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introduction

Primary school practices cannot be changed on a large scale, if no alter-
native perspectives on the practising of skills are offered to teachers. The
German project ‘mathe 2000, directed by G. Muller and E. Wittmann, has
worked on bridging the gap between seeing learning as a constructive
process on the one hand and the prevalent way of practising based on be-
haviourism on the other. The contribution at hand aims at giving an over-
view of the conception of the so-called ‘productive practising’ that allows
to achieve higher order goals - like reasoning or communicating mathe-
matically -, even while facts, skills or algorithms are practised.

two different ways of practising

Since the early eighties, German primary education has seen a reform that
was - to a considerable amount - coming from ‘the inside”: besides a cou-
ple of researchers and teacher educators it was mainly the teachers them-
selves who realised that they had to change the way in which they taught.
Thus, children were more and more seen as active participants in the
teaching/learning process and given increasing responsibility to direct
their own learning.

During the mathematics lessons they consequently were given the free-
dom to decide when to work on certain tasks and to choose between work-
sheets showing different degrees of difficulty. In addition, there was a
strong movement to no longer deal with pages of bare sums, but to make
the practising of skills more motivating. Let me give one example (Krampe
& Mittelmann, 1992, p.193): here, the children are to work out the results
first and then connect the crosses according to the sequence of the num-
bers belonging to them (fig.1). If a child succeeds, he/she will end up with
a nice picture of a sailboat. If he/she makes mistakes, the picture will be
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spoiled. This might lead to rework the problems which do not seem to have
being solved correctly. Many children really prefer these kinds of tasks in-
stead of doing boring pages of sums. But are activities like these really
contributions to letting children learn actively and autonomously, as the
reform movement intended?
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figure 1: connecting crosses

Before answering this question, let me give a second example (see Witt-
mann & Miiller, 1992, pp.117-119): Children were asked to solve the fol-
lowing series of tasks and to put down what they had noticed.
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figure 2: nice numbers
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They also had to find the first addend {minuend)} in the three (four) last
tasks each. Marc-André had worked out all the answers correctly and pro-
duced the following text (fig.2): ‘It isalways 111 more. In both series the
answers are 111 more. The number to add is always the same and the
numbers you have to minus as well.’ I asked him what he meant by the
second sentence, and he explained that the first numbers (the first addend
and the minuend) showed a difference of 111, if being compared with each
other.

The children were also encouraged to put down similar series of tasks;
here, Marc-André produced four different series with multiples of 111 as
results, using different rules of construction (fig. 3).
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figure 3: Marc-André’s own productions

Let us compare both ways of practising. At first both tasks aim at practis-
ing addition and subtraction in the domain of 1 through 1000. But these
are almost all the similarities. ‘Connecting crosses’ is close to a behaviour-
istic understanding of practising as suggested by Thorndike (1922): A
stimulus is given (the task to be solved), the pupil gives a response (he/
she writes down his/her solution) and a positive (negative) reinforcement
is given (the results can(not} be detected among the given numbers and fi-
nally a nice picture is (not) emerging).

This chain of ‘stimulus-response-reinforcement’ has to be repeated as long
as the bond between giving a task (stimulus) and giving the correct answer
(response) is not stable (Brownell, 1944). As activities like these were very
prominent a couple of years ago - and to a certain extend still are nowa-
days - it can be concluded that despite all the positive developments, Ger-
man primary school has seen, the reform in mathematics teaching practice
often only happened on the surface, especially when skills were to be prac-
tised.
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In comparison to ‘connecting crosses’, the single tasks chosen in the ‘nice
numbers’ problem show a coherent structure; they have not been chosen
at random, but are connected with each other. This underlying pattern al-
lows children to discover, to describe, to reason, to be creative, to commu-
nicate, in brief: to really work mathematically. For example, they can work
on the construction principles of the first series, being engaged in ques-
tions like: ‘What do single tasks and their results have in common, in how
far do they differ?” ‘Is there an explanation why the result (in general) is
made up of three identical digits? ‘What happens, if the numbers get too
big? Here, the practising of skills is not seen as primarily drumming in of
bonds, but as the child’s constructive activity, through which - whenever
possible - the higher order goals are also trained. Teaching units like this
were developed in the project ‘mathe 2000’ and embedded in the concep-
tion of productive practising (Wittmann, 1992) that I want to describe
briefly in the following section.

the conception of productive practising

The theory of ‘productive practising’ embraces the practising of skills as a
crucial part of the constructive learning process. Practising always con-
tains an element of learning and learning always contains an element of
practising (see also, Winter 1984, p.10). The project’s theory emphasises
the necessity to offer children (1) material-based and (2) coherent tasks.

