
 

     

The increasing amount of data in media over the last year—think of 
COVID—illustrates the necessity for students to become statistically 
literate—including interpreting inferences. Drawing inferences involves 
making data-based claims under uncertainty when only partial data are 
available. However, inferences are challenging for students in Grade 10 
and higher. This thesis focused on the question: How can a theoretically 
and empirically based learning trajectory introduce 9th-grade students 
to statistical inference? To answer this question, we used a design-
based research approach, complemented with a case study into learning 
statistics from and with technology. The design of the trajectory was 
informed by theories on repeated sampling and statistical modeling 
using a black box paradigmatic context. The learning trajectory was 
implemented in teaching practice during three interventions. A pre- 
and posttest were designed to evaluate the trajectory’s effects in the 
large-scale final cycle. A national and international comparison of 
student results showed that students who took part in the learning 
trajectory (N = 267) scored significantly higher on statistical literacy 
than the comparison group that followed the regular curriculum  
(N = 217), in particular, on the domain of statistical inference. We also 
observed positive effects on other domains of statistical literacy. These 
findings suggest that current statistics curricula for grades 6–9, usually 
with a strong descriptive focus, can be enriched with an inferential 
focus—at least for pre-university education (VWO). The benefit of this 
early introduction is that students learn more about inference and not 
less about the other domains of statistical literacy, to anticipate for 
subsequent steps in students’ statistics education.  
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This is a time for looking at the data and saying let’s do what makes the 
most sense 

(New York Times, 24 April 2020)1 

Introduction 
Overwhelming amounts of data, statistics and predictions about the current 
COVID19 situation were presented to society last year. This illustrates the 
growing importance of teaching statistics and probability in the classroom, to 
help students develop the statistical literacy needed to understand claims 
provided in our data-based society (Watson & Callingham, 2020). 

Research Topic 
Statistical literacy is considered one of the 21st-century skills that students 
should acquire. Gal (2002) defines statistical literacy as the ability to interpret, 
critically evaluate and reason with statistical information. Statistical inference is 
at the heart of statistics as “it provides a means to make substantive evidence-
based claims under uncertainty when only partial data are available” (Makar & 
Rubin, 2018, p. 262).  

Learning inferences is difficult for students, and therefore in most 
countries, including the Netherlands, not taught until Grade 10 or higher. Many 
difficulties of students are caused by a limited understanding of key statistical 
concepts required for inferences (Castro Soto et al., 2007; Konold & Pollatsek, 
2002). An emphasis on complex formal procedures in Grades 10 to 12 and 
higher education, exacerbates students’ conceptual problems. To help students 
overcome these difficulties, informal approaches have been sought in recent 
decades. Engaging in activities that involve informal inferences in the early 
years might facilitate learning about more complex inferential statistics later on 
(Zieffler, Garfield, delMas, & Reading, 2008). Makar and Rubin (2009) define 
informal statistical inference in terms of three main principles: generalization 
beyond data, data as evidence for these generalizations, and probabilistic 
reasoning about the generalization. In an informal approach, familiar 
experiences are incorporated into inferential processes to facilitate the 
understanding of statistical concepts required. Recently developed digital tools 
provide opportunities to deepen students’ conceptual understanding. 

1 Quote by Dr. Peter Collignon, a physician and professor of microbiology at the 
Australian National University who has worked for the World Health Organization 
(Cave, 2020). Vanquish the Virus? Australia and New Zealand Aim to Show the Way - 
The New York Times (nytimes.com) 

https://www.nytimes.com/2020/04/24/world/australia/new-zealand-coronavirus.html
https://www.nytimes.com/2020/04/24/world/australia/new-zealand-coronavirus.html
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The increasing use of digital technology in today’s society requires an 
educational shift towards learning from and with digital tools. This is 
particularly urgent for statistics education, where digital technology is 
indispensable for interpreting statistical information (Gal, 2002; Thijs, Fisser, & 
Van der Hoeven, 2014). Insight into underlying statistical models is 
fundamental for such interpretations (Manor & Ben-Zvi, 2017), and in 
particular for making inferences. Digital environments, such as VUstat and 
TinkerPlots, offer an informal approach to deepen students’ understanding of 
statistical modeling and models (Biehler, Frischemeier, & Podworny, 2017). 
Within these environments, students can build a model of a given situation for 
simulating samples, which enables them to informally investigate the behavior 
of the model.  By visualizing sample and sampling distributions—at varying 
sample sizes and at varying numbers of repeated samples—students can explore 
sampling variability, (un)likely sample results, and uncertainty involved in 
inferences. During these modeling activities, key concepts for inferences are 
visualized, explored and deepened. As such, modeling with digital tools seems 
promising for introducing statistical inference. Figure 1.1 shows an example of 
statistical modeling in TinkerPlots, in the context of a black box. A black box 
filled with 1,000 marbles, 750 yellow and 250 orange, is modeled in the bar 
graph top left. A simulated sample size 40, and the sampling distribution for 
repeated samples are visualized on the right.  

