory stu-
dies. The ages are averages to acknowledge that some children may approach the problems
in ways that either exceed or lag behind the level of children of the same age.

The essence of the Overlapping Waves Theory is reflected in the design of the strategy in-
ventory and in how the phases are assumed to be related. First, in gauging children’s stra-
tegy use on a particular task, we acknowledge that children use a variety of strategies to
solve a particular task. Although the interview is a reflection of a particular moment in
time, the key is that children use a variety of strategies that vary in levels of sophistication,
but generally they tend to use more of one particular level of strategies during a particular
point in their development. This agrees with Owen’s (1999) findings that, although stu-
dents did not necessarily apply the same strategies to all the questions in their spatial test,
the tendency was that they did. We operationalized this assumption by using the statistical
mode of children’s scores to come to a general repertoire of strategies (see section 5.1).

Considering this variability in children’s strategy use, our four phases are cumulative with
faded beginning and end points. This means that children who appear to have used a par-
ticular repertoire of strategies that fit the Recognition phase (phase 2), will sometimes still
make use of strategies that fit the Unitary phase (phase 1), and will sometimes make use
of strategies that fit the Usage phase (phase 3). The main tendency, however, is for them
to make use of Recognition phase strategies. In some cases, children’s strategies fit a par-
ticular phase although they showed relatively strong tendencies towards the next phase, or
they showed curious approaches to problems that strictly belonged to the Unitary phase.
For these rare cases, a “+” or a “~” was added to indicate the child’s tendency towards the
next or the previous phase, respectively. These signs were used only as additional informa-
tion for the quantitative and qualitative interpretations of children’s performance on the in-
terviews.

In designing the interview tasks, the level of the tasks had to be accessible to four-, five-
and six-year olds, and the contexts (e.g., language use, story line) of the tasks had to appeal
to the children’s levels of understanding. Indeed, in Owen’s (1999) research, it appeared
that slight changes to tasks could make a task more difficult, with the result that the stu-
dents did not use the same strategy as on other tasks. Hence, the greater the complexity of
the task, the more the children are expected to turn to foregoing and more familiar ap-
proaches (i.e., less sophisticated strategies that belong to a lower phase) in an effort to an-
swer the questions accurately. For example, a child may recognize a particular spatial
structure in a small (e.g., 7) set of objects and know how to use that structure to determine
how many there are. This involves a relatively complex strategy that is represented by a
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high score in the analyses. Yet, when the task involves a large (e.g., 12) set of objects, the
child may revert to unitary counting procedures which, in terms of our research, is a rela-
tively unsophisticated strategy. When these tendencies are generalized, the children’s re-
pertoire of strategy use may be such that it first fits best in the Application phase, but that
the increased complexity of the task triggers the use of strategies that correspond better to
the Usage phase, the Recognition phase, or the Unitary phase. In this way, the model gives
insight into one possible reason for why children make use of a variety of strategies at a
given point in their development.

Taken together, we assume that the phases in the developmental trajectory are not single,
autonomous stages, but rather, that they correspond to how children apply strategies to
solve particular tasks as illustrated by the Overlapping Waves Theory. This clarifies how
the phases may be related to each other. In this we agree with Bruce and Threlfall (2004)
who conclude the following from their research on developing cardinality and ordinality:

The suggested detailed developmental sequences in both the cardinal and ordinal aspects of
number (...) are not intended as a teaching model, in that they do not propose stages through
which children should be progressively taught. Nevertheless, they may support the teaching of
early number in each aspect, through raising awareness of what may have preceded and what
may follow the current approach used by the child, so that appropriate input and intervention
can be shaped to enable the child to move forward. (p. 24)

The identification of these four phases contributes to answering the first research question:
while the strategy inventory provides the detailed description of the strategies that charac-
terize young children’s spatial structuring ability, the phases outline a developmental tra-
jectory for children’s spatial structuring ability and the relation between this development
and children’s emerging number sense, in terms of insight into numerical relations.

Spatial Structuring Ability

Strategy scores on the interview tasks

condensed into

Four phases in the development
of spatial structuring ability:
1. Unitary Phase
2. Recognition Phase
3. Usage Phase
4. Application Phase

Fig. 5.6 Operationalization of the development of insight into numerical relations in terms of chil-
dren’s performance on the interview tasks, described as one of four phases in a developmental trajec-
tory for spatial structuring ability
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The outcomes of children’s performance on the interview tasks (i.e., their strategy scores)
and their corresponding strategy repertoire (i.e., phase classification) reflects children’s
spatial structuring ability. Regarding the proposed influence of children’s spatial structur-
ing ability on insight into numerical relations (Chapter 2), this operationalizes the devel-
opment of insight into numerical relations in the research (Fig. 5.6).

In the next section we present some quantitative outcomes of the pre-interview that relate
young children’s spatial structuring ability to their mathematical development.

5.4  Quantitative outcomes of the pre-interviews

The figure below (Fig. 5.7) presents the number of children per classroom (Intervention or
Non-intervention; I1G or NG) and per grade (Kindergarten 1 or Kindergarten 2; K-1 or K-2)
showing a repertoire of strategies in the pre-interview that coincides with one of the four
phases. We note again that the non-intervention group was not intended to be a control
group, but rather an additional source of data for developing and analyzing the interviews
and the strategy inventory.

Phase 1 Phase 2 Phase 3 Phase 4 Total
(Unitary) (Recognition) (Usage) (Application) number

IG K-1 9 2 2 0 13

IG K-2 1 3 1 3 8

Total IG 10 5 3 3 21

NG K-1 6 1 1 0 8

NG K-2 1 1 1 6 9

Total NG 7 2 2 6 17

Fig. 5.7  The number of children per Intervention group (IG) and Non-intervention group (NG) and

per Kindergarten 1 (K-1) and Kindergarten 2 (K-2) showing a repertoire of strategies in the pre-inter-
views that coincides with Phase 1 (Unitary), Phase 2 (Recognition), Phase 3 (Usage) or Phase 4 (Ap-
plication)

This distribution of scores agrees with what was expected: the youngest children of both
the 1G and NG (i.e., Kindergarten 1) scored relatively more often in the lower phases than
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the eldest children (i.e., Kindergarten 2) and vice versa. In section 9.1 we elaborate on the
significance of this distribution. This will explain how it contributes to the post-interview
to provide insight into possible shifts in phase categorization for a particular child, and into
possible differences between the development of the intervention group compared to the
non-intervention group, as well as between the development of the youngest compared to
the eldest children.

The children’s phases were compared to their LvS scores (i.e., standardized test, see section
3.5) to relate their spatial structuring ability to their mathematical performance. Six K-1
children had not taken the Lvs test and were therefore not included in the comparison. The
distribution reflects a trend in the type of strategy use and the child’s LvS categorization;
LVS score A occurred most often in combination with the Application phase, LvS score C
occurred most often in combination with the Unitary phase, LvS score B was evenly dis-
tributed across the four phases, and LvS score D only occurred once, and as expected, in
combination with the Unitary phase. These LvS scores were not known to the researchers
at the time of evaluating children’s performance on the interviews and classifying chil-
dren’s approaches into one of the four phases. This trend supports the internal reliability
and the internal validity of the interviews because the outcomes of the interviews converge
with the children’s standardized test scores.

Several children’s strategy repertoires coincided less convincingly with their LvS scores
than others. For example, two Unitary phase children and two Recognition phase children
scored LVS A. Since these children were all Kindergarten 1 children, it raises the suspicion
that the tasks were too difficult for them compared to the Lvs tasks. Similarly, two Kinder-
garten 2 children scored Lvs B while they showed a repertoire of Recognition phase strat-
egies. The significance of this is that it could be interesting to monitor the mathematical
development of these children and their response to the intervention to see whether the
classification into the Recognition phase may be an early indication of relatively delayed
mathematical development. This could show how the strategy inventory and the inter-
views can serve as a tool to trace potential delays at a very early stage in children’s math-
ematical development.

In this chapter we described four phases in the development of spatial structuring ability
that are founded on a detailed classification of spatial structuring strategies in the strategy
inventory. These phases were related to each other in light of the Overlapping Waves The-
ory to explain their cumulativity and their faded beginning and end points. Finally, the chil-
dren’s phase categorizations were compared to their standardized math scores to conclude
that the categorizations give an accurate impression of the children’s spatial structuring
ability.
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Although the Overlapping Waves Theory may illustrate the relationships between the
phases, it does not necessarily clarify how children may progress from one phase to ano-
ther. This is where the socio-constructivist framework comes into play (paragraph 2.5.2):
the child and the teacher can synchronize their conceptualizations and make them “taken-
as-shared”. In other words, if children prefer to use a unitary counting strategy (i.e., per-
taining to a relatively low phase) that differs from the teacher’s intended spatial structuring
strategy, then the child and teacher must discuss the different strategies so that the child’s
preference for a type of strategy will - eventually, taking developmental aspects into ac-
count - synchronize with the teacher’s intentions. We focus in our research on the devel-
opment of a shared vocabulary to support “taken-as-shared” conceptualizations. Further,
insight into differences in what strategies are preferred will help to create an instructional
setting that can support children in this development. Analogously, insight into how chil-
dren may be supported in this development, may help to understand how children progress
from one developmental phase to another.

The construction of the strategy inventory and the resultant developmental phases feed for-
ward into developing a HLT for answering the second research question. Therefore, the sec-
ond research question may be interpreted as follows: if we may assume that children ex-
perience a sequence of developmental phases such as those outlined above, how could a
learning ecology (i.e., instructional tasks and teacher input; Cobb et al., 2003) stimulate
them into proceeding from one phase to the next and improve their ability to make use of
spatial structure for abbreviating numerical procedures? In the next three chapters we ela-
borate on the HLT, and on the design of a sequence of instruction activities. This underlies
the instruction experiment which was aimed at (a) supporting young children in the deve-
lopment of their spatial structuring abilities and at (b) contributing to a local instruction
theory about the development of young children’s spatial structuring abilities for support-
ing the abbreviation of numerical procedures.
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6 Refining the HLT and Developing Classroom Instruction
Activities

This chapter begins with a description of how the principles of design research were ap-
plied to set up an instruction experiment for answering the second set of research ques-
tions. In section 6.2 we explain how learning moments were defined based on the hypo-
thetical learning trajectory (HLT). This includes a description of the instruction activities
that were designed to be implemented in the instruction experiment. In section 6.3 we ela-
borate on the revisions that were made to the hypothetical learning trajectory and to the
instruction activities during several exploratory studies. In the last section we present the
hypothetical learning trajectory and instructional sequence of six instruction activities for
the first round of the instruction experiment.

6.1 The global HLT and learning goals

As described in section 3.1, design research involves an iterative procedure of empirically-
based, theory-driven adjustments to the intervention and revisions of the hypotheses
(Gravemeijer, 1994). First, a global hypothetical learning trajectory (HLT; Freudenthal,
1973, 1991; Gravemeijer, 2004) is defined that outlines the learning processes that are ex-
pected to occur on the basis of the instruction experiment. It is this envisioned learning
route that summarizes expectations of the learning processes and the influences of the in-
structional setting (Simon, 1995). It guides the planning of the instruction activities and
connects hypothesized observations to the conjectures. Hence, in terms of Simon’s travel
metaphor, the HLT is the “journey” that researchers and teachers prepare for the children
to actually achieve a certain level of spatial structuring ability. The HLT is bidirectionally
related to the local instruction theory which, according to this metaphor, describes the
“travel plan” for children to learn to recognize and make use of spatial structures to abbre-
viate numerical procedures. By scrutinizing the HLT in retrospective analyses, the aim is to
contribute empirical evidence for an overarching local instruction theory about the teach-
ing and learning of mathematics in Kindergarten (Gravemeijer, 2004).

As described in Chapter 5, one of the main outcomes of working with the strategy inven-
tory to evaluate children’s spatial structuring ability and number sense, is the definition of
four phases in the development of spatial structuring ability. These cumulative phases were
particularly important for providing a way to generate conclusions about children’s spatial
structuring ability from the rich collection of scores, and for making the inventory more
user-friendly and reliable. Turning to the second part of the research, it became clear that
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these phases also outline a global HLT that can inspire the development of a sequence of
instruction activities. As such, the foundations for the HLT emerged from the cumulative
range of strategies in the strategy inventory that was constructed on the basis of observa-

tions from the exploratory studies.

Child’s predominant
numerical strategy

Description
of the strategy

Learning goal that an
instruction activity may stimulate

Subitizing and counting
asynchronously

Subitizing quantities

< 4 and counting by
pointing to each object
without attaching the
counting word properly
to one particular object

Through practice children learn to relate
each counting word to an object (Gelman &
Gallistel, 1978).

Synchronous, resultative
1-by-1 counting

Counting by pointing to
each object and prop-
erly attaching the
counting word to one
particular object

Children can determine large quantities
correctly, but experience that it becomes
increasingly difficult to keep track of a
larger number of objects.

Organizing before
counting

Arranging objects in a
way that makes it eas-
ier to count them

Children experience that organizing the
objects can help to keep better track of
which objects have already been counted.
Yet, they also come to see that organization
is not sufficient to quickly determine a
quantity.

Counting more than
one object at a time

Counting by twos for
example

Children gain sufficient experience with the
counting sequence so that they no longer
have to count each object unitarily. This
motivates them to structure objects using
increments of two, for example.

Applying spatial structure

Applying spatial struc-
ture with familiar spatial
structures

(a) to read off small

(< 6) quantities and

(b) to be able to count
large (< 10) quantities
in an organized way

Children come to understand that spatial
structure can help to keep track of which
objects are already counted, but perhaps
there is a quicker way to determine large
guantities. The shape of the objects that
are counted may confuse children at this
preliminary stage of spatial structuring.

Spatial structuring

Applying spatial struc-
ture goal-directedly
using familiar spatial
structures to determine
both small (< 6) and
large (< 10) quantities
in an abbreviated way

Children understand that spatial

structures can abbreviate counting
procedures because the quantity can
easily be read off or calculated. The shape
of the objects is less distracting because
the children focus more on the overall
structure of the set of objects that is to be
counted.

Fig. 6.1
tion experiment
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A global HLT consists of (a) learning goals for students, (b) a plan of the instruction acti-
vities and the tools that will be used, and (c) a specific conjectured learning process that is
expected to occur as a result of the instructional sequence (Gravemeijer, 2004). The obser-
vations from the exploratory studies and the pre-interviews, together with complementary
literature (e.g., Clements, 1999a; Gelman & Gallistel, 1978; Mulligan et al., 2005; Van den
Heuvel-Panhuizen, 2001) and the four phases of a developmental trajectory (see Chapters
4 and 5), contributed to the global outline of learning goals for the instruction experiment,
which is conveyed in Fig. 6.1.

Hence, the conjectured learning process that was expected to occur as a result of the in-
structional sequence, started from unitary counting, to learning to spatially organize ob-
jects, and, ultimately, to spatially structuring objects as a means to abbreviate numerical
problems. The second and third components of the global HLT give the learning goals a
more practical content. In the remainder of this chapter, we explain how a sequence of in-
struction activities with corresponding learning trajectories was developed to help children
become more aware of spatial structure and the advantages of spatial structuring in nume-
rical procedures such as determining, comparing and operating with small quantities.

6.2 ldentifying learning moments and defining corresponding
classroom instruction activities

In this section we present the crucial learning moments that the children were expected to
encounter throughout the instruction experiment as they worked towards reaching the
learning goals (Fig. 6.1). We continue with an explanation of how an instructional se-
quence and observation criteria were developed throughout two sets of exploratory stu-
dies. The outcomes of these studies contributed to refining the learning goals in a HLT to
prepare for the instruction experiment.

6.2.1 Learning moments and a corresponding HLT

Based on observations from the exploratory studies in several Kindergarten classrooms at
a local elementary school, the learning goals of the instruction experiment, and the four
phases in children’s spatial structuring ability, we hypothesized that the children would en-
counter the following interrelated learning moments as they progressed along the learning
trajectory:

(1) organize objects as a step towards becoming aware of spatial structuring to simplify
counting procedures;
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(2) create a motivation for spatially structuring objects;

(3) use spatial structuring to elucidate numerical relations;

(4) develop abstract spatial structures that are less context- or task-dependent;

(5) use spatial structuring in a goal-directed way outside the instruction experiment.

Our task was to design corresponding instruction activities that would encourage children
to overcome the challenges that are associated with these learning moments so that they
may reach the instruction goals that are listed in Fig. 6.1. The first version of such a HLT
with its sequence of instruction activities is outlined in Fig. 6.2. This version was tried out
in an exploratory study. In paragraph 6.2.2, we elaborate on the concept contexts and es-
sential features of these activities.

Activity Concept Context Essential Feature
1. Wooden Reasoning about shapes and Identifying part-whole relationships
3-D Blocks — figures —> ¢
2. Patterns Extending patterns Using insight into part-whole relation-
with —>» — ships to identify the structure of a pat-
Children tern

v

3. Count- Determining the number of Making a structure explicit for compar-
ing Rooms —p blocks in a structured and — ing structured and unstructured con-
unstructured block house figurations. One configuration may be

composed of several structures

v

4. Bingo Recognizing familiar configu- Applying insight into several struc-
—p rations in structured arrange- — tures for identifying a familiar structure
ments that is part of a relatively larger struc-

ture arrangement (cf. gestalt)

v

5. Counting Keeping track of an originally Applying the ability to identify a famil-
Flowers —» (unstructured) quantity — iar structure that is part of a larger
structured arrangement to recognizing
structures in larger unstructured

arrangements
6. Domino Simplifying the representa- Generalizing the ability to identify
Train —» tion of a number of objects — familiar structures for representing an

amount and comparing quantities

Fig. 6.2 Outline of the first version of a hypothetical learning trajectory with corresponding instruc-
tion activities. Each instruction activity in the instruction experiment draws on insights from the previous
activity to guide children towards greater spatial structuring ability by the end of the sequence.
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6.2.2 Developing corresponding instruction activities

In light of the important role of spatial structure in patterning (see Chapter 2), it was de-
cided to start the learning trajectory with an activity about part-whole relationships (Cobb,
1987; Owens, 1999). The expectation is that insight into part-whole relationships can help
children to recognize at a more abstract level the composition and decomposition of quan-
tities. As such, the aim of the activity was to help children become more aware of the com-
position and decomposition of shapes. A square, for instance, can be combined with an-
other square to make a rectangle, while a square itself can also be made up of two triangles.
The children were asked to construct the silhouette of a house or a boat that was cut out of
paper, using triangular, rectangular, and squared wooden blocks.

5
A | |4

Fig. 6.3  Silhouettes of a house and a boat that the children were asked to build using squared, rect-
angular and triangular blocks to gain insight into part-whole relationships.

The second activity builds on the first activity in the sense that children were encouraged
to use their insight into the composition of figures and shapes to elucidate the composition
of a pattern.

Fig. 6.4  Theclass is discussing the difference between determining the number of blocks of a struc-
tured compared to an unstructured construction
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This insight has been shown to be important for children to recognize the structure of a
pattern and to support their understanding of how a pattern is characterized by the regular-
ity of its structure (Papic & Mulligan, 2005, 2007). With more insight into recognizing
structure in patterns, the next activity encouraged the children to look for structure in three-
dimensional block constructions (Fig. 6.4). Presented with one structured (i.e., symmetri-
cal and containing a regularity) block construction and one unstructured construction, the
children were asked to determine the number of blocks in the construction. This activity
was intended to stimulate a discussion about the difference between the way the blocks of
the two constructions can be counted.

The fourth activity is the first activity that explicitly makes use of familiar spatial struc-
tures. In a type of Bingo game, first a large die was rolled; the children then had to find,
on a card with a particular configuration of dots on it which the teacher held in front of
them, the exact same configuration as shown on the die. This activity required that the chil-
dren recognize dice configurations in larger dotted configurations. They were expected to
make use of their experiences in the previous three activities with identifying part-whole
relationships and structure in a relatively larger construction.

After four activities in which the children experienced the heuristic value of spatial struc-
turing in various mathematical settings, the fifth activity was expected to encourage chil-
dren to apply structure to unstructured configurations of objects as a means to simplify the
process of determining and comparing quantities. The teacher placed twelve flowers (i.e.,
plastic chips) in a garden in the centre of the circle (Speciaal Rekenen, 2003). One child
was asked to look away while the teacher came to pick flowers from the garden (Fig. 6.5).

Fig. 6.5  The children rearrange their flowers into a structure that can help them to easily determine
the number of flowers in their garden
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Then the child was asked to determine the number of flowers that the teacher removed. If
the child’s answer was incorrect, the teacher kept the flowers. If the child’s answer was
correct, the teacher replaced the flowers and added one more to the garden. The key to the
game was that the children came to experience the value of applying structure to the flow-
ers, especially as the number of flowers in their garden grew, making it increasingly diffi-
cult to keep track of the quantity by unitary counting alone.

The last activity of the instructional sequence is intended to let the children generalize their
ability to identify familiar structures. The children were given a set of paper passengers.
They were then asked to make a representation of this number of passengers in such a way
that the conductor could conveniently see how many passengers were on the train. The
children were expected to apply their insight into spatial structures for arranging the pas-
sengers into a spatial structure that would let someone else benefit from the arrangement
and avoid unitary counting. The “wagons” (each child’s representation of “their” passen-
gers) could then be connected to each other so that the children could compare each other’s
structures and evaluate how the conductor could determine the number of passengers in
each wagon.

In summary, these six instruction activities progress from a predominantly spatial focus,
along a spatial structuring focus, towards a focus on number sense. This coincides with the
underlying conjecture that children’s insight into spatial structures can support them in re-
cognizing, making use of, and applying spatial structures to abbreviate certain numerical
procedures. As such, each activity is intended to draw on the insights that are the topic of
discussion in the previous activity. Such an intertwinement of learning moments is what
should give meaning to the instructional sequence and what should ultimately lead to so-
called “Aha-moments” of insight (Freudenthal, 1984).

6.2.3 Defining observation criteria

To understand and to be able to draw conclusions from the observations in the exploratory
studies, it was necessary to define observation criteria. These observation criteria opera-
tionalize the learning trajectories within and between each instruction activity. The preli-
minary set of observation criteria was outlined in terms of the following questions:

(1) The didactical effect of the instruction experiment:
- Are there indications of an improvement in the child’s spatial structuring ability?
— Does it appear that the child has associated spatial structures with strategies for
approaching the activities?
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- How do children of different age levels differ in the way they respond to the instruc-
tion experiment?
- Would it be necessary to repeat the activities to improve their direct and retention
effects?
(2) The effect of each of the instruction activities:
- Do the children understand the objective and the essence of the activity?
- Is the activity effective enough to be able to achieve its instructional intentions?
(3) The social effect of the instruction experiment:
— The children’s and teachers’ responses to the activity: is the activity appealing?
- Is the activity new and a valuable supplement to the regular classroom practices?
(4) The role of the teacher:
- In what ways does the teacher influence how the instruction activity is implemented
and its effects on children’s learning?

6.2.4 Results of the first exploratory study

Two important changes were made to this sequence of instruction activities after one of the
exploratory studies. First, it became clear that the last activity, “Domino Train”, contribut-
ed very little to the instruction experiment. The children were so excited about drawing
people in their wagon, that it distracted them from reasoning about spatial structures.

Fig. 6.6 Examples of children’s drawings of passengers on the train. The top drawing shows two of
the paper passengers and several number symbols (bottom left). The bottom drawing shows the wag-
ons of a train, each marked with a number symbol.
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Many of the children also skipped spatial structuring procedures as they instead tried to use
numerical symbols to represent a quantity (Fig. 6.6). The children seemed to not feel the
need to use spatial structures if they could picture the quantities with numerical symbols
anyway. Hence, children drew numerical symbols or irrelevant details such as hearts and
suns. Most children drew the objects in a line, indicating a type of organization for keeping
track of count rather than a spatial structure for abbreviating the counting procedure.

In reflecting on the intention of this activity, we came to the conclusion that the “Domino
Train” activity was too ineffective and that it could be removed from the sequence. In fact,
the “Picking Flowers” activity would be an appropriate final activity in the sequence be-
cause it also requires that the children use their insight into spatial structures to make sense
out of larger unstructured configurations. It would be a large step for children to achieve
this level of spatial structuring ability, since it involves a knowing how to recognize, use
and apply spatial structures for abbreviating numerical procedures in a variety of contexts.

Several experiences in the exploratory study led to changes in some of the other activities
to improve their effectiveness. The “Bingo” activity, for example, was chaotic because the
children were too keen to be the first to call out the number of dots on their cards. As a
result, the children neglected to take note of the structure of the quantity on the die, and
scribbled a circle around the dots that they had counted as quickly as they could (Fig. 6.7).
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Fig. 6.7  Examples of children’s work in the “Bingo” activity. In the upper left card, the child circled
each dot while counting unitarily. In the upper right card, another child first found 5 dots and then added
the sixth dot. In the lower card, a child identified two sets of three dots and one set of four dots.
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To organize the “Bingo” activity, we decided to centralize it by letting only the teacher roll
the die. The teacher was to repeatedly encourage the children to look for the structure in-
stead of just the quantity, and to have them raise their hands before showing the structure
to the class. In this way, the teacher could stimulate the classroom mathematical practice
of identifying a spatial structure, and the classroom social norms of raising hands, all for
establishing the socio-mathematical norm of being aware of spatial structures (in large
structured arrangements). This version of the activity was called “Got it!” and it was tried
out in the follow-up exploratory study (see paragraph 6.2.6).

6.2.5 Revisions of the first instructional sequence and observation criteria

The second development in preparing for the instruction experiment, was to refine the ob-
servation criteria so that they reflect the HLT in each activity. Inspired by the strategy in-
ventory (see Chapter 5), we listed strategies that the children were expected to use to ap-
proach the instructional activities. Fig. 6.8 conveys the HLT with the five revised activities
and the corresponding observation criteria for the follow-up exploratory study.

At this point in the development of the instructional sequence, it was important to focus
not only on the effects of the activities individually, but also on the relationship between
the activities, because this interrelatedness composes the framework for the HLT. There-
fore, the intended contribution of the instruction activities to the learning goals in the in-
struction experiment must be made explicit. The relationship between these five activities
is outlined in Fig. 6.9. This figure illustrates how the first three activities are less interre-
lated than was originally anticipated. The children in the exploratory study did not explic-
itly make reference to part-whole relationships or patterning.

On the other hand, in reference to the conjectures about children’s development of spatial
structuring ability, it appeared that the first three activities can be analyzed alongside each
other. Rather than considering the part-whole relationships as a prerequisite for recogniz-
ing structures in patterns, and recognizing structures in patterns as a prerequisite for rec-
ognizing structure in constructions, we decided to acknowledge the ability to recognize,
use and apply spatial structures in the three activities independently of each other. The first
(“Squared Triangles”) activity supports the children in recognizing particular spatial struc-
tures. The second (“Guess my Rule™) activity encourages the children to use structure to
extend the pattern, and the third (“Huts and Castles™) activity supports the children in ap-
plying their insight into spatial structures in a relatively larger structured or unstructured
arrangement.
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Activity Goal of activity Observation criteria
Squared Analyzing and identifying the struc- Shows no evidence of insight into the compo-
Triangles ture of a shape or figure in terms of sition of a figure
its composition Can independently compose a simple
figure out of a minimal number of shapes
Can independently compose a simple
figure out of numerous shapes of various siz-
es
Can independently compose a relatively com-
plex figure out of numerous shapes of various
sizes
Guess my Identifying and making use of the Names the elements of a pattern mechanical-
Rule structure of a pattern to extend the ly but cannot continue the sequence
pattern Names the elements and continues the
sequence on the basis of a rhythm
Understands the pattern but continues the
pattern by explicitly naming each element
without insight into the concise rule of the se-
quence (e.g., it's red, white, blue, red white,
blue...)
Understands the pattern and explicitly sum-
marizes the rule of the sequence (e.g., “it's
red, white, blue every time”)
Huts and Identifying the structure of a 3-D Counts the blocks unsystematically
Castles construction to understand and bet- Counts the blocks more systematically but
ter be able to make use of its com- has difficulty counting the blocks that are not
position visible
Counts both the visible and less visible blocks
systematically
Can conceptualize the set of blocks to
abbreviate the unitary counting procedure
Can conceptualize the set of blocks to read off
the quantity
Got it! Using insight into various types of Consistently counts the required number of
structures to recognize a objects unitarily
spatial structure in a larger arrange- Is guided by examples to recognize
ment familiar configurations in a set of objects
Can independently recognize various struc-
tures that are part of a larger set of objects
Picking Using the ability to identify a familiar Places the objects in an arrangement
Flowers structure in a larger arrangement to either randomly or in the shape of a figure, but
recognize makes no explicit reference to
structures in randomly arranged structure
configurations of objects and to Places the objects in a figure that can make it
learn to reason with larger easier to count the number of missing objects
numbers (e.g., in rows)
Places the objects in a structure that can
make it easier to read off the number of miss-
ing objects (e.g., in groups of 5)
Fig. 6.8 A version of the hypothetical learning trajectory with the five revised instruction activities

and corresponding observation criteria
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As conveyed with a curly bracket in Fig. 6.9, the fourth activity is considered to build on
to these three components of children’s spatial structuring ability. We assume that the chil-
dren may make use of their insight into recognizing, using and applying spatial structures
to identify spatial structures in relatively larger structured configurations. Likewise, the
next step in the developmental trajectory is covered by the fifth activity, in which the chil-
dren are challenged to not only recognize spatial structure, but also apply it to unstructured
arrangements.

Activity Concept Context Essential Feature

1. Reasoning about shapes Analyzing and identifying the
Squared —p and figures —3) structure of a shape or figure in
Triangles terms of its composition

2. Extending patterns that con- Identifying and making use of the
Guessmy —p sist of children or colorsas  —p structure of a pattern in order to
Rule the elements extend the pattern

3. Determining the number of Identifying the structure of a 3-D
Huts and —3p blocks in a structured and —3) construction in order to

Castles unstructured block house understand and better make use

of its composition

W—J

4. Finding familiar structures in Using the insight into various types

Got it! —p larger structured — of structures to perceive and iden-
arrangements of tify a spatial structure in a rela-

objects tively larger arrangement (cf.

gestalt)

5. Keeping track of changes in Using the ability to identify a famil-
Picking —3p the number of objects that —3) ar structure in a relatively larger
Flowers are (originally) presented in structured arrangement to recog-

a random configuration nize structures in  randomly

v arranged objects and to learn to

reason with larger numbers

Fig. 6.9  Arevised version of the hypothetical learning trajectory with the five revised instruction ac-
tivities

It is important to note that it is unlikely that all children start at the lowest level (learning
to recognize spatial structures) and achieve the highest level (being able to apply spatial
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structures to unstructured configurations) by the end of this instruction experiment. The
essence of this HLT, however, is that it is a general outline of the development of children’s
spatial structuring ability. This means that children of all levels of spatial structuring ability
can begin at their level of understanding, participate in the classroom activity, and progress
to a subsequent level based on their experiences in the classroom activity. Children who
still count asynchronously, for example, can continue practicing their counting skills,
while children who have already been applying spatial structures before the intervention,
can be encouraged to find other and even more efficient spatial structures as a step up to-
wards flexible spatial structuring abilities.

Children differ in the extent to which they progress in their mathematical development, so
it will probably take more than five activities for a child to reach an “Aha-moment” and
progress from one repertoire of strategies to another. Nevertheless, the importance of this
instructional sequence is that it is based on a HLT that can guide teachers in improving their
support for children’s development of spatial structuring ability. The activities fit into this
framework and can be repeated as often as necessary to improve children’s spatial struc-
turing ability. In Chapter 9, we will discuss how the teachers evaluated this instruction ex-
periment.

6.2.6 Results of the follow-up exploratory study

In the follow-up exploratory study, the children were asked to construct houses with eight,
nine, or ten blocks. This resulted in several interesting learning episodes. One girl had dif-
ficulty determining how to build a house with only three blocks. By turning the blocks,
putting them together and with a little bit of luck, she eventually succeeded. Similarly, al-
though with a little more help from the class and the teacher, two of the youngest children
built a house with four blocks. These independent trial and error experiences offered a
meaningful analysis of shapes and figures. This was clearly seen in the focus group, when
two children were exploring how to construct a rectangle with two elongated triangles.
One of the children first constructed the rectangle by chance and then spent time investi-
gating how it was made and how he could remake it. His analyses motivated him to prac-
tice constructing the rectangle with triangles and to translate his experiences to construct
a rectangle using two squares.

A more implicit learning process occurred in the “Huts and Castles” activity when the chil-
dren picked the most structured and symmetrical houses as the houses that were “easiest to
count”. Only when the teacher asked them to explain, did they start to reflect on the differ-
ences between the structures of the houses. The discussion stimulated the children into ver-
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balizing why they thought one house was easier to count than another. The teacher made
use of the children’s language by using their wording and by asking the class to comment
on each other’s remarks. In this way, the teacher led a classroom discussion that culminated
in a reasonable verbalization of the children’s implicit preference for structure. The focus
group made this implicit preference more explicit when the children were asked to con-
struct two houses that best show the difference between a structured and an unstructured
house. The children all succeeded in building two distinctly different houses and in identi-
fying which one of someone else’s houses was easiest or most difficult to count (Fig. 6.10).

Fig. 6.10 Example of what a “difficult” (i.e., the unstructured construction on the left) and what an
“easy” (i.e., the structured construction on the right) house means to one of the children in the explo-
ratory study

A clear individual advancement in understanding occurred at the end of the “Bingo” acti-
vity. One girl had located five dots on her card, but the dots were not arranged like the dice
configuration. When she was asked to find the structure like on a die, she looked at her
card again and still located a different structure. In showing what the five looks like on a
die, she drew what looked like a square in the air. When she was again asked to find that
five on her card, she looked confused. The teacher then placed the die next to the card and
asked her to search for the die in the card. As the girl (randomly) pointed to several dots
on the card, the teacher guided her towards corresponding the dots on the card to the dots
on the die (e.g., “yes, that’s the middle one”; “those are the two bottom ones”). Quickly the
girl then pointed to the correct configuration of five dots on the card. Apparently, the com-
bination of seeing the die and connecting the positions of its dots to the dots on the paper,
helped the girl recognize what dots on her card corresponded to the configurations of five
on the die. She succeeded in recognizing the structure in a subsequent round of the activity.

A final example of a specific learning moment is one boy’s advanced understanding in the
“Picking Flowers” activity. The boy initially approached this activity in a numerical way;
he used unitary counting procedures whenever he could, but these were not flawless and
they often resulted in more incorrect answers as the tasks became more complex (up to 15
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chips). In this activity, then, the more flowers were in his garden, the more difficulty he
had keeping track of how many flowers were removed. As the activity continued, he start-
ed copying other children’s configurations (e.g., placing the chips on the border of the pa-
per, or in the shape of a flower, or in piles). This is most likely because he was more suc-
cessful while using the other children’s configurations to determine the missing number of
flowers. When he repeated the activity in class the next day, he spontaneously arranged the
fifteen flowers into five piles of three and succeeded in determining the missing number
using this spatial structure. This suggests that he seemed to begin to understand the conve-
nience of structure for determining a quantity.

Taken together, the individual learning moments illustrate the importance of opportunities
for trial and error (constructing knowledge), of support from other children (social learn-
ing), of support from the teacher and task instructions that must carefully be connected to
the children’s points of reference (guided learning), to children’s motivation to solve a
meaningful problem (meaningful contexts) and to the difference between children’s im-
plicit and explicit explanations which can undermine children’s understanding of a parti-
cular problem or situation. These are all points that are taken into account in designing the
HLT and the sequence of instruction activities for the instruction experiment.

6.2.7 Revisions to the instruction activities after the exploratory studies

Despite these promising outcomes from trying out the instructional sequence in the explo-
ratory studies, the instruction activities had to be revised for two main reasons. One reason
was that some activities were not effective enough because of unclear instructions or too
long durations. The second reason was because the children may have responded diffe-
rently to the activity than expected. This suggests that the children needed other support
than what was anticipated in the initial HLT. For example, at first the children had trouble
disconnecting the characteristics of two different patterns. One child created a line of al-
ternating blue and white chips, explaining that the blue chips are boys and the white chips
are girls like in the patterns of children. Therefore, we introduced a patterning task about
children holding colored papers which helped to translate the pattern that is made up of
children to a pattern with only colored chips. This change to the activity was intended to
improve children’s understanding of how to pattern based on spatial structure, and there-
fore contribute to establishing the socio-mathematical norm of spatial structuring.

Further revisions to the “Got it!” activity were needed for it to become more meaningful
to the children. The children did not experience a need to find the dice configurations since
they could respond fast enough by just counting and subitizing the dots on the cards. In
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fact, some of the children preferred counting so that they could “show off” their numerical
skills. Not all children counted accurately, however, and this is where insight into spatial
structures could support their understanding of numerical relations. Hence, the activity
should be such that the children prioritize looking for structures over counting strategies.
In this way, the children and teachers would create a more taken-as-shared conception of
spatial structuring. Hence, the last question in this activity was to ask the children to look
for the exact configuration in the card as it appears on a die, and to circle the corresponding
dots. This seemed effective because the children attended more to the structure of the num-
ber of dots that they were looking for. The activity was still set in a game-like context; the
first child who located the die configuration won, while the other children could compare
their configuration to the winner’s answer. In this way, the activity is exciting and is mean-
ingful with its focus on dice configurations.

6.3  Optimizing the HLT and instructional sequence for Round 1 of
the instruction experiment

The process of (re)designing classroom activities, (re)developing a HLT, (re)devising ob-
servation criteria, and (re)testing the sequence of activities in class, was the essential pro-
cedure for gaining experience in how children learn and respond to instructional support.
The many specific learning moments that occurred during the activities, also contributed
to more insight into how children may best be supported in their learning processes. Ac-
cording to Gravemeijer (2004), the learning issues that children are expected to encounter
in performing the activities can become potential mathematical discourse topics that stim-
ulate discussion about the different strategies that the children may use. The practical so-
lution to the problem is called a “mathematical tool”, and it takes into account that the way
that students use the tools builds on their experience with using other, more familiar tools.

To summarize the outcomes of the exploratory studies, we schematized the learning issues
and related them to the instruction activities and the mathematical tools that were involved
(Fig. 6.11). In constructing this schematization, it became clear that some of the learning
issues were not represented well enough in the instruction activities. Therefore, more ac-
tivities were developed to fill these gaps. For example, none of the activities had thus far
specifically attended to double-structures, while these are equally as important as dice con-
figurations in the development of young children’s spatial structuring ability (Speciaal Re-
kenen, 2003; Van Eerde, 1996). Therefore, for learning how to use spatial structures, an
“Egg Carton” activity was designed to support children in learning to recognize and make
use of double-structures in egg cartons.
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General
learning issue

Specific
learning issue

Description of the
corresponding activity

Mathematical tool

Familiarity with vari-
ous spatial structures

Recognition and transfer
of various 5- and 10-
structures

“Hands and Feet”: Identifying
different kinds of 5- and 10-
structures in familiar settings
and understanding how diffe-
rent structures can represent
the same quantity

Fingers and toes,
classroom
attributes

Part-whole
relationships

“Squared Triangles™: Insight
into the structure of a figure
as the arrangement of its sub-
components, and predicting
the shape of a figure as the
integration of smaller shapes

Small and large
geometric blocks

Structure of a pattern

“Guess my Rule™: Recogniz-
ing the structure in a pattern
and generalizing the pattern
with regard to its structure

The children and
colored attributes

Distinguishing
structure of a 3-D
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responding instruction activities and the mathematical tools

Summary of the outcomes of the exploratory studies: the crucial learning issues, their cor-
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It also appeared that the instructional sequence had no proper introduction that set a moti-
vating context and invited the children to participate in the activities. We therefore adapted
the “Search for the five and ten” activity from the Speciaal Rekenen Program (2003) to
start the instruction experiment with an activity in which the children are stimulated to ex-
plore various five- and ten-structures in their surroundings. Further, given the complica-
tions with the “Bingo” and subsequent “Got it!” activities, the activity was changed to
“Highest Card”, in which the children identified which of the two cards has the most dots.
This version of the activity still required the children to recognize spatial structures in rel-
atively larger spatial configurations, yet the competition between two children was easier
to manage for the teacher than the excited classroom. Finally, we acknowledged the role
of language as a learning moment that should continuously be taken into account when
evaluating children’s performance on the activities (Fig. 6.11).

In design research, one of the researcher’s tasks is to observe any indication of children’s
mental activities as they perform the instruction activities, and to compare these mental ac-
tivities to what is expected in the HLT. In this way, the instruction experiment highlights
observations that question the assumptions about learning that were originally set out in
the global HLT (Gravemeijer, 2004). For this reason, a manual was constructed that the
teachers could use to understand the aim of the activity, to know what materials each ac-
tivity required, to follow the guidelines for what questions to ask and what wording to use,
and to take note of what types of strategies the children were expected to use and what
strategies the children may learn to use as they perform the activity (i.e., the observation
criteria). The final version of the manual can be found Appendix 5.

The plan was to perform the instruction activities during the instruction experiment, with
a period of analysis in between two rounds. In the first round, the children explored various
two-, five-, and ten-structures in their surroundings (Speciaal Rekenen, 2003), studied the
composition and decomposition of various shapes, practiced recognizing structure to ex-
tend a pattern, compared ways to determine the number of blocks of structured and un-
structured constructions, and investigated double-structures in an egg carton context.
These five activities were intended to offer children the opportunity to discover spatial
structures in their surroundings and to see how these structures could conveniently be used
to, for example, determine a quantity.

The second round of the instruction experiment was to begin with the “Picking Flowers”
activity. This was to introduce the children to an unstructured situation that could be orga-
nized or, more specifically, spatially structured. Next, the children repeated the patterning
activity to again practice abstracting a structure from a pattern. Then the children played
the “Highest Card” game in which they practiced recognizing structure in larger structured
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settings. This was expected to prepare them for another attempt at the “Huts and Castles”
activity in which they tried to use structure to determine a larger structured number of
blocks. Finally, the children were encouraged to make use of all the insights that they
gained from the previous activities to make another attempt at using and applying spatial
structure in the “Picking Flowers” activity.

Similar to the analyses of the exploratory studies, the main issues that came up in planning
and discussing this design of the instruction experiment with experts was (a) unclear or ir-
relevant intentions of several of the activities, and (b) lack of context in some of the acti-
vities. For example, through studying the role of the second activity (i.e., the composition
and decomposition of shapes) in the instructional sequence, questions arose about what the
activity could contribute to the conjectures, what the activity would mean to the children,
and how the activity ultimately relates to the development of spatial and number sense. Al-
though the original idea of attending to part-whole relationships is still very relevant to pat-
terning abilities and ultimately to learning to identify spatial structures, it became doubtful
whether starting the sequence of instruction activities at this fundamental point would sti-
mulate the children enough to start to use and apply spatial structures to mathematical
tasks. This activity seemed too tangential to fit the aims of the instruction experiment,
while an activity such as counting blocks in a 3-D construction connects more strongly to
our theoretical framework and still covers part-whole relationships. As such, we decided
that the activity would best be eliminated from the sequence.

Regarding the role of meaningful contexts in RME, it was necessary to take another look at
the activities in terms of their context and the perspective with which children approach
the activity. The first activity about exploring various types of structures, for example, was
not embedded in a context. This would make it difficult for the children to understand the
aim of the activity, or even to be motivated to participate in the activity. Similarly, the RME
construct of “guided reinvention” was not apparent in this activity because the children
were only asked to collect and compare various spatial structures for particular quantities.

To improve the activity, we introduced the “Trick Box”, a box that was filled with various
familiar objects such as finger patterns on cards, dice, and egg cartons. These objects re-
present spatial structures that have mathematical characteristics which make them useful for
abbreviating numerical procedures such as determining, comparing and operating with small
quantities (Van Eerde, 1996). The egg cartons, for example, illustrate double-structures and
support the use of a doubling strategy. The objects were discussed with the teachers before-
hand to ensure that the children would not be distracted by new materials, and that as much
use of materials that are readily available in the classrooms or at home was made as possible.
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The objects are called “tricks” because, as the children would discover throughout the in-
struction experiment, they can help children determine and compare quantities without
having to count unitarily. Further, to foster a shared vocabulary, the teacher should take
care to use consistent wording such as “tricks” and “convenient ways to determine how
many there are” (see paragraph 2.5.2). Translated from Dutch to English, the word “easy”
(i.e., makkelijk) may best be substituted with “convenient” (i.e., handig) to prevent chil-
dren from “easily counting” a quantity rather than searching for a “convenient way to de-
termine” a quantity.

6.4  Thefinal instructional sequence

The final version of the sequence of instruction activities for the instruction experiment
initially included two sequences of five activities. This is outlined as follows:

(1) “Guess my Rule”: Becoming aware of part-whole relationships through patterning.
(2) “The Trick Box™: Exploring types of spatial structures.

(3) “Giant Cards”: Making use of part-whole relationships (version 1).

(4) “Huts and Castles”: Spatial structure and three-dimensional constructions.

(5) “Picking Flowers”: Using and applying spatial structures.

(6) “Filling Egg Cartons”: Using part-whole relationships (version 2).

As described in Chapter 3, an instruction activity started with a classroom discussion dur-
ing which the children were sitting on chairs in a circle facing the teacher. After about half
an hour, the focus group was taken aside to perform additional tasks with the researcher.
This provided additional opportunities for more detailed observations of how children ap-
proached a particular task. The classroom and focus group discussions and the children’s
interaction with the teacher were later interpreted against a set of observation criteria that
outline the HLT for each activity. These observation criteria are part of the manual describ-
ing the instruction activities (Appendix 5). In the following paragraphs we describe each
of the instruction activities with their HLT within the instructional sequence.

6.4.1 “Guess my Rule”: Becoming aware of part-whole relationships through
patterning

The Guess my Rule activity was developed to focus on the structure of a pattern as defined
by the regularity of its elements. In light of this interpretation of structure and its funda-
mental effects on mathematical achievement (Papic & Mulligan, 2005; Waters, 2004), we
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decided to make this activity the first of the sequence. The conjecture was that insight into
part-whole relations is necessary for children to abstract a fundamental element of an ar-
rangement and notice its repeated occurrence (e.g., abstracting a row of three to enumerate
three rows of three). As children become more aware of the components that make up a
pattern, they may notice the order in which the components are arranged. Once the children
become aware of its regularity, the structure of the pattern may make it easier for them to
remember and extend it on their own. The process of abstracting a structure and noticing
its repetition can also help children become aware of structure in less apparent arrange-
ments.

The context of the activity was about a “fortune-teller” and the children were to construct
a pattern that would be easy for someone else to extend. The children were to act as for-
tune-tellers and “predict” who belonged next in the line of children that the teacher ar-
ranged in front of the classroom in a pattern such as “boy, girl, boy, girl” or “tall, short,
short, tall, short, short”. The class repeated this activity first with patterns of children hold-
ing colored papers, and then with patterns of plastic colored chips. In each case, the chil-
dren were to identify the regularity in the pattern, find the repeated structure (e.g., color,
size, gender) and use this structure to extend the pattern.

In accordance with the principles of RME, this idea of “predicting” the next element of a
pattern is important for the meaning of the activity; the children were to come to under-
stand the significance of finding and using structure and they were to relate structure in this
activity with structure in the next activity. The envisioned connection between the first and
second instruction activities was the focus on what makes it possible to predict the next
element in a pattern. The second activity would continue this idea by having the children
experience how the various spatial structures in the Trick Box contribute to “predicting” a
quantity that is to be counted. For example, once the children become familiar with a struc-
ture of five such as that on a die, they may circumvent longer counting procedures by “pre-
dicting” a quantity on the basis of structures that they recognize.

6.4.2 “The Trick Box": Exploring types of spatial structures

The Trick Box activity was based on an activity from the Speciaal Rekenen Program in
which the children explore different structures representing 5 and 10, and later, double-
structures as represented by egg cartons (Speciaal Rekenen, 2003). The idea behind in-
cluding this activity in the instructional sequence was to create a strong context that can
underlie the subsequent four activities; the structures that were represented by the objects
in the box all related to structures that may be useful in solutions to the other activities. The
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objects in the box were referred to as “tricks” that could help to determine a quantity in “an
easy way” in contrast to more tedious and error-prone unitary counting procedures. The
teacher talked about these “tricks” as tools that everyone could command. In the upcoming
activities, the children would be encouraged to refer to the box and see what structures
could help them in performing the activity.

In line with the need in RME to appeal to children’s interests, the Trick Box itself was a
colorful cardboard box that excited the children through how it was introduced in the class-
room (i.e., the surprise of seeing such a box in the middle of the classroom). To associate
this activity with the previous one, the teacher first asked the children whether they re-
membered how they could see how to extend a pattern. Such awareness of patterning was
assumed to help the children in exploring the use of the contents of the Trick Box. As the
children unpacked the box, the teacher could start a discussion about how they could con-
veniently see how many of each object there were. The box contained several objects and
sets of objects that represented various structures and applications of structures. The one
to six dots on two large dice were structured in ways that children are able to subitize at a
very young age (Clements, 1999a) or may have familiarized themselves with earlier (cf.
Teubal & Dockrell, 2005). A set of flashcards with finger patterns appealed to the chil-
dren’s basic use of their fingers as a way of keeping track of count (Baroody, 1987; But-
terworth, 1999).

The other objects in the box represented more applied spatial structures. A number of egg
cartons containing either 6 or 10 plastic eggs were included to support the children’s dou-
bling strategies (Speciaal Rekenen, 2003; Van Eerde, 1996). A set of enlarged playing
cards encouraged the children to discover the dot structures on dice within the large struc-
tured dot configurations of the cards. Three towers of LEGO blocks were intended to appeal
to the children’s interest in building with blocks and to challenge them to use the three-
dimensionality of the construction to determine the number of blocks that it contains (Ness
& Farenga, 2007). A set of little plastic butterflies was included as an example of unstruc-
tured objects that can be structured to be counted more easily. Finally, the three different
bead patterns in the Trick Box linked this activity to the previous patterning activity.

The process of exploring the various types of spatial structures and their uses, catered to
the different developmental levels of the children in the class. The objects that represented
familiar structures (i.e., the dice and flashcards with finger patterns) appealed to most of
the children because they had encountered them before, at least in class. The objects that
represented more applied structuring (i.e., the egg cartons and butterflies), however, ap-
pealed mostly to children who were more aware of spatial structures and who were more
experienced in making use of such structures in numerical procedures. In this way, the
teacher could ask a child those questions that suited the child’s level of understanding.
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The “guided reinvention” principle was manifested in this activity by how the children
were solving the mystery of the contents of the box; the guiding role of the teacher was to
ask appropriate questions that encouraged the children to think about the similarities and
differences between the objects in the box and to explore what the objects could represent
throughout the rest of the activities. The Trick Box offered children the experience of
working with various structures that they may or may not already have been familiar with.
The use of structures was not imposed on the children, but rather presented as objects in a
box for the children to explore (see section 2.4). In this way they could familiarize them-
selves with objects that represent structures which would be useful in class discussions for
solving the rest of the activities in the instructional sequence.

Hence, regarding the research questions, this activity was to contribute to insight into how
children interpret various structures, how they relate their patterning experiences to other
types of structures, and in what ways they tend to use structure to solve numerical prob-
lems. From a social perspective, the activity could illustrate instances where the instruction
and content of the activity had to be negotiated with respect to the children’s responses and
conceptual understanding. Such negotiations can provide insight into children’s under-
standing of spatial structures and how the instructional setting can influence the develop-
ment of this understanding.

By this stage in the instructional sequence, the children had had an introduction to part-
whole relationships and structure in the first activity, as well as opportunities to explore
more types of spatial structures in the second activity. The third activity was the first ac-
tivity that focused on one specific item from the Trick Box, namely the dice dot configu-
rations. This was to highlight the important use of part-whole relationships in a numerical
procedure such as determining a quantity.

6.4.3 “Giant Cards”: Making use of part-whole relationships

The third activity was a new version of the “Highest Card” game called “Giant Cards”. The
intention of this activity was to support the children in gaining insight into part-whole re-
lationships and, further, in learning to make use of such relations to recognize spatial struc-
ture for determining a quantity (cf. Arcavi, 2003; Henry & Brown, 2008). A pair of chil-
dren was called forward to determine as fast as possible the number of dots on the enlarged
playing card that the teacher had drawn from a pile of cards in the Trick Box.

The guidelines in the manual encouraged the teacher to repeatedly use phrases like “clever
tricks” and “convenient ways of determining how many there are” as ways to encourage
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the children to make use of the contents of the Trick Box. The game-like context of this
activity was inspired by the Speciaal Rekenen activities (2003) in which children were
stimulated to explore different strategies that could help them win a game. Each pair of
children consisted of a giant and a dwarf. The issue in this activity was that although giants
are large and strong, this may not help to quickly determine a quantity. The dwarf could be
more clever than the giant in finding a convenient way to see how many dots were on the
card without counting. When one of the two children recognized a structure in a card faster
than the other child, the class was expected to be motivated to improve their strategies.
Such a motivation, along with the teacher’s guidance, was to stimulate the child’s strategy
development and awareness of part-whole relationships (Ness & Farenga, 2007).

After concentrating on the dice dot configurations from the Trick Box, the next activity re-
volved around the LEGO blocks. This activity required the children to draw on their expe-
riences with making use of part-whole relations in two-dimensional settings, in an effort
to explore and make use of the spatial structure of a three-dimensional construction.

6.4.4 “Huts and Castles”: Spatial structure and three-dimensional constructions

The design of the Huts and Castles activity was initially inspired by two observations that
illustrate how children have a particular ability to spatially structure the world around them
and how this ability could contribute to the development of the children’s numerical in-
sights (cf. Clements & Sarama, 2007). One observation concerns an eight-year old child
who was determining the number of blocks in a construction drawn on paper. The child
confidently explained that he could see ten blocks because there was a block of four blocks
on top and three and three on the side. Apparently, this child had visualized the blocks and
determined the quantity without having to count them unitarily. The second observation
comes from a Kindergarten teacher who noted that one of the children pointed to the cor-
ners of a rectangle that was drawn on the blackboard while saying that it was “the same as
four”. Hence, this child seemed to associate a spatial structure for four with four as a quan-
tity.

As explained in Chapter 2, several gestalt norms explain how structures can be detected
and differentiated perceptually (e.g., Quinn et al., 1993, 2002). In this sense, a square re-
sembles the dice dot configuration for four, whereas a rectangle could resemble two rows
of three dots (Clements, 1999a). Ness and Farenga (2007) elaborated on children’s early
construction ability and its effects on mathematical performance. This motivated the de-
sign of an activity that would tap in to young children’s natural interest in constructing and
in symmetrical beauty (Freudenthal, 1984).

126



Refining the HLT and Developing Classroom Instruction Activities

The activity was intended to make children more aware of the role of symmetry in struc-
ture and determining a quantity. In particular, the explicit comparison between a structured
and an unstructured construction was expected to spark children’s curiosity about why it
seems easier to count the number of blocks in a structured (i.e., symmetrical) construction
compared to the unstructured (i.e., asymmetrical) block construction. The challenge for the
children was to estimate how many blocks are necessary to rebuild the sample symmetric
and asymmetric block constructions. This required them to take note of the structure of the
construction rather than to count each block unitarily. Hence, an important part of the ac-
tivity involved connecting the children’s methods of counting to the “convenient ways” of
determining a quantity such as those discussed earlier in the Trick Box activity. An exam-
ple is recognizing two rows of three blocks on the bottom of a construction such as, for
instance, the two rows of three eggs in an egg carton, or two rows of three dots on the face
of adie. As such, the children were expected to extend their insight into spatial structuring
for numerical procedures to this 3-D setting.

Just like in the previous activities, this activity was accessible to different developmental
levels because the children can also practice their counting skills in determining the num-
ber of blocks in the construction. It was expected that when the children experience diffi-
culties in trying to keep track of the blocks that they already counted, they would be more
motivated to explore and use the structure of the construction. From exploring patterns and
various spatial structures, to making use of spatial structures in relatively more complex
spatial structured settings, the four previous activities were intended to guide the children
towards the fifth activity. This last activity in the instructional sequence required children
to spatially structure objects that were set in relatively large, unstructured settings.

6.4.5 “Picking Flowers”: Using and applying spatial structures

As described in section 6.2, the Picking Flowers activity was adapted from “Robbie de
Rover” from the Speciaal Rekenen Program (2003). Presented with a number of flowers
(plastic chips) in a garden (a sheet of paper), the children were asked to determine the num-
ber of flowers that the teacher picked from their garden. After determining the number of
missing flowers correctly, the child won an additional flower. The teacher kept the missing
flowers if the child answered incorrectly. Hence, the essence of this activity was for the
children to use strategies that could abbreviate the numerical procedure. In this way they
did not have to depend on unitary counting procedures that could become confusing as the
number of flowers in their garden increased.

The main theoretical contribution for this activity came from children’s spatial visualiza-
tion ability to perceive, group and differentiate objects according to gestalt norms (see sec-
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tion 2.3). It is also based on research in special education that has shown how children ty-
pically have trouble letting go of unitary counting procedures and benefit from activities
that challenge them to make more use of spatial structures (Boswinkel & Moerlands, 2002;
Mulligan, Mitchelmore, & Prescott, 2005; Pitta-Pantazi, Gray, & Christou, 2004).

