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1 introduction

What arithmetic is or is about, depends on who asks and why they are
asking! 

What do students think arithmetic is? 

This is an empirical question to be answered by asking them, though they
may try to guess what you expect or want them to say, rather than reveal-
ing their idiosyncratic concept images (Tall & Vinner, 1981). 

What do teachers think arithmetic is? 

This is also empirical, but teachers are more likely to respond with the
answer you think they are looking for, and not necessarily with their con-
cept images or what impressions their teaching makes available to stu-
dents. 

What do researchers think arithmetic is? 

Many psychologists treat arithmetic as a relatively unproblematic domain
of right and wrong answers, factual knowledge retained or not, in which to
test theories.

What do politicians think arithmetic is? 

Again this is an empirical question, which can be addressed by looking at
their public statements. They are not always as well informed as one
would hope, considering the power that they wield. 

What do mathematicians think arithmetic is? 

You might get multiple responses under different conditions. 
A plausible conjecture is that answers to these questions would differ
widely, both within, and especially between groups. The lecture at the 30th

Panama-conference forming the basis of this article was about how one
mathematician-mathematics educator sees arithmetic.
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2 method of enquiry

My method of enquiry is to examine closely my own experience in order to
sensitise myself to what learners may be experiencing. The ‘data’ being
offered here are two-fold: what the reader notices when engaging in the
tasks presented, and what comes-to-mind, resonated from the past with
triggered associations. What actually matters is not what you have known,
what has come-to-mind in the past, but what comes-to-mind in the future,
in new situations as well as in familiar one. Thus effectiveness resides in
the freshness and enrichment of awareness when engaging with learners
in the future, rather than statistical evidence about learners in the past.
This approach follows the ‘Discipline of Noticing’ (Mason, 2002).

3 claims 

My aim in the lecture was to try to justify experientially two claims:

that in order to be sensitive to students’ mathematical development it is
essential to engage in mathematical thinking yourself, in some manner
that parallels the sorts of challenges that students are meeting;

that arithmetic is the study of actions, usually on numbers, with numbers.
It is about the structural relations amongst numbers, seen as instantiated
properties, and on the basis of which one can reason about numbers. Cal-
culations are a by-product, and not part of arithmetic in its fullest form.

4 a selection of tasks

What follows is a selection of tasks, most of which were in the talk, but
without the luxury of time to get audience comment and reflection. I see
tasks given to learners as intended to generate activity (Christiansen &
Walther, 1986). Activity provides experience (of the use of mathematical
powers, of encounters with mathematical themes, of getting stuck and get-
ting unstuck, of meeting challenges, exercising skills, etc.). Rarely is expe-
rience sufficient. Indeed one thing we don’t seem to learn from experience
is that we don’t often learn from experience alone. Some sort of reflexive
stance is also required, withdrawing from the action constituting the activ-
ity, and considering what was effective and what could be improved in the
future, and what connections with past experience emerged, whether at
the time or in retrospect. Teaching takes place (as acts) in time, while
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learning, takes place over time (during sleep!) as a maturation process, like
bread, beer and wine making. With each task, pause before reading on and
consider what you noticed happening inside you, how you used yourself,
and perhaps how you might want to improve ‘next time’.

pre-counting and counting
These initial tasks were intended for the audience, not for children, and
aimed to provide some insight into what children might be experiencing
when they struggle to count or to skip count.
Imagine an animation in which various objects are moving around the
screen. Counting the objects can be quite difficult because they keep mov-
ing. It is possible that for some children, although the objects are station-
ary, their attention is darting about somewhat analogously to the anima-
tion. One-to-one correspondence, pointing and arranging the objects to be
counted are ways to steady attention and make counting possible.

task 1: counting

How many rectangles make up figure 1? 