Given the importance of and difficulties in teaching statistical inference, 
knowledge about efficient learning trajectories for secondary school students is 
needed. Embedding informal inferential activities in earlier years seems 
promising, in particularly when combined with learning from and with digital 
tools. However, little is known about how statistics curricula with a descriptive 
focus can be transformed to a more inferential focus, to anticipate subsequent 
steps in students’ statistics education. More knowledge is needed about well-
substantiated learning trajectories. This is especially important for students in 
the pre-university stream (VWO is the Dutch abbreviation), the 15% best 
achieving students of our educational system, for whom statistical knowledge is 
essential in preparing for higher education. The aim of this research project is to 
gain knowledge about a theoretically and empirically based learning trajectory 
to introduce 9th-grade students to statistical inference. The guiding research 
question is:  

How can a theoretically and empirically based learning trajectory 
introduce 9th-grade students to statistical inference? 



Chapter 1 

10 

Figure 1.1. Illustration of the digital environment of TinkerPlots 

Research Methods 
As educational resources and teaching materials in which 9th-grade students are 
introduced to statistical inferences hardly exist, the formulated research question 
involves a dual question. Answering the question requires both the design and 
the evaluation of the learning trajectory. A design-based research method 
(Bakker, 2018) seems to address this duality. According to Euler (2017), a 
design-based research begins with the following question: How can an intended, 
initially vaguely stated, goal be achieved with a yet-to-be-developed design? As 
the research process progresses, interventions are conducted and evaluated. 
Design-based research is characterized by a cyclical process in which 
educational materials for learning environments are designed, implemented, and 
evaluated, for following cycle(s) of (re)design and testing (McKenney & 
Reeves, 2012). In this research project, three cycles were completed, starting 
from a one-class teaching experiment, through an intervention in three classes, 
to implementing the learning trajectory in thirteen classes at different schools. 
Furthermore, between cycles 2 and 3, a case study was conducted into learning 
from and with technology. In particular, this domain-specific case study focused 
on the intertwined development of learning techniques for using a digital tool 
and conceptual understanding. Figure 1.2 provides an overview of the cycles 
and studies in this research project, and the chapters of the thesis. 
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Figure 1.2. Overview of the phases in the research project and the chapters of 
the thesis.  

As a design and research instrument to structure and connect the elements 
involved in a learning trajectory, we used a Hypothetical Learning Trajectory 
(HLT). According to Simon (1995), who introduced this notion, and Simon and 
Tzur (2004), an HLT consists of a learning goal for students, a description of 
promoting activities that will be used to achieve these goals, and hypotheses 
about the students’ learning processes. Based on a literature study, an HLT was 
developed and implemented during the first research cycle. In following cycles, 
the initial HLT was (re)designed, implemented and tested, to develop an 
efficient trajectory. 

Research Overview 
Chapters 2 to 5 present the results from research cycles 1 and 3, and the findings 
from the case study. Results obtained from cycle 2 are not elaborated in this 
thesis, to reduce overlap between chapters. Insights from cycle 2 were used for 
(re)design in cycle 3. We report in Chapter 2 on the first three steps of the 
trajectory and in Chapter 4 on the whole trajectory, respectively. The case study 
is presented in Chapter 3, and Chapter 5 reports on a quantitative evaluation of 
the whole designed trajectory. We now elaborate on how these four chapters 
align with the aim of this research project: the design of a theoretically and 
empirically based learning trajectory for introducing statistical inference. 
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Chapter 2 presents the results of the first cycle that focused on the design, 
implementation and evaluation of the first part of a learning trajectory for 
introducing 9th-grade students to statistical inference. Twenty Grade-9 students 
(14–15 years old) took part in the learning trajectory. In the first three steps of 
the trajectory, ideas of repeated sampling with a black box and statistical 
modeling were embedded, to introduce students to key concepts of inferences. 
In particular, this study addressed the following research question: 

RQ1: How can repeated sampling with a black box introduce 9th-
grade students to the concepts of sample, frequency distribution, 
and simulated sampling distribution? 

Chapter 3 presents the results of the domain-specific case study. This study 
examined 9th-grade students’ intertwined development of techniques for using 
TinkerPlots and conceptual understanding of statistical modeling, by using the 
theoretical perspective of instrumental genesis. In this study, we addressed the 
following question:  

RQ2: Which instrumentation schemes do 9th-grade students 
develop through statistical modeling processes with TinkerPlots 
and how do emerging techniques and conceptual understanding 
intertwine in these schemes? 

