Wetenschap en Techniek

Uit Wiki reken-wiskundeonderwijs

Ga naar: navigatie, zoeken

Home   All   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z   Categorieën               Vragen               Google-zoek               Pagina toevoegen       English       intern

Inhoud

Algemeen

  • Wetenschap en techniek op de basisschool, mogelijkheden voor een domein-indeling

Achtergrond

  • Uit Van Keulen (2010):

Wetenschap en techniek hoort op de basisschool vooral thuis in het domein ‘Oriëntatie op jezelf en de wereld’. Als je kinderen wilt oriënteren op een wereld vol wetenschap en techniek, en op de talenten die kinderen daarvoor hebben, dan is het belangrijk dat je weet wat wetenschap en techniek inhoudt. Wetenschap en techniek is in de eerste plaats een houding. Het is nieuwsgierigheid, willen weten, willen begrijpen, willen verbeteren. De ‘black box’ openmaken en kijken wat er in zit.

Van Keulen geeft vervolgens een indeling in vijf domeinen. Hieronder werken we het vijfde domein 'mathematische systemen' verder uit.

Mathematische systemen

Matching tussen de beschrijving van 'mathematische systemen' (Van Keulen, 2010) en gangbare indelingen rekenen/wiskunde

Boekje IJkpunten Referentiekader Rekenen Pisa Wiki
Hoeveelheid Quantity Rekenen
Vorm en ruimte Meten, meetkunde Space and shape
Veranderingen en relaties Verbanden Change and relationships Algebra
Onzekerheid: data en kans Uncertainty and data Statistiek en kans

Achtergrond bij domeinen PISA

De domeinbeschrijvingen zijn over genomen van: Pisa 2012 draft mathematics framework to OECD, November 2010. OECD.

Quantity

  • Hoeveelheid

The notion of Quantity may be the most pervasive and essential mathematical aspect of engaging with, and functioning in, our world. It incorporates the quantification of attributes of objects, relationships, situations, and entities in the world, understanding various representations of those quantifications, and judging interpretations and arguments based on quantity. To engage with the quantification of the world involves understanding measurements, counts, magnitudes, units, indicators, relative size, and numerical trends and patterns. Aspects of quantitative reasoning—such as number sense, multiple representations of numbers, elegance in computation, mental calculation, estimation, and assessment of reasonableness of results—are the essence of mathematical literacy relative to Quantity.


Space and shape

  • Vorm en ruimte

Space and shape encompasses a wide range of phenomena that are encountered everywhere in our visual world: patterns, properties of objects, positions and orientations, representations of objects, decoding and encoding of visual information, navigation, and dynamic interaction with real shapes as well as with representations. Geometry serves as an essential foundation for Space and shape, but the category extends beyond traditional geometry in content, meaning, and method, drawing on elements of other mathematical areas such as spatial visualisation, measurement, and algebra. For instance, shapes can change, and a point can move along a locus, thus requiring a sense of function concepts. Measurement formulas are central in this area. The manipulation and interpretation of shapes in settings that call for tools ranging from dynamic geometry software to Global Positioning System (GPS) software are included in this content category.


Change and relationships

  • Veranderingen en relaties

The natural and designed worlds display a multitude of temporary and permanent relationships among objects and circumstances, where changes occur within systems of interrelated objects or in circumstances where the elements influence one another. In many cases these changes occur over time, and in other cases changes in one object or quantity are related to changes in another. Some of these situations involve discrete change; others change continuously. Some relationships are of a permanent, or invariant, nature. Being more literate about change and relationships involves understanding fundamental types of change and recognising when they occur in order to use suitable mathematical models to describe and predict change. Mathematically this means modelling the change and the relationships with appropriate functions and equations, as well as creating, interpreting, and translating among symbolic and graphical representations of relationships.


Uncertainty and data

  • Onzekerheid: data en kans

In science, technology, and everyday life, uncertainty is a given. Uncertainty is therefore a phenomenon at the heart of the mathematical analysis of many problem situations, and the theory of probability and statistics as well as techniques of data representation and description have been established to deal with it. The Uncertainty and data content category includes recognising the place of variation in processes, having a sense of the quantification of that variation, acknowledging uncertainty and error in measurement, and knowing about chance. It also includes forming, interpreting, and evaluating conclusions drawn in situations where uncertainty is central. The presentation and interpretation of data are key concepts in this category.

  • Gerelateerde begrippen: Kans, Informatieverwerking, gegevensverwerking
  • Bronnen FI

Andere bronnen

Verwijzingen

Versies van dit document

Persoonlijke instellingen
GOOGLE