After studying the objectives of all the instruction activities, it became clear that this ac-
tivity had the potential to stimulate children towards the fourth and final phase in the de-
velopmental trajectory for spatial structuring (see section 5.2). Children may keep practi-
sing their unitary counting skills, they may be inspired to use spatial structures as they start
rearranging the flowers, or they may be challenged to spontaneously apply spatial struc-
tures to elucidate counting procedures. As such, they may at first approach the activity ei-
ther by leaving the colored chips the way they are or by playing with the chips and arrang-
ing them into different shapes and figures. As the children experience the convenience of
arranging the chips in ways that help to see how many chips are missing without unitary
counting, they may explore more configurations that can help them read off the quantity.
This can highlight which spatial structures are meaningful to young children and in what
ways the children become familiar with such structures and learn to make use of them in
a strategic way.

The design of the activity took into account all the structuring experiences that the children
will have had after performing the first four activities. In addition, the context continued
in line with the previous activities so that the children could recognize the socio-mathe-
matical norm of spatial structuring that by this time should have started to be established.
As such, the aim of the activity was to inspire the children to make use of structures from
the Trick Box that they by now were more familiar with, or to create their own structures
so that they could depend less on unitary counting when determining and comparing the
number of flowers that were missing from their garden.

6.4.6 “Filling Egg Cartons”: Using part-whole relationships (version 2)

The second round of instruction activities is analogous to the first round, except that the
“Giant Cards” activity was substituted by an egg carton activity called “Filling Egg Car-
tons”. Similar to the third and fourth activities, this activity guided the children in studying
the egg carton structures in the Trick Box. It resembled the Giant Cards activity in how it
gave the children an opportunity to explore spatial structures in larger structured arrange-
ments. This activity was slightly more complex, however, in that the children were re-
quired to operate with quantities (i.e., determine totals and differences) rather than to only
abstract the structures and read off the quantities.
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The context of the egg carton activity was about helping a farmer who was having diffi-
culty to quickly see how many eggs he had and how many egg cartons he would need to
take the eggs to the market. While the teacher added and took away eggs from the carton,
the children were asked to find “convenient ways” to determine how many eggs were still
in the carton or how many have been removed.

This activity was included in the instructional sequence to discuss double-structures be-
cause double-structures are essential for gaining insight into numerical relations for basic
addition problems (Van Eerde, 1996). When structure is defined as the rule that holds the
elements of a pattern together (Papic & Mulligan, 2005), then mathematical operations
such as multiplication (i.e., repeated addition) can be considered to draw on children’s pat-
terning ability (Anghileri, 1989; Carraher et al., 2006; Waters, 2004). Another reason why
double-structures may be useful to the development of kindergartners’ number sense, re-
lates to the body of research about the effects of young children’s patterning ability on their
later mathematical performance (cf. Papic & Mulligan, 2005; Waters, 2004). Consequent-
ly, along with for instance finger patterns and dice dot configurations, we consider it ne-
cessary for young children to become familiar with double-structures as one type of struc-
ture that can support their mathematical procedures.

The aim of this activity was very similar to that of the Giant Cards activity. It was origi-
nally inspired by activities from the Speciaal Rekenen Program (2003), and it was intended
to stimulate the children towards recognizing double-structures in configurations and mak-
ing use of such structures to abbreviate numerical procedures. The activity catered to dif-
ferent developmental levels in that children could practice their counting procedures, their
ability to recognize different structures, and their ability to apply structures to other con-
figurations. Hence there was a “zone of proximal development” in that the children were
continuously stimulated by the varied levels of questions that the teacher asks, and their
strategies were challenged by the strategies of other children.

Another way that this activity complemented the Giant Cards activity is that it involved
egg cartons that, on the one hand, the children are more familiar with than Giant Cards, but
that, on the other hand, are less straightforwardly connected to spatial structures in math-
ematics; while dice dot structures are usually already connected to game contexts and
numbers, the children would have to consider egg cartons differently in this setting com-
pared to their use in the household. The challenge then, was for the children to abstract spa-
tial structures from arrangements that the child would not normally relate to mathematics.
The significant contribution of this activity to the instructional sequence was to observe
how children may be supported in learning to recognize familiar structures in relatively un-
familiar contexts.
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Children were expected to be less familiar with recognizing double-structures compared
to, for example, finger patterns. Hence, the challenge in designing an appropriate activity
was to take care to relate the double-structures to structures that the children were already
familiar with. It was also important to link the act of doubling to the act of patterning in
the first activity, since both involved finding and then repeating the underlying structure.
Therefore, in introducing the activity, the teacher had to connect the fundamental idea of
structuring two rows of a certain number of eggs to structuring dots on a Giant Card, to
structuring other objects in the Trick Box, to, finally, structuring a sequence into a pattern.
The underlying motivation for the children was to discover why these structures were
“tricks”, how they were related to each other, and how they could be used to avoid unitary
counting procedures.

This chapter described the process of developing the HLT and finalizing the instruction ac-
tivities for the instruction experiment. In the next chapter, we explain what issues were en-
countered as the sequence of activities was performed in the first round of the instruction
experiment. These outcomes have consequences for the design of the second round of the
instruction experiment, as will be described in Chapter 8.
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7 Analysis of Round 1 of the Instruction Experiment

In the previous chapter, we described the process of developing the HLT and corresponding
instruction activities for the instruction experiment. This chapter begins with a comment
about micro and macro cycles in design research and a description of the classroom social
norms. Against this background, we continue with illustrations, analyses and evaluations
of what happened during the first round of the instruction experiment. In section 7.4, we
reflect on the outcomes to shed light on what determines the effect of an instructional se-
quence for particularly young children in an RME setting. One of the determining factors
is the importance of a meaningful overarching context for supporting awareness of spatial
structuring. Hence, section 7.5 elaborates on the role of “Ant” (“Miertje Maniertje” in
Dutch) as an overarching context. Finally, in section 7.6 we describe how each instruction
activity was revised to contribute to an optimized HLT that underlies the design of the sec-
ond round of the instruction experiment, and that refined the operationalization of the con-
struct of spatial structuring in the research.

7.1 Reinterpreting micro and macro cycles in design research

Before elaborating on the overall outcomes of the instruction experiment, we focus briefly
on an important matter that affected the rest of the instruction experiment. What became
clear as the first round of the instruction experiment progressed, is that the procedure in
design research that helps researchers come closer to understanding how a particular inter-
vention works, is not as pre-defined as our initial plan for conducting two consecutive se-
quences of instruction activities was. Our interpretation was that a pre-defined second
round could offer the children a second opportunity to learn while performing the instruc-
tion activities. It would also give the researchers another opportunity to study the chil-
dren’s behavior and the role of the instructional setting, and the learning ecology in gener-
al, in supporting the children’s learning. However, in design research the series of micro
design cycles for constructing the initial HLT and instructional sequence (i.e., the explo-
ratory studies described in Chapter 6) is followed by a macro design cycle to try out the
resultant sequence of instruction activities and to adjust the initial HLT (Round 1), and is
concluded by a macro design cycle to try out the revised HLT and sequence of instruction
activities (Round 2). This process is illustrated in Fig. 3.1 in Chapter 3.

The micro design cycles within each macro cycle involve the anticipation of what will hap-
pen in a session (i.e., a thought experiment), the session itself (i.e., trying out the activity)
and a critical reflection on the session. This reflection leads into a new thought experiment
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in which the HLT may be revised to inspire the development of another thought experiment
about the next instruction activity in the subsequent micro design cycle. A macro design
cycle spans the instructional sequence and inspires the design of a revised set of instruction
activities. What this procedure clarifies is that the outcomes of the first round are a prereg-
uisite for planning the second round. Therefore, in our instruction experiment we had to
step away from planning the second round before having performed the first round. As
such, we decided to perform the Egg Carton activity in the session following the Giant
Cards activity, rather than in a separate instruction sequence where the Egg Carton activity
was to substitute the Giant Cards activity (see section 7.6). In the next section, the class-
room social norms are outlined that underlie the teacher’s and children’s behavior in the
classroom discussions.

7.2 The classroom social norms

To prepare for an analysis of the outcomes of the first round of the instruction experiment,
we present four classroom social norms that were observed throughout the classroom dis-
cussion. These norms paint the setting of the instruction experiment and are therefore im-
portant to take into account when interpreting the classroom observations.

(1) The children were to raise their hands and wait for the teacher to call on them before
they made a comment or answered the teacher’s question.

(2) The children were expected to listen to each other and to think about the teacher’s ques-
tions even though it was not their turn.

(3) The teacher tried to involve each child in a classroom discussion by asking questions
that fit the age and/or developmental level of the child.

(4) The teacher tried to make the children more involved in their own and each other’s
learning process by asking them to explain their own answer and someone else’s an-
swer, and to re-evaluate their answer and solution method.

The teachers especially referred to the first norm at the beginning of each activity, while
the second norm became most apparent towards the end. The third and fourth norms oc-
curred throughout the activity. These appear most important in coloring the analysis of the
activity because they determine the nature and regularity of teacher’s and children’s inter-
actions.
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7.3  Key observations from Round 1

In this section we describe the micro design cycle that includes results of each instruction
activity in Round 1 of the instruction experiment. Each paragraph begins with a short de-
scription of the hypothetical learning trajectory (HLT) for the instruction activity. The in-
struction activities are described in more detail in Chapter 6 and in Appendix 5. Next, we
highlight observations that best illustrate how the children responded to the activity in the
classroom and focus group settings, what effects the instructional setting had on children’s
performance, and how these results influence the HLT. These outcomes are clustered and
discussed in several themes.

7.3.1 “Guess my Rule”: Becoming aware of part-whole relationships through
patterning

HLT for the instruction activity

The first activity of the instruction sequence was intended to offer children the opportunity
to explore patterning. This activity was aimed at helping children to become aware of the
part-whole composition of a pattern, which is a valuable tool for understanding part-whole
relationships in spatial structures.

To start the activity with a meaningful context, the first sequences were made up of the
children themselves as they were called up by the teacher to come stand in a particular or-
der (e.g., bay, girl, boy, girl) in a line facing the class. During the classroom discussion, the
children were asked to “predict” what element might be added to a sequence so that the
sequence would continue to make sense. According to the HLT, we expected that some
children would need more help than others to understand the objectives of the activity and
to learn how to study the composition of a pattern. The children’s types of reasoning could
help the teacher gauge children’s levels of patterning ability. Further, in the previous ex-
ploratory studies, a translation from patterning with children to patterning with the colored
paper that each child in the line was holding, prepared them for patterning with relatively
abstract sequences of colored chips. Hence, in line with the HLT, the teacher could create
opportunities for guiding classroom discussions that focus on part-whole relationships. In
this way, we expected children’s different levels of patterning ability would become the
shared topic of discussion for gaining insight into the part-whole compositions.

Analysis and illustrations
Creating awareness of the rule and regularity of a pattern. At the start of the activity, it
was surprising to note that the children were very focused on the height of those who were
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standing in the line. As the discussion progressed, however, it became clear that the chil-
dren were thinking of a previous classroom activity in which they learned to arrange them-
selves from short to tall. Hence, the teacher discussed the mathematical practice of looking
at the beginning of a sequence to discover the characteristics of the pattern. She hinted to
the children that each pattern that she constructed had a different “rule” to it, by asking the
children whether the next child in line actually fit the pattern. She also let the children who
were still seated explain what the new “rule” of the pattern was and why the two boys
standing next to each other adhered to this rule. When she exposed the children to a line
that had no apparent rule to it, she asked the children to explain what it was that made the
last sequence more difficult to “predict” than the other two sequences. When one child an-
swered that “it wasn’t a clear line”, the teacher took the opportunity to start a discussion
about recognizing the components that make up a pattern (i.e., “a clear line”) by first de-
composing the pattern into its parts and then recomposing the parts to extend the pattern
(Fig. 7.1).

Fig. 7.1  Video frame of the teacher helping the children extend a pattern that alternates two girls
and two boys

The second part of this activity supported the additional step of patterning with colored pa-
pers that was added to the activity in response to children’s confusion during the explo-
ratory studies (see paragraph 6.2.7); the teacher succeeded in introducing the idea of ex-
tending a pattern that is made up of children to extending a pattern that is made up of col-
ored origami papers or colored plastic chips. By this time the children also understood to
notice the “rule” (i.e., a particular combination of elements that make up a unit of a pattern)
of the sequence. This is illustrated in the following episode of the focus group:
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Researcher:  (pointing to the last purple chip in an alternating blue and purple pattern) What
color chip do you think should come after this one?

Focus group: A blue one.

Researcher:  Yes, how do you know that?

Becky: (points to one of the blue chips in the pattern) But there is also a blue one.

Researcher:  (pointing to one of the purple chips in the pattern) But there is also a purple one,
so why don'’t you think the next chip should be a purple one?

Becky: (first pointing to the blue chip at the beginning of the pattern and then to the pur-
ple chip at the end of the pattern) But here there already is a purple one.

In this episode, Becky shows that she understood the idea of a pattern that is made up of
alternating (i.e., blue, purple, blue, purple...) colors. Yet, as illustrated in the next episode,
she didn’t show an understanding of a pattern that is made up of a variation in the number
of elements for a particular color. After discussing three of the children’s patterns that were
made up of two alternating colors, the researcher turned to one of the children’s sequence
of chips that had no apparent pattern to it. She asked the focus group why this sequence
had no “rule” to it and they remarked:

Becky: It's not a good line because you have to do two of the same colors.

James: And this one (pointing to his own sequence of two alternating colors) is much
easier to make than that one (pointing to the sequence of randomly arranged
colors). But you can also do three colors!

This episode illustrates how the children understood the “rule” of a particular pattern (i.e.,
alternating two colors). Like most children in the class, Becky still adhered to the class-
room mathematical practice of patterning with alternating colors (“two of the same col-
ors”). This is what the class had worked with so far in the instruction activity. At the same
time, however, James showed a significant insight into the functionality of patterning by
relating the absence of a pattern to the difficulty of constructing the line and extending it.
This is a valuable insight for understanding the convenience of spatial structuring for use
in mathematical procedures. Moreover, he generalized the two-colored patterns that had
been discussed so far to more colors, suggesting that he understood more about patterning
than what thus far had been the classroom mathematical practice.

What remains unclear, however, is to what extent these children understood and could
identify the “regularity” of the pattern (i.e., the repetition of units of a pattern which consist
of elements that are combined according to a certain rule). Most of the children seem to
understand that a pattern is composed of a fixed number of colors (two or three); they
showed no sign of being able to continue a pattern based on its “regularity”. The children
had not mentioned patterns with variations in the number of chips per color (e.g., a-bb-a-
bb... or a-bbb-a-bbb...). Nevertheless, at the end of the focus group activity, Lisa created a
pattern that illustrated a remarkably creative interpretation of patterning (Fig. 7.2).
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Lisa: Look, mine is easy!
Researcher:  Why?
Lisa: Because... (waving one hand over the left side of her pattern and one hand over

the right side) it's a little bit the same.

Researcher: It's a little bit the same. What do you mean?

Lisa: Yes, look, (pointing to the first chip and then to the last chip) here is yellow and
there is yellow (continuing to point to each chip, moving to the middle of the pat-
tern), here is blue, there is blue, here is white, there is white, here is yellow,
there is yellow (now first pointing to the right side of the pattern and then to the
left side), here is green, there is green (pointing to the middle left chip and then
to the middle right chip), and here is purple and there is purple.

Researcher: Great! | hadn’t noticed that yet. So that is a “rule” isn’t it, because you have to
look at each side of the pattern and repeat it until you come to the middle.

Fig. 7.2  Video frame of Lisa’s pattern that mirrors the colors from both ends in towards the middle

The significance of Lisa’s pattern is that it highlighted symmetry as a different type of
“rule” than what the norm for patterning had been so far. This is interesting for the HLT
because it is a different interpretation of the definition of a pattern and it eliminates the idea
of “regularity” that the children were struggling with.

Creating a shared vocabulary for patterning. Lisa’s unexpected insight into patterning
and children’s tendency to interpret a pattern in terms of unitarily alternating colors, sug-
gests that children’s general confusion about the “rule” versus “regularity” of a pattern
could relate to the classroom mathematical practices and the weak context in which the ac-
tivity was embedded. What is interesting for the HLT is that it shows how the teacher can
send the children mixed messages; she was positively reinforcing the children as they cor-
rectly continued a pattern that was composed of two alternating colors. Yet, at the same
time she was asking them to make their own pattern, meaning one with more colors and a
“different rule” than the examples, and asking them to make a “good” sequence. Her
choice of words evolved from the idea that a “good” sequence is one that has a “rule” that
can easily be extended. Not surprisingly, children tended to make sequences that were sim-
ilar to the previous ones (e.g., two alternating colors) because that fit their definition of a
“good” sequence. This underlines the important role of language and a shared vocabulary
in teaching and learning mathematical concepts (e.g., Van Eerde, Hayer, & Prenger, 2008).

From these observations, we deduce that the activity succeeded in evoking an awareness
in children of the parts that compose a whole (i.e., the rule of a pattern) in the context of
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patterning. The children required more time and experience, however, to broaden their in-
terpretation of a pattern to a sequence of any type of repeated element (e.g., color, quantity,
gender) and units of combined elements (i.e., the regularity of a pattern). This underlined
the role of regularity and symmetry in patterning as characteristics of a pattern that make
up “a good line” that is “easy to make”. In terms of refining the HLT, these findings were
expected to be sufficient for helping children interpret the contents of the Trick Box in
terms of part-whole structures in various spatial contexts.

7.3.2 “The Trick Box": Exploring types of spatial structures

HLT for the instruction activity

After exploring part-whole relationships in patterns, the Trick Box activity was designed
to introduce the children to representations of several types of spatial structures (Fig. 7.3).
According to the HLT, we expected awareness of part-whole relationships, which had been
the topic of discussion in the previous activity, to help the children understand the compo-
sition of a structure (e.g., four dots on a die is composed of two and two dots) and how a
structure may be embedded in relatively larger configurations (e.g., two finger patterns of
five fingers make a total of ten fingers). To stimulate this connection, the teacher discussed
the word “trick” to denote a “convenient or easy way of finding out how many of some-
thing there are”. She used these phrases to create a shared focus on spatial structure. Ac-
cording to the HLT, we assumed that such a shared focus and vocabulary would support the
continuity of the activity throughout the rest of the instructional sequence. Hence, in dis-
cussing the different types of structures in the box, the teacher made use of phrases such
as “easy ways” and “tricks” to encourage children to relate the structures to each other. It
also anchored the idea of spatial structuring by broadening the scope of spatial structures
that children were familiar with.

Analysis and illustrations

Developing a shared vocabulary. The main challenge for the teacher was to guide the chil-
dren towards becoming aware of and making use of the spatial structures in the Trick Box.
For this to succeed, it was first important that the children understood what it means to use
an “easy trick” to determine a quantity. Hence, after the children counted the parts of sev-
eral different objects (e.g., fingers on the flashcards, eggs in the egg carton, and blocks),
the teacher explicitly asked them to show her an “easy way” of counting the dots on one of
the enlarged playing cards. Several (older) children were already able to share “easy ways”
of determining a quantity. One girl showed the class that a card with nine dots can easily
be interpreted as two rows of four dots with one in the middle because “then you don’t lose
count”. Another boy added that “otherwise you don’t remember which ones you’ve already
done and (...) then (pointing to the card) you’ll go all the way across the middle”.
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Most of the children, however, firmly held on to their (perceptual or pointing) counting
strategies regardless of the teacher’s suggestions and questions about finding “easier
ways” to count. Given a card with two sets of five dots arranged like dots on dice, one girl,
for example, pointed and counted each dot unitarily. When the teacher took the card away,
the girl guessed eight instead of ten dots. This is curious because in the pre-interview she
had repeatedly shown that she was familiar with the dice structure for five dots. The ques-
tion is why she did not appear to recognize that structure in this card or, if she did recognize
the structure, what prevented her from making use of this insight to circumvent the unitary
counting procedure like the teacher asked her to. This supports the conjecture that recog-
nizing structures does not automatically imply that children use spatial structures in vari-
ous situations (see section 5.2).

Fig. 7.3  Video frame showing how excited the children are to see what is in the Trick Box

As the discussions about the different types of objects and spatial structures continued,
some of the children were still confused about what the teacher considered to be “easy” or
efficient methods for determining a quantity. It seems that the children kept to their count-
ing procedures because, considering their familiarity with counting, to them that that was
an “easy way” for determining a quantity. Some children even described their perceptual
grouping strategy as “counting in their head”, while these children seemed to have used
spatial structuring strategies and, in the pre-interviews, they had explained their perceptual
grouping strategy by saying that they “could just see it”. Hence, unitary counting was still
the predominant classroom mathematical practice while spatial structuring strategies were
not self-evident. Apparently the setting was not successful yet in establishing a socio-
mathematical norm for considering spatial structure to be a valuable solution and an “easy”
or “clever” way to determine a quantity.
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Another reason why children continued to use a counting procedure could be that they
were keen to respond exactly to what the teacher was asking (see paragraph 8.2.4). This
could have been the result of some of the teacher’s questions. Rather than consistently ask-
ing the children to use an “easy way of finding out how many there are”, in her enthusiasm
she sometimes asked the children to use an “easy way for counting how many there are”.
Early in the classroom discussion, for example, one girl told the teacher that she knew how
many dots were on the die. According to the pre-interview, this child fit the Usage phase
(phase 3) and should therefore be familiar with most structures and often use them to ab-
breviate counting procedures. Yet, when the teacher asked her to share her method with the
class, the girl pointed to each dot as she unitarily counted six. This suggests that the girl
was particularly focused on responding to the teacher’s question by literally showing her
how she counted the dots. Hence, the teacher’s choice of words could have directed the
children towards unitary counting procedures.

Comparing spatial structures. To stimulate the classroom mathematical practice of using
the spatial structure, the teacher physically took apart or marked the structure, and expli-
citly compared the structures to each other. For example, as the children tried to explain
how they perceived a structure in the dots on a card, the teacher pointed to the structure to
highlight the relationship between the dots. Further, in the discussion following how one
child had arranged the blocks into five rows of five, the teacher also grouped the rows in
two and two and one so that the children could find a “faster way of counting” the blocks.
Although several children continued counting the blocks one by one, one child counted the
blocks “in her head” and another showed the class how the groups can be seen as “two
rows of five which makes ten”. At the end, the teacher pointed out to the children that they
know that they also have five fingers, even though they don’t have to count each finger
every time either to know how many there are.

Judging from the children’s excited responses, they seemed to have benefited from the
teacher’s efforts at explicating and comparing spatial structures. Becky, for example, ten-
ded to count objects unitarily at the beginning of the classroom discussion. Towards the
end of the activity, she gave more analytical explanations. This is illustrated by how, in the
focus group, she spontaneously placed the face with six dots on the die next to the playing
card showing six dots. Hence, she overtly connected different structures for the same quan-
tity. She experienced another important learning moment when the researcher guided the
children in the focus group towards comparing how two objects (the egg carton and a die)
represent one quantity. This insight seems to have spurred Becky’s motivation, because to-
wards the end of the activity she continued thinking about structure on her own initiative:
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Researcher:

Becky:

Researcher:

Becky:

Researcher:

Becky:

Researcher:

Becky:

This interaction between Becky and the researcher suggests that Becky was stimulated to
explore how different objects can represent one particular quantity (six represented on a
die compared to an egg carton) as well as how a quantity can be represented in different
structures (six as two sets of three or a set of four and two). Regarding her hesitation in the
four and two combination, it seems that she was also challenged into thinking beyond
structures such as two sets of three or three sets of two which were relatively more familiar
to her. Her enthusiasm appeared in the way she was not distracted by the other children and
in how, on her own initiative, she was keen to show the researcher variations for seeing six,

(pointing to the dice, the finger pattern cards, the giant cards, the blocks and
the egg cartons on the table) So all these things are part of the Trick Box be-
cause they'll help us later on for counting things easily. Then we don’t have to
count everything one by one, but we can just see how many there are!
(waking up after staring in the distance while the other children are partly listen-
ing and asking to go back to class) But | don’t know, if you have a lot (motioning
with her hands) of blocks, then | can’t count them in my head!

That's right, but then we can arrange them into groups. Take these blocks
(points to six blocks) for example, how can you arrange them so you can see
how many there are?

(arranges the blocks into two rows of three)

So this is a very easy way for you to count them.

(pointing simultaneously to every two blocks) And it's also two, two, two.
That's right, then we count them by twos.

(pointing first to four blocks simultaneously, then realizing that there were two
left and not four, and pointing to the two blocks simultaneously) Or four, four (...)
two (...) four and two.

despite the researcher’s use of the word “count”.

Fig. 7.4  Video frame of the focus group discussing how the arrangement of dots on dice can help

to “easily see” how many dots there are.
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Taken together, the Trick Box context in which the various structures were presented ap-
pealed to the children. The children not only spontaneously referred to the Trick Box du-
ring the following activities, but, according to the teacher, also outside the classroom (e.g.,
recognizing egg cartons from the Trick Box). As such, in reference to the HLT for the in-
struction activity, it appears that the activity succeeded in creating an awareness of spatial
structures. Still, the challenge is to disentangle children’s understanding of “easy ways”
and “counting”; the children must create a shared conception about how spatial structures
offer “easy ways” to determine quantities. Such a shared conception is fundamental to the
influence of the rest of the instructional sequence on establishing a socio-mathematical
norm for spatial structuring.

7.3.3 “Giant Cards”: Making use of part-whole compositions

HLT for the instruction activity

This activity built on the first instruction activity by focusing on one of the objects, the Giant
Cards, in the Trick Box to investigate its structure in terms of part-whole relationships. This
time the children were challenged to make use of part-whole relations to abbreviate proce-
dures for determining the total number of dots on a card. According to the HLT, we assumed
that most children would count all the dots on the cards unitarily. The game-like setting,
however, was expected to motivate the children to search for more efficient methods of de-
termining the number of dots on the card than unitary counting procedures. Children were
called up in pairs and presented with a Giant Card that has structured configurations of six
to ten dots (Fig. 7.5).

Fig. 7.5  Video frame of the children who are calling out as fast as they can the number of dots that
are on the Giant Card that the teacher is holding up
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They were to try to be the first to determine the number of dots by recognizing (part of) the
structure. The role of the teacher was to encourage children to use “easy ways” such as those
that were discussed in the Trick Box activity. This should have encouraged the children to
use relatively more familiar structures such as dice or finger patterns.

Analysis and illustrations

Creating a shared vocabulary. As the class was recalling the previous activity, even the
relatively low-achieving children remembered that they had explored egg cartons and were
looking for “easy ways” to count the eggs. More significant, is that the children started to
use the same phrases as those that the teacher introduced to create a shared vocabulary. Ali,
for example, first mentioned “two lines”. Dori continued “yes, from the eggs”, saying that
it made it “easy to count with (pointing with her finger in the air) one line here and one line
there, together that makes six”. Other children corrected her by saying that it makes ten,
but then Dori clarified that she meant “the other one, the one with three and three”. In spon-
taneously referring to the same type of spatial structure, namely the double-structures,
these children showed how a classroom mathematical practice of spatial structuring and
the corresponding shared vocabulary was evolving in the instruction experiment.

Lisa is an example of a child who showed progress in the activity while her responses
sometimes suggested otherwise. In the classroom discussion during the Trick Box activity,
Lisa repeatedly counted each of the dots, despite the teacher asking her to try to use a
“trick” to easily see how many dots there are. In the focus group, however, Lisa did recog-
nize the six as “three and three in a row” and she saw the ten as “five and five”. When pre-
sented with a card with nine dots, Lisa first counted each of the dots:

Researcher:  (while Lisa is counting) Can you think of an “easy way” to see how many dots
are on the card? What do you see in the card?

Lisa: Well (...) that here (pointing) there are two, here there are two and here there
are (counting) five.

Researcher:  Look at that!

Lisa: And together that makes nine.

Researcher: That is a good “trick”! So now you can quickly see how many there are.

Although Lisa finally decomposed the structure, she referred to other structures that were
discussed in the activity and she counted the five dots to show that there were indeed five.
This shows how, although Lisa was aware of various spatial structures and sometimes also
made use of them, she seemed to have difficulty describing the structures and she reverted
to counting to simplify the question and to show why her answer was correct.

Taken together, the children showed how certain phrases (e.g., “easy ways”; “three and
three”; “two lines™) were becoming shared, they appeared to have remembered the essence
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of the Trick Box activity, and they seemed to be progressing in their use of structure. At
the same time, it must be taken into account that this progression is independent of the
challenge for children to verbally explain their strategies (Hughes, 1986).

Comparing spatial structures. The effect of the Trick Box context already became appa-
rent when the teacher asked several children to share with the class how they determined
the number of dots in the card without counting each dot, and the children spontaneously
started comparing the structure of the dots on the card to other structures. One boy com-
pared the card to the corresponding face of the large die. Another boy related the card pic-
turing four dots to his own age. Then someone showed the teacher that the four dots look
like the four on the large die. This suggests that the children implicitly or explicitly remem-
bered the comparisons that were made during the Trick Box activity. The teacher encour-
aged such comparisons by asking the children to think of other objects (“tricks™) in the box
that show the same quantity as on the card. One object that the children picked out of the
box to compare the four dots on the card to, was a card picturing four fingers. The teacher
subsequently encouraged the class to show each other what four looks like using their fin-
gers. Some of the children spontaneously continued to explore counting using their fingers
even when the teacher was already putting the objects back into the Trick Box. These com-
parisons within and between various representations of spatial structures extend the previ-
ous instruction activity in which the children started exploring the characteristics of the
structures in the Trick Box, and contribute to creating an awareness of spatial structuring.

Taking the activity to yet another level, one girl picked the box with butterflies to show the
class how it resembled the six dots on the card. She arranged the butterflies into two rows
of three, with the first four green and the other two blue. What makes this interesting, is
that she showed the class for the first time how objects that are initially unarranged, can be
arranged into a familiar structure so that the quantity no longer needs to be unitized, but
can rather be read off as a whole. The class could now see how the two rows of three but-
terflies is analogous to the two rows of three dots on the card, as well as to the two rows
of three dots on the large die that was placed next to the card. Furthermore, the girl ex-
plained to the class how the six butterflies can also be seen as three sets of two, or four and
two distinguished according to the colors. Again, the teacher’s enthusiasm about these dif-
ferent strategies encouraged the children to talk about relationships between various com-
positions of quantities with each other.

This is valuable for children to learn to flexibly work with spatial structures in various set-
tings. This is illustrated by Becky who, in the following episode, explains how she read off
the number of dots on a card without having to count them unitarily:
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Becky: (turning the card vertically) But if you have the card like this, then (circling the
collection of five dots in the middle) you have five here and (pointing to the two
dots above the five dots) two here and (pointing to the bottom two dots) and two
here. (circling the bottom four dots). Here are four, but there (pointing to the col-
lection of five dots in the middle) can't be a five.

Researcher:  But you just showed me that there was a five in the middle.

Becky: Yes, here is two and two and five make nine.

The way Becky decomposed this structure of nine dots, explored a different way of look-
ing at it (in terms of four dots rather than five) and returned to her first explanation, is con-
vincing of her flexible use of structure to gain insight into the number of dots on the card.

In comparing spatial structures, it appears that some children may be at a stage in which
they recognize some, but not all structures. Yet, responses from children like Becky sug-
gest that more familiarity with spatial structures can be stimulated through input from oth-
er children and through explicit comparisons between familiar and less familiar structures.
This was encouraged by the game-like activity in which the children experienced the di-
lemmas of unitary counting. In this way, children may (a) first learn to recognize (compo-
sitions of) structures before (b) exploring how to make use of such structures in larger
structured and unstructured configurations.

In summary, this activity has shown how the children came closer to a shared vocabulary
for spatial structuring. In contrast to the previous Trick Box activity, the children seemed
to understand the meaning of “easy ways” since they successfully spontaneously used
these phrases themselves. Further, in building on the explorations in the Trick Box activity,
the children compared different representations for spatial structures and spontaneously
applied them to different settings. These are important abilities that the children continued
to apply during the next instruction activity.

7.3.4 “Filling Egg Cartons”: Using part-whole relationships

HLT for the activity

The Filling Egg Cartons activity was the second activity that revolved around one specific
object from the Trick Box, namely the egg cartons. According to the HLT (similar to that
of the Giant Cards activity), the children were to explore double-structures within relative-
ly larger structured arrangements (i.e., large egg cartons). The added difficulty, however,
was that the children would search for structure in an object that is less straightforward to
read off than dots on a card. Continuing along the lines of the Giant Cards activity, the chil-
dren were asked to arrange the eggs in the egg carton in such a way that would make it easy
to see how many eggs there are. The children were expected to draw on their experiences
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with part-whole relations and to compare the double-structures to the structures from the
Trick Box with which they were more familiar. Finally, the children were asked to help the
farmer find a way to determine as fast as possible how many eggs were missing. Similar
to the Giant Cards activity, this required that they tried to find and make use of a structure
in the way that the eggs were arranged in the carton. This was expected to help them gain
insight into double-structures and into the composition and decomposition of quantities in
terms of eggs in an egg carton.

Analysis and illustrations

The convenience of spatial structuring. An important outcome of this activity is that the
children tended to stay with their preferred ways for determining the number of eggs in the
carton. Perhaps the duration of this activity was not long enough to result in explicit new
insights, or the children were tired and not as motivated as during the previous activities.
Except for several children who already made use of double-structures, many children pre-
ferred to count each egg unitarily and only retrospectively referred to particular structures
as “two groups of four”, for example. Despite Mark’s structuring throughout the activity,
when asked whether he had an “easy trick” to know how many eggs were left in the carton,
he responded “by counting”. His short answer summarizes what was noted earlier in this
activity and throughout the previous activities: most of the children were good and fast
counters and they needed more stimulation and motivation to consider spatial structuring
as a means to facilitate numerical procedures.

Nevertheless, several interesting learning moments occurred as the activity progressed.
These moments may have at least sparked children’s awareness of double-structures in egg
cartons. When, in the focus group, James was asked how many eggs were left in a carton
that contained four eggs on the left, two eggs on the right and four empty spaces in the mid-
dle of the carton, he at first counted the eggs unitarily.

Researcher:  James, do you know how many eggs are left in the carton?

James: (pointing) 1, 2, 3, 4, 5, 6.
Researcher: Do you know a “clever trick” for seeing that there are 6?
James: (examining the carton) Yes, because if these (i.e., the two eggs on the left) were

there (i.e., in the empty spaces next to the other four eggs), then it is six.

This explanation suggests that he must have realized that the new configuration would
again result in two rows of three that he knows make six and that “makes it easier to see”.
It seems that this exercise stimulated James into thinking more flexibly about spatial struc-
tures; he eventually translated the spatial structures that he was familiar with (in this case
the doubling of rows) to a relatively unstructured situation that could potentially be rear-
ranged into rows. Similarly, at the end of the focus group activity, Becky observed that a
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quicker way would be to “move” the eggs to “see that there are two rows of three”. Her
explanation was important for reiterating the intended classroom mathematical practice of
making more use of spatial structuring rather than unitary counting procedures.

Interactive learning. The way the children worked together during the classroom discus-
sion appeared to greatly contribute to their understanding of double-structuring. This be-
came evident, for example, when the teacher asked the children to fill the 10-egg carton
with five yellow and five white eggs in a way that would make it easier to see that there
are ten eggs. First the children unitarily counted the eggs. One girl alternated one yellow
and one white egg. Although this did not contribute to an abbreviated way of determining
the total number of eggs, it did reflect the first instruction activity in which patterning was
also associated with structure. Yet, when the teacher asked another girl to help her, the two
girls arranged one white row and one yellow row of five eggs. This shows that they had
come up with a way to represent the double-structure as two independent rows in the egg
box. Their combined effort resulted in the successful construction of a double-structure.

Comparing spatial structures. To ensure the continuity of a focus on spatial structuring
throughout the activities, the teacher started a discussion that related the structure of the
egg cartons to other structures in the Trick Box (Fig. 7.6).

Fig. 7.6  Video frame of the children exploring double-structures in the egg cartons and compare
them to other objects in the Trick Box

One girl interpreted the structure of a 6-egg carton by tracing the two rows of three in the
air with her finger and recalling that the double-structure of three makes six. Then a boy
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took the large die from the Trick Box and placed it next to the egg cartons with five dots
faced upwards. As such, double-structuring, which was to become taken-as-shared in this
activity, was concisely associated with the dice dot configurations that the children had en-
countered previously in the Trick Box and Giant Cards activities. This comparison is a
valuable tool for translating insight into familiar structures to relatively unfamiliar struc-
tures.

Although not all the children in the class reached this level during the activity, they were
at least exposed to ways of structuring the eggs as they witnessed how the two girls rear-
ranged the eggs. As such, this activity provided all the children with opportunities to prac-
tice double-structuring at their own pace, whether that involved practicing counting, rec-
ognizing double-structures, using double-structures or constructing double-structures. For
instance, as the teacher asked the children to use their fingers to show the number of eggs
that were missing or that were left in the carton. This was good practice for children who
still had difficulty showing eight on their fingers. Just like at the end of the Giant Card
Game, the teacher involved the whole class by asking all the children to raise the number
of fingers that corresponded to the number of eggs that were left in the carton. In this way,
she explicitly tried to relate two types of structures (i.e., double-structures and finger pat-
terns) to their structured representation of one quantity (i.e., eight).

In summary, although the children tended to prefer their familiar counting strategies, as the
activity progressed, it appeared that they increasingly appreciated spatial structuring. This
implies that they understood better that the resultant structures would contribute to “easy
ways” of finding out how many eggs were missing or were still left in the carton. This in-
sight was stimulated by how the children worked together to solve a problem. Moreover,
through comparing egg cartons to the objects in the Trick Box, the children again associ-
ated familiar with relatively unfamiliar spatial structures to foster flexible spatial structur-
ing strategies.

7.3.5 “Huts and Castles”: Spatial structure and three-dimensional constructions

HLT for the activity

In the Huts and Castles activity, the children were stimulated to make use of the structures
of the objects in the Trick Box to determine the number of blocks in a structured (symme-
trical) and in an unstructured (asymmetrical) 3-D block construction. For this, the children
were expected to draw upon their insight into part-whole relationships to decompose each
3-D construction into its component parts and subsequently compare the structures. Hence,
the objective of this activity was to translate children’s insight into patterning and structur-
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ing to a more spatial, 3-D setting. This was to help stimulate children’s flexibility in ma-
nipulating structures and in applying them to abbreviate and facilitate numerical proce-
dures.

The children were expected to either count each block or to partially count them and de-
termine the rest of the blocks through reasoning without counting. According to the HLT,
we expected that the children would have more trouble determining the number of blocks
in the ten-block construction compared to the five-block construction, regardless of wheth-
er they were counting or using the structure of the constructions. Those children who use
structure for the five-block construction, could even revert to counting strategies for the
ten-block construction.

By encouraging the children to compare their experiences for the two types of construc-
tions and between the two sizes of the constructions, the teacher could support children’s
insight into what it is that makes a construction “easy” or “difficult” to count. Taking this
one step further, the children in the focus group built one construction that was “easy to
count” and another that was “difficult to count”. The aim was to see whether the children
could represent what they understand to mean “easy” or “difficult” to count and whether
this implicitly or explicitly involves structure. The discussion that followed was meant to
inspire the children to rebuild the blocks into more or less structured (i.e., “easy” and “dif-
ficult™) constructions.

Analysis and illustrations

(De)composing the structure. The teacher played an important role in this activity by how
she guided children towards decomposing the constructions to elucidate their structure
(Fig. 7.7, see also section 8.3). She simplified the question by first asking the children how
many blocks there were in the top part of the structure, and then encouraged them to use
structure to determine the quantity:

Teacher: How many blocks are at the top?

Becky: (examining the structure) Four.

Teacher: Four, very good. How do you see that so quickly?

Becky: There (tracing with her finger along the vertical edge of the two layers of two
blocks) there is a line and two plus two is four.

Teacher: Very clever. So you don’t have to touch them (pointing to the blocks one by

one), 1, 2, 3, 4, but (pointing to the two layers of two blocks) you see two and
two. Very good. So there are four at the top. How many are on the bottom?

Daria: (after several children have had a chance to count the blocks) Six.

Teacher: How did you see that? Very good.

Daria: (pointing to each row of three) Because here there are three and here there are
three and that makes six.

Teacher: Very clever of you. Here there are three and there are three, let me help you.
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(removes the top four blocks from the bottom) Do you see that these are six
blocks? (spreads the six blocks apart so the structure becomes more apparent)

Children: Yes, six!

Teacher: Now I'm going to put it back together and I'm going to ask you how many there
are altogether.

Simon: That makes ten.

Teacher: Right, and how do you know? How many were on the bottom?

Simon: Six.

Teacher: And how many are on top?

Simon: Four.

Teacher: Right, and that makes...

Simon: Ten!

James: And you know (pointing to the blocks), if this is four and this is three and this is

three then that makes ten. And then they are also like two fives (showing all fin-
gers on both hands)!

This episode highlights a perceptual way of analyzing the configuration of the blocks that
is effective and efficient for determining the quantity. By revoicing the children’s respon-
ses, attending to the inconvenience of counting “1, 2, 3, 4”, and offering the alternative of
counting by, for example, twos, the teacher showed the children that questions about de-
termining quantities do not always require unitary counting. She offered spatial structuring
as a valuable, alternative approach. This exercise also appealed to children who were at
different levels of understanding because it offered them the opportunity to count smaller
structures (four and six), to combine these structures into a larger whole, as well as to think
about how this structure compares to other structures (e.g., two fives).

Fig. 7.7  Video frame of Lara determining the number of blocks in the structured ten-block construc-
tion
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This method of decomposing a construction was also helpful for determining the number
of blocks in the unstructured 10-block construction. Many of the children were confused
in their counting by the orientation of the blocks and by how blocks were covered by other
blocks. One girl suggested to start counting the blocks from the top so the teacher first re-
moved the top two blocks. When the girl was still confused and another girl came to count
the blocks, the teacher asked her to remove more blocks. With only six blocks left in the
construction, the girl was then able to count each of the blocks. Together, the class subse-
quently determined that six and four blocks makes a total of ten. Although in this case the
children counted unitarily, this exercise again showed the children how a large unstruc-
tured construction can be decomposed into its component parts to facilitate the counting
procedure.

Creating a shared vocabulary. The decomposition of the blocks was important because
the children had trouble determining the blocks of even the structured construction. As a
result, they did not notice enough difference between the two constructions to help them
become more aware of the role of structure in determining a quantity. Even those children
who typically spontaneously made use of structure in the other contexts, reverted to count-
ing the blocks unitarily. A reason for this may be found in the directive wording of the
teacher’s questions. When the teacher asked a girl how many blocks were in the construc-
tion, for example, she also asked the girl to think of “an easy way, an easy trick for how
she could count it” and she encouraged the girl to come up to the construction “to count it,
or to point to it, or to look at it and to think of an easy trick”. As the girl was counting,
however, the teacher referred more to the structure of the blocks and told her to “look at
which blocks you can see”. The following episode is an interesting interaction that illus-
trates how important the wording of a question can be for the type of answers to expect.
At the start of the activity, one boy was particularly keen to show the class how he deter-
mined the number of blocks in the construction.

Teacher: How many blocks do you think these are?

James: Five.

Teacher: You think there are five.

James: (pointing and counting from where he is sitting) Yes, see, 1, 2, 3, 4, 5.
Teacher: Allright, come and count them. Go and have a look.

James: Here there are 1, 2, (...) but actually | can also show you how | could easily see

that there are five. (Pointing to the blocks) Because here there are two and
there are two and one on top so there are five.

Hence, although the teacher asked James to come and “count” the blocks, as he started
counting he seemed to experience a moment of reflection and changed his mind to share
with the class how it would be easier to analyze the structure instead of unitarily counting
each block. In this case James was confident to suggest more than just a counting strategy
and he actually showed the teacher what she was looking for. This contrasts with many
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children who did not answer beyond the literal question, even though they had originally
used more sophisticated strategies than unitary counting.

Children’s interpretations of an “easy or difficult way to count something” were reflected
in the focus group activity. James, for example, had constructed “a rocket” (i.e., three
blocks with space in between on the bottom, followed by three blocks, two blocks and fi-
nally one block on top). He explained that it was easy to count the rocket because “1, 2, 3,
4,5,6,7,8,9” as he pointed to each block on the front face of the construction. His count-
ing procedure was indeed an easy one because the construction was only a single layer of
blocks. In James’ terms, a “difficult” structure is one “with too many blocks where you
lose track of count”. Apparently James had found an “easy way” to count the number of
blocks, but the question had not been accurate enough, because James only made use of
the spatial organization (i.e., an arrangement that supports unitary counting) of the blocks
rather than the spatial structure (i.e., an arrangement that can be read off) of the blocks.

Lisa, Mark and Becky in the focus group had other interpretations of what makes a con-
struction “easy” or “difficult” to count. Lisa explained that her “difficult” construction was
difficult because “the blocks are a little mixed up”, and because she had trouble keeping it
together. Towards the end of the activity, Mark had constructed two equal sized construc-
tions, one of which he considered more “difficult” to count than the other. The reason was
that for the “easy” construction he could “see that three and three makes six but for the oth-
er it’s harder to see”. Throughout the activity Becky made several pairs of constructions
using exactly six blocks for both constructions. This indicates that to her the difference be-
tween the constructions did not only depend on the number of blocks that they were made
up of. For one of her “difficult” constructions, she explained that “if they’re all on top of
each other then it’s really difficult”.

The focus group was also successful at identifying which of someone else’s two structures
represented the “easy” or the “difficult” constructions. In particular, they considered an
“easy” construction to be one that could literally be counted easily because the blocks were
visible to them. A “difficult” construction, then, is one with blocks that are less perceptu-
ally available. In practice this means that an “easy construction” is less layered than a “dif-
ficult” one and that a “difficult” construction is also more complicated to build because of
its asymmetry. This outcome resembles that of the “Giant Cards” activity because children
sometimes require a stronger motivation for structuring if their counting strategies are ef-
fective enough to answer the questions correctly.

Comparing spatial structures. Similar to the previous activities, to become more aware of
the evolving practice of spatial structuring, the teacher brought the Trick Box into the dis-
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cussion and connected this instruction activity to the rest of the instructional sequence. For
example, the children were asked whether they knew which egg carton resembled the bot-
tom layer of the large structured construction. The teacher had taken apart the construction
to highlight two rows of three and emphasize the composition of the structure. Indeed, one
boy placed six eggs as two rows of three in the egg carton, explaining that this structure
was necessary because “otherwise you lose track of how many you counted”. The way he
connected the block construction to the rows in the egg cartons, suggests that he under-
stood structure to be the common factor in both activities. Moreover, he may have set an
example for other children in the class who had not yet associated the block structures with
other structures in the Trick Box.

Taken together, the class showed implicit and sometimes explicit insight into the structure
of a 3-D construction in this instruction activity. The teacher was particularly helpful in
guiding the children to physically take apart the construction and analyze its component
parts. This stimulated the children’s ability to (de)compose the 3-D block construction by
the end of the session, which meets the HLT of this activity. Importantly, the teacher’s guid-
ance also highlights the central role that language plays in stimulating children’s learning.
Hence, to prevent the formulation of questions that guide the children in an undesired di-
rection, it helped to ask children to compare the constructions to the Trick Box, and to con-
struct, rather than tell about, their own “easy” and “difficult” structures. As a result, many
of the children had gained more insight into various types of structure and their use for de-
termining quantities in a variety of (3-D) settings.

7.3.6 “Picking Flowers”: Using and applying spatial structures

HLT for the activity

In the previous instruction activities, the children progressed from gaining insight into
part-whole relationships (Activity 1), to exploring and comparing different types of struc-
tures (Activity 2, 3, 4, 5), to learning to make use of the structures in larger structured ar-
rangements (Activity 3, 4, 5). This final instruction activity challenged the children to ap-
ply their own structure goal-directedly for abbreviating and facilitating numerical proce-
dures such as determining, comparing and operating with small quantities.

The activity involved a garden (i.e., sheet of green paper) with flowers (i.e., ten uniformly
colored plastic chips). The teacher told a child to look away while she picked a number of
flowers from the garden. The child was to determine how many flowers were missing; for
every correct answer, the teacher returned the flowers and planted an extra one, but for ev-
ery incorrect answer, the teacher kept the flowers. The challenge for the child was to find
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a way to arrange the flowers so that it would be easier to keep track of count. The game-
like setting was expected to motivate the child to search for a strategy to win the flowers.
At the same time, with more wins and more flowers added to the garden, the child was ex-
pected to experience the need to structure unstructured quantities. Rather than imposing a
particular structure on the child, the teacher was to acknowledge the children’s strategies
and encourage them to look for more effective strategies that could involve structuring the
flowers.

Analysis and illustrations

Spatial structuring as a socio-mathematical norm. At the start of the activity, the children
remembered that the Trick Box contained “things that we can count” and the aim was to
“think of a way to be able to count correctly” or, in other words, to “think of an easy way
for counting the things in the box”. This episode shows how, from an individual perspec-
tive, the children understood the intention of spatial structuring. From a social perspective,
it compiled many of the terms (e.g., “a trick”, “a useful way”, “to count it easily”, “to
quickly see how many there are”, “structure”, “predict”) that the teacher has been using
and that have become part of the shared vocabulary to indicate the convenience of spatial
structuring. This highlights the extent to which spatial structuring had become a socio-
mathematical norm for determining and comparing quantities, as a result of the children’s

experiences throughout the previous instruction activities.

Spatially structuring the flowers. According to the HLT, an important aspect of children’s
learning, is to acknowledge their own structures and to guide them towards more effective
structures. As expected, at first several children counted the flowers unitarily, with differ-
ing outcomes. When one girl finally correctly said that there were twelve flowers, the
teacher asked her to arrange the flowers “in a different way so that the rest of the class
could easily see that there are twelve”. The girl’s solution was to place the flowers next to
each other in a long S-shaped line. This was her own structure, one that she thought made
it easy to see that there are twelve flowers. This structure agrees with how, in the previous
activities, the girl primarily preferred to count the objects. Hence, this shows the girl’s pri-
mary use of structure as a way to organize objects for unitary counting.

Becky showed a more sophisticated strategy for spatial structuring in placing the chips into
two rows of six (Fig. 7.8). When the teacher asked her how this structure helped her “to
count the chips easily”, Becky showed the class how she could count the chips by twos. It
is not clear whether Becky originally intended to count the chips by twos, or whether she
could also recognize the two rows of six as twelve from earlier experiences with, for ex-
ample, the egg carton activity. Possibly, the teacher’s question about “counting” motivated
her to show a counting procedure rather than the structuring procedure that she may have
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had in mind. Nevertheless, Becky’s structure proved to be an effective structure for reading
off a quantity because, after the teacher picked some flowers out of the garden, she suc-
cessfully determined that there were three chips missing. Becky had clearly made use of
her structure because she was very quick at answering and she confidently pointed to the
empty spaces where the chips were missing. The teacher used this as a welcome example
to show the objective of the activity to the class, and it contributed to the evolving socio-
mathematical norm of spatial structuring.

Fig. 7.8  Video frame of Becky as she is arranging the flowers in her garden into two rows of six so
that she will easily be able to determine how many flowers the teacher picked from her garden

Noting the general progression in children’s spatial structuring, the teacher was quick to
summarize the insight that she hoped the children had gained from the first two examples:

Teacher: So how come you were able to see how many flowers were missing? Simon,
do you know?
(Simon does not answer)

Teacher: I'll ask Jamal. How do we know so quickly how many are missing?
(Several children are keen to answer)
Jamal: Because we saw it.
Teacher: Because you saw it. But how can | see it quickly? What should we do first?

(walks over to the garden) If | do this (moves all the chips together), and | would
ask someone to close their eyes, and | take these two away (removes two chips
from the garden), Lara, could you then easily see where | had taken them

away?
Most children: Yes.
Lara: It's not so easy.
Teacher: And why not then?
Lara: Because you moved them.
Teacher: | didn’t move them. But are they placed easily?
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Lara: No.

Teacher: (Looks around the circle) Their arrangement is not easy for counting. That's
why | just asked you to make a “nice” figure out of them. Rick made a group like
this and like this (arranges the chips into two groups of 4). But if it's like this
(makes one group again), then you can’t count so easily, and then you won't
know where they were taken away. So it's best to think of an “easy way” to ar-
range them, so that you don’t have to count them.

From this episode it appears that the children did not actively respond to the teacher’s ex-
planation because they were primarily listening and filling in some of the teacher’s sen-
tences. Although they had explored their own types of structures and showed progression,
this illustrates how they did not actually get a chance to fully experience structure. More-
over, when the teacher summarized the activity by saying that “it’s best to think of an easy
way to arrange them, so that you don’t have to count them”, her choice of words was not
very clear because it mentioned ways to “count” the number of chips rather than ways to
“determine” the number of chips. This again illustrates the subtle difference that choice of
words can make on children’s choice of strategies.

The children in the focus group showed more meaningful structures (Fig. 7.9). They first
arranged the chips in ways that they thought were “fun” or attractive; placing the chips in
rows, along the edge of the paper, all in one pile or spread out across the paper. James, for
example, used the counting-on strategy. He pointed and unitarily counted each chip, re-
membered that originally there were twelve and concluded that there were four chips miss-

ing.

[ I

Fig. 7.9  Video frame of the children in the focus group who are ready to test their spatial structures
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The researcher pointed out that it was quite difficult to know how many chips were missing
in James’ garden. She then asked James to think of “an easy way, a clever way to properly
see how many chips are taken away”. He responded immediately by aligning the chips into
a figure that resembled the capital letter “T”, saying that he could make a “t” out of it be-
cause “then it’s even easier”. This illustrates how the children organized the flowers but
not always with the aim of abbreviating the counting procedure because they would still
count each of the flowers unitarily.

Building on the children’s original structures, each turn was presented as an opportunity
for the children to improve the configuration. As the focus group activity progressed, more
children succeeded at using structure to determine the numbers of flowers in a gardens.
When the children were asked whether it was easy to remember the structure that Mark
had placed his chips in (i.e., one chip in every corner and two rows of four lined up verti-
cally in the middle), Becky remarked that it would be easier if he placed the chips closer
to each other. She showed him what she meant by moving the chips in the middle into two
rows of four. After four chips were removed, the children first all thought that two chips
were missing, referring to one chip on the corner and one in the middle of the centre struc-
ture. Suddenly Becky realized that there were four missing and she pointed to where the
two chips on the top of the two rows of four originally were. Similarly, Lisa made three
groups of four and one while Jenna made four rows of three chips. Independently of one
another, the children used their structures to determine the number of chips that were miss-
ing. This shows how, towards the end of the focus group activity, children of various abil-
ities in the focus group successfully devised and applied structures that were effective for
determining the number of missing flowers.

Interactive learning. The children were repeatedly guided with questions that stimulated
them to “think of a way of arranging the chips that would be easier to remember” and see
how structure may or may not have contributed to determining the number of missing
flowers. This kept the children motivated to surpass their own and other’s structures.
Becky, for example, seemed to have taken note of confusions in Mark’s structure, in which
the flowers were spread apart, because she arranged her own flowers that were placed on
the edge of the paper closer together. She also wanted to “take a good look first” at her
structure before looking away. This indicates that she realized the importance of remem-
bering the configuration rather than counting the flowers. Indeed, Becky was the first to be
successful at using the arrangement of her chips to determine the number that was missing
without counting. Further, she intrigued the other children because they stopped playing
with their chips to look and listen, and to see how their arrangements differed from Becky’s
structure and how they could apply more structure to their own arrangements.

156



Analysis of Round 1 of the Instruction Experiment

In summary, throughout this activity, the children exhibited the socio-mathematical norm
of spatial structuring in how they used the shared vocabulary to structure their flowers. Al-
though many children started with arrangements that appealed to them without abbreviat-
ing counting procedures, the activity allowed them to experience the convenience of spatial
structure. In fact, most children were not only using the structure to determine the number
of missing chips in their garden, but, encouraged by the teacher, they were also challenging
each other’s structures and trying to come up with one that would make it easiest to read
off a quantity. This suggests that they were (becoming) aware of the advantage of spatially
structuring their chips to determine a quantity. Other children may still have been at the
stage of practicing their counting skills, but they were at least exposed to various ways of
spatial structuring and to spatial structuring as an alternative to unitary counting. These
outcomes conclude a trajectory of instruction activities that have guided the children from
unitary counting towards learning to recognize and apply spatial structure for abbreviating
procedures for determining, comparing and operating with small quantities.

7.4 RME in aKindergarten setting

The results of each instruction activity were described in the previous section. To under-
stand how these observations could contribute to refining the conjectured local instruction
theory and to improving the instruction activities for a second round of the instruction ex-
periment, we organized the video data using ATLAS.ti (see also section 3.4). As more and
more clippings of the videos were created and discussed with experts, several patterns
emerged that gave insight into the role of the learning ecology (Cobb et al., 2003) in chil-
dren’s learning. These patterns can be generalized as follows:

— The context within and between the instruction activities must not only be meaningful
and inspiring to the children, but also offer productive and situation specific strategies.

- A shared vocabulary, the type of language use of the teacher, and the way children
interpret language is essential.

- The instruction activities relate the children’s levels of understanding to a learning goal
while acknowledging children’s own productions.

— The teacher is an essential factor in promoting interaction between the children.

— The socio-mathematical norm of spatial structuring promotes a shared awareness of
spatial structure in mathematical practices.

