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ANNA SFARD 

ON THE DUAL NATURE OF MATHEMATICAL 

CONCEPTIONS: REFLECTIONS ON PROCESSES AND 

OBJECTS AS DIFFERENT SIDES OF THE SAME COIN 

ABSTRACT. This paper presents a theoretical framework for investigating the role of 
algorithms in mathematical thinking. In the study, a combined ontological-psychological 
outlook is applied. An analysis of different mathematical definitions and representations 
brings us to the conclusion that abstract notions, such as number or function, can be 
conceived in two fundamentally different ways: structurally - as objects, and operationally - 
as processes. These two approaches, although ostensibly incompatible, are in fact complemen- 
tary. It will be shown that the processes of learning and of problem-solving consist in an 
intricate interplay between operational and structural conceptions of the same notions. 

On the grounds of historical examples and in the light of cognitive schema theory we 
conjecture that the operational conception is, for most people, the first step in the acquisition 
of new mathematical notions. Thorough analysis of the stages in concept formation leads us 
to the conclusion that transition from computational operations to abstract objects is a long 
and inherently difficult process, accomplished in three steps: interiorization, condensation, and 
reification. In this paper, special attention is given to the complex phenomenon of reification, 
which seems inherently so difficult that at certain levels it may remain practically out of reach 
for certain students. 

INTRODUCTION 

It is more than eight decades now, since the well-known French mathemati- 
cian and philosopher Henri Poincare wrote in obvious despair: 

One ... fact must astonish us, or rather would astonish us if we were not too much 
accustomed to it. How does it happen that there are people who do not understand 
mathematics? If the science invokes only the rules of logic, those accepted by all well-formed 
minds ... how does it happen that there are so many people who are entirely impervious to 
it? (Poincare, 1952, p. 49; French original was published in 1908). 

For all the knowledge accumulated by psychologists and educators since 
then, this question seems today as challenging and teasing as ever. The 
particular intricacy of mathematical thinking, the ubiquitous, sometimes 
insurmountable difficulty experienced by those who learn it, and the 
resulting persistent lack of success in teaching the subject - all these facts 
are not less puzzling than they are conspicuous. For the last several decades 
ever growing resources have been invested in a search for an improvement 
in mathematics teaching. The results, however, are still far from satisfac- 
tory - the sought-after solution seems to be as elusive as a cure for a 
common cold. 

Educational Studies in Mathematics 22: 1-36, 1991. 
? 1991 Kluwer Academic Publishers. Printed in the Netherlands. 

This content downloaded from 132.74.40.78 on Mon, 29 Apr 2013 02:13:37 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2 ANNA SFARD 

There is probably much more to mathematics than just the rules of logic. 
It seems that to put our finger on the source of its ostensibly surprising 
difficulty, we must ask ourselves the most basic epistemological questions 
regarding the nature of mathematical knowledge. Indeed, since in its inacces- 
sibility mathematics seems to surpass all the other scientific disciplines, 
there must be something really special and unique in the kind of thinking 
involved in constructing a mathematical universe. Saying what people 
usually say, namely that mathematics is the most abstract of sciences, does 
not help very much. Being almost a cliche, this claim has little explanatory 
power. The real question which should be asked here is qualitative rather 
than quantitative: How does mathematical abstraction differ from other 
kinds of abstraction in its nature, in the way it develops, in its functions 
and applications? 

The question itself is certainly not new. The turn-of-the-century crisis in 
mathematics forced mathematicians themselves into philosophical dis- 
course on the most fundamental questions regarding the nature of mathe- 
matical thought. Within the framework of Piaget's genetic epistemology, 
developed several decades later, it became possible to approach the same 
problems psychologically. But up to now, not enough has been done in the 
direction of unified theory which would address philosophy and psychology 
of mathematics simultaneously, and would take an equal care of mathe- 
matical thinking and of mathematical thought - of both the process and 
the product. In this context, the almost total neglect of advanced mathe- 
matics is especially regrettable, since the advanced topics are those in which 
the difference between mathematics and other sciences becomes most 
evident and the peculiarities of abstract thought can be observed in their 
purest form. 

It seems that the philosophical insight into the nature of mathematical 
concepts is what we need in order to understand in depth the psychological 
processes in which such concepts emerge. In the suggested kind of investi- 
gation, epistemological and ontological analysis of "the stark, atemporal, 
fornal universe of ideal [mathematical] knowledge" would hopefully shed 
some light on the roots of this overwhelming confusion which only too 
often seems to reign in "the organic, interior, processual universe of human 
knowing" (Kaput, 1979). 

1. THE DUAL NATURE OF MATHEMATICAL CONCEPTIONS 

Peculiarity of mathematical thinking investigated through reflections on the 
epistemological and ontological status of mathematical constructs is our 
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DUAL NATURE OF MATHEMATICAL CONCEPTIONS 3 

subject in this paper. Depending on the point of view assumed at a given 
moment, two different words will be used to denote the building blocks of 
mathematics (or any other science, for this matter): the word "concept" 
(sometimes replaced by "notion") will be mentioned whenever a mathe- 
matical idea is concerned in its "official" form - as a theoretical construct 
within "the formal universe of ideal knowledge"; the whole cluster of 
internal representations and associations evoked by the concept - the 
concept's counterpart in the internal, subjective "universe of human know- 
ing" - will be referred to as a "conception". 

First, let us have a look at the world of mathematics, as it expresses itself 
through formal descriptions and representations. 

As far as language is concerned, similarities between mathematics and 
other sciences seem more striking than the differences. Indeed, like physi- 
cists or biologists, the mathematicians use to talk about a certain universe, 
populated by certain objects. These objects have certain features and are 
subjected to certain processes governed by well defined laws. The mathe- 
matician describes properties of sets and numbers in much the same way as 
the scientist presents the structure of molecules and crystals. Utterances like 
"There exists a function such that.. ." are as commonplace in modern 
mathematics as the claims about the existence of certain subatomic parti- 
cles are in physics. 

Unlike material objects, however, advanced mathematical constructs are 
totally inaccessible to our senses - they can only be seen with our mind's 
eyes. Indeed, even when we draw a function or write down a number, we 
are very careful to emphasize that the sign on the paper is but one among 
many possible representations of some abstract entity, which by itself can 
be neither seen nor touched. The mathematician would make claims about 
existence and properties of this intangible object without giving much 
thought to philosophical questions that his statements may evoke. Only 
rarely would an author of a textbook make an apologetic remark such as 
this: "We need not discuss how these abstract entities. .. may be catego- 
rized from a philosophical point of view. For the mathematician .., it is 
important merely to know the rules or laws by which they may be 
combined" (Courant and John, 1962, p. 2). Being capable of somehow 
"seeing" these invisible objects appears to be an essential component of 
mathematical ability; lack of this capacity may be one of the major reasons 
because of which mathematics appears practically impermeable to so many 
"well-formed minds". 

Even if this last claim is true (and I shall do my best in the sequel to 
convince the reader that it really is), the careful analysis of textbook 
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4 ANNA SFARD 

definitions will show that treating mathematical notions as if they referred 
to some abstract objects is often not the only possibility. Although this kind 
of conception, which from now on will be called structural, seems to prevail 
in the modem mathematics, there are accepted mathematical definitions 
which reveal quite a different approach. Function can be defined not only 
as a set of ordered pairs, but also as a certain computational process or as 
a "method for getting from one system to another" (Skemp, 1971, p. 246). 
Symmetry can be conceived as a static property of geometric form, but also 
as a kind of transformation. The latter type of description speaks about 
processes, algorithms and actions rather than about objects. We shall say 
therefore, that it reflects an operational conception of a notion. 

Seeing a mathematical entity as an object means being capable of referring 
to it as if it was a real thing - a static structure, existing somewhere in space 
and time. It also means being able to recognize the idea "at a glance" and 
to manipulate it as a whole, without going into details. Using Hadamard's 
metaphor (applied originally in a slightly different context), we can say that 
structural thinking endows a concept with "a kind of physiognomy", which 
allows a person to "think of it as a unique thing, however complicated it 
may be, just as we see a face of a man" (Hadamard, 1949, p. 65). In contrast, 
interpreting a notion as a process implies regarding it as a potential rather 
than actual entity, which comes into existence upon request in a sequence 
of actions. Thus, whereas the structural conception is static (or shall I say, 
after Frege, 1970, "timeless"), instantaneous, and integrative, the opera- 
tional is dynamic, sequential, and detailed. 

It is practically impossible to instantly pinpoint all the subtle aspects of 
the above distinction, let alone to formulate exact definitions of the 
structural and operational ways of thinking. At this point, it should already 
be quite evident that the former is more abstract, more integrated and less 
detailed than the latter, but it should also be clear that such a comparison 
leaves out at least as much as it comprises. Degrees of abstraction and of 
integration are but quantitative characteristics, whereas the crucial, qualita- 
tive, difference between the two modes of thinking lies in the basic, usually 
implicit, beliefs about the nature of mathematical entities. In other words, 
there is a deep ontological gap between operational and structural concep- 
tions. It is the author's hope that as the discussion goes on, this fundamen- 
tal but elusive aspect of the distinction will become more and more clear. 

