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Abstract and overview 
Lessons about elementary particles at the secondary school level can degenerate into listing a 
zoo of particles and reactions, resulting in disorganized and rather meaningless knowledge. A 
more powerful way is to focus on conservation laws, symmetries, and reaction diagrams. The 
conservation laws and symmetries provide generalizing power which enables the students to 
predict whether or not certain reactions are possible and to derive new reactions from given 
ones by applying the symmetries. In this article we first present simplified Feynman diagrams 
and three symmetry operations. Then we discuss the fast feedback teaching method and 
present two lessons and a worksheet for teaching symmetries and reactions using this fast 
feedback. The method was developed and piloted during the last two school years in Dutch 
secondary schools. 



 2 

 
Introduction 
A number of countries have experimented with including elementary particles in secondary 
school physics programs (Hanley, 2000). The Institute of Physics developed an interesting 
module in the early 1990s, which inspired curriculum makers in several other countries 
(IOP/Open University, 1992). The Netherlands introduced the topic into the national pre-
university syllabus in 1991 after a pilot project in the 1980s, but had to retract it when the 
syllabus turned out to be too overloaded in general, and Feynman diagrams and some other 
topics turned out to be too ambitious. At present Advancing Physics (2001) in UK has a 
serious chapter on particle physics. Salters/Horners (2001) includes accelerators and detectors 
but avoids reactions of elementary particles. Hanley (2000) provides an overview of recent 
projects and resources for teaching about particles. Popular books like those of Close (1983) 
and Ne’eman and Kirsh (1996) are very helpful in the preparation of secondary school 
lessons. Several articles on teaching particle physics appeared in Physics Education. Pascolini 
and Pietroni (2002) described an Italian way of presenting simplified Feynman diagrams in a 
qualitative way. Allday (1998) and Kalmus (1999) provided useful background articles for 
teachers. Dunn et al (1998) described the measurement of the mean lifetime of cosmic ray 
muons with simple means. The Dutch National Institute for Nuclear and High Energy Physics 
recently organized a network of muon detectors on roofs of schools to track cosmic showers. 
CERN has stimulated teaching projects through its summer school for teachers1

 

. In the 
Netherlands in a Modern Physics project, which currently runs in 34 schools, we have another 
attempt to include elementary particles in the curriculum. This time we focus on conservation 
laws and symmetries. With just a few general principles, students can evaluate whether a 
given reaction is possible and then derive other possible reactions. Instead of studying a 
multitude of particles and reactions, students focus on the general principles. The physics 
aspects of the approach have been described recently (Hoekzema et al, 2005). In this article 
we focus on presenting a teaching method, which has been used successfully in pilot schools 
for the past two years.  

Reaction Diagrams 
The different forms of beta decay can all be derived from the following equation by applying 
symmetries: 

en p e ν+ −→ + +                                               (1) 
 
We will illustrate this using simplified Feynman diagrams. Figure 1 shows the most familiar 
form of beta decay. First we will explain the diagram. 
 

 

en p e ν+ −→ + +  

 
Figure 1. β– decay. 

  
 
In the diagram in figure 1 time is going from left to right. The lines stand for particles; points 
where the lines come together (called: vertex) visualize interactions; the diagram expresses 
conservation laws: conservation of baryon number in the case of the proton and neutron, and 
conservation of lepton number in the case of the electron and the anti-neutrino. Arrows to the 
                                                      
1 http://teachers.web.cern.ch/teachers/ 
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right indicate “normal” particles with positive baryon and lepton numbers such as the neutron 
and proton (baryons) and electron (lepton). Arrows pointing to the left indicate anti-particles 
such as the anti-neutrino (figure 1) and the positron (figure 3) which both have lepton number 
–1. Photons are indicated with wavy lines without arrows, as photons are their own anti-
particles. The simplified reaction diagrams are interpreted merely as graphical representations 
of reaction diagrams. They lack many of the connotations attached to real Feynman diagrams, 
because these turned out to be too difficult for secondary students. The diagrams are not 
interpreted as mathematical entities, nor do we go into any subtleties such as time ordering. 
As a result, the simplified diagrams are learned rather easily, particularly when introduced 
with the fast feedback method.  
 
