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three cases

• case 1: brain tissue (biomechanics)
• case 2: carnivorous plant (biology)
• case 3: semi-crystalline polymers (polymer physics)
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introduction: traumatic brain injury

• large deformation (strain)   Traumatic Brain Injuryg ( ) j y
(TBI)

• often occur during rotational and translational
acceleration of the head

• exact mechanism of TBI still incompletely understood



introduction: traumatic brain injury

• Injury assessment (industry):
– anthropomorphic test devices (ATD)
– Head Injury Criterion (HIC)



introduction: traumatic brain injury

• Injury assessment (industry):
– anthropomorphic test devices (ATD)
– Head Injury Criterion (HIC)

– large deformations
– complex loading pathsp g p
– different deformation modes



brain deformations: experiment

test device (high speed loading)



brain deformations: experiment



brain deformations: experiment / simulations



brain deformations: experiment / simulations

Simulations Experiment Simulations Experiment

t = 12 mst = 8 ms



model application
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model application



model application



model application



brain deformations: protection design



three cases

• case 1: brain tissue (biomechanics)
• case 2: carnivorous plant (biology)
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viscoelastic deadly fluid in carnivorous plants 
Laurence Gaume (Montpelier) & Yoel Forterre (Marseille)

the Nepenthes rafflesiana.

- Contains a fluid  composed 
of water and polysaccharides



a fly tries to flee

fluid 

water 



influence of concentration

- it’s not a chemical attack (insects recover when removed from the fluid)
f t i h dl i ith t ti f t i- surface tension hardly varies with concentration: surface tension 

doesn’t explain (σfluid = 0.0726 N.m, σ water = 0.0720 N.m).

- what other forces are important?



drag forces: viscosities of the pure fluid

shear viscosity /shear rate (left) transient extensional viscosity / strain  (right)

arrows indicate typical values corresponding to insect motion in the fluid



elongational effects: filament formation

dynamical sequence of a fly in the digestive fluid showing a 
viscoelastic liquid  filament attached to its leg (arrows)



viscosities: influence of concentration

water

dilution effect on the shear (○) and extensional viscosity (□) (left)

dilution effect on the characteristic relaxation time (right)



capture rate versus De-number

-trapping efficiency is conditioned by 
both fluid viscoelasticity and insect y
dynamics

- tropical plants, often submitted to 
high rainfalls and thus variations in 
fluid concentration.

capture rate / Deborah number (flies □, ants ■)



three cases

• case 1: brain tissue (biomechanics)
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injection molding



load-bearing applications of polymers

//
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processing of semi-crystalline polymers

• Polymer processing:

high    , high p and  high      → structure formation

• Mechanical behaviour:

• Influence of morphology

26►



structure development during flow
crystalline

amorphousamorphous

isotropic
spherulites

slightly oriented
spherulites

row 
structure

shish 
kebabspherulites spherulites structure kebab

200 μm 1 μm 1 μm 1 μm

no orientation strong orientation
flow

27►



in-situ Small Angle X-ray Scattering (SAXS)

streak ↔ fibrils

lobes  ↔ lamellae



in-situ: Small Angle X-ray Scattering (SAXS)



processing–structure–property

Injection molding of HDPE

30►



/processing‐induced anisotropyprocessing–structure–property: example (iPP)

static load to failurestatic load to failure

Factor 400 in lifetime forFactor 400 in lifetime for 
different positions/directions! 

► 31



processing-structure-properties relations



processing conditions: injection molding

A B C
typical cross section of 

semi-crystalline productsA B C y p

skin layer shear layer core layer

rapid cooling 
(~100 °C s-1)

flow induced 
crystallization

(~1000 s-1)

pressure induced 
crystallization
(~1000 bar)



modeling flow effects on crystallization



nonlinear viscoelasticity: 
the eXtended PomPom modelthe eXtended PomPom model



non-isothermal quiescent crystallization
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flow-induced crystallization
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numerical simulation: no flow



numerical simulation: flow



from processing conditions to structure

th i t l th l d hi t i th d l- use the experimental thermal and pressure history in the model 
and predict the lamellar thickness (distribution) 

iPP

W.J. O’Kane, R.J. Young, Journal of Materials Science Letters, 14, 433-435 (1995)



so far for the real problemsso far for the real problems
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high pressure, in situ X-ray

SAXS

X-ray beam

WAXD