All this being said, it is very important to emphasize that operational and 
structural conceptions of the same mathematical notion are not mutually 
exclusive. Although ostensibly incompatible (how can anything be a pro- 
cess and an object at the same time?), they are in fact complementary. The 
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DUAL NATURE OF MATHEMATICAL CONCEPTIONS 5 

term "complementarity" is used here in much the same sense as in physics, 
where entities at subatomic level must be regarded both as particles and as 
waves to enable full description and explanation of the observed phenom- 
ena (for a fuller discussion of complementarity in the context of education 
see Otte, 1984, and Steiner, 1985). In the next section, I shall argue that in 
a similar way, the ability of seeing a function or a number both as a process 
and as an object is indispensable for a deep understanding of mathematics, 
whatever the definition of "understanding" is. 

If we take a scrutinizing look at any mathematical concept, more often 
than not we shall find that it can be defined - thus conceived - both 
structurally and operationally. Some examples, chosen quite at random, are 
presented in Figure 1. 

The dual nature of mathematical constructs can be noticed not only in 
verbal descriptions, but also through various kinds of symbolic representa- 
tions. Although such property as structurality lies in the eyes of the 
beholder rather than in the symbols themselves, some representations 
appear to be more susceptible of structural interpretation than others. For 
instance, different approaches to the concept of function can be detected in 

Structural Operational 

Function Set of ordered pairs Computational process 
(Bourbaki, 1934) or 

Well defined method of 
getting from one system 
to another (Skemp, 1971) 

Symmetry Property of a Transformation of 
geometrical shape a geometrical shape 

Natural Property of a set 0 or any number obtained 
number or from another natural 

The class of all sets number by adding one 
of the same finite ([the result of] 
cardinality counting) 

Rational Pair of integers [the result ofl division 
number (a member of a specially of integers 

defined set of pairs) 

Circle The locus of all points [a curve obtained by] 
equidistant from rotating a compass 
a given point around a fixed point 

Fig. l. Structural and operational descriptions of mathematical notions. 

This content downloaded from 132.74.40.78 on Mon, 29 Apr 2013 02:13:37 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


6 ANNA SFARD 

Graph Algebraic expression Computer program 

10 INPUT X 
20 Y= I 

\ | y = 3X4 30 FOR I=I TO 4 
1 ~~~~~~40 Y=Y.X 

50 NEXT I 
60 Y=3*Y 

x> 

Fig. 2. Different representations of a function. 

the three distinct ways in which the mapping y = 3x4 has been presented in 
Figure 2. The computer program seems to correspond to an operational 
conception rather than to a structural, since it presents the function as a 
computational process, not as a unified entity. In the graphic representa- 
tion, on the other hand, the infinitely many components of the function are 
combined into a smooth line, so they can be grasped simultaneously as an 
integrated whole; the graph, therefore, encourages a structural approach. 
The algebraic representation can easily be interpreted both ways: it may be 
explained operationally, as a concise description of some computation, or 
structurally, as a static relation between two magnitudes (this duality of 
interpretation corresponds to the already widely noticed and discussed dual 
meaning of the equality sign: " = ' can be regarded as a symbol of identity, 
or as a 'command" for executing the operations appearing at its right side; 
see e.g. Behr et al., 1976; Kaput, 1979; Kieran, 1981). 

Different kinds of conception - structural and operational - manifest 
themselves also in the special representations of which people avail them- 
selves while processing knowledge mentally. According to what is already 
known on the internal encoding (see e.g. Paivio, 1971; Clements, 1981, 
Bishop, 1988; Eisenberg and Dreyfus, 1989), mathematical concepts are 
sometimes envisioned by help of "mental pictures", whereas on other 
occasions the same ideas are handled mainly through verbal representa- 
tions. Mental images, being compact and integrative, seem to support the 
structural conception. Hadamard's introspective observations on the role 
of visualization reinforces this supposition: "I need [an image] in order to 
have a simultaneous view of all elements. . . to hold them together, to 
make a whole of them .. .; to achieve synthesis . .; and give the concept its 
physiognomy" (Hadamard, 1949, p. 77). Visualization, therefore, makes 
abstract ideas more tangible, and encourages treating them almost as if 
they were material entities. Indeed, mental images can be manipulated 
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DUAL NATURE OF MATHEMATICAL CONCEPTIONS 7 

almost like real objects. Like in face recognition, the pictures would 
preserve their identity and meaning when "observed" from different points 
of view and in different contexts. Visual representation is holistic in its 
nature and various aspects of the mathematical construct may be extracted 
from it by "random access". In contrast, verbal encoding cannot be 
grasped "at one glance" and must be processed sequentially, so it seems 
more appropriate for representing computational procedures. Thus, the 
non-pictorial inner representation is more pertinent to the operational 
mode of thinking. [Please note: the above claims should not be interpreted 
as an attempt to say that there is a one-to-one correspondence between 
operational/structural conceptions and verbal/visual inner representations. 
The only suggestion I have been trying to make here is that some kinds of 
inner representations fit one type of conception better than the other.] 

Before closing this introductory section it would be in point to notice 
that mathematical, psychological and philosophical literature teems with 
allusions to various dichotomies in mathematical universe. Distinctions 
between "two types of mathematical knowledge/thought/understanding" 
go like a thread of scarlet throughout all kinds of recent writings, and some 
of them may have certain bearings on the operational-structural duality 
suggested in this article. 

Out of the long list of dichotomies proposed by different writers, let me 
mention only a few (for a fuller catalogue see Hiebert, 1985, pp. 1-2). 
According to some researchers, mathematics can be divided into abstract 
and algorithmic (see e.g. Halmos, 1985) or into declarative and procedural 
(Anderson, 1976). The names are almost self-explanatory, so even without 
any formal definitions the connection between these distinctions and the 
ideas presented in this paper should be quite obvious. The already men- 
tioned observations on process/product duality of mathematical symbolism 
(Kaput, 1979; Davis, 1975), although much more restricted in scope, seem 
to go hand in hand with this kind of divisions. Another categorization, 
which has perhaps even more in common with our suggestions, is the one 
which splits mathematics into dialectic and algorithmic (Henrici, 1974). 
While algorithmic mathematics deals mainly with all kinds of computa- 
tional processes, "dialectic mathematics is a rigorously logical science, 
where statements are either true or false, and where objects with specified 
properties either do or do not exist". 

A certain kind of dichotomy has been observed also when psychological 
rather than philosophical aspects of mathematics were concerned. Two 
different modes of mathematical thinking have been distinguished by Piaget 
(1970, p. 14): figurative, which refers to seeing "states as momentary and 

This content downloaded from 132.74.40.78 on Mon, 29 Apr 2013 02:13:37 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


8 ANNA SFARD 

static" and thus corresponds to our structural conception; and operative, 
which "deals.. . with transformations.. .", so has much to do with our 
operational approach. Incidentally, this distinction is deeply rooted in 
Piaget's theory of reflective abstraction which, especially in its further 
elaborations (Thompson, 1985; Dubinsky and Lewin, 1976), has touched 
explicitly upon the role of processes and objects in mathematical thinking. 
Even the widely accepted categorizations of mathematical understanding 
(or knowledge) into conceptual and procedural (see e.g. Lesh and Landau, 
1983; Hiebert, 1985) or into instrumental and relational (Skemp, 1976) seem 
to be somehow in point here. Indeed, in the next section an attempt will be 
made at showing how our capability for developing operational and 
structural conceptions bears upon the type of understanding we achieve. 

The classification suggested in this article puts us, therefore, in a good 
company. Moreover, even if our distinction still looks somewhat fuzzy, so 
do all the others. For instance, while talking about conceptual and proce- 
dural knowledge, Hiebert and Lefevre complained: "the relationship be- 
tween these forms of knowledge is not yet well understood", and "the types 
of knowledge themselves are difficult to define; the core of each is easy to 
describe, but outside edges are hard to pin down" (ibid., p. 3). "Pinning 
down the edges", at least in the case of operational-structural distinction, 
is my objective in the remainder of this article. 