Beta Decay and Symmetries 
Let’s return to the reaction in figure 1. We can apply three major symmetry operations to 
equation 1. Time reversal (T) states that the reverse reaction is possible in principle, although 
the probability of the reverse reaction may be small due to the required energy or the 
likelihood of getting the proper particles at the same place and time. So the arrow in equation 
1 can be reversed (equation 2 below).  The second symmetry concerns charge conjugation 
(C) and states that all particles can be replaced by their antiparticle and that this results in a 
reaction that is possible. A third way of applying symmetry principles is “crossing”. With 
crossing (X) we can take any particle of a possible reaction and replace it by its antiparticle if 
we move it to the other side of the reaction equation. As an example we first apply time 
reversal to equation 1:  
 
Time reversal (T):  ep e nν+ −+ + →                                                (2) 
 
Then we apply the crossing operation (X) on the antineutrino, replacing it by its antiparticle 
and moving it to the right side of the equation. We indicate this crossing operation on the 
antineutrino with X(ν ). 
 
 

 

Crossing X(ν ): ep e n ν+ −+ → +  (3) 
 

Figure 2. Electron capture derived from the β– decay reaction. 
 
In nuclei with a relative shortage of electrons, a proton can convert into a neutron through 
electron capture. This reaction takes place primarily in heavy nuclei. The inner electrons are 
then close to the nucleus, which increases the chances of electron capture. This is exactly 
what is pictured in figure 2 and equation 3 
 
In equation 3 we can move the electron to the other side of the arrow –once again applying 
the crossing operation– and replace it with its anti-particle: the positron. The resulting process 
of β+ emission is shown in figure 3 and equation 4.  
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Crossing X(e–):         ep n e ν+ +→ + +           (4) 

Figure 3. β+ decay derived from the β– decay reaction.  
 
This reaction cannot take place in a free proton, as the reaction requires energy. Within a 
nucleus, such energy might be available if there is a surplus of protons. In the nucleus, 
neutrons experience only attractive nuclear forces of other neutrons and protons2

 

. However, 
protons experience attractive nuclear forces as well as repulsive electrostatic forces of other 
protons. If there are too many protons the nucleus becomes unstable due to the electrostatic 
potential energy. Some of the electrostatic potential energy is used to create mass when a 
proton decays into a neutron and a positron plus a neutrino (figure 3). The last two will be 
ejected from the nucleus. The reaction is called β+ decay. On the other hand the decay of a 
neutron into a proton plus an electron and anti-neutrino is called β- decay. 

Summarizing: β− decay occurs in nuclei with a surplus of neutrons. In the nucleus a neutron is 
converted into a proton. In nuclei with a surplus of protons, the reverse reaction can occur in 
which a proton is converted into a neutron. This result can be achieved through two different 
reactions. The first of these reactions is called electron-capture: a proton can capture an 
electron, resulting in a neutron and a neutrino (figure 2). The second is β+ decay (figure 3). 
 
By applying the crossing operation we can still obtain another reaction as shown on the right 
in figure 4. A neutron and a neutrino can combine to produce a proton plus an electron. This 
reaction does indeed occur and can be used to detect neutrinos. Nobel laureate Davis used a 
reaction of a neutrino with a chlorine nucleus, which then converts to argon to detect and 
count neutrinos emitted by the Sun:  
  35 35

17 18eCl Ar eν −+ → +         (5) 
 
Please note that crossing symmetry can be applied in the diagrams by mirroring an arrow: the 
anti-neutrino arrow in figure 4 (left) is mirrored versus a vertical axis through the vertex and 
results in the neutrino arrow on the right of figure 4.  