Let me explain what is meant by material-based tasks first: Lorenz (1992,
p-2) has shown that a shortcoming of mathematics teaching is that mak-
ing the jump from (‘concrete’) representations to (‘abstract’) mathematical
concepts and operations is almost completely left to children. The missing
links are the development of mental images as well as the increasing abil-
ity to mentally operate with material that represents the concepts (like e.g.
the arithmetic rack or the empty number line). Thus, enough tasks are
needed where the children use material or mental images of material in or-
der to practice. Of course, children should learn to work without ‘concrete’
material at hand in the long term, but they should use it just as long as
they need it: so using material should on the one hand by no means be
regarded as not needed in the classroom, but on the other hand its use
should not be over-exaggerated.

The second aspect I would like to mention are the so-called coherent tasks.
These are not selected at random, but show a coherent structure, having
either a (pure} mathematical core or being rooted in real life. The ways of
solving the problems and their results can support and correct each other.
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Coherent tasks cannot only further the understanding of concepts and op-
erations, but can also make a contribution to achieving higher order goals,
such as those mentioned above. Not to be misunderstood: not every prob-
lem solving activity can be regarded as providing coherent tasks for prac-
tising. The precondition for the latter always is that the same skill or the
same set of facts has to be used in order to work on a series of similar
tasks.

The conception of productive practising embraces all types of practising:
material-based tasks as well as formal; coherent series as well as those
where the single tasks do not show any relationship. Nevertheless, the
project clearly emphasises that material-based and coherent tasks should
be given priority in order to replace the premature mechanisation that un-
fortunately seems so prevalent in mathematics teaching practice almost
all over the world - despite the fact that many mathematics educators
have convincingly pointed out the danger of too early and too much ‘drill
and practice’ (Baroody, 1985; Brownell, 1954; Madell, 1985; Rathmell,
1979; Ter Heege, 1985).

examples

Let me now sketch some teaching units. Due to page constrains, I will nei-
ther deal with material-based tasks nor with real life contexts. I do not
want to carry too many owls to Athens. The reader can find many of our
examples in Wittmann and Miiller {1990 and 1992).

Instead I will be discussing four teaching units representing the beauty of
numbers and their relationships. Each of them is introduced by an activity
for one of the four grades of German primary school (6 to 10 year-olds),
but it is also shown, how variations of the problem context make it possi-
ble to use it in the other grades of primary school as well as in teacher ed-
ucation courses. This is meant to illustrate our ideas about a conception
of rich and meaningful contexts that offer substantial activities on differ-
ent levels - a counterbalance to (just) nice, unrelated activities,

arithmetic triangles

The arithmetic triangle teaching unit (Wittmann, Miiller et al., 1994} is a
slight variation of the idea posed by Mclntosh & Quadling (1975). An equi-
lateral triangle is divided into three congruent kites, each of which con-
tains several counters (fig. 4). There is a simple rule: determine the
number of counters in adjacent kites and write their sums on the corre-
sponding sides, as to be seen in examples 1 and 2. It is also possible to
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give the number of counters in two kites and one sum (3) in order to work
out the missing information. Counters can be used by the pupils to deter-
mine the solutions, which can be approached on a ‘guess and check’ basis,
as well as by systematic variation based on the operative principle (Witt-
mann, 1985).

figure 4: arithmetic triangles - activities for first graders

Some further variations shall be mentioned:

-~ number symbols are used instead of counters (4);

~ two sums and the number (of counters) in one kite are given {5);

- all three sums are given (6).

These are just some types of activities that seem to be suitable for first
graders. This context can also be expanded by posing problems that deal
with systematic variations, for example:

- what happens, if one additional counter is placed in each kite?

- or if one counter is moved from the top to the bottom right?

- if a counter is taken away from both the top and bottom left?

- 1if one is taken away in the top and one is moved from the bottom left to

the right?

figure 5: Mathias’ solutions to an arithmetic triangle-problem
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An illustration for problems of this kind follows. Mathias has worked on
the following one: ‘What can be observed, if one counter is moved from bot-
tom right to left?” Reflecting on the series he had completed, he said that
the bottom sum does not change, whereas the other two are decreasing re-
spectively increasing by one (fig.5).