In what follows, we explain how these patterns influenced the shared awareness of spatial
structuring, and how they may supplement RME principles for a Kindergarten setting (see
section 2.5).
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Context, shared vocabulary and language use in a Kindergarten setting. Realistic Mathe-
matics Education principles state that an instruction activity should be embedded in a con-
text that creates opportunities for the children to engage themselves in the problem (Tref-
fers, 1987). Such an overarching context can help bridge the activity with the child’s mean-
ingful reality because the design of the activity starts from the perspective of the child and
reaches towards the curricular expectations rather than vice versa. Moreover, an overarch-
ing context contributes to establishing a shared vocabulary that can help to bridge the top-
ics of discussion between two subsequent activities. As such, an overarching context can
create a shared frame of reference for recognizing the role of spatial structures in a partic-
ular activity.

From the observations of this round of the instruction experiment, it appeared that the chil-
dren neither always understood the problem, nor did they seem to experience the advan-
tage of spatial structuring over unitary counting strategies. Apparently, the classroom
mathematical practices for determining a quantity were still predominantly related to uni-
tary counting, because the socio-mathematical norm for spatial structuring was not estab-
lished well enough yet. Moreover, the instructional sequence lacked an overall context to
connect the activities together. The context had to be appealing to the children if they were
to be motivated to take part in the activity. More importantly, however, is that it had to offer
mathematical content in terms of giving rise to productive and situation specific strategies:
productive in the sense that the strategies help to abbreviate numerical procedures, and sit-
uation specific in the sense that the strategies derive from a particular context (cf. De
Lange, 1987).

Next to a shared vocabulary, it became clear that the teacher should be aware of how chil-
dren may interpret the formulation of a question to make sure that they properly understand
the activity. For example, the children often counted unitarily if the teacher asked them to
find a way to “easily count” the objects. Yet, they tended to look more for structure if the
teacher talked about finding a way to “easily find out” or “see” the number of objects. The
classroom mathematical practice of spatial structuring therefore strongly depended on the
socio-mathematical norms that are embodied in the shared vocabulary.

Children’s own productions. In line with RME principles, the observations show how the
teacher must remain aware of the children’s own solutions to problems and welcome these
solutions as a first step towards developing more effective or efficient strategies. This
awareness shifts the role of the teacher from showing and teaching children about struc-
ture, to letting the children themselves find out what kinds of structures appeal to them.
During the “Picking Flowers” activity, for example, some children started arranging the
flowers into one large flower. This was an effective structure for a small number of flow-
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ers, but as the number of flowers in the garden increased, the children experienced the
shortcomings of their structures and consequently learned about more effective spatial
structuring. The children would probably have had more difficulty grasping the need to
spatially structure a set of objects if the teacher had immediately shown the children how
to arrange the flowers into rows, for example.

Guided reinvention in a Kindergarten setting. While the observations above generally
find support in RME principles, other observations also give the principle of “guided rein-
vention” a different character in the Kindergarten setting. The children’s interaction with
the teacher exemplified “guided reinvention” in the way that the teacher asked the children
to explain each other’s solutions and in the way she supported the children’s solutions by
pointing to the objects and by taking apart a block construction to elucidate its structure.
Further, by asking two children with different mathematical abilities to work together, the
children could compare spatial structuring strategies and the relatively high-achieving
child could set an example for the relatively low-achieving child.

Still, given the age and relatively short attention spans of these children, the teacher had to
do more than just “guide” the children. The teacher had to play a more directive role in
encouraging children’s interaction with each other and with the teacher, and in stimulating
children to reflect on the activities to understand spatial structuring (cf. Leseman, Rollen-
berg, & Rispens, 2001). This is because a Kindergarten instructional setting involves more
hands-on activities and vertical interaction (i.e., between the teacher and one child or a
group of children) than the verbal and horizontal interactions (i.e., between the children)
that typically occur in classes with older children (Hatano & Inagaki, 1991; Nelissen,
2002). Hence, although children of different levels of mathematical abilities benefited
from interacting with the teacher and with each other, these interactions were dependent
on the teacher’s stimulation to encourage children to mutually share and compare their
strategies. This illustrates how language and influences of a classroom culture play a great-
er role in Kindergarten than is typically described in the RME principles.

Establishing socio-mathematical norms. The guided interaction between teacher and child
stimulated kindergartners’” awareness of spatial structuring and helped to establish the so-
cio-mathematical norm of spatial structuring. The most important socio-mathematical
norm that spanned across this sequence of instruction activities is what the teachers con-
sidered to be appropriate explanations for children’s answers. The teachers were aware that
they should note any instances of spatial structuring that the children may have used to
solve the instruction activities. Hence, the teachers tried to gain insight into the children’s
strategies by guiding them in learning to formulate explanations that would involve spatial
structuring. Unfortunately, in some cases where the children had not clearly used spatial
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structuring strategies, this norm defeated its purpose because it confused the children or
frustrated the teacher who was expecting a more “structured” answer. At other times, how-
ever, the teacher’s explicit focus on using structure stimulated children’s awareness of
structure in solutions. As such, this socio-mathematical norm greatly influences the teach-
er’s type of questioning and highlights episodes in the activity during which the teacher
and the child made explicit reference to spatial structure in their solutions.

In the remainder of this chapter, we describe how these patterns were taken into account
to improve the instructional sequence for Round 2 of the instruction experiment. One of
the most outstanding revisions, the overarching context, is discussed in the next section.

7.5 An overarching context

In light of what was learned from the RME principles in a Kindergarten setting, we devel-
oped a context that united the activities in the sequence in terms of both an appealing and
a mathematical content. The Trick Box was taken as the starting point because it already
served as an important source of reference with a mathematical content in Round 1; the
teacher repeatedly asked the children to “think of a trick in the Trick Box” that could help
them “see how many there are”. Yet the teachers noted that the Dutch word “trucje”
(i.e.,“trick™) could confuse the children because it is associated more with magic than with
mathematics. They suggested the Dutch word “maniertje” (i.e., “way”) to denote a conve-
nient procedure for determining a quantity.

As such, the name of the Trick Box was changed to “ManiertjesDoos” (i.e., “Tool Box”;
Van Nes & Doorman, 2009). Moreover, we set out to devise a context that could connect
the activities in the sequence based on (a) a continuous story, and (b) shared references to
spatial structure within and between the various activities. Indeed, the teachers remarked
that the activities involved “too many stories” that were not interrelated, and that this could
confuse the children. To connect to the children’s levels of mathematical understanding,
we assumed that children should build on their existing body of knowledge. As the teacher
referred to the Tool Box during every activity, asking the children for various “ways” to
“conveniently determine how many of something there are”, the children were expected to
make reference to the spatial structures in the box and to begin to make use of their new
insights into spatial structures for abbreviating the numerical procedures in the instruction-
al activities.

In addition to the Tool Box, the character “Miertje Maniertje” (i.e., “Ant with his Tools”
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in Dutch) was developed to accompany the children throughout the activities (Van Nes &
Doorman, 2009). Ant has a name that rhymes and is easy to remember in Dutch, and the
character itself appeals to the children’s imagination. Another important consideration was
that Ant has six legs, which highlights the important symmetrical six-structure on dice and
in egg cartons. Finally, ants are known for their physical strength, and that, in theory, they
would be able to carry such a box into the classroom (Fig. 7.10).

Fig. 7.10 Miertje Maniertje and the Maniertjesdoos (Ant and its Tool Box)

Ant’s introduction to the class was intended to impress the children so that they would be
motivated by the context throughout the subsequent activities (Fig. 7.11). Before the chil-
dren came to class, the box was set in the middle of the circle, Ant was hidden on a book-
shelf, and several sheets of paper were placed on the floor leading from the door of the
classroom to the box and from the box to the book case where Ant was hiding. Six black
dots were drawn on each paper to represent the footprints that Ant had left behind. The
children started questioning the setting as soon as they entered the classroom. One of the
children followed the footprints to see what she could find. This was the first encounter
with Ant. The children then investigated Ant and studied whether the footprints belonged
to Ant, and whether Ant had carried the box into class. Subsequently, the children un-
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packed the box to see what Ant had brought into the classroom. This set the stage for the
mystery that underlied the rest of the activities: why did Ant bring this Tool Box to class
and what are these Tools for?

Fig. 7.11 The class is excited about the footprints on the floor and the colorful box in the centre of
the circle

Each instruction activity could now be embedded in a context that relates to Ant and its
Tool Box and that makes reference to previous activities that involve Ant. This quickly fo-
cused the children on the ongoing topic of discussion (i.e., structuring and counting), it tied
the activities together (i.e., having the children refer to new insights from the previous ac-
tivities), and it encouraged the children to make references to the “tools” (i.e., the struc-
tures) in the box. In this way, the overarching context not only offered an appealing con-
tent, but also a mathematical content that offered productive and situation specific strate-
gies (cf. De Lange, 1987). In the next section we elaborate on what other revisions were
made to each instruction activity.

7.6 Improvements to the instruction activities for Round 2

The previous sections describe the patterns and issues that came up as the sequence of in-
struction activities in Round 1 was tried out in the classroom. In this section, we present
the revisions that were made to each activity based on the outcomes of the first round, in-
cluding the overarching context of Ant and its Tool Box. The manual with the final instruc-
tional sequence can be found in Appendix 5.
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7.6.1 Activity 1: The Tool Box and Ant Steps (i.e., De Maniertjesdoos en
Mierenstapjes)

Round 1 of the instructional sequence started with a patterning activity to build on the im-
portance of children’s patterning ability for spatial structuring. This was expected to un-
derpin the subsequent activities by guiding the children towards thinking in terms of spa-
tial structuring; the children could continue to make use of the context of “predicting”
when they analyze the structures in the original Trick Box activity. Yet our observations
suggest that the contextual links between the activities did not extend beyond two subse-
quent activities. Such an overarching link is important because the children were expected
to make explicit or implicit reference to earlier activities. That did happen with the intro-
duction of the Trick Box because the tricks in the Trick Box motivated the children and
created a shared frame of reference. Still, the Trick Box served more as an illustration than
as an overarching context. In contrast, Ant and its Tool Box were to be introduced in the
first activity and subsequently woven into the remaining four activities. This overarching
context provided a recognizable setting that the teacher could refer to in every activity by
making use of a vocabulary that the children and teacher came to share.

The second revision that was made to the original Trick Box activity has to do with the
observation that there were too many sample “tricks” (i.e., objects representing spatial
structures) in the box. It took too long to discuss each object and not all objects were equal-
ly related to spatial structures. It was therefore decided to include only the most familiar
structures (i.e., the finger pattern flashcards, the egg cartons, the bead necklaces and two
large dice) and to leave out the less common structures (i.e., the blocks and the set of but-
terflies). This abbreviated the original Trick Box activity, so for Round 2 it could be com-
bined with the original Highest Card activity.

The cards in the Highest Card activity were no longer related to giants, but rather to the six
(two rows of three) footprints that represent the many footsteps that Ant left behind as he
carried the box into the classroom. This resulted in one activity that first introduced Ant
and the Tool Box to the children, and that then showed them how they could make use of
the Tool Box. This sparked the mystery of exploring why and how Ant wanted to help the
children with the contents of the box. Consequently, Round 2 encompassed five instead of
six activities.

The contribution of the Tool Box activity to the research questions is that it was fundamen-
tal to the effects of the rest of the instruction activities in the research. The assumption was
that, once the children were intrigued by the context and excited to learn more about the
“tools” in the Tool Box, then they would be more motivated to discover the use of these
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“tools”. The mathematical content of the Tool Box should also challenge the children to
try to make use of the spatial structures in the rest of the instruction activities. As such, the
context allowed for meaningful and mathematical connections between the activities.

The Ant Steps part of the activity had a more direct contribution to answering the research
questions. Just like in Round 1, this activity was expected to stimulate children’s ability to
recognize spatial structures in relatively larger structured arrangements. To support them
in this, the children were encouraged to make use of the “tools” that they had explored in
the Tool Box earlier. Children may recognize five dots on a card, for example, as the same
arrangement as five on a die. Such comparisons between various structures for one parti-
cular quantity should support children in learning to flexibly recognize spatial structures.

Since only a two month period separated the second round of the instruction experiment
from the first, we assumed that the children would recognize some of the props and ques-
tions in the activity. Yet, the children were still expected to be intrigued by the new version
of the activity (i.e., meeting Ant and finding out why he left the Tool Box in the classroom).
It was particularly important for the teacher to introduce the new context in such a way that
the children would be keen to go along with it and to substitute the idea of the Trick Box
with the Tool Box. Again, the reason for repeating the activities is not merely to test wheth-
er the context works, but more to find out how it works or how it may be improved to in-
terweave better with the children’s interests and conceptual understanding.

7.6.2 Activity 2: Filling Egg Cartons (i.e., Eierdozen Vullen)

The main issue that came up in this activity after Round 1 was that the children did not
seem to experience the need to use (double-)structures to determine the number of eggs in
the carton. Hence, the challenge for Round 2 was to motivate the children to make use of
the egg cartons’ structure. The story about Ant helping Farmer John continued the context
about how Ant was showing the children “ways” to quickly see how many of something
there are. The first question involved six eggs to relate to most children’s familiarity with
the six-structure (after subitizing). The discussion that followed was expected to encour-
age the children to think more about spatial structures and to experience the convenience
of structuring compared to counting the eggs unitarily. As such, the children were repeat-
edly stimulated to associate the egg carton structures with the contents of the Tool Box.

The aim of the revised activity was to support the children in experiencing the convenience
of using double-structures. Hence the focus would be less on recognizing a structure and
adding on the rest (e.g., five with six, seven, and eight), and more on recognizing the com-

164



Analysis of Round 1 of the Instruction Experiment

ponents of a structure to subsequently recognize the structure as a whole (e.qg., two rows of
four). Such conceptual subitizing could help bridge children’s natural ability to perceptu-
ally subitize quantities up to four, with formal addition and subtraction abilities (Clements,
1999a). This requires it to be clear for the children whether the goal of the activity is to
find easy methods for adding and subtracting, or whether it would be better to try to rec-
ognize the overall structure so that just the structure can be read off. Therefore, more than
in Round 1, the questions were formulated in ways that asked the children to read off the
structures.

Another revision was to include a game-setting such as in the Ant Steps activity. The chil-
dren were to structure the eggs themselves and to anticipate how someone else would in-
terpret the arrangement of the eggs in the carton. We expected that the responsibility of ar-
ranging the eggs for someone else would add to the children’s excitement and motivation
to find “clever ways” of arranging the eggs that were to be counted.

7.6.3 Activity 3: Marching in a Procession (i.e., In Optocht)

The main difference between Round 1 and Round 2 for this activity was its position in the
instructional sequence. Given the importance of patterning for developing spatial structur-
ing ability (Papic & Mulligan, 2005; Waters, 2004), the activity was initially planned as
the first of the six in Round 1 to set the stage for “predicting” the rest of a structure rather
than unitary counting. The main concern that arose after performing this activity, however,
was that it was unclear whether the children had really come to understand the essence of
a pattern or whether they merely enjoyed repeating two colors in a sequence. To gain more
insight into children’s understanding of patterns, the children were shown part of a pattern
and were asked whether they thought that more of one particular element or the other
would be necessary to extend the pattern. The children who understood a pattern were ex-
pected to know that a pattern consists of a structure that is repeated and that the structure
is the foundation for the rest of the pattern. When determining whether more of one ele-
ment is needed than another, it would be sufficient to study that particular part of the pat-
tern that is repeated. We expected children who lacked such insight to depend more on the
physical availability of the whole pattern to determine of which of the elements there are
more. They could also base their answer on all the elements that were available rather than
only on the repeating structure.

For example, given a necklace with two red, three white, two red, three white and two red
beads, more white than red beads are necessary to continue the necklace. Children may
give this answer if they see that the structure that makes up this pattern is the repetition of
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two red and three white beads. Children who lack this insight, however, may be distracted
by the last two red beads and base their answer on the entire collection of beads rather than
on the structure of the necklace. They will see that there are now six red beads and six
white beads and they may therefore conclude that just as many red as white beads are nec-
essary. This answer may indicate that the child has not focused on the structure of the pat-
tern, but rather on the individual elements.

To connect the activity to the rest of the instructional sequence, the introductory story was
about ants who typically do not walk alone because they prefer to walk in line (a proces-
sion) with other ants. The children were to act out how red and black ants walk in a pro-
cession together and to try to make the procession longer according to the “special way”
in which the ants were arranged (Fig. 7.12). After adding several children to the procession
as ants, the children were asked whether they knew what type of ant was represented more
in the procession than the others. This combination of extending the line and predicting the
rest of the sequence was expected to support the children in understanding the essence of
repeated parts of a whole that are inherent to a pattern (e.g., Papic & Mulligan, 2005). In
light of this context, this activity was planned to start with some examples of lines that are
made up of children (the ants), followed by lines that are characterized by the colored pa-
pers that the children are holding, and finally back to colored chips to symbolize the lines
that the children had been a part of earlier. Each pattern in these lines could then be com-
pared to the tools of the Tool Box, and particularly to the necklaces with beads in the box
that were also arranged according to a pattern.

Fig. 7.12  The children on the right are lined up like ants marching in a procession
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With the patterning activity set now as the third activity in the instructional sequence, the
role of the activity in Round 2 was less fundamental to the rest of the activities. Instead, it
was based on the children’s familiarity with the contents of the Tool Box and with the chil-
dren’s identification with the context of ants marching in a procession. This answered bet-
ter to the need for an instructional sequence that unites children’s present knowledge with
what they are expected to learn: after having studied the basic structures in the box and af-
ter working with such structures in relation to large cards and egg cartons, the children then
explored the idea of regularity and connected it to the tools in the Tool Box.

7.6.4 Activity 4: Building Ant Hills (i.e., Mierenhopen Bouwen)

This activity was the most difficult to design, interpret and perform in the instructional se-
quence; the challenge was to present symmetry and regularity in a 3-D construction to the
children as a convenient way for understanding its structure and for manipulating its com-
ponents. More practically, the aim of the activity was to support children in becoming
aware of the symmetry of a block construction and to help them apply this insight to ab-
breviate procedures for determining the number of blocks in the construction. Such insight
could help those children who tend to lose track of count or who tend to become confused
by how apparently unsystematically the blocks are structured. The focus on abstracting a
structure from an arrangement and applying the structure to abbreviate numerical proce-
dures coincides with the previous activities.

Although the children were aware of the difference between a structured and an unstruc-
tured construction, they found it confusing to bridge this insight with efficient methods for
determining the number of blocks in the construction. In Round 1 the teacher tried to high-
light the significance of the difference between the two types of constructions by asking
the children to compare “easy ways” for counting these blocks. She referred to the “tricks”
in the Trick Box to trigger the idea of spatial structure. The focus group also built and com-
pared structures that were “easy” or “difficult” to count. In this way, the activity again il-
lustrated children’s insight into spatial structure. What was missing was motivation for the
children to spontaneously make use of the structure to determining a quantity; the activity
did not provide enough reason for the children to relate the structuring with blocks to the
structuring with egg cartons or dot arrangements from the Trick Box.

The revised activity was meant to help the children translate their experiences with spatial
structures in the Tool Box to this more spatial, 3-D context. In a game-like setting, two
children at a time were asked to examine a construction of blocks that was placed in the
middle of the class. The constructions were all structured (i.e., symmetric and with a pat-
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tern). The children were to determine as fast as possible how the construction could be
made taller to help Ant make his ant hill taller. They were encouraged to analyze the struc-
ture of the construction to determine what the next layer in the construction would look
like. This consistently kept the focus of the activity on the structure of the construction.
Children with insight into the structure of the construction were expected to relatively eas-
ily determine what the next layer of blocks should look like. The process of analyzing the
construction was expected to involve reasoning about the number of blocks in each layer
and comparing the layers to each other, and that this type of reasoning may underpin struc-
tured ways for determining how many blocks make up a construction.

The first construction was made up of five layers with two blocks each. This was a simple
construction that introduced the children to the idea of looking at the construction, deter-
mining its structure and deciding what the next layer should look like. The second con-
struction was one with a layer of two, a layer of one, and again a layer of two blocks. The
pattern that the children were to explicate was the alternating two-one-two pattern. The last
construction had three blocks at the bottom, followed by two blocks, and one block and
again two blocks and finally three blocks. This was a more challenging construction to see
whether and how the children made use of their patterning insight to identify the structure
of the construction for determining the next layer of the construction.

7.6.5 Activity 5: Picking Flowers (i.e., Bloemen Plukken)

From the children’s perspective this activity stayed the same as in Round 1. What the anal-
yses highlighted, however, is the importance of the teacher’s choice in deciding which
chips to remove from the children’s gardens. In practice, it was difficult for the teacher to
spontaneously decide which of the chips played a significant part in the arrangement and
should be removed to instigate the need for spatial structuring. For example, if a child ar-
ranged four lines of four chips, then it would be less effective to remove one chip out of
the middle of every line because the children can notice the empty spaces and subitize the
total of chips that are missing. Yet, if one or two chips are removed from the edges of the
lines, then the children must know the exact length of their lines. In this case the children
would first have to refer to the structures before they can judge the number of chips that
are missing.

One way to challenge the children is to confront them with the effectivity of their arrange-
ment by taking greater care in choosing those chips that compose the structure. Therefore,
the children were not only asked how many chips were missing, but also how many chips
were left. The key was to determine this amount by making use of the arrangement rather

168



Analysis of Round 1 of the Instruction Experiment

than unitary counting. A structure with four lines of four and three chips missing, for ex-
ample, can be approached in various ways. The child can count the number of chips that
are left, or determine the number that is missing and subtract that from the original amount,
or reason that two lines of three, one line of four, and one line of two are left so twelve
chips are left. We expect this method to be a step towards understanding more formal ad-
dition and subtraction procedures, because the child should gain insight into the composi-
tion of the total and therefore remember sums and differences more easily (Van Eerde,
1996). This also accommodates various levels of learning because children can practice
their counting abilities while others may go as far as applying formal addition and subtrac-
tion strategies.

Activity 1: The Tool Box and Ant Steps
Establish the context
Explore spatial structures in the Tool Box
Compare representations of quantities on structured dotted cards

Activity 2: Filling Egg cartons
¢ Compare representations of quantities in double-structures
* Compare double-structures to other structures in the Tool Box

Activity 3: Marching in a Procession
Explore structures of 2-D patterns
* Compare structures in patterns to other structures in the Tool Box

Activity 4: Building Ant Hills
¢ Explore structures of 3-D patterns
* Compare structures of block constructions to other structures in the
Tool Box

Activity 5: Picking Flowers
* Apply structures to unstructured arrangements
* Compare representations of structures in the Tool Box
* Explore the role of structures in the (de)composition of quantities

Fig. 7.13 Operationalization of spatial structuring in terms of the five instruction activities

Rather than spending too much time introducing the context of the activity, the teacher was
advised to, right from the start, ask the children to determine the number of flowers that
are missing, just like in the original Robbie de Rover activity (Speciaal Rekenen, 2003).
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This was expected to motivate the children to rearrange the chips and find suitable ways
of efficiently and effectively determining and comparing quantities. The teacher was also
alerted to use language that focuses on “determining how many chips are missing” rather
than on “guessing how many chips are missing”, to refine the shared vocabulary so that
the children would understand that they were expected to think of strategies for determin-
ing a quantity. The revisions of this activity, with more attention to which chips are re-
moved from the garden and increased time pressure, should help the children recognize
and make use of spatial structures in unstructured configurations. Next to contributing to
the HLT, these revised instruction activities refine the operationalization of spatial structur-
ing in the research, as illustrated in Fig. 7.13.

In the next chapter we highlight how the outcomes of the revised instructional sequence in
Round 2 combine with observations from Round 1 to contribute to the emerging local in-
struction theory.
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8 Analysis of Round 2 of the Instruction Experiment

The analyses of the second round of the instruction experiment supplement the insights
that were gained from the first round which are discussed in the previous chapter. Based
on observations from the exploratory studies, the learning goals of the instruction experi-
ment, and the four phases regarding the development of children’s spatial structuring abi-
lity, the following five conjectured learning moments were outlined in section 6.2:

(1) organize objects as a step towards becoming aware of spatial structuring to simplify
counting procedures;

(2) create a motivation for spatially structuring objects;

(3) use spatial structuring to elucidate numerical relations;

(4) develop abstract spatial structures that are less context- or task-dependent;

(5) use spatial structuring in a goal-directed way outside the instruction experiment.

This chapter begins with a retrospective analysis of observations from the classroom and
focus group discussions that support and elaborate on these conjectured learning moments
with respect to the global hypothetical learning trajectory (HLT). In section 8.2, some un-
expected observations are presented that required attention when interpreting the instruc-
tion experiment because they supplement the learning moments. The impression of what
constitutes an effective learning ecology for this instruction experiment is completed in
section 8.3 with illustrations of the teacher’s role in children’s constructive learning pro-
cesses. Together, the observations lead to section 8.4, in which the outcomes of a general
retrospective analysis are presented to summarize how children progressed in their devel-
opment of spatial structuring ability as they participated in the instruction experiment.

Following the constant comparison method (Glaser & Strauss, 1967), we used ATLAS.ti to
code each observation (i.e., quotation) and to define various memo-types that took the de-
scription of an observation to a more theoretical level so as to encompass both the confir-
matory and challenging observations (section 3.4). The most illustrative of the observa-
tions at a theory-type memo level are discussed in this chapter. The result of the ATLAS.ti
analyses, together with discussions with experts and literature studies, is summarized into
nine learning insights that appear essential to children’s progression along the HLT. As
such, this chapter contributes to answering the second research question in the study: to
create a local instruction theory about how the development of young children’s spatial
structuring ability may be supported.
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8.1 Retrospective analyses of the HLT

Each of the following paragraphs discusses one of the conjectured learning moments listed
above. The learning moment is first projected onto the global HLT (see section 6.1) and
then illustrated with observations that highlight important patterns in children’s responses.

8.1.1 Organize objects as a step towards becoming aware of spatial structuring

The global HLT

The HLT of each instruction activity is built on the assumption that children initially tend
to organize objects so that their counting procedures become easier to perform and less er-
ror-prone. An example of such a type of organization is when children arrange objects in
a line so that when the objects are counted unitarily, it is easier to keep track of which ones
have already been counted (cf. Battista et al., 1998). This is an important starting point for
introducing the children to advantages of spatial structuring strategies.

Retrospective analysis and illustrations

Children generally progressed from unitary counting to spatial structuring strategies
through organizational (e.g., grouping or lining up) strategies. This coincides with the first
learning moment that was outlined in paragraph 6.2.1, namely organizing the objects (and
practicing counting skills) as a step towards spatially structuring them. In the interviews
and instruction activities, children often lined up objects because “then (pointing to each
object unitarily) you can count them easily”. During the “Picking Flowers” activity in
Round 1, for example, almost everyone in the focus group placed the chips on the edge of
the paper. This was effective for reading off the number of chips on the paper because the
children could note the number of empty spaces where chips were missing. The next step
towards spatial structuring is for the children to experience how not just the empty spaces,
but also the position of the chips is important to keep track of the missing quantity. Hence,
the children applied their own type of organization to the task, but they were confronted
with the effectiveness of this type of organization as they evaluated it with the teacher. This
is a meaningful starting point for developing spatial structuring strategies.

The development from organizational skills for unitary counting to recognizing spatial
structures, was stimulated further in Round 2 through the introduction of the Tool Box.
Key to this development was the shared vocabulary that the teacher and children devel-
oped, and that revolved around spatial structuring and finding “easy” or “clever” ways to
determine a quantity. When, for example, the teacher asked the class why they could “eas-
ily see” how many dots are on the cards and whether they recognized the dots from any-
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thing else, the children immediately recalled the dice. For six dots, the children not only
mentioned the dice, but they also pointed to the finger pattern card, the card with dots on
it, and the egg cartons. Further, for the card with ten dots, the class called out that they re-
cognized it in the large egg cartons or in two dice as “five, five”. They also spontaneously
showed the two fives using their fingers. This shared vocabulary is essential for the in-
struction experiment because it creates a foundation on which to build experiences with
and shared knowledge about spatial structuring. Such a foundation is what should help
children translate their organizational skills to spatial structuring strategies.

Children’s developing understanding of spatial structuring became particularly apparent
during the Picking Flowers activity in Round 2. The class was asked why it was difficult
for Dori to determine the missing number of chips, and Becky answered:

Becky: Because they were first lying there differently. And then it's really hard for Dori.
And if...

Teacher: Can you think of a way, then, a way to very easily see how many will be miss-
ing?

Becky: Ok, ehm...(walks over to the garden)

Teacher: Can you think of an easy way to arrange them so that Ant can take some away

and you quickly see how many flowers are missing?
(Becky starts rearranging the flowers and the other children are eager to show
the teacher their “easy” ways of arranging the flower)

Teacher: Becky, you think this is an easy way so that you can quickly see how many flow-
ers Ant will have taken away?

Becky: I'm not ready yet... (continues to arrange the flowers into four touching rows of
two, four, two, and two chips) Ready.

Teacher: Allright, well, let's see. Simon will close his eyes now. Becky has just thought of

an “easy” way to arrange the flowers. And now we’ll see if Simon can close his
eyes and if Ant can take some away. Then Simon will see how many are miss-
ing. And where they’re missing.

(Ant comes to remove two chips, one from each of the two bottom rows in the

structure)

Teacher: Have a look. How many do you...

Sam: Three gone.

Teacher: You think three. Where do you think they’re missing?

Sam: (points to the empty spaces and to one space on the end of the third row) Four,
four.

Teacher: Do you think there are four missing? Where were they lying then?

Sam: No, one, two, two!

Teacher: Where were the two then?

Sam: (pointing to the two empty spaces) There and there.

Teacher: Well done, because look (replaces the missing chips), this is how it was ar-
ranged.

Becky’s first response (that the teacher had moved the flowers) suggests that she was
aware of the role of the position (i.e., organization) of the flowers in the garden for deter-
mining a missing quantity. Further, Sam’s successful use of Becky’s arrangement showed
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for the first time how the children used a type of organization to minimize the difficulty of
determining a large number of originally unstructured objects. It also illustrates the differ-
ence between organizing and spatial structuring because organizing objects only supports,
rather than abbreviates, a unitary counting procedure.

In summary, several observations in Round 1 and Round 2 support the first learning mo-
ment and suggest that children were becoming more aware of the advantages of organi-
zing, and in particular, spatially structuring objects to determine and compare quantities.
Hence, children’s organizational skills are a meaningful starting point that, through a
shared vocabulary, can help to develop goal-directed spatial structuring strategies.

8.1.2 Creating a motivation for structuring objects

The global HLT
One of the main goals of the instruction experiment is to support children in the develop-

ment of their spatial structuring ability so that they may ultimately succeed in recognizing
spatial structure in relatively larger and unstructured settings. This builds on the previous
learning moment in the sense that children who organize objects and who are familiar with
spatial structures are expected to be ready to explore more efficient (spatial structuring)
strategies. The challenge, then, was to create an instructional setting that can motivate the
children to make use of spatial structures without imposing spatial structuring strategies
on them. Since counting strategies are typically sufficient for Kindergarten mathematics,
children cannot be expected to actually experience a necessity for spatial structuring. Such
a necessity is associated more with, for example, large multiplication and division. Never-
theless, at this stage of developing children’s spatial structuring ability, the goal is to create
an awareness of spatial structuring strategies as an efficient and effective alternative to uni-
tary counting. Regarding the advantage of spatial structuring over unitary counting, such
an awareness was expected to induce a motivation for beginning to recognize and use spa-
tial structuring strategies.

Retrospective analysis and illustrations

The first step towards spatial structuring was to create a motive for looking for alternative
strategies to unitary counting. Such a motive is illustrated by Mark during the block con-
struction activity in Round 1, for example, when he explained that his construction was
easy to count because “1, 2, 3, 4, 5, 6” whereas “it’s harder to count the other construction
because you can’t really see what’s under it”. Lisa added to this that “it’s more complica-
ted”. These comments suggest that the children were experiencing a dissonance between
how easily they could count structured compared to unstructured blocks.
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As introduced in the first learning moment, it appears that children who are motivated to
use spatial structures have typically experienced the convenience of spatial structuring be-
fore. An example comes from the focus group in Round 2. Although Becky was first to
recognize the nine dots on the card, it was not clear how she used structure to recognize
the quantity. At the same time, James demonstrated how he counted the dots one by one.
Becky then counted the dots and this time answered eight. Both children agreed that there
were eight dots and that their counting procedure overruled the structure that Becky
thought she had recognized in the card. Apparently, the children were so familiar with
counting procedures, that they relied more on the outcome of their counting than on their
insight into spatial structures. Hence, even children who showed spatial structuring abili-
ties in the other tasks, needed to experience the convenience of spatial structuring as an
alternative to more familiar counting procedures. Similarly, the class seemed to understand
that the contents of the box had something to do with “counting easily”. The next step,
however, was for the children to become aware of the difference between “easy” and ab-
breviated counting. Therefore, as the class was studying the egg cartons, the teacher asked:

Teacher: Does anyone know why Ant put the egg cartons into the Tool Box?

Rick: (picks up a carton and opens it) Because, you can count in it how many there
are. And here there are six. | did that by counting.

Teacher: Yes, but Ant puts things in the box that give you a very quick way to count. That

you don't have to go 1, 2, 3, 4, 5, 6 with your finger.
(The class joins in to count).

Daria: Because then you can't see it. Then you won’t know where the 1 and the 2 is.

Teacher: He has thought of “ways” hasn’t he. And the “way” for this box, what do you
think it is? Dori?

Dori: There are three there and three there and then it's six.

This is a rich episode in how it not only illustrates the children’s familiarity with the six-
structure, but it also shows how several children were (becoming) aware of the conve-
nience of using a spatial structure to determine a quantity. Rick started off by counting each
egg, but he agreed with the teacher that that was not “an easy way”. The teacher’s expla-
nation was supported by Daria who added in her own words that that strategy makes it dif-
ficult to keep track of count. This explanation suggests counting strategies (such as three
and three making six) that are more organized and coherent than unitary “easy counting”
strategies.

Another example of differences in children’s experience with spatial structuring, comes
from the following classroom discussion during Round 2. Mark arranged the ten chips in
the garden into two rows of five chips:

Teacher: What an easy way. Why did you arrange the flowers like that?
Mark: Because they’re in a row.
Teacher: And so how many are there?
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(Mark looks at the flowers, looks at his fingers while he seems to be counting
the flowers, looks up at the teacher)

Teacher: How many did you arrange? How many flowers are in the garden?
The class: (calling out that they know the answer) Ten!
Teacher: Ten, very good. (turns back to Mark) what a good “way”. Ali, can you think of

another good way to quickly see how many there are?
(Several other children call out that they want to show another way)

Ali: (places the flowers into one long line)

Teacher: You already know how many there are, don’t you? Do you think this is an easy
way?
(Several other children call out that they know how many there are)

Teacher: But Ali, if | add these flowers (adds another four flowers to the end of the line),
now you can't just point to them, how many flowers do you think there are now?

Ali: | don’t know.

Teacher: No, is this really an easy way?
(Ali shakes his head)

Teacher: It's fine if you put the flowers like that, but can you quickly see how many there

are? Dori, if you look at the way Ali put the flowers, is it easier to see how many
there are? Or do you think Mark’s way is easier?

The class: Mark’s.

Teacher: Why, Daria, is Mark’s arrangement easier?

Daria: Because (pointing with her finger in the air) the two lines are easier to see in a
garden.

Teacher: Do you remember anything from the Tool Box that also makes it easy to see
how many there are?

Daria: Yes! The egg cartons, because that also has 10.

In this episode, Mark showed insight into the purpose of the activity (“now you can easily
see how many there are™) and yet he had trouble determining the number of flowers with-
out counting them unitarily. Perhaps he held on to the mathematical practice of counting
unitarily rather than making use of spatial structure. Similarly, when Ali placed the ten
chips into one line, he said that this was a “good” structure because this was a structure that
made it “easy” for children to “count” how many chips there are. This shows how not all
children understood the norm of spatial structuring in terms of finding an “easy way” to
read off the number of chips. The teacher, however, played an important supportive role in
encouraging children to make use of the mathematical practice of spatial structuring.
When she asked Daria, for example, to explain Mark’s answer, Daria simplified the coun-
ting procedure by associating the flowers with “two lines”. To Daria, determining the num-
ber of flowers does not merely involve unitary counting, but also rearranging the flowers
so that the procedure can be abbreviated. The teacher then highlighted this idea for the rest
of the class by asking Daria to related Mark’s structure to a tool from the Tool Box. Daria
showed how the two lines resemble the egg carton and therefore how she was able to trans-
late the idea of double-structures to an originally unstructured arrangement of ten flowers
in the garden.

176



Analysis of Round 2 of the Instruction Experiment

As such, this episode illustrates various phases in the development of spatial structuring
ability and how some children understood the activity while others were still confused: Ali
was attached to his counting strategies, while Mark seemed to be aware of the use of struc-
tures, but still had to experience the advantage of spatial structuring over unitary counting,
and while Daria recognized the similarity between different types of spatial structures that
can help to read off a quantity. This relates to a variety of interrelated factors that are in-
volved in the ability to determine a quantity (e.g., a development from unitary counting to
recognizing and naming the number of items in a small configuration, to learning hames
and eventually ordered lists of number words with insight into symmetry, to cardinality,
and eventually to numerical relations; section 2.1).

Children’s general progress in understanding the role of spatial structures in counting is
illustrated by how they explained the presence of the box in class. In Round 1, the class
explained that the Trick Box contained things that “we can count” and that the aim was to
“think of a way to be able to count correctly” or, in other words, to “think of an easy way
for counting the things in the box”. In contrast, in Round 2, the class was less focused on
the act of counting: Mark said that the contents of the Tool Box helped them “to do it them-
selves” (i.e., independently use the structures that were left by Ant in the Tool Box to find
out how many of something there are), and Tim added that now they could do “counting
games”. Mark also said that Ant helped them “to look™ (i.e., find structures in various con-
figurations) and James said “to learn the numbers”. James’ answer came closest to the ad-
vantage of recognizing spatial structures for gaining insight into numerical relations.

The teacher can let children of relatively higher spatial structuring abilities set an example
for the rest of the class by letting the children explicate ways of recognizing and making
use of spatial structure. Hence, based on their own experience rather than taught insights,
these children can convey the advantage of spatial structuring and inspire other children to
explore spatial structuring procedures. This illustrates the importance of interactive learn-
ing that is required to synchronize mathematical ideas (see paragraph 2.5.2) through esta-
blishing a shared vocabulary and socio-mathematical norms that acknowledge spatial
structuring as “easy ways” for performing numerical procedures.

Overall, the instruction activities seem to have supported children’s motivation for using
spatial structuring rather than unitary counting procedures. This suggests that, although
children may be familiar with spatial structures, they may not spontaneously apply them
because they have not yet experienced the convenience, or sometimes the necessity, of spa-
tial structuring.
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8.1.3 Using spatial structures to elucidate numerical relations

The global HLT

According to the HLT, spatial structuring can be used to mentally or physically organize a
relatively large structured or unstructured configuration in a way that can help develop in-
sight into numerical relations. This insight can contribute to the ability to read off a quan-
tity and ultimately, to abbreviate numerical procedures such as determining, comparing
and operating with small quantities. The “Picking Flowers” activity is designed for the
children to explore ways for making use of spatial structures to elucidate numerical rela-
tions. By applying spatial structure to the flowers in the garden, we expected the children
to gain insight into the (de)composition of quantities so that they would conveniently de-
termine how many flowers there are and how many are missing. As illustrated by the ob-
servations below, after performing Round 2 of this instruction experiment, the children
seemed more familiar with spatial structures and showed greater ability to read off a quan-
tity.

Retrospective analysis and illustrations

The “Picking Flowers” activity challenged the children in Round 2 because, as illustrated
by Mark and Becky, they were keen to try new structures and to see whether these struc-
tures improved their previous ideas. Mark had already been successful with a structure that
had several chips on the edge of the paper and several chips in the middle, but this time he
chose to arrange all the chips into a triangle. He had more trouble determining the number
of missing chips in this structure, however, so the researcher encouraged him to compare
this structure to how he previously arranged the chips on the edge of the paper. Becky
could also determine the number of missing chips in her new structure, but she had more
trouble identifying where the chips had been removed. Nevertheless, Becky appeared to
have realized the advantage of placing chips close together. It may have taken one or two
more turns for her to come to a most effective spatial structure.

Hence, by the end of Round 2, the children were exploring and improving their own struc-
tures and strategies. This is important because children probably understand these struc-
tures better than those that are imposed on them. Meanwhile, the teacher encouraged them
to compare their successful structures to other structures and to reflect on the differences
between them. The key is for the children to become aware of what characterizes a useful
structure, and for them to learn to recognize these characteristics in unstructured settings.

The most notable spatial structuring episode occurred at the end of the “Picking Flowers”
classroom discussion during Round 2 when Lisa was asked to arrange the chips in such a
way that “would make it easy to see how many chips are missing”. Without hesitation, Lisa
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proceeded to arrange the chips into three sets of five, with each five structured as on dice
(Fig. 8.1). This illustrates how she improved from her classification in the Recognition
phase (phase 2) in the pre-interviews to how she now showed that she had understood the
advantage of using the contents of the Tool Box for abbreviating her counting procedure.
In the focus group, Lisa’s final structure consisted of several chips placed on the edge of
the garden and chips in a flower-like circle in the middle of the garden. This again is an
example of how Lisa had experienced an evolution in the way she used structure first as
an attractive looking flower and then as a functional structure that helped her to keep track
of how many chips were missing.

Fig.8.1 Lisais arranging the flowers into three groups of five

Not only Lisa understood the effectiveness of the structure that she created in the class-
room discussion. Several other children in the class picked up on her structure and showed
an advancement in their understanding of spatial structuring. Sam, for example, called out
that Lisa was making “three fives”, and Rick explained that Lisa’s structure was effective
because it “looks like on a die”. The variety of structures that the children applied by the
end of the “Picking Flowers” focus group activity in Round 2, also illustrates the children’s
improved insights into abbreviating procedures using spatial structures. After arranging
the chips into unorganized or large configurations that were difficult to read off, James’
last structure consisted of three piles of four chips, Mark’s structure was a triangle with all
the chips touching, and Jenna made several sets of two chips. Becky started with a struc-
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ture similar to Lisa’s, but then she changed it to make two touching triangles. James and
Lisa were most successful with their structures; James immediately saw the difference in
height of his piles of chips and Lisa could identify the number of missing chips by com-
paring the before and after configurations (Fig. 8.2).

=

Fig. 8.2  Video frame showing how the children in the focus group arrange their flowers (colored
chips) into spatial structures that they think could help to easily determine how many are missing

Taken together, the different types of structures that the children created throughout the in-
struction activity suggest that they had been experiencing the confusion of one type of
structure (e.g., too long rows or too large circles) compared to relatively organized other
types of structures (e.g., chips touching each other in smaller sets) that helped to determine
a missing quantity in an abbreviated way. Such dissonances were expected to help the chil-
dren gain insight into the composition of quantities, which in turn underlies insight into
numerical relations.

8.1.4 Developing context- and task-independent spatial structures

The global HLT

Building on children’s ability to recognize and make use of spatial structures, the next
learning moment involves learning to think about and work with spatial structures in a
flexible (i.e., context- and task-independent) way and in various (spatial) contexts. We ex-
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pected children to improve in their spatial structuring ability if they compared various
types of spatial structures. The Tool Box is intended to provide the children with input for
comparing spatial structures. Such comparisons are important for children to be able to
think more flexibly about different types of spatial structures so that their ability to recog-
nize or use a particular spatial structure becomes less context- and task-dependent (i.e.,
working with spatial structures exactly as they are, such as analyzing dice configurations
and egg cartons) and therefore more secured. Hence, context- and task-independence in-
volves the ability to use the essence of spatial structures (e.g., five-structures or double-
structures) and to apply them to various quantities and in other settings (e.g., five on dice
or finger patterns, patterning in block constructions).

Retrospective analysis and illustrations

Comparing representations of structures for one quantity. The Trick Box and Tool Box
proved to be valuable contexts for helping the children become familiar with how various
spatial structures can represent one particular quantity, and for translating a type of spatial
structure to another setting. In Round 1 the children already showed that they could com-
pare various structures that they had explored in the Trick Box activity. For example, when
the teacher asked the children whether they could recall an object from the box that looked
like how the dots were arranged on the card, Mark showed the teacher the face of the large
die with six dots on it. He also recognized the ten dots on a card and explained it by saying
that “five and five makes ten”. He used both hands to point to two dots on one side and two
dots on the other side explaining “here are two, here are another two, and one in the middle
makes five”. James related the next card, with four dots on it, to his own age. Subsequently,
Simon showed the teacher that the four dots look like the four on the die.

Fig. 8.3  Video frame of the class as they are (a) comparing the egg cartons to other representations
in the Tool Box, and (b) showing different ways of representing six using various finger patterns
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Similarly, in Round 2 the teacher repeatedly encouraged the children to compare structures
in the Tool Box to see how various quantities are represented and to relate one type of
structure to another (Fig. 8.3). When, for example, Matt did not see how the arrangement
of flowers in the garden activity resembled the dice configuration for five, the teacher
placed a large die next to the garden and guided him towards recognizing the configuration
in the garden. Assuming that Matt was familiar with the dice configuration, this direct
comparison helped him to translate a familiar structure to an unfamiliar context.

Comparing structures for one quantity within one representation. Several  observations
support how children recognized fundamental spatial structures in relatively larger struc-
tured settings. For example, the teacher asked the children whether a particular finger pat-
tern was the same “tool” as the other “tools” that were in the box, and whether it was “also
three, three” (referring to the children’s conception of the structure for six). Initially, the
children all agreed, but when they started putting up their own fingers, they discussed with
each other that even with their fingers they could create different structures for one quan-
tity (e.g., four and two or three and three). This discussion offered important illustrations
of the different spatial structures that exist within one representation for a particular quan-
tity and that contribute to thinking flexibly about structures so that they can be recognized
more easily in structured and unstructured settings. Similarly, in the following focus group
activity about egg cartons, Becky explored different arrangements of seven eggs:

Teacher: (holding a 10-egg carton that has five eggs in the top row, and two in the centre
of the bottom row) So what does the seven in the egg carton look like?

(The focus group is loud and distracted but Becky is keen to answer the ques-
tion)

Becky: I know! Look, these, these (pointing to the right side of the top row, and then
taking the middle egg in the top to place it next to the two eggs in the bottom
row) these are two (pointing to the upper right), these are two (pointing to the
upper left), and this is one (pointing to the lower right), this is one (pointing to
the lower left) and this is one (pointing to the lower middle egg).

Teacher: Yes, and how many is that altogether?

Becky: (thinking and counting mentally) Eight.

Teacher: Eight? How did you see that?

Becky: But | did it in my head.

Teacher: Did you? Can you think of an easier way?

Becky: (spontaneously places the lower middle egg in the middle of the top row, places

the lower left egg in the lower left most space and the lower right egg in the low-
er right most space) There! (touches each egg) 1, 2, no!

Teacher: You don’t need to count them do you? Don’t you know an easy way to quickly
see how many there are?

Becky: (arranges the eggs into two rows of three and one more in the bottom row) Like
this (the rest of the focus group is attending again). Seven.

Teacher: How did you see that?

Becky: Well, (moving her hand across the two rows) because it was like this before.

Teacher: What was like this? How can you see this is seven without having to count
them?
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Becky: Look (arranges the eggs into a group of four on the left and a group of three on
the right of the carton) These are four and those are three.

Teacher: And how much is that altogether?

Becky: Uhm (rearranges the eggs back into the two rows of three and one egg struc-
ture) That is seven.

Teacher: Yes, but can you see that there are seven in the way they are arranged now?

Becky: Yes (pointing) these are four and that is three and that makes seven.

The significance of this episode is that Becky seemed to have trouble reading off the total
of seven eggs in the first arrangements that she made, since she was tempted to count the
eggs unitarily. Only when she continued to rearrange the eggs, did she finally explain that
she now knew that there were seven eggs because “that is three and that is four”. This se-
quence of rearrangements is illustrative of how Becky was comparing different types of
structures for seven, some of which were more familiar to her than others. It seems that
Becky was most familiar with the grouping of four and three. Perhaps this experience with
rearranging and comparing different structures for seven can supplement her reference to
different structures for seven and improve her insight into the composition of seven. In
fact, after Mark explained that he saw seven as three and two and two, Becky spontane-
ously arranged the eggs into a group of four and three. This suggests that Becky had trans-
lated the group of three and four to Mark’s type of structure. Indeed, later Becky explained
that three eggs were missing from the box because she needed two more to make a group
of four on one side of the box and one more to make a group of three on the other side of
the box. As such, Becky seems to have become familiar with various structures for seven.

The class in general showed an improved ability in making use of complex structures to
show how they could easily see the number of dots on the cards. This was especially stri-
king with Dori who thus far had not seemed to attend much to structures and yet who, in
this classroom activity, recognized the ten dots on the card as two rows of four and a row
of two in the middle. She also interpreted a card with seven dots on it as a five “like on dice
with two dots next to it”. Even Jenna, who thus far had stayed most attached to unitary
counting strategies could identify different dice configurations in various cards during the
classroom activity. It was a great improvement to the first round of the instruction experi-
ment when, during the focus group activity in Round 2, Becky was fastest at recognizing
the number of dots on a card. Moreover, she said she recognized it from the classroom dis-
cussion, where there were two rows and two dots in the middle. She also recognized the
five in a card with a set of five dots and two sets of two dots on the side. Similarly, James
explained how he saw the five in the middle with two sets of two dots on both sides. There-
fore, motivated by the time limits, these children succeeded in decomposing the dot struc-
tures into recognizable structures rather than counting each dot unitarily.
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Patterning for task- and context-independent structuring. In patterning, children learn to
decompose a whole into its composite parts. This is a valuable ability for learning to de-
compose any type of structure into more recognizable parts. In turn, insight into part-whole
relations should help to develop task- and context-independent structures for translating a
familiar spatial structure to different settings. We describe children’s learning progress in
patterning across Round 1 and Round 2, and then explain how children translated their pat-
terning skills to the “Building Ant Hills” activity.

In Round 1, the children gradually succeeded in extending a pattern that alternated two col-
ors. However, although the children understood the “rule” of a particular pattern (i.e., al-
ternating two colors), it is unclear to what extent they actually understood the “regularity”
of the pattern (i.e., repeating each chunk of two differently colored chips). For example,
after discussing a line that had no apparent rule to it, the teacher rounded this part of the
activity off by asking the children to explain why the last sequence was more difficult to
“predict” than the other two sequences. In Round 1, Lara had answered that “it wasn’t a
clear line”. Round 2, however, was more dynamic and Daria quickly called out that it
“didn’t make sense” because there were more boys than girls, which made it “unfair”. Rick
added that the line “is crazy” because “there are not the same number” (of boys and girls).
Lara was convinced that the line had “a way” so she added boys to the line. Other children
interrupted and changed the line again to balance the number of boys and girls. Finally, the
children agreed that the line had “a way” which helped them to see how it should be leng-
thened. The teacher took this conclusion to summarize that it can help to take part of the
line away to correct the rest of the line.

The search for what characterizes the pattern of a line, marked the beginning of a search
for structure because it made the children more aware of the relationship between the in-
dividual elements in the line and their composite structure. The children were balancing
the number of boys and girls, but at the same time, they were taking into account that the
numbers were repeating because after two girls, three boys, two girls and another three
boys, the line was to continue with two girls and again three boys. Not only were the chil-
dren searching for structure within a pattern, in Round 2 they were also keen to compare
patterns across types of structures. When the teacher asked whether they remembered sim-
ilar activities, for example, the children recalled beading activities. Rick even mentioned
the word “patterns”. Apparently, then, the children linked this activity to other games. This
underlies their understanding of what characterizes a pattern. James verbalized what
seemed to be most children’s understanding of a pattern of alternating colors when he
asked “are we going to make a line again with different, different, different, with two fi-
gures?” Hence, at that point, most children were familiar with the method of recalling the
beginning of the line and using the rhythm to extend the line.
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The challenge in this activity was to move away from only recalling the rhythm of the line
to, instead, try to analyze what made up the rhythm and, then, what structure made up the
pattern. In the focus group, James, for example, moved the green chip of one of the groups
from the end back to the beginning to show that the two groups are really the same. Simi-
larly, for the next line, the children concisely said that “each time there were two brown
chips and then three blue chips”. When Lisa was asked to separate the line in such a way
that each part would be the same, she split the line up in the middle. James explained that
this was correct because “here there’s a brown one and there there’s a brown one and here
there are three and there there are three”. In short, through quickly analyzing two patterns,
the focus group showed that they knew how to lengthen the pattern without having to recall
the rhythm of the pattern, and that they knew how to split the pattern into equal parts (Fig.
8.4).

Fig. 8.4  Video frame of the other four focus group children as they are studying whether Mark’s se-
quence of chips can be split into equal parts to show that it is a pattern with repeated units

What is not clear yet is whether the children related these equal parts to the idea of a re-
peated structure of a pattern. For example, when in the focus group James explained how
he saw what the next color should be, he said “because here there is one, there is one, there
is one, and then it’s a pattern”. He seemed familiar with a pattern of alternating two colors,
preferably with only one element of each. On the other hand, James was also familiar with
extending a “pattern” (i.e., sequence of differently colored chips) just by repeating the el-
ements that were already present. This became apparent from the pattern that he had made
which didn’t contain any repeating elements. It only started repeating when the children
lengthened it by adding the same order of colors to it as from the beginning. Hence, James
considered blue-red-green to be a pattern while, essentially, it is the extension of structure
that ultimately makes up a pattern. To study whether the children understood what ele-
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ments made up a structure of a pattern, the focus group was asked to split up the pattern
into several identical parts. Despite the researcher’s suggestion to split up the line into
more parts, the children all split the pattern into two equal parts rather than on the basis of
repeating elements.

The “Building Ant Hills” activity was intended for children to translate their patterning
abilities to a 3-D setting. In the classroom activity, Becky, for example, analyzed the block
construction conscientiously before adding blocks to make a new layer (Fig. 8.5). Similar-
ly, Daria pointed to each of the layers in the construction as she said “here like this and
here and here like this and here also like this”. This suggests that they were examining the
beginning of the construction to find a pattern and to continue that pattern upwards. In the
focus group activity, Mark said the next layer would need “three” blocks because (pointing
to the construction) “that’s also what’s on top of here”. Similarly, Becky was asked how
many she thought would come after the two blocks in the top layer and she explained
“three, because it starts over again every time”. These explanations suggest that these chil-
dren indeed made use of their insight into patterning to complete the constructions.

Fig. 8.5  Video frame of the children studying the structure of the blocks to find a pattern so that they
can make the ant hill taller

Although not all the children could identify the pattern, when the teacher asked the class
to summarize how they had investigated the constructions, Lisa said that “you have to look
at how something is put together”. The teacher used this remark to relate the activity to the
previous patterning activity by adding that “you have to look at how the beginning is put
together and then keep looking so you know how you can finish it”. Taken together, for
this part of the activity the children appeared to have (implicitly) understood the connec-
tion between patterning and the continuation of a block construction. The children were
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able to translate their insight into patterns, which was the topic of the previous activity, to
a more applied context. This is an important step towards recognizing and making use of
spatial structures in various structured and unstructured contexts.

In summary, in studying their progression from Round 1 to Round 2, it appears that most
children became more familiar with spatial structures through comparing them to other
spatial structures from the Tool Box and through applying them to new settings. The ob-
servations also underline the importance of being able to translate spatial structures to dif-
ferent settings to improve flexibility in recognizing and using spatial structures. This was
illustrated with the “Marching Ants” and “Building Ant Hills” activity. The children clear-
ly progressed in their patterning ability because they were able to search for the repeated
structure in a pattern and they took the initiative to compare the structure to other structures
that they had encountered in the instruction experiment. What is still unclear, however, is
whether the children were able to relate the rule of a pattern to its regularity; they succeed-
ed in extending patterns, but they were less able to create their own patterns with more than
two alternating colors.

The way children explored the structure of a pattern to discover how this structure can help
to extend the pattern, is an example of how the instruction activities offered the children
opportunities for learning to apply the spatial structures that were explored in the Tool Box
to various settings.

8.1.5 Goal-directed spatial structuring outside the instruction experiment

The global HLT

To this point, the observations highlight general improvements in children’s spatial struc-
turing ability with respect to specific instruction activities. The fifth learning moment en-
compasses how some of the children spontaneously translated and applied structures to
contexts and settings outside of the instruction experiment. Such transfer effects are ne-
cessary for the Applied phase (phase 4) of the spatial structuring trajectory (i.e., recogniz-
ing, using and applying spatial structures to goal-directedly abbreviate numerical proce-
dures) to prepare for higher-order mathematical procedures.

Retrospective analysis and illustrations

Several transfer effects were noted in between Round 1 and Round 2 outside of the instruc-
tion experiment. The significance of this is that it (a) highlights children’s continued learn-
ing and spontaneous reference-making to the instruction activities, and it (b) indicates the
extent to which the children not only improved their spatial structuring ability, but were
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also able to generalize it and translate it to other contexts and settings.