Chapter 4 reports on the results of the third research cycle on the design, 
implementation and evaluation of the whole 8-step learning trajectory. In this 
study, the designed learning trajectory was empirically substantiated by 
analyzing students’ progression during a large-scale intervention. The aim was 
to evaluate how the eight steps of the trajectory fostered students’ learning 
processes and proficiency in statistical inference. We addressed the following 
research questions: 

RQ3.1: What are the specific effects of the designed Learning 
Trajectory (LT) on students’ understanding of statistical inference, 
in terms of the intended LT-step related learning goals? 

RQ3.2: How do the designed steps of the learning trajectory foster 
students’ learning processes? 

Chapter 5 presents the results of a quantitative study on the effects of the 
learning trajectory on students’ proficiency in the domains of statistical literacy, 
and inferences in particular. Although the designed learning trajectory 
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concentrated on statistical inference—the SI domain within statistical literacy—
we conjectured that a focus on more complex learning activities for statistical 
inference would also have a positive effect on students’ understanding of other 
domains of statistical literacy. In this study, we addressed the following 
research question:   

RQ4: What are the effects of a learning trajectory for statistical 
inference on 9th-grade students’ statistical literacy?  

Chapter 6 presents the general conclusions. Here, the main findings of the four 
studies are summarized, aggregated, and discussed. The contribution of the 
research project is elaborated, including implications for future research and 
educational design.  





Repeated Sampling with a Black Box to Make 
Informal Statistical Inference Accessible 

This chapter is based on 

Van Dijke-Droogers, M. J. S., Drijvers, P. H. M., & Bakker, A. (2020). 
Repeated sampling with a black box to make informal statistical inference 
accessible. Mathematical Thinking and Learning, 22(2), 116–138.  

2
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Abstract 
While various studies suggest that informal statistical inference (ISI) can be 
developed by young students, more research is needed to translate this claim 
into a well-founded learning trajectory (LT). As a contribution, this paper 
presents the results of a cycle of design research that focuses on the design, 
implementation and evaluation of the first part of a LT for ISI, in which 9th-
grade students (N = 20) are introduced to the key concepts of sample, frequency 
distribution and simulated sampling distribution. The results show that a LT 
starting from repeated sampling with a black box may support the accessibility 
of these concepts, as these students were able to make inferences with the 
frequency distribution from repeated samples as well as with corresponding 
simulated sampling distributions. This suggests a promising way to make ISI 
more accessible for students.  

Keywords 
design research, informal statistical inference, learning trajectory, repeated 
sampling, statistics education. 
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Introduction 
Drawing inferences about an unknown population is at the heart of statistics, 
and therefore important to learn. Sample data are commonly used to reason 
about a larger whole. For informed citizenship in a society in which data play an 
increasingly important role, reasoning with statistical information is essential 
(Gal, 2002). As such, statistical reasoning is considered as one of the 21st 
century skills that students should acquire (Thijs, Fisser, & Van der Hoeven, 
2014).  

However, learning and applying statistical inference is difficult for 
students. The emphasis on formal and procedural knowledge results in the 
inability of students to interpret the results (Castro Sotos, Vanhoof, Van den 
Noortgate, & Onghena, 2007) or to understand statistical concepts such as 
sampling, variation and uncertainty (Konold & Pollatsek, 2002).  

Recent research suggests that studying informal statistical inference (ISI) 
at an early age may facilitate the later transition to formal procedures (Zieffler, 
Garfield, delMas, & Reading, 2008). In general, ISI focuses on ways in which 
students without knowledge of formal statistical techniques, such as hypothesis 
testing, use their statistical knowledge to support their inferences about an 
unknown population based on observed samples. Although ISI has several 
definitions, the commonly used framework from Makar and Rubin (2009) 
identifies three key principles: generalization beyond data; data as evidence for 
these generalizations; and probabilistic reasoning about the generalization. At 
an informal level, familiar experiences can be used for making such inferences. 
By turning common predictions and expectations into inference processes, 
interpreting and understanding statistical concepts become more accessible 
(Paparistodemou & Meletiou-Mavrotheris, 2008). 

Although various studies have shown that ISI can be developed in young 
students (Ben-Zvi, 2006; Doerr, delMas, & Makar, 2017; Makar, 2016; 
Meletiou-Mavrotheris & Paparistodemou, 2015) more research is needed to 
translate these promising results into compact theoretically underpinned 
learning trajectories in which students are introduced to sampling and the 
associated probability component in a short period of time. In particular, it is 
important to investigate how students can learn to draw informal inferences and 
what learning steps are needed to develop this ability among young students, as 
well as which learning activities may foster these learning steps. In most 
countries, school curricula for grades 7–9 focus on descriptive statistics (Ben-
Zvi, Bakker, & Makar, 2015) and, as a result, pay little attention to informal 
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statistical inference. This also holds for the Dutch curriculum, in which statistics 
education progresses from descriptive statistics in the early years, to preparing 
for a more formal approach to inferential statistics from grade 10 and in higher 
education (Van Streun & Van de Giessen, 2007). As time in educational 
practice is limited, both in the Netherlands and abroad, we aim for a concise 
approach. 