To begin with, let me confront our division with those listed above. On 
the face of it, the idea of operational and structural conceptions may seem 
not much different from some of the dichotomies which have just been 
mentioned. For all the similarities, however, two fundamental characteris- 
tics of our distinction - its combined ontological-psychological nature and 
its complementarity - put it apart from the majority of other classifica- 
tions. Firstly, most of those who suggested some kind of dichotomy rarely 
gave much attention to the question of tacit philosophical assumptions 
underlying any mathematical activity; rather, they referred either to certain 
more obvious aspects of the subject-matter (such as its structure or the role 
of its different components in problem-solving), or to the cognitive pro- 
cesses involved in handling the knowledge. In our classification, we tried to 
address the first and the last of these issues simultaneously by focusing on 
the nature of mathematical entities (ontological issue) as perceived by a 
thinker (psychological perspective). Secondly, whereas other distinctions 
lead to decomposition of mathematical knowledge into two separate compo- 
nents (e.g., concepts vs. procedures), our complementarian approach 
stresses its unity. True, recently the former position seems to be gradually 
abandoned. While referring to the issue of concepts and procedures, 
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DUAL NATURE OF MATHEMATICAL CONCEPTIONS 9 

Hiebert and Lefevre observed: "Historically, the two kinds of knowledge 
have been viewed as separate entities, . . . coexisting as disjoint neigh- 
bours ... In contrast, there is a growing interest today in how concepts and 
procedures are related" (ibid., p. 2). Nevertheless, this new approach still 
cannot be regarded as complementarian: "current discussions treat the two 
forms of knowledge as distinct", even though "linked in critical, mutually 
beneficial way". Let me stress once more: unlike "conceptual" and "proce- 
dural", or "algorithmic" and "abstract", the terms "operational" and 
"structural" refer to inseparable, though dramatically different, facets of 
the same thing. Thus, we are dealing here with duality rather than 
dichotomy. 

To complete the picture, let me make yet another remark regarding the 
normative approach some writers assume while talking about "different 
kinds of mathematics". "Algorithmic" and "abstract" mathematics, for 
example, are sometimes assessed and contrasted against each other as if a 
contest was held between them. While there seems to be a consensus that 
the "abstract" mathematics deserves the highest esteem, the algorithmic, 
procedural aspects are rather controversial. Recently, the dispute over the 
topic has become more heated than ever: provocatively exaggerated decla- 
ration that "algorithmic way of life is best" (Maurer, 1985) evoked angry 
reactions from those who feel that "algorithm drives out thought" (Stein, 
1988). Even though everybody admits that "algorithmic" mathematics is 
important, the opinion seems to prevail that it is somehow second-rate. 

Our complementarian approach strips this kind of discussion of any 
meaning. Whether the issue of applications or of education is concerned, 
the operational and structural elements cannot be separated from each 
other. Therefore, we may only repeat after Halmos (1985) that to "try to 
decide which component is more important is not much more meaningful 
than to debate whether for walking you need your right foot more than 
your left". This statement will be further substantiated in the next sections, 
where the mutual dependence and the necessity of both operational and 
structural conceptions will be carefully explained and illustrated. The 
thorough discussion of the role played by them in all kinds of cognitive 
processes will help us to grasp the reason for which abstract mathematics 
- the one more heavily based on a structural approach - is so highly-rated. 
Indeed, it will be shown that the real insight necessary for mathematical 
creation can hardly be achieved without the ability to "see" abstract 
objects, and that, on the other hand, the structural conception is very 
difficult to attain (that is probably why some people may feel, intuitively of 
course, that the special ability to develop a structural conception is what 
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distinguishes mathematicians from "mere mortals"). For all the attention 
and respect given to the structural approach, the operational mode of 
thinking will also get its due share: we shall argue that a profound insight 
into the processes underlying mathematical concepts, maybe even a certain 
degree of mastery in performing these processes, should sometimes be 
viewed as a basis for understanding such concepts rather than as its 
outcome. Consequently, the "technical skills" will be rehabilitated, after 
they were unduly demoted in a somewhat exaggerated reaction to behav- 
iorism. At last, we may even find ourselves in the position to offer a 
tentative answer to the vexing question so often asked by educators: 

Why is it that so many intelligent, well-trained, well-intentioned teachers put such a premium 
on developing students' skill in the routines of arithmetic and algebra despite decades of 
advice to the contrary from so-called experts? What is it that teachers know that others do 
not? (Kilpatrick, 1988). 

2. THE ROLE OF OPERATIONAL AND STRUCTURAL CONCEPTIONS 

IN THE FORMATION OF MATHEMATICAL 

CONCEPTS - HISTORICAL OUTLOOK 

Of the two kinds of mathematical definitions, the structural descriptions 
seem to be more abstract. Indeed, in order to speak about mathematical 
objects, we must be able to deal with products of some processes without 
bothering about the processes themselves. In the case of functions and sets 
(in their modem sense) we are even compelled to ignore the very question 
of their constructivity. It seems, therefore, that the structural approach 
should be regarded as the more advanced stage of concept development. In 
other words, we have good reasons to expect that in the process of concept 
formation, operational conceptions would precede the structural. Different 
kinds of evidence will be brought in this article to show that this statement 
is basically true whether historical development or individual learning is 
concerned. 

Before any example will be given, however, it should be pointed out that 
the proposed model, although believed to be very broad in its scope, might 
be inadequate in certain cases. Geometric ideas, for example, for which the 
unifying, static graphical representations appear to be more natural than 
any other, can probably be conceived structurally even before full aware- 
ness of the alternative procedural descriptions has been achieved. The 
concept of a circle, for instance, could develop in the steps envisioned by 
M. Boole (Tahta, 1972): "The elementary geometrician who first conceived 
the idea of the circle caught his suggestion from looking at things whose 
forms were approximately round; but as soon as he discovered the law of 
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DUAL NATURE OF MATHEMATICAL CONCEPTIONS 11 

roundness [the algorithm for obtaining a circle] within his own mind, he 
was able to express roundness in a new material". Even though this 
developmental scenario looks plausible, the ensuing historical analysis of 
other concepts will hopefully convince the reader that in computational 
mathematics, the majority of ideas originated in processes rather than in 
objects. Indeed, a close look at the history of such notions as number or 
function will show that they had been conceived operationally long before 
their structural definitions and representations were invented. 

What follows now is a very brief and by no means exhaustive presenta- 
tion of a long and turbulent history of some of the most central mathemat- 
ical concepts. In this article I shall deal with only those historical facts and 
events which highlight the point I would like to make here (for a more 
detailed historical account see e.g. Cajori, 1985; Kleiner, 1989). 

Let us begin our analysis with the notion of number. For a very long 
time the meaning of this term was restricted to what is known today under 
the name "natural number". This kind of number originates in the process 
of counting, so even before turning to the history, let us consider a certain 
well-known phenomenon observed in young children. It was noticed by 
researchers (see e.g. Piaget, 1952, p. 62) that when a child learns counting, 
there is a stage when he or she can already build a one-to-one mapping 
between the words "one", "two", "three",.. and the objects in a given 
set, but would not use the last number-name used in this process as an 
answer to a question "How many objects are there?". Whenever asked, the 
child would just repeat the procedure of counting. This phenomenon 
clearly shows the operational roots of natural numbers: for the child, the 
process of counting itself, not its abstract product, is what is meant 
whenever the term "number" is mentioned. 

The meaning of the term "number" has been generalized several times in 
the course of the last three thousand years. For long periods did mathe- 
maticians perform some special manipulations with already acknowledged 
kinds of numbers before they were able to sever an abstract product from 
these new processes and to accept the resulting entities as a new kind of 
mathematical objects. For instance, a ratio of two integers was initially 
regarded as a short description of a measuring process rather than as 
a number. Incidentally, some traces of purely operational approach to 
rationals were noticed by researchers (Carpenter et al., 1980) also in 
today's 13-year-old students, 50 percent of whom were found unable "to 
represent a division problem like 7 divided by 4 as a fraction". In these 
students, the division of integers was still only a process which could not 
yet be seen at will as a static entity. 
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For a long time the term "number" appeared mainly in the context of 
measuring processes. The Pythagorean discovery that in certain squares, 
the usual procedure for finding the length of the diagonal cannot be 
described in terms of integers and their ratios (because the diagonal and the 
sides have no common measure), was greeted with astonishment and 
bewilderment (Hippasus of Metapontum, the unfortunate discoverer of the 
incommensurability, was reportedly thrown to the sea for his "heresies"). 
Much time elapsed before mathematicians were able to separate the notion 
of number from measuring processes and to acknowledge the fact that the 
length of any segment represents a number even if it cannot be found in the 
"usual" way. Eventually, the set of numbers has been broadened again, to 
include positive irrationals along with integers and fractions. 

This enlarged set, in its turn, gave birth to new kinds of computational 
processes, and then to new kinds of numbers. Cardan's prescriptions for 
solving equations of the third and fourth order, published in 1545, involved 
subtracting positive rationals from smaller ones and even finding roots of 
what is today called negative numbers. Despite the widespread use of these 
algorithms, however, mathematicians refused to accept their by-products 
and for some centuries referred to them as "absurd" or "imaginary". The 
term "negative number" and the symbol /- 1 were initially considered 
nothing more than abbreviations for certain "meaningless" numerical 
operations. They came to designate a fully-fledged mathematical object 
only after mathematicians got accustomed to these strange but useful kinds 
of computation. 