Only three days after performing the patterning activity in Round 1, for example, several
children were connecting colored plastic puzzle-like pieces to make a “mat”. The mats all
had a particular pattern to them. The teacher reported that the children recognized the al-
ternating colors (red-green and blue-green-red), the alternating numerosities (two colors
versus three colors), the alternating orientation of the pieces (wide versus long), and the
alternating connecting pieces (one versus two connections). Although this still does not
clarify whether the children understood the regularity in a pattern, it does illustrate their
improved awareness of patterning and symmetry that, according to the teacher, they had
not shown much of before. Even the youngest children continued this activity and made
very simple, but regular patterns with the plastic pieces (Fig. 8.6).

Fig. 8.6  The patterns that children created in their mats

About a week after the first “Giant Cards” activity, James spontaneously established that
a toy duck in the classroom had six ducklings because the two rows of three ducklings
make six ducklings (Fig. 8.7). The teacher was very surprised at James’ initiative, and she
said that she did not think that James would have made such an observation if the children
had not encountered such structures in an activity like in the “Egg Carton” activity. This
suggests that James was very aware of various structures and their uses, and he seemed to
be exploring structures in his surroundings.

Similarly, during Round 2, as the teacher was telling the children about how they were go-
ing to walk like ants in a procession, James studied his green-yellow striped t-shirt and dis-
cussed with his neighbors what the color of the next line on his shirt would be. The teacher
noticed this and opened the discussion to the rest of the class. This illustrates how the chil-
dren were thinking about the patterns and were trying to generalize the pattern from the
Tool Box to their own familiar patterns. This could contribute to their general understand-
ing of patterns and their relation to other spatial structures.
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Fig. 8.7  The duck with its six ducklings which could be read off as two rows of three ducklings

The observations in this section illustrate several episodes from Round 1 and Round 2 of
the instruction experiment, in which children were successful at translating the spatial
structures with which they were familiar, to other contexts and settings both within and
outside of the instruction experiment. While the observations in each paragraph illustrate
the five conjectured learning moments for the development of spatial structuring ability
(section 6.2), several other observations have shed a different light on the course and in-
fluence of the instruction experiment on children’s spatial structuring ability. In the next
section we discuss how these observations contributed with new insights that supplement
earlier conjectures. Together, the observations from this and the next section culminate to-
wards tracing several crucial learning insights that appear to underlie the HLT. These cru-
cial insights will be discussed in a general retrospective analysis in section 8.4.

8.2  Unexpected issues in learning

In the process of analyzing the two rounds and describing notable observations that could
contribute to a local instruction theory, several observations alerted us to unexpected issues
that require attention because of their close relation to the conjectured learning moments.
Although these issues are not new in this area of research, they are discussed in this section
to highlight their influences on the design of an effective instructional setting:

(1) Children should at least be competent counters and familiar with certain structures be-

fore focusing on spatial structuring strategies.
(2) Children are persistent in using counting strategies.
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(3) Children’s own spatial structures should be acknowledged.

(4) The interpretation of children’s learning progress can be affected by children’s relative-
ly short attention spans and sometimes limited verbal communication, combined with
the teachers’ type of language usage.

(5) For the instruction activity to proceed as planned, teachers’ interpretation of the in-
struction activity must be accurate and thorough.

(6) The effect of the instruction activity can be stimulated by an overarching context, an
appealing setting and a shared vocabulary.

In what follows, we illustrate each issue with observations from Round 1 and Round 2 of
the instruction experiment. As in the previous section, the relevance of the observations is
not restricted to one particular issue.

8.2.1 Competent in counting and familiar with certain spatial structures before
focusing on spatial structuring strategies

In paragraph 8.1.1, we elaborated on the role of organization skills in preparing children
to develop spatial structuring strategies. What the observations also emphasized, is that
this development requires that children count synchronously and resultatively and that
they are at least familiar with certain spatial structures. The significance of these abilities
for spatial structuring is illustrated by differences in children’s spatial structuring ability.
Some children prefer to perceptually subitize and count as a familiar and secure way of
determining a quantity and other children recognize the advantage of conceptual subitizing
and evolve from unitary counting procedures to spatial structuring strategies. For example,
while Beth could show two ways of using structure to determine how many dots were on
her card, Lisa and Matt counted the dots unitarily. Children who have not mastered an ac-
curate method for determining a quantity in the first place, will not be ready for goal-di-
rected use of spatial structures. These children must first come to experience the advantage
of strategies that simplify the often time-consuming and more error-prone unitary counting
procedures.

The teacher played an important role in encouraging children to reflect on the efficiency
of their counting procedures compared to spatial structuring strategies. When Ali was not
convinced that there were six dots on the card, for example, instead of showing Ali his
counting error, the teacher invited him to count the dots again. This not only gave Ali the
opportunity to realize that counting can be an error-prone procedure, it also gave the teach-
er a chance to comment on the different strategies that the children could use to determine
a quantity. Similarly, the teacher offered the youngest children opportunities for develop-
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ing their counting strategies in the context of spatial structuring. In Round 2, for example,
to accommodate the younger children who were still focusing on improving their counting
abilities, the teacher removed chips in a way that made it easy for the children to count the
empty spaces. Hence, with a little help from the teacher, Laila was able to practice her uni-
tary counting skills to determine the missing quantity.

What the observations also underlined, is that, in order for children to start making use of
spatial structures, they must at least be familiar with certain spatial structures. Without this
background knowledge, they will not know what to look for in structured or unstructured
configurations or what “easy ways” means other than an invitation to count. In contrast,
children who are familiar with structures, can be encouraged to recognize and use these
structures in various contexts and settings. This is illustrated by several (older) children
who already in the pre-interviews showed awareness of spatial structure, and who used
these insights to practice and improve spatial structuring during the instruction activities.
James, for example, noted that he knew the number of fingers on the flashcard because he
“didn’t even have to count them”. During Round 1 of the instruction experiment, as he was
determining the seven dots on a large playing card, James responded so quickly that he
most probably used (a combination of) spatial structures to recognize the number of dots
on the card. Similarly, when Mark quickly determined five dots on a card, he explained
that “two and three more is five” and that he had seen it on dice. These children show how
their familiarity with structures could be translated to goal-directed use of the structures
for abbreviating numerical procedures.

8.2.2 Persistent use of counting strategies

This issue is closely related to children’s motivation to apply spatial structuring strategies
in a goal-directed way (paragraph 8.1.2). In Round 1, several children firmly held on to
their (perceptual or pointing) counting strategies, regardless of the teacher’s suggestions
and questions about “easier ways”. Given a card with two sets of five dots arranged like
on dice, Lisa, for example, still pointed and counted each dot unitarily. When the teacher
took the card away, Lisa guessed eight dots. Lisa’s answer is curious because in the pre-
interview, Lisa had repeatedly recognized the dice structure for five. The question is why
she did not appear to recognize that structure in this card or, if she did recognize the struc-
ture, what prevented her from making use of this issue to circumvent the counting proce-
dure like the teacher had asked her to. One reason may be that Lisa was not ready to use
structure; her repertoire of strategies in the pre-interview suggests that she fit in the Rec-
ognition phase (i.e., recognizing structures but not using or applying them yet). We discuss
two possible explanations.
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The first explanation is that children tended to revert to counting procedures because that
was their routine for determining quantities. Children typically talk about counting and
they realize that teachers usually applaud their counting ability because this is a well-es-
tablished classroom mathematical practice. Consequently, to them that was “an easy way”
for determining a quantity. They therefore needed a strong motivation to explore and ex-
plain spatial structuring strategies. In Round 1, for example, Jenna repeatedly counted and
recounted the objects. Apparently Jenna did not feel the need to use any other strategy if
she felt confident enough to use a counting procedure that resulted in the correct answers
anyway. In explaining how she saw the seven dots, she said that “it looks like the seven and
if you count it, then it is the seven”. Nevertheless, Jenna showed surprising progress in
Round 1 when a card with seven dots was presented to her. She almost instantly called out
seven and when she was asked to explain what “clever trick” she had used, she said that
“here is two and here is five and | think five and two is easy”. Her use of structure illustrates
her progress towards less use of unitary counting procedures and possibly more structuring
strategies. At the same time, Jenna’s strategy repertoire exemplifies the need for a context
that justifies the use of spatial structures as an alternative to unitary counting strategies.

A second explanation is that although some children have used spatial structuring strate-
gies, the difficulty for them was to use the proper wording to describe these strategies. A
reason for this is that they may have not been familiar enough with the shared vocabulary
to use phrases such as “easy ways”, “tools”, and “reading off” to explain their spatial struc-
turing strategies. Throughout the activity, some children, for example, described their per-
ceptual grouping strategy by saying that they had “counted in their head”. James gave a
similar response when he saw the ten dots on a card too quickly to have counted them, but
still explained that “we have to count them”. In the egg carton activity, when the children
were asked whether they had an “easy trick” to know how many eggs were left in the box,
Mark also said “by counting”, despite the structuring that he had shown throughout the ac-
tivity. These instances reflect the difficulties that are inherent to researching young chil-
dren’s mathematical development (Hughes, 1986).

It was valuable to see what role the teacher could play in guiding the children towards u-
sing a more effective structure. For example, a challenge for the teacher in the “Picking
Flowers” activity in Round 2 was to help Ali understand the difficulty that his type of
structure (placing objects into one line) could cause if he had to count a large number of
chips. The teacher added four more chips to Ali’s line and then asked him whether he could
still see how many chips there were in total. He was not allowed to point to the chips and
count them. Considering these constraints, Ali agreed that it was going to be difficult to
determine the number of chips. Together with the teacher, Ali summarized that this struc-
ture was not as effective as he had thought.
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8.2.3 Acknowledging children’s own spatial structures

The significance of acknowledging the spatial structures that children devised and devel-
oped on their own has been discussed in terms of the principles of RME (section 2.5). Se-
veral observations regarding children’s organizational skills (see also paragraph 8.1.1) em-
phasize the importance of this issue to the design of an effective instructional setting. For
example, the trouble with how Ali and the teacher studied Ali’s structure in the “Picking
Flowers” activity (see the previous paragraph) is that it was too directive; Ali still appeared
concerned with practicing his counting procedures and with organizing objects to keep
track of count (indicating a Unitary phase spatial structuring ability), so he may not have
been ready for the next phase by merely being told that spatial structuring is a useful strat-
egy for keeping track of large quantities.

In line with the RME principles, children must “reinvent” spatial structuring to experience
the value of spatial structuring themselves. Ali probably had not yet encountered situations
where counting procedures were insufficient, so he would not be motivated to try relatively
unfamiliar strategies. In everyday situations, he could still have counted the fourteen chips
accurately, regardless of how much time that would have cost. The design of the instruc-
tion activity should place Ali in a situation in which his counting procedures are less use-
ful, to inspire him to develop other (spatial structuring) strategies. This calls for situations
that “beg to be mathematized” (Freudenthal, 1973, 1991).

When in Round 1 the teacher asked the children to place the chips into an arrangement that
“would make it easy to count how many chips there are”, Simon noted that he could also
make a “real flower” out of it. This highlights how the aim of the activity should not be to
focus on the structures that children learn and master in formal mathematics. Rather, the
instructional sequence must be approached from the children’s perspective. That includes
thinking about structures in the way that children explore and interpret them. One such
structure may indeed be a flower with the chips forming the petals, the stem and the leaves
of the flower. Other structures that the children referred to are a house, a tree, the sun and
an alignment of the chips with the edge of the piece of paper. All the structures are accept-
able for the activity because they can help the children read off quantities and determine
the number of chips that are missing, without unitary counting. With more practice, the
children may experience the differences between the types of structures and come to in-
creasingly more effective structures that can help them abbreviate numerical procedures
such as determining, comparing and operating with small quantities.

The importance of children’s own spatial structures in learning to use spatial structuring
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strategies is further illustrated in the “Picking Flowers” activity in Round 2. Lisa was asked
to make a structure that would help her keep track of how many chips were missing. She
explained that she had arranged the chips “in this way (a flower) because that’s easy to
count” and she showed how she counted the chips as she pointed to each of them. Then
she was asked to point to where she thought the chips had been removed, in order for her
to see the difficulty with her structure. When she was encouraged to think of “an easier
way to properly see how many chips are missing”, she immediately started rearranging the
chips into a different flower. This suggests that she realized the difficulty of keeping track
of a number of chips in long rows (the stem) and large circles (the flower). Therefore, the
next flower she constructed had a shorter stem and chips that were placed closer together.
She also placed one chip in every corner of the garden. By the end of the activity she suc-
ceeded in using her flower structure to determine how many chips were missing without
counting.

8.2.4 Effects of children’s relatively short attention spans and sometimes limited
verbal communication and the teachers’ type of language usage

As mentioned in paragraph 8.2.2, the challenge of research with young children is that
young children are disadvantaged in verbally expressing their thinking and in the amount
of attention that they require to perform a task (Hughes, 1986). The instructional sequence
had to fit within a short enough time frame to keep drawing children’s attention. Moreover,
it had to be accessible to all the children so that they would not be distracted by other ac-
tivities. These constraints set limits on what could be achieved within one instructional ac-
tivity. As such, they led to the design of five hour-long instruction activities that started
with a classroom discussion and ended in the focus group setting. The teacher rounded off
the activity as soon as the children became too tired or distracted.

The difficulty of communication in a Kindergarten setting is reflected in dissonances be-
tween the children’s answers and the teacher’s expectations. In the patterning activity, for
instance, Jenna explained that a “good” sequence is one that has two colors in it. Curiously,
however, she gave the example of a pattern that one of the older children had constructed
at the end of the classroom discussion with one red, one grey, and two white chips. Hence,
Jenna may have picked up more from the activity than what is revealed by her explanation
of a “good” pattern. This illustrates the classroom practice of using structure for patterning
that was in the process of being established (see paragraph 8.1.4).

Although Lisa also showed progress in her spatial structuring ability, her responses some-
times seemed to suggest otherwise. In the classroom discussion during the Trick Box ac-
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tivity, Lisa repeatedly counted each of the dots, despite the teacher asking her to try to use
a “trick” to easily see how many dots there are. This time, however, Lisa recognized the
six as being “three and three in a row” and she saw the ten as being “five and five”. Lisa
did not make reference to other structures and she counted the five dots to show that there
were indeed five. The way she pointed to the collection of dots, however, and the way she
hesitated and subsequently reverted to counting as a way of describing how she saw the
two fives that made up the ten dots, gives the impression that she actually was using spatial
structuring to determine the number of dots. Indeed, when she was later presented with a
card with nine dots, Lisa first counted each of the dots, but when she was repeatedly en-
couraged to use a “clever trick”, she explained how she also found “a two and a five and
another two which makes nine”. This episode shows how Lisa was aware of and regularly
made use of various spatial structures, but that she had difficulty describing the structures
she used and reverted to counting to simplify the question and show why the number of
dots was correct.

Next to the difficulty that children may have had in finding the proper words to explain
their strategies, the children’s confusion may have been spurred on by the teachers’ choice
of words. The teacher may have confused the children in Round 1 by, on the one hand, pos-
itively reinforcing them as they correctly continued a pattern with two alternating colors,
while on the other hand, asking them to construct a pattern with more colors and a “differ-
ent rule” than the examples. The teacher only asked the children to make a “good” se-
quence. The children therefore tended to make sequences with two alternating colors be-
cause that fit their definition of a “good” sequence. Confusion due to the teacher’s lan-
guage also occurred when, rather than consistently asking the children to use “easy ways
of finding out how many there are”, in her enthusiasm, the teacher sometimes asked the
children to use “easy ways for counting how many there are”. This choice of words could
steer the children towards unitary counting strategies rather than other ways of determin-
ing a quantity.

Another important reason why children continued to count objects was that they were keen
to respond exactly to what the teacher was asking. Earlier in the activity, for example, Lara
showed the teacher that she could count the dots on the die. The teacher asked her to show
the class how, and Lara pointed to each dot as she counted the six. This shows how Lara
(who according to the pre-interview was already familiar with spatial structures and often
used them to abbreviate her counting) was directed to responding to the teacher’s question
by literally showing her how she could count the dots. Hence, regarding these communi-
cation issues, in preparing for Round 2, the teachers were encouraged to refine the shared
vocabulary (“determine” rather than “count”) and context (using the Tool Box) for mini-
mizing dissociations between what children seem to know and what they really understand.
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8.2.5 Teacher’s interpretation of the instruction activity must be accurate and
thorough

The instructional sequence is only effective if the teacher succeeds in translating its under-
lying theory to the instructional setting. As explained in Chapter 2, the teachers were pro-
vided with a manual with information about each activity to prepare for the session (see
Appendix 5). The observations in this paragraph show how even after discussing each ac-
tivity beforehand with the researchers, the teachers sometimes had trouble implementing
the activity in the way that it was originally planned.

In the “Guess My Rule” activity in Round 1, for example, the intention was for children to
not only notice the “rule” of the sequence but also its “regularity”. However, the teacher
missed the opportunity to discuss the “rule” and regularity in the pattern, because she was
satisfied with the children alternating the colors of the pattern (e.g., yellow, blue, green,
yellow, blue, green...). Although the children succeeded in continuing a pattern that alter-
nated two colors, the teacher only repeated the elements of the pattern together with the
children and subsequently moved on to another pattern. Apparently, not only was the con-
text of the activity not strong enough to motivate the children to make patterns with more
complicated and varied structures, but the teacher had not understood the essence of the
activity well enough to (try to) motivate children in this.

In the “Picking Flowers” activity in Round 1, the children also reflected less on spatial
structuring strategies than what is expected from a bottom-up, reinvention perspective
(section 2.5). The teacher collected all the chips into one group, removed two and asked
the children whether they thought that now the chips were easy to count. The children were
primarily listening and filling in some of the teacher’s sentences. That illustrates how they
had not really had the chance to experience and find out for themselves that using structure
can indeed be advantageous. In addition, the teacher’s wording was not very clear because
she talked about ways to “count” the number of chips rather than ways to find out how
many chips there are. The teacher also mentioned how “not structuring can make it diffi-
cult to know which chips to take away”, although she probably meant that the structure can
help clarify the number of chips that are missing. Again, these subtle differences in choice
of words can have very directive effects on the strategies that the children use.

The challenge for teaching and implementing an instruction experiment is that teachers are
required to both follow the instructions for the activities, and improvise to adequately re-
spond to the children’s unanticipated solutions, all within the time constraints of the activ-
ity. This happened when Lara made a side-step towards trying to find a structure in the pat-
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terns of the necklaces. Her action was very promising because Lara was trying to relate
repeated colors to a convenient way for determining a quantity. However, the teacher was
not prepared to recognize this insight, so she did not continue with it, nor did she refer back
to it during the subsequent patterning activity. What it does show, however, is that Lara was
on her way to discovering a link between a structure that makes up a pattern and a structure
that gives insight into a quantity. Had Lara had more opportunity to compare how she
counted the yellow and subsequently the green beads, with how the teacher added the to-
tals together, or rather to examine a necklace with two differently colored sets of five
beads, then she may have been able to clarify the association for herself and indeed com-
pare the egg cartons with another type of structure from the box.

The effects of the overarching context of the activities depended largely on how well the
teacher could introduce it and recall it in every activity. For example, although in Round 2
the teacher thoroughly recalled the context with the children, she did not make as much
use of this context as she could have done when she introduced the garden in the whole
class discussion. She told the children that Ant was looking for some flowers and twigs,
but she did not explicitly connect this to the ant hills that played such a prominent role in
the previous activity. The children may have been more prepared to make use of structures
in this activity if the teacher had made reference to the “way” the children had used the
structure of the beginning of the construction to determine the rest of the construction, just
like in the patterning activity. This may have tempted the children more to use this “way”
of structuring the chips into repeated arrangements such as lines and rows. The signifi-
cance of these types of structures is that they relate to basic repeated addition and can
therefore help the child towards learning formal addition and multiplication procedures.

Notwithstanding such missed opportunities and miscommunications, the teachers also con-
tributed greatly to the development of the activities. As indicated in Chapter 3, they offered
many suggestions for the design of the activities during the preparatory talks. An example
of the teacher’s contribution during the activity itself occurred during the “Picking Flowers”
activity in Round 1. When Lara determined the correct missing quantity, on her own initia-
tive, the teacher gave Lara white chips to place in the empty spaces. This was an effective
way of making the empty spaces of the structure more visible to the children so that they
could actually see the structure that helped Lara determine the number of missing chips.

8.2.6 Effects of an overarching context, an appealing setting, and a shared
vocabulary

In Chapter 7, we elaborated on five patterns of observations that seemed to influence the
effectivity of an instructional sequence. One of these was the significant role of an over-
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arching context with its shared vocabulary, embedded in an appealing setting. The signi-
ficance of this element was supported by many observations throughout Round 1 and, es-
pecially, Round 2 of the instruction experiment.

From the start of the first activity in Round 1, for example, the context proved to be effec-
tive in that the children indulged themselves in the activity; the teacher’s tone of voice, the
way she explored the box from the outside, and the way she finally let one child unpack
the box, created a somewhat mysterious setting that greatly contributed to the children’s
excitement. Even though the children were already familiar with the idea of a box filled
with “tricks” from the previous round, they were still intrigued and concentrated as they
followed along with the teacher’s story about the ant in Round 2. The children were quiet
and focused. This was the first important step towards creating a shared vocabulary in this
new overarching context. The new context also sparked the children’s curiosity because
they were still keen to know what was in the box. As Matt was unpacking the box, other
children were getting up to see what else was in the box and to look at the objects a little
closer. The children also spontaneously started counting the number of egg cartons that
were in the box and connecting it to other settings (“that’s how old | am!”).

In Round 1, the teacher remarked how difficult it was to count all the objects that were in
the box. This intrigued the children and they began to think about ways to organize the ob-
jects. Further, the game-setting in the card activity not only engaged the two competing
children, but also the children who were sitting around them. This excitement extended the
children’s attention spans for more than the average twenty minutes. Moreover, in the pat-
terning activity, the children had no trouble extending the first sequence of children. They
were very excited about the activity and they took their role as ants very seriously. In as-
sessing the activity afterwards, the teacher noted that the children’s excitement greatly
contributed to the success of the activity. Moreover, the teacher excited the children in how
she put the green paper in the centre and placed the chips on it, and animatedly told them
about the garden and its flowers. The highlight of the final part of the “Picking Flowers”
activity came when Mark set off to rearrange his chips and called out “this is going to
work!”. This showed how the design of the activity motivated the children to improve their
spatial structures.

The mathematical content of the overarching context in Round 2 is exemplified by how
the dots on the papers (i.e., Ant’s footprints leading to the Tool Box) triggered a numerical
perspective in the class. When the teacher first asked the children what they thought that
the dots on the floor could be, the children called out “six”. It seems the children thought
that the teacher expected them to tell her how many dots were on the cards. After the teach-
er clarified that she wanted to know what the dots were or where they came from, Rick first
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answered that they were “from dice”. This is also a mathematical answer. Similarly, after
children suggested examples such as “a ladybird” and “little balls”, Simon called out
“eggs”. It seems that Simon may have attended to the structure of the egg cartons in the
Trick Box since eggs are not the most typical suggestion that could explain the dots on the
cards. Even if it was the researcher’s presence in the classroom that may have steered the
children towards thinking in terms of numbers, it was exciting to note during Round 2 that
some children were thinking in terms of structures that they had encountered in the box
two months earlier. Apparently, the activities in Round 1 with the structures in the box had
created an awareness for spatial structuring.

Regarding the overarching aspect of the context, the introduction of the new context at the
beginning of the instructional sequence in Round 2 was essential for subsequent activities
in that it created a foundation for the shared vocabulary and the socio-mathematical norm
about the convenience and sometimes necessity for spatial structuring. By positively rein-
forcing children’s use of structure and saying that this indeed was “an easy way”, the teach-
er contributed to this classroom mathematical practice of spatial structuring. Further, after
several children participated in the counting game, the teacher ended the activity by re-
flecting again on the possible reasons why Ant had left the box behind in the class. This
was an important part of the activity, because it required the children to think critically
about the activity and to try to understand the underlying meaning of trying to find easy
ways to determine an amount other than counting unitarily. This type of reflection was also
expected to spark the children’s curiosity where one question may lead to more questions
that would motivate the children to find out more about the “tools” in the box.

The effect of the shared vocabulary in the overarching context became apparent in the sub-
sequent activities, when, as the class recalled the context, the children remembered that the
ant was called Ant and that he had left behind many small footsteps and a large box. In
fact, the children remembered exactly that there were “six steps every time”. Someone
called out “3, 3” and “that’s six” and when the teacher picked up Ant, the children could
once again see that this ant has six legs that left footprints on the floor of the classroom.
Further, when the teacher asked the children what they had found in the Tool Box, the chil-
dren remembered each of the different objects. This start of the activity is motivating be-
cause it illustrates how the children could relate to the context and how it helped them to
focus on the structure of six. A focus on at least one such fundamental structure was ex-
pected to serve as the necessary basis for exploring more types of spatial structures; by re-
lating to the children’s already available knowledge of and familiarity with the structure
for six, the teacher could move towards analyzing analogous structures such as those for
five, eight and ten.
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The observations in this and the previous section mostly concern the children and their per-
formance on the instruction activities. In the next section, we turn to another component
of the learning ecology to examine the pro-active role of the teacher in performing the in-
struction activities. This will shed more light on what characterizes a learning ecology that
can help children become more aware of spatial structuring and use spatial structures to
abbreviate numerical procedures (i.e., the second part of the second research question).

8.3  The pro-active role of the teacher

In Chapters 3 and 7 and earlier in this chapter, we alluded to the important role that the
teachers played in the instruction experiment. In this section, several observations are clus-
tered into themes to illustrate how the teachers (and researcher) fostered constructive
learning. The essence of constructive learning is to help the children “construct” their own
mathematical knowledge (see paragraphs 2.5.1 and 2.5.2). As explained in section 7.4,
however, in a Kindergarten setting this involves more “guidance” than is generally implied
by the RME principle of guided reinvention. The observations show how the effect of in-
struction activities on kindergartners’ learning greatly depends on teachers’ (and the re-
searcher’s) effort to stimulate children’s constructive learning.

Guiding the reinvention process. From the observations it becomes clear that the teachers
(and researcher) play an important role in guiding the learning process so that the children
do not have to reinvent mathematics from scratch. The teacher in the reinvention process
challenges children to think more in the direction of the desired mathematical construct, par-
ticularly in a Kindergarten setting (section 7.4). For the first trial of the “Picking Flowers”
activity, for example, several single chips were removed. This was expected to be an easy
trial because the children could simply count the number of empty spaces in the structure.
The confusion that the children experienced in using their arrangements was intended to en-
courage them to make structures that they could remember and use to determine the missing
quantities. During the patterning activity in Round 2, the teacher explicitly guided the rein-
vention process as she helped the children interpret and lengthen a line with a pattern:

Teacher: How should we lengthen the line? Jamal, take a look at the line (...) We’re going
to make the line longer, just like we did before. Well, take a good look at the
children. Go ahead and say it out loud, you don't have to call out the names,
just whether it's a girl or a boy. We start with Salih: (pointing, the rest of the class
joins in) boy, boy, girl, girl (Jamal says boy) Becky is a girl right?

Jamal: Ah, yes.

Teacher: We'll start again. Boy, boy, girl, girl. What comes after that?
Jamal: Boy!

Teacher: Yes! Boy, boy ...
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Jamal: Girl, girl.
Teacher: (with the rest of the class) Boy, boy, girl, girl!

Besides these directions, more subtly, the teacher’s accompaniment suggested a rhythm
that Jamal could follow and continue independently to extend the line. The result of this
episode was that the class successfully continued patterning in the activity.

Interactive problem solving. Another way that the teachers cultivated the children’s learn-
ing, was by encouraging them to interact with each other as a way to build on each other’s
insights. They did this cleverly through the type of questions they asked, the types of re-
sponses they gave and the type of feedback they offered. One type of question was to ask
about children’s thinking processes (“how did you see that?” or “can you think of an easier
way?”). Sometimes the teachers used revoicing techniques to evoke reactions from the
children (“you think there are five?” or “you say the next color in the pattern should be
red”).

The teachers’ enthusiasm was also an important part of children’s learning because it
sparked children’s curiosity and motivation to participate in the activity. For example, as a
result of the teachers’ excitement about the different ways for seeing how two rows of three
objects makes six, the children spontaneously started counting out loud and talking to each
other about how they saw the six. The positive feedback that the teachers offered, helped
to further stimulate children’s explorations (“that’s right!” or “you found a very clever
way”). For example, the teacher expressed surprise when the children were fast to deter-
mine or compare a quantity. This positive feedback motivated the children to look for more
strategies to quickly and efficiently determine a quantity.

An example of the teachers’ role in guiding interactive problem solving occurred when the
teacher supported a particular strategy by saying that that “is a really useful trick” and then
asked Lara to share her trick with the class. Likewise, instead of pointing out a child’s mis-
take, the teacher invited the child to come forward and count the dots on the card again.
This highlighted the different strategies that the children used to determine a quantity. For
example, while one boy counted the dots, some children said they knew the number of dots
just by looking at the card. One child who had not counted the dots unitarily, spontaneously
explained “yes, because three and three is six”. The way the teacher encouraged children
to share their strategies exemplifies constructive learning that capitalizes on the children’s
own responses and differing levels of learning.

More instances of such constructive learning occurred in Round 2. For example, before the
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teacher removed chips from a configuration of three sets of five flowers, arranged like the
five on dice, she asked Matt:

Teacher: Matt, have you taken a good look at it? Now Ant will come to pick some flowers
from the garden.
(Several children join Matt and close their eyes while Ant picks four flowers
from the garden)

Teacher: (The children call out that they know the answer and that Ant has been very
naughty) Matt, come sit by the garden and point to the places where you think
the flowers are missing.

Matt: (points outside of one of the sets of five) Here.

Teacher: Ok, so you think one’s missing over there. Where else?

Matt: Here (points again to the outside of one other set of five)

Teacher: Think about this (takes the die out of the Tool Box and shows Matt the face with
five dots)

Matt: Here (points to the middle of one of the sets of five where one chip had been

taken away)
(The other children try to take a look at the die)

Teacher: There’s one missing, you're right! Where else are the chips missing? Take a
look at this die.

Matt: (points outside a set of five) Here.

Teacher: (places the die next to the garden) Look at this, where do you think one is miss-
ing?

Matt: (points outside another set of five) Here?

Teacher: Daria, let's see if you can show us where Ant picked his flowers.

Daria: (carefully pointing to the correct empty spaces) There, there, there and there.

Teacher: Very clever of you. But how do you know?

Daria: Because here there are three and you need two more.

Teacher: But | can also add them here (points outside of the set of five)

Daria: Yes, but then you can't see it easily.

Teacher: That's right, see, if we look at the die, then you know that it's missing a flower

in the middle. (Daria nods in agreement)

This episode illustrates how the teacher built on the children’s responses to show them how
they could compare a configuration to a familiar structure like on a die. She used the dis-
cussion with Matt to introduce the dice to the class and to encourage the children to con-
nect the dice configuration to the arrangement of flowers. This resulted in successful uses
of the dice configurations for completing the structured arrangements of flowers.

Comparing spatial structures. Many observations in this chapter have already illustrated
how the teachers compared spatial structures to help children recognize structures in rela-
tively larger structured and unstructured configurations of objects. More specifically, in
the focus group, the researcher took the teachers’ example and encouraged the children to
reconnect the spatial structure that was topic of discussion to the structures in the Trick/
Tool Box. In the focus group activity, for example, Mark was asked to explain how he had
seen the five on the card, and the rest of the group was asked where else they may have
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seen the same kind of five. By explicitly placing one familiar structure in a familiar context
(i.e., dots on a die) next to a familiar structure in a relatively unfamiliar context (i.e., dots
on the playing card), the researcher tried to help the children translate spatial structures
across various contexts.

The teachers and researchers not only encouraged the comparison between different types
of spatial structures, but also between different ways of representing a quantity within one
type of spatial structure. In the focus group Egg Carton activity, for example, Mark ex-
plained that he saw the seven because “one more than six is seven”. Becky, on the other
hand, showed how she perceptually counted each egg. To that, the researcher asked whe-
ther this could be considered “an easy way” to determine the number of eggs in the carton.
Mark then pointed to a row of four and a row of three and Becky agreed that she saw the
difference between these ways of looking at the eggs. This opened up a discussion in the
focus group about different ways of looking at one arrangement, which is valuable because
these different ways could again inspire children to read off rather than unitarily count a
quantity.

Highlighting spatial structure. Another way the teachers supported the children’s con-
structive learning was by bringing spatial structure more to the fore. This occurred, for ex-
ample, when the teacher tried to capitalize on James’ structuring by asking him to show
the class how the blocks could also be counted. At first this sequence of questions seemed
very contradictory and confusing to the evolving classroom mathematical practice of
structuring. Yet, when the teacher summarized this part of the activity for the class, she
tried to clarify to the children how James’ structuring strategy contrasted with the counting
strategies that they were more familiar with. James re-explained his strategy and this time
he said “because here there were two and there there were two so there has to be one in the
middle”. The “one in the middle” could allude to the dice dot structure for five that James
was very familiar with. To support his point, the teacher subsequently took apart the con-
struction so that the children could also see the structure of the two and two blocks. This
episode was an important start to the activity because the children were presented with two
different strategies for determining the number of blocks in this structured construction.

Likewise, when Daria spontaneously answered that the construction was made up of six
blocks, she explained (pointing) “here there are three and here there are three”. To support
this structured observation, the teacher first took the top part off and then spread out the
six bottom blocks so that the children could see the two rows of three that Daria observed
(Fig. 8.8). Next, she rebuilt the construction and Simon deduced that the total number of
blocks is ten. In other trials, the teacher also took off layers of blocks to help children who
had difficulty determining the number of blocks. The challenge for the instruction was to
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appeal to the children’s insight into layering and unitary counting of the blocks in a context
that invited the children to explore how structure of a construction can simplify and abbre-
viate numerical procedures. In the focus group patterning activity, the children were asked
to separate the patterns into equal parts and explore different arrangements that help to
physically see the component parts.

X
Fig. 8.8  Video frame of the blocks: the teacher removed the top block and spread out the bottom
six blocks to show the children the structure of the structured 10-block construction

The themes discussed above illustrate how the teachers supported the children’s construc-
tive learning processes. The essence of the instructional setting was that it would stimulate
the children to focus on what constitutes an efficient and effective structure, and that it
helps them to learn to recognize these characteristics in unstructured settings. Such insight
into structure can help them gain a better understanding of the composition and decompo-
sition of quantities (i.e., numerical relations), which should ultimately contribute to the de-
velopment of higher-order mathematical operations. The results of the instruction experi-
ment which were discussed in Chapter 7 and in the previous sections are summarized in
the next section.

8.4  General retrospective analysis of the instruction experiment

In sections 7.3 and 8.1, we documented the analyses of Round 1 and Round 2 of the in-
struction experiment in terms of the contribution of the instruction activities to children’s
development of spatial structuring ability. The observations that supplement the conjec-
tured learning moments were discussed in section 8.2. Finally, through creating theory-
type memos in ATLAS.ti, we organized our conjectures about these outcomes of the instruc-
tion experiment. This general retrospective analysis resulted in nine broad learning in-
sights: these learning insights describe children’s progression along a developmental tra-
jectory for gaining awareness of spatial structures and learning to use and apply them for
abbreviating numerical procedures (Fig. 8.9). Although the insights are listed in a gener-
ally cumulative order, they are intertwined like the strategies in the inventory (section 5.3).
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Learning insight Brief description and examples References
Preparatory skills including synchro- can use counting strategiesto accu- | ¢ 7.3.2
nous and resultative counting skills, rately determine a quantity * 81.1
familiarity with fundamental spatial recognizes dice configurations and | ¢ 8.2.1
structures, and basic organizational finger patterns
skills for counting quantities rearranges objects into a line to

keep track of which are counted
Understanding the characteristics of understands the regularity of struc- | ¢ 7.3.1
a pattern ture that forms a pattern * 814
abstracts the elements that make up
the structure of a pattern
“it's all the time red, white...”
Awareness of spatial structures in abstracts structure from a relatively | ¢ 7.3.2
composed structural settings larger structure ¢ 733
recognizes 6 as two rows of 3 within | » 7.3.4
a structure of 10 dots * 813
Recognizing and alternating differ- can associate 6 on a die with 6 fin- | * 7.3.2
ent types of spatial structures to gers in a finger pattern * 733
represent one particular quantity * 814
Recognizing and alternating differ- perceives 6 in an egg carton | ¢ 7.3.4
ent configurations in one type of through (de)composing itas rows of | » 8.1.4
spatial structure to represent a par- 5and 1 or as rows of 3 and 3
ticular quantity
Recognizing and using spatial struc- recognizes and abstracts structure | ¢ 7.3.5
ture in spatial (3-D) settings from a 3-D block construction * 8.1.3
* 826
Alternating unitary counting strate- understands the convenience of * 733
gies with goal-directed spatial struc- using spatial structure to read off | ¢ 8.1.2
turing strategies guantities as an alternative to uni- | ¢ 8.2.2
tary counting strategies * 824
* 826
Constructing adequate, effective explores effective structures to in- | ¢ 7.3.6
and efficient spatial structures in crease chances of winning the Pick- | * 8.1.2
(un)structured settings ing Flowers game * 8.1.3
compares structures such as 3 piles | * 8.1.4
of 3 chips to rows of 2, 3, 2, 2 chips | * 8.2.3
Generalizing and applying funda- makes spontaneous references to | ¢ 7.3.6
mental spatial structures: transfer spatial ~ structures outside the | ¢ 8.1.4
planned instructional activity * 8.15
“like on dice” * 8.2.6

Fig. 8.9  The nine learning insights with brief descriptions and examples, and references to para-
graphs in Chapter 7 and 8 that relate to each insight
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In summary, many observations from the two rounds of the instruction experiment have
supported and supplemented the conjectured learning moments. This resulted in nine cru-
cial insights that underlie a general developmental trajectory for spatial structuring ability.
In the next chapter, the analysis of the instruction experiment is concluded with a quanti-
tative and qualitative reflection on the outcomes of the post-interviews and teacher evalu-
ations. The post-interviews are interpreted in light of the pre-interviews, and the teacher
evaluations supplement our analysis of the pro-active role of the teacher with the teachers’
own thoughts and ideas about the instruction experiment. The outcomes of these analyses
give more insight into how the instructional sequence influenced children’s approach to
spatial structuring and numerical tasks after the instruction experiment.
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9 The Post-interview and Teacher Evaluations

In Chapter 4 we described the development of the spatial structuring and number sense
tasks for the pre-interviews. These interviews were held to gauge the children’s levels of
spatial structuring ability and number sense in terms of a developmental trajectory for spa-
tial structuring ability that was outlined in four phases. The outcomes of the pre-interview
are presented in Chapter 5, showing that, as expected, the youngest children were mostly
classified in the lowest phase, and that the phase classifications generally agreed with the
children’s Lvs scores.

This chapter is about the post-interviews that were conducted with the children shortly after
Round 2 of the instruction experiment. These interviews are interpreted against the out-
comes of the pre-interviews. The aim of the post-interviews is to gain insight into whether
and how the instructional sequence influenced the performance of the intervention group
(16). Although the non-intervention group (NG) is not intended to be a control group, we
make use of their post-interview outcomes to gain more insight into the influence of the
instruction experiment on the development of 1G children’s spatial structuring ability. We
discuss quantitative differences between the levels of strategy use that the 1G used and in-
terpret them in light of the strategies that the NG used during the post-interviews compared
to the pre-interviews. Qualitatively, we study the influence of children’s participation in the
instruction activities on their post-interview strategies compared to their pre-interview stra-
tegies, and on how the strategies that the 1G children used differed from those of the NG.

The quantitative outcomes of the post-interviews are discussed in relation to the pre-inter-
views and LvsS scores in section 9.1. The qualitative analyses are presented in section 9.2.
We conclude in section 9.3 that the results from the post-interviews point to a greater
awareness of spatial structure and an improved spatial structuring ability, including flexi-
ble use of spatial structuring strategies, for the intervention group. Further, the results high-
light the role of language in supporting the development of children’s spatial structuring
ability. These outcomes are confirmed by the 1G teacher evaluations of the instruction ex-
periment which are discussed in section 9.4.

9.1 Quantitative comparison of the post-interview to the pre-inter-
view and the LVS scores

The post-interviews are analyzed in the same way as the pre-interviews (section 5.4). Us-
ing ATLAS.ti, each response to an interview question was scored with a category from the
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strategy inventory. This resulted in a phase classification for each child which could sub-
sequently be compared to the phase classifications for the pre-interviews. The aim of this
comparison is to see to what extent these children may have developed in their spatial
structuring ability. We supplemented these comparisons with differences that were noted
between the IG and NG regarding the change in phase classifications before and after the
instruction experiment. Although the quantitative comparisons are not decisive (the setting
was not controlled and the number of children in each group is too low for statistical ana-
lyses, see also paragraph 10.3.3), we made these comparisons to convey any tendencies in
changed spatial structuring ability as a result of children’s participation in the instruction
experiment. This supplements the analysis of the instruction experiment (Chapters 7 and
8) and the qualitative analysis of the post-interviews that are discussed in section 9.2.

9.1.1 The post-interviews related to the pre-interviews
In section 5.2 the following four phases were outlined to describe a general developmental
trajectory in children’s spatial structuring ability for the interview tasks:

Phase 1 (Unitary phase): The child recognizes almost no spatial structures and consequently
neither uses nor applies structures to abbreviate numerical procedures.

Phase 2 (Recognition phase): The child recognizes several fundamental spatial structures, but
rarely uses or applies spatial structures to abbreviate numerical procedures. Instead, the child
may rationalize the use of spatial structures in hindsight.

Phase 3 (Usage phase): The child recognizes and uses most available spatial structures, but
rarely shows initiative in constructing and applying its own spatial structures as a means to ab-
breviate numerical procedures.

Phase 4 (Application phase): The child uses spatial structures in a goal-directed way and spon-
taneously constructs and applies spatial structures as a means to abbreviate numerical proce-
dures.

In Fig. 9.1, a comparison is made between the number of children per class (1G or NG) and
per grade (K-1 or K-2) who, in the post-interview showed a particular repertoire of strate-
gies that coincides with one of the four phases (see also the post-interview graph in Fig.
9.2). The distributions for the pre-interview (section 5.4) are stated in parentheses.
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Phase 1 Phase 2 Phase 3 Phase 4 Total

(Unitary) (Recognition) (Usage) (Application) number
IG K-1 9 3 )3 (2)5 (0) 2 13
IG K-2 Lo (3)0 1) 4 (3)4 8
Total IG (10) 3 (5) 3 (3)9 (3)6 21
NG K-1 (6)3 (1) 2 (1) 3 (0)0 8
NG K-2 Lo L1 L3 (6)5 9
Total NG (7)3 )3 (2) 6 6)5 17

Fig. 9.1  The number of children per Intervention group (IG) and Non-intervention group (NG) and
per Kindergarten 1 (K-1) and Kindergarten 2 (K-2) showing a repertoire of strategies in the interviews
that coincides with one of the four phases. The pre-interview distributions are stated in parentheses.

General trends in the combined 1G and NG results. Analogous to the pre-interviews, the
results of the post-interview supported our expectations that the youngest children in both
the 1G and NG were categorized relatively more often in the lower phases than the older
children and vice versa (Fig. 9.1). Those children who, after the post-interview, were still
classified in the Unitary phase (phase 1) or the Recognition phase (phase 2), were mainly
K-1 children who could benefit from more practice for developing their counting strate-
gies. Most children (15 out of 38) were classified in the Usage phase (phase 3) after the
post-interview. This indicates that these children were by now familiar with the spatial
structures that were discussed in the interviews. Although they used these structures when
they were readily available to them, these children were not at the stage yet of spontane-
ously and goal-directedly applying spatial structure to abbreviate numerical procedures.
Many of the older children (9 out of 17) were at the Application phase (phase 4) by the
post-interview and seemed ready to begin to learn to use more higher-order procedures
such as formal addition and multiplication.

Comparing the 1G results on the pre- and post-interviews. A large number of 1G children
(13 out of 21) shifted from lower to higher phases between the pre- and the post-interview
(Fig. 9.2). This means that three of them improved from recognizing none of the spatial
structures to recognizing, for example, eight as two rows of four or six as two sets of three.
They still, however, counted the objects to determine the total and were therefore classified
in the Recognition phase (phase 2). Four I1G children improved from the Recognition phase
(phase 2) to the Usage phase (phase 3) because in the post-interview they demonstrated
that they could make use of the available structures. Two I1G children improved from the
Usage phase (phase 3) to the Application phase (phase 4) in preparation for more formal
mathematical operations such as addition and multiplication. Three IG children shifted two
phases (from phase 1 to phase 3) and one 1G child shifted three phases (from phase 1 to
phase 4). The fact that three other 1G children were classified in the Application phase
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(phase 4) for both the pre- and the post-interviews, can be interpreted as ceiling effects
(i.e., the children scored maximally for the pre-interviews because the tasks were not chal-
lenging for them) because they already were making the most goal-directed use of spatial
structures to abbreviate their procedures (Fig. 9.2).

Pre-interview Phase Distribution

Phase 1

Phase 2

Phase i
Phase 'D

Counts

1G-K2 NG-K2

Post-interview Phase Distribution

-
ase

Z
Phase )
Phase n[l

Counts

Fig. 9.2 A comparison between the pre-interview and post-interview for the number of (K-1 and K-
2 from the IG and NG) children who were classified as Phase 1 (Unitary), Phase 2 (Recognition), Phase
3 (Usage), or Phase 4 (Application)

Comparing the I1G pre- and post-interview results to the NG. In general, more improve-
ments in performance occurred in the 1G compared to NG (Fig. 9.2). In the 1G (N=21), 13
children shifted towards a higher phase while 8 children stayed in the same phase. Still,
when taking the nuances (i.e., children whose repertoire of strategies tended strongly to-
wards the next phase, but not enough to be classified into those phases) into account, 5 of
these 8 children showed strategies that tended towards the next phase. More specifically,
the 1G K-1 group experienced a relatively strong decrease (6 children less) in the number
of children who were classified in the Unitary phase (phase 1), while there was a relatively
strong increase in the higher phases with 3 children more in the Usage phase and with two
children now classified in the Application phase (phase 4). Similarly, while the 1G K-2 chil-
dren were classified in all four phases in the pre-interview, they had all improved towards
either the Usage phase or the Application phase (4 children each).
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In the NG (N = 17), 5 children improved, 11 children stayed constant (5 of whom showed
ceiling effects because they belonged to the Application phase in both the pre- and post-
interviews) and one child declined from phase 4 to phase 3. Taking the nuances into ac-
count, 3 of the 11 children whose phase classifications remained constant, showed strate-
gies that tended towards a higher phase. Like the 1G K-1 group, the NG K-1 group also ex-
perienced a decrease in classifications in the Unitary phase (3 less), but all these children
were now classified in the Recognition phase (phase 2) and the Usage phase (phase 3) and
not, in contrast to the 1G K-1 group, to the Application phase (phase 4).

These quantitative outcomes must be interpreted in light of the fact that there were more
IG children than NG children (21 compared to 17) and that, analogous to the ceiling effects,
floor effects (i.e., the children scored minimally on the pre-interview tasks because the
tasks were too challenging for them) may have influenced the pre-interview outcomes of
some of the youngest 1G children. Nevertheless, the outcomes show that (a) all the NG K-1
children were classified in either the Unitary phase (phase 1), the Recognition phase (phase
2), or the Usage phase (phase 3) in both the pre- and the post-interviews, while (b) the 1G
K-1 children were mostly (9 out of 13) classified in the Unitary phase (phase 1) in the pre-
interview but, in the post-interview, they distributed over the Recognition phase, the Usage
phase, and even the Application phase (phase 4). Regarding the K-2 children, the distribu-
tion of classification for the 16 K-2 children shifted from all four phases to an equal distri-
bution across the two highest (Usage and Application) phases. In contrast, the post-inter-
view classifications for the NG K-2 children were similar to the pre-interviews apart from
two children who improved to a higher phase and one who declined from the highest phase.

9.1.2 The post-interviews related to the LVS scores

To gain insight into the validity of the post-interviews, we related the quantitative out-
comes to the children’s Lvs scores. For the post-interviews, four K-1 children were left out
of the comparison with LVs scores because they had not taken an Lvs test. The general dis-
tribution of the Lvs scores did not change from the pre- to the post-interviews, because
these scores are standardized and normed to the children’s age. This makes it difficult to
compare the frequency distribution across the phases, to the distribution across the Lvs
scores; the Lvs distribution of scores seem to have stayed constant while the distribution
of classifications in phases shifted. Nevertheless, most children who scored LvS A, were
also classified either in the Usage (phase 3; 4 out of 14 children) or the Application phase
(phase 4; 8 out of 14n children). Most children who scored Lvs B were classified in the
Usage phase (5 out of 7 children), while the repertoire of strategies was distributed equally
across all four phases for those who scored LVvs c. These outcomes agree with the general
trend that was found in comparing the pre-interview classifications to children’s Lvs
scores. This supports the validity of the interview assessments because they are in line with
the normed LVs test scores.
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Further insight into the validity of the interviews came from comparing how the pre- and
post-interview outcomes related to the LvS scores. For the pre-interviews, the normed test
scores for the I1G children were relatively higher than those of the NG children, while par-
ticularly the youngest 1G children had more trouble with the interview tasks than the NG
children did. Hence, the pattern of phase classifications contrasts with how the Lvs scores
of the 1G were initially higher than the scores of the NG. This suggests that floor effects (i.e.,
the children scored minimally on the pre-interview tasks because the tasks were too chal-
lenging for them) occurred in the 1G. Yet, although the children in the 1G K-1 group were
perhaps more challenged by the activities in the pre-interview than the NG K-1 children
were, they greatly improved their performance from the pre- to the post-interview. This
could indicate that the 1G K-1 children were not necessarily less capable than the NG K-1
children, but that the instruction experiment may have provided them with opportunities
to improve their understanding of spatial structuring. For example, an 1G K-1 boy was clas-
sified in the Unitary phase (phase 1) in the pre-interviews even though he received the
highest score on the Lvs test. Hence, he performed strongly on the Lvs test, and yet he had
trouble with the questions in the interviews. This outcome encouraged us to see how the
interview tasks could be revised to improve their accessibility for the younger children
who otherwise perform well in regular classroom activities.

The comparisons between children’s level of strategy use and their Lvs scores also high-
lights children who may require more attention in their mathematical development. Two
IG K-2 children, for example, showed a repertoire of strategies that corresponded to the Us-
age phase, while they performed relatively poorly with a “c” score on the LVS test. These
children had demonstrated interesting insights during the interviews, which may not have
come to the fore in a standardized paper-and-pencil test. This outcome carefully shows
limitations of the Lvs test because it regenerates an awareness of the advantages and dis-
advantages of performing a regular paper-and-pencil test (section 3.3). It also shows how
these children could benefit from additional work with spatial structures as a means to sup-
port their numerical development. In the next section we focus on specific observations in
the post-interview that were analyzed qualitatively to investigate influences of the instruc-
tion experiment on children’s spatial structuring ability.

9.2  Qualitative analysis of the post-interviews

In this section we present observations that show how the instructional sequence influ-
enced the children’s spatial structuring ability. These observations were also analyzed with
the help of ATLAS.1i, but for the qualitative analyses of the interviews, the quotations were
coded and interpreted in the same way as for the instruction experiment. This means that
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we used the method of constant comparison to code each observation (i.e., quotation) with-
in each interview question. These codes were subsequently used to define various memo-
types that took the observation to a more theoretical level. We discuss two themes that
arose from this analysis, which differentiate the Intervention Group (1G) from the Non-in-
tervention Group (NG) after their participation in the instruction experiment:

(1) The 1G showed greater awareness of spatial structure and improved spatial structuring
ability from the pre-interview to the post-interview than the NG did.

(2) The 1G made explicit references to the classroom activities, while the NG had relatively
more trouble understanding the interview tasks because they did not share the vocabu-
lary that was developed in class to discuss concepts relating to spatial structure.

9.2.1 Awareness of spatial structure and development of spatial structuring
ability

Support for shifts in phase classifications. In general, spontaneous and improved respon-
ses of the 1G to the post-interview tasks were noted. The observations provide support for
the four phases that were identified to describe children’s development in spatial structur-
ing ability (Chapter 4). As expected, the children who seemed to have benefited least from
participating in the instruction activities were the youngest children in the class. These
children were mostly concerned with learning how to count properly in the first place, and
it may be that the teacher challenged them less than the older children. The focus on count-
ing is what characterizes children whose repertoire of strategies corresponds to the Unitary
phase (phase 1). Still, two children from the 1G K-1 group showed significant improvement
in their level of strategy use. Both children were classified in the Unitary phase (phase 1)
in the pre-interview, while they performed according to Usage phase (phase 3) and Appli-
cation phase (phase 4) standards in the post-interview. This improvement may suggest pos-
itive influences of the instruction activities on their spatial structuring strategies.

Less unitary counting in the 1G. Although the number of children in each group is small
and the differences are not statistically underpinned, we observe that, compared to the NG,
the strategies that the 1G children used were less varied, while they tended less to unitary
counting procedures and more to spatial structuring with the specific intention of reading
off a quantity. We illustrate this using the tasks where the children were asked to (1) deter-
mine which group of flowers contained eight flowers, and to (2) arrange the flowers in a
way that could show others how many there are without counting (Fig. 9.3). These two in-
terview tasks are representative for gauging children’s ability to recognize, make use of
and apply spatial structures to abbreviate procedures for determining and comparing quan-
tities. Regarding the first task, 7 out of 17 NG children, compared to 14 out of 21 1G chil-
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dren, made use of the structure of the group to find out that there were eight flowers. Eight
NG children compared to 5 1G children counted the flowers. The rest of the children had
trouble answering the question or used a strategy that was unclear but that tended to struc-
turing. For the second task, 6 out of 17 NG children compared to 11 out of 21 1G children
goal-directedly structured the flowers. Seven NG children compared to 8 1G children orga-
nized the flowers in a way that simplified counting procedures. Further, 1 of the 7 NG chil-
dren and 3 of the 8 I1G children who organized the flowers, organized them in a way that
tended to spatial structuring for abbreviating counting procedures.

Fig. 9.3  Lisais counting the flowers unitarily as she is looking for the group of exactly eight flowers

More awareness of spatial structure in the 1G. For the same flower task as above, com-
pared to the NG, the 1G seemed more aware of spatial structuring as an alternative to unitary
counting. For example, 15 out of 21 1G children (including all the Application phase chil-
dren), compared to 6 out of 17 NG children (including 4 of the 5 Application phase chil-
dren), spontaneously recognized and made use of available structures such as two sets of
three or two sets of four to determine six and eight. Although not all of these children came
to the correct answer, for several of these children (7 out of the 151G children compared to
1 of the 6 NG children) this was a notable improvement compared to their primarily unitary
counting strategies (i.e., the Unitary and Recognition Phase) in the pre-interview.

One 1G K-1 boy, for example, related two sets of four as well as two sets of three to a total
of eight. Although the two sets of three structure is not correct, his focus on double-struc-
tures illustrates an improved awareness of spatial strategies compared to his performance
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on the pre-interview. Nine of these 15 1G children belonged to the K-1 group (in compari-
son, all 6 NG children belonged to the K-2 group) which shows how even relatively young
IG children started to use double-structures to recognize two sets of three or four and to try
to deduce the total quantity using these structures.

Next to the general development in phase classification for the 1G which was noted in the
quantitative and qualitative analyses, the NG stayed more constant in the phase classifica-
tions (11 out of 17 compared to 8 out of 21 in the 1G). This was not only because of ceiling
effects, since it seems that, regardless of the researcher’s encouragements to attend to spa-
tial structures in the tasks, the NG children preferred unitary counting strategies or more
formal addition procedures rather than advancing in spatial structuring strategies. In fact,
one NG K-2 child was classified in the Usage phase (phase 3) in the post-interview, despite
his Application phase (phase 4) performance in the pre-interview. From the qualitative
analyses it appears that this child was somewhat careless in the post-interview and that he
was having trouble applying formal arithmetic to the tasks.

Reasoning about and flexible use of structures. An important indication for children’s un-
derstanding of spatial structuring, is whether they can reason or act flexibly with struc-
tures. One IG boy, for example, had become very flexible in the types of strategies that he
used, explaining that “if you put them like this (i.e., two rows of four), then you will always
see that there are eight”. Another child had been experimenting with her own types of spa-
tial structures in the pre-interview (e.g., arranged in the shape of a flower), while in the
post-interview she explained that she “saw six (i.e., two rows of three) and two makes
eight”. The children also explicated that “five looks like four with one in the middle”, and
regularly made reference to the dice configurations, “like on dice”. For determining the
number of blocks in a construction, one girl explained the structure by referring to “its rec-
tangles” and by showing how she could count the blocks by twos. As she was analyzing
one of the patterns in the patterning activity, another child asked herself “does it make
sense or not?”, making reference to the beginning of the pattern and checking whether its
structure occurred regularly throughout the pattern.

9.2.2 Explicit references to classroom instruction activities and the role of
shared vocabulary in understanding the task

References of the NG. As expected, the NG made no explicit references to instruction activ-
ities while the examples that several 1G children gave were specifically related to the ac-
tivities. The NG children did make reference to daily situations, however. One girl, for ex-
ample, explained that she could “see” the structure of the block construction because she
sometimes played with blocks at home. Another girl said she “knows six because when
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you have six people, then there are three and three sitting around a table”. Such references
give important insight into how children encounter and learn about spatial structures in in-
formal and formal learning ecologies.