This research focuses on the question of how to provide students with 
opportunities to learn to draw conclusions about a population based on samples. 
To provide an answer to such a how-question we look for an idea of how such a 
learning goal can be achieved (design), to implement this idea, and to find 
evidence that the learning goal was indeed achieved. Hence, the aim of the 
research reported here is to design, implement, and evaluate the first part of a 
learning trajectory (LT) for 9th-grade students, that focuses on informal 
inferential reasoning and three statistical key concepts of sample, frequency 
distribution, and simulated sampling distribution.  

Theoretical Background 
To set up the study’s theoretical background, we now elaborate the role of 
informal inferential reasoning and the key statistical concepts to enhance ISI. 

The Role of Inferential Reasoning to Enhance ISI 
This research focuses on inferential reasoning underpinning interpretations of 
sample data. In contrast to descriptive statistics, which concerns describing the 
data under investigation, inferential reasoning includes handling sampling 
variation and uncertainty. An inferential statement is fairly meaningless without 
the reasoning in which it must be embedded (Makar, Bakker, & Ben-Zvi, 2011). 
Therefore, an inference should be accompanied by reasoning based on the data. 
Following Zieffler et al. (2008), we consider informal inferential reasoning as 
making inferences about unknown populations based on observed samples 
without using formal techniques such as hypothesis testing using probability 
distributions. Informal inferential reasoning is about drawing on, utilizing, and 
integrating knowledge from meaningful experiences, as decisions are 
commonly made on the basis of predictions and estimates. These experiences 
can be used to make statistical concepts accessible. Informal inferential 
reasoning may include foundational statistical concepts, such as the notion that 
a sample may be surprising given a particular claim and the use of statistical 
language.  
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Key Statistical Concepts for ISI 
Informal inferential reasoning, and the use of statistical concepts to seek 
evidence for interpretations of data, can be developed through various 
experiences with data over time (Makar et al., 2011). The question is which 
statistical concepts are important for 9th-grade students who are inexperienced 
with sampling. From the literature, three concepts appear to be central: (1) 
sample (including ideas of sampling variation, sample size, and repeated 
samples), (2) frequency distribution of data obtained from repeated sampling, 
and (3) simulated sampling distribution. Figure 2.1 provides an overview of the 
three central aspects and the build-up in handling variation and uncertainty: 
from the introduction to variation in observed samples, by visualizing variation 
within a frequency distribution, towards interpreting variation and uncertainty 
of samples with the simulated sampling distribution, which we elaborate on 
below.  

First, inferential reasoning involves understanding the concept of sample. 
However, students are often reported to have conceptual problems with 
samples. On the one hand, students may assume every sample to be different 
and are therefore hesitant to draw conclusions about a population (Ben-Zvi, 
Aridor, Makar, & Bakker, 2012). On the other hand, students may consider a 
sample as a mini-population with the same characteristics as the underlying 
population and, as a consequence, students expect a small sample size to be a 
good reflection of the underlying population (Tversky & Kahneman, 1971).  

Figure 2.1. Overview of key concepts for ISI and the connection with handling 
variation and uncertainty 
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This is confirmed by Innabi and El Sheikh (2007), who showed that students in 
grade 11 did not take the sample size into account when interpreting sample 
results. Students often make grand statements based on small samples and are 
insufficiently aware of the role of sample size. Experimenting with repeated 
sampling enables students to become aware of the variation and uncertainty of a 
sample, but also of the “representativeness” of a sample (Saldanha & 
Thompson, 2002). Through repeated sampling, students are confronted with 
both variation and similarities, which allows them to gain insight into the 
variation versus stability of particular characteristics. Wild, Pfannkuch, Regan 
and Horton (2011) invited students to experiment with various sample results 
from a given population, with variation in sample size and sample repetitions, to 
raise awareness and understanding of sampling variation. In this respect, Wild 
and Pfannkuch (1999) emphasized the importance of the exchange and 
comparison of sample results. Although repeated samples vary, some sample 
results are more likely than others. Thinking about the question: “What happens 
if a sample is repeated?” contributes to getting a grip on variation and 
uncertainty. This “what if” question is paramount in understanding statistical 
inference (Rossman, 2008). 

With respect to the second key concept, a graph of the frequency 
distribution from repeated samples allows for visualization of obtained results 
and gives an overview of variation and stability among samples. A sample leads 
to data, a dataset has particular characteristics (such as proportion), and these 
characteristics are compiled in the frequency distribution of results from 
repeated sampling. The horizontal axis of a graph of such a distribution contains 
the values of the dataset characteristic. The vertical axis shows the number of 
samples for which each value occurred. A graph of the frequency distribution 
from repeated samples can be made manually or by using a computer and gives 
insight into (un)likely sample results. As such, the graph of the frequency 
distribution functions as a model of obtained results from repeated sampling and 
can be used to display sampling variation and, as a next step, to further 
investigate variation and uncertainty. 