As to the operational origins of the negative and complex numbers, it 
would be most illuminating to look into the historical writings by the 
logician and philosopher P. E. Jourdain (1879-1919). In the following 
passage, Jourdain (1956, p. 27) says explicitly that negative number is 
nothing but a type of process: 

Let a - b be c. To get c from a we carry out the operation of taking away b. This operation, 
which is thefulfillment of the order: "Subtract b", is a "negative number". Mathematicians call 
it a "number" and denote it by "-b" simply because of analogy: the same rules for 
calculation hold for "negative numbers" and "positive numbers". 

Jourdain's explanation highlights the developmental gap between his con- 
ceptions of the "unsigned" and the negative numbers: while the former are 
already regarded by the author as "real", genuine objects, their operational 
origins totally forgotten, the latter are still identified with processes and 
allowed to be treated as static entities only by force of convention. Since 
the idea of complex numbers stems from certain manipulations performed 
on negatives, it should surprise nobody that Jourdain's interpretation of 
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DUAL NATURE OF MATHEMATICAL CONCEPTIONS 13 

the "imaginary" numbers is also purely operational: while referring to the 
number "i", he states that "it represents an operation, just as the negative 
numbers do, but of a different kind" (p. 30). 

The most important thing to be learned from this short historical 
account is that the development of the notion of number was a cyclic 
process, in which approximately the same sequence of events could be 
observed time and again, whenever a new kind of number was being born. 
These iterations have been summarized schematically in Figure 3. Each 
recurrent segment of the schema represents a lengthy process, consisting of 
three phases: 

(1) the preconceptual stage, at which mathematicians were getting used to 
certain operations on the already known numbers (or, as in the case of 
counting - on concrete objects); at this point, the routine manipulations 

Complex 
InumbersI 

Real ex. root 
numbers - Imaginary 

Positive subtr. Negative 
real real 

Positive cx. root Positive 
rational measuring irrational 

Natural division Positive 
numbers imeasunng fractions 

Sets of 
concrete 
objects counting 

Fig. 3. Development of the concept of number. 
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were treated as they were: as processes, and nothing else (there was no 
need for new objects, since all the computations were still restricted to 
those procedures which produce the previously accepted numbers). 

(2) a long period of predominantly operational approach, during which a 
new kind of number begun to emerge out of the familiar processes 
(what triggered this shift were certain uncommon operations, previ- 
ously regarded as totally forbidden, but now accepted as useful, if 
strange); at this stage, the just introduced name of th - new number 
served as a cryptonym for certain operations rather than as a signifier 
of any "real" object; the idea of a new abstract construct, although 
already in wide use, would still evoke strong objections and heated 
philosophical discussions; 

(3) the structural phase, when the number in question has eventually been 
recognized as a fully-fledged mathematical object. From now on, 
different processes would be performed on this new number, thus 
giving birth to even more advanced kinds of numbers. 

To sum up, the history of numbers has been presented here as a long 
chain of transitions from operational to structural conceptions: again and 
again, processes performed on already accepted abstract objects have been 
converted into compact wholes, or reified (from the Latin word res - a 
thing), to become a new kind of self-contained static constructs. Our 
conjecture is, that this model can be generalized to fit many other mathe- 
matical ideas. 

For instance, the just presented pattern repeats itself in the history of 
function. This important idea, born in the end of seventeenth century (at 
least officially), was the result of a long search after a mathematical model 
for physical phenomena involving variable quantities. When the term 
"function" appeared for the first time (in a work by Leibniz, in 1692), the 
recently invented algebraic symbolism was gaining popularity and gradu- 
ally entering every branch of mathematics. No wonder then, that the 
notion of function was initially tightly connected to algebraic processes. 
The new term was first used to denote "a quantity composed in any 
manner whatever of [a] variable and constant" (by Jean Bernoulli in 1718), 
or the so called "analytic expression" (by Euler in 1747). Thus, in a sense, 
the concept of function was for algebraic manipulations on variables what 
the idea of a negative number was for subtraction: something between the 
product and the process itself. 

The main problem with the early definitions of function was that they 
leaned heavily on the concept of variable, which by itself was rather fuzzy 
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DUAL NATURE OF MATHEMATICAL CONCEPTIONS 15 

and escaped every attempt at reification. That is probably one of the 
reasons why in 1755, after a long discussion with d'Alembert, Euler 
suggested another definition, in which the term "variable" was not explic- 
itly mentioned: "a quantity" should be called function only if it depends on 
another quantity "in such a way that if the latter is changed the former 
undergoes change itself". The operational flavor emanates from this de- 
scription even more clearly than from the earlier versions. 

All the further history of the notion may be seen as a long sequence of 
strenuous, if mostly failed, attempts at reification. Euler himself tried to 
arrive at a fully-fledged structural version by endowing his "changing 
quantities" with a "solidifying" graphic representation. Euler's idea was 
not very helpful, however, since neither he, nor any of his contemporaries 
were able to build a truly satisfactory bridge between the algebraic and 
graphic approach: each time a definition had been proposed which would 
fit the algebraic-operational intuition, after a while somebody would find 
an example showing that the new description fell short of the structural- 
graphic version; and vice versa (for a detailed account see Kleiner, 1989). 

It should be pointed out that at a certain stage, mathematicians and 
philosophers became fully aware of what for some time had probably been 
done only intuitively - of their striving for reification, of their need of 
definition which would justify the common practice of referring to function 
as if it was a real "thing". For example, let us look at the following remark 
from the beginning of our century: 

In recent times the word 'variable' is predominant in the definitions [of function]. Conse- 
quently Analysis would have to deal with a process in time, since it takes variables into 
consideration. But in fact it has nothing to do with time; its applicability to occurrences in 
time is irrelevant .... as soon as we try to mention a variable, we shall hit upon something 
that varies in time and thus does not belong to pure Analysis. And yet it must be possible to 
point to a variable that does not involve something alien to arithmetic, if variables are objects 
of Analysis at all. (Frege, 1970, p. 107; German original: 1904.) 

Frege's call for elimination of time is an explicit request for reification. 
Also, this remark makes it clear how difficult the struggle for a structural 
version of the notion was. 

The numerous failed attempts at translating operational intuition into 
structural definition led to Dirichlet's rebellion against the algorithmic 
approach, and eventually to the now widely accepted, purely structural 
Bourbaki's definition. This simple description presented function as a set of 
ordered pairs and made no reference whatsoever to any kind of computational 
process. Bourbaki's group solved the time-revered problem by eliminating 
the "unreificable" notion of variable and substituting it with purely structural 
set-theoretic concepts. Not surpnsingly, this new definition, which had very 
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little in common with its intuitive operational origin, evoked much criticism 
when first proposed. But when at a long, long last function - initially only 
a computational process - was converted into a mathematical object, our 
schema of concept development could repeat itself once more: on the new 
objects new operations could now be performed. These new operations are 
known today as functionals. 

Let us summarize once again what has been observed thus far. In all our 
examples, the same phenomenon could be distinguished over and over 
again: various processes had to be converted into compact static wholes to 
become the basic units of a new, higher level theory. When we broaden our 
view and look at mathematics (or at least at its big portions) as a whole, 
we come to realize that it is a kind of hierarchy, in which what is conceived 
purely operationally at one level should be conceived structurally at a 
higher level. Such hierarchy emerges in a long sequence of reifications, each 
one of them starting where the former ends, each one of them adding a new 
layer to the complex system of abstract notions. In certain cases, of course, 
this picture would seem a little simplistic. The process of concept formation 
would look more intricate than implied by our unidirectional model. This 
model, however, is to be regarded as not more than a first approximation, 
indicating only the prevalent tendency. 

3. THE ROLE OF OPERATIONAL AND STRUCTURAL CONCEPTIONS 

IN THE FORMATION OF MATHEMATICAL 

CONCEPTS - PSYCHOLOGICAL OUTLOOK 

What really strikes the eyes in the already given examples is that the 
fonnation of a structural conception is a lengthy, often painfully difficult 
process. The question which now cries out to be asked concerns the sources 
of this difficulty. Naturally, this issue should be tackled from the psycho- 
logical point of view, and this is exactly what will be done in the next 
section. In the remainder of the present part I shall restrict myself to the 
preliminary problem: is the proposed model of concept formation in force 
also when individual learning is concerned? Or, in other words, is it true 
that when a person gets acquainted with a new mathematical notion, the 
operational conception is usually the first to develop? The odds are that the 
answer to this question should be yes. Let me put it even more clearly: it 
seems that the scheme which was constructed on the basis of historical 
examples can be used also to describe learning processes. 