 
Figure 4.  Neutrino capture derived from the β– decay reaction. 

 
By crossing the electron in the left part of figure 4 and then applying time reversal, we can 
get: 
 

p n eν+ ++ → +       (6) 
 

                                                      
2 At extremely short distance, nuclear forces are repulsive to prevent collapse of the nucleus. 
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Equation 6 shows a way to detect anti-neutrinos, and indeed, the reaction is possible if the 
anti-neutrino is sufficiently energetic to produce the extra mass of neutron and positron. 
 
Fast feedback method 
Now we get to the pedagogy of how to teach about these symmetries and conservation laws. 
First we introduce the fast feedback method. Fast feedback is a “whole class” teaching 
method in which the teacher gives a series of short tasks to be done by students individually 
but at a collective pace. The tasks can be answered in the form of a diagram, a sketch, a 
drawing or a few words. After giving a task the teacher goes around and looks at student 
work. Here and there (s)he asks students to clarify their answer. In one or two minutes the 
teacher can check a representative sample of 10 – 20 students. Then (s)he goes to the front 
and in plenary addresses one or two major problems with the task and then presents the next 
task. The teacher has to keep pace to keep the lesson moving. Not every single student error is 
discussed in plenary, only one or two of the most common errors before the class moves to 
the next task. If we count 2 or 3 minutes for each task and 2 minutes for plenary discussion, 
then in a 20-minute portion of a lesson the teacher can go through 4 or 5 tasks.   
With this method the teacher gets immediate feedback on whether students understand and 
what kind of misunderstandings there are. The students get immediate feedback, as the 
teacher can respond individually or in plenary to the common errors and misunderstandings 
(s)he observed. Fast feedback methods are a common element in so-called interactive 
engagement teaching methods (Hake, 1998; Meltzer & Manivannan, 2002). For example, the 
peer teaching method described by Mazur (1997) and Crouch & Mazur (2001) uses concept-
focused multiple-choice questions. A quick vote on answers provides a good indication of 
prevalent student misconceptions. Subsequent small group discussion of answers triggers 
student engagement and provides more feedback for students and teachers. Berg (2003) 
outlined different formats for fast feedback in the classroom,  and Berg et al (2000) contains a 
worked out example for kinematics. The remainder of this article provides an example for 
elementary particles.  
 
Two lessons 
In our Modern Physics project we spent ten 50-minute lessons on nuclear reactions and 
elementary particles. Only lessons 6 and 7 are relevant here. Earlier lessons are on recalling 
chemical reaction equations, extending the idea to nuclear reactions, energy and mass, 
binding energy, computations with mass deficits, and accelerators. Lesson 5 introduces the 
particles of the standard model (Tables 1 & 2). The exercises in lessons 6 and 7 are limited 
mainly to first generation particles except for the muon. 
 
Lesson 6: In a short class discussion the teacher and students recall the conservation laws 
they have encountered so far (linear momentum, energy-mass, charge, and possibly angular 
momentum). Then the lesson proceeds in the following steps: 

1. The teacher starts with the reaction equation: 
_+p + e H→ and gives an example of 

C symmetry  by replacing particles with anti-particles: 
_ +p + e H→ . The resulting 

anti-hydrogen was made at CERN, Geneva. So this reaction with anti-particles is 
indeed possible. 

2. Then students answer exercises 1a and 1b from the worksheet (below) and perhaps an 
additional exercise added by the teacher. The teacher walks around and identifies any 
problems students may have with the exercise.  

3. The teacher discusses the answers to 1a and 1b and perhaps one or two problems in 
understanding (s)he encountered when looking at the answers of students. Then the 
teacher gives an example of time symmetry using the ionization of hydrogen. 