Transfer effects. The value of explicit references that the 1G made to the classroom instruc-
tion activities is that they indicate how involved the children were in the activity. The chil-
dren who recalled a specific activity or insights from an activity during the post-interview
were demonstrating transfer effects that show the meaning and effectivity of the activity
in supporting the children’s learning. An example of the references that 1G children made
to the instruction experiment occurred when the researcher was arranging the four groups
of flowers in the first interview task. The girl instantly remarked how she liked the game
with the gardens that they had played in class. Apparently, this girl overtly connected the
flowers in the interview to the flowers that Ant had picked from the children’s gardens in
the classroom instruction activity. Such references provide support for how the overarch-
ing context of Ant and its Tool Box appealed to the children and stimulated their perfor-
mance in the instruction activities.

Some of the children showed spontaneous transfer effects when the interview question did
not explicitly ask them to relate the task to an instruction activity. For example, on their
own initiative, several 1G children decided which color was most necessary for extending
the pattern, before they had received any instructions for the task (see paragraph 7.6.3).
They were not relating the task to the pre-interview task because these are the instructions
from the instruction activity. Moreover, the children made reference to the patterning ac-
tivity from the instruction experiment in performing this particular interview task. This
demonstrates how actively involved they had been in the classroom activity and how pat-
terning was becoming part of their cognitive repertoire.

Specific explanations of the 1G. The 1G children also gave more specific explanations than
the NG children did. One girl, for example, repeatedly referred to “three, three” to denote
the spatial structure of two rows of three during the post-interview in the same way that
she had referred to such double-structures during the classroom activities. Similarly, an-
other girl spontaneously used phrases from the shared vocabulary such as “you can see it
in an even easier way” or “you can arrange it easily like eight”, placing her hand in be-
tween two groups of four to explain how the spatial structure helps her to determine the
quantity.

Awareness of structures. Judging from the children’s questions and responses, the NG chil-
dren seemed less aware of spatial structuring strategies as a way to approach the post-in-
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terview tasks than the I1G children were. One NG girl, for example, asked whether she was
allowed to count because she did not know of another way. Apparently, she was at least at
that moment not aware of an approach that could involve spatial structuring for determin-
ing a quantity. This is noteworthy because the girl’s overall performance improved in the
post-interview while, despite the researcher’s repeated references to spatial structures, she
kept to her counting strategies.

Role of a shared vocabulary. A reason why the NG children had difficulty understanding
the task was because these children were not used to thinking and talking about “conve-
nient ways” to “see” or to “determine how many there are” and to “arrange things neatly”.
This is not surprising because these terms belong to the shared vocabulary that the teacher,
the researcher and 1G children had developed throughout the instruction experiment. Ne-
vertheless, what the episodes show is that even the NG children with high Lvs scores did
not always spontaneously revert to spatial structuring procedures to abbreviate and im-
prove their performance. It would be expected that high-achieving children make use of
spatial structures in a goal-directed way if they really understand the convenience of spa-
tial structuring. Moreover, this outcome once again highlights the important role of a
shared vocabulary in stimulating children to focus on spatial structuring as an alternative
and more convenient approach to a numerical task than unitary counting.

9.3 Conclusions from the post-interviews

Taking the qualitative and quantitative analyses of the post-interviews together, we con-
clude that the 1G children showed signs of having benefited from participating in the in-
struction activities. Despite the small groups, the observations show relatively more use of
spatial structuring strategies and explicit references to the instruction activities for the 1G
compared to the NG. IG children’s phase classifications and LVs scores also provide support
for the marked shift towards using and applying spatial structures for abbreviating numer-
ical procedures. This was interpreted against the way the NG approached the interview
questions; although the NG children performed relatively strongly on the pre-interviews,
they showed less advancement in spatial structuring ability in the post-interviews than the
IG children did.

The two themes (awareness of spatial structures and explicit references to spatial structur-
ing) that were discussed in this section for a qualitative analysis of the influences of the
instructional sequence on the IG, are reflected in the post-interviews that were held to
gauge the 1G teachers’ evaluation of the instruction experiment. The outcomes of these in-
terviews are presented in the next section.
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9.4 Teacher evaluations

As described in the previous chapters, the two teachers who performed the instruction ex-
periment played a key role in the design of the HLT and the instructional sequence. They
helped bridge the theoretical perspectives with educational practice, and they both con-
ducted and actively reflected on the instruction activities to contribute to their improve-
ment.

9.4.1 Comparing mind maps

Before introducing the instructional sequence and the focus on spatial structuring to the
teachers, these 1G teachers as well as the teachers of the NG were asked to create a mind
map about the constructs of number sense and spatial thinking. The aim was to see what
the teachers’ conceptions of these constructs were at the start of the research. Discussions
with the teachers about these mind maps gave insight into their perspective on the relative
importance of the constructs for mathematical development and on what kinds of instruc-
tion activities and materials they associate with these constructs. Moreover, the intention
was to compare the mind maps of the I1G teachers to those of the NG teachers to see whe-
ther, at the start of the instruction experiment, there were any significant differences in the
way the teachers approached these constructs and how they taught them in class. The
teachers were purposely asked to brainstorm about spatial thinking rather than spatial
structuring, because the reference to spatial structuring could prime the teachers about the
expectations of the instructional sequence. Instead, it was interesting to see what role spa-
tial structuring may play in their conceptions of spatial thinking.

Since the teachers’ mind maps were very similar to each other, there was not much to com-
pare them on. The teachers all noted the characteristics that are most commonly associated
with number sense and spatial thinking (Fig. 9.4). For number sense this included pattern-
ing activities, dice, recognizing quantities, counting, counting songs and games, numerical
symbols, comparing, sequencing, and estimating. Some of the characteristics of spatial
thinking that were noted are constructing, distance, time, orientation with maps, pattern-
ing, measurement, crafts, shapes, perspective taking, physical activity, and technology. In
short, the teachers associated number sense and spatial thinking with similar topics and
materials. With more knowledge about what materials the teachers used in class, the mind
maps provided a frame of reference in which the instruction activities could be discussed,
and in which to evaluate each session with the teachers during the instruction experiment.
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Fig. 9.4 A mind map for number sense (“getalbegrip”) and spatial sense (“ruimtelijk denken”)

What is most striking about these mind maps, is that they were very focused on procedures.
In other words, the teachers mostly seemed concerned with children’s ability to perform
certain procedures such as counting, determining locations, and identifying and comparing
shapes. What is particularly relevant to this study is that, although “recognizing quanti-
ties”, “comparing, organizing, and estimating”, “patterns”, and “dice configurations”,
were mentioned, none of the mind maps alluded to connections between these concepts,
nor did they include words that relate to spatial structuring or numerical relations. Hence,
what is missing from the teachers’ conceptualizations of number sense and spatial thinking
are relationships between the components of the constructs. If these conceptualizations are
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indeed translated to their educational practice, then it may explain why spatial structure is
often underexposed in class and why children tend to experience difficulties in learning
mathematics that is taught as separate constructs.

9.4.2 Post-interviews with the teachers

As described in Chapter 3, the aim and design of the activity was discussed with the teach-
er before each session, and the teacher evaluated each activity in a debriefing immediately
after the end of the session. Apart from the many relatively informal discussions that were
held in between the activities, the two IG teachers were interviewed two months after the
instruction experiment. These interviews serve as a final evaluation of the instructional se-
quence, to see what influences the instruction experiment had on these teachers’ perspec-
tives on number sense and spatial structuring in teaching and learning about mathematics.
We present the teachers’ answers to each of the five interview questions.

Question 1. In the first question, the teachers were asked whether they thought that their
perspective on number sense and spatial thinking had changed as a result of the instruction
experiment. The teachers responded convincingly. Teacher Alice said that her perspective
had not changed as a result of the instruction experiment, because she felt she had always
been aware of things that have to do with number sense and spatial thinking in the class-
room. What she said that definitely did change, however, was her perspective on how to
teach mathematics and spatial structuring. She declared that “her own world had opened
up”. Throughout the instruction experiment, she experienced how mathematics can be
taught in a much simpler way using, for instance, patterning activities. She said that the
instructional sequence highlighted the important issues in mathematics and that she is now
more conscious about spatial structuring. This has given her confidence in recognizing and
attending to spatial structures in class. One example of when this happened that she could
recall, was when the class was celebrating a birthday and she discussed with the children
how the six candles were conveniently arranged into two rows of three.

What frustrated Teacher Alice, is that the mathematics materials in the classroom and
mathematics in general always seem subordinate to language lessons in their school. What
she said this intervention helped her with, is to see “how the mathematics that is embedded
in daily activities can be brought more to the fore with everyday language and meaningful
situations”. She could, for example, encourage children to look for structure in the play-
ground and introduce new words to discuss this structure with the children. In this way,
mathematics can gain more attention without requiring a significantly greater amount of
class time or more domain-specific materials.
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Teacher Tracy noted that she had always understood the importance of spatial structures.
Yet, because this instruction experiment emphasized the role of spatial structuring in learn-
ing mathematics, spatial structures became tools that deepened her understanding of spa-
tial thinking. The dice configurations, for example, are used often in class, but since the
instruction experiment, these spatial structures are perceived and used in a more purpose-
ful rather than incidental way. Teacher Tracy also explained that she was satisfied with an
instructional sequence that consists of only five instruction activities because each activity
repeats many of the insights about spatial structuring. These insights can be recalled again
during other classroom activities.

Another point that Teacher Tracy made was that she realized once again how important a
strong context is for children to learn mathematics. She said that Ant (the figure that is cen-
tral to the overarching context of Ant and Ant’s Tool Box) demonstrated how if something
is presented in different way to children, then “children also pick it up in another way”.
The knowledge “will be established better”. This confirmed what Teacher Tracy said she
already knew, but often had trouble realizing in her lessons. The instructional sequence
gave her more inspiration for using the already available materials and regular daily situ-
ations to perform mathematics in a relatively simple activity.

Question 2. In the second question, the teachers were asked whether the instruction expe-
riment had changed their perspective on (a) the importance of number sense and spatial
thinking in daily life, and/or (b) the role of number sense and spatial thinking in the devel-
opment of early mathematical abilities. Teacher Alice answered that it had become more
clear to her how “Kindergarten mathematics is not only related to numbers, but just as well
to mathematical concepts”. This includes an important overlap with language and it offers
a natural way of integrating mathematics education with language education. For example,
she could combine language lessons with contexts that highlight spatial structures. This
kind of relation can stimulate mathematics education in school in parallel with language
education. Moreover, the intervention encouraged Teacher Alice to work with spatial
structures on her own. She was confident that she would attend to the topic of spatial struc-
turing in the new school year and help the children become more aware of spatial struc-
tures in their surroundings.

Teacher Tracy explained how she had learned more about the mathematical development
of the children. She had become more aware of the different levels of spatial structuring
ability in class; how some children had never encountered particular spatial structures and
how these children familiarized themselves with structures throughout the instructional se-
quence, while others were learning to make use of or apply the structures to abbreviate nu-
merical procedures. Teacher Tracy noted that the children especially seemed to have im-
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proved in their structuring ability after participating in the “Guess my Rule” patterning ac-
tivity. She thought that, by the end of the activity, most children understood the essence of
a pattern and were able to continue the pattern on their own on the basis of its structure.

Teacher Tracy also said she considered the significance of the intervention to be more of a
long term issue. In her opinion, spatial structuring is especially important for numerical
procedures such as formal addition and multiplication. These young children, however, are
still developing their ability to count and understand number, so Teacher Tracy thought
that they would only benefit from the activities if they can “experience the need to spatially
structure”. Her remarks are valuable because they agree with the theoretical background
of the research. In line with RME principles, children must experience the necessity of spa-
tial structuring to be able to start making goal-directed use of these structures. Teacher Tra-
cy noted that many young children are satisfied with performing their counting procedures
because they may not be ready to concern themselves with spatial structures, or because
the activities were not designed properly enough to guide children towards prioritizing
spatial structuring over unitary counting. Nevertheless, she agreed that the significance of
exposing children to spatial structures at such an early age is that it can support children in
gaining insight into numerical relations. These, in turn, are valuable tools for understand-
ing higher-order mathematical operations such as addition and subtraction.

Question 3. To see whether the instruction activities had effects after the instruction exper-
iment, the teachers were asked whether during or after the intervention they had seen chil-
dren continue the activity, and whether this differs from how the children continue other
classroom activities. The teachers referred to the evaluations that they had completed for
each activity in which they described how some children made reference to spatial struc-
tures outside the classroom. For example, Teacher Alice explained how, during a regular
lesson, the children had spontaneously made patterns in their mosaics (see also paragraph
8.1.5). The children were able to show her the structure of the patterns and express an un-
derstanding of a pattern. Further, Teacher Tracy noted that the children are now doubtlessly
familiar with the egg cartons and dice structures. She recalled how, when she first asked
one boy to determine the number of dots on a card, he did not answer. Yet, when she en-
couraged him to think about an egg carton, he immediately said “six!”. Taken together,
Teacher Tracy said that she had become more aware of the importance of teaching mathe-
matics to kindergartners and of structures in their surroundings. She also added that she
thought that five activities were sufficient for establishing an awareness of spatial structur-
ing, although it would be important for the teachers to continue making reference to spatial
structure in the regular classroom activities. She thought that in this way, one run through
the instructional sequence would be just as effective as the two rounds in the instruction
experiment.

222



The Post-interview and Teacher Evaluations

Question 4. For the fourth question, the teachers were asked whether during or after the
intervention, they had gained new insights about how children think and learn about num-
ber sense and spatial thinking, and whether the intervention had changed their idea about
children’s learning abilities. Teacher Alice responded with three main points. First, she re-
alized how clear the introduction to an activity must be for children to understand the in-
structions and the aim of the activity. Second, the activities emphasized the importance of
properly formulated questions. The way a question is formulated strongly depends on what
the teacher intends to gain by asking it. This became clear in the controversy of using
phrases such as “counting” versus “determining” a quantity, and words such as a “trick”,
or a “way”, or a “tool”. Finally, Teacher Alice acknowledged that teachers must attend to
the children’s experiential world, but that that was difficult in this setting because the
teachers were required to conduct the activities as they were described in the manual.

Teacher Tracy also mentioned the difficulty of understanding the activity and performing
it exactly in the way that it was described in the manual. She said that she normally “lets
things go the way they go” and that she intervenes whenever she sees an interesting learn-
ing moment, but that this was more difficult now that she had to follow the instructions.
Nevertheless, Teacher Tracy also answered that what she observed during the activities
confirmed what she knew about the general development that children experience in math-
ematics. She concluded that children ultimately go through the same phases, even though
children may start at different phases. Teacher Tracy expected the developmental steps
(i.e., learning moments) to take longer or shorter depending on the child, while some chil-
dren may even skip a step.

Question 5. According to Teacher Alice, the most important outcomes and gains from the
instruction experiment were that she thought that the children started thinking and looking
differently at spatial structures, given that the activity appealed to the child. She also ap-
preciated the changes that were made to the activities; the shift from a “Trick Box” to a
“Tool Box was appealing and effective in their classroom setting. Most importantly, how-
ever, Teacher Alice explained how the instruction experiment had changed her perspective
on teaching kindergartners mathematics because it showed her “how it is possible to teach
mathematics in a playful and fun way that extends beyond the curriculum and regular
classroom materials”. The focus group setting reminded her of how she usually works with
children in smaller groups and it inspired her to encourage these groups to focus more on
a particular mathematical topic. Teacher Alice said that she used to focus her mathematics
lessons on what materials she had at hand, and that it took too much time and effort to de-
vise new activities. For her, the local instruction theory and the instructional sequence offer
an outline for an unprecedented way of teaching mathematics. The activity with patterning
children and comparing structures to each other, for example, showed her how such activ-
ities and materials are more accessible than she thought.
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Similar to Teacher Alice, Teacher Tracy responded that the instruction experiment had
made her more alert. The curriculum regularly focuses on language, but this experience
has emphasized the importance of fostering early mathematical abilities. It motivates her
to try to find a better balance between the two subject areas by, for example, attending to
the mathematics that is interwoven in language and vice versa. With regard to the children,
Teacher Tracy found that they attended more to structures. Although she could not deter-
mine this objectively, she said that the activities seemed to have helped them gain insight
into quantities and numbers. Her impression complements the conclusions that were
drawn from the qualitative and quantitative analyses of the instruction experiment and the
pre- and post-interviews.

9.4.3 Conclusions from the teacher evaluations

The teachers’ responses to the interview questions reflect their positive attitudes towards
the instruction experiment. Most importantly, even though spatial structuring per se is not
new to a Kindergarten classroom, the outcomes of the instruction experiment highlight two
“revolutionary” insights that the teachers said they gained and that are analogous to the
themes that were identified in the post-interview analyses. First, the work that is typically
done with spatial structures in class (e.g., dice and finger patterns), usually does not extend
beyond learning to recognize the spatial structures. What this research adds, is motivation
for teachers to help the children learn how to actually make use of the spatial structures to
gain insight into numerical relations. The teachers had not realized that such insight can
provide children with tools to understand the meaning behind number, numerical symbols
and more formal mathematical procedures.

The second contribution of this research to the teachers’ practice is that it offers them ways
(i.e., the instructional sequence with its overarching context) to help the children translate
one type of spatial structure to another. The teachers were used to using domain-specific
materials that teach the children to recognize finger patterns and dice configurations as
spatial structures. Yet, these materials rarely connect spatial structures to each other. The
context of the Tool Box and the repeated references to the contents of the Tool Box
throughout the instructional sequence, however, fostered more flexible thought about spa-
tial structuring. It introduced the children to various types of spatial structures for a parti-
cular quantity, as well as to the various ways in which one type of spatial structure can re-
present a particular quantity.

An important requirement for a context of an instruction activity to be effective, however,
is that the teachers are aware of the role of their language use and a shared vocabulary in
children’s mathematics learning (Van Eerde, Hayer, & Prenger, 2008). As such, the teach-
ers learned to shift from questions about “how to count”, to questions about “how to de-
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termine” a quantity because they became more aware of how such a difference in wording
translated to a difference in children’s interpretation of the question and consequently to
the kind of strategy that the children used (i.e., unitary counting or spatial structuring).
Moreover, the teacher’s introduction of phrases such as “easy”, “quick”, or “convenient
ways to find out how many there are”, stimulated a shared vocabulary that created a shared
understanding amongst the teacher and the children regarding the socio-mathematical

norm of spatial structuring.

9.5 Summary

In this chapter we discussed the outcomes of the post-interview compared to the pre-inter-
view and LVs scores, and the teachers’ evaluations of the instruction experiment. The con-
clusion that can be drawn from analyzing the post-interviews, is that the children in the in-
tervention group showed signs of having benefited from participating in the instruction ex-
periment. In the interviews with the teachers, the teachers explained how the instruction
experiment changed their perception of kindergartners’ mathematics development and the
role of spatial structuring in it. These two outcomes contribute to answering the second re-
search question about how young children can be supported in learning to use spatial struc-
tures for abbreviating numerical procedures; it provides supporting evidence for the in-
structional effects of the instructional setting that was designed to stimulate children’s spa-
tial structuring ability, and it provides insight into the role of the learning ecology in
children’s learning. In the last chapter of this thesis, we reflect on the answers to both re-
search questions and discuss implications for the outcomes with suggestions for future re-
search.
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10 Conclusions, Discussion, and Future Research

The purpose of the research that is documented in this thesis is to gain insight into the re-
lationship between young children’s spatial structuring ability and their emerging number
sense, and to develop an empirically grounded local instruction theory about how to sup-
port children’s spatial structuring ability. This purpose is divided into two research ques-
tions which will be answered in this chapter. First, we discuss young children’s spatial
structuring abilities and how these relate to their numerical performance (section 10.1).
This insight was used to develop the local instruction theory about how to support children
in learning to make use of spatial structuring strategies for abbreviating numerical proce-
dures (section 10.2). In reflecting on the outcomes of the two research questions, the fol-
lowing topics are discussed in section 10.3: relating early spatial sense to emerging number
sense, components of an effective learning ecology, limitations to the research, and impli-
cations of the research. This discussion leads to suggestions for future research in section
10.4.

10.1 Research question 1: Early spatial structuring ability

The first research question is stated as follows:

1. What strategies for solving spatial and numerical problems characterize young children’s spatial
structuring abilities?

To answer this question, we constructed a strategy inventory that can function as an inter-
pretative framework for the strategies that characterize young children’s spatial structuring
abilities for solving the interview tasks (Chapters 4 and 9). The original design of the stra-
tegy inventory was based on literature reviews, input from experts, exploratory studies,
and the first versions of the conceptual schema (section 4.1). As the development of the
interviews progressed, these strategies were revised to contribute to a reliable, more tho-
rough and encompassing instrument for gauging kindergartners’ insight into numerical re-
lations in terms of their spatial structuring ability. In light of the research focus on chil-
dren’s spatial structuring and number sense, the strategies pertain to children’s ability to
recognize, use and extend spatial structures within the domain of spatial structuring, and
to children’s ability to determine, compare, and operate with quantities within the domain
of number sense. In addition, an activity for gauging spatial orientation was included and
a method was defined for measuring children’s mastery of the tasks (i.e., accuracy).
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Four phases in the development of spatial structuring ability. The strategies are listed in a
cumulative order from a strong tendency to count (asynchronously to synchronously and
resultatively), to a tendency to organize the objects, to a tendency to spatially structure the
objects, and finally to the goal-directed use and application of spatial structure to abbrevi-
ate numerical procedures such as determining, comparing and operating with small (up to
10) quantities. Through condensing the scoring procedure of each question for each ability
in both domains (Chapter 5), general trends in strategy development were identified in
terms of four levels of sophistication in children’s spatial structuring ability. Consequently,
a child’s repertoire of strategies for the interviews could be classified as one of the follow-
ing four phases:

Phase 1 (Unitary phase): The child recognizes almost no spatial structures and consequently neither
uses nor applies structures to abbreviate numerical procedures.
e.g., counts all the dots and finger patterns on the flashcards; counts flowers on the table one by
one and leaves them spread apart as an “easy way” to read off how many there are

Phase 2 (Recognition phase): The child recognizes several fundamental spatial structures, but rarely
uses or applies spatial structures to abbreviate numerical procedures. Instead, the child may rationa-
lize the use of spatial structures in hindsight.
e.g., recognizes most flashcards but counts flowers on the table unitarily even if they are already
structured; recognizes structure only when explicitly guided to attend to structure

Phase 3 (Usage phase): The child recognizes and uses most available spatial structures, but rarely
shows initiative in constructing and applying its own spatial structures as a means to abbreviate nu-
merical procedures.
e.g., reads off a structure and uses the structure to abbreviate a numerical procedure if it is avail-
able (“there are two rows of three so that's six”), but does not structure unstructured sets of ob-
jects (leaves them bunched in a group or spread apart)

Phase 4 (Application phase): The child uses spatial structures in a goal-directed way and spontane-
ously constructs and applies spatial structures as a means to abbreviate numerical procedures
e.g., “l know it's 8 because here is the 6 like on dice, and 2 more makes 8”; rearranges unstruc-
tured sets of objects into structures such as smaller, subitizable groups or in dice configurations
because “now it's easier to see and you don’'t have to count”

The general cumulativity of the phases implies that children who use one particular strategy,
are also capable of using the previous strategies in the inventory. These phases have over-
lapping starting and end points; children are assumed to gradually shift from one phase to
the next in the way that their main tendency to use a particular repertoire of strategies shifts
towards a more sophisticated repertoire of strategies (Siegler, 2002, 2005; section 5.3).

The four phases in a broader perspective. The four phases that were identified in our
study on the basis of the interview tasks, may globally be associated with Mulligan et al.’s
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by Gravemeijer (1994, 1999) in the emergent modeling perspective (Fig. 10.1).

Stages of spatial
structuring ability
(Mulligan et al., 2004)

Phases identified in the
present research

Four learning levels in
emergent modeling
(Gravemeijer, 1994)

1 Pre-structural stage Unitary

2 Emergent stage Recognition Situational

3 Partial structural stage Usage Referential

4 Structural development Application General
Formal

Fig. 10.1 A global comparison between the four phases of spatial structuring ability in this research
(centre column) with the four stages of spatial structuring ability (Mulligan et al., 2004; left column) and
with the four levels of learning in the emergent modeling perspective (Gravemeijer, 1994; right column)

Mulligan et al. used a broad set of tasks to explore children’s use of mathematical and spa-
tial structure in number, measurement, space and data. The pre-structural stage, where
“representations lack any evidence of mathematical or spatial structure” (Mulligan et al.,
2005, p. 1), coincides with the Unitary phase where children are not familiar with most
spatial structures and therefore do not tend to make use of them. The emergent stage, where
“representations showed some elements of structure such as use of units”, and the partial
structural stage, where “some aspects of mathematical notation or symbolism and/or spa-
tial features such as grids or arrays are found”, correspond to the Recognition and Usage
phases, respectively, in terms of the development of the ability to make use of and apply
spatial structures in mathematical contexts. Finally, the stage of structural development,
where “representations clearly integrate mathematical and spatial structural features”
matches the Application phase because both levels of spatial structuring ability imply a de-
gree of spontaneous and goal-directed use of spatial structure to abbreviate a numerical
task.

Similarly, our four phases can be associated with the levels of learning in emergent mo-
deling (Gravemeijer, 1994; section 2.5). The Unitary phase precedes Gravemeijer’s levels
because children recognize almost none of the familiar structures and are predominantly
focused on developing unitary counting strategies. Children who are classified in the Re-
cognition phase, however, may be related to the Situational level of learning because the
spatial structures that young children in this phase recognize are usually strongly related
to specific contexts. For example, a child may know how to show four as a quantity using
a finger pattern because the child is familiar with finger patterning as a way of communi-
cating age. The child may also recognize six from its representation on dice used in games.
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Although the children in the Recognition phase recognize particular structures, they re-
quire experience and practice to recognize the structures in a different task setting (e.g., six
on dice translated to six as two rows of three flowers). Children who begin to make use of
available spatial structures that are less situation-dependent, may be classified in the Usage
phase. These children are learning to translate the spatial structures that they recognize
from situational settings, to a specific mathematical task. The Trick/Tool Box created this
learning setting in the instruction experiment. The instructional activities provided the
children with opportunities to practice translating the spatial structures that they recognize
from the objects in the box (e.g., “the six like on dice”) to other contexts and settings for
the mathematical task of abbreviating numerical procedures such as determining and com-
paring quantities. Children in this phase also compare spatial structures and evaluate their
use for abbreviating procedures in various contexts and settings. For example, children
may read off a quantity according to how the objects are already structured, and they come
to recognize that two rows of three represent the same spatial structure as three rows of two
and that the two rows of three dots on dice reflects the same quantity as three fingers on
each hand or as five and one finger. This relates to the Referential level in emergent mod-
eling because the model (e.g., dice and egg cartons) derives its mathematical meaning from
how it is referred to (e.g., “easy ways to see how many there are”) in the activity.

In the Application phase, children use the model in a goal-directed way. They understand
that spatial structuring strategies are usually more convenient than unitary counting proce-
dures, and they can generalize structures which helps to spontaneously make use of struc-
ture for abbreviating a numerical task. Moreover, their experience with spatial structuring
contributes to their insight into numerical relations (e.g., 6 is 3and 3 butalso 5 and 1). Ana-
logously, the model that is developing at the General level in emergent modeling, relates
to spatial structures in how it derives its meaning from understanding relationships be-
tween types of structures, their association with numerical relations, and their use in sol-
ving mathematical tasks.

Some of the older children in our instruction experiment were classified in the Application
phase, while, at the same time, they sometimes already exemplified insight into higher-or-
der mathematical abilities (e.g., “it’s nine because | know 3 rows of 3 makes 9 and 3 times
3is 97). This illustrates how the insight that children gain by the time they reach the Ap-
plication phase prepares them for understanding and performing higher-order operations
such as addition, subtraction and multiplication without depending on physically available
spatially structured objects. This is analogous to the Formal level of learning in emergent
modeling, where children learn to reason with conventional symbols and they no longer
depend on the original situations (e.g., dice and egg cartons) that underpin these spatial
structures.
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Taken together, the strategy inventory is an important outcome for answering the first re-
search question in two ways. On the one hand, it functioned as an instrument for determin-
ing children’s insight into numerical relations in terms of their level of spatial structuring
ability in the interviews. As such, the classification of the children’s strategy repertoires
helped to gain insight into the influence of the instruction experiment on children’s learn-
ing. On the other hand, the strategy inventory itself is an important interpretative frame-
work that reflects a developmental trajectory in the types of strategies that young children
applied to solve the interview tasks.

Validity and reliability of the strategy inventory. The association between the phases that
were identified in our research and those of Mulligan et al. (2004) and Gravemeijer (1994),
contributes to the validity of the strategy inventory and the interview tasks as an instrument
for gauging children’s progress in developing spatial structuring ability. The reliability of
the strategy inventory and the interview tasks is supported by its high (0.87) interrater re-
liability. Further, the extensive documentation of the development of the interview tasks
and the strategy inventory, of the analysis of the children’s responses, of the condensation
of the scores and of the classification of children’s strategy repertoires into four phases
contributes to the trackability of the research (Gravemeijer, 1994; Gravemeijer & Cobb,
2006; Maso & Smaling, 1998). This should make the research “virtually replicable” and
therefore more reliable (Maso & Smaling, 1998).

The insight into young children’s early spatial structuring ability that was gained from de-
veloping, performing and analyzing the interviews and the strategy inventory, formed the
foundations for a hypothetical learning trajectory and an instruction experiment to inves-
tigate how children may be supported in their development of spatial structuring ability.
This intervention part of the research is covered by the second research question which we
answer in the next section.

10.2 Research question 2: Developing a local instruction theory

The second research question is stated as follows:

2a. How can young children be supported in learning to recognize and make use of spatial structures
for abbreviating numerical procedures?

2b. What characterizes a learning ecology that can facilitate the development of children’s spatial struc-
turing ability?
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Through retrospective analyses of the HLT in combination with the patterns that were ob-
served in children’s behavior during the analyses of the instruction experiment (Round 1
and Round 2) and analyses of the children’s pre- and post-interviews, conclusions were
drawn about how the instruction experiment helped children become aware of spatial
structures and of the convenience of using and applying spatial structure to abbreviate nu-
merical procedures in various contexts and settings. In the following paragraphs, we
present outcomes of the instruction experiment and explain each of the components of the
local instruction theory. The theory is summarized at the end of this section.

10.2.1 Children’s developing spatial structuring ability

Although the non-intervention group (NG) is not intended to be a control group, we made
use of their post-interview outcomes to gain more insight into the influence of the instruc-
tion experiment on the development of the intervention group’s (1G) spatial structuring
ability. Despite the small groups and the uncontrolled setting, from the comparisons be-
tween children’s performance on the pre- and post-interviews, it appears that the 1G chil-
dren benefited from having performed the instruction activities: 13 out of 21 1G children
shifted from lower to higher phases between the pre- and post-interviews (section 9.1).
Relatively more improvements occurred in the 1G compared to the NG where 5 out of 17
children improved, 11 children stayed in the same phase (5 of whom had already been clas-
sified in the highest phase in the pre-interviews), and 1 child declined a phase. Further,
while all the Kindergarten-1 NG children were classified in one of the first three phases in
both the pre- and the post-interviews, the classifications of the 1G children shifted to the
second, third, and even fourth phase in the post-interview. Finally, the qualitative analyses
of the interviews show that the 1G children were more aware of spatial structuring as a
means to abbreviate numerical procedures than the NG children were, and that they made
more spontaneous references to spatial structuring than the NG children did (section 9.2).

Not all children could be expected to reach the Application phase (phase 4) by the end of
the instruction experiment, but they benefited from participating in the instructional se-
quence in their own way (e.g., practicing counting skills, learning to recognize structures,
learning to use structures or learning to apply structures) for a greater awareness of spatial
structuring. Moreover, as the teachers remarked (section 9.4), it is unlikely that children
will improve in spatial structuring from participating only in the five instruction activities.
Rather, the sequence will be most effective if used as an instructional sequence for esta-
blishing the socio-mathematical norm of spatial structuring, and for introducing related
classroom mathematical practices. The teacher then has the important task of consistently
referring to these practices, making use of the shared vocabulary to keep children aware of
spatial structuring in other classroom activities.
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10.2.2 The local instruction theory

The local instruction theory that resulted from the instruction experiment builds on chil-
dren’s reasonable counting skills, organizational abilities, and familiarity with basic spatial
structures. The learning trajectory begins with introducing the children to the context of
the instructional sequence, while the children explore fundamental spatial structures such
as dice configurations, finger patterns and double-structures. Next, children are encour-
aged to use spatial structures that are readily available in various settings. This should pre-
pare them for learning to spontaneously construct their own spatial structures in flexible
ways for abbreviating numerical procedures. As such, the learning trajectory can help chil-
dren to apply their insight into spatial structures to understanding higher-order numerical
procedures such as addition, subtraction and multiplication. In what follows, we explain
each component of the emerging theory.

The preliminary situation. The first learning moment assumed that children begin by orga-
nizing the objects that are to be counted in order to maximize their counting accuracy
(paragraph 8.1.1). The observations from the instruction experiment added that some chil-
dren were still learning to count synchronously and resultatively and that children at this
level of learning cannot be expected to consider other ways of determining a quantity, such
as by spatial structuring (paragraph 8.2.1). Children must at least be proficient at counting
to be able to accurately determine a quantity in the first place (apart from subitizing quan-
tities up to 4). This explains the connection between “counting quantities” and “spatial
structuring” in the conceptual schema (section 4.4).

Further, from the interviews and instruction experiment, it became apparent that children
should be familiar with spatial structures such as finger patterns so that they may compare
these to less familiar structures such as double-structures. This should contribute to a flex-
ible ability to recognize and make use of spatial structures in various contexts and settings.
These three prerequisites constitute the starting points for the learning trajectory, so as to
maximize the influence of the instructional sequence on helping children to compare stra-
tegies, recognize structures, and understand the convenience of spatial structuring as an al-
ternative to unitary counting strategies.

Introducing the context and exploring fundamental spatial structures. Although context
is not specifically related to spatial structuring, it was accentuated in this learning trajec-
tory because of its prominent role in developing the socio-mathematical norm of spatial
structuring. This norm challenged the initial classroom mathematical practice of unitary
counting. In the instruction experiment, the introduction to the overarching context of the
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instructional sequence was the first step towards developing children’s awareness of spa-
tial structuring as a convenient way to determine a quantity. In this first step, the children
became familiar with the overarching context of Ant and its Tool Box. As the children ex-
plored the objects in the Tool Box, the teacher encouraged them to compare the objects and
to find out how the objects could function as tools for conveniently determining a quantity.

The development of the socio-mathematical norm for spatial structuring was further stim-
ulated by the teacher’s introduction to phrases that were to become part of a shared voca-
bulary for helping the class communicate about spatial structure. Already, the teacher used
phrases such as “tools” and “easy ways” for “seeing how many of something there are”.
These were to become part of a shared vocabulary for discussing spatial structure through-
out the instructional sequence. Further, the mystery about why Ant brought the box into
class set the stage for the rest of the instructional sequence. It embedded each instruction
activity into one appealing context and its mathematical content offered productive and si-
tuation specific strategies (paragraph 8.2.6).

Using readily available spatial structures in various settings. The mystery of Ant’s Tool
Box motivated children and kept spatial structuring as the topic of discussion. Hence, in
the first two activities after the introduction of the context, the children worked at becom-
ing more familiar with large structured dot configurations (i.e., the “Ant Steps” activity)
and double-structures (i.e., the “Filling Egg Cartons” activity) to see how they could use
readily available spatial structures as an alternative to unitary counting procedures (para-
graph 8.1.2). The teacher encouraged the children to repeatedly associate the activity with
the contents of the box so that, by translating relatively unfamiliar structures to more fa-
miliar structures and settings and vice versa, the children could improve their ability to re-
cognize and subsequently make use of different kinds of spatial structures in various set-
tings. This involved making use of the “tools” in the Tool Box to read off a quantity.

As such, through comparing, for example, symmetrical double-structures as represented
by egg cartons to dot configurations as represented by dice configurations, the children
were expected to recognize the common underlying structure of two rows of three. Such
insight could help children to flexibly manipulate and use a greater variety of structures.
All the while, the teacher consistently made use of the shared structuring phrases (e.g.,
“easy way”) to create and maintain an awareness of spatial structure. As the children com-
pared and manipulated the structures, they began to make use of these phrases themselves
to discuss their approach to the activity. This marked the beginning of a vocabulary for spa-
tial structuring that is shared between the children and the teacher.
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Applying spatial structures to various settings. The next step in the learning trajectory
builds on children’s familiarity with certain spatial structures in structured arrangements
(e.g., objects in the Tool Box that represent dice configurations and double-structures), to
encourage them to recognize structure in more composite settings. In the “Marching Ants”
activity, children decomposed a pattern into its constituent elements. These elements form
the structure of the pattern. The teacher was expected to use the shared vocabulary to guide
the children towards decomposing the pattern. Since the repetition (i.e., its regularity) of a
particular structure composes a pattern, the activity required the children to think in terms
of part-whole relationships. This draws upon children’s experiences with the previous ac-
tivities in which they explored how to recognize (i.e., decompose) structure in (larger) al-
ready structured configurations (e.g., 6 is 2 rows of 3 or 3 rows of 2 on dice or in the egg
cartons).

Children must first realize that they should start by studying the order of the elements from
the beginning of the line because that sets the example for the rest of the line (paragraph
8.1.4). Next, they must find out how the beginning of the line continues throughout the rest
of the line. One basic way of discovering this continuation is by relying on a rhythm that
is elicited when the elements of the pattern are repeated out loud. This rhythm can bridge
the already present elements of the pattern with the elements that are to be added. The next
step, then, is for children to gain insight into what unit of the pattern is repeating (i.e., the
structure). The challenge in this activity was to guide the children towards constructing
patterns that alternate more than two colors so that they would come to understand increas-
ingly complex patterns that vary in the number of colors as well as in the number of ele-
ments per color (e.g., “every time red, white, white, red...”).

The “Building Ant Hills” activity took patterning a step further by translating the concept
of recognizing a repeated structure, to a 3-D block construction. Using a shared vocabulary
to encourage spatial structuring strategies, the teacher guided the children towards apply-
ing their insight into part-whole relationships to a 3-D setting in which they were to ab-
stract structure from a block construction. It was expected that the children could note the
regularity in the layers of blocks in the construction, and therefore could determine what
the next layer should look like. By comparing the block constructions to the structures in
the Tool Box, the children could also compare unfamiliar to familiar structures. Again, this
approach to a block construction put spatial structuring forward as a strategy for determin-
ing the number of blocks in a layer and in the whole construction in an abbreviated way
(section 8.3). This contributed to establishing awareness of spatial structuring.

Insight into spatial structures to prepare for higher-order mathematics. We  conjecture
that the experiences that children had in familiarizing themselves with various spatial
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structures, in learning to use these structures, and in learning to apply these structures to
larger structured arrangements, should establish and secure their awareness of spatial
structure and prepare them for learning to apply structures to larger unstructured arrange-
ments. The activity that was designed to encourage children to apply spatial structures to
unstructured arrangements is the “Picking Flowers” activity (Speciaal Rekenen, 2003).
The game-like setting of this activity stimulated the children to look for effective ways of
arranging the flowers so that they could win more flowers for their garden. This setting put
the children into a position in which they encountered the advantages of using spatial struc-
tures. The children who succeeded in applying spatial structures to unstructured arrange-
ments with the intention of simplifying and abbreviating numerical procedures, were con-
sidered to have captured the essence of spatial structuring. This was apparent from their
insight into numerical relations (e.g., referring to six as two sets of three or three sets of
two or five and one; paragraph 8.1.3). Such insight is expected to prepare them for higher-
order arithmetic procedures (e.g., Griffin, 2004b), such as learning and understanding the
principles of multiplication (i.e., repeated addition, Anghileri, 1989; Buijs, 2008) and, ul-
timately, algebra (Battista et al., 1998; Carraher et al., 2006).

By repeatedly associating the Tool Box with the activity, the teacher emphasized the socio-
mathematical norm of spatial structuring. She helped the children shift their mathematical
practice of unitary counting to spatial structuring by reminding the children to try to ar-
range the flowers in “easy ways” using spatial structures such as the “tools” that had been
the topic of discussion throughout the previous four instruction activities. As such, starting
from the children’s own structures, the game helped the children experience that, as soon
as the number of chips increases, arranging chips in the shape of a house, for example, is
less effective than applying dice configurations or double-structures. The children started
by arranging the flowers in structures that are meaningful to them (e.qg., flowers or houses).
Subsequently, they revised these structures throughout the activity to come to structures
that seem most effective to them (e.g., arrangements of five or two rows of three or in piles,
paragraph 8.2.3). This activity shows how in this learning trajectory, spatial structuring
was not imposed on children. Rather, guided by the shared vocabulary and socio-mathe-
matical norm, the children “reinvented” the convenience of using spatial structure them-
selves, and they were encouraged to apply spatial structure to the instruction activities in a
way that was meaningful to them (Freudenthal, 1973, 1991; Gravemeijer, 1998).

10.2.3 Summary of the local instruction theory

In Fig. 10.2 we summarize how the children are expected to respond to the mathematical
tool in an activity, how the activity builds on the previous activities, and how the activity
is expected to influence children’s development of spatial structuring ability. This high-
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lights the relationship between the learning goals, the instruction activity, and the concep-
tual development of the children. It also underlies the design of the final sequence of in-
struction activities after they were tried out in Round 1 and Round 2 of the instruction ex-
periment (Appendix 5).

The table is adapted from Gravemeijer et al.’s (2003) outline for describing a learning tra-
jectory for measurement and flexible arithmetic. It includes the following components
(Gravemeijer, 2004):

- Mathematical tool: the practical instrument for solving a mathematical problem (see
section 6.3), or, in our case, the instrument that is the subject of the instruction activity.

- Imagery: a summary of what prior experiences and knowledge children are assumed to
have for validating the use of a particular mathematical tool in the problem. Children’s
existing knowledge is expected to be a foundation for what the mathematical tool
means to them in the instruction activity.

- Activity: offers children the opportunity to learn to make use of the mathematical tool,
and to learn to understand and use the shared vocabulary for establishing the socio-
mathematical norm of spatial structuring.

- Potential mathematical discourse topics: the topic of a discussion that is initiated as
children come across several solution strategies (e.g., several ways of determining a
quantity) in performing an activity. The discussion can contribute to the development
of the socio-mathematical norm of spatial structuring. The teacher must anticipate
these topics to effectively support the discussions.

The activity and discourse topic columns in the table (Fig. 10.2) share a component about
the important role of a shared vocabulary and content-related motives for establishing the
socio-mathematical norm of spatial structuring (cf. Doorman & Gravemeijer, 2009).

10.3 Discussion

In the first two sections of this chapter we answered the two research questions. This led to
a description of the local instruction theory about how young children can be supported in
developing an awareness of spatial structure for improving their spatial structuring ability. In
this section we reflect on the significance of the research outcomes. The topics that are dis-
cussed concern how the components of spatial sense may support numerical development,
what constitutes an effective learning ecology, limitations to the research, and implications
for educational practice. We conclude the chapter with suggestions for future research.
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Mathematical tool Imagery Activity Potential mathematical
discourse topics
An appealing The objects in this | Antand the Tool | Introducing the context and
context with a box
that is filled with
ordinary objects
that represent
familiar spatial
structures

classroom setting
relate to real-life
situations (e.g.,
egg cartons in the
kitchen, dice for
use in games)

Box:
Introducing the
context and the
mystery of the
Tool Box

exploring fundamental spatial
structures: why and how Ant
wants to share the contents of
the Tool Box with the children.
What are the contents and how
do they relate to Ant?

Introduction to phrases that express the idea of
“tools” helping to “easily see” how many there are.
Introduction to thinking about alternatives to unitary
counting procedures.

The Tool Box
including dice
representing dot
configurations,
egg cartons rep-
resenting double-
structures, and
fundamental fin-
ger patterns

The “tools” in the
box refer to famil-
iar spatial struc-
tures and support
connections such
as the structure for
6 on dice is like
the 6 Ant feet,
which is also simi-
lar to the two rows
of 3 eggs in the 6-
egg cartons. This
can be compared
to ways of show-
ing 6 using finger
patterns.

Ant Steps:
Recognize dice
dot configura-
tionsin relatively
larger struc-
tured configura-
tions of dots

Exploring and comparing dice
egg cartons, and finger patterns
as “tools™:

Recognizing the underlying
structures in can help to simplify
and abbreviate the process of
determining the number of dots
on the card or eggs in an egg
carton. These structures can be
compared to each other and to
familiar finger patterns.

Filling Egg
Cartons:
Compare the
number of eggs
in an egg carton
to other struc-
tures

Greater awareness of dice dot configurations, dou-
ble-structures and finger patterns and the vocabulary
that is to become taken-as-shared, as the structures
are compared to other spatial structures in terms of
ways to read off a quantity using the symmetry in the
structure (e.g., 3 and 3 makes 6).
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Mathematical tool Imagery Activity Potential mathematical
discourse topics
Abstracted spa- | From context- Ant Steps: Making use of the “tools”: Recog-
tial structures dependent to con- Determining the nizing that relatively large struc-
text-independent number of dots tured dot configurations are
structuring: 2 rows | in a large struc- composed of dot configurations
* @ of any 3 tured configura- such as on dice, and that the egg
L R ;
& elements can be tion of dots cartons resemble the double-
® e BB recognized as the structures (such as on dice),

& ® 6 on dice or as Filling illustrates how spatial structures
eggs in an egg Egg Cartons: can abbreviate counting proce-
carton or as two Determining the | dures in various contexts. The
hands showing 3 number of miss- | key is to abstract the underlying
fingers ing eggs in an structure by recognizing it from

egg carton more familiar structures (such as
dice configurations or finger pat-
terns).

Greater awareness of general characteristics of spa-

tial structures and their role in abbreviating numerical

procedures. This becomes a topic of discussion using

phrases that the teacher introduced to create a

taken-as-shared vocabulary.

Patterning  with | Translating the Marching in a Abstracting structure from, and

children and with
colors

one

0000000

idea of (de)com-
posing structures
to patterning:
Abstracting spa-
tial structure helps
to decompose a
pattern into its ele-
ments and identify
the structure that
makes up the pat-
tern

Procession:
Abstracting the
structure of a
pattern in order
to extend the
pattern

applying structure to, relatively
large and more complex confi-
gurations: Recognizing the part-
whole relationship between
structure and pattern

Greater awareness of how a repeated structure com-
poses a pattern. More own use of the shared vocabu-
lary to discuss the structure of a pattern and “easy
ways” to extend it.

Structured 3-D
block  construc-
tions

Decomposing a 3-
D structure into its
constituent parts
that signify previ-
ous spatial struc-
tures helps to gain
insight into the
construction and
into numerical
relations (e.g., lay-
ersof4,4,and 1
blocks makes 9
blocks)

Building Ant
Hills:
Abstracting the
pattern in a
block construc-
tion in order to
extend the con-
struction

Patterning as a “tool” for
abstracting the structure of a 3-D
construction to conveniently
determine what the next layer of
blocks should look like

Uses the shared vocabulary to relate the block con-
struction to patterning and to spatial structures from
the previous activities
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uniformly colored
chips (i.e., flowers
ina

arrange real-life
objects that are to
be counted,

Applying struc-
ture to unstruc-
tured objects in

Mathematical tool Imagery Activity Potential mathematical
discourse topics

A randomly | Applying spatial Picking Making use of the contents of the

arranged set of | structure helps to Flowers: Tool Box as “tools” for spatial

structuring: the larger the set of
objects, the more difficult it is to
keep track of the quantity, and

garden) organized, or com- | order to deter- the more convenient itis to find a
pared to other mine and com- way to structure the objects and
@ objects pare quantities avoid unitary counting proce-
@ @3 @ dures
@ @ Goal-directed and spontaneous use of spatial struc-
@ @3 turing strategies and the shared vocabulary to con-
@ trast the abbreviated numerical procedures to unitary

counting procedures

Fig. 10.2 OQutline of the local instruction theory

10.3.1 Relating early spatial sense to emerging number sense

The conceptual schema that underlies the study (section 4.4), evokes questions about
whether young children’s early spatial sense (in terms of the three components of visual-
ization, orientation, and shape) could be supported with the specific purpose of fostering
the development of their emerging numerical abilities. Considering children’s general im-
provement in spatial structuring for determining, comparing and operating with quantities,
the results of the instruction experiment underline the important role of spatial structuring
ability in helping children understand how to determine, compare and operate with quan-
tities (see the central position of spatial structuring in Fig. 10.3). This suggests that spatial
structuring may play a binding role in the development of spatial sense and number sense
for higher-order arithmetic abilities. The analyses do not, however, provide enough infor-
mation about how each of the three components of spatial sense specifically support nu-
merical development. This is because children performed similarly on both of the inter-
view domains (spatial structuring and number sense).

As such, we may only speculate about how spatial visualization, spatial orientation and
shape played a role in children’s spatial structuring ability and their numerical develop-
ment. Regarding the component of spatial visualization, it appears that children made use
of several types of mental images throughout the activities (Owens & Clements, 1998;
Presmeg, 1986). Concrete imagery could have been used to determine the number of cor-
ners in one of the shapes shown on the flashcards. Dynamic imagery relates to how chil-
dren rearranged the flowers to come to effective spatial structures. Pattern imagery helped
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the children understand the structure of the patterns that they were asked to extend. Some
children may have used action imagery to determine a number of flowers by mentally re-
arranging them. Finally, procedural imagery could refer to how, once children were able to
apply structure to a set of objects, they were often able to repeat the procedure in a later
task. These types of mental images closely relate to children’s early ability to perceive ge-
stalts (Quinn et al., 1993, 2002), as explained by the component of shape. Hence, we ex-
pect that children made use of the gestalt laws to recognize (composites of) shapes and fig-
ures. This suggests an intricate relationship between spatial visualization and shape re-
garding what components of spatial sense underlie children’s ability to spatially structure
(see the relative proximity of spatial visualization and shape in Fig. 10.3).

Spatial Domain Numerical Domain
Spatial Shape Spatial Counting Compa_lr'ing
Visualization Orientation Quantities Quantities
m m
2 3
=) <
5 . 2.
@ Spatial <«
2 Structuring Z
2 3
2 g
%)
$ g
7] v a
@ @
Numerical Relations
Higher-order arithmetic abilities
v v

Fig. 10.3 The revised conceptual schema: a relatively reduced influence of spatial orientation on the
development of spatial structuring ability, with spatial structuring as a binding factor between the devel-
opment of spatial and number sense for the development of higher-order arithmetic abilities

It is still unclear how the component of spatial orientation may influence spatial structur-
ing. Throughout the development of the research, the spatial structuring factor in spatial
orientation seemed too broad to operationalize properly; the spatial orientation interview
task involved localization and navigation skills and the instruction activities incorporated
spatial orientation in terms of spatially structuring a spatial object such as the block con-
struction. This was not sufficiently relevant to the research focus on (de)composing spatial
objects and quantities. For the interview task, the children were first asked to show on a
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map of their Kindergarten how they would walk from one particular room (e.g., their class-
room) to another location (e.g., the playground). Then they were asked to point in the air
in the direction of a particular room (e.g., the gym, the kitchen). Half of the I1G and the NG
children either did or did not succeed at pointing in the correct directions, irrespective of
their accuracy or level of strategy use for any of the interview tasks. As such, children’s
spatial orientation (i.e., localization and navigation) skills did not have strong effects on
their performance on the interview tasks. In contrast, spatial visualization and shape were
operationalized more strongly in the interview tasks and instruction activities. Hence, we
have not yet found convincing support for the conjecture that the spatial orientation com-
ponent influences spatial structuring ability as strongly as spatial visualization and shape
could do (Fig. 10.3).

10.3.2 Components of an effective learning ecology

Part of the process of designing an instruction experiment (research question 2a), involves
reflecting on what characterizes an effective learning ecology (research question 2b). A
learning ecology includes elements such as the instruction activities, the role of the teacher
and the researcher, and the classroom setting (Cobb et al., 2003). In section 10.2 we high-
lighted the important role of the instructional setting in designing, performing and evalu-
ating the instruction experiment. In this paragraph we elaborate on section 7.4 and the I1G
teacher’s evaluations of the instruction experiment (section 9.4) to highlight several com-
ponents that characterize the pro-active role that the learning ecology can play in children’s
learning (Fig. 10.4).

Language use

Shared vocabulary Classroom materials
Teacher’s conceptions Spatial “Reali_stic" and (math_ematically)
about spatial structuring > Structuring meaningful overarching context

/'

Own constructions
and productions

Interactive learning

Guided reinvention
in a Kindergarten setting

Fig. 10.4 Components of a learning ecology that influence the extent to which children may be sup-
ported in the development of their spatial structuring ability
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An overarching realistic context. In line with the RME design principles, a realistic context
was created to overarch the instruction activities and (implicitly) connect the conceptual
knowledge that was expected to emerge within and between each activity. Ant and its Tool
Box made the activities more experientially real for the children, motivating them to par-
ticipate and improve their approach to the activities (see section 9.2). It not only provided
an inspiring context in the form of an Ant and its Tool Box, but the Tool Box itself also
served as a mathematical context that offered productive and situation specific strategies
(De Lange, 1987). This shows how even such young children can be offered an engaging
context that, at the same time, has a mathematical content.

The Tool Box context embedded the transition from a model-of to a model-for spatial
structuring (Gravemeijer, 1994, 1999). Hence, from exploring the contents of the Tool Box
(i.e., models of spatial structures), the children were encouraged to investigate how the
tools could be used as an alternative to unitary counting procedures. This is how the struc-
tures became models for determining, comparing and operating with small quantities. In
the end, the aim of the instruction activities was to support the children in reaching the lev-
el at which it would no longer be necessary for the models to be physically present (i.e.,
situation independent strategies).

Building on children’s present understanding. In the “Picking Flowers” activity, the chil-
dren first created flowers and houses, rather than, as would be expected, placing the chips
in, for example, rows to abbreviate counting procedures. Still, the instructional sequence
had to increase awareness of spatial structuring rather than unitary counting strategies ac-
cording to RME principles (e.g., didactical phenomenology, section 2.5). In light of vertical
mathematization, the instruction activities were designed to form an instructional sequence
that guides children from a “realistic” problem to a problem that may be interpreted more
in “mathematical” terms. At the same time, the children were expected to create a stronger
foundation for understanding spatial structuring by constructing and working with their
own spatial structures. Therefore, the instructional sequence was designed such that, after
exploring examples of familiar spatial structures for inspiration, the children were encou-
raged to develop their own spatial structuring strategies in a variety of contexts and set-
tings. This required the teacher to welcome children’s own constructions and produc-
tions.

Interactive learning with a shared vocabulary. The importance of interactive education
(Treffers, 1987) for children’s learning is underlined by the role of a shared vocabulary in
helping children shift from one repertoire of strategies to another and consequently from
one phase of spatial structuring ability to the next (Chapter 5). An overarching context con-
tributes to creating a shared vocabulary, because the teacher presents the activities in a way
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that evokes discussions about essential mathematical topics which could spur the chil-
dren’s understanding about spatial structuring (i.e., potential discourse topics in the local
instruction theory). This can help to establish shared conceptions and synchronize differ-
ing opinions, strategies, and mathematical ideas about spatial structuring (paragraph
2.5.2). As such, the mathematical practice of unitary counting can be substituted with spa-
tial structuring strategies to encourage the socio-mathematical norm of spatial structuring.

The socio-mathematical norm implies that children’s ways of thinking and reasoning about
spatial structuring coincides with the teacher’s expectations. This highlights the impor-
tance of teachers’ conceptions of the role of spatial structuring in the development of num-
ber sense. Any confusion in the shared vocabulary offers the teacher insight into children’s
understanding of spatial structuring. In the patterning activity, for example, the teacher no-
ticed that the children had difficulty extending the line when she asked them what the
“rule” or “way” of the line was. By guiding the children along the line so that they could
decompose it into its structure, the teacher succeeded in helping the children understand
what the “rule” of a line means and that finding this “rule” offers a “way” to quickly see
how the line can be extended.

It became clear from the instruction experiment that the teacher plays a crucial role in guid-
ing the children towards interacting with each other and towards comparing spatial struc-
tures, so that they can evaluate and subsequently improve the efficiency of their own con-
structions (section 7.4). Hence, guided reinvention in a Kindergarten setting puts a differ-
ent accent on the traditional RME definitions of interactive learning (Treffers, 1987),
because young children require more explicit guidance from the teacher to work together
and discuss the mathematics (Leseman, Rollenberg, & Rispens, 2001; Nelissen, 2002).
This is reflected in how the instruction activities had to be introduced, discussed and mon-
itored within centralized classroom and focus group discussions that were closely guided
by the teacher or the researcher.

In the next paragraph we discuss several issues that were encountered as the research was
being designed and performed, and that may influence the interpretation of the research
outcomes.

10.3.3 Limitations to the research

In this paragraph we summarize several methodological issues that were discussed
throughout this thesis, and that may be taken into consideration for interpreting the out-
comes of the research. First, it is important to emphasize that the local instruction theory
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pertains to the observations that were made with the children, teachers, and researchers in
this specific instruction experiment that was conducted with the teachers and children of
this particular Jenaplan Kindergarten class. Since the intervention and non-intervention
groups are very small, and since the non-intervention group is not strictly a control group
(section 3.1), our analyses are exploratory rather than confirmatory, offering trends that
can be tested in future research.