figure 1

Of course it is not possible to count until you have discerned the things
you are to count ... and in this case there are different answers according
to how the shape is decomposed (all vertical slices, all horizontal slices, or
a mixture of both). It is well known that secondary students struggle with
such tasks. One way to lay the groundwork is to get them to construct
shapes from a specified number of rectangles. Once they become familiar
with construction, they can be challenged, or challenge themselves to find
shapes that can be decomposed in different ways with different numbers
of rectangles. One thing to emerge will be the notion of ‘efficient’ decompo-
sitions, expressed in some way or other, capturing the idea that none of
the decomposition rectangles form a larger rectangle within the figure.
This illustrates an important pedagogical strategy: if students are
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expected to ‘work on’ or transform expressions (for example, a sequence of
arithmetic calculations, equations, or an algebraic expression; factoring
numbers or algebraic expressions, etc.), then providing experience of con-
structing the objects first, offers learners a sense of where these objects
may have come from as well as insight into structural relationships.
Another important pedagogical strategy is to ponder different approaches
in order to seek a maximally efficient approach that works in as many var-
ied situations as possible. Finding the areas of rectilinear figures is a case
in point.
The next task really requires a group of people all chanting together.

task 2: skip counting

Try counting forwards in blocks of 4, thus, 1, 2, 3, 4 then 2, 3, 4, 5 then
3, 4, 5, 6 etc.

Now do it to a rhythm of threes (strong, weak, weak; strong, weak, weak;
… perhaps by someone clapping the rhythm).

Starting at 101, count down in steps of 1 . 

If done in a group, you may find that you can lose the thread but pick it
up again from the on-going chant. Children almost certainly move ‘in and
out’ of lessons mentally in a similar manner. The important thing is to trap
what you do mentally in order to do this counting, and what obstructs
your facility … there may be analogues for children who struggle with skip
counting. For the third one, counting down in steps of 1 , everyone pre-
pares the first number, and can ‘see’ or ‘feel’ or ‘sense’ how the next ones
will go. The rhythm develops nicely until you get to 91  and you realise
that there is going to be trouble ahead! Constructing and experiencing
your own skip counting task deepens appreciation of what makes such a
task valuable or trivial.

tasks exploring arithmetic as the study of actions
The remaining tasks can be and have been used with children of various
ages. My aim is to draw your attention to tasks that expose arithmetical
structure.

task 3: what’s the difference?

You are about to subtract one number from another, but before you do,
someone adds one to both of them. How has the difference changed (what
is the difference in the difference)?

Instead, add one to the first number and subtract one from the second
number … now what is the difference in the differences? Extend and gen-
eralise.

1
10
------

1
10
------

1
10
------
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Of course there is no change in the first case, something that quite young
children appreciate intuitively. It is the basis for subtracting through
equal addition. The point is that you don’t need to know the actual num-
bers in order to check what happens. 

Drawing on ‘variation theory’ (Marton & Booth, 1997), an important ques-
tion to ask is: ‘What can be changed so that still the task is done in much
the same way?’ For example, the two numbers themselves can be any
numbers at all; the one and the two can be any number, and the add and
subtract can be either add or subtract. What happens if instead the first
number is doubled and so is the second? The first number doubled but
the second left alone ...? 
These variations illustrate the point that in order to learn arithmetic in its
full and proper sense, it is actually necessary to think algebraically
(Hewitt, 1998); that thinking arithmetically actually involves generality,
which can be expressed in algebraic symbols (but does not need to be). If
the original ‘subtraction’ is changed to multiplication, then analogues to
the original task emerge, suggesting analogues between adding and mul-
tiplying.

task 4: think of a number (THOANs) 

I am thinking of a number; I add 8 and the answer is 13; what is my
number?

I am thinking of a number; I add 8, then multiply by 2 and the answer is
26; what is my number?

I am thinking of a number; I add 8, then multiply by 2 then subtract 5 and
the answer is 21; what is my number?

I am thinking of a number; I add 8, then multiply by 2 then subtract 5,
then divide by 3, and the answer is 7; what is my number?

What do you do to the sequence + 8, x 2, – 5, :3, 7 in order to recover my
number?

What role does 7 play? What role do the actions play?

This is a reversal of the usual ‘Think Of A Number’ puzzles, popular since
Fibonacci introduced them from unknown sources in the 12th century.
You can ask people to think of a number, then lead them through some
computations and end either by eliminating their original number and tell-
ing them the answer, or, given their answer, you can tell them what they
started with. Young children are amazed, and want to know how it is done.
The answer of course is by algebra, which can be accessed by young chil-
dren initially through ‘tracking arithmetic’, a didactic tactic which will be
illustrated in task 7. 
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The next task offers an introduction to solving equations with one instance
of an as-yet-unknown number to be ‘de-coded’ through appreciation of the
doing and undoing relationships between adding and subtracting and
between multiplying and dividing. Use is being made of the ‘construct
before de-constructing’ pedagogic strategy mentioned earlier. This task
exploits the same principles as task 4.

task 5a: doing & undoing 

What operation (or action) undoes ‘adding 5’?