_+H p + e→ . Reversing the arrow (time symmetry) also shows a possible reaction. 
4. Students do exercise 1c and the teacher goes around and looks at answers.   
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5. The teacher discusses the answer to exercise 1c or skips that part altogether if 
everyone got it right. Then the teacher gives an example of the crossing operation. 
For example: en p eν + −+ → + . It turns out that we can move particles to the right or 
left of the arrow if we replace them by their antiparticles. The reaction 

en p e ν+ −→ + +  is possible, but we are now dealing with an anti-neutrino. 
Whenever we apply the crossing operation to a valid and possible reaction, the 
particle has to be replaced by its anti-particle and we have another valid and possible 
reaction. 

6. Students do exercises 1d and 1e and the teacher goes around to observe.  
7. The teacher discusses 1d and 1e. 
8. In the same way the class proceeds with exercises 2a-f. 

 
Lesson 7:  
 
 
 
 
 
 
 

Figure 5. β– decay. 
 

9. Lesson 7 starts with an example of reaction diagrams (Figure 5).  
On the left of the vertex are reactants and on the right are products. An arrow to the 
right stands for a particle and an arrow to the left stands for an anti-particle. For 
further details of these simplified Feynman diagrams we refer to our earlier article 
(Hoekzema et al, 2005).  Then exercises 3a-g are done with fast feedback, just like 
problems 1a-e and 2a-f in the previous lesson.  
After every 1 or 2 exercises, the teacher interrupts, discusses the answers, and the 
class moves on to the following exercise.  

 
10. Exercises 4 – 6 are done by students individually or in small groups at their own pace 

and no longer in fast feedback format, as these exercises take more thinking time. 
Thanks to the format of the worksheet, it is still possible for the teacher to very 
quickly assess the work of individual students and interact to find out the students’ 
reasons for alternative answers and to engage in individual or small group 
discussions. 

 
Comments (please read the worksheets first) 
What students learn is the following: Given a reaction between certain particles, they can 
derive other possible reactions, and they do that by applying the conservation laws. Some 
might object that students just learn some tricks. We think that learning to apply conservation 
laws and symmetries to reactions is valuable and that understanding of symmetries at a much 
deeper level is not attainable at the secondary level and has to be postponed to university 
science programs.  
 

 



 7 

Worksheet on Symmetries and Reaction Diagrams with Answers 
 
 
1. β decay 
 

_+
en p + e + ν→   (1) 

 
 
Exercise 1 Answers to exercise 13

a) Check for baryon, lepton, and charge 
conservation. 

 

 
 

b) Apply C symmetry to (1) and write the 
resulting equation 

 
 
 
 

c) Apply T symmetry to (1) and write the 
resulting equation. 

 
d) Apply X( eν )-symmetry to (1) 

 
e) Apply X( e− )-symmetry to (1) 

 

a) Baryon: 1 = 1 
Lepton: 0 = 1 – 1 
Charge: 0  = +1 –1 
 

b) 
_ +

en p + e + ν→  

Please note that n consists of udd , while n consists 
of udd quarks, so neutron and anti-neutron are 
different4

c) 

. 
_+

ep + e  + ν n→  
 

d) 
_+

en + ν p + e→  
 

e) + +
en + e p + ν→  

 

 
2. Reactions with pions 
 

_ + oπ + p π + n→         (2) 
 
Exercise 2 Answers to exercise 2 
a) Check for baryon and charge conservation. 
 
 
b) Apply C symmetry to equation 2, where π+ is 

taken as the anti-particle of π – and π o as the 
anti-particle of itself (see Table 2). 

c) Apply T symmetry to (2) 
 
d) Apply X(n) to (2) 
 
e) Why is the last reaction rather unlikely? 
f) The π 0 particle consists of an up quark and its 

anti-particle ( uu  ) or a down quark and its 
antiparticle ( dd ). Will the particle last long? 
Explain. 

 
 

a) Baryon: 0 + 1 = 0 + 1 
Charge: -1 + 1 = 0 + 0 

b) 
_+ oπ +p π +n→  

 
 
c) 0π +n π p− +→ +  

d) + 0π +p + n π− →  
 
e) It is rather unlikely to find these three particles 

within 1 fm (10-15 m) from each other. 
f) Annihilation can take place between u and u  

or d and d but not between quarks of 
different flavour such as u and d and u and 
d . 