Moreover, since the hypothetical learning trajectory that was set out in preparation for
Round 1, was partly based on observations in the pre-interviews, it specifically fit the si-
tuation and the children that were studied. Hence, we do not propagate that the four pha-
ses that were defined to describe the development of spatial structuring, and the local in-
struction theory will describe the learning processes of other children. Conclusions can
only be drawn about the children who were involved in the research, regarding how they
performed the interviews and the instruction activities, how they responded to the revi-
sions, how they interacted with the teacher and with each other, how the teacher guided the
class, and what the instructional setting was like. Such conclusions acknowledge the many
factors that influence children’s development (e.g., type of schooling, language back-
ground, intellectual capacities).

The second issue concerns an often heard comment of empirical scientists about how con-
clusions cannot be drawn about the effects of an intervention if the same children partici-
pate to study revised versions of the intervention. Such a methodology would measure
practice and developmental growth effects. To explain why it was decided to work with
the same children in both rounds of the instruction experiment, we refer again to the aims
of this type of research. The purpose of design research is not to set out one generalizable
learning trajectory. Rather, the yield is a theory about the learning processes of the children
who participated in this particular design experiment, with insight into how these learning
processes may be stimulated in the instructional setting in which this design experiment
took place (Gravemeijer, 2004). Hence, considering the complexity of a learning ecology,
a coherent theory about the learning processes of children can only be developed if one and
the same group of children is studied in an as consistent as possible instructional setting
(i.e., the same teachers, materials, school). This emphasizes how it is not the performance
itself that is the main interest to the research, but rather how the children approached the
tasks and whether and how this approach changed between the two rounds of the experi-
ment as a result of performing the instructional sequence. Such a theory informs teachers
about how a theory worked in one particular setting. It can then motivate teachers to test
the theory in their own instructional setting and add on to the cumulative nature of design
research in the way that macro cycles add on to the instruction theory (section 7.1).
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Notwithstanding these limitations, several practical implications could be distilled from
the local instruction theory for fostering children’s spatial structuring ability to support
children’s insight into numerical relations. These implications are presented in the next
paragraph.

10.3.4 Implications for educational practice

The strategy inventory and the interviews. The strategy inventory that was developed to
evaluate children’s performance on the interviews, can offer teachers a valuable instrument
for gauging children’s insight into numerical relations in terms of their spatial structuring
ability, in an appealing way. In the post-interviews with the 1G teachers, they expressed
their excitement about a form of assessment that they found to be more ecologically valid
than the more traditional, paper-and-pencil Lvs tests that they used. Future studies may,
however, include more challenging interview tasks to minimize ceiling effects. Neverthe-
less, the significance of this inventory for educational practice is that it can enable teachers
to highlight potential delays in children’s development of spatial structuring ability and
number sense at a very early stage. This answers to the need to identify and stimulate de-
layed developmental trajectories as soon as possible (see also Leseman, 2004).

From the analyses of children’s approaches to the interview tasks, it became clear that chil-
dren differ in the extent to which they use spatial structures rather than unitary counting
strategies for abbreviating numerical procedures. A practical implication of such a deve-
lopmental trajectory, is that it can highlight those children whose level of spatial structur-
ing ability does not coincide with what is expected on the basis of their age and experience.
Relatively older children who do not recognize or use spatial structuring strategies, for ex-
ample, may be at risk of experiencing a delay in the development of higher-order arith-
metic abilities. On the other hand, relatively young children who are already making use
of spatial structuring strategies, could benefit from extra challenges to foster their relative-
ly advanced mathematical development.

The local instruction theory and instructional sequence. The local instruction theory of-
fers teachers a framework of reference for planning a Kindergarten mathematics curricu-
lum that highlights spatial structuring. This can encourage teachers to consistently ac-
knowledge the importance of spatial structuring in their classrooms, and to answer to the
need for instruction activities that promote spatial structuring strategies rather than unitary
counting procedures (Clements, 1999a; Clements & Sarama, 2007). First experiences with
in-service teacher training activities are promising.
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The significance of such a curriculum is also that it gives attention to how children’s
awareness of spatial structures and improved understanding of numerical relations can
help bridge their informal mathematical abilities with the formal mathematical learning
that is required as soon as they enter first grade. Indeed, the teachers remarked in the in-
terviews that they considered this instructional sequence to be a valuable tool for helping
to prepare children for the type of mathematical teaching and learning they encounter after
Kindergarten (section 9.4). This could help minimize the dissonance between children’s
pre-school mathematical interests and understanding, and the relatively top-down formal
mathematics education (e.g., Clements & Sarama, 2007).

The learning ecology. The instruction experiment also highlighted the influence of the
learning ecology (i.e., the instructional setting with the instruction activities, the materials
and the role of the teacher) in supporting children’s mathematical development (see para-
graph 10.3.2). The main educational implication of these influences is for teachers to be-
come more aware of the crucial role that they play in children’s learning. This includes the
influence of their own perspectives on the importance of spatial structuring in early math-
ematical development. As described in section 8.3, the teacher played a central role in how
the children interpreted the activity, how they approached the problem, how they verba-
lized their response, and how their response was interpreted by the teacher and adapted for
formulating the next question in the activity. In fact, children’s mathematics learning in
school depends on what the teacher considers relevant to the field of mathematics. Indeed,
in the post-interview with the teachers, they noted their surprise about the significance of
spatial structuring ability for understanding numerical relations and for stimulating math-
ematical performance. Their changed perspective on spatial structuring can therefore ini-
tiate important shifts in classroom mathematical practices.

More specifically, as noted in section 9.4, the teachers had to get used to consistently hav-
ing to use particular phrases that relate to the context and to spatial structuring (i.e., “tools”
and “easy ways”), but they realized how essential their choice of words was when words
such as “counting” resulted in different strategies than phrases such as “finding out how
many there are”. As such, the teacher’s language use was essential for guiding children to-
wards developing a shared vocabulary that underlies a socio-mathematical norm for spatial
structuring.

The teachers also came to acknowledge how relatively simple activities and materials can
appeal to the children and support children’s spatial structuring abilities. To their surprise,
even ordinary objects such as dice and egg cartons can give rise to a mathematical discus-
sion about spatial structures. The teachers also became aware of spatial structures in their
surroundings, outside the instruction activity, and remarked that they were therefore better
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able to integrate mathematics teaching and regular daily activities. They said this could im-
prove the balance between the greater emphasis that they find is typically paid to language
in Kindergarten curricula compared to mathematics.

As such, the observations provide concrete examples of practical situations that many
teachers can recognize. Although the teachers in this instruction experiment were already
aware of their role in the children’s learning, it was not until we discussed the intentions
of the activity and the effect of, for example, their choice of words or spatial structuring
with the teachers, that they explicitly related such aspects of their role in the children’s
learning trajectory. This insight for teachers is essential because it influences the extent to
which the potential mathematical discourse topics are acknowledged which, in turn, con-
tribute to the development of shared ways of thinking and reasoning about spatial structur-
ing. It can be a valuable step towards educational practice that acknowledges the impor-
tance of spatial structuring for fostering children’s numerical insight (Clements, 1999a).

10.4 Suggestions for future research

The local instruction theory that is developed on the basis of the instruction experiment, is
only the start of an important research trajectory regarding children’s development of spa-
tial structuring ability. We present several suggestions for future research in terms of con-
tent, methodology and educational practice.

Suggestions concerning content. This research has focused on one particular factor in spa-
tial sense, namely spatial structuring, and its association with developing insight into nu-
merical relations. As illustrated in the conceptual schema and in the analysis of the learn-
ing ecology, many more components of spatial sense and factors in an instructional setting
are involved in the development of spatial sense and number sense. Now that we have
gained more insight into the role of spatial structuring in developing numerical relations,
it may be valuable to investigate what other spatial factors may influence children’s insight
into numerical relations, and number sense in general. Hence, future research could con-
tinue to study each of these factors to disentangle their relationships and interdependen-
cies. This may, for example, shed more light on the role of spatial orientation on spatial
structuring and whether it could influence numerical development. Other studies may also
investigate how, for example, visualizing shapes may relate to the development of geomet-
rical abilities, or what role language specifically plays in this context.

Future research could also extend the focus on spatial structuring ability to grade 1 and be-
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yond. This would involve formulating a HLT that continues into formal mathematics to ex-
plore the effects of such an instructional sequence on children’s development of higher-
order mathematical concepts and procedures. This could bridge our research with studies
that have focused on spatial structuring for children’s arithmetic and algebraic develop-
ment starting from the first years of formal schooling (e.g., Battista & Clements, 1996;
Battista et al., 1998; Buijs, 2008; Van Eerde, 1996).

Suggestions concerning methodology. Future research could continue this design research
by extrapolating the outcomes of the micro cycles to macro cycles. This means implement-
ing the instructional sequence in another setting (i.e., another Kindergarten class at another
school with a different school philosophy) to provide new impetus for adjusting the activ-
ities and for revising the hypothetical learning trajectory. After several of such instruction
experiments, the instructional sequence may be suitably grounded to be tested in a larger-
scaled, more experimental research setting with formal experimental and control groups.
Such a confirmatory study would give insight into the effect of the activities on children’s
spatial structuring ability in comparison to how children are typically taught to count and
prepare for formal mathematics.

Longitudinal studies could shed more light on the long-term development of children’s
mathematical thinking. This would involve comparing the mathematical performance of
children who participate in the instructional sequence to children who take part in the reg-
ular mathematics curriculum, at different time intervals after performing the instructional
sequence. Such a comparison could highlight the extent to which the instructional se-
quence supports children’s spatial structuring ability at different points in their mathemat-
ical development. It may well be, for example, that although the instruction activities sup-
port children’s ability to read off quantities at a Kindergarten level, this insight does not
differentiate these children from the non-intervention group when both groups enter grade
1 and are taught higher-order mathematical procedures. Hence, a longitudinal study would
contribute to manifesting the effects of the instructional sequence.

Suggestions concerning educational practice. The story about Ant’s Tool Box has the po-
tential to be extended to more contexts involving a figure with, for instance, two sets of
two legs (e.g., cat, elephant) or two sets of four legs (e.g., spiders). Further, the Tool Box
may be filled with objects that represent other spatial structures (e.g., dominoes instead of
dice). New contexts and “tools” can lead to more instruction activities that may challenge
children with a greater variety of spatial structures and provide more opportunities for chil-
dren to practice spatial structuring.
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Taken together, this research has illustrated the development and outcomes of an instruc-
tional sequence for fostering young children’s early numerical insight. It sets the stage for
future research that may contribute to ways of stimulating young children’s early spatial
and numerical abilities. In the end, the earlier we may understand (parts of) children’s
mathematical learning trajectories, the better we may furnish a supportive instructional
setting to foster their mathematical development and offer them a head start in their formal
mathematics education.
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Introduction

It is disconcerting that “early childhood education, in both formal and informal settings,
may not be helping all children to maximize their cognitive capacities” (National Research
Council, 2005, p. 3) and that a dissociation is perceived between young children’s infor-
mal, intuitive knowledge and interests, and the formal learning opportunities at the start of
their schooling. Many early elementary mathematics curricula, for example, recognize the
importance of number sense, but appreciate young children’s early spatial sense (i.e., in-
sights that relate to spatial visualization, spatial orientation and shape; cf. Clements & Sa-
rama, 2007) to a lesser degree.

The research that is documented in this thesis is aimed at investigating the role of young
children’s spatial structuring ability in the development of number sense, particularly in
terms of insight into numerical relations, in order to improve early mathematics education.
Insight into numerical relations involves the structuring (e.g., (de)composing) of quanti-
ties (e.g., understanding 6 to be 3 and 3, but also 5 and 1 or 4 and 2, Hunting, 2003; Steffe,
Cobb, & Von Glasersfeld, 1988). This is considered essential for the development of high-
er-order mathematical abilities (Van Eerde, 1996; Van den Heuvel-Panhuizen, 2001). We
take Battista and Clements’ (1996) definition to define the act of spatial structuring as:

The mental operation of constructing an organization or form for an object or set of objects.
Spatially structuring an object determines its nature or shape by identifying its spatial compo-
nents, combining components into spatial composites, and establishing interrelationships be-
tween and among components and composites. (Battista & Clements, 1996, p. 503)

Through exploring and comparing, for example, symmetrical double-structures as repre-
sented by egg cartons to dot configurations as represented by dice configurations, children
can come to recognize the common underlying structure of two rows of three. We propose
that such insight can help to establish children’s awareness of spatial structures, to support
children’s ability to recognize and manipulate such structures in various contexts and set-
tings, and to anchor their use of spatial structures for abbreviating numerical procedures.
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Background and research questions

The literature study (Chapter 2) that was conducted first, suggests that children’s ability to
(de)compose quantities is essential for the development of numerical insight. Numerical
insight, in turn, underlies higher-order arithmetic abilities such as counting and grouping
for part-whole knowledge in addition, multiplication and division (e.g., 8 + 6 = 14 because
5+5=10and 3+ 1=4s0 10 + 4 = 14), for using variables in algebra, for proving, pre-
dicting and generalizing, and for determining the structure of a shape in order to subse-
quently mentally rotate or manipulate it (Anghileri, 1989; Buijs, 2008; Carraher et al.,
2006; Papic & Mulligan, 2007; Steffe, Cobb, & Von Glasersfeld, 1988).

The ability to (de)compose quantities also involves insight into part-whole relationships.
In describing spatial sense, we note a relationship between the three components of spatial
sense (spatial visualization, spatial orientation, and shape) and part-whole relations in the
(de)composition of spatial objects (cf. Clements & Sarama, 2007). First, in spatial visual-
ization, the ability to manipulate mental images can support children in rearranging objects
to explore their composition. Second, the spatial structuring factor in spatial orientation in-
volves integrating previously abstracted items to form new structures. Third, insight into
shapes helps children perceive, for example, parts and wholes, congruence, symmetry, and
transformations. We suggest that these three components share a spatial structuring ability.
This spatial structuring ability is the focus of our research, in which we study how it may
influence young children’s ability to (de)compose quantities for gaining insight into nu-
merical relations.

The advantages of being able to recognize spatial structure and being able to apply spatial
structure to abbreviate numerical procedures are evident, for instance, when reading off a
quantity (i.e., recognizing six as three and three, Steffe et al., 1988; Van den Heuvel-Pan-
huizen, 2001; Van Eerde, 1996; Van Nes & De Lange, 2007), when comparing a number
of objects (i.e., one dot in every one of four corners is less than the same configuration with
a dot in the centre, Clements, 1999a), when extending a pattern (i.e., repeating the struc-
ture, Papic & Mulligan, 2005, 2007), and when building a construction of blocks (i.e., re-
lating the characteristics and orientation of the constituent shapes and figures to each other,
Battista et al., 1998; Van den Heuvel-Panhuizen & Buijs, 2005). In fact, children who fo-
cus on non-mathematical features and who continue to prefer to count objects unitarily
without using any form of structure, may be prone to experiencing delays in their mathe-
matical development (Butterworth, 1999; Mulligan, Mitchelmore, & Prescott, 2005).

Researchers who have studied children’s spatial structuring ability and its influence on
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mathematical performance, call for more insight into the characterization of the develop-
mental trajectory for spatial structuring, as well as into how an instructional setting may
stimulate this development for supporting young children’s insight into numerical rela-
tions. Therefore, the purpose of our research is to (a) contribute to an understanding of the
development of young children’s spatial structuring ability, and to (b) design a local in-
struction theory about how an instructional setting may foster this development and sup-
port children in learning to use spatial structures for abbreviating numerical procedures.
This can encourage teachers to acknowledge the importance of spatial structuring in their
classrooms, and answer to the need for instruction activities that promote spatial structur-
ing strategies (Clements, 1999a; Clements & Sarama, 2007). The principles of Realistic
Mathematics Education (RME; Freudenthal 1973, 1991; Gravemeijer, 1994; Treffers,
1987) and socio-constructivism (Cobb & Yackel, 1996) offered guidelines for designing,
conducting, and interpreting the research. The research questions are defined as follows:

1. What strategies for solving spatial and numerical problems characterize young children’s spatial
structuring abilities?

2a. How can young children be supported in learning to recognize and make use of spatial structures
for abbreviating numerical procedures?

2b. What characterizes a learning ecology that can facilitate the development of children’s spatial
structuring ability?

Methodology

Participants and setting. The study was conducted in a Kindergarten class at a local Jena-
plan elementary school. The children at the school had mixed social and cultural back-
grounds. The intervention group (IG) was a combined grade 1 and grade 2, for a total of 21
children ranging in age from four to six years. The class was taught by two teachers. The
non-intervention group (i.e., the group that did not participate in the instruction experi-
ment; NG) was one of the three other Kindergarten classes of the school and it consisted of
17 four- to six-year old children. This group was not intended as a control group, but rather
to provide additional data for developing the strategy inventory and for analyzing the in-
terviews. We also used their pre- and post-interview outcomes to supplement quantitative
and qualitative analyses of the results of the instruction experiment.

The strategy inventory and the interviews. In order to answer the first research question, a
set of tasks was designed to gauge children’s spatial structuring and numerical ability in a
one-to-one clinical interview setting (VVan Eerde, 1996; Chapters 4, 5, and 9). These tasks
were inspired by the literature study, experiences from several exploratory studies and con-

265



Summary

sultations with experts. The strategies that the children used to solve these tasks were
charted to create a strategy inventory. This inventory included a cumulative list of strate-
gies for three components of spatial structuring (recognizing, applying and extending a
structure) and number sense (determining, comparing and operating with small quantities).
The data consisted of video recordings of the interviews, researcher’s notes of the chil-
dren’s responses, and children’s standardized school based assessment scores (LVS).

Considering the high interrater reliability with a Cohen’s Kappa value of 0.87, the inven-
tory was a reliable instrument for evaluating children’s performance on the interviews.
Further, the children’s pre-interview and post-interview strategy repertoire coincided with
the children’s standardized test scores, which supports the validity of the interview out-
comes and highlights the potential of the interviews as instruments for gauging children’s
insight into numerical relations in terms of their spatial structuring ability. The IG and NG
were interviewed once before (the pre-interview) and once after the instruction experiment
(the post-interview) to investigate any differences between both interviews regarding chil-
dren’s le-vel and type of strategy use.

The instruction experiment. Cumulative cyclic, classroom-based, design research (Grave-
meijer & Cobb, 2006) was used to answer the second research question. This involved for-
mulating, testing and refining a hypothetical learning trajectory (HLT) and a correspon-
ding sequence of instruction activities for the instruction experiment (Chapters 6, 7, and
8). The HLT included testable conjectures that outlined how the instruction experiment was
expected to influence the children’s learning processes and provide empirical evidence for
a local instruction theory about how young children can be supported in the development
of their spatial structuring ability.

The instructional sequence consisted of five instruction activities that were tried out with
the 1G during two rounds of the instruction experiment. Each instruction activity started as
a classroom discussion that was guided by the teacher. Then the researcher took five chil-
dren aside (the focus group) for more in-depth discussions and detailed observations of
their approaches to the activity. The data of the instruction experiment consisted of video
recordings of each of the instruction activities, the questionnaires that the teachers com-
pleted for debriefing, the log that was written about what happened during the activity, and
additional notes from discussing the activity with the teacher before and after the session.

After performing the instructional sequence, we analyzed our observations to see how the
instruction activities influenced children’s awareness of spatial structuring. Children’s re-
sponses and behavior were compared to the observation criteria that were formulated as
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part of the development of the hypothetical learning trajectory. The dissonances between
our observations and how the children were expected to respond to the instruction activi-
ties, led to adjustments in the hypothetical learning trajectory and revisions of the instruc-
tional sequence. After the analyses of Round 1, the revised instructional sequence was
tried out in the same class during Round 2 of the instruction experiment.

Shortly after the second round, the 1G and NG children performed the post-interviews. Their
strategy repertoire for the post-interview was then quantitatively and qualitatively com-
pared to the strategy repertoire on the pre-interviews, which they performed before the in-
struction experiment. This was to provide more insight into whether and how the instruc-
tional sequence influenced the children’s development of spatial structuring. The teachers
were interviewed shortly after Round 2 to evaluate how the instruction experiment influ-
enced their perspectives on teaching about spatial structuring and on the role of spatial
structure in young children’s early mathematical development.

Data analysis. The qualitative data analysis followed the principles of constant compari-
son (Glaser & Strauss, 1967; Strauss & Corbin, 1998) with the help of the multimedia data
analysis program ATLAS.ti. This program provides a format for organizing the raw data
into clips that simplify the process of tracing and analyzing patterns in children’s behavior
and responses. In this way we were better able to establish how the children were solving
the problems, how they were developing in their conceptual understanding, and what role
the proactive instructional setting had played in this development.

The conceptual schema

The literature study, the strategy inventory, our exploratory studies and the consultations
with experts contributed to the development of a conceptual schema. The schema associ-
ates the development of young children’s spatial structuring ability (derived from three
components of spatial sense, Clements & Sarama, 2007) with number sense (based on the
combined ability to count and compare quantities; Griffin & Case, 1997; Griffin, 2004b),
particularly in terms of their insight into numerical relations (understanding the (de)com-
position of quantities; Chapters 4 and 10). As the strategy inventory began to take shape,
it served as a theoretical model that provided more insight into how these constructs could
be related (Chapter 5). The final conceptual schema that underlies the research is outlined
in Fig. S.1.
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Fig. S.1  The conceptual schema of the research

This conceptual schema shows how the main focus of the research is on children’s ability
to spatially structure quantities and on the role of this ability in supporting insight into nu-
merical relations. This should help improve children’s learning and understanding of more
higher-order arithmetic abilities such as addition, subtraction, and multiplication. The abil-
ity to “count quantities” is also connected to “spatial structuring” to indicate that children
must at least be able to count resultatively before focusing on ways to abbreviate numerical
procedures. In practice, children’s ability to recognize spatial structures is expected to help
them read off a quantity rather than use unitary counting procedures.

Phases in a developmental trajectory for spatial structuring ability

As the strategy inventory became an instrument for gauging young children’s insight into
numerical relations in terms of their spatial structuring ability, the scoring procedures had
to be condensed for the instrument to become easier to use and more reliable (Chapter 5).
As such, all the strategies that a child used to answer the interview tasks were collected and
interpreted as a repertoire of strategies. This repertoire fit one of the following phases
which describe cumulative levels of sophistication in the child’s spatial structuring ability
in this particular interview setting:
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Phase 1 (Unitary phase): The child recognizes almost no spatial structures and consequently
neither uses nor applies structures to abbreviate numerical procedures.
e.g., counts all the dots and finger patterns on the flashcards; counts flowers on the table one
by one and leaves them spread apart as an “easy way” to read off how many there are

Phase 2 (Recognition phase): The child recognizes several fundamental spatial structures, but
rarely uses or applies spatial structures to abbreviate numerical procedures. Instead, the child
may rationalize the use of spatial structures in hindsight.
e.g., recognizes most flashcards but counts flowers on the table unitarily even if they are al-
ready structured; recognizes structure only when explicitly guided to attend to structure

Phase 3 (Usage phase): The child recognizes and uses most available spatial structures, but
rarely shows initiative in constructing and applying its own spatial structures as a means to ab-
breviate numerical procedures.
e.g., reads off a structure and uses the structure to abbreviate a numerical procedure if it is
available (“there are two rows of three so that's six”), but does not structure unstructured sets
of objects (leaves them bunched in a group or spread apart)

Phase 4 (Application phase): The child uses spatial structures in a goal-directed way and spon-
taneously constructs and applies spatial structures as a means to abbreviate numerical proce-
dures
e.g., “l know it's 8 because here is the 6 like on dice, and 2 more makes 8”; rearranges un-
structured sets of objects into structures such as smaller, subitizable groups or in dice con-
figurations because “now it's easier to see and you don't have to count”

These phases have overlapping starting and end points, and children are assumed to grad-
ually shift from one phase to the next, according to how their main tendency to use a par-
ticular repertoire of strategies shifts towards a more sophisticated repertoire of strategies
(cf. Siegler, 2002, 2005).

Strategy scores on the interview tasks
condensed into

Four phases in the development
of spatial structuring ability:
1. Unitary Phase
2. Recognition Phase
3. Usage Phase
4. Application Phase

Fig. S.2  Operationalization of the development of insight into numerical relations

The outcomes of children’s performance on the interview tasks (i.e., their strategy scores)
and their corresponding strategy repertoire (i.e., phase classification) reflected children’s
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spatial structuring ability. As such, these phase classifications could be used to compare
children’s repertoire of strategies in the pre-interview to the post-interview.

This gave an impression of whether and how the instruction experiment influenced the
children’s approach to the interview tasks. In light of the proposed influence of children’s
spatial structuring ability on insight into numerical relations (Chapter 2), the phase classi-
fication operationalized the development of insight into numerical relations in the research
as illustrated in Fig. S.2.

Development and results of the HLT and instruction experiment

Based on observations from our exploratory studies in several Kindergarten classrooms at
a local elementary school, the learning goals of the instruction experiment, and the four
phases in children’s spatial structuring ability, we hypothesized initially that the children
would encounter the following interrelated learning moments as they progressed along the
learning trajectory (see Chapter 6):

(1) organize objects as a step towards becoming aware of spatial structuring to simplify
counting procedures;

(2) create a motivation for spatially structuring objects;

(3) use spatial structuring to elucidate numerical relations;

(4) develop abstract spatial structures that are less context- or taskdependent;

(5) use spatial structuring in a goal-directed way outside the instruction experiment.

These learning moments inspired the outline of the hypothetical learning trajectory (HLT)
for Round 1 of the instruction experiment. Considering the importance of patterning in
gaining awareness of spatial structures (e.g., Papic & Mulligan, 2007), the first activity in-
volved a patterning activity in which the children were to identify the structure of a pattern
in order to extend it. The children were expected to use such insight into part-whole rela-
tionships to explore and compare various types of spatial structures that were presented to
them in a so-called Trick Box (i.e., tricks to “easily see” how many of something there are)
during the second activity. The third activity required the children to make use of part-
whole relationships to recognize and read off structured quantities in relatively large struc-
tured arrangements on dotted cards. An alternative activity was developed that involved
recognizing and reading off double-structures in egg cartons. In the fourth activity, chil-
dren’s awareness of spatial structure was taken to a 3-D setting in which they were asked
to try to recognize and make use of the structure of a block construction. The children were
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expected to use and apply their experiences with spatial structuring in the fifth activity.
They had to spatially structure a set of randomly arranged flowers in order to keep track of
how many there are without counting them unitarily.

As more and more episodes of the videos of Round 1 were created, analyzed, and dis-
cussed with experts, several patterns emerged that gave insight into the role of the learning
ecology (Cobb et al., 2003) on children’s learning:

— The context within and between the instruction activities must not only be meaningful
and inspiring to the children, but also offer productive situation specific strategies.

- A shared vocabulary, the type of language use of the teacher, and the way children in-
terpret language is essential.

- The instruction activities relate the children’s levels of understanding to a learning goal
while acknowledging children’s own productions.

— The teacher is an essential factor in promoting interaction between the children.

— The socio-mathematical norm of spatial structuring promotes a shared awareness of
spatial structure in mathematical practices.

These patterns influenced the design of the instructional sequence for Round 2 of the in-
struction experiment (Chapter 7). In Round 1 each of the instruction activities had appeal-
ing contexts of its own. For Round 2 we introduced Ant and its Tool Box as an overarching
context (Fig. S.3; Van Nes & Doorman, 2009). The creation of this overarching context
was essential for making the instruction activities experientially real, for connecting the
learning issues of the instruction activities, and for providing productive situation specific
strategies in a mathematical context (De Lange, 1987). It also helped to create a shared vo-
cabulary that is fundamental to establishing the socio-mathematical norm of spatial struc-
turing (Gravemeijer & Cobb, 2006).

The Tool Box contained enlarged cards with finger patterns, large dice, enlarged cards with
structured dotted configurations, egg cartons for six and ten eggs, and patterned bead neck-
laces (cf. Clements, 1999a; Mulligan et al., 2004; Van den Heuvel-Panhuizen, 2001; Van
Eerde, 1996). The reason for choosing an Ant as the main character in this context, is that
an ant has six legs (i.e., a fundamental and familiar spatial structure), it is strong and pos-
sibly able to carry this box into the classroom, the ant’s name in Dutch conveniently relates
to the name of the box (“Miertje Maniertje” and its “Maniertjesdoos”), and, finally, ants
appeal to children’s imagination. The story is that the Ant had “tools” (“handige mani-
ertjes” in Dutch, translated as “clever ways”) that it wanted to share with the class because
the tools could help the children to conveniently determine a quantity.
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Fig. S.3  Antand its Tool Box

The teacher created a shared vocabulary with phrases such as Ant’s “useful tools for de-
termining a quantity”, to refer to the contents of the Tool Box. This helped to guide the
children in exploring and comparing spatial structures, and to make spatial structuring and
insight into numerical relations the topic of discussion throughout the instruction experi-
ment (Chapter 8). The overarching context of Ant and its Tool Box was one of the main
revisions that were made to the instructional sequence for Round 2. As such, the revised
instructional sequence refined the operationalization of spatial structuring ability as con-
veyed in Fig. S.4.

Results of the instruction experiment. The analyses of the instruction experiment after
Round 2 showed the benefit of an instructional setting that supports awareness of spatial
structuring for fostering young children’s insight into numerical relations (Chapter 8 and
9). The post-interviews showed that 18 out of the 21 intervention group (1G) children tend-
ed towards or were classified into a higher spatial structuring phase. This means that these
children improved in their ability to use spatial structuring strategies for solving the inter-
view tasks. The non-intervention group (NG) experienced relatively less improvements (5
out of 17) and more constants (11 out of 17, and 5 of whom showed ceiling effects) with
one child who declined from the Application (phase 4) to the Usage (phase 3) phase. The
IG increasingly started referring to spatial structures and making use of the shared vocab-
ulary to discuss the conveniences of spatial structuring strategies over unitary counting
procedures. This helped to establish a norm for spatial structuring. Moreover, the teachers
who participated in the instruction experiment reported that they themselves had gained
awareness of spatial structures as well as a greater appreciation for the importance of spa-
tial structuring ability in young children’s mathematical development.
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Activity 1: The Tool Box and Ant Steps
Establish the context
Explore spatial structures in the Tool Box
Compare representations of quantities on structured dotted cards

Activity 2: Filling Egg cartons
Compare representations of quantities in double-structures
Compare double-structures to other structures in the Tool Box

Activity 3: Marching in a Procession
Explore structures of 2-D patterns
Compare structures in patterns to other structures in the Tool Box

Activity 4: Building Ant Hills
Explore structures of 3-D patterns
Compare structures of block constructions to other structures in the
Tool Box

Activity 5: Picking Flowers
Apply structures to unstructured arrangements
Compare representations of structures in the Tool Box
Explore the role of structures in the (de)composition of quantities

Fig. S.4 Operationalization of spatial structuring in terms of the instructional sequence

Conclusions and Discussion

Summary

In this research, we first conducted interviews to identify a learning trajectory in the de-
velopment of spatial structuring ability (research question 1). Through formulating a HLT
and creating an instruction experiment, we then investigated how this development may
be supported in an instructional setting (research question 2). This resulted in the following
answers and topics for discussion:

Research question 1. Using the strategy inventory, young children’s spatial structuring
ability in this particular instructional setting can be classified as one of four phases. These
phases describe a general developmental trajectory that ranges from no awareness of spa-
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tial structures, to learning to recognize spatial structures, to using such structures, to spon-
taneously applying them in a goal-directed way for gaining insight into numerical relations
and for abbreviating numerical procedures such as determining, comparing and operating
with small quantities. In this way, the interview tasks and the strategy inventory offer a tool
for gauging young children’s insight into numerical relations in terms of their spatial struc-
turing ability. The strategy inventory itself is also an important interpretative framework
in how it reflects a developmental trajectory in the types of strategies that young children
applied to solve the interview tasks. This framework was an important inspiration for the
development of the hypothetical learning trajectory for answering the second research
question.

Research question 2a. The sequence of five instruction activities provides support for a lo-
cal instruction theory that builds on children’s reasonable counting skills, organizational
abilities, and familiarity with basic spatial structures. The final learning trajectory begins
with introducing the children to the context of the instructional sequence, while the chil-
dren explore fundamental spatial structures such as dice configurations, finger patterns and
double-structures. Next, children are encouraged to use readily available spatial structures
in various settings. This should prepare them for learning to spontaneously construct their
own spatial structures to abbreviate numerical procedures. In this way, the learning trajec-
tory secures children’s spatial structuring ability as a means to improve their insight into
numerical relations, which in turn should prepare children for higher-order arithmetic pro-
cedures.

Research question 2b. From the instruction experiment, it appeared that an effective learn-
ing ecology involves building on children’s present understanding, introducing a meaning-
ful overarching context, creating a shared vocabulary, and including interactive learning.
The factors in a learning ecology that appeared to influence the development of children’s
spatial structuring ability are pictured in Fig. S.5.

RME in a Kindergarten setting. Several observations gave the principle of “guided rein-
vention” a different character in the Kindergarten setting. The children’s interaction with
the teacher exemplified “guided reinvention” in the way that the teacher asked the children
to share and compare their spatial structuring strategies and in the way she supported the
children’s spatial structuring strategies by, for example, taking apart a block construction
to elucidate its structure. By asking two children of different mathematical abilities to work
together, the children could compare spatial structuring strategies and set examples for
each other. Still, given the age and relatively short attention spans of these children, the
teacher had to do more than just “guide” the children. The teacher had to play a more di-
rective role in encouraging children’s interaction with each other and with the teacher, and
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in stimulating children to reflect on the activities to understand spatial structuring (cf.
Leseman, Rollenberg, & Rispens, 2001; Nelissen, 2002). This illustrates how language,
vertical interactions (Hatano & Inagaki, 1991) and influences of a classroom culture play
a different role in Kindergarten than is generally implied by the RME principles.

Language use

Shared vocabulary Classroom materials

~. !/

Teacher’s Conceptions Spatlal “Realistic” and (mathematically)
about Spatial Structuring | I Structuring I meaningful OVerarChing context

/'

Own constructions
and productions

Interactive learning

Guided reinvention
in a Kindergarten setting

Fig. S.5 Factorsin alearning ecology that influence the development of children’s spatial structuring
ability

Spatial sense related to number sense. Although an instructional sequence concerning spa-
tial structuring helped children gain insight into numerical relations, more research is
needed to disentangle specific influences of the spatial sense components on children’s nu-
merical development. In particular, no convincing support was found for influences of
children’s spatial orientation on their performance on the interview tasks. This explains the
relative proximity of spatial orientation compared to the more closely related spatial visu-
alization and shape components in the conceptual schema (Fig. S.1). Still, children’s
counting ability, organizational skills, and familiarity with spatial structures appear to be
prerequisites for learning to use and to apply spatial structures.

Limitations to the research. Several issues had to be taken into account for developing, per-
forming and properly interpreting the research. First, the local instruction theory pertains
only to the observations that were made in this specific instruction experiment, which was
conducted with the teachers and children of these particular Jenaplan Kindergarten classes.
Second, the intervention and non-intervention groups were very small, and the non-inter-
vention group was not strictly a control group, so confirmatory statistical data analyses
could not be conducted. Notwithstanding these limitations, the value of this research is that
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it generates knowledge about how the instruction experiment influenced children’s learn-
ing processes. The exploratory character of design research allows for a greater under-
standing of the complex learning processes that arise during instructional interventions
(Gravemeijer & Cobb, 2006). This has offered several practical implications of the re-
search.

Implications of the research. First, the interview tasks and strategy inventory can be taken
as valuable instruments for gauging children’s insight into numerical relations in terms of
their spatial structuring ability. The phase classifications can help to highlight those par-
ticular children whose level of spatial structuring ability does not coincide with what is ex-
pected based on their age and experience. Second, the local instruction theory offers teach-
ers a framework of reference for planning a Kindergarten mathematics curriculum that in-
tegrates spatial structuring activites. First experiences with in-service teacher training
activities are promising. It also supports teachers in gaining insight into their role in sup-
porting children’s learning through establishing socio-mathematical norms; the teachers’
choice of words, their flexible use of ordinary materials and meaningful contexts, and their
perspectives on spatial structuring, greatly influence children’s approach to the instruction
activity. These implications appeal to the need for educational practice that acknowledges
the importance of spatial structuring for children’s developing numerical insight (Clem-
ents, 1999a).

Suggestions for future research. Future research can extrapolate this local instruction the-
ory to other contexts and settings and contribute to its generalizability. The outcomes of
the research welcome longitudinal research on long-term effects of the instructional se-
quence on children’s learning. At a more practical level, the context of Ant and the Tool
Box can be elaborated and tried out in various classroom settings. Taken together, this re-
search sets the stage for future studies on stimulating children’s early spatial and numerical
abilities. In effect, the earlier we may understand (parts of) children’s mathematical learn-
ing trajectories, the better we may furnish a supportive instructional setting to cultivate
children’s mathematical learning and offer them a head start in their formal mathematics
education.
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Samenvatting

Samenvatting

Introductie

Het is zorgelijk dat “vroegschools onderwijs, in zowel formele als informele settings, jon-
ge kinderen wellicht niet ondersteunt in het maximaliseren van hun cognitieve capacitei-
ten” (National Research Council, 2005, blz. 3), en dat er een dissociatie bestaat tussen de
infomele, intuitieve kennis en interesses van jonge kinderen, en de formele leermogelijk-
heden aan het begin van hun scholing. Veel reken-wiskundecurricula voor de basisschool
bijvoorbeeld, erkennen het belang van getalbegrip, maar hebben minder aandacht voor de
vroege ruimtelijke inzichten van jonge kinderen (bijvoorbeeld inzichten die te maken heb-
ben met ruimtelijke visualisatie, ruimtelijke oriéntatie en vorm (Clements & Sarama,
2007).

Het onderzoek in dit proefschrift heeft als doel het bestuderen van de rol van het vermogen
van jonge kinderen om ruimtelijk te structureren bij de ontwikkeling van hun getalbegrip,
met name hun inzicht in getalrelaties, om zo het reken-wiskundeonderwijs te verbeteren.
Inzicht in getalrelaties betreft het structureren (samenstellen en splitsen) van hoeveelheden
(begrijpen dat 6 zowel 3 met 3, 5 met 1 als 4 met 2 is; Hunting, 2003; Steffe, Cobb, & Von
Glasersfeld, 1988), wat essentieel is voor de ontwikkeling van meer gevorderde reken-wis-
kundige vaardigheden (Van Eerde, 1996; Van den Heuvel-Panhuizen, 2001). We passen
Battista en Clements’ (1996) definitie toe om de handeling van het ruimtelijk structureren
te omschrijven als

De mentale operatie voor het construeren van een organisatie of vorm voor een object of een
verzameling van objecten. Het ruimtelijk structureren van een object bepaalt zijn kenmerken
of vorm door zijn ruimtelijke componenten te identificeren, door de componenten te combine-
ren tot ruimtelijke samenstellingen, en door interrelaties vast te stellen tussen componenten
en tussen samenstellingen. (vrij vertaald uit Battista & Clements, 1996, p. 503)

Door het onderzoeken en vergelijken van, bijvoorbeeld, symmetrische dubbelstructuren
zoals gerepresenteerd wordt door eierdozen, met stipconfiguraties zoals gerepresenteerd
wordt door dobbelsteenconfiguraties, kunnen kinderen de gedeelde onderliggende struc-
tuur van twee rijtjes van drie gaan herkennen. We veronderstellen dat zulk inzicht kan hel-
pen om kinderen bewust te laten worden van ruimtelijke structuren, hen ondersteuning te
bieden voor het herkennen en handelen met zulke structuren in verschillende contexten en
settings, en voor het leren gebruiken van ruimtelijke structuren om numerieke handelingen
te verkorten.
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Achtergrond en onderzoeksvragen

De literatuurstudie (Hoofdstuk 1 en 2) die als eerste is uitgevoerd, suggereert dat het ver-
mogen van kinderen om hoeveelheden samen te stellen en te splitsen essentieel is voor de
ontwikkeling van inzicht in getalrelaties. Inzicht in getalrelaties is fundamenteel voor meer
gevorderde reken-wiskundige vaardigheden, zoals tellen en groeperen, voor kennis over
deel-geheelrelaties in optellen, vermenigvuldigen en delen (8 + 6 = 14 want5+5=10en
3+ 1=4dus 10 + 4 = 14), voor het gebruikmaken van variabelen in algebra, voor bewij-
zen, voorspellen en generaliseren, en voor het bepalen van de structuur van een vorm om
die vervolgens mentaal te roteren en ermee te handelen (Anghileri, 1989; Buijs, 2008; Car-
raher et al., 2006; Papic & Mulligan, 2007; Steffe, Cobb, & Von Glasersfeld, 1988).

Het kunnen samenstellen en splitsen van hoeveelheden heeft ook te maken met inzicht in
deel-geheelrelaties. In de omschrijving van ruimtelijk inzicht, merken we een relatie op
tussen de drie componenten van ruimtelijk inzicht (ruimtelijke visualisatie, oriéntatie en
vorm) en deel-geheelrelaties in het ontleden van ruimtelijke objecten (vgl. Clements & Sa-
rama, 2007). Ten eerste kan ruimtelijke visualisatie het vermogen om te handelen met
mentale beelden kinderen ondersteunen in het rangschikken van objecten om zo hun sa-
menstelling te onderzoeken. Ten tweede betreft ruimtelijke oriéntatie onder andere het in-
tegreren van al geabstraheerde objecten, om op die manier nieuwe structuren te creéren.
Ten derde helpt het inzicht in vormen kinderen om delen en gehelen van geometrische pa-
tronen, congruentie, symmetrie en transformaties waar te nemen. We stellen daarom voor
dat de drie componenten een ruimtelijk structureervermogen met elkaar delen. De focus
van ons onderzoek is dus ruimtelijke structuren, om te begrijpen hoe ze van invloed kun-
nen zijn op het vermogen van jonge kinderen om hoeveelheden samen te stellen en te split-
sen voor het krijgen van inzicht in getalrelaties.

Het voordeel van het kunnen herkennen van een ruimtelijke structuur en het toepassen er-
van om reken-wiskundige handelingen te verkorten, blijkt bijvoorbeeld bij het aflezen van
een hoeveelheid (6 herkennen als 3 met 3; Steffe et al., 1988; Van den Heuvel-Panhuizen,
2001; Van Eerde, 1996; Van Nes & De Lange, 2007), bij het vergelijken van een hoeveel-
heid (vier hoeken met ieder een stip is minder stippen bij elkaar dan dezelfde configuratie
met nog een stip in het midden; Clements, 1999a), bij het verlengen van een patroon (de
structuur herhalen; Papic & Mulligan, 2005, 2007) en bij het bouwen van een constructie
met blokken (eigenschappen en oriéntatie van vormen en figuren aan elkaar relateren; Bat-
tista et al., 1998; Van den Heuvel-Panhuizen & Buijs, 2005). Zelfs is het zo dat kinderen
die gefocust zijn op niet reken-wiskundige eigenschappen en een voorkeur blijven houden
voor het één-voor-één tellen zonder gebruik te maken van enige vorm van structuur, ge-
voelig zijn voor achterstanden in hun reken-wiskundige ontwikkeling (Butterworth, 1999;
Mulligan, Mitchelmore, & Prescott, 2005).
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Dergelijk onderzoek naar het ruimtelijk structureervermogen van jonge kinderen en de in-
vloed ervan op hun reken-wiskundige prestaties, vraagt om meer inzicht in de eigenschap-
pen van een ontwikkelingstraject voor ruimtelijk structureren, en hoe een leeromgeving
deze ontwikkeling zou kunnen stimuleren om het inzicht van jonge kinderen in getalrela-
ties te ondersteunen. Het doel van ons onderzoek is om (a) bij te dragen aan het begrijpen
van de ontwikkeling van het ruimtelijk structureervermogen van jonge kinderen, en (b) een
lokale instructietheorie te ontwikkelen over hoe een leeromgeving deze ontwikkeling kan
stimuleren en kinderen kan ondersteunen in het leren gebruik te maken van ruimtelijke
structuren voor het verkorten van reken-wiskundige procedures. Dit kan leerkrachten aan-
moedigen het belang van ruimtelijke structuren in hun klas te herkennen. Het beantwoordt
ook aan de vraag naar instructie-activiteiten die ruimtelijke structureerstrategieén, in plaats
van telstrategieén, benadrukken (Clements, 1999a; Clements & Sarama, 2007). De princi-
pes van realistisch reken-wiskundeonderwijs (RME; Freudenthal 1973, 1991; Gravemeijer,
1994, Treffers, 1987) en socio-constructivisme (Cobb & Yackel, 1996) bieden aanwijzin-
gen voor het ontwerpen, uitvoeren, en interpreteren van het onderzoek. Op basis van de
literatuurstudie, definiéren we de onderzoeksvragen als volgt:

1. Welke strategieén voor het oplossen van ruimtelijke en numerieke problemen kenmerken de ruim-
telijke structureervermogens van jonge kinderen?

2a. Hoe kunnen jonge kinderen ondersteund worden in het leren herkennen en gebruikmaken van
ruimtelijke structuren voor het verkorten van numerieke procedures?

2b. Wat kenmerkt een leeromgeving (‘learning ecology’) die de ontwikkeling van het ruimtelijk struc-
tureervermogen van kinderen kan faciliteren?

Methodologie

Deelnemers en setting. De studie is uitgevoerd in een kleuterklas op een lokale Jenaplan
basisschool. De sociale en culturele achtergrond van de kinderen op deze school is ge-
mengd. De interventiegroep (1G) was een gecombineerde groep 1 en 2, met in totaal 21 kin-
deren die in leeftijd variéren van vier tot zes jaar. Twee leerkrachten waren verantwoorde-
lijk voor de klas. De non-interventiegroep (NG) was een van de drie andere kleuterklassen
van de school en bestond uit zeventien vier- tot zesjarige kinderen. Deze groep was niet
bedoeld als controlegroep, maar voor het verzamelen van aanvullende data voor het ont-
wikkelen van het strategie-instrument en het analyseren van de interviews. De pre- en post-
interviewuitkomsten zijn ook gebruikt als aanvulling op de kwantitatieve en kwalitatieve
analyses van de resultaten van het instructie-experiment.
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De inventarisatie van strategieén en de interviews. Voor het beantwoorden van de eerste
onderzoeksvraag is een set taken ontwikkeld om het niveau van ruimtelijk structureren en
getalbegrip van kinderen te peilen in een één-op-één klinische interviewsetting (Van Eer-
de, 1996; Hoofdstukken 4, 5 en 9). Deze taken zijn geinspireerd door literatuurstudie, er-
varingen uit een aantal exploratieve studies en consultaties met experts. De strategieén die
de kinderen voor de taken gebruikten zijn verzameld om een inventarisatie van strategieén
te maken. Deze inventarisatie bestaat uit een cumulatieve lijst strategieén voor drie com-
ponenten van ruimtelijk structureren (het herkennen, toepassen en verlengen van een
structuur) en getalbegrip (het bepalen, vergelijken en handelen met hoeveelheden). De
data bestonden uit video-opnamen van de interviews, aantekeningen van de onderzoeker
over de handelingen van de kinderen en de gestandaardiseerde leerlingvolgsysteem (LVS)
scores van de kinderen.

Gezien de interbeoordelaarsbetrouwbaarheid met een Cohen’s Kappa waarde van 0.87, is
de inventarisatie van strategieén een betrouwbaar instrument voor het beoordelen van de
prestaties van kinderen op de interviews. Verder kwam het repertoire aan strategieén van
kinderen uit de pre- en post-interviews overeen met de gestandaardiseerde LVvs-scores, wat
de validiteit van de interviewuitkomsten ondersteunt en het potentieel van de interviews
als instrument voor het peilen van inzicht in getalrelaties in termen van ruimtelijk structu-
reervermogen onderschrijft. De 1G en NG zijn één keer eerder geinterviewd (pre-interview)
en één keer na het instructie-experiment (post-interview) om te onderzoeken of er verschil-
len zijn tussen beide interviews en wellicht van invloed zijn op het niveau en soort strate-
giegebruik van de kinderen.

Het instructie-experiment. Cumulatief cyclische, klassikale design research (Gravemeijer
& Cobb, 2006) is gebruikt om de tweede onderzoeksvraag te beantwoorden. Dit betreft het
formuleren, testen en verbeteren van een hypothetisch leertraject (HLT) met corresponde-
rende instructie-activiteiten voor het instructie-experiment (Hoofdstukken 6, 7 en 8). Het
HLT bestond uit testbare hypothesen die een beeld geven van hoe verwacht werd dat het
instructie-experiment de leerprocessen van de kinderen zou beinvloeden. Dit zou empiri-
sche ondersteuning kunnen leveren voor een lokale instructietheorie over hoe jonge kin-
deren gesteund kunnen worden in de ontwikkeling van hun ruimtelijk structureervermo-
gen.

De vijf instructie-activiteiten werden door de I1G in de klas uitgevoerd tijdens twee ronden
van het instructie-experiment. Elke instructie-activiteit begon met een kringgesprek dat
werd geleid door de leerkracht. Vervolgens nam de onderzoeker vijf kinderen apart (de zo-
genaamde focusgroep) om meer diepgaande discussies te voeren en gedetailleerde obser-
vaties van hun aanpak te verkrijgen. De data bestonden uit video-opnamen van elke in-
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structie-activiteit, vragenlijsten die de leerkrachten invulden, het verslag over de les dat na
afloop door de onderzoeker werd geschreven en aantekeningen van de discussie met de
leerkracht voor en na de les over de voorbereidingen voor en reflectie op de instructie-ac-
tiviteit.

Na Ronde 1 van het instructie-experiment zijn de observaties geanalyseerd om te zien hoe
de instructie-activiteiten invloed hadden op het bewustworden van ruimtelijk structureren.
De reacties en de handelingen van de kinderen zijn vergeleken met de observatiecriteria
die geformuleerd zijn tijdens de ontwikkeling van het HLT. De verschillen tussen onze ob-
servaties en de verwachting hoe kinderen zouden reageren op de instructie-activiteiten,
hebben geleid tot aanpassingen van het HLT en herziene instructie-activiteiten. De gerevi-
seerde serie instructie-activiteiten is in dezelfde klas tijdens de tweede ronde van het in-
structie-experiment uitgeprobeerd.

Kort na de tweede ronde van het instructie-experiment zijn de post-interviews met de 1G
en NG kinderen gehouden. Hun repertoire aan strategieén voor de post-interviews werd
kwantitatief en kwalitatief vergeleken met het repertoire voor de pre-interviews die voor-
afgaand aan het instructie-experiment zijn gehouden. Dit zou meer inzicht moeten geven
in hoe de instructie-activiteiten de ontwikkeling van het ruimtelijk structureren van kinde-
ren zouden kunnen beinvloeden. De leerkrachten zijn kort na Ronde 2 geinterviewd om te
bepalen of en hoe het instructie-experiment hun perspectief op het lesgeven over ruimtelijk
structureren en de rol van ruimtelijke structuren op de ontwikkeling van vroege rekenvaar-
digheden, heeft beinvloed.

Data-analyse. De kwalitatieve data-analyse volgde de principes van constante vergelijkin-
gen (Glaser & Strauss, 1967; Strauss & Corbin, 1998) met behulp van het multimediadata-
analyseprogramma ATLAS.ti. Dit programma biedt een format voor het organiseren van
ruwe data in de vorm van clips, die het proces van het nagaan en analyseren van patronen
in de handelingen van de kinderen kan vereenvoudigen. Op deze manier zijn we beter in
staat geweest vast te stellen hoe kinderen de problemen aanpakten, hoe hun conceptuele
kennis ontwikkelde en hoe de pro-actieve leeromgeving een rol heeft gespeeld bij deze
ontwikkeling.

Het conceptuele schema

De literatuurstudie, inventarisatie van strategieén, exploratieve studies en consultaties met
experts hebben bijgedragen aan de ontwikkeling van een conceptueel schema. Dit schema
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associeert de ontwikkeling van ruimtelijk structureervermogen (ontleend aan drie compo-
nenten van ruimtelijk inzicht; Clements & Sarama, 2007) met getalbegrip (gebaseerd op de
integratie van het vermogen om te kunnen tellen en hoeveelheden te vergelijken; Griffin &
Case, 1997; Griffin, 2004b), met name in termen van hun inzicht in getalrelaties (begrijpen
van de samenstelling van hoeveelheden; Hoofdstukken 4 en 10). Toen de inventarisatie van
strategieén vorm begon te krijgen, ontstond tegelijkertijd een theoretisch model dat inzicht
gaf in hoe deze constructen aan elkaar gerelateerd kunnen zijn (Hoofdstuk 5). Het uiteinde-
lijke conceptuele schema dat onderliggend is aan ons onderzoek is als volgt uitgelijnd (Fig.
S.1).

Domein van ruimte Domein van hoeveelheid
Ruimtelijke  vorm Ruimtelijke Hoeveelheden Hoeveelheden
visualisatie oriéntatie tellen vergelijken
g
2 o
=) 3
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a Ruimtelijk 3
= structureren a
E) Q
o o
= 5
= g
> Q
N =.
5 °
= Getalrelaties
v Meer gevorderde reken-wiskundige vaardigheden v

Fig.S.1  Het conceptuele schema

Dit schema laat zien dat de focus van het onderzoek ligt op het vermogen van kinderen om
hoeveelheden ruimtelijk te structureren en de rol ervan bij het ondersteunen van inzicht in
getalrelaties. Dit zou kunnen helpen om hun leren en begrijpen van meer gevorderde re-
ken-wiskundige vaardigheden, zoals optellen, aftrekken en vermenigvuldigen te onder-
steunen. Het vermogen om “hoeveelheden te tellen” is ook verbonden met “ruimtelijk
structureren” om aan te geven dat kinderen minstens resultatief moeten kunnen tellen
voordat ze zich richten op manieren om numerieke procedures te verkorten. In de praktijk
stellen we dat het vermogen van kinderen om ruimtelijke structuren te herkennen hen zou
kunnen helpen bij het aflezen van een hoeveelheid in plaats van één-voor-één te blijven
tellen.
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Fasen in de ontwikkeling van ruimtelijk structureervermogen

Naarmate de inventarisatie van strategieén een instrument werd voor het peilen van inzicht
in getalrelaties in termen van ruimtelijk structureervermogen, moesten de scoringsproce-
dures gereduceerd worden, zodat het instrument makkelijker in gebruik en meer betrouw-
baar zou worden (Hoofdstuk 5). Hiervoor werden alle strategieén die een kind gebruikt om
de interviewtaken te beantwoorden geinventariseerd en geinterpreteerd als een repertoire
aan strategieén. Dit repertoire past bij een van de volgende fasen die een omschrijving ge-
ven van cumulatieve niveaus van geavanceerdheid in het ruimtelijk structureervermogen
van een kind in deze specifieke interviewsetting:

Fase 1 (Eenheidsfase): Het kind herkent bijna geen ruimtelijke structuren en maakt daardoor

geen gebruik van structuren en past ze niet toe om numerieke procedures te verkorten.
Bijvoorbeeld: telt alle stippen en vingerpatronen op de flitskaarten; telt bloemen op de tafel
één-voor-één en laat ze verspreid liggen als een “makkelijke manier” om af te lezen hoeveel
het er zijn.

Fase 2 (Herkenningsfase): Het kind herkent een aantal fundamentele ruimtelijke structuren,
maar maakt zelden gebruik van structuren en past ze zelden toe om numerieke procedures te
verkorten. In plaats daarvan, zou het kind het gebruik van structuren achteraf kunnen rationa-
liseren.
Bijvoorbeeld: herkent de meeste flitskaarten, maar telt de bloemen op de tafel één-voor-één,
zelfs als ze al gestructureerd zijn; herkent structuur alleen als de aandacht expliciet op struc-
tuur wordt gericht.

Fase 3 (Gebruiksfase): Het kind herkent en maakt gebruik van de meest aanwezige ruimtelijke
structuren, maar laat zelden initiatief zien bij het construeren en toepassen van eigen ruimte-
lijke structuren als een manier om numerieke procedures te verkorten.
Bijvoorbeeld: leest een structuur af en maakt gebruik van een reeds aanwezige structuur om
een numerieke procedure te verkorten (“ik zie twee rijen van drie, dus dat is zes”), maar
structureert ongestructureerde verzamelingen niet (laat ze bijvoorbeeld op een hoop of ver-
spreid liggen).

Fase 4 (Toepassingsfase): Het kind maakt gebruik van ruimtelijke structuren op een doelge-
richte manier en construeert en past spontaan ruimtelijke structuren toe als een manier om nu-
merieke procedures te verkorten.
Bijvoorbeeld: “Ik weet dat het acht is want hier is zes, zoals op de dobbelsteen en twee meer
maakt acht”; herschikt ongestructureerde verzamelingen naar structuren, zoals kleinere, te
subiteren groepen of in dobbelsteenconfiguraties, want: “Nu is het makkelijker om het te
zien en je hoeft niet te tellen”.