As a third key concept, the simulated sampling distribution can be 
utilized as a model for making statements about variation and uncertainty. If 
used as intended, the simulated sampling distribution extends the concept of 
frequency distribution from step 2, that functioned as a model (or visualization) 
of obtained sample results. Experts in statistics may think of these as 
conceptually the same (cf. Sfard & Lavie, 2005), but from a learning 
perspective there may still be a developmental transition from a model of into a 
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model for (Gravemeijer, 1999). The switch from a visualization of specific 
datasets to a more abstract simulation model for interpreting variation and 
uncertainty, we assume, enables emergent statistical reasoning. Such a sampling 
distribution, based on a large number of simulations, can easily be made with 
computer software (such as TinkerPlots). This simulated sampling distribution 
can be used to determine informally the probability of certain sample results 
(Rossman, 2008; Watson & Chance, 2012) and can assist in determining 
whether a sample result is likely (Garfield, Ben-Zvi, Le, & Zieffler, 2015; 
Manor & Ben-Zvi, 2015; Pfannkuch, Ben-Zvi, & Budgett, 2018; Watson & 
Chance, 2012). Reasoning with the sampling distribution from repeated 
sampling is a meaningful preparation for the more formal reasoning with the 
theoretical sampling distribution in higher education (Garfield et al., 2015; 
Watson & Chance, 2012).  

The black box activity in research of Van Dijke-Droogers, Drijvers and 
Bakker (2018), seemed a promising way to introduce students to the key 
statistical concepts of ISI. Here, students investigated the content of a black box 
filled with marbles by gathering, exchanging and comparing results from 
physical and later simulated samples with different sizes and different number 
of repetitions.  

Research Question 
Given the importance of informal inferential reasoning and the corresponding 
key concepts in enhancing ISI, the main question of this research is:  

How can repeated sampling with a black box introduce 9th-grade 
students to the concepts of sample, frequency distribution, and 
simulated sampling distribution? 

Methods 
Over the past ten years, research has increasingly focused on informal statistical 
inference and has developed various educational materials for young students 
(Doerr et al., 2017; Meletiou-Mavrotheris & Paparistodemou, 2015). However, 
educational resources and teaching materials in which 9th-grade students are 
introduced to concepts of sample, frequency distribution and simulated 
sampling distribution in a short period of time, hardly exist. Therefore, this 
research required a design research approach. Design research is characterized 
by a cyclical process in which educational materials for learning environments 
are designed, implemented, and evaluated, for following cycle(s) of (re)design 
and testing (McKenney & Reeves, 2012). The research reported here comprised 



Chapter 2 

22 

a first cycle of design, implementation, and evaluation of a LT for ISI. We 
focused on the first steps, as part of a longer LT. We designed a hypothetical 
learning trajectory (HLT) of eight steps to map out and structure all elements 
involved in the learning and teaching approach, and to make explicit the 
expectations about how these elements function in interaction to promote 
learning. The LT was implemented and tested during a classroom intervention. 
Here, we report on the design, implementation, and evaluation of the first three 
steps and indicate how the results of these steps were used for revision.   

HLT as a Design Research Instrument 
As a design and research instrument to structure and connect the elements 
involved in an LT, we used a hypothetical learning trajectory (HLT). According 
to Simon (1995), who introduced this notion, and Simon and Tzur (2004), an 
HLT consists of a learning goal for students, a description of promoting 
activities that will be used to achieve these goals, and hypotheses about the 
students’ learning process. It includes the simultaneous consideration of 
mathematical goals, student thinking models, teacher and researcher models of 
students’ thinking, sequences of teaching tasks, and their interaction at a 
detailed level of analysis of processes (Clements & Sarama, 2004). Research by 
Gravemeijer, Bowers, and Stephan (2003) showed how an HLT can be used to 
bridge the gap between students’ ideas and solutions on the one hand and the 
teachers’ mathematical goal on the other. In this way, an HLT can give 
guidance to anticipate the collective practices in which students get involved 
and the ways in which they reason with the various artifacts and activities. An 
HLT provides insight into how students learn and aims for a well-founded 
theory of the learning process. According to Sandoval (2014), the hypotheses 
(or conjectures, as he calls them) in educational design research are typically 
about how tools and materials, task structures, participant structures, and 
discursive practices lead to required mediating process and intended outcomes.  