 

                                                      
3 The student version should have a blank second column!  
4 Strictly speaking, all anti-particles should be written with a bar ( , ,ee nν+ ); however, it is a custom 

to just write p– and e+ rather than p− and e + . 
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3. Muon decay 
The reaction for muon decay is:  
 eμμ e + ν + ν− −→                 (3) 
 
The reaction diagram5

 
 is shown in Figure 6.  

 

 
 

Figure 6.   Muon decay. 
 
 
Exercise 3 Answers to exercise 3 

a)  Check for lepton conservation 
 
b)  Apply C symmetry to (3) 

 
c)  Apply X(νµ) to (3) 

 
d)  Apply X( eν  ) to (3) 

 
 

a)     µ leptons: +1 = +1 
e leptons:  0 = +1 –1 
b)  eμμ e + ν + ν+ +→  

c)  μμ ν e + νe
− −+ →  

d)  eμμ ν e + ν− −+ →  

e) Draw the reaction diagram of 3b e) Antimuon decay. 

 
f) Draw the reaction diagram of 3c f) Reaction of muon with antimuonneutrino. 

 

 
g) Draw the reaction diagram of 3d g) Reaction of muon with electronneutrino. 

 
 

                                                      
5 At this point the teacher will introduce reaction diagrams and then the students continue with 
questions 3a-3g using the fast feedback method. Thus the teacher discusses the answer to 3a before 
students proceed to 3b, etc. 
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4. Once again beta decay6

We return to β decay: 
  

 

 
_+

en p + e + ν→   (4) 
 
 
Exercise 4 Answers to exercise 4 
a) Use symmetries to derive an equation for 

beta decay, which results in the emission of a 
positron7

 
.  

 
 
b) Show that it is not possible to derive a 

reaction from equation (4) using symmetries 
in which, amongst others, a positron is 
produced from a neutron. 

 
 
c) Use the symmetries and try to derive an 

equation in which an electron is absorbed 
into the nucleus.  (In nature this can happen 
spontaneously in nuclei with high Z. It can 
also be contrived by shooting electrons at 
nuclei. 

 
d) Look at the equations once again. Which 

process could be used to detect electron 
neutrinos and electron anti-neutrinos8

 
? 

 
 
 
 

e) The reaction in equation (4) can take place in 
a free neutron, but it is much more likely to 
occur in a neutron which is part of a nucleus 
such as 35

17Cl . Write this reaction for 
chlorine-35. 

 
f) By crossing the reaction in chlorine-35 we 

can get a reaction, which makes it possible to 
discover neutrinos when they collide with a 
chlorine nucleus. Write the reaction and add 
a reaction diagram9

a) X(

. 

e− ) would produce a positron on the left 
of the arrow. Then we apply T symmetry and 
reverse the arrow:  

       ep n eν+ ++ → +  
 
b) Using crossing symmetry with the particles 

of equation  (4) only, we would always end 
up with a positron and a neutron on the same 
side of the arrow. On the opposite side e+ 
would have to be replaced by e-.  
 

c) As  input we need an electron. So we apply 
Time symmetry on (1) and then move the 
anti-neutrino to the right using crossing: 

        ep e n ν+ −+ → +   We can also get this by 
applying time symmetry to the answer to 1c.  