What action undoes ‘subtracting 3’?

What action undoes ‘adding 5 then subtracting 3’?

There are two answers to the last part: ‘adding 3 and then subtracting 5’,
or ‘subtracting 2’. This dual approach supports the notion of flexibility …
there are different ways to carry out some sequences of actions, and some
ways are more efficient that others.

Now, as an extra, what action undoes ‘subtracting from 7’?

This is a bit of a mind-stopper at first. Suppose someone has a number,
and they tell you the result of subtracting it from 7. How are you to recon-
struct their number?
Try an example: if they (secretly) chose 5, then they would announce ‘2’ as
the result of the action. Your job is to reconstruct their original number
knowing only the action (‘subtract from 7’) and the result (2).
Now, what are the analogues for multiplication and division?

task 5b: doing & undoing 

What action undoes ‘multiplying by 3’?

What action undoes ‘dividing by 4’?

What action undoes ‘multiplying by ‘?

Again there are two answers to the last: ‘dividing by ’, and ‘multiplying
by 4 and then dividing by 3’. The playground ‘rule of thumb’ to ‘invert and
multiply’ arises from exploiting awareness of undoing arithmetical actions.
Corresponding to the surprising ‘undoing subtracting from 7’, there is the
slightly ambiguous action of ‘dividing into 12’. Here the intended meaning
is not to divide something into 12 equal parts, but rather to divide 12 by
the specified number. 

What action undoes ‘dividing into 12’?

As with subtracting from 7, suppose someone (secretly) chooses 6. They

3
4
---

3
4
---
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then announce ‘2’ as the result of the action of dividing their number into
12 (that is, 12 : 6). Your job is to reconstruct their starting number know-
ing only the action (‘dividing into 12’) and the result (2).
Arithmetical operations as actions are usefully presented on a number
line.

task 6a: actions on the number line

Imagine a number line with the integers marked on it (fig.2). 

figure 2

Imagine an transparent copy of the number line, sitting exactly on top of it. 

There are several actions we can perform. We can for example, shift or
translate the number line a specified number of steps to the right or left.
If you shift the (copy of) the number line 3 places to the right, then shift
the result 4 places to the left, what is the overall effect? Denote the shift
by the amount a by Ta. What then is the effect on the point x? What hap-
pens if you perform first Ta and then Tb?

We can scale the number line. If you scale the number line by a factor of
3, where does 2 end up? I am thinking of a number; where does it end up?
Now scale that by a further factor of ; where does 2 end up now? I am
thinking of a number; where does it end up under the composite action?\

We can also rotate the (copy of) the number line through 180° about the
0. Where does 3 end up? Where does -2 end up? I am thinking of a
number; where does it end up?

Notice that translations can be composed without ambiguity, and scalings
can as well, as long as it is understood that they are all carried out relative
to the fixed original origin, not with respect to where the origin might be
now! 
There are several descriptions of where some as-yet-unknown number
ends up under the rotation, using words like ‘same distance the other
side’, or ‘minus your number’ or ‘change the sign of your number’, and it
is learners’ flexibility in discourse that is of interest, so as to be confident
that the language actually has meaning.
In each case, asking what can vary opens up possibilities for generalisa-
tion, underlining the role of algebraic thinking in the learning of arithme-
tic. In particular the next task is perhaps the most intriguing of this type,
and challenges most teachers who have not previously thought about it.

–7 –6 –5 –4 –3 –2 –1 0 2 3 4 5 6 7 81

2
3
---
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task 6b: rotations of the number line

Again imagine a number line with an exact copy on top of it. Let Ra denote
the action ‘rotate the number line through 180° about the point a. Where
does 5 end up if a is 3? Where does -2 end up? I am thinking of a number:
where does it end up under this action? Generalise to Ra(b).
Start again, and this time the action is ‘first rotate the number line
through 180° about the original point 3; then rotate it through 180° about
the original point 4’. Where does 5 end up now? What about -2? What
about x?