Activities like these can easily be modified by taking larger integers, frac-
tions or even algebraic expressions. Some of these and other related prob-
lems - for example involving arithmetic squares or hexagons - can also be
investigated in teacher education courses. The arithmetic triangle is thus
an example of a teaching unit that can be used at different levels of a long-
term learning process and as such represents a shining example of the
substantial problem contexts the project advocates.

number walls

The rule for the number walls problem context is as follows: you start with
an almost triangular wall, consisting of stones, on which numbers are
written. The number in one stone is the sum of both stones underneath;
for communication purposes the stones in the bottom row are called bot-
tom stones, the one on the top is called top stone (Wittmann & Miller,
1990, pp.103-106). Figure 6 illustrates one type of activities for second
graders: the children are asked to fill in the missing numbers.
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figure 6: number walls - activities for second graders

Another activity consists of investigating how the top stone changes, if the
numbers in the bottom stones are made bigger or smaller. One example:
how does the top stone change, if you take a wall with three rows and
make the left base stone bigger? Second graders were asked to complete
number walls where the numbers in the bottom stones were given (13, 20,
9; 14, 20, 9; and so forth) and to write down what they have noticed. In
addition they should apply their findings to a fifth wall where two of the
base stones (20, 9) and the top stone (66) were given (fig.7).

Here, Heinz put down that the left base stone was always changing: ‘At
first it is 13, then 14, 15, 16.” Subsequently he stated that the left stone
in each row was getting bigger: ‘“The left side is always changing.” Bernd
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referred to the first two examples, writing: ‘At first it was 13, then 14. At
first it was 33, then 34. At first it was 62, then 63.” Without using any ex-
ample, Jérg noted that he had found out that both the left stone in the bot-
tom row and the top stone were getting one bigger: ‘The numbers in the
left bottom corner get one number more. The top stone also gets one
number more.” Finally, Helga’s solution shall be presented who made
mention of the left stones in each of the three rows: ‘1 always go one more
in the left stone in the bottom, in the left one in the middle and in the left
one on top.’
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figure 7: second graders” investigations on number walls

There are lots of variations of this problem on different levels (see also

Krauthausen 1995}, like for example:

- What happens if you make the right stone in the bottom row bigger
{(smaller)?

- What happens if you make the middle stone in the bottom row bigger
{smaller)?

- What happens if you enter the same integer in each of the bottom
stones? If you use consecutive integers?

- Find different number walls with a certain top stone (for example, 20)!
Is there a relationship between these?

- Three numbers (e.g. 4, 5, 9} are given. How do they have to be arranged
so that the top stone is as big (small) as possible?

- You start from a given number wall (where e.g. the top stone is 43}. You
want to construct a number wall with the top stone 50. How can you
use the initial wall?
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- Is it possible, to reach a certain number (for example 100), if the bottom
stones are identical {consecutive)?
All these problems can be investigated, if walls with more rows or other do-

mains of numbers are taken.
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figure 8: children’s work on a number chain problem

number chains

One possible number chain activity for grade 3 is as follows: take two in-
tegers {including 0), the (so-called) starting numbers, write them side by
side, add them and write the result beside the second number. Now add
the second and the third number! Write the result beside the third
number. Finally add the third and the forth number. This sum is to be
written as the fifth number and is called target number. Two examples:

3 7 10 17 27
64 8 72 80 152

In the beginning, children should explore this algorithm by playing around
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with the numbers. But when they have got acquainted with it, they should

be given problems to work on. These could be of the following kind:

~ Try to reach a high (a low} target number ~ without any precondition or
within a certain domain of numbers!

- Reverse both starting numbers and observe the influence of this oper-
ation on the target number!

- Make one of the target numbers one (two, three) bigger (smaller). What
do you notice? Make both bigger (smaller)! Or one bigger and the other
one smaller!

- Find all (seventeen) pairs of starting numbers that add up to the target
number 100.

Some examples of third graders’ work on the last problem are given in fig-

ure 8. A didactical problem for the reader: try to find out in how far the

children were working systematically!

Like all the other problem contexts I am discussing in this paper, the

number chains can be used in grade one as well as in teacher education

courses (Selter and Scherer, in press). Two activities shall illustrate this:

- First graders can be asked to find all pairs of starting numbers of
chains (length 4) that reach the target number 20.