In this research, the HLT is used as a design and research instrument to 
empirically and theoretically connect all elements of the LT, including 
theoretical background, learning steps, teaching approach, lesson activities with 
tools and materials, practical guidelines for implementation, expected student 
behavior, and data collection, involved in the implementation of the LT. This 
report focuses on the role of the first three steps. Because our HLT was 
extensive, we restrict ourselves in this report to a concise description of 
theoretical background, activities designed, hypotheses and corresponding 
indicators of students’ learning behavior, data collection, and implementation 
characteristics. 
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Educational Guidelines to Frame the HLT 
Educational guidelines to promote inferential reasoning and key concepts, 
extracted from literature, formed the starting point of the HLT design. To 
promote inferential reasoning, an inquiry-based approach with meaningful 
contexts is recommended (Ainley, Pratt & Hansen, 2006; Ben-Zvi et al., 2012; 
Van Dijke-Droogers, Drijvers, & Tolboom, 2017; Franklin et al., 2007; Makar 
& Rubin, 2009; Pfannkuch, 2011). In particular, a holistic approach, in which a 
concrete investigation question is answered by going through all steps of 
statistical investigation from collecting to interpreting data, is expected to 
stimulate reasoning about generalizations, variation, and uncertainty. This 
approach was also addressed by Lehrer and English (2017), who recommended 
systematic and cohesive involvement of students in practices of inquiring, 
visualizing, and measuring variation instead of a piecewise approach. Rossman 
(2008) advised starting with categorical data, so that students can focus on the 
inferential process and only switch to more complex data later. Categorical data 
can be captured by means of a sample proportion, while summarizing numerical 
data requires the determination of measures of center and spread. In addition, 
the distribution of one sample with numerical data may lead to confusion with 
the sampling distribution. 

To promote students’ concepts of sample and sampling variation, 
Saldanha and Thompson (2002) advocated investigating repeated samples. Wild 
et al. (2011) advised an approach in which students experiment with sample size 
and repeated samples from a given population. In this respect, Wild and 
Pfannkuch (1999) suggested that students should exchange and compare their 
sample results. The use of growing samples can help students understand the 
effect of sample size and the relation between sample and population (Bakker, 
2004). With the growing samples task design, students are introduced to 
increasing sample sizes that are taken from the same population. For each 
sample, they draw informal inferences based on their data. Subsequently, they 
predict what might change in a following larger sample. Students are required to 
search for and reason with variable processes and are encouraged to think about 
how certain they are about their inferences. This inquiry-based growing samples 
approach can help students enhance their inferential reasoning (Ben-Zvi et al., 
2012).  

As a next step, letting students think about the question: “What happens if 
a sample is repeated?” contributes to understanding of variation and uncertainty 
(Rossman, 2008). Additionally, making predictions, which are then tested, 
stimulates students’ involvement and statistical reasoning (Bakker, 2004). 
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When working with a computer model for simulations, a strong connection with 
a meaningful experiment is preferred (Chance, Ben-Zvi, Garfield, & Medina 
2007; Konold & Kazak, 2008; Manor & Ben-Zvi, 2015).  

An Outline of the HLT 
To design the HLT, the above educational guidelines were translated into 
hypotheses about students’ learning. This three-step HLT—addressing the 
concepts of sample, frequency distribution, and simulated sampling 
distribution—is summarized in Table 2.1. The central column presents the 
hypothesis about how to promote students’ understanding of each concept; the 
last column shows the connection with educational guidelines. The connection 
between the designed learning activities and the hypothesized students’ learning 
processes is shown in Table 2.2. The upper part of this Table displays the 
features of each step. For each HLT step, Row 1 provides a brief description of 
the designed activity, Row 2 contains the key concepts, Row 3 indicates the 
type of expected inferential reasoning, and Row 4 describes the student activity.  

For each step, a concise description is given of the designed activities, the 
corresponding hypothesis and indicators of students’ learning behaviour that 
would support the hypothesis. 

The first HLT step: How many yellow balls does the black box contain?  
The first HLT step is carried out during Lesson 1 of the intervention. At the 
start of Lesson 1, the first task is to investigate the number of yellow balls in a 
black box filled with a mix of 1,000 yellow and orange balls, by looking 
through a small viewing window. The students shake up the box to mix the 
objects and estimate the content within the given time according to their own 
approach. Students note their findings on a student worksheet. Next, the sample 
results are exchanged and discussed in a whole-class discussion. Students repeat 
the experiment with a larger viewing window. Again, they note their findings 
on a worksheet. At the end of Lesson 1, they compare their estimates from a 
small and a large sample and make an inference about the effect of sample size. 
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Table 2.2. Overview of Designed Teaching Activities for each HLT Step 

The hypothesis in the first step, concerning the concept of sample, is that, in 
conducting the designed activity, students become aware of sampling variation 
and that they investigate the effect of repeated sampling and sample size. The 
following indicators are considered as supporting the hypothesis: 

Step 1 Step 2 Step 3 
Teaching 
activity 

Conduct 
physical black 
box experiment 
(with small and 
large window) 

Imagine the 
frequency-
distribution at more 
than 100,000 
repetitions of 
physical black box 
experiment  

Simulate sampling 
distribution of 
physical black box 
experiment to 
interpret variation 
and uncertainty 
(with ICT) 