Exploring compound actions on the number line reinforces the sense of
arithmetic as the study of actions with and on numbers, as well as laying
the foundations for geometric transformations (and indeed linear alge-
bra!). Composing rotations through 180° about different points is easiest
to think about if they are always specified with respect to the original
point, rather than the place that that point currently occupies. Exploring
a different set of actions, where Ua denotes the action ‘rotate the number
line through 180° about the point where a currently is’ leads to a different
‘algebra’. But algebraic notation is not necessary for experiencing the
transformations, using transparent copies on an actual number line. 
Another task that illustrates a general approach to arithmetic, what I call
a ‘didactic tactic’ is called ‘tracking arithmetic’ (Mason, Johnston-Wilder &
Graham, 2005). 

task 7a: doing differing products

Write down four numbers in the cells of a two by two array. An example is
shown below (fig.3).

Now for each row, multiply the numbers in that row. Then add the results.
Now for each column, multiply the numbers in each column, and then add
the results.

Now subtract the second from the first. That is the ‘measure’ of your start-
ing array. 

figure 3

The measure of my array is 2, but there is nothing particularly interesting
so far. It is simply a calculation, typical of many situations such as arith-

4 7

35

Sum of row products: 28 + 15 = 43

Sum of columns products: 20 + 21 = 41

Difference in sums: 43 – 41 = 2
16
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mogons (MacIntosh & Quadling, 1975, Mason & Houssart, 2000), pyra-
mids (Russell, 1997). However, treating that as a ‘doing’, what is the ‘undo-
ing’?

task 7b: undoing differing products

The measure of my grid was 2. Can you construct a grid for which the
measure is 11? Or any other specified number? 

The usual approach is to start trying numbers, hoping to alight on a solu-
tion. This ‘guess and check’ is a useful strategy if you take Pólya’s advice
(1945) and treat it as specialising. But the point of specialising (Mason,
Burton & Stacey, 1982/2010) is to get-a-sense-of underlying structure, to
detect possible structural patterns. ‘Trial and improvement’, is a better
strategy than simply ‘guess and check’ because it implies trying to learn
from the examples rather than simply accumulating them. But in this case
it may not be clear how to adjust one example so as to force the final
‘measure’ to change the way you want it to. ‘Tracking Arithmetic’ comes to
your aid:

Repeat the calculations but don’t actually do them!

For my initial grid, the calculations come out as 

Now you can see exactly how the ‘measure’ of a grid relates to the entries,
and you can construct lots of examples with any specified answer, but only
if you treat the ‘answer’ as an indicator of structure, of providing an
instance of a general property of these calculations. What you are doing is
treating the initial grid numbers as place holders, so that you can see how
they influence or involved in the result. This same strategy applies to many
different situations where using arithmetic to encounter algebraic think-
ing can precede the use of letters. 
My own preference is for using a cloud (signifying an as-yet-unknown
number that someone is thinking of), and making use of insights of Mary
Boole (Tahta, 1972). Here there are four numbers to track, but in ThOANs
(see task 4) there is only one number to track ... all the others can be cal-
culated with as long as you leave the initial number alone (and don’t cal-
culate with that number). Replacing a particular starting number with a
cloud is a clerical task but makes the thinking clearer, and provides learn-

4 x 7 + 5 x 3
4 x 5 + 7 x 3

4 x (7 – 5) + (5 – 7) x 3
= 4 x (7 – 5) – (7 – 5) x 3

= (4 – 3) x (7 – 5)
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ers with encounters with as-yet-unknown numbers, the very heart of alge-
bra (and arithmetic). 
The only difference between calculations in arithmetic and in algebra is
that in arithmetic you are always proceeding from the known (data)
towards the as-yet-unknown answer, whereas in algebra you begin with
the as-yet-unknown number (as Mary Boole said, “acknowledge your igno-
rance”), denote it in some way, and then proceed to treat it as a number,
expressing the various calculations in which it is involved. You end up
with one or more constraints in your initial as-yet-unknown number,
which you then proceed to try to satisfy.
The theme of arithmetic as the study of actions on and with numbers, has
been described slightly differently as studying the relations among and
between numbers by a wide range of authors. See for example Nunes, Bry-
ant & Watson (2009). One way to expose children’s thinking is with tasks
along the following lines.

task 8: relational or structural thinking

What is 37 + 48 – 37? 