- Prospective teachers can work on the following problem: Which num-

bers cannot be target numbers, if one takes a chain with 4, 5, 6, ..., n
numbers.
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figure 9: Canan’s writing about a consecutive integers problem

consecutive integers

The last problem context that I want to discuss is connected with one of
the big problems of number theory: can you represent each natural
number as a sum of consecutive integers? How many different solutions
are there to a given number? Sylvester’s theorem tells us that there are as
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many ways as the number has odd divisors other than 1. There are for ex-
ample, three ways of decomposing the 15: 1 +2 +3+4 +5, 4 + 5 + 6 and
7 + 8: the odd divisors of 15 different from 1 are: 3, 5 and 15.

In the following I want to describe how fourth graders dealt with this prob-
lem (figs.9 and 10). They were not only asked to work out all the different
solutions in the domain of 1 through 20, but also to describe what they
noticed and to produce a problem for teacher students who were attending
the lesson. Canan, for example, found out almost all decompositions into
2, 3, 4 respectively 5 addends, with exception of 18 = 3 + 4 + 5 + 6. Then
she commented as follows: ‘These problems were easy for me, but some
problems can't be solved. Fourth graders are able to work on problems like
these. I have also posed a problem, it is the number 39. And I want you to
solve it, O.K.7"

Linda initially used the strategy to find all possible decompositions for 1,
then for 2, for 3, and so forth. But she experienced some trouble here and
changed her way of working, as she summed up consecutive numbers and
related these to the corresponding results. Her text mirrors a little bit, how
she felt: ‘It was easy, but I got confused. But now it's your turn: Work out
the 50! Tim put down something remarkable: he had not only found out
that there will be no solutions for 2, 4, 8 and 16, but he had also noticed
the relationship between these numbers: ‘16 is a doubled 8; 8is a doubled
4: 4 is a doubled 2.

Indeed the powers of two are the only numbers having no solution, which
we can also derive from Sylvester’s theorem, as they have no odd divisor
apart from 1. Corinna wrote: ‘These problems were fairly easy. Some of the
numbers did not work. No. 2, 4, 8, 16. 15 had the most solutions. And now
you shall do some work. Here is my problem: 1 +2 + 3 + ... + 19 + 20

a ) X e ™
s woay Lehr clevh Lok &&n,ﬂmwa«p“”"’;“’ ot g
Y ot i oty by simp | e cfyelbor géngan nax 4l
e A2 b, 516, ‘
Bechanandyedre wdter Jrohinanbicr <7 S NP
Yy ! Posr A5 gingren tiepneiany .«.«.WJ -
5o h N Linda cw},ﬁg;(/y-m"% W&WMW
' Aler bomm it dudyale.
R R JEDE g P
16 dewu%m@%&dwm%dﬁ A t3v g LEte T Podr t0s ASF 123 T I
daa W’lcm“nl ’ T T af i 1g, 131 pe1fa20 [0 e
N\

Tim Corinna

figure 10: fourth graders’ work on a consecutive integers problem

Once again, there are many possibilities for variations, some examples:
- Children could be asked to continue the given sequence: 1, 3, 6, 10,
and to describe what they noticed (Selter, 1996). Older pupils can be
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asked, if all numbers in the domain of 80 through 100 can be expressed
as a sum of not more than three of these so-called triangular numbers
{Kalthoft, 1995);

- They can be given the problem to find skilful ways to add consecutive
integers, such as the sum given by Corinna (see above}. This can be ex-
tended for older pupils to the famous Gauss problem to add the first
100 integers (Winter, 1985);

- Children can be encouraged to sum up multiples of consecutive inte-
gers, such as 5 + 10 + 15 + 20 + 25 as possible. They could also be
asked, if there are five numbers with a constant difference that add up
to 50, like 6 +8+ 10+ 12 + 14 (Steinbring, 1995);

- Other geometric numbers offer excellent opportunities to practice
skills, while doing mathematics really takes place: square numbers,
rectangular numbers, pentagonal numbers, and so on.

concluding remark

In the present article I used - for purposes of easy reading, and thus may-
be simplifying ~ the notion of practising of skills as an expression to rep-
resent the training of (1) basic facts, (2) flexible mental and non-algorith-
mic written calculation and (3) the standard algorithms. The project
‘mathe 2000 has developed teaching units for all three domains, but un-
der a certain background philosophy: it is our considered opinion that the
basic facts are absolutely important and should be mental practised in a
meaningful way. With respect to the other two domains we are advocating
a shift from (3) to (2) (Krauthausen, 1993): For us, flexible and non-algo-
rithmic written calculation is the crown of arithmetic in primary school.
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