Concept Sample 
Sampling 
variation  
Repeated 
sampling 
Sample size 

Frequency 
distribution on data 
from repeated 
sampling 

Simulated sampling 
distribution from 
repeated sampling 

Inferential 
Reasoning 

In words with  
argumentation 
on: 
sampling 
variation, 
repeated 
sampling and 
sample size 

In words with  
argumentation from 
the frequency 
distribution on 
(un)likely sample 
results 

In words with  
argumentation from 
the simulated 
sampling 
distribution on 
variation and 
uncertainty 

Student 
activity 

Estimate the 
content of the 
black box  

Sketch the expected 
frequency 
distribution of data 
from >100,000 
repetitions. 
Determine (un)likely 
sample results  

Inferential 
reasoning with the 
simulated sampling 
distribution  

Repeated sampling with a black box 
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1a) Students note that sample results vary; 
1b) Students choose a repeated sampling approach, with calculating the 

average, to estimate the number or proportion of yellow balls; 
1c) Students note that it is possible to estimate the content based on samples; 
1d) Students note that it is impossible to determine the exact content based on 

samples; 
1e) Students note that the larger the sample size, the more confident they are 

about their estimate; 
1f) Students note that working with a larger sample (usually) leads to a better 

estimate of the content. 

The second HLT step: What happens if this experiment is repeated?  
In Lesson 2, students are asked to think about the question “What happens if 
this experiment is repeated many times?” During a whole-class discussion, the 
students share their expectations for the number of yellow balls in a sample of 
40 from a box consisting of 750 yellow and 250 non-yellow balls and discuss 
the boundaries of possible sample results. Subsequently, students are asked to 
sketch on their worksheet the expected frequency distribution if the experiment 
was repeated 100,000 times. The students are given a coordinate system with 
the values 0 to 40 along the horizontal axis and no values vertically. As a 
follow-up, students are asked to estimate the probability of ranges of particular 
sample results, based on their sketch of the frequency distribution, and to note 
this on their worksheet.  

The hypothesis in the second step is that engaging in the designed activity 
prepares students to make the conceptual switch from using the frequency 
distribution as a visualization of (model of) results obtained from repeated 
sampling to using it as a model for interpreting variation and uncertainty. As 
such, it was expected that students would understand that most sample results 
will be close to the population proportion and strong deviations are unlikely, 
and that the frequency distribution can be used to determine the probability of 
ranges of particular sample results. The following indicators are considered as 
supporting the hypothesis: 

2a) Students note that sample results corresponding to the population 
proportion will often occur;  

2b) Students note that strongly deviating sample results are unlikely to appear; 
2c) Students sketch a graph of the frequency distribution with a peak at the 

population proportion (in this case 30); 
2d) Students sketch a graph of the frequency distribution in which the extreme 
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values (in this case 0–10 or 35–40) hardly occur; 
2e) Students estimate the probability of ranges of particular sample results on 

the basis of their sketched frequency distribution. 

Figure 2.2. Screenshot of the VU Stat sampling distribution app 
(https://www.vustat.eu/apps/yesno/ index.html)  

The third HLT step: How can computer simulation help?  
In Lesson 3, students are asked to simulate the experiment from Lesson 1 with a 
computer to investigate variation and uncertainty. To this end, they use a 
sampling distribution app from VU Stat. In this app, the population is displayed 
using colored balls, which creates a strong connection with the black box 
activity. In our view, the app seems user-friendly, with easy input of the 
population size, population proportion and sample size. As shown in Figure 2.2, 
the software provides a clear overview of the population in the upper screen, of 
each individual sample result in the middle screen, and of the sampling 
distribution for many repetitions in the lower screen. Students simulate the 
sampling distribution with a large number of repetitions and use this distribution 
as a model for investigating most common sample results with accompanying 
estimates of the population. Subsequently, we expect students to use the 
simulated sampling distributions from a given population at varying sample 
sizes and at varying numbers of repetitions as a model for investigating the 
effect of sample size and repeated samples on the accompanying estimates of 
the population. Students note their findings on a student worksheet.  
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The hypothesis in the third step, concerning the simulated sampling 
distribution, is that engaging in the designed activity makes students aware that 
the simulated sampling distribution can be used as a model for interpreting 
variation and uncertainty, and more particularly that repeated sampling with a 
larger sample size reduces the variation in the accompanying estimates of the 
population and hence leads to a more certain inference; and that sampling with a 
larger number of repetitions leads to less variation in the mean and hence to a 
better estimate of the population. The following indicators are considered as 
supporting the hypothesis: 

3a) Students compare the simulated sampling distributions at varying sample 
sizes and note that repeated sampling with a larger sample size leads to less 
variation in the accompanying estimate of the population; 

3b) Students compare the simulated sampling distributions at varying sample 
sizes and note that repeated sampling with a larger sample size leads to a 
better estimate of the population; 

3c) Students compare the simulated sampling distributions from varying 
number of repetitions and note that from repeated sampling with a larger 
number of repetitions the mean of these samples is less variable; 

3d) Students compare the simulated sampling distributions from varying 
number of repetitions and note that repeated sampling with a larger number 
of repetitions leads to a better estimate of the population; 

3e) Students describe how the simulated sampling distribution from repeated 
sampling can be used to determine most common sample results. 