At this point, some objections may be raised by a careful reader. Firstly, 
the above statements imply that there is some "natural" course of events in 
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processes, which can hardly be regarded as spontaneous. Indeed, mathe- 
matical learning, expecially at more advanced levels, cannot be expected to 
take place without external intervention (of a teacher, of a textbook), and 
may therefore be highly dependent on a kind of stimulus (of teaching 
method) which has been used. Moreover, given a specific teaching strategy, 
it is sometimes almost impossible to know to what extent the observed 
learning process has been influenced by this particular method, and how 
different it could be in other circumstances. The simplest way to deal with 
this kind of doubt would be to say that in the psychological context, the 
statement "operational before structural" should be understood merely as 
a prescription for teaching. Yet, although such interpretation should not be 
dismissed, it would not make full justice to the suggested model. Our whole 
argumentation is based on the assumption (which, incidentally, seems to 
underlie most of cognitive research since Piaget) that in the process of 
learning - any kind of learning! - certain constant characteristics can be 
identified which appear to be quite immune to changes in external stimuli. 
The precedence of the operational conceptions over structural is presented 
here as one of such invariants. 

Secondly, it must be stressed right away that the suggested model of 
concept acquisition should by no means be viewed as a result of a 
light-minded, automatic projection from history to psychology. Claims 
about operational origins of mathematical notions were made by many 
writers, often without any reference to history. The pioneering work in this 
field has been done by Piaget, who wrote in his book on genetic epistemol- 
ogy (1970, p.16): "the [mathematical] abstraction is drawn not from the 
object that is acted upon, but from the action itself. It seems to me that this 
is the basis of logical and mathematical abstraction". For the last twenty 
years, this supposition has guided both theoretical and empirical research 
on mathematical thinking. Recent studies elaborated Piaget's original ideas 
and put into them new contents (see e.g. Thompson, 1985; Sinclair and 
Sinclair, 1986; Dubinsky and Lewin, 1986; Dorfler, 1987, 1989). Our 
somewhat broader conjecture about the duality of mathematical thinking 
and the developmental precedence of the operational conceptions can be 
substantiated in many different ways. Some empirical evidence has already 
been woven into our historical account, and many other recent findings in 
'the field of learning mathematics may serve as additional reinforcement 
(see Sfard, 1987, 1988, 1989). But first and foremost, there is a strong 
theoretical argument speaking for our thesis. If the structural approach is 
more abstract than the operational, if from the philosophical point of view 
numbers and functions are basically nothing but processes, if doing things 
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is the only way to somehow "get in touch" with abstract constructs - if all 
this is true, then to expect that a person would arrive at a structural conception 
without previous operational understanding seems as unreasonable, as 
hoping that he or she would comprehend the two-dimensional scheme of a 
cube without being acquainted with its "real-life" three-dimensional model. 

According to our scheme of historical development, three steps can be 
distinguished in the process of concept formation. These three stages 
correspond to three "degrees of structuralization" which may be named on 
the grounds of purely theoretical analysis of the relationship between 
processes and objects. In the light of the same analysis, our model of 
learning can now be refined along similar lines: if the conjecture on 
operational origins of mathematical objects is true, then first there must be 
a process performed on the already familiar objects, then the idea of 
turning this process into an autonomous entity should emerge, and finally 
the ability to see this new entity as an integrated, object-like whole must be 
acquired. We shall call these three stages in concept development interi- 
orization, condensation and reification, respectively. 

At this point, a detailed description of each stage should be given. Before 
this is done, however, we must be aware of a methodological difficulty 
stemming from the fact that we are dealing here with student's implicit 
beliefs about the nature of mathematical objects. Unable to investigate the 
problem in a direct way, how shall we diagnose the different stages in the 
conceptual development of a learner? It seems that we have no choice but 
to describe each phase in the formation of abstract objects in terms of such 
external characteristics as student's behaviours, attitudes, and skills. The 
resulting specification will hopefully be clear enough to serve as a tool for 
diagnosing, maybe even measuring, student's ability to think structurally 
about a concept at hand. 

At the stage of interiorization a learner gets acquainted with the processes 
which will eventually give rise to a new concept (like counting which leads 
to natural numbers, subtracting which yields negatives, or algebraic manip- 
ulations which turn into functions). These processes are operations per- 
formed on lower-level mathematical objects. Gradually, the learner 
becomes skilled at performing these processes. The tenn "interiorization" is 
used here in much the same sense which was given to it by Piaget (1970, p. 
14): we would say that a process has been interiorized if it "can be carried 
out through [mental] representations", and in order to be considered, 
analyzed and compared it needs no longer to be actually performed. 

In the case of negative number, it is the stage when a person becomes 
skillful in performing subtractions. In the case of complex number, it is 
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when the learner acquires high proficiency in using square roots. In the case 
of function, it is when the idea of variable is learned and the ability of using 
a formula to find values of the "dependent" variable is acquired. 

The phase of condensation is a period of "squeezing" lengthy sequences 
of operations into more manageable units. At this stage a person becomes 
more and more capable of thinking about a given process as a whole, 
without feeling an urge to go into details. It is like turning a recurrent part 
of a computer program into an autonomous procedure: from now on the 
learner would refer to the process in terms of input-output relations rather 
than by indicating any operations. As in the case of computer procedures, 
a name might be given to this condensed whole. This is the point at which 
a new concept is "officially" born. Any difficulty with indicating the output 
of the underlying process (like in the case of subtracting a number from a 
smaller one while only unsigned numbers are known) will serve as an 
additional trigger for the idea of a new mathematical entity. Thanks to 
condensation, combining the process with other processes, making com- 
parisons, and generalizing become much easier. A progress in condensation 
would manifest itself also in growing easiness to alternate between different 
representations of the concept. 

In the case of the negative numbers, condensation may be assessed 
through student's proficiency in combining the underlying processes with 
other computational operations; or, in other words, in his or her ability to 
perform such arithmetic manipulations as adding or multiplying negative 
and positive numbers. In the case of complex numbers, condensation is 
what helps the learner to realize that reversing the operation of squaring 
may be useful as a part of lengthy calculations even if it would not, by 
itself, yield a legitimate mathematical object. The student may still treat 
such symbol as 5 + 2i as nothing but a shorthand for a certain procedure, 
but at this stage it would not prevent him from skillfuly using it as a part 
of a complex algorithm. When function is considered, the more capable the 
person becomes of playing with a mapping as a whole, without actually 
looking into its specific values, the more advanced in the process of 
condensation he or she should be regarded. Eventually, the learner can 
investigate functions, draw their graphs, combine couples of functions (e.g. 
by composition), even to find the inverse of a given function. 

The condensation phase lasts as long as a new entity remains tightly 
connected to a certain process. Only when a person becomes capable of 
conceiving the notion as a fully-fledged object, we shall say that the concept 
has been reified. Reification, therefore, is defined as an ontological shift - 
a sudden ability to see something familiar in a totally new light. Thus, 
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whereas interiorization and condensation are gradual, quantitative rather 
than qualitative changes, reification is an instantaneous quantum leap: a 
process solidifies into object, into a static structure. Various representations 
of the concept become semantically unified by this abstract, purely imagi- 
nary construct. The new entity is soon detached from the process which 
produced it and begins to draw its meaning from the fact of its being a 
member of a certain category. At some point, this category rather than any 
kind of concrete construction becomes the ultimate base for claims on the 
new object's existence. A person can investigate general properties of such 
category and various relations between its representatives. He or she can 
solve problems involving finding all the instances of the category which 
fulfill a given condition. Processes can be performed in which the new-born 
object is an input. New mathematical objects may now be constructed out 
of the present one. Penrose's (1989, p. 67) statement referring to Church's 
lambda-calculus may serve as a telling example: "one is concerned [here] 
with a 'universe' of objects, denoted by say a, b, c, . . ., each of which 
stands for a mathematical operation or function . . . The things on which 
these functions act - are other things of the same kind, i.e. also functions" 
(incidentally, this statement has another interesting aspect: by referring 
to function first as 'object' or 'thing', and then as 'mathematical operation', 
it clearly indicates the operational-structural duality of the author's 
approach). 

The stage of reification is the point where an interiorization of higher- 
level concepts (those which originate in processes performed on the object 
in question) begins. 

In the case of negative numbers, it is learner's ability to treat them as a 
subset of the ring of integers (without necessarily being aware of the formal 
definition of ring) which can be viewed as a sign of reification. Complex 
number may be regarded as reified when the symbol 5 + 2i is interpreted as 
a name of a legitimate object - as an element in a certain well-defined set 
- and not only (or even not at all) as a prescription for certain manipula- 
tions. In the case of function, reification may be evidenced by proficiency 
in solving equations in which "unknowns" are functions (differential and 
functional equations, equations with parameters), by ability to talk about 
general properties of different processes performed on functions (such as 
composition or inversion), and by ultimate recognition that computability 
is not a necessary characteristic of the sets of ordered pairs which are to be 
regarded as functions. 