Deze fasen hebben overlappende begin- en eindpunten. We veronderstellen dat kinderen
geleidelijk van de ene naar de volgende fase overstappen, afhankelijk van hoe hun tendens
om een bepaald repertoire aan strategieén toe te passen verschuift naar een meer geavan-
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ceerd repertoire (vgl. Siegler, 2002, 2005). De classificaties van deze fasen zijn gebruikt
om het repertoire aan strategieén van kinderen, nodig voor de pre- en post-interviews, te
vergelijken. Hiermee kregen wij een indruk of en hoe het instructie-experiment van in-
vloed is geweest op de manier waarop kinderen de interviewtaken hebben aangepakt. De
prestaties van de kinderen op de interviewtaken (hun strategiescores) en het corresponde-
rende repertoire aan strategieén (faseclassificatie) werden een weergave van hun ruimtelijk
structureervermogen. Tegen het licht van de voorgestelde invloed van het ruimtelijk struc-
tureervermogen op inzicht in getalrelaties (Hoofdstuk 2), maakte dit tevens de ontwikke-
ling van inzicht in getalrelaties in het onderzoek duidelijk. Dit wordt geillustreerd in Fig.
S.2:

Ruimtelijk structureren

Strategiescores voor de interviewtaken

i gereduceerd tot

Vier fasen in de ontwikkeling van
het ruimtelijk structureervermogen

(1) Eenheidsfase
(2) Herkenningsfase
(3) Gebruiksfase
(4) Toepassingsfase

Fig. S.2  Operationalisatie van de ontwikkeling van inzicht in getalrelaties

Ontwikkeling en resultaten van de HLT en het instructie-experiment

Op basis van de observaties van onze exploratieve studies in verschillende kleuterklassen
op een lokale basisschool, de leerdoelen van het instructie-experiment, en de vier fasen in
de ontwikkeling van ruimtelijk structureervermogen, was onze oorspronkelijke verwach-
ting dat de kinderen gedurende het leertraject de volgende aan elkaar gerelateerde leermo-
menten zouden tegenkomen (Hoofdstuk 6):

(1) organiseer objecten als een stap naar de bewustwording van ruimtelijk structureren
voor het vereenvoudigen van telhandelingen;

(2) creéer een motivatie voor het ruimtelijk structureren van objecten;

(3) gebruik ruimtelijke structuren om getalrelaties zichtbaar te maken;

(4) ontwikkel abstracte ruimtelijke structuren die minder context- en taakafhankelijk zijn;

(5) gebruik ruimtelijk structureren op een doelgerichte manier buiten het instructie-expe-
riment om.
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Deze leermomenten hebben de beschrijving van het hypothetisch leertraject (HLT) voor de
eerste ronde van het instructie-experiment geinspireerd. In het kader van het belang van
patronen leggen voor het bewustworden van ruimtelijk structuren (vgl. Papic & Mulligan,
2007), was de eerste activiteit een “patroonactiviteit” waarin kinderen de structuur van een
patroon moesten herkennen en vervolgens verlengen. Tijdens de tweede activiteit, was de
verwachting dat kinderen zulk inzicht in deel-geheel-relaties zouden gebruiken om ver-
schillende typen ruimtelijke structuren die in een zogenaamde “Trucjesdoos” (trucjes om
“makkelijk te zien” hoeveel er van iets zijn) zaten, te onderzoeken en te vergelijken. De
derde activiteit vereiste dat de kinderen gebruik gingen maken van deel-geheel-relaties om
gestructureerde hoeveelheden in relatief grote gestructureerde stipconfiguraties op kaarten
te herkennen en af te lezen. Een gelijke activiteit betrof het herkennen en aflezen van dub-
belstructuren van eierdozen. In de vierde activiteit werd het inzicht in ruimtelijke structu-
ren van kinderen naar een 3-D setting vertaald, waarbij ze de structuur van een blokken-
bouwsel moesten proberen te herkennen en te gebruiken. De verwachting was dat zij hun
ervaringen met ruimtelijk structureren zouden gebruiken en toepassen tijdens de vijfde ac-
tiviteit. Daarin moesten ze een verzameling ongestructureerde bloemen structureren en bij-
houden hoeveel bloemen er waren zonder ze één-voor-één te hoeven tellen.

Terwijl de video-opnamen verder geanalyseerd en bediscussieerd werden met experts, ont-
stonden er patronen die inzicht gaven in de rol van een leeromgeving (“learning ecology”,
Cobb et al., 2003) bij het leren van kinderen:

- De context binnen en tussen de instructie-activiteit moet niet alleen betekenisvol en in-
spirerend zijn voor de kinderen, maar het moet ook productieve, situatie-specifieke
strategieén bieden.

- Een gedeelde woordenschat, het type taalgebruik van de leerkracht, en de manier waar-
op kinderen taal interpreteren is essentieel.

- De instructie-activiteiten overbruggen het niveau van begrip van kinderen met een
leerdoel terwijl de eigen producties van kinderen worden erkend.

- De leerkracht is een essentiéle factor in het aanmoedigen van interactie tussen de kin-
deren.

- De socio-mathematische norm van ruimtelijk structureren moedigt een gedeeld be-
wustzijn van ruimtelijke structuren aan in reken-wiskundige praktijken.

De patronen die in Ronde 1 zijn geobserveerd, zijn van invlioed geweest op het design van
de serie instructieactiviteiten voor Ronde 2 in het instructie-experiment (Hoofdstuk 7). In
Ronde 1 hadden alle activiteiten aansprekende contexten. Voor Ronde 2 hebben we Mier-
tje Maniertje en zijn Maniertjesdoos als overkoepelende context geintroduceerd (Fig. S.3;
Van Nes & Doorman, 2009). Deze context was essentieel om ervoor te zorgen dat de acti-
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viteiten betekenisvol waren en voor het bieden van productieve, situatiespecifieke strate-
gieén in een reken-wiskundige context (De Lange, 1987). Het heeft ook geholpen om een
gedeelde woordenschat te ontwikkelen die fundamenteel is voor het vaststellen van de so-
cio-mathematische norm van ruimtelijk structureren (Gravemeijer & Cobb, 2006).

Fig. S.3  Miertje Maniertje en de Maniertjesdoos

De Maniertjesdoos bevatte uitvergrote kaarten met vingerpatronen, grote dobbelstenen,
uitvergrote kaarten met gestructureerde stipconfiguraties, eierdozen voor zes en tien eieren
en kralenkettingen (vgl. Clements, 1999a; Mulligan et al., 2004; Van den Heuvel-Panhui-
zen, 2001; Van Eerde, 1996). De reden waarom we Miertje Maniertje voor deze context
hebben gekozen, is dat een mier zes poten heeft (een fundamentele en bekende ruimtelijke
structuur), sterk is, wellicht een doos kan dragen, zijn naam rijmt met die van de doos en,
tot slot, spreken mieren jonge kinderen aan. Het verhaal was dat Miertje Maniertje zijn
“maniertjes” met de klas wilde delen, omdat hij de kinderen wilde helpen manieren te vin-
den om een hoeveelheid handig te kunnen bepalen zonder de voorwerpen één-voor-één te
hoeven te tellen.

De leerkracht ontwikkelde een gezamenlijke woordenschat aan uitspraken, zoals Miertje
Maniertjes “handige maniertjes om te zien hoeveel het er zijn”, voor het verwijzen naar de
inhoud van de doos. Dit hielp om de kinderen te leiden naar het verkennen en vergelijken
van ruimtelijke structuren om deze en het inzicht in getalrelaties gedurende het instructie-
experiment tot onderwerp van discussie te maken (Hoofdstuk 8). De overkoepelende con-
text van Miertje Maniertje en de Maniertjesdoos was een van de belangrijkste revisies die
voor Ronde 2 gemaakt zijn. De herziene serie instructieactiviteiten verfijnde de operatio-
nalisatie van ruimtelijk structureren als volgt (Fig. S.4).
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Activiteit 1: De Maniertjesdoos en Mierenstapjes
* Introduceer en verken de context
* Verken ruimtelijke structuren in de Maniertjesdoos
» Vergelijk representaties van hoeveelheden op gestructureerde
gestipte kaarten

Activiteit 2: Eierdozen vullen
* Vergelijk representaties van hoeveelheden in dubbelstructuren
* Vergelijk dubbelstructuren met andere structuren uit de Manier-
tiesdoos

Activiteit 3: In optocht
* Verken structuren van 2-D patronen
* Vergelijk structuren in patronen met andere structuren uit de
Maniertjesdoos

Activiteit 4: Mierenhopen bouwen
* Verken structuren van 3-D patronen
» Vergelijk structuren van blokkenbouwsels met andere structu-
ren uit de Maniertjesdoos

Activiteit 5: Bloemen plukken
¢ Structuren op ongestructureerde verzamelingen toepassen
* Vergelijk representaties van structuren in de Maniertjesdoos
* Verken de rol van structuren in het samenstellen en splitsen
van hoeveelheden

Fig. S.4  Operationalisatie van ruimtelijk structureren in termen van de serie instructieactiviteiten

Resultaten van het instructie-experiment. De analyses van het instructie-experiment na
Ronde 1 duiden op voordelen van een leeromgeving die ondersteuning biedt bij het be-
wustworden van ruimtelijk structureren voor het ondersteunen van inzicht in getalrelaties
van jonge kinderen (Hoofdstuk 8 en 9). Uit de post-interviews is gebleken dat achttien van
de 21 (1G)kinderen van de interventiegroep naar een hogere fase neigeden, dus dat deze
kinderen relatief meer gebruik hebben gemaakt van ruimtelijke structuren in hun aanpak
van de interviewtaken. De NG-kinderen vertoonden relatief minder verbeteringen (vijf uit
zeventien) en zijn vaker gelijk gebleven (elf uit zeventien, waarvan er vijf al in de pre-in-
terviews plafondeffecten vertoonden), met één kind dat van de Toepassingsfase (fase 4)
naar de Gebruiksfase (fase 3) is gezakt. Verder begonnen de 1G-kinderen steeds meer te
verwijzen naar ruimtelijke structuren en gebruik te maken van de gedeelde woordenschat
om de voordelen van ruimtelijk structureren versus tellen te bediscussiéren. Zo ontstond
een norm voor ruimtelijk structureren. De 1G-leerkrachten lieten weten dat zij zich meer
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bewust zijn geworden van ruimtelijk structureren en waardering hebben gekregen voor het
belang ervan voor de ontwikkeling van een in een vroeg stadium ontstaan van reken-wis-
kundige vaardigheden.

Conclusie en discussie

In dit onderzoek hebben we eerst interviews gehouden om een leertraject in de ontwikke-
ling van het leren ruimtelijk te structureren vast te stellen (onderzoeksvraag 1). Met het
formuleren van een HLT en het ontwikkelen van een instructie-experiment, hebben we ver-
volgens onderzocht hoe deze ontwikkeling in een leeromgeving ondersteund kan worden
(onderzoeksvraag 2). Dit resulteerde in de volgende antwoorden en discussiepunten.

Onderzoeksvraag 1. Gebruikmakend van de inventarisaties van strategieén, hebben we het
ruimtelijk structureervermogen van jonge Kinderen in deze leeromgeving in een van vier
fasen geclassificeerd. Deze beschrijven een algemene ontwikkeling van geen bewustzijn
van ruimtelijke structuren, tot het leren herkennen en gebruikmaken ervan, het spontaan
en doelgericht toepassen ervan om inzicht te krijgen in getalrelaties en voor het verkorten
van numerieke procedures, zoals het bepalen, vergelijken en handelen met kleine hoeveel-
heden. Op deze manier bieden de interviewtaken en de inventarisatie een instrument voor
het peilen van inzicht in getalrelaties in termen van ruimtelijk structureervermogen van
jonge kinderen. De inventarisatie van de strategieén zelf is ook een belangrijk interpreta-
tief model dat een ontwikkelingstraject omvat voor de typen strategieén die jonge kinderen
toepassen op de interviewtaken. Dit model was een belangrijke inspiratiebron voor de ont-
wikkeling van het hypothetisch leertraject, nodig voor het beantwoorden van de tweede
onderzoeksvraag.

Onderzoeksvraag 2a. De serie van vijf instructie-activiteiten biedt ondersteuning voor een
lokale instructietheorie, die stoelt op de telvaardigheid van jonge kinderen, hun organisa-
tievermogen en hun bekendheid met fundamentele ruimtelijke structuren. Het uiteindelij-
ke leertraject begint met een introductie van de overkoepelende context van de instructie-
activiteiten, terwijl de kinderen fundamentele ruimtelijke structuren, zoals dobbelsteenpa-
tronen, vingerpatronen en dubbelstructuren verkenden. Vervolgens worden ze aangemoe-
digd om reeds aanwezige structuren in verschillende settings te gebruiken. Dit kan ze voor-
bereiden op het leren spontaan hun eigen ruimtelijke structuren te construeren voor het
verkorten van numerieke procedures. Zo verankert het leertraject het ruimtelijk structu-
reervermogen van jonge kinderen op een manier die hun inzicht in getalrelaties bevordert,
hetgeen hen weer kan helpen bij het leren en begrijpen van hogere orde reken-wiskundige
vaardigheden.
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Onderzoeksvraag 2b. Uit het instructie-experiment is gebleken dat een effectieve leerom-
geving voortbouwt op het reeds aanwezige begrip van kinderen, op het introduceren van
een betekenisvolle context, het ontwikkelen van een gezamenlijke woordenschat en op het
bevorderen van interactief leren. Factoren die van invloed zijn geweest op de ontwikkeling
van het ruimtelijk structureervermogen van kinderen staan afgebeeld in Fig. S.5.

Taalgebruik
Gedeelde woordenschat / / Materialen
Opvattingen over : - — -
Ruimtelijk Realistische en betekenisvolle

ruimtelijke structuren —— P structureren <4—

van de leerkracht overkoepelende context

[

Interactief leren

Eigen constructies
en producties

Geleid heruitvinden
in een kleuterklas

Fig. S.5 Factoren in een leeromgeving die de ontwikkeling van ruimtelijk structureervermogen kun-
nen beinvioeden

RME in de kleuterklas. Verschillende observaties hebben het principe van geleid heruit-
vinden in de kleuterklas een ander karakter gegeven. De interactie tussen kinderen en leer-
kracht lieten geleid heruitvinden zien op een manier waarop de leerkracht de kinderen
vroeg hun ruimtelijk structureerstrategieén met elkaar te delen en te vergelijken, en hoe ze
hun ruimtelijk structureerstrategieén ondersteunden door bijvoorbeeld een blokkenbouw-
sel uit elkaar te halen om de structuur zichtbaar te maken. Door twee kinderen van ver-
schillende niveaus samen te laten werken, konden de kinderen hun strategieén vergelijken
en een voorbeeld voor elkaar zijn. Toch, gegeven de leeftijd en relatief korte aandacht van
deze kinderen, moest de leerkracht meer doen dan alleen begeleiden. De leerkracht moest
een meer directieve rol spelen in het aanmoedigen van interactie tussen kinderen en leer-
kracht, en in het stimuleren te reflecteren op de activiteiten voor het begrijpen van ruimte-
lijk structureren (vgl. Leseman, Rollenberg, & Rispens, 2001; Nelissen, 2002). Dit illu-
streert hoe taal, verticale interactie (Hatano & Inagaki, 1991) en invloeden van de klassen-
cultuur in de kleuterklas een andere rol spelen dan wat doorgaans door de RME-principes
belicht wordt.
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Ruimtelijk inzicht in relatie tot getalbegrip. Alhoewel deze serie instructieactiviteiten
over ruimtelijk structureren kinderen geholpen heeft inzicht in getalrelaties op te doen, is
meer onderzoek nodig om specifieke invloeden van componenten van ruimtelijk inzicht
op numerieke ontwikkeling te onderscheiden. Er is bijvoorbeeld geen overtuigende onder-
steuning gevonden voor invloeden van ruimtelijke oriéntatie op de prestatie van kinderen
op de interviewtaken. Dit verklaart de relatieve afstand tussen ruimtelijke oriéntatie verge-
leken met de meer verbonden ruimtelijke visualisatie- en vormcomponenten in het concep-
tuele schema (Fig. S.1). Toch lijken het vermogen van kinderen om te tellen en te organi-
seren en hun kennis van fundamentele structuren, vereisten te zijn voor het leren gebruiken
en toepassen van ruimtelijke structuren.

Beperkingen van het onderzoek. Er moest met een aantal kwesties rekening worden ge-
houden voor het ontwikkelen, uitvoeren en interpreteren van het onderzoek. Ten eerste
verhoudt de lokale instructietheorie zich alleen tot de observaties uit dit specifieke instruc-
tie-experiment, dat is uitgevoerd met leerkrachten en kinderen van deze Jenaplan kleuter-
klassen. Ten tweede waren de interventie- en non-interventiegroepen erg klein en de non-
interventiegroep was geen strikte controlegroep. Daarom waren bevestigende statische da-
ta- analyses niet mogelijk. Toch is de waarde van het onderzoek dat het kennis genereert
over hoe het instructie-experiment de leerprocessen van de kinderen heeft beinvioed. Het
exploratieve karakter van design research biedt de mogelijkheid om meer kennis op te
doen over de complexe leerprocessen die instructie-interventies oproepen (Gravemeijer &
Cobb, 2006).

Implicaties van het onderzoek. Ten eerste kunnen de interviewtaken en de inventarisatie
van strategieén worden beschouwd als waardevolle instrumenten voor het peilen van in-
zicht in getalrelaties in termen van het ruimtelijk structureervermogen van jonge kinderen.
De faseclassificaties kunnen helpen om bepaalde kinderen te identificeren wiens niveau
van ruimtelijk structureervermogen niet overeenkomt met wat verwacht zou mogen wor-
den op basis van hun leeftijd en ervaringen. Ten tweede biedt de lokale instructietheorie
leerkrachten een model voor het plannen van een reken-wiskundecurriculum voor kleuters
dat verweven is met ruimtelijke structureeractiviteiten. Voorlopige ervaringen met nascho-
ling zijn veelbelovend. Deze lokale instructietheorie ondersteunt leerkrachten ook in het
verwerven van inzicht in hun rol bij het leren van kinderen door socio-mathematische nor-
men vast te stellen; de woordkeuze van de leerkrachten, hun flexibel gebruik van dagelijk-
se materialen en betekenisvolle contexten, en hun perspectief op ruimtelijk structureren,
zijn van grote invloed op hoe kinderen de instructie-activiteiten aanpakken. Deze implica-
ties sluiten aan op de vraag naar onderwijspraktijken die het belang van ruimtelijk struc-
tureren voor de ontwikkeling van inzicht in getalrelaties van jonge kinderen meer erken-
nen (Clements, 1999a).
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Aanbevelingen voor toekomstig onderzoek. Toekomstig onderzoek kan deze lokale in-
structietheorie extrapoleren naar andere contexten en settings teneinde de generalisatie er-
van te bevorderen. De uitkomsten van het onderzoek verwelkomen longitudinale studies
voor het bestuderen van langetermijneffecten van de serie instructieactiviteiten op het le-
ren van kinderen en op de gerichtheid van de leerkracht op ruimtelijk structureren in de
klas. Op een meer praktisch niveau kan de context van Miertje Maniertje en de Maniertjes-
doos in verschillende settings uitgebreid en uitgeprobeerd worden.

Samenvattend zet dit onderzoek de toon voor meer onderzoek naar het stimuleren van
vroege ruimtelijke en numerieke vaardigheden. Immers, hoe eerder we (delen van) leertra-
jecten van jonge kinderen in kaart kunnen brengen, des te beter we in staat zijn om een
ondersteunde leeromgeving in te richten die het reken-wiskundige leren van jonge kinde-
ren kan handhaven en ze een voorsprong kan geven in hun reken-wiskundige opleiding.
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1 Spatial Structuring for Automatic Quantity Processing !

In this appendix, we first explain what motivated the interdisciplinary character of the
MENS research project. Then we turn to the neuroscientific component of the project and
present the study on automatic quantity processing. “Automatic” implies that the meanings
of Arabic numerals (i.e., the magnitudes of numerical symbols) are instantly retrieved even
if the retrieval process is not task-relevant. Finally, we explain the difficulties that had to
be negotiated for planning, performing and analyzing the combined research. Although the
combination of the two research disciplines remains theoretical, an important outcome of
the combined research is that the explorations have set the stage for future interdisciplinary
investigations so that they may build on our two studies and lay a stronger foundation for
the early prevention and identification of developmental delays.

1.1  Motivation for interdisciplinary research

The significance of the collaboration between the two research disciplines lies in the
grounding of the research in educational mathematics theory as well as in neuroscientific
theory, while at the same time providing the neuroscientific research with a strong practical
basis from which testable predictions can be made (Jolles et al., 2005). Many recent pub-
lications have emphasized how scientists from the disciplines of mathematics education
and neurosciences can and should contribute to each other’s research (Berninger & Corina,
1998; Byrnes & Fox, 1998; Davis, 2004; Griffin & Case, 1997; Jolles et al., 2005; Siegler,
2003; Spelke, 2002). With research literature increasingly advocating the need to integrate
results from neuroscientific research and education research, (mathematics) education re-
searchers are becoming more aware of the benefits of applying neuroscientific findings to
(mathematics) education (e.g., Campbell, 2006; De Jong, 2008). Neuroscientific brain im-
aging techniques, for example, offer educational researchers a tool for gaining insight into
cognitive processing that extends beyond behavioral data. This provides another level of
analysis that can help to validate behavioral data.

As Cobb (2000) points out, comparing and contrasting research from various perspectives
has the added benefit of deepening understanding of the phenomena that is being studied
and of broadening the practicality of the results. As Berninger and Corina (1998) posit,
rather than a unilateral conception of interdisciplinarity, bidirectional collaboration be-
tween cognitive neuroscience and educational research can enrich both educational re-

1. This chapter is partly based on an earlier publication in EPAT (Van Nes, in press)
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search as well as the neurosciences. Neuroscientific research can help educational re-
searchers gain insight into brain-cognition relations that underlie cognitive processes and
the effects of instructional interventions. At the same time, the behavioral patterns that ed-
ucational researchers study before and after a particular instructional intervention, can
contribute to understanding the nature of possible changes in brain activation that result as
a function of learning (Berninger & Corina, 1998). Thus, whereas “neuroscience can in-
vestigate synaptic connections, but not conceptual ones” (Bennett & Hacker, 2003, p. 405),
educational researchers can extend the research with conceptual investigations for under-
standing why, for example, certain interventions may or may not work, and for formulating
new research questions (Ansari & Coch, 2006). Such a dialogue between the two disci-
plines is what underlies the motivation for finding ways in which the neuroscientists and
the educational researchers can collaborate in the MENS research project.

Interdisciplinary collaboration in the MENS research project is also particularly relevant to
its focus on young children’s mathematical development. Despite the body of research on
the remarkable mathematical competencies of young children, what is disconcerting is that
studies and subsequent instructional interventions often stay focused only on children’s
numerical skills (Baroody, 2004). This overshadows young children’s excellence in less
trivial mathematics areas such as patterning, spatial perception, reasoning, classification
and problem solving (Griffin & Case, 1997; Ness & Farenga, 2007).

Both research disciplines can in their own ways gain knowledge about how to identify and
support young children who may be experiencing delays in their mathematical develop-
ment as well as those who welcome challenges to optimize their mathematical develop-
ment. As explained in this thesis, the purpose of the mathematics education study is to gain
insight into young children’s spatial structuring ability and its role in emerging number
sense, particularly with regard to insight into numerical relations. What concerned the neu-
roscientists in the research project is that, compared to for example studies on literacy def-
icits, relatively little is known about the cognitive processes that are involved in the devel-
opment of mathematical competencies and that may underlie numerical deficits (Ansari &
Karmiloff-Smith, 2002). As such, one of the main objectives of the neuroscientific study
was to augment current diagnostic and remedial practice with new insights into prerequi-
sites for the development of mathematical abilities.

In what follows, we describe the theoretical background of the neuroscientific study in the
MENS research project. This leads to an explanation of the cognitive study that was per-
formed to prepare for the neuroscientific study. At the time of writing this thesis, the out-
comes of the neuroscientific study were not ready for documentation yet. We continue with
a discussion about the various differences that have been encountered between the research

296



Spatial Structuring for Automatic Quantity Processing

methodologies. Although our search towards interdisciplinary collaboration has not result-
ed in data-driven research outcomes, our explorations for ways to integrate the two re-
search disciplines may inspire future interdisciplinary research initiatives in the field of
mathematics education.

1.2  Neuroscientific theoretical background

This section begins with a description of several neuroscientific research techniques that
make it possible to chart behavioral and neurophysiological processes in young children.
The outcomes of recent neuroscientific research regarding the development of quantity
processing are then discussed to sketch the setting of the neuroscientific study in the MENS
research project. Although this is not an exhaustive literature review, it is intended to give
an impression of neuroscientific theories and research outcomes that (can) influence cur-
rent mathematics educational practice and this interdisciplinary research.

1.2.1 Neuroscientific research techniques

Neuroscientists make use of cognitive behavioral tasks to investigate explicit and implicit
behavioral changes with respect to changes in subjects’ reaction times (see Hubbard, Pi-
azza, Pinel, & Dehaene, 2005). Although behavioral tasks are easy, inexpensive and non-
intervening, they provide little information about the nature of the cognitive processes and
the brain activity that occurs in response to the tasks. For that reason, behavioral studies
are often supplemented with modern brain imaging techniques. The added value of mo-
dern brain imaging techniques compared to experimental behavioral studies, is that ex-
traordinary behavioral observations can be retraced in the neuronal networks. As such, the
premise of neuropsychological research is that activations in one location of the brain im-
plies that the same processes are occurring, whereas activation in different locations of the
brain indicates different processes.

The electroencephalography (EeG, Fig. A.1) technique highlights the location and the re-
action and processing speed of the activated brain areas. The electrocortical activity that
occurs at and after the presentation of a stimulus, is registered by electrodes that are at-
tached to the head. This activation is subsequently summed and averaged by a computer
to result in Event Related Potentials (ERpPs). The graph of these ERPs distinguishes several
positive and negative peaks (components) that characterize certain types of responses. A
P3 component (a positive peak at approximately 300 ms after stimulus onset), for example,
identifies the type of response that is required, in contrast to the P2 component that is task-
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related and associated more with the physical characteristics of the stimulus. The advan-
tage of this technique is that it is non-invasive, that it can be used with young children, and
that it has a stronger temporal resolution than other brain imaging techniques. A disadvan-
tage, however, is that the technique is not sensitive enough for precise localization of brain
activity.

Fig. A.1 A sample EEG set-up (Rocha, Rocha, Massad, & Menezes, 2005)

Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) can not
only highlight the structure, but also measure the activation of specific areas in the brain.
The fMRI technique measures relatively strong blood flow. The assumption is that active
brain areas require more blood and therefore use up more energy in the form of glucose.
Hence, compared to the EEG technique, the advantage of these techniques is that their spa-
tial and temporal resolutions are high. The disadvantage is that they are expensive and that
the statistical methods that are used to localize active brain areas can result in rather am-
biguous information. To limit the effects of these disadvantages, researchers are increa-
singly combining several techniques within one study (Spelke, 2002).

In the next section we discuss several neuropsychological studies that make use of behav-
ioral and imaging techniques to gain insight into the development of mathematical think-
ing and learning.

1.2.2 Numerosity in the brain

Based on what is known about the activation of certain brain areas, Dehaene, Piazza, Pinel,
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and Cohen (2003) and Dehaene, Molko, Cohen, and Wilson (2004) described two disso-
ciable systems that represent numerosity differently in the brain (see also Lemer, Dehaene,
Spelke, & Cohen, 2003). One system is based on a circuit that becomes active for general
visuo-spatial functions and that is associated with understanding number as well as with
estimation and the manipulation of quantities. The horizontal segment of the intraparietal
sulcus (the HIPS), in particular, is considered to be the core area in the brain where this type
of numerosity is processed. The second system is based on a circuit in the brain that is as-
sociated with language and with the storage and retrieval of factual mathematical informa-
tion. These tasks are said to activate the angular gyrus.

The researchers have incorporated the neurological experimental support for these two
processing systems into the Triple Code Theory (Dehaene et al., 2003). In this theory, apart
from the HIPS and the angular gyrus in the parietal lobes, the posterior superior parietal sys-
tem is involved in number related processes. This third system is less domain-specifically
activated than the HIPs is, because it is associated with the attention and eye orientation
that is necessary for functioning in space. For this reason, this area is especially activated
during tasks that relate to the spatial manipulation of quantities, such as counting a se-
quence. According to the Triple Code Theory, these three conjugated systems summarize
the organization of number related functions in the brain and support the idea of mathe-
matical intuition (Dehaene et al., 1999, 2003; Wynn, 1998; but see Ansari, Donlan, Tho-
mas, Ewing, Peen, & Karmiloff-Smith, 2003).

The ability to differentiate quantities appears to develop before the manifestation of lan-
guage. Starkey and Cooper (1980) were one of the first to show that babies as young as
four to six months can differentiate arrays of different quantities of black dots that are vi-
sually presented. In Wynn’s research (1998) it appeared that young babies are not only able
to differentiate groups of objects, but also temporal sequences of sounds or events, for ex-
ample. Xu and Spelke (2000) found that six-month old babies can note a change from eight
to sixteen objects (a 2.0 proportion), but not a change from eight to twelve objects (a 1.5
proportion), given that spatial factors such as surface area, density and brightness remain
constant. These studies have been expanded and varied (e.g., Lipton & Spelke, 2003; Mix,
Huttenlocher, & Levine, 2002; Wood & Spelke, 2004, 2005), and the results support the
idea that the ability to differentiate quantities improves with age and that this improvement
occurs before the development of language or symbolic counting.

Rivera, Reis, Eckert, and Menon (2005) studied the development of mental mathematical
abilities in particular. Their brain imaging studies demonstrated that older subjects showed
more activation in brain areas such as the left parietal lobe than children. This activation
suggests that mental mathematical procedures require more working memory and atten-
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tion from children than for older subjects. Likewise, their declarative and procedural me-
mory is loaded more. The researchers conclude that certain brain areas are functionally
specialized for mental mathematical procedures, and that, during the development of these
areas, the load on memory and attention decreases. Characterizations of patients with ab-
normal behaviors have also pointed to how the brain has separate processing mechanisms
for facts that pertain to addition and multiplication, and that the executive system particu-
larly plays an important role in simple mental procedures (Kaufmann, 2002; Kaufmann,
Lochy, Drexler, & Semenza, 2004).

The studies above are examples of research that, in line with the Triple Code Theory, sug-
gest that the human brain is naturally designed to represent and process number. What has
been investigated less, however, is how the various systems in the brain are behaviorally
and neurophysiologically related and how this relationship translates to (the development
of) magnitude processing. For instance, correlations between visuo-spatial deficits and a
delayed or deficient development of mathematical abilities have illustrated the prominent
role that visuo-spatial abilities play in numerical processing (Rourke & Conway, 1997).

Cantlon, Brannon, Carter, and Pelphrey (2006) made a neurophysiological connection be-
tween non-symbolic and symbolic numerical processing of adults. This suggests that com-
plex, symbolic mathematical abilities share a neurobiological and developmental origin
with non-symbolic mathematical abilities. Since the HiPs of four-year old children was just
as activated as that of the adults, Cantlon et al. conclude that the non-symbolic activity in
the HIPS may be the source of adult mathematical knowledge. This provides more insight
into the neurophysiology of mathematical development. Further, it underlines the develop-
ment of automatic processing of non-symbolic and symbolic quantities as a prere-quisite
for the ability to perform more complex mathematical procedures (Butterworth, 1999;
Rousselle & Noél, 2007). Children who lag behind in the automaticity of simple arithmetic
facts, tend to continue to use unsophisticated strategies (i.e., counting; Butterworth, 2001).
This suggests that they have not gained enough insight into numerical relations to be able
to operate with quantities at a more abstract level. This has also been discussed in the mo-
tivation for the ME research on spatial structuring for insight into numerical relations (see
Chapter 2).

The Numerical Stroop Paradigm (NsP) is often used to gauge children’s ability to process
quantities automatically. In this paradigm, subjects determine whether a numerical stimu-
lus is physically or numerically larger than a certain other numerical stimulus. Two stimuli
(number symbols for the symbolic NsP and sets of dots for the non-symbolic NsP) are si-
multaneously projected on a screen (Fig. A.2). The stimuli vary in their physical or nume-
rical size (i.e., magnitude) and participants are asked to respond to one of these dimen-
sions.
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The expectation is that if the magnitude of the stimulus (symbols or dots) is automatically
activated (even if the dimension is not relevant to the task), then facilitation effects occur
for congruent stimuli, interference effects occur for incongruent stimuli, and no effects oc-
cur for neutral stimuli. Facilitation and interference effects (measured in terms of reaction
times and accuracy) are called Size Congruency Effects (SCE). This effect occurs when at
least one of the dimensions is automatically activated (even if the dimension is task irre-
levant). This activation improves participants’ performance when the dimensions are con-
gruent, but (task-irrelevant) information must be inhibited if the stimuli are incongruent.
Inhibition takes time (higher reaction times) and is error-prone (lower accuracy).

1. Symbolic NSP

a. congruent condition b. incongruent condition c. neutral condition

72 2+7 22

2. Non-symbolic NSP

a. congruent condition b. incongruent condition c. neutral condition
°
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Fig. A.2 Example of the stimuli in the (1) symbolic NSP and (2) non-symbolic NSP. Participants re-
spond either to the physical size or to the numerical size of the stimuli. (a) The congruent condition: the
physically larger stimuli are also greater in number. (b) The incongruent condition: the physically larger
stimuli are less in magnitude. (c) The neutral condition in the physical size comparison task: the phys-
ical size of the stimuli differs, but the numerical size is the same.

Very young children show no interference effects when the physical size contrasts with the
magnitude of the numerical stimulus. This contrasts with older children who automatically
process the meaning of a numerical symbol and therefore need more time to think about
possibly contrasting physical size or magnitude (Girelli, Lucangeli, & Butterworth, 2000;
Rubinsten, Henik, Berger, & Shahar-Shalev, 2002). The significance of investigating au-
tomatic quantity processing as an influential factor in the development of mathematical
abilities becomes apparent from studies with dyscalculic children. These children had dif-
ficulty with automatically activating the magnitude of a number and they therefore re-
quired more attention than normal for understanding the meaning of a numerical symbol
(Rubinsten & Henik, 2005).
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By measuring the brain activity of subjects in the NsP, Szlics and Soltész (2007a, 2008)
and Szucs, Soltész, Jarmi, and Csépe (2007b) studied how the interference and facilitation
effects of children compare to those of adults. The researchers found that facilitation and
interference effects occur at different moments in the processing and responding to the
stimulus. Further, children experienced relatively more interference than adults because
they had more difficulty suppressing the irrelevant response. This agrees with Ansari, Gar-
cia, Lucas, Hamon, and Dhital’s (2005) fMRI research which showed that, throughout the
development, the parietal lobes become increasingly involved in symbolic number pro-
cessing and that this can eventually contribute to an automatic and thereby a faster ability
to associate numerical symbols with the magnitudes that they represent.

1.3 The NS component of the MENS research project

The literature review above outlines what is already known about the development of
mathematical abilities in terms of the brain areas that are involved and the processing of
symbolically represented quantities. What is not yet understood, is how the early non-sym-
bolic representations become integrated with later acquired symbolic representations of
quantities. The Ns study of the MENS research project builds upon the research above to
gain insight into the development of automatic quantity processing (Gebuis, Cohen Ka-
dosh, De Haan, & Henik, 2008; Gebuis, 2009).

The assumption of the Ns study, is that automatic processing of numerical symbols deve-
lops with age. For this, the researchers compared kindergartners’ performance (compara-
ble in age to the Kindergarten 2 children in the ME study, see Chapter 3) to that of adults.
SCE effects for the processing of non-symbolic stimuli and symbolic stimuli could be
compared by using both symbolic (i.e., Arabic numerals) and non-symbolic stimuli (i.e.,
sets of dots; Gebuis et al., 2008). The participants were instructed to press the button on
the side of the computer screen that corresponded to the side where the physically larger
(non-symbolic or symbolic) stimulus was presented (see Fig. A.2).

The results of the adults showed scEk effects for both the symbolic and non-symbolic tasks.
The researchers concluded from this that the non-symbolic task is appropriate for investi-
gating children’s ability to automatically process non-symbolic quantities. While in the
symbolic task, the children revealed no sce (i.e., young children may be familiar with
number symbols, but they do not yet have automatic access to their meaning), in the non-
symbolic task, children did show sce. This is interpreted to indicate that they had access
to non-symbolic numerosities and that they did have knowledge about magnitude and how
magnitudes relate to each other (Gebuis et al., 2008).

302



Spatial Structuring for Automatic Quantity Processing

Since the automatic processing of symbolically presented quantities can influence mathe-
matical development, one practical implication of this study could be that it emphasizes
the importance of attending to numerical relations and the meaning of quantities and nu-
merical symbols in education. In fact, Butterworth, Zorzi, Girelli and Jonckheere (2001)
state that children’s ability to organize arithmetical facts in terms of magnitude, is essential
for developing arithmetic ability. Education could expose children to numerical symbols
as a way to repeatedly stimulate their ability to process magnitudes more automatically.

This study has set the stage for an EEG study on children’s non-symbolic and symbolic
quantity processing. A difference in neuronal activation between young children (Kinder-
garten) and older children (grade 2) and adults on a symbolic but not a non-symbolic task,
should highlight the neuronal processes that play a role in the development of automatic
quantity processing. To better be able to study these neuronal processes, the researchers
measured Event Related Potentials (ERPS) as the participants performed the non-symbolic
and symbolic size congruity tasks described above. This contributed to insight into chil-
dren’s inhibition mechanisms, and whether the congruency effects occurred during the act
of processing or during the act of responding to the stimulus (see Gebuis, 2009).

1.4 Relating ME and NS

The interdisciplinary character of the MENS research project was intended to answer to the
call for more interdisciplinary knowledge about how young children’s developmental po-
tentials in the area of spatial thinking and number sense may be cultivated (Jolles et al.,
2005). In this section we describe the difficulties that were encountered in realizing this
interdisciplinarity. The proposed theoretical relationship between the two studies, can be
seen as a preparation for future interdisciplinary initiatives in the field of mathematics ed-
ucation.

1.4.1 ME versus NS

The challenge in the overarching MENS research project was to explore ways for relating
the differing research paradigms of the two research disciplines to each other. This search
involved continuous discussions during which the researchers first had to chart the theo-
retical and methodological differences before looking at how these differences could be as-
similated. In what follows, we discuss three general issues that had to be negotiated.
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First, the Ns study was limited to a laboratory setting to minimize noise in the data. The
consequence of this is that it dismissed research in the classroom setting. However, part of
the aim of the ME study is to grasp characteristics of an instructional setting that may stim-
ulate children to spatially structure. By definition, this involves the simultaneous manipu-
lation of more (difficult to control) variables than what is permitted for sound experimental
research. A distinction between experimental groups would be less valuable to an educa-
tional setting because any differences in results between the two groups could be attributed
to variables that are difficult to control (e.g., teaching styles or children’s individual differ-
ences, Schoenfeld, 2000).

Second, limitations to research techniques determine the type of activities that may be per-
formed in research, as well as the types of questions that could be answered using these
techniques (Varma, McCandliss, & Schwartz, 2008). The tasks that were developed for the
NS study relied on a computer with an EEG set-up for measuring participants’ realtime in-
formation processing mechanisms. Children must be able to respond almost instantly with-
out being distracted, and their motor activity must be limited to prevent noise in the EEG
data. Such experimental tasks differ greatly from the tasks that are generally accepted in
and relevant to educational research. Hence, the question is whether the results of research
performed in a strictly controlled setting with downsized tasks, could actually be extrapo-
lated to a level of cognition that is relevant to educational practice (Davis, 2004).

The third issue that we encountered is a more practical one. The neuroscientific study de-
pended on many external variables that made the study vulnerable to delaying the MENS
research trajectory. The research could not be performed, for example, without the consent
of the Medical Ethical Testing Committee, and the EEG apparatus malfunctioned regularly.
Further, it took at least four hours per participant to gather data, so it was difficult to in-
clude the many participants that were necessary for such neuroscientific research within
the time frame that was available for the research project. As such, it was no longer possi-
ble to come to combined data-driven conclusions. However, our struggles in negotiating
such theoretical and methodological differences have provided experiences that set a valu-
able example for future interdisciplinary investigations in the field of mathematics educa-
tion research. Moreover, as discussed in the next paragraph, the outcomes of the two stud-
ies provide input for a theoretical relationship between spatial structuring, automatic quan-
tity processing and the development of children’s numerical insight.

1.42 ME&NS

One interpretation of the NS study is that young children’s insight into numerical relations
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is fundamental to knowledge of numerical symbols, and therefore to their mathematical
development. The fact that the Kindergarten children in this study were already familiar
with numerical symbols, highlights how early these children are taught to recognize the
numbers. Yet, in the Ns study it became clear that although these children recognized nu-
merical symbols and had a sense of ordinality (i.e., they were able to indicate whether the
magnitude of a certain number is greater or smaller than another number), they had not yet
automatized access to the meaning of these symbols. A limited understanding of the mean-
ing of the symbols could suggest a lack of insight into numerical relations that help to un-
derstand the composition of a quantity (e.g., 6 is greater than 2 because 2 fits into 6 three
times) which may be represented by a numerical symbol. The importance of not only rec-
ognizing but also understanding the meaning of these symbols (i.e., through insight into
numerical relations) for the development of mathematical abilities, has repeatedly been ad-
dressed in other research (e.g., Butterworth, 2001).

At the same time, the ME study sheds light on the role of spatial structuring in children’s
development of number sense, particularly for insight into numerical relations. In theory,
this association can offer an explanation for the differences in congruency effects that were
found between the two groups of participants in the Ns study; children’s lack of under-
standing the meaning of numerical symbols may be the result of limited insight into nu-
merical relations, while this may be supported by a greater awareness of spatial structures
and the development of spatial structuring ability. As such, we propose that the instruction
activities which were developed in the ME study for helping children become aware of spa-
tial structures for abbreviating numerical procedures, may be implemented in classrooms
to foster children’s insight into numerical relations (i.e., how magnitudes relate to each
other for (de)composing quantities). Fig. A.3 summarizes the proposed relationship be-
tween spatial structuring ability for stimulating insight into numerical relations, and the de-
velopment of automatic access to symbolic meaning. This trajectory should help children
prepare for higher-order arithmetic abilities.

This theoretical outcome of the collaborative research highlights the need for more atten-
tion in education to stimulate insight in numerical relations that elucidates the meaning of
the quantity (i.e., magnitude) which may be represented by a particular numerical symbol.
The ME study suggests that one viable method for fostering this understanding is through
supporting children’s spatial structuring ability. Future research could investigate whether
improvements in children’s spatial structuring ability in the ME study, affects their insight
into numerical relationships. This may, in turn, support them in understanding the nume-
rical symbols so that access to the meaning of symbolically presented number may be more
automatized.
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Fig. A.3 A summary of how the mathematics education study and the neuroscientific study in the
MENS research project may be related: the role of automatic quantity processing for supporting formal
arithmetic abilities is incorporated into the conceptual schema

Children with insight into numerical relations are ultimately expected to automatically re-
trieve magnitudes of numerical symbols, to abbreviate numerical procedures, and to de-
velop strong foundations on which to build more formal mathematical insights. A longitu-
dinal study could involve the same children in both studies for a longitudinal investigation
into possible correlations between the learning trajectory on children’s spatial structuring
ability and neurophysiological development of non-symbolic and symbolic quantity pro-
cessing. This may help to further disentangle the role of spatial structuring ability for the
development of number sense, insight into numerical relations, automatized access to the
meaning of numerical symbols, and ultimately, formal mathematical abilities.

The search for ways to combine the two disciplines in the MENS research project has shown
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that interdisciplinary success depends on how well the research disciplines that are in-
volved communicate with each other so that the research perspectives can mutually be re-
spected. Davis (2004) states that research is only truly interdisciplinary if the parties that
are involved understand each other’s specialist contributions. Only when neuroscientists
and education researchers stay involved with each other’s research, will they be able to
work together rather than past each other (Ansari & Coch, 2006). Throughout the deve-
lopment of the MENS research project, we tried to emphasize that neuroscience is not edu-
cational research and that educational research is not neuroscience. This insight underlined
the added value of interdisciplinary research: by approaching the research questions from
two perspectives, we could perform more enriched research with the outlook of better
grounded research results. This underlines how the more researchers from different re-
search domains work together, the better the research results may contribute to reliable and
more generalizable models about learning (Kaufmann & Nuerk, 2005).

1.5 Conclusion: MENS

In the previous section, we proposed a theoretical relationship between the outcomes of
the Ns study regarding the role of insight into numerical relations for automatic quantity
processing, and the outcomes of the ME study regarding the role of spatial structuring abil-
ity for stimulating insight into numerical relations. From this we conclude that (a) insight
into numerical relations is an important prerequisite for understanding numerical symbols,
that (b) attention to spatial structuring can support this insight, and that (c) despite several
theoretical and methodological differences, the MENS research project is a valuable initia-
tive for realizing interdisciplinary research to improve mathematics education.

Although the combined research outcomes of the MENS research project are still very ten-
tative, the trajectory along which the theoretical and methodological differences as well as
domain-specific questions, considerations and decisions were negotiated, offers valuable
resources and learning opportunities for researchers in similar interdisciplinary investiga-
tions. Hence, an important outcome of the overarching MENS research project is that it set
an example for how certain theoretical and methodological differences in interdisciplinary
investigations may be negotiated (Van Nes & Doorman, 2006; Van Nes, in press). In effect,
the two disciplines performed preparatory work for future research by setting up and per-
forming the two studies. This has culminated in a research design that has the potential for
combining the outcomes of the instruction experiment with the outcomes of the EEG ex-
periment through, for example, involving the same groups of participants or through per-
forming a longitudinal correlational study.
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Taken together, the MENS research project offered a unique opportunity to explore the char-
acteristics, including the relative limitations, of the methodologies of the two research dis-
ciplines. We conclude that although the outcomes are speculative, they pave the way for
future interdisciplinary research initiatives in the field of mathematics education. In the
meantime, the outcomes of the mathematics education study that have been discussed in
this thesis, highlight the important role of spatial structuring ability in mathematical deve-
lopment. Moreover, the instructional sequence offers practical means to improve instruc-
tional settings for cultivating young children’s early spatial structuring ability. In effect, the
earlier young children’s mathematical development is fostered, the higher the chances of
long-term success in preventing delays as well as in encouraging advanced mathematical
understanding.
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2 Script of the Tasks For the Pre- and Post-interviews

Note: this script is translated from Dutch and stated briefly here

Interview Picking Flowers with Noddy
Task 1
Set-up 8 flowers in between 5, 9, and 11 flowers. The 8 are arranged as 2 rows of 4, the
11 as 3 rows of 3 and another 2. The 5 and 9 flowers are bunched together.
R &
& &
®e® & &
& &
48 o &6
o6 &%
& & & &
se ©5°
Introduc- | This is Dwarf Noddy (show the toy figure). Have you seen him before? Today he
tion is here because he needs your help. Would you like to help him?
Question | When Noddy last visited the forest, he was looking for flowers for decorating his
1 house. He had just turned 8 dwarf years old. He was going to celebrate that with
his dwarf friends. Can you use your fingers to show me how much 8 is?
Solution
Question | Noddy thought: what if I could quickly see which bunch of flowers has 8 in it,
2 then I’ll be finished in no time! Can you explain to Noddy how, without counting,
you can know which bunch has 8 flowers in it?
Solution
Question | Which bunch of flowers has more than 8 in it? Can you spot another bunch that
3 has more than 8 flowers?
Solution
Question | How many flowers do we need to add to this bunch so that it also has 8 flowers?
4
Solution
Question | How can you arrange the flowers so that it is easier for someone else to see, with-
5 out counting, that there are 8 flowers? (the 8 flowers are now arranged randomly)
Solution

309



Appendix

Interview Dwarf Houses
Task 2

Set-up Two block constructions each made up of 8 uniformly colored blocks; the first is
unstructured (asymmetrical) and the second is structured (symmetrical).

Introduc- | When Noddy came home, he met his neighbor. His neighbor is always complain-

tion ing. This time, he was complaining about how he thought that his house was
smaller than Noddy’s house. Noddy wanted to cheer him up by showing the
neighbor that his house is not so small at all.

Question For which house is it easier to see out of how many blocks it is made? How do you

1 know?

Solution

Question How many blocks do you think you will need to build that house? And how many

2 for the other house?

Solution

Question Now you can use these blocks (give the child a different set of another 8 blocks) to

3 rebuild this house. Can you rebuild the other house as well?

Solution

Question Which house did you find easier to rebuild? Why?

4

Solution
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Interview Party Hats
Task 3

Set-up Set of red, white and blue party hats (cut out of paper) arranged in the following
patterns

a. abab

b. abaaba

c. abbcee

DAL
YIYY
YT

Intro- The dwarf friends took their hats off when they came into Noddy’s house. Noddy
duction put the hats in a long line on a table outside (show the child the first pattern of
hats). The party was a lot of fun. Many friends came by and they liked Noddy’s
flowers. But then...a strong gust of wind came through the window and blew some
of the party hats off the table. What a mess! How can we now know which hat
belongs to which dwarf if the dwarves only remembered where Noddy had put
their hat in the line...?

Question | Can you show Noddy how he can place the hats in the right order so that the
1 dwarves can find their own hat again?

Solution
a.

Solution
b.

Solution
c.

Question | How can you explain to Noddy what the line looks like so that he can make the
2 line himself?

Solution
a.

Solution
b.

Solution
c.

311



Appendix

Interview Map of the School
Task 4

Set-up A picture of a simple outline of the school

Sl L 11|

Introduc- | Before Noddy leaves to go home again, he would like to take a look around your
tion school (show the map of the school). Here is a map of your school. Look, this is
your classroom. Can you point to the other classrooms on the map?

Question | Can you tell Noddy where the gym is on the map? Can you use your finger to
1 point to where the gym is?

Solution

Question | Can you point with your finger in the air to where the front door of the school is?
2 And in which direction is the playground?