True or false: 57 + 93 = 93 + 57?

Of course the ‘difficulty’ of the numbers can be adjusted to the experience
of the children involved. Some children start calculating and (if they do it
correctly) get an answer; some children start calculating and then say ‘Oh’,
and get the result more quickly than those who calculate everything; some
children quickly get the result.
The latter children are processing before doing the first action that comes
to mind. They can be said to be thinking relationally. Others are at various
stages along the way to relational thinking. The first are liable to develop
a habit of ‘doing the first thing that comes to mind’, whereas once one pos-
sible action comes to mind it is useful to ‘park’ it and look for something
more efficient.
There are all sorts of variants of this task, exploiting children’s awareness
of properties of particular numbers such as 0 and 1, 9, 99 and 999, and
so on, as well as exploiting general properties (rules of arithmetic) such as
commutativity, associativity and distributivity. You can also explore
awareness of place value with something like: 

True or false: 37 + 48 = 38 + 47 

True or false: 14 + 26 = 7 + 26 + 7

Again some students may start calculating. They are among the ‘eager
beavers’ who carry out the first possible action that comes to mind,
whereas the effective thinker is pleased that something possible has come
18
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to mind, but parks that and pauses in order to see if there is an alterna-
tive, perhaps more subtle or efficient action to undertake.

task 9: fractional actions 

In the first diagram, can you see something that is  of something else?
 of something else?  of something else?  of something else?  of some-

thing else? What other fractional actions can you ‘see’? 

In the second diagram, can you see something that is  of something else?
Something that is  of something else? Something that is  –  of some-
thing else (fig.4)? 

figure 4

Pat Thompson, from whom this idea comes (Thompson, 2002) offers the
pedagogic strategy in a session by asking people to ‘put your hand up
when you can see …’ That way he can choose whether to get people to
describe or point to their choices, or whether virtually everyone is confi-
dent that they can indeed see what is being sought. An extended version
of this strategy is the use of small whiteboards or slates on which children
make a response to hold up for the teacher to see. 
Many teachers and many more children find it unusual to shift from one
perceived whole to another. They are used to assuming that the whole of
what they discern is ‘the whole’. But it is essential to develop flexibility as
to what constitutes the whole (actually, the unit) and what constitutes
‘part’ of that unit. The language of ‘whole’ is misleading because it presents
an obstacle to seeing something as  of something else, for example.
The second part of the task generalises. For example, you can ‘see’ a rec-
tangle divided into  and  parts horizontally and vertically, respec-
tively, and the difference has to be  of the whole rectangle taken as
the unit.

5 reflection

It is not the task that is rich; it is not the activity that is rich; it is the way
that the task is used that is rich, and this is what influences whether the
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experience is rich, setting up the possibility to learn from that experience.
But even a rich experience may not guarantee learning, as teachers who
engage students in physical activities and games discover: children may
participate fully, but may not appear to influence their future behaviour
as a result. The same applies to novice teachers and in-service teachers
encountering some professional development activities.
When learners are given the chance to make significant (mathematical and
behaviours) choices, when they are stimulated to make use of (and
develop) their natural powers of sense-making, such as imagining and
expressing, specialising and generalising, conjecturing and convincing,
they experience a taste of the pleasure that can come from thinking math-
ematically, and that is what will encourage them to continue thinking
mathematically.
In order to be sensitive to what learners are experiencing, it is at least
helpful and perhaps even necessary to have recent parallel experiences
oneself. Consequently any group of teachers in a school will benefit from
jointly working on mathematics themselves, in a mathematical atmos-
phere of mutual respect, in which everything said is treated as a conjec-
ture that needs to be tested in experience (if it is pedagogical in nature) or
tested structurally (if it is mathematical in nature). Only when people are
moved to ‘modify my conjecture’ can it be said that mathematics, or at
least mathematical thinking, is being supported and stimulated.
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