How and to what extent the just presented developmental scheme may be 
influenced by deliberate instructional actions is an important question 
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which must be dealt with in a separate article. There is one thing, however, 
which is much too essential to be passed over in silence. It is the potential 
role of names, symbols, graphs, and other representations in condensation 
and reification. Judging from the history, the importance of this factor can 
hardly be overestimated. For example, the introduction of the number line 
may be viewed as a final trigger for the reification of negative numbers, and 
the invention of what is known today as Argand plane can be regarded as 
a decisive step in turning complex numbers into legitimate mathematical 
objects. It seems reasonable to expect that representations would play a 
similar role in individual learning. This topic, although already studied 
in a similar context (see e.g. Dorfler, 1987), asks for more empirical 
investigation. 

At this point it should already be clear that our three-phase schema is to 
be understood as a hierarchy, which implies that one stage cannot be 
reached before all the former steps are taken (see Figure 4). One word 
should be added, however, regarding certain side routes which can be taken 
by a learner. The student may manipulate a concept through a certain 
prototype (for example, the data collected by Markovitz et al., 1985, show 
that beginners tend to imagine linear mappings whenever the notion of 
function is mentioned) or, unable to come to terms with the invisible 
'objects', he or she can develop a debased, quasi-structural approach, 
namely a tendency to identify the notion at hand with one of its represen- 
tations (in the case of function: formula or graph). This stage, which is 
clearly a deviation from our scheme, may be transitory or permanent. 

Let me conclude this part of the study with two remarks addressed to a 
critical reader. First, those who feel that at some points the author sounded 
somewhat too assertive should be reminded that the majority of statements 
made in this section were analytic rather than synthetic. For example, the 
hierarchical nature of the scheme is implicit in the definitions of interioriza- 
tion, condensation and reification. More generally, the model of concept 
acquisition presented in this section has been deduced from onc basic 
conjecture - from the thesis about the operational origins of mathematical 
objects. Like so many other ideas contrived by those who still believe in the 
possibility of a theoretical framework for cognitive research, our three- 
phase schema has a highly speculative character - and this is only natural. 
Hypothetical and simplified as it is, it has already started to prove itself 
useful as a tool for planning, integrating, and interpreting empirical re- 
search (see Sfard, 1987, 1989). Ultimately, it may lead to some important 
didactic implications (Sfard, 1988). 

Secondly, the claim about the developmental priority of operational 
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Fig. 4. Gcneral model of concept formation. 

conceptions over structural, although historically sound and empirically 
demonstrable, may seem somehow at variance with the common practice of 
introducing new concepts by help of structural definitions, usually without 
an explicit reference to any kind of underlying processes. More often than 
not, a modemn mathematical textbook would start its presentation of the 
concept of complex number with a simple statement: "Let us consider the 
set of all the pairs of real numbers with the following properties.. .". The 
contemporary mathematician would offer an entirely new idea in a forn of 
a ready-made object, clearly believing that the abstract construct may be 
brought into being just by force of an appropriate definition. Thus, the 
possibility must be considered that, after all, structural conception may 
sometimes be the first. This can certainly be true in the case of professional 
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mathematicians - their well-trained minds can indeed be capable of 
manipulating abstract objects right away, without the mediation of compu- 
tational processes. Even so, in the light of both theoretical arguments and 
experimental findings, our model does seem to present a prevailing ten- 
dency. In fact, this tendency may be so strong, that even if a new concept 
is introduced structurally, the student would initially interpret the definition 
in an operational way (much empirical evidence for this may be found in 
recent studies on algebra and on the concept of function; see Vinner and 
Dreyfus, 1989; Sfard, 1987, 1989). 

4. THE ROLE OF OPERATIONAL AND STRUCTURAL CONCEPTIONS IN 

COGNITIVE PROCESSES 

Before we try to find an explanation for the inherent difficulty of reifica- 
tion, let us tackle yet another more basic issue. The just suggested model of 
concept formation implies that certain mathematical notions should be 
regarded as fully developed only if they can be conceived both operationlly 
and structurally. The question arises, what is it that necessitates this dual 
outlook; or, in other words, what can be achieved with the ability of seeing 
a concept both operationally and structurally, which would not be attained 
if only one approach was always assumed. 

4.1. Operational Approach: Certainly Necessary, Sometimes also Sufficient 

Apparently, a purely operational way of looking at mathematics would be 
quite appropriate. Indeed, to an unprejudiced and insightful person, the 
very notion of "mathematical object" may appear superfluous: since pro- 
cesses seem to be the only real concern of mathematics, why bother about 
these elusive, philosophically problematic "things", such as infinite sets or 
"aggregates of ordered pairs"? Theoretically it would be possible to do 
almost all the mathematics purely operationally: we could proceed from 
elementary processes to higher-level processes and then to even more 
complex processes without ever referring to any kind of abstract objects. 

As a matter of fact, a careful look at history would reveal that for a very 
long time big portions of mathematics were done alnost exactly this way. 
As Davis and Hersh (1983, p. 182) notice, "The mathematics of Egypt, of 
Babylon, and of ancient Orient was all of algorithmic type .... It is only in 
modern times that we find mathematics with little or no algorithmic 
content, which we could call purely dialectical or existential". Indeed, 
the science of computation, known today under its relatively new name 
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"algebra", has retained a distinctly operational character for thousands of 
years. The so called "rhetorical" algebra, which preceded the syncopated and 
symbolic algebras (the last one developed not before the 16th century!) dealt 
with computational processes as such, while the only kind of abstract objects 
permitted in the discourse were numbers. Even most complex sequences of 
numerical operations were presented by help of verbal prescriptions, which 
bore distinctly sequential character and did not stimulate condensation and 
reification. As long as the computational processes have been presented in 
the purely operational way, they could not be squeezed into static abstract 
entities, thus were not susceptible of being treated as objects. 

4.2. The Necessity of Structural Conceptions 

Twentieth-century mathematics, however, seems to be so deeply permeated 
with the structural outlook, that a modem mathematician had to be 
exceptionally open-minded - indeed, not himself at all - to realize that 
from a philosophical (not psychological!) point of view he could do 
without "mathematical objects". In his eyes, this notion is probably so 
inherent to mathematics as the idea of matter is to physics. (Can anybody 
imagine motion without physical bodies? Can anybody talk about compu- 
tational processes performed on ... nothing?). Why do we have this strong 
propensity for making abstractions in the image of the material word? This 
important question may be addressed at several levels. The most obvious, 
top-level answer is that our imagination is shaped by our senses. Probably 
that is why we have this overpowering feeling that we cannot perform a 
process, unless there is an object on which this process is carried out, and 
there is another object, which this process produces. 

For a more profound explanation we shall turn in a moment to the 
theory of cognitive schemata. Before we do this, however, the reader is 
invited to perform an experiment, which will hopefully illuminate our 
subsequent claims in the most persuasive way. 

Our exercise will be performed in two steps. Let us begin with mathemat- 
ical definitions, presented in Figure 5. The first step, which should not be 
taken until the definition of stroll is learned, is to perform the three tasks 
listed in the box. The reader is invited to tackle the problems one by one, 
without changing the order. 

Fulfilling the first two requirements, and especially the second, can be a 
rather tough job. Also, those who managed to solve the first problem might 
notice that responding to the now seemingly obvious third question is not 
at all as straightforward as it looked. 
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Definition: Promenade is the set P of all natural numbers from 1 to 25 together with the 
following four functions: 

S(x)= x + 5, allowed only for x e P, x 6 20 
N(x) =x-5, allowed only for x e P, x > 5 
E(x)= x + 1, allowed only for x e P, xmod 5#O 
W(x) = x-1, allowed only for x E P, x mod 5 # I 

Any composition of the above functions is called a stroll. We say that stroll s 
leads from a to b iff s(a) = b. 

Example: the stroll S o W3 o S2 leads from 5 to 17: 

(S o S2)(5) = (W3 I S2X 10) = (W2o S2X9) = ... S2(7) = S(12) = 17 

Tasks: 
1. Give an example of a stroll which would lead from 11 to 3. 
2. Find all the numbers which can be reached by strolls from 9 without using 

the steps N and W. 
3. Without looking into the answer you gave to the question 1 above, give an 

example of a stroll from 11 to 3 once again. 

Fig. 5. The experiment - Part 1. 

Even if not all three tasks have been successfully accomplished, we shall 
turn now to the second part of our experiment. The reader is invited to 
study a new description of the concept of stroll, as presented in Figure 6, 
and to solve the three problems once again. 