Solution
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Appendix 3

Key to using the table

» The categories “recognizing structure”, “applying structure”, “determining quantities”,
“comparing quantities”, “operating with small quantities”, and “extending spatial
structure” are the components within the domains of spatial structuring and number
sense

« Part 1: The flashcards that make up the first part of the interviews

« Part 2: The tasks that make up the second part of the interviews

» Codes 1-8: Refer to codes that identify each strategy in the strategy inventory

» NJ/A means that this part of the classification is not applicable to the part of the inter-
view

« Code 2 (i.e. “the strategy is too difficult to interpret”) is possible in all phases for all
the questions in the interview.
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4 The Strategy Inventory
Spatial Structuring
Code | Recognizing Applying Extending

spatial structures

spatial structures

spatial structures

1 Does not seem to know how to approach the problem
2 The strategy is ambiguous, yet the result is acceptable
3 Does not spontaneously Acts without spatial Does not pattern

recognize spatial
structures

¢ (Usually) does not rec-
ognize spatial structures
at first sight and must
therefore count quanti-
ties
e.g., Counts all the finger pat-
terns; Has trouble producing
own finger patterns; Counts
the dots on all the flashcards;
Has no (grounded) preference
for the structured construction
and finds the structured house
easier to count because (e.g.)
“it’s prettier” or because “it
doesn’t have to be turned
around”

structuring

e Acts  unsystematically
even though a structure is
provided in the task

e Leaves the objects un-
structured or arranges
them without mathemati-
cal intentions

e.g., Shows, without having

tried to count them, a wrong

number of fingers; Doesn’t
make use of readily available
rows to count systematically;

Arranges chips into a particular

shape because “that’s fun”;

Counts both the structured and

unstructured constructions

without keeping track of count;

Rebuilds a block construction

without a plan, and/or the con-

struction differs greatly in size/
shape from the example

 Attends neither to the
rule, nor the regularity
of a pattern

e.g., After “abcabc’ in a pat-

tern, comes “dcabf’ or ‘cba-

bacb’

e Cannot verbalize the

regularity of a pattern
e.g., Points and says “this
one and then this one and
this one”; Makes own rule
like “pile up the hats and put
them away”
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Spatial Structuring

are related to an
experience

* Recognizes certain spa-
tial structures on the
flashcards that are based
on experiences with
small quantities

e.g., Recognizes finger pat-
terns (“I just see it”) for a cer-
tain age (“that’s how old |
am”) or for 5 and 10; Recog-
nizes either the 5 or 10 on the
dice; Recognizes certain
shapes based on experiences
with them

to objects

e Tries to keep track of
count by applying a kind
of arrangement to the ob-
jects

e.g., Carefully counts each fin-
ger to show a particular finger
pattern; Moves objects apart
because “that’s how you can
count them easily”; Spreads out
already structured objects to be
able to count them easier;
Counts the blocks of a struc-
tured construction in a system-
atic, but not yet accurate, way;
Refers mostly to the front face
when rebuilding a block con-
struction and tries to at least re-
build the same size and shape as
the example; Requires much
guidance to complete the con-
struction

Code | Recognizing Applying Extending
spatial structures spatial structures spatial structures
4 Recognizes structures that | Can apply an arrangement Recognizes certain

characteristics of a
pattern

» Shows part of the reg-
ularity of a pattern by
only examining the
beginning of the pat-
tern. Does not appear
to understand the es-
sence of a pattern yet

e.g., Literally copies the
pattern by placing elements
above or below the exam-
ple; Repeats the previous el-
ements of the pattern with-
out showing insight into
how the pattern should con-
tinue

e Has trouble verbaliz-
ing the regularity.
Names only the colors
of the elements in the
example

e.g., “red, white, blue, red,

white, blue, red, white...”
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Code | Recognizing Applying Extending
spatial structures spatial structures spatial structures
5 Is developing towards Can apply a type of Can make use of part of

making use of readily
available structures

e (Usually)  recognizes
spatial  structures for
various quantities with-
in a specific setting, as
well as various types of
spatial  structures for
certain small quantities.
(Often) requires guid-
ance in this. Can verbal-
ize in what ways spatial
structure may be useful.

e.g., Recognizes several of the
7, 8, and 9 finger patterns;
Recognizes both the 5 and 6
on dice; Can read off the
number of corners of the pen-
tagon or hexagon; Arranges a
5-structure only when asked
retrospectively; Perceives
structure implicitly in a set of
objects (“that group has one
row more”) or in a construc-
tion (“there are less blocks be-
cause it’s easier to count,
that’s the way it’s built™)

organization

e Uses readily available
structure to act systemati-
cally and accurately, but
not yet for abbreviating
the procedure

e.g., Counts objects in a partic-
ular order; Counts each finger
to accurately show a particular
finger pattern; Unitarily counts
the blocks of a construction in a
systematic way; Rebuilds a
construction by not only exam-
ining its front, but also by tak-
ing the relationship between the
blocks into account; Requires
guidance to complete the con-
struction properly

« (Often) applies a type of
organization by arranging
the objects into
a. a single row or circle
b. several short rows
c. a coherent figure

e.g., Arranges 10 flowers as 2
rows of 4 and 2 below, or 2
rows of 5, for counting unitarily
rather than for abbreviating the
procedure; Arranges the ob-
jects in the shape of a flower or
house and subsequently counts
them unitarily

the regularity of a
pattern

» (Often) uses the cor-
rect colors but (most-
ly) without showing
insight into the regu-
larity of the pattern

e.g., Arranges “red, white,

purple” while the pattern is

“red, white, white, purple,

purple, purple”; Continues

the pattern in a mirrored se-
gquence so “abcabc” be-
comes “bacbac”

» Verbalizes the pattern
by reading off the
colors of the elements
that were added to the
example. Still has
trouble explaining the
regularity of the pat-
tern

e.g., “Red, white, blue, red,

white...blue, red, white,

blue”
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readily available
structures

* Recognizes the standard
spatial structures (usual-
ly) in different types of
representations and out-
side of the (familiar)
flashcard context

e.g., Now also recognizes the

finger patterns for 6, 7, 8, and

9; Reads off the number of

corners for both the pentagon

and hexagon; Spontaneously
recognizes the 5-structure in
the way that objects are ar-
ranged on the table; Not only
recognizes dot configurations,
but also clovers on a playing
card, or 2 rows of 3 eggs in an
egg carton; Can explicitly ex-
plain the structure of a group
of objects or a construction

(“that group has 1 more row,

so it’s larger”)

use and apply spatial
structure as a way to
abbreviate a numerical
procedure

¢ (Sometimes) tries to de-
termine a quantity by us-
ing spatial structure rath-
er than unitary counting
procedures. Is not always
successful and conse-
quently has to count any-
way
e.g., Reads off a 5-structure in
some settings (e.qg., flashcards),
but doesn’t use structure with
the intention of abbreviating a
counting procedure; Can spon-
taneously present certain finger
patterns that are connected to
an experience (e.g., age), but
still has to count other quanti-
ties (e.g., 8) unitarily

e (Usually) does not apply
structure spontaneously,
but rather retrospectively

e.g., Counts all the objects but
explains, when asked, that there
are 4 and 4 and that makes 8;
Structures objects only after
having determined the quantity
by counting; Steadily and inde-
pendently rebuilds a block con-
struction by attending as much
as possible to the structure of its
parts and by comparing the rest
of the construction block by
block to the example

Code | Recognizing Applying Extending
spatial structures spatial structures spatial structures
6 Can spontaneously use Is developing the ability to Is developing towards

recognizing not only the
structure but also the
regularity of a pattern

« Adds the correct ele-
ments in the correct
proportions to the pat-
tern

e.g., Looks back at the be-

ginning of the pattern and

continues the pattern based
on the perceived regularity

* Describes the rule of a
pattern by first reading
off all the elements
and then repeating
them in the proper se-
quence. (Usually) re-
quires some encour-
agement to start this.
Only explains that the
pattern has a rule ret-
rospectively.

e.g., Reads “red, red, blue,

red, red, blue...red, red,

blue...”; “The rule is 1 red, 2

blue, 3 yellow”
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Code | Recognizing Applying Extending
spatial structures spatial structures spatial structures
7 Spontaneously makes use | Spontaneously makes use Can describe the rule of

of a bottom-up strategy to
abbreviate procedures
involving large quantities

e Reads off small (<6)
structured quantities and
combines these to deter-
mine relatively larger
(<10) quantities (i.e. a
constructive approach)

e.g., Counts by twos; First

reads off two groups of 4 and

reasons that together that
makes 8; “6 with 3, that makes
g9

« Is (usually) not familiar
enough  with larger
(>10) structured quanti-
ties to recognize them
instantly and counts
them unitarily

of the structure of small
(<6) quantities

(subitizing) to abbreviate a
procedure

e Can abstract a structure
from a small (<6) struc-
tured or unstructured ar-
rangement in order to ab-
breviate a procedure

e.g., Perceives two groups of 3

and knows that that is 6 alto-

gether, so there are 6 dots;

Makes use of the structure of

the structured construction to

abbreviate the procedure of de-
termining the number of blocks
that it consists of; Determines
the number of blocks in a con-
struction as 2 times 3 blocks
and another 2 makes 8

* Makes use of experien-
tially real structures in
unstructured settings, but
still has to count on to
find the total. (Some-
times) makes use of struc-
ture retrospectively to de-
termine a relatively larger
(>6) quantity

e.g., Arranges 5 objects like the

dots on dice and reads off the 5-

structure, but has to spread out

7 objects or arrange them in

rows in order to count them in a

systematic and organized way;

Makes use of the (structure of

the) example to rebuild the con-
struction in a goal-directed and
independent way

a pattern

« Can, on own initiative,
describe the rule of a
pattern in a concise
way without having to
repeat each element of
the pattern in a rou-
tine-like manner

e.g., “Every time 1 blue, 2

red, 1 blue, 3 red, 1 blue”;

“Every time there are 2 pur-

ple, 2 purple, 2 purple and 1

red one in the middle”;

Names the elements of a

pattern rhythmically to de-

note the regularity
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Spatial Structuring

of a top-down strategy to
abbreviate procedures that
involve larger (<10) quan-
tities

« Convincingly recogniz-
es large (<10) quantities
and can reason about
their arrangement retro-
spectively (i.e. a top-
down approach)

e.g., “9 because there are 3

rows of 3”; “10 because 3 and

2 makes 5 and there are 2 rows

of 57; “10 because it’s 2 times

the 5 like the dots on dice”

e Uses convenient strate-
gies or formal opera-
tions to determine rela-
tively large (>10) quan-
tities in an effort to
abbreviate the proce-
dures (i.e. a bottom-up
approach)

e.g., See code 7

spontaneously apply
spatial structure to
unstructured settings

« Spontaneously  applies
structure or reads off a
structure mentally from
an unstructured arrange-
ment in order to abbrevi-
ate a particular numerical
procedure

e.g., “I see it because here there

are 3 and there are 2, and there

are 2, and together that makes

77, Can determine the number

of blocks in the construction in

an abbreviated way rather than
unitary counting

« Applies structure to a set
of objects with the inten-
tion of abbreviating a par-
ticular procedure

e.g., Can, without hesitation,
show a particular quantity in
terms of a finger pattern; Ar-
ranges objects in smaller subi-
tizable groups or in dice config-
urations; Explains that 2 rows
of 5 makes 10 because

“3x3+1=10";“2,4,6,and

1 makes 7”

Code | Recognizing Applying Extending
spatial structures spatial structures spatial structures
8 Spontaneously makes use | Can goal-directedly and Can describe the

regularity of a pattern

 Can concisely summa-
rize the rule and regu-
larity of a pattern
without having to
name each element.
May come up with
variations to the pat-
tern
e.g., “Every time it’s boy-
girl-boy-girl” so the next
one is boy”; “Every time it’s
1red, 2 blue, 3 green, so the
next one can be 1 red, but it
can also be 4 red, 5 blue, 6
green”
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Code | Determine a quantity Compare quantities Operate with quantities
1 Does not seem to know how to approach the problem
2 The strategy is ambiguous, yet the result is acceptable
3 Counts asynchronously and Compares quantities Operates with

unitarily by:

a. Moving each object aside
b. Pointing to each object
c. Perception

e Counts unsystematically
and therefore has trouble
keeping track of count

e.g., Does not count beyond 10

and has not automatized count-

ing yet; Cannot show 4, 6-10 as

finger patterns yet; Counts 10

flowers one-by-one and con-

cludes that there are 11

perceptually

« Compares quantities only
on a perceptual level,
without actively reorgan-
izing the objects

e.g., Compares only general

surface areas and/or the relative

positioning of the groups on the
table

quantities in a
context-dependent way

« Exaggerates or over-
generalizes a quanti-
ty in simple addition
tasks or does ‘trial
and error’ with the
available objects

e.g., “Some are missing so

there must be 10 miss-

ing!”; Adds a number of
objects and removes some

in order to come closer to a

particular  quantity, but

cannot keep track of how
many objects are finally
added to the group
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Number Sense

Code

Determine a quantity

Compare quantities

Operate with quantities

Counts synchronously and
unitarily by:

a. Moving each object aside
b. Pointing to each object
c. Perceptive

« Counts context-dependent-
Iy? and (often) systemati-
cally and can therefore
keep better track of count

« Knows the counting se-
quence up to 15 and counts
by naming objects 1-by-1b

« Despite possibly an incor-
rect result, the intention of
the procedure indicates a
development towards re-
sultative counting

Can apply an arrangement
to a group to estimate quan-
tities

e Can compare quantities
not only at a perceptual
level, but also by explicit-
ly or implicitly linking
objects to each other

e.g., “That one has 1 more than

this one so that group must be

larger”;  Understands  that
counting offers a way to check
the accuracy of an estimation;

Places every flower next to eve-

ry butterfly and determines the

difference in quantity

Can “count all”®

* Adds by making use
of the objects and
own fingers to count
all the objects.
(Sometimes) has
trouble keeping track
of how many were
added

e.g., Recounts the fingers
on one hand of a flashcard,
and counts on to include
the 3 fingers on the other
hand; Recounts the 5 flow-
ers on the table and counts
on by using fingers or by
placing another 3 flowers
in the group to come to the
required number of flow-
ers
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Code

Determine a quantity

Compare quantities

Operate with quantities

Counts resultatively by

a. Moving each object aside
b. Pointing to each object
c. Perceptive

¢ Is developing a general-
ized counting abilityd be-
cause counting depends
less on the context and can
be performed in more than
one way

Can compare groups based

on their quantity

*« Knows that a certain

number is larger or small-
er than another number.
Has therefore integrated
counting abilities with the
ability to compare quanti-
ties®

e.g., Counts a group of 8 and 6

and knows that 8 is larger than

6 so that group must be larger

than the other group

e Explores and compares
small quantities more
with regard to number
than quantity

e.g., Seems to pick the group of

5 randomly as being larger in

comparison to the group of 8,

counts the group and concludes

that “that one has 5 and that’s
less than 8 so it’s the smaller
group”

Is developing the
ability to “count on”f

« Performs addition by
adding on to the
group while keeping
track of how many
were added to come
to the  required
amount.  (Usually)
does this with the
help of the objects or
fingers.

e.g., Recognizes 5 fingers

on a hand and adds a

number of fingers on the

other hand to it; Given 5

flowers, places another 3

flowers in the group and

adds on from 5 to 8 flow-
ers.
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Number Sense

Code

Determine a quantity

Compare quantities

Operate with quantities

Is developing the ability to
abbreviate a counting
procedure

 Tries to make use of a fa-
miliar structure in a rela-
tively unfamiliar setting
(e.g., counting flowers)
rather than counting ob-
jects unitarily. Is not al-
ways successful and con-
sequently has to count any-
way.
e.g., Can goal-directedly show 6
and 10 as finger patterns, but has
to count 8 fingers unitarily; Rec-
ognizes 6 on dice but counts 5
unitarily; Recognizes the number
of corners in a triangle and
square but has to count the cor-
ners of a pentagon and/or hexa-
gon; Applies a spatial structure
to a part of a whole (“it looks like
5 on dice”), and has to add on the
remaining objects; Uses the
structure of a structured con-
struction to determine the
number of blocks, but has to
count the blocks in the unstruc-
tured construction unitarily

e Counts a quantity but can
point out a spatial structure
that, in retrospect, could
have abbreviated the pro-
cedure

e.g., Subitizes quantities < 4 or

says “2 and 3 is 5 altogether”;

Recognizes the 5 as 5 dots on

dice but counts the same number

of objects unitarily when they are

placed in the same structure in a

different setting

Compares quantities based

on a grounded estimation of
the number of objects in at

least one of the groups

« Depends less on the phys-
ical presence of the ob-
jects for comparing per-
ceptually, and can there-
fore compare groups
based on the quantities
themselves

e.g., First examines the groups,

reasons about which is largest,

counts both groups to be cer-

tain, and says “8 is more than 7

so itis 1 more”

Can “count on”

« Adds by adding on a
number of objects up
to the required
amount. Can (usual-
ly) do this mentally,
but the explanation
does not yet reflect
insight into formal
mathematical opera-
tions

e.g., “I thought 5 and add-

ed another 3 in my head

and that makes 8”
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Code

Determine a quantity

Compare quantities

Operate with quantities

Can spontaneously
abbreviate a numerical
procedure

e Can recognize a spatial
structure in both structured
and unstructured arrange-
ments and use this struc-
ture to abbreviate a proce-
dure. Can also apply struc-
ture to unstructured objects

e.g., Recognizes both 5 and 6 on

dice; Can show a particular fin-

ger pattern without counting;

“here are 3 and there are 3 s0 it’s

6”; Tries to use structure as much

as possible to determine the

number of blocks in both the
structured and unstructured con-
structions

« Reads off a quantity by
recognizing a structure in
the arrangement and by
counting on. Can do this
mentally.

e.g., “Like on dice” or “4 and 1

makes 5” or “2, 4, 6,and 1is 7”

or “one in the middle”; “I’ve

counted it before using my fin-

gers”; “It’s 8 because 5 and 3

make 8”

Can make use of spatial
structure

e Can compare quantities
by spontaneously (recog-
nized mentally or by
moving the objects) mak-
ing use of their structure.
May refer to more numer-
ical procedures in ex-
plaining this strategy,
even though these proce-
dures were not actually
used

e.g., The dice structure for 5 is
the same as for 4 “with 1 in the
middle”; Sees that the struc-
tured group of 11 is more than
the structured group of 8 and
subsequently shows how the
quantities could also easily be
counted; Recognizes a 5-struc-
ture in an unstructured setting
and sees that the other group
contains more than 5 so that
group must be larger

Is developing higher-
order mathematical
abilities and can
verbalize the procedure

» Has decontextualized
the manipulation of
quantities® and can
therefore operate
with quantities both
mentally and sym-
bolically". This fur-
ther underlies the de-
velopment of formal
mathematical proce-
dures.

e.g., “3 rows of 3, and 3

times 3 is 9, add another 3

makes 12”

« Applies a particular
sum or spatial rela-
tionship to solve a
problem

e.g., “5plus5is 10, but5is

more than 4 so now we

have 4 plus 6 making 107;

“3 plus 3 plus 3 makes 9”;

“See, this is how it looks

using my fingers”; “4 with

another 4 looks like 8”

« Retrieval’: recogniz-
es a familiar numeri-
cal relationship

e.g., “bishalf of 10”; “Last

time there were 5 left with

3 gone so now it’s the other

way around”
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Manual of the Final Instructional Sequence and Observation Criteria

5 Manual of the Final Instructional Sequence
and Observation Criteria

Note: this manual is translated from Dutch and based on the instructional sequence that
was tried out in the second round of the instruction experiment

5.1  Activity 1: Ant’s Tool Box and Ant Steps

Objectives « Become familiar with the overarching context of the instructional se-
of Ant’s quence
Tool Box < Gain experience with naming objects, verbalizing spatial structure, and

comparing quantities in terms of their spatial structures
« Discover how certain structures can help to abbreviate tasks that involve
determining and comparing quantities

Objectivesof Ant | « Discover how simple spatial structures can help to recognize and deter-
Steps mine relatively larger structured quantities

« Become aware of insight into the composition of quantities

» Become familiar with phrases that are to become shared (e.g., “more”,

“less”; “easy ways”, “tools”)
Setting Introduction in the circle with an extension in the focus group
Requirements « Objects that represent fundamental spatial structures:

— 3egg cartons for 10 eggs

— 3egg cartons for 6 eggs

— enough plastic eggs to fill the egg cartons with
— lor2largedice

— 3 sets of large playing cards with dots

— 4 or 5 patterned bead necklaces (e.g., 3 blue-3 white or 1 red-3
green-1 red)
— 1 set of flashcards with finger patterns

« The objects are in a large decorated cardboard box: “Ant’s Tool Box”

« Several sheets of paper with 2 rows of 3 dots drawn on them (i.e. the
Ant’s footprints from when he carried the box into the classroom). The
papers are placed on the floor from the classroom door to the box and
from the box to Ant’s hiding place

« A large toy ant to represent Ant
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Guidelines
for the teacher

Introduction

Sample questions

Have you seen the dots on the floor? What could they be?

Maybe they’re footprints of an animal. Can you see how many footprints
the animal left behind on one paper? (...) How did you see that so quickly?
Can you show how many there are using your fingers?

Look, the footprints lead all the way to the box. It looks like the animal
carried this box into class. Maybe the animal is still hiding in the class-
room. Where do the footprints lead to? Can we find the animal there?

[Let one of the children get Ant from his hiding place]

Look, what is it? It’s an ant! How many feet does the ant have? Is that the
same as the number we saw on the floor? How do you know so quickly?
Could he be the one that left all these foot prints on the floor?

This is Ant and, like all ants are, Ant is so strong that he was able to carry
this box into the classroom. What is this box? (...) It is Ant’s Tool Box.

What can we find in Ant’s Tool Box? | noticed that the box is very heavy.
I’ll give someone a turn to come and see what’s in the box.

Look at how there are so many different things in the box! Very mysteri-
ous. Why do you think Ant brought this Tool Box into class? Maybe he
has a message for us. They may be “tools” that can help us.

Let’s take a look at these large cards in the box. Do you know what these
are? (...) It looks the ants even walked across these cards. Every dot looks
like one of Ant’s footprints, Ant Steps.

We’re going to play a game with these cards. Two children will come stand
in the middle of the circle. I will pick a card from the pile. The first person
who sees how many “Ant Steps” are on the card, may keep the card.
But...we’re not going to count the dots, are we? That will take too long.
Maybe we can think of a “quicker way” of finding out how many Ant
Steps are on the card. What “other ways” can you think of? Try to find the
“fastest way” to see how many dots are on the card. Then you’ll be the
winner!

(1) We’re first going to play the game with this die. I will throw the die and
then you tell me as fast as you can how many dots come up.
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[Take the large die and throw to get a 5 or 6]

How did you see that so quickly? Does anyone see it differently?
Which way is easier? So how did this tool help us? Does this remind
you of another tool from the Tool Box?

[Hold up the playing card that has 2 sets of 5 dots on it]

Now we’re going to play the same game, but with these cards. Can you
see how many Ant Steps are on this card without counting each dot?
How do you see that so quickly? Do you know another way to see it
easily without counting?

(2) That’s funny! Some of you don’t count the footprints. So, how do you
see how many there are? Does anyone else know an easy way to quickly
see how many Ant Steps are on the card?

(3) Do the Ant Steps look like anything in the Tool Box? Go and get some-
thing out of the box [e.g., the dice] that is also easy for seeing how many
of something there are. Did you use the same “way” that you used to
know the number of Ant Steps on the card?

(4) So: some of you count to know how many there are, and some of you
found an easy way to see how many there are without counting. Do you
have a better idea now of why Ant put these cards in the Tool Box? How
do you think Ant wants to help us?

The focus group [Pick a card and place it on the table. Give two children a turn to determine
the number of dots on the card. The child who sees the number the fastest
(without guessing) may keep the card. Then the next pair of children has a
turn. The rest of the children should pay attention because they may be
allowed to explain their “easy way” afterwards]

(5) How did you see how many Ant Steps are on this card so quickly? How
many steps are there? How did you use this card as a “tool” to quickly
see the number without having to count each step? Did anyone else see
it differently?

(6) Do you remember anything from the Tool Box that you could use in the
same way to see how many of something there are (e.g., the dice)?

329



Appendix 5

(7) Now you can throw the die from the Tool Box. Who is first to recognize
the face of the die (i.e. the dots that come up) somewhere in the card?
So, who can find the die in the card? Can you find the die anywhere else
in the card?

(8) So now you have many ways of easily finding out how many Ant Steps
are left on the cards. Could that be the reason for why Ant brought this
box to class? Do you know what the tools in the Tool Box are for?

We should try to remember these tools because we can take them out of the
Tool Box and use them every time we want to know how many of some-
thing there are.

To simplify » Focus on supporting the children in learning to count synchronously and
the activity resultatively
« Point to the objects or to the dots on the card, or physically pull the ob-
jects apart to make the structure more visible
« Continue playing the game with two dice so the children begin with a
more familiar context than the cards. Who is fastest in determining who
threw the highest number of dots on the die?
To make the « Increase the number of representations of structures (i.e. objects in the
activity more box) and let the children find their own examples in the classroom
challenging « Let the children more explicitly compare the structures to each other

» Can you find another easy and quick way to see how many dots are on
the card without counting?

« How many more dots are on this card compared to the card? Do you
know an easy way to find out?

» Ask more challenging questions (e.g., if there are that many Ant Steps on
the cards, and Ant has 6 feet, how many times did he have to hop to reach
the centre of the circle?)
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Background and This first activity in the instructional sequence caters to the different levels
observation of mathematical development. Some children may still (asynchronously)
criteria count unitarily, while other children may already recognize and use vari-
ous spatial structures to abbreviate numerical procedures (e.g., “that is 5
because it looks like the 5 on a die”). This will become apparent from the
first discussions about Ant and his foot prints.

Many children may start this activity by unitarily counting Ant’s legs.
Other children may recognize a structure and share this with the rest of the
class. This offers an important opportunity for the teacher to start a discus-
sion about ways to determine a quantity and to turn children’s attention to
the Tool Box. As the children unpack the box, the teacher should encour-
age the children to think of why the objects may be “tools” and why Ant
left these tools to help them in class. The discussion should revolve around
the difference between how some children count unitarily while others
have “easy ways” to determine a quantity.

For the Ant Steps activity, most children will unitarily count all the dots on
the card without spontaneously looking for spatial structures. They may
not be ready to integrate separate elements into one single structure (e.g.,
the children count all the dots unitarily because they cannot read off the
amount at once, Steffe, Cobb & Von Glasersfeld, 1988) or because the
children are so confident with counting procedures that they prefer to use
such less challenging strategies to come to a correct answer.

Again, the teacher should encourage the children to look for an “easy way”
to conveniently and quickly determine how many dots are on the card.
This introduces phrases that are to become part of a shared vocabulary.
What may help is that the teacher posts the cards that have already been
discussed, on the board in the classroom. The children can then refer to a
card that has a certain number of dots on it and compare the dot configura-
tion with other configurations that represent the same quantity. We expect
that this will help children to associate different structures more with each
other and they start to learn to recognize spatial structures in terms of dif-
ferent configurations (e.g., compare a 5-structure as 1 dot in four corners
with one in the middle, to one row of 3 and another row of 2).

The children will experience more pressure in the Ant Steps game when
other children are faster at giving a (correct) answer and win the round
(e.g., one child may count each of the dots while the other child may
instantly see that there are five and two and seven in total). The teacher can
help the children by referring to the “easy” or “clever” ways that they
explored earlier in the Tool Box. That may stimulate the connection
between the objects that represent a type of spatial structure in the box, and
the structures that they should learn to abstract from the cards (e.g., “the
dots on the die in the box look like the dots on this card”).
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The teacher can support the children by asking questions that guide them
towards becoming more aware of the differences in the ways that they
determine a certain quantity (e.g., “How do you see that so quickly? It was
like you didn’t even have to count the dots, or did you? Do you know of an
“easy way” to find out how many dots there are?”). It is important that the
teacher encourages the children to try to explain their strategies (e.g., the
children point to the dots and tell each other how they determined the num-
ber of ant steps on the card and whether and how they see other structures)
because the children who make use of “clever ways” of determining a
quantity can set an example for the children who are still counting uni-
tarily. The teacher should not only ask for an explanation, but also for a
specific comparison (e.g., “do you know anything else in the box that
resembles the “way” that you just used?”). This may help to prevent
answers such as “l counted them really fast in my head” or “just because”.
Moreover, it is important for stimulating the translation between different
types of spatial structures.

The teacher can support the learning process by creating a shared vocabu-
lary through repeatedly referring to the spatial structure as “an easy way”.
The teacher can choose her own formulations, but it will be most effective
if the shared vocabulary relates to what the children are most familiar with.
As the teacher will repeatedly be referring to “easy” or “clever” ways, it
will help the children to make stronger, implicit and explicit, connections
between the types of structures in the box and their use in simplifying and
abbreviating numerical procedures.

At the start of the activity, children may find it easier to read off particular
quantities compared to others as how they are represented on the cards.
The children may, for example, recognize a dice configuration easier on a
card with two sets of five dots compared to a card with a set of five and a
set of three dots, because it may be easier to recognize a double-structure
than a quantity that is made up of two separate arrangements. Exchanging
experiences and practice in looking for structure in various configurations,
will help children to recognize more types of structures for one particular
quantity (e.g., recognizing the ten as twice five, but also like on dice and
like two rows of five), and to compare different types of structures (e.g., 6
as5and 1 oras 3 and 3). As a result, they will better be able to abstract rel-
atively simple and complex structures, and they may begin to generalize
particular structures to different contexts (e.g., seeing a structure as part of
a “pattern” or recognizing dot configurations in playing cards that have
pictures of clovers which are more irregular than dots). For these reasons,
the teacher should begin the activity with relatively straightforward dot
configurations (e.g., the configuration for six dots or the configuration of
two sets of five dots).

We conjecture that the more children search for different structures, the
more they gain experience in determining and comparing quantities, and,
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the more they will be inspired to look for ways to quickly (faster than
someone else) determine the quantity. Some children may already be able
to read off (parts of) structures so that they no longer have to count the ele-
ments unitarily. Perhaps there may be children who recognize that the ten-
structure is made up of two five structures (e.g., “there are ten eggs in the
box and these are also two times five eggs”). Although not many children
will have reached this stage at this point in the instructional sequence these
children will already have the advantage of coming in touch with these dif-
ferent ways of determining and comparing quantities at such an early stage
in their development.

The ultimate challenge for the teacher is to guide the children towards an
understanding of structures without imposing the structures on the chil-
dren. The children must discover and compare the different structures on
their own. This will stimulate them to explore how spatial structures can
help them abbreviate numerical procedures. We conjecture that these expe-
riences are what will help children to gain insight into numerical relation-
ships (e.g., “they are 7 because 5 and 2 make 7”) and practice how to
verbalize how structures can be used to determine quantities (e.g., “they
are 7 because there is a 5 and there is the 2, but you can also see it as 3 and
3and1”).

The activity can best be concluded in the way that it was introduced.
Referring back to the context of Ant and the Tool Box should help the chil-
dren gain more understanding of the activity and remember the lesson bet-
ter. The aim of the context of the Tool Box is to give the children an
impression of a box that is filled with tools (“easy ways”) for easily deter-
mining an amount. This is an important contribution to the shared vocabu-
lary so that the teacher can keep referring to the examples in the box as the
class continues to explore how spatial structures can abbreviate a numeri-
cal task (e.g., “do you remember what was in the Tool Box? Could we
maybe use these ‘easy ways’ to find out how many of these there are?”).

The teacher must make use of the by now well-established context to sup-
port the children to verbalize the connections between the various types of
spatial structures (e.g., “so now you’ve thought of different ‘easy ways’ to
find out how many ant steps are on the cards; those ‘easy ways’ were very
useful for you to recognize the number of dots even faster than your part-
ner. Ant wants us to remember the “ways” that he put in the Tool Box, so
that later, during other activities, we can also quickly see how many of
something there are). This is how the teacher may help support the chil-
dren in making connections between the conceptual knowledge that under-
lies the activities.
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5.2  Activity 2: Filling Egg Cartons

Objectives

» Explore the structure of different kinds of egg cartons and discover how
the structures can help to determine the number of eggs in a carton with-
out unitary counting

» Gain more insight into the composition of quantities

* Practice determining and comparing quantities

» Become more familiar with phrases of the shared vocabulary

Setting

Introduction in the circle with an extension in the focus group

Requirements

» Antand the Tool Box

* Plastic eggs

* Paper and pens for drawing the egg carton structure
 Tape to post the papers on the board

Guidelines for
the teacher

Introduction

Sample questions

Do you remember what was in Ant’s Tool Box? There are also egg cartons
in the box. That’s funny. Don’t they belong in the kitchen? Why do you
think Ant put these egg cartons into the Tool Box? How do you think this
tool can help us?

Ant sometimes visits Farmer John’s farm. Farmer John has many chickens
that lay so many eggs that he has trouble keeping track of how many egg
cartons he needs to box all these eggs. This morning, his neighbor asked
for a carton of 6 eggs.

[First the empty egg cartons are placed in the centre of the circle]

(1) Farmer John is always in a hurry, so he is looking for an easy way to
quickly see which egg carton exactly fits 6 eggs. How can we know that
without counting each cup in the egg carton? Do you know another way
to easily and quickly see how many eggs fit in the egg carton?

(2) Can you find another example in the Tool Box (e.g., the dice or the
cards) and show how you can use the tool to quickly see how many of
something there are?

(3) If 6 eggs fit in this carton, how many eggs fit in the other cartons? Do
you know an easy way to see that?
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The focus group

[Depending on the children’s level, they can show their “clever ways” or
they can practice counting by pointing to the empty spaces in the carton or
by filling the egg cartons with the plastic eggs]

[Give one child a pen and a sheet of paper with the cups of the egg carton
drawn on it. Post the Ant Steps cards for 6, 7, 8, 9, and 10 in a line on the
board for the children to see]

(4) Now your task is to color 5 eggs in the egg carton on this piece of paper.
Try to do that in a way that makes it easy for someone else to see how
many eggs are in the carton. Then you can post the paper on the board,
right under the card that shows the same number of dots. Do you see
“easy ways” for finding out how many dots are on the paper?

[Place a number of plastic eggs in the middle of the circle] Farmer John is
also always in a hurry to take the eggs to the market. He needs to quickly
know how many eggs he has today.

(5) Two children will come stand in the centre of the circle. One of you will
be Farmer John and look away. The other will put the eggs in the egg
carton in a way that makes it easy for Farmer John to, without counting,
see how many eggs are in the carton.

(6) Farmer John can come take a look. Does the “easy way” work? Can the
farmer quickly see, without counting, how many eggs are in the carton?
Who can draw the eggs on this paper and hang it up with the other pa-
pers on the board?

(7) The cards with Ant Steps and the drawings of the egg cartons are posted
on the board. Who knows now why Ant put the egg cartons in the Tool
Box?

[Take a 2 to 5 eggs out of the 10-egg carton]

(8) Foxes also like to visit Farmer John’s farm to steal eggs from the egg
cartons. It looks like they’ve already done that to this carton. | am going
to close the carton and point to someone who has to pay attention to the
carton. Can you tell the other children what you saw in the carton so that
they can guess how many eggs are still in the carton? Do you know how
Farmer John can quickly see how many eggs are missing from the car-
ton without having to count the eggs? Do you know which tool in the
Tool Box could help us with this?

(9) How many eggs still fit in the carton? Can you tell the other children
how you can see that easily? Does anyone else know of another way of
seeing it even quicker?
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[Repeat this several times so that children will compare different structures
(“tools™) with each other. Also change the roles so the children can practice
with both manipulating and making use of structures]

To simplify the » Use a plastic, see-through egg carton

activity * Relate the egg carton structures to finger patterns; compare how children
don’t have to count the 5 on the hand, for example, either

To make the » Keep the egg carton closed and let the children determine how many eggs

activity more are left in the carton based on their mental image of the inside of the car-

challenging ton. Let the child explain what the image looks like, open the carton and

discuss any deviations.

Background and
observation
criteria

Some children may initially prefer to count the eggs unitarily. Other chil-
dren may manipulate the eggs with abbreviated strategies by counting the
eggs by twos, threes, or fives or by recognizing the egg structures from
previous experiences. Some children may note that the number of eggs in
the carton is the same as the number that is printed on the carton. The aim
of the activity is that these different levels of counting and operating with
small quantities will be practiced and developed further.

The challenge is to stimulate the children into giving more than only the
answer to the question. Previous exploratory studies have shown how the
children will give very practical answers in return (e.g., “I just saw it that
way or | already knew that or | just counted that really quickly in my
head”). The focus of the questions should therefore not end at how the chil-
dren know something (e.g., “how did you see that so quickly or how do
you know?”). To gain more insight into a child’s spatial structuring ability,
it may be more fruitful to have the children explicitly relate the structure
that they used to a structure that they recognize from the Tool Box. The
teacher could ask the child to associate the strategy with a comparable
structure in the box. If the child indeed used a spatial structure to determine
the number of eggs in the egg carton, then the child is expected to pick a
relevant object with a comparable spatial structure out of the box (e.g., the
child reads off the number of eggs because it looks like the dot structure on
the die). If, on the other hand, the child used little or no spatial structuring,
then the child may pick any of the objects out of the box and lack an expla-
nation that associates the structure with the egg carton activity (e.g., the
child counts the dots on the cards or counts each of the fingers in the finger
pattern flashcards, without relating them to the egg cartons).

While the first part of the activity involves the introduction of the egg car-
ton (double-) structures (e.g., “how many eggs fit into this carton?”), the
second part of the activity is especially focused on using and applying the
double-structures and the five-structures (e.g., “can you use the egg carton
as an ‘easy way’ to see how many eggs it has?”).
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Here too, the children have opportunities to practice their counting skills,
but the main intention is that the children are stimulated to make use of the
structures of the egg cartons. We anticipate that the game-component will
inspire them to not only count the eggs, but to structure them so that some-
one else (the farmer) can read off the quantity.

Some children may structure the eggs into groups on the floor. Although
grouping is a way of structuring, it is not exactly what the task is aiming
for since the activity is emphasizing double-structures and five-structures
with the specific purpose of abbreviating the process of determining and
comparing quantities. Hence, it is important that the children keep using
the egg cartons and that the teacher continues to encourage the children to
structure the eggs in the egg cartons.

To determine which egg carton is for the neighbor, the children are
expected to read off the quantities in the carton. Nevertheless, some chil-
dren may already use early addition-strategies, while other children will
adhere to the “counting all” strategy. These children first count all the eggs
and then continue to count to find the difference (e.g., “l see 1, 2, 3, 4 eggs
left and she wants another 5, 6, so we need 2 more”). Still other children
may apply the “counting on” strategy whereby they count on from the
number of eggs that they know are still in the carton (e.g., “I see that there
are already four in the carton, and she wants another 5, 6, so there are still
2 eggs missing”). Ultimately, the discussions should stimulate the children
to begin to make use of the structure of the egg carton for reading off the
quantities or for determining the quantity in an abbreviated way (e.g., “I
see two empty spaces so there are still 2 eggs missing” or “I see two rows
of two so four eggs and there are still 2 eggs missing”). The teacher can
also ask the children to show the number using their fingers as a way to
relate the different kinds of structures for representing one particular quan-
tity.

By encouraging the children to try verbalize their strategies, the teacher
can stimulate them to compare their strategies with each other (e.g., “I saw
two rows of three so | knew that there are six™), using the contents of the
Tool Box and the structures that the teacher had posted on the blackboard
(e.g., it looks like the six on dice). This kind of comparison can help the
children gain insight into the efficiency of their approach to a problem.
That is important for judging the effectiveness of the structures that they
used. The teacher can also relate the structures to, for example, finger pat-
terns to put more emphasis on the role of structure in determining a quan-
tity. A child answering faster than another child, may motivate children to
look for ways to improve the efficiency of their strategies.
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The final challenge in this activity is for the focus group to determine the
number of eggs without actually seeing the eggs (e.g., “I will close the car-
ton and then you can try to tell me how the eggs were arranged in the car-
ton so that someone else can guess how many eggs it contained™). This is
should stimulate the children to work with the structure of the egg carton
(e.g., two rows of three eggs). Although this will be difficult at first for
most children, even an attempt at this task could support them in becoming
more aware of the use of the structure of the eggs in the carton. If the chil-
dren appear to have difficulty remembering the arrangements, then the
teacher can show them the contents of the carton again and ask them the
same question. The next time the children attempt such a task with the eggs
out of sight, (guided by the teacher) they may be more prepared by taking
note of the structure of the eggs in the carton. Some children may already
be able to perform this task with the structure of the egg cartons as a men-
tal image. That is an important step towards higher-order mathematics pro-
cedures such as addition, subtraction and multiplication.
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5.3  Activity 3: Marching in a Procession

Objectives « Explore the composition of a pattern to identify its structure
« Gain more insight into the rule, and ultimately the regularity of the struc-
ture of a pattern
« Practice constructing and extending a pattern
Setting Introduction in the circle with an extension in the focus group

Requirements

s0on

« Items that the children can hold that can be used to construct a pattern
(e.g., colored papers, colored pencils)

« Colored plastic chips, at least 12 for 5 colors

¢ Ant and its Tool Box

Guidelines
for the teacher

Introduction

Sample questions

A few days ago we played a game with Ant Steps on large cards. Last time,
we helped Farmer John fill his egg cartons. Ant had put the cards and the
egg cartons in the Tool Box. Do you remember why he may have done
that?

Usually ants are not alone when you see them outside. How do ants walk
around outside? They often walk in a long line, in a procession. They may
be on their way to find food. That’s what we’re going to do too today.

(1) I'am going to call up children to stand in line next to me. [After 4 chil-
dren] Do we need more boys or girls to continue this line? How do you
know that? Can you see that without counting? Do you know an easy
way to do that?

Examples of lines:

- boy, girl, boy, girl...

- taller, shorter, taller, shorter...
- boy, girl, girl, boy, girl, girl...

[Create a line of children that has no regularity]

(2) Who should stand in line next? (...) So do you know what the rule of this
line is? Why is it hard to see it? (...) Do you think we need more shorter
or taller children to make this line longer? Do you know an “easy way”
to see that?
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The focus group

(3) This time we’re going to do it differently. I’m going to give you all a
colored sheet of paper. I’ll call up some children to stand in line next to
me. [After 4 children] If we make this line longer, can you tell me if
there will be more children holding blue papers or white papers? How
do you know? Do you know an “easy way” to see that?

Examples of lines:
- red, white, red, white...
- blue, white, white, blue, white, white...

(4) Do we need more red or green papers to make this line longer? How do
you know? Do you know an “easy way” to find out?

[Create a line with an equal number of papers for each color (e.g., red, red,
blue, blue, red, red etc.)]

(5) What about his line? How do you see that we need just as many red pa-
pers as blue papers?

(6) Do you remember something from the Tool Box that reminds you of the
easy way that we used to make each of these lines longer? [e.g., the bead
necklaces]

[Show one of the bead necklaces from the Tool Box]

(7) Take a good look at this necklace. If | want to copy this necklace, will |
need more red or green beads? How do you know? Can you see that
without counting each bead?

[Show another bead necklace from the Tool Box]

(8) To make this necklace longer, do | need more white or blue beads? How
do you know that? Can you see that in an “easy way”?

(9) Do you have a better idea now of why Ant may have put these necklaces
in its Tool Box? How can you quickly see how many beads are in the
necklace? Do you know an “easy way” for that? Is that the same “way”
you use when you quickly want to know how many dots are on dice? Or
does it look like the cards we used with the Ant Steps? Could we use the
“easy way” that we used to find out how many eggs are in the egg car-
tons? Why do you think Ant put all these objects in the Tool Box?

[Create a sequence of colored chips. Let the children determine whether
they need more chips of one color or another color to extend the line]
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(10)Who thinks we need more blue or more yellow chips? What will the
color be of the next four chips in the line? Show me how you would
make the line longer. (...) Is that right? Who sees it differently? Why?

[Pass around a number of colored chips that the children can use to create
their own patterns. Give the children chips with, for example, two different
colors of 2 different quantities, so that children may make a pattern like
“abbabb”, or give the same number of chips of 3 colors so they may make
“abcabcabc” patterns. Otherwise the children may stay with “ababab” or
only “abc” arrangements.]

(11)Now you can make your own line with the chips | gave you. Your line
has to have a rule so that someone else can easily see how they can make
the line longer. Who sees the rule of this line? Is that right? How do you
know? Do you need more of this color or of this color to make the line

longer?

To simplify « Letthe children extend the line and discuss both the rule and the regularity
the activity in the line. Use a rhythm to name and continue the elements of the pattern

« Work with an easy example using other bead necklaces or the colored

chips

< Lengthen the pattern starting from the other end of the line
To make the « Create the line silently, without naming the elements so the children have
activity more to apply a rhythm on their own in order to find the regularity in the line
challenging « Keep the line short and ask for different possibilities for the rule of the

line.

Background and
observation
criteria

In lengthening a pattern, the children will tend to recall the line from the
beginning (e.g., “boy, girl, boy...” or “red, white, red, white...”) and to con-
tinue the line based on the rhythm and order of what they were saying (e.g.,
the children continue a particular rhythm or they may recognize the way
the elements of the pattern are alternating). Some children may not con-
tinue the pattern of a line, but instead extend the line in a mirrored way by
recalling the last elements of the pattern first (e.g., continue a line of “boy,
girl, girl, boy, girl...” not with “girl, boy, girl, girl...” but with “boy, girl,
girl, boy...”). This does not show insight into patterning if the children only
read off the elements from back to front without taking note of the rule and
regularity of the sequence.
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The children may extend the next line as the same pattern as the previous
line (e.g., again “red, white, red...”). Here the teacher’s comments are
important for convincing the children that the pattern involves a different
“rule” and that the children should try to think of a way to discover the
characteristics of the pattern that underlies each of these lines (e.g., look at
who is standing in the line now, that is a different sequence than before.
Now it’s two boys and a girl, so we must need more boys than girls to
extend the line).

As the children extend more lines, they are more often expected to experi-
ence more often that it helps to look at the beginning of the line to see how
the end of the line should continue. In this way, the child may become more
familiar with the structure of a pattern. An important part of this learning

process is that for children to experience the difference between a line that
does and a line that does not have a pattern (i.e. rule and regularity). A line
without a pattern may first confuse many children. The teacher should dis-
cuss this confusion with the children so that they can become more aware

of what characterizes a line that does have a pattern (e.g., “this line is diffi-
cult because it’s first boy, girl... and then | think it changes to small, big...”).

It may not be sufficient to only ask the children to extend a pattern. The
question that it leaves open is whether the children not only understood the
“rule” of the pattern but also the regularity that is inherent to a pattern.
Children’s ability to recall elements of a pattern and arrange alternating
colors, does not say enough about what they understand about patterning.
A question about beads of a particular color may support the children into
thinking more in terms of the structure of a pattern. This is because the chil-
dren can begin to experience that although they can count the elements of a
pattern unitarily, they will find it more difficult to come to a correct and
quick answer.

The teacher can add to this by asking again for an “easy way” of finding
out how to extend the line. Some children may come to understand that
they do not have to count everything because they can make use of
repeated structures in a pattern (e.g., “it isn’t red, white, red because you
have to look at the rest of the line and then you see that it’s red, white,
white, red, so there are just as many white as red beads in the pattern”).
This should be analogous to “an easy way” of determining a quantity using
the spatial structure that the objects are arranged in.
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To make the activity attractive for the children and to scaffold the generali-
zation of the concept of a repeated structure, it is important that the children
can encounter different kinds of patterns. The teacher should carefully
guide the transition from one type of pattern to the next. Proper guidance is
needed to take the large step from a concrete pattern to a more abstract pat-
tern. As such, the teacher should carefully guide the children in the transi-
tion from analyzing patterns that are made up of children, to patterns that
are made up of colors. This can be supported by giving each child a color
(such as the color of a colored paper) that can be used to make a pattern
with.

As soon as the children succeed in extending the patterns with children, the
teacher can begin to arrange the children according to the colored papers
that they hold. The next step is to start to create lines that consist of colored
chips. To smoothen this transition, the teacher should point out to the chil-
dren that earlier on in the activity, they had been studying the children
themselves, and that after that, they were studying the colors of the papers
that the children were holding. Some children may then come to see that
the next step is to study the colors of the colored chips that are arranged
into a particular sequence. That is different from the characteristics of the
children who first made up the structure of the pattern. This should prevent
the children from constantly connecting the children’s characteristics (e.g.,
gender or height) to the colors: “blue-white” may literally represent “boy-
girl” to them. The teacher’s guidance should help the children translate the
way they extended the line that is made up of the children to ways to extend
the line of colored papers and chips (e.g., from a pattern of boy, girl, boy,
girl, to a pattern of red, white, blue, red, white, blue colored papers to a pat-
tern of green, blue, white, green, blue, white colored chips).

The children in the focus group are challenged to extend a pattern, to con-
struct their own pattern by taking care to use structure, and to determine
whether more or less of a particular color are required to extend the pattern.
We conjecture that when children understand how the number of elements
of one particular element relate to those of another element in the structure
of a pattern, we may assume that the children not only understand the
“rule” of a line, but also the regularity of the structure that characterizes a
pattern. These children are expected to look back at the first elements of the
pattern, recognize a repeated structure and compare quantities on the basis
of the number of elements in the structure of the pattern (e.g., “it’s always
two red and one white so we need more red than white chips”). Later, these
children may not only be able to illustrate this pattern in their own patterns,
but they may also be able to verbalize the pattern in a more concise way
(e.g., rather than repeating the color of each of the elements in the pattern
such as “red, white, white, red, white, white”, they may say that “it’s
always a red one and then two white ones™).
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5.4  Activity 4: Building Ant Hills

Objectives « Explore how the structure of a block construction can help to abbreviate
counting and building procedures
« Practice constructing block constructions
» Make use of terms such as “under” and “behind”
Setting Introduction in the circle with an extension in the focus group

Requirements

3 sets of rectangular Duplo blocks, built as two identical ant hills. There
are three types that are made up of the following patterns of layers:
@ 2,2,2,2,2blocks
(b) 3, 2, 3, 2, 3 blocks
(c)3,2,1, 2, 3blocks

« Additional rectangular Duplo blocks to build with

A cloth to cover the ant hills with

» 2 sets of 8 Duplo blocks for each child in the focus group. Every set is
composed of one color

 An illustrative picture of an ant hill

Guidance for the
teacher

Introduction

Ant has been with us for a few days now. Do we know where he lives yet?
(...) Ant lives in an Ant hill. Like the one in this picture [show the picture of
an ant hill].

[Move the two ant hills (type (a)) into the centre of the circle]

An ant hill is quite hard to build, especially when you want to make a tall
one. Under this cloth are 2 ant hills. Let’s see if we can find a way to make
these ant hills taller. Maybe our ideas will help Ant for the next ant hill that
he is going to build.

The first person who can describe how this ant hill is built and knows what
the next layer of blocks should look like, can come build the next layer.
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Sample questions

The focus group

But be careful! To make the ant hill taller, you first have to know how it is
built. Think back at how we worked with the necklaces. Do you remember
what we did then? (...) Can you give an example of the pattern of a neck-
lace? How did you know what the next color in the necklace should be? (...)
Can we use that easy way to find out what the next layer of blocks should
look like?

(1) Raise your hand if you know what the next layer of blocks should look
like. Do you know an easy way to find out? (...) Do you remember some-
thing from the Tool Box that can help you with this? Go ahead and build
the next layer.

(2) Can we maybe place one ant hill on top of the other one to make it even
taller? Does that make sense? How can you see whether the layers of the
ant hill are built properly now? Can you improve it?

[Move the next two ant hills (type (b)) into the centre of the circle. Repeat
the activity and perform it again with the type (c) ant hills]

(3) Now we play the game again with these ant hills.

(4) Can you give Ant some good advice so that he can have an “easy way”
to see how he can make his ant hill taller?

[Build a sample construction beforehand; two that are structured and one
that is unstructured. The children in the focus group are going to rebuild the
sample ant hills. Each child gets 8 uniformly colored blocks]

(5) Here is one example of an ant hill. Do you think you can rebuild it easily?
Why does it look easy? Can you explain how you will rebuild it? (...)
Does anyone else know a faster way to see how | made this example? (...)
Is there anything in the Tool Box that could help to see how this construc-
tion is built (e.g., the necklaces, de dice)?

[Show the second example of a structured construction and then discuss the
example that is unstructured]

(6) Can you make this ant hill taller? How can you use the shape of this ant
hill to see how to rebuild it in an even quicker “way”? How can you see
that easily?

(7) Which ant hill did you think was easiest to rebuild? Why? Which one
was most difficult and why? So: how can we best build an ant hill so that
someone else can easily see how the blocks are layered in the ant hill?
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To simplify the  Use ant hills with less blocks in a layer

activity « Let the children use differently colored blocks so that they can identify the
structure more easily by the color of the blocks

To make the * Use ant hills that have more blocks in a layer

activity more « Let the children use more colors to show the structure of the construction

challenging in different ways

Background and
observation
criteria

Since this activity builds on the previous patterning activity, the children are
expected to examine the bottom layer of the construction and to use the reg-
ularity in the layers to determine what the next layer of blocks should look
like. Eventually they should be able to use the structure to abbreviate the
way they determine the number of blocks in such a construction (e.g., “2, 4,
6, 8 so that makes 8 blocks in this structure”, or “3 and 2 is 5 and another 5
makes 10 blocks™).

The task of trying to make the construction higher can also inspire the chil-
dren to pay more attention to the structure of the blocks, rather than that the
children stay too focused on counting the blocks in the structure. Only when
the children have more insight into the structure of the construction, will
they be able to independently add on another layer of blocks in a way that
complements the structure of the rest of the construction (e.g., the regularity
in the 3-2-3-2 construction is that it alternates layers of three and two
blocks, so the next layer should also have three blocks).

The game-like setting of this activity is expected to motivate the children to
try to make use of the structure of the construction to determine how the
construction is built. As the activity relates to the patterning activity, the
teacher can attend the children to the repeating structure (i.e. the regularity)
of the blocks in the layers of the construction. She may refer to the Tool Box
for bridging the focus on structure of a construction in the present activity
with the focus on structure of patterns in the previous activity.

Another reason for the teacher to keep relating the activity to the Tool Box
is to preventing children from giving very practical answers to practical
questions (e.g., “how do you know that? Because, | just see it”). This should
help children compare structures while it may make them less dependent on
their ability to verbalize an explanation (e.g., “do you know how the Tool
Box helped us to know how many there are in a very easy way?”). A con-
struction with layers of five blocks, for example, may be compared to an
egg carton with rows of five eggs. This insight may reflect the children’s
spatial structuring ability better than their verbal descriptions of a structure.
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The challenge for the teacher is to motivate the children to focus on the
shape (i.e. the rule or the structure) of the construction. If the children are
able to describe the shape of the construction (e.g., “2, 2, 2, 2” or “every
time 3, 2, 3, 2”), then they may be more motivated and able to continue the
shape and to apply the same structure to the next layer. That is what is
required in the focus group activity when the children construct their own
towers and try to clarify the regularity for someone else.

By the end of this activity, not many children may be able to verbalize the
structure of the construction in a clear and concise way (e.qg., “it has open-
ings in it” or “it’s harder to count” or “you can’t see the blocks very well”).
Nevertheless, their actions and explanations will have communicated their
implicit insight into structure (e.g., determining the number of blocks in a
construction by reasoning about the layers rather than unitarily counting the
blocks). More importantly, the children are expected to advance in their
understanding of patterning and of the structure that makes up a pattern
(e.g., “every time 3, 2, 3”). This understanding of part-whole relationships
is what is considered fundamental to identifying spatial structure and it is
what seems to underlie the ability to use spatial structure as a way to abbre-
viate numerical procedures (e.g., rather than counting the blocks one-by-
one, see that it is two rows of three and two on top, which makes 6 and 2 so
8 altogether).
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5.5

Activity 5: Picking Flowers

Objectives

Explore how structure can help to grasp relatively larger and unstruc-
tured quantities

Devise own effective and efficient spatial structures

Use spatial structures in a goal-directed way to simplify and abbreviate
the process of determining and comparing quantities

Gain more insight into the composition of quantities

Make more spontaneous use of the shared vocabulary, such as “easy

ways”, “ rows” or “in groups”

” o

tools”,

Setting

Introduction in the circle with an extension in the focus group

Requirements

&
@3@ @@
s %o

&

» One sheet of paper per child with a picture of a rectangular garden on it
* Colored plastic chips (i.e. the flowers)

* ltems to emphasize the context (e.g., a basket to put the flowers in)

* Possibly a hat or a cloth to cover children’s eyes

» Antand its Tool Box

Guidelines for
the teacher

Introduction

[In the centre of the circle, place one garden and randomly arrange 10 uni-
formly colored chips in it]

To make Ant’s ant hill taller, like we did last time, he needs a lot of materi-
als like sticks and flowers for decoration. Here you see a garden with flow-
ers in it. How many flowers are in the garden? Do you know an “easy
way” to find out so you don’t have to count each of the flowers? Do you
remember any other tools in the Tool Box that we could use here too?

It’s springtime so the flowers are growing fast. Ant is looking for flowers
for his ant hill. This is [the name of a child]’s garden. Close your eyes. Ant
is very secretly going to pick some flowers out of your garden.

[Remove 3-5 chips from the garden]

Now take a look. Can you say how many flowers have been picked out of
your garden? If your answer is right, Ant will give you back your flowers
and plant another one in your garden. But, if you’re wrong, Ant keeps the
flowers and uses them to decorate his ant hill.
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Sample questions | (1) Do you know how many flowers were picked out of this garden? How
did you see that so quickly?

(2) How can you arrange the flowers so that next time you may see the
number of missing chips in a better way? Do you know an “easy way”
to quickly see how many flowers you had first, and how many are
picked? How could the Tool Box help you?

[Remove 3-5 chips from the garden each time. Choose chips that are cru-
cial for the structure that the child may have arranged the chips in. Keep
the removed chips if the child’s answer is incorrect, or replace the chips
and add an extra one if the answer is correct]

(3) Now someone else can come sit in the circle. While you close your
eyes, Ant will come and pick some flowers. But first, see if you can ar-
range the flowers in a way that will make it easy for you to see, without
counting, how many flowers Ant has taken away. Do you know an
“easy way” for that? Could you use a tool from the Tool Box like we
did before?

[Keep encouraging the children to explore other types of structure or to
take a look at another child’s structure if the child’s own structure does not
seem to help determine the missing flowers]

(4) It’sstill quite difficult to easily see how many flowers have been picked
out of the garden. Is there another way that could help you see it easily?

[Make use of a successful structure as an example to show the other chil-
dren that it did work. Challenge the child who made this structure further
by adding more chips to the garden]

(5) Soyou found away to quickly see how many flowers were picked from
your garden, without counting each of them. Now, how can you see
how many flowers are left in your garden without counting? Do you
know how you can arrange the flowers so that you can quickly see how
many there are? Is there a tool in the Tool Box that can help you with
this?

The focus group [Each child has their own garden with 10 uniformly colored plastic chips
in it. Choose a garden where Ant is going to pick his flowers. Ask the
child to look away until the flowers have been picked]

(6) How many flowers did Ant pick? Does your structure help to see how
many flowers were picked? How can you arrange the flowers to that
you can see it in an even “easier and quicker way” without counting
each flower? (...) Does anyone else know a good way?
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[While flowers are being picked out of the gardens, the children look for
ways to keep track of how many flowers are missing from their garden.
Chips are either added to or removed from the garden depending on
whether the child determined the correct number of missing flowers. In
case the children become too distracted, the game can also be played cen-
trally with one garden like in the classroom activity]

(7) Cananyone give some advice about how we should arrange the flowers
to quickly and easily see how many flowers Ant picked from a garden?

(8) Now you found an “easy way” to see how many flowers have been re-
moved from your garden. Can you use this way to see how many flow-
ers are left in the garden? How can you arrange the rest of the flowers
to see it better without counting each flower?

[If there is time left, then the children can start comparing the structures
across the gardens]

(9) This time, Ant is going to pick flowers from each garden at the same
time. Then we will see how many flowers are left in each garden each
time. How can you quickly see who has the garden with most flowers
in it? So which garden has the least flowers in it? Can you see that with-
out counting? Do you know an “easy way” to see that?

To simplify « Start with a smaller number of flowers (5-8)

the activity * Play the game more often and encourage discussion

To make the « Start with a larger number of flowers (12-16)

activity more * Let the children pick the flowers themselves so they can play the game
challenging with each other in twos

« Discuss the structure of the remaining flowers and how the children may
use this structure to determine how many flowers were left in the garden.

Background and
observation
criteria

Considering the experiences that the children will have had in the previous
instruction activities with recognizing spatial structures and discovering
the convenience of such structures, this activity is expected to challenge
them to make more goal-directed use of the spatial structures. It is there-
fore a crucial activity in this instructional sequence for gauging what the
influence of the previous activities is on children’s insight into structures
and their uses. The role of the teacher in this activity is to guide the chil-
dren in such a way that the children experience a dilemma in the game that
triggers them to search for their own (more structured) solutions.
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The children are expected to first judge by sight whether, and if so, how
many flowers are missing from their garden. The way of doing this is by
looking at where there may be large empty spaces (e.g., pointing and
counting where the missing chips may have been laying). The game-
aspect of this activity should stimulate the experience that more flowers in
the garden can make it more difficult to quickly determine how many
flowers are missing (e.g., the children will lose more and more flowers and
become disappointed because they don’t want to lose more flowers and
risk losing the game).

Previous versions of the activity have shown how important it is that the
teacher strategically removes certain chips in the formation. The children
will first be satisfied with a particular structure if that helps them see the
number of empty spaces when chips are removed (e.g., in a structure of
four rows of four chips, there is one missing out of every middle of a row
and that is easy to see because of the resulting empty spaces). The key is to
remove those chips that challenge the structure that the child appears to
depend on (e.g., not the middle chip in a row, but one of the outer chips in
each of the rows). To avoid losing all the flowers, the children will have to
look for effective and efficient ways of finding out whether and, if so, how
many flowers have been picked out of the garden (e.g., they can arrange
the flowers into a line, in a circle, in several lines, in a dice configuration,
or in composite structures such as a flower with petals and a stem).

The children will be stimulated to not only focus on the structures that
make it easy to determine how many chips are missing, but to also think of
structures that help to see how many chips are remaining. Hence, the
advantage of a particular spatial structure should become clear when chil-
dren take the number of chips that are left into account (e.g., remembering
that there were four rows of four and not four rows of three, which is the
number of chips that are left after one outer in each row is removed).

The teacher can guide the children towards arranging these structures and
encourage them to look at each other’s constructions as examples (e.g.,
highlighting that it seems to be more difficult to keep track of groups of
twos and threes than groups of either two or three chips). The teacher can
also stimulate a discussion by asking the children how they can know so
quickly how many chips have been removed. This can help the children to
make a connection between their “ways” of structuring the chips and the
“clever and easy ways” that they will have encountered in the previous
activities.
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The children can also, just like they did to determine the original number
of flowers in the garden, begin to apply structure to compare the number
of flowers that are left in the garden. This extends how the children will
make more and more use of spatial structures as tools for not only deter-
mining the number that has been taken away but also for the number that
is left. The teacher has the important task of connecting the number of
flowers in the gardens to the ways that the children organized or structured
the flowers beforehand (e.g., “you just saw that, when you arrange your
flowers neatly, you can easily see how many are missing. Can you use that
now to easily see in which garden more or less flowers are left?”). This
may help the children to experience that structure is not only useful for
determining a quantity but also for comparing quantities in an abbreviated
way. Moreover, it makes a teacher alert about children who only count the
empty spaces in an arrangement rather than actually making use of the
structure of the arrangement; counting empty spaces only relates to organi-
zation and not to abbreviation of a numerical procedure.

For this part of the activity, the children are expected to first count the
number of flowers that remain in the garden (e.g., “there are six left in this
garden and seven left in this garden, so more were removed from the gar-
den that has six chips left”). Yet, when the teacher encourages the children
to find, as fast as possible, the difference between the number of flowers in
the gardens, then the children may come to make more use of the struc-
tures in which the chips are arranged (e.g., “I have a larger flower in my
garden than you do, or my piles are taller, or I have more rows”). Although
other children may already be able to compare quantities based on numer-
ical differences (e.g., “I have six and you have five, but six is more than
five so | have more”), it is important that the children are also able to
determine the quantities in an abbreviated way (i.e. with “clever ways”).
This should help them to note a difference in quantity faster than through
counting or arithmetic and win the game.

As the children gain more experience with counting the flowers, we con-
jecture that they will be able to spontaneously “arrange the flowers neatly”
with the more goal-directed aim of abbreviating the way they determine
and compare the number of flowers that have been removed or left in the
garden (e.g., the children arrange the flowers into certain structures so that
they can quickly, without counting, see how many flowers have been
taken away).
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