 
 

d) We can detect electron neutrinos through 
collisions with neutrons  

_+
en + ν p + e→  

and anti-neutrinos through collisions with 
protons: 

ep n eν+ ++ → +  
 

 
e) 35 35

17 18 eCl Ar e ν−→ + +  
 
 
 
f) 35 35

17 18eCl Ar eν −+ → +  

or en p eν + −+ → +  

                                                      
6 From this point on students work either in small groups or alone at their own pace and no longer with 
fast feedback. However, the format of the worksheet still allows the teacher to supply quick individual 
feedback. 
7 With questions 4a and 4b things get interesting. We can derive all forms of beta decay from just one 
equation (1). We can also immediately judge whether a certain variation is possible or not. For 
example, we can immediately judge whether a certain variation is possible or not. So we can predict 
that absorbing an electron in a heavy nucleus is possible. However, such an electron cannot remain an 
electron, as its typical wavelength (10–10 m) would not fit the nucleus (10-15 m). 
8 This question once again shows how the use of symmetries can lead to important predictions. It is 
indeed possible to detect neutrinos using these reactions.  
9 The reaction with chlorine was used by Nobel laureate Davis (2002) to detect and count neutrinos 
emitted by the Sun. 
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5. Collisions 
Check whether the following reactions are possible or not and indicate why.  
 
Exercise 5 Answers to exercise 5 
a) π p p p n+ + + ++ → + +  

b) p p p p n+ + + ++ → + +  

a) Baryon conservation is okay:  
          0 + 1 = 1 + 1 –1.  
         Also charge conservation is okay.  
b) No baryon conservation as: 2 ≠ 3 

 
 
6. What kind of particles? 
 
Exercise 6 Answers to exercise 6 
A reaction is as follows: 

p p p p X+ + + ++ → + +  
X is an unknown particle.  
 

a) Is it a meson or a baryon? Why? 
 

b) Does X have charge or not? Why? 
 

c) Can X be a lepton?  
 

 
d) Answer a), b), and c) in case two particles are 

formed (X and Y). 
 

 
 
 
 

a) X cannot be a baryon or anti-baryon, as the 
baryon number would not be conserved. It 
could be a neutral meson. 

b)  X cannot have charge, as there would be no 
charge conservation. 

c) If X would be a lepton, there would not be 
conservation of lepton number. 
 

d)     A baryon and an anti-baryon would be 
possible if X and Y would both be neutral or 
would have opposite charge. Leptons would 
be possible, but then it would have to be a 
lepton and its anti-lepton.  
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Table 1: Elementary Particles 
 

Elementary Particles: Fermions 
Quarks1 Leptons2 

Genera
tion 

Particle/flavor Mass 
(GeV/c2) 

Charge 
(e) 

Gener
ation 

Particle/flavor Mass 
(GeV/c2) 

Charge 
(e) 

1 u    up quark 0.003 2/3 1 νe     electron 
neutrino 

<1. 10-5 0 

 d    down 
quark 

0.006 -1/3  e-     electron 0.000511 -1 

2 c    charm 
quark 

1.3 2/3 2 νµ    muon neutrino <0.0002 0 

 s    strange 
quark 

0.1 -1/3  µ-    muon 0.106 -1 

3 t     top quark 175 2/3 3 ντ    tau neutrino <0.02 0 
 b    bottom 

quark 
4.3 -1/3  τ      tau 1.7771 -1 

        
Elementary Particles: Bosons 

Strong interaction Electro-weak interaction  
 g    gluon 0 0  γ    photon 0 0 
     W −   W minus boson 80.4 -1 

Gravitation  W +  W plus boson 80.4 +1 
 graviton 

(hypothetical) 
   0Z   Z boson 91.2 0 

a. For every quark there is an anti-quark with the same mass, opposite charge and 
baryon number –1. 

b. For every lepton there is an anti-lepton with the same mass, opposite charge, and 
lepton number –1. 

c. Conservation of lepton number is considered separate for electron and electron 
neutrino, muon and muon neutrino, and tau particle and tau neutrino.  

 

Table 2: Some compound particles 
 
Several compound particles 
particle composition Baryon number 
p+     proton uud 1 
p–     anti-proton uud  -1 
n     neutron udd 1 
n   anti-neutron udd  -1 

π −      pi minus meson ud  0 

π +      pi plus meson ud  0 

π 0      pi meson uu  of dd  0 
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