If everything goes well, there should be a considerable difference between 
the first and the second trial at solving the problems. By introspection, the 
reader could probably find out what the author has observed with particu- 
lar clarity whenever the experiment was carried out in a classroom: with the 
second kind of definition (the one presented in Figure 6) all three tasks 
become much easier. What is it about this new representation that makes 
such difference? It is probably its distinctly structural character: the "prom- 
enade", which was first regarded as nothing but a bunch of algorithms, has 
now been combined into an easily manipulable object-like structure; the 
"stroll", which according to the first definition was a computational 
procedure, can now be viewed as a path of a constant shape - as a 
polygonal line. It is important to notice that no information has been 
added when the shift from the operational to the structural approach was 
made: the computational processes were caught into a static construct just 
like water is frozen in a piece of ice. 
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In a quest for a more insightful explanation of the role of structural 
conceptions, it is time now to make use of the theory of cognitive 
schemata. Our example shows in a convincing, if somewhat simplified way, 
what could be figured out also on the grounds of purely theoretical 
considerations: the operationally conceived information, although abso- 
lutely indispensable and seemingly sufficient for problem-solving, cannot be 
easily processed. This kind of information can only be stored in unstruc- 
tured, sequential cognitive schemata, which are inadequate for the rather 
modest dimensions of human working memory. Consequently, the purely 
operational ideas must be processed in a piecemeal, cumbersome manner, 
which may lead to a great cognitive strain and to a disturbing feeling of 
only local - thus insufficient - understanding. Naturally, such strain would 
be totally counter-productive for anybody trying to solve a complex 
problem. For instance, think about the difficulty you must have experi- 
enced when still endowed with only operational definitions and trying to 
perform the first two tasks in our experiment; or imagine how hard it 
would be to solve an advanced word problem in a "rhetorical" manner, 
without using algebraic symbols. It should also be pointed out that in the 
sequential cognitive schema there is hardly a place for assimilation of new 
knowledge, or for what is usually called meaningful learning. That is 
probably why even our third task, which required recalling the answer to 
the first question, seemed quite difficult as long as only the operational 
representation was available. 

It is the static object-like representation which squeezes the operational 
infornation into a compact whole and turns the cognitive schema into a 
more convenient structure. To grasp the nature and the implications of 
such change, compare schemata A and B in Figure 7 (naturally, I am not 
trying to imply that these schemata are anything like faithful images of 
"real" mental structures in which our knowledge is stored; I use the 
pictures just as a convenient means for elucidating the technical aspects of 
our claims). From a purely technical point of view, the mathematical 
objects are the upper "nodes" in the hierarchical schema resulting from 
reification. Each of them serves as a single item in the catalogue of our 
mind. For a cognizing person, they function like simplified pictures or 
symbols, which can be seized at one glance and may be used instead of "the 
real thing" (the corresponding process) at certain stages of problem-solv- 
ing. Naturally, more often than not, these abstract constructs can only be 
seen with our mind's eyes; most regrettably, very rarely are we as fortunate 
as in the case of our promenade and strolls, where it was possible to 
actually draw the "reifying" pictures and symbols on the paper. 
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Definition: Promenade P is the graph presented below. 

I-2 -3-4 -5 If xis anode in P 
I I I I I then S(x), N(x), W(x) and E(x) 
6- 7- 8 - 9-10 are the adjacent nodes, 
I I I I I placed south, north, west, 

11-12-13-14-15 and east to x, respectively. 
I I I I l 

16-17-18-19-20 Stroll is defined like in 
l I I I I box 5. 

21-22-23-24-25 

Fig. 6. The experiment - Part 2. 

Schema A Schema B 

Any information can be stored in many different schemata. For example, the two schemata 
pictured in this figure contain the same information (represented by (1, 2, 3, 4, 5, 6, 7, 8)). 
Schema A is sequential, shallow and wide. As a result of reification it can be reorganized 
into a deeper and narrower structure, such as Schema B. With the new organization, all 
cognitive processes (retrieval and storing) become much faster. 

Fig. 7. Different organizations of a hierarchical schema. 

Both problem-solving and learning processes may be effectively "navi- 
gated" by the help of these compact, if not detailed, overall representations, 
just as movements of a ship are controlled and directed with maps. 

While tackling a genuinely complex problem, we do not always get far if 
we start with concrete operations; more often than not it would be better 
to turn first to the structural version of our concepts. These upper-level 
representations provide us with a "general view", so we can use our system 
of abstract objects just like a person looking for information uses a 
catalogue; or like anybody trying to get to a certain street consults a map 
before actually going there. In other words, in problem-solving processes 
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the compact abstract entities serve as pointers to more detailed informa- 
tion. Thus, almost any mathematical activity may be seen as an intricate 
interplay between the operational and the structural versions of the same 
mathematical ideas: when a complex problem is being tackled, the solver 
would repeatedly switch from one approach to the other in order to use his 
knowledge as proficiently as possible. Paraphrasing Henrici (1974), who 
spoke about dialectic and algorithmic mathematics, we may say that "the 
structural approach invites contemplation; the operational approach invites 
action; the structural approach generates insight; the operational approach 
generates result". An excellent illustration for the object-navigated prob- 
lem-solving process can be found in Hadamard's account of his own 
thinking (Hadamard, 1949, pp. 76-7): in a most persuasive way this 
mathematician tells the reader how he recapitulates an argument for the 
existence of infinitely many prime numbers, through switching back and 
forth from objects (numbers and sets of numbers) to the underlying 
computations. 

Let us list now the beneficial effects reification can have on learning. As 
explained before, formation of a structural conception means reorganizing 
the cognitive schema by adding new layers - by turning sequential aggre- 
gates into hierarchical structures. Obviously, the deeper and narrower the 
hierarchy, the greater the capacity of the schema. To have a better idea 
about the change resulting from the restructuring, let us compare the two 
schemata presented in Figure 7. In schema A, new items can hardly be 
added because the number of "sons" of the upper-level node is already 
quite large. In contrast, no node in schema B has yet been "saturated", 
since the average quantity of "sons" does not surpass the "magic number 
7 + 2" (according to Miller, 1956, this is the maximal number of chunks of 
information that can be kept simultaneously in our working memory). 
Thus, within the structural approach more room is available for inserting 
new information. As a result, learning becomes more effective, more 
meaningful. Also, the retrieval processes become faster when the necessary 
information is stored in hierarchical tree-shaped structures. The reader 
might be able to observe the difference while tackling again the third task 
in Figure 5. 

We are now in a position to give a tentative answer to the question about 
the necessity of a structural approach asked at the beginning of this section: 
in the light of the explanations and examples given so far it seems that 
without the abstract objects all our mental activity would be more difficult. 
Since we are not super-computers, we just could not get along with very 
complex processes without breaking them into small pieces and without 
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squeezing each part into a more manageable whole. In other words, the 
distance between advanced computational processes and the concrete mate- 
rial entities which are the objects of the most elementary processes (such as 
counting) is much too large to be grasped by us in its totality. We 
overcome this difficulty by creating intervening abstract objects which serve 
us as a kind of way-stations in our intellectual journeys. These compact 
cognitive entities effectively shield our working memory against overflow. 
Abstract objects, neatly organized into a well-structured cognitive schema, 
were probably what allowed Poincare (1952, p. 51) to make the following 
declaration: ". . . I can perceive the whole of the [lengthy mathematical] 
argument at a glance. [Thus] I need no longer be afraid of forgetting one 
of the elements; each of them will place itself naturally in the position 
prepared for it, without my having to make any effort of memory." 

At certain stages of knowledge formation (or acquisition) the absence of 
a structural conception may hinder further development. As the amount of 
information grows, the old schema may become saturated and practically 
impervious to any enrichment. It was certainly not by pure chance that the 
transition from rhetorical to symbolic algebra - a transition from opera- 
tional to structural approach in computational mathematics - occurred in 
the sixteenth century. And it was not just a historical accident that several 
different systems of symbols were invented almost simultaneously by 
independently working mathematicians. By that time, too great a complex- 
ity of computational processes brought the rhetorical algebra to a stalemate 
and practically put an end to its development. Looking back even further, 
we can venture a conjecture that the absence of structural representations 
(thus structural conceptions) was one of the factors that slowed down the 
development of computational science in Ancient Greece and caused 
algebra's falling behind geometry for centuries. 

I have just presented the structural thinking as a very powerful weapon 
against the limitations of our working memory. At a less technical, more 
philosophical level, we can say that in mathematics, transition from pro- 
cesses to abstract objects enhances our sense of understanding mathemat- 
ics. After all, reification increases problem-solving and learning abilities, so 
the more structural our approach, the deeper our confidence in what we are 
doing. At least some of the readers may be able to convince themselves 
about the accuracy of this claim by recalling the flash of enlightenment they 
probably experienced when presented with the structural definition of the 
concept of stroll. To sum up, structural conception is probably what 
underlies the relational understanding, defined by Skemp (1976) as "know- 
ing both what and why to do", or having both rules and reasons. Purely 
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operational approach would usually give no more than instrumental under- 
standing, once presented by Skemp as having rules without reasons. It should 
immediately be stressed that this somewhat disdainful description (which 
apparently was revised by Skemp himself after a deeper thought was given to 
the subject) does not do full justice to the kind of understanding which is both 
valuable and inevitable at certain stages of learning. This claim will be clarified 
and substantiated in the last part of this section. Before I do this, however, I 
shall push Skemp's original idea a little further, and talk about a third kind of 
understanding: reasons without rules. What I mean by that is a kind of purely 
intuitive understanding, attained in those rare cases when the vague structural 
conception is achieved before the operational basis has fully developed. This 
is probably the kind of understanding mathematicians had when the earliest 
versions of the concept of function were introduced. As can be learned from 
the history, having "reasons without rules" may be not enough for creating a 
fully-fledged mathematical theory, but it is certainly most helpful in discover- 
ing theorems and in deciding about directions of future development. 

The roles and the features of operational and structural conceptions have 
been schematically summarized in Figure 9. 

4.3. The Inherent Difficulty of Reification 

After showing the importance of structural conceptions, we should now 
return to the question asked in the previous section: why is reification 
obviously so very difficult? Why mathematicians themselves needed several 
centuries to arrive at fully structural versions of the most basic concepts, such 
as number or function? 

The problem will seem less puzzling if we remind ourselves that reification 
is an ontological shift, a qualitative jump. Such conceptual upheaval is always 
a rather complex phenomenon, especially when it is accompanied by subtle 
alternations of meaning and applications (which is usually the case; for 
example, the structural set-theoretic definition of function considerably 
extended the scope of the notion). The ability to see something familiar in a 
totally new way is never easy to achieve. The difficulties arising when a process 
is converted into an object are, in a sense, like those experienced during 
transition from one scientific paradigm to another; or - to make a less 
ambitious but perhaps more persuasive comparison - they are like the 
obstacles encountered by a person looking at a cube pictured on a paper and 
trying to perceive it as if it was presented from a different angle (see Figure 8). 

Our three-phase schema of concept formation would shed more light on 
these difficulties. According to the model, reification of a given process occurs 
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If you feel that the cube presented 
here is viewed from above - 
try to convince yourself that 
it is seen from below; and 
vice versa. 

Fig. 8. The cube. 

simultaneously with the interiorization of higher-level processes. For exam- 
ple in the case of negative numbers, the reification becomes most likely when 
the algebraic operations on this kind of numbers are, at least partially, 
interiorized. Indeed, what leads to recognizing such operations like 2-5 and 
0-6 as numbers is the similarity of the algorithms involving these operations 
to those performed on more familiar numbers (namely the fact- that adding 
and multiplying two negative or miscellaneous quantities is very much like 
adding or multiplying positive numbers). In order to notice the likeness, 
however, one has to achieve some mastery in the operations on negative 
quantities. Similarly, in order to see a function as an object, one must try 
to manipulate it as a whole: there is no reason to turn process into object 
unless we have some higher-level processes performed on this simpler 
process. But here is a vicious circle: on one hand, without an attempt at the 
higher-level interiorization, the reification will not occur; on the other hand, 
existence of objects on which the higher-level processes are performed seems 
indispensable for the interiorization - without such objects the processes 
must appear quite meaningless. In other words: the lower-level reification and 
the higher-level interiorization are prerequisite for each other! 

It seems that from the psychological point of view, what has just been said 
can have quite important implications. The "vicious circle" of reification will 
help us now explain why for so many people "mathematics at school [is] a 
collection of unintelligible rules which, if memorized and applied correctly, 
[lead] to 'the right answer'"(Skemp, 1971, p. 3). 

The question of the order in which different mathematical abilities 
should be developed has always drawn the attention of psychologists and 
educators. As Kilpatrick (1988) put it, "One of the most venerable and 
vexing issues in mathematics education concerns the trade-off between 
proficiency and comprehension, between promoting the smooth performance 
of mathematical procedure and developing understanding of how and why 
that procedure works and what it means .. ..". Different answers have been 
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given to this question by different psychological schools. The general stance 
taken by behaviourists implied that skills should be learned, whereas the 
more recent theories have seemed to prefer the view that "drill [should be] 
recommended [only] when ideas and processes already understood are to 
be practiced to increase proficiency" (Brownell, 1935, p. 19). According to 
our model of concept development, however, no clear order of abilities can 
be established. The thesis of the "vicious circle" implies that one ability 
cannot be fully developed without the other: on one hand, a person must 
be quite skillful at performing algorithms in order to attain a good idea of 
the "objects" involved in these algorithms; on the other hand, to gain full 
technical mastery, one must already have these objects, since without them 
the processes would seem meaningless and thus difficult to perform and to 
remember. For example, the concept of complex number cannot be reified 
until a person is able to make computations involving these numbers; at the 
same time, however, conceiving such constructs like i or 3 + 2i as fully- 
fledged numbers (and not just symbols for operations "without result") is 
a prerequisite for being proficient in manipulating them. This statement is 
in line with the results of a large-scale study carried out among 13- and 
17-year olds in United States (Carpenter et al., 1980). According to the 
findings, "the development of a skill is closely tied to understanding the 
concept underlying the skill". 

In the light of these claims it should not surprise us that ever so often, 
"[s]tudents appear to be learning many mathematical skills at a rote 
manipulation level and do not understand the concepts underlying the 
computation" (ibid.) For instance, pupils can be quite successful in compu- 
tations involving fractions in spite of being unable to treat fractions as 
numbers. Because of the complex nature of their mutual dependence, it 
seems inevitable that in the process of learning, student's understanding - 
this feeling of competence and mastery which accompanies the ability of 
"seeing" abstract structures - will sometimes drop behind the technical 
proficiency. This implies that in some cases the learner must put up with a 
certain amount of "mechanical" drill accompanied by doubts about mean- 
ing and by a feeling of insufficient (instrumental only) understanding. Even 
professional mathematicians cannot escape this fate, and they sometimes 
complain about the necessity of struggling hard for meaning of ostensibly 
simple ideas. Halmos (1985a) recalls the times when he was a university 
student: in spite of "working furiously" on the concept of lambda-matrices, 
he "didn't really begin to understand what the subject was about till four 
or five years later" (pp. 40-1). We may conjecture that it was first 
condensation, and then reification that took so long. 
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More often than not, both students and teachers fail to acknowledge the 
fact which is one of the most important implications of our three-phase 
schema: insight cannot always be expected as an immediate reward for a 
person's direct attempts to fathom a new idea. The reification, which brings 
relational understanding, is difficult to achieve, it requires much effort, and 
it may come when least expected, sometimes in a sudden flash. In his 
pioneering book on the psychology of mathematics, Hadamard (1949) 
mentions an "illumination effect" which may occur after a period of 
intensive work followed by days of rest ("incubation period"). 

From the educational point of view, the main problem with this delay in 
reification and with the resulting periods of doubts about meaning is that 
they may bring a permanent harm - a life-long apprehension of mathemat- 
ics and a conviction that it cannot be learned. Some people may be unable 
to recover from the shock caused already by the first encounter with the 
problematic situation. Those who are not prepared to actively struggle for 
meaning (for reification) would soon resign themselves to never under- 
standing mathematics. The ability of orchestrating lower-level reification 
with higher-level interiorization in a subtle, painless manner may be one of 
the most important features which make a person capable of coping with 
mathematics. "Mathematically fittest", even if they feel at times somewhat 
shaky in their understanding, seem to have enough motivation, patience, 
and intellectual discipline to put up with this situation in a trustful 
anticipation of a salutary insight. It is certainly what can be learned from 

Operational conception Structural conception 

General a mathematical entity a mathematical entity is 
characteristic is conceived as a product conceived as a static 

of a certain process or is structure - as if it was 
identified with the a real object 
process itself 

Internal is supported by verbal is supported by visual 
representations representations imagery 

Its place develops at the first evolves from the 
in concept stages of concept operational conception 
development formation 

Its role is necessary, but not facilitates all the cognitive 
in cognitive sufficient, for effective processes (learning, 
processes problem-solving & learning problem-solving) 

Fig. 9. Operational and structural conceptions - summary. 
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history. As Jourdain (1956) put it, "when logically-minded men objected" 
to the "absurd" notions of negative and imaginary (complex) numbers, 
"mathematicians simply ignored them and said 'Go on; faith will come to 
you'". Those who could see the inner beauty of the idea thought that the 
new numbers, "though apparently uninterpretable and even self-contradic- 
tory, must have logic. So they [the numbers] were used with a faith that was 
almost firm and was justified much later" (pp. 29-30). 

In the light of the "vicious circle" thesis, it seems that in the search for 
an improvement in mathematics education we should focus on the question 
what, and how much, can be done to unravel the harmful tangle and to 
stimulate reification. Also, we ought to ask ourselves what means should be 
used to ensure that the students go safely through these doubts-about- 
meaning periods, when they still feel certain uneasiness about the object 
they have to manipulate and sense, as a result, that their understanding is 
far from satisfactory. Another article will be devoted to these issues. 
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