Each HLT step focuses on one key concept, in which entailing aspects—for 
example sample size, repeated sampling, sampling variation, (un)certainty of an 
estimate, probability of samples, visualizations—are addressed from an 
exploratory perspective from the concrete black box in step 1 to a more abstract 
perspective in step 3 by simulating the sampling distribution by repeated 
sampling. An overview of the build-up in complexity by these aspects of ISI is 
displayed in Table 2.3. 

Data Collection 
With respect to the first step, data included individual student worksheets filled 
in by students who worked in pairs with the black box and video-recordings 
from a 10-minute whole-class discussion. In the second step, we collected data 
from student worksheets that were individually filled in by students and video-
recordings from a 12-minute whole-class discussion. For the third step, we 
collected data from student worksheets that were individually filled in by 
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students who worked in pairs on a computer and eight video-recordings of 2-
minute interactions between teacher and students.  

Table 2.3. Overview of Indicators expected in Different Data Sources, by 
Entailing Aspects of ISI 

HLT step 1 

Sample 

HLT step 2 

Frequency 
distribution 

HLT step 3 

Simulated 
sampling 
distribution 

Build-up in 
complexity 

Introduction to 
variation and 
uncertainty 

Visualization of 
variation 

Interpretation of 
variation and 
uncertainty 

Data source WD11 SW12 WD21 SW22 TSI33 SW32 

Sample size 1e, 1f 1e, 1f 3a, 3b 

Repeated 
sampling 1b 1b 2a, 2b 2c, 2d 3c, 3d 3c, 3d 

Sampling 
variation 1a 2a, 2b 2c, 2d 3a, 3b, 3c, 

3d 
3a, 3b, 
3c, 3d 

(Un)certainty 
of estimate of 
population 

1c, 1d 1c, 1d,
1e 3b, 3d 

Probability of 
particular 
sample results 

2a, 2b 2c, 2d,
2e 

3a, 3b, 3c, 
3d 

3a, 3b, 
3c, 3d 

Determination 
of (un) likely 
sample results 

2a, 2b 2d 3a, 3b, 3c, 
3d 

3a, 3b, 
3c, 3d 

Use of 
visualization 

2c, 2d, 
2e 

3a, 3b, 3c, 
3d 

3a, 3b, 
3c, 3d 

1 Whole-class Discussion (WD), 2 Student Worksheet (SW), 3 Teacher-Student 
Interaction (TSI) 
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The video recordings were made by a research assistant and were preceded by 
detailed instruction on specific recording details. The worksheets of the students 
were distributed at the start of each lesson and collected at the end, to prevent 
information being added or lost.  

Implementation Characteristics 
To empirically verify whether the three hypotheses could be confirmed, we 
implemented this LT in one class at a secondary school in the Netherlands. In 
this report we focus on three 45-minute lessons, the first three of a more 
extensive series of ten lessons. We do so because this is where the students are 
introduced to the three key concepts by repeated sampling with the black box. 
The subsequent five steps of the LT, concerning seven more lessons, consist of 
applying these concepts in new situations with build-up in complexity of data. 

Participants 
The participants consisted of twenty 15-year-old students in Grade 9 of the pre-
university level, who are among the 20% best performing students in the Dutch 
education system. The twenty students formed one class with both talented and 
less gifted mathematics students. The students were inexperienced with 
sampling. They had some basic knowledge of descriptive statistics: center and 
distribution measures, such as mean, quartiles, class division, absolute and 
relative frequencies, and boxplot. The lessons were conducted during the 
regular mathematics lessons over a period of one week.  

The teacher was the first author. In this design research, it was an 
advantage that the teacher-researcher was so familiar with the designed 
materials. This allowed all attention to be focused on the design without 
deviations from the designer’s intensions. Although there is added value in 
investigating field-based trials of an activity to see how teachers tend to 
implement the materials, at this stage, it is sensible to tackle challenges one by 
one (Tessmer, 1993). 

Data Analysis 
To answer the research question, we analyzed the data with respect to the 
indicators that would support the hypotheses as formulated in the HLT. The 
main data sources were the student worksheets and the video recordings of both 
the whole-class discussions and the teacher-student interactions. Table 2.3 
displays the distribution of the expected occurrence of indicators in the different 
data sources by sub-area of ISI.  
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Answering the how-question of our research includes design, 
implementation, and evaluation. To make the connection between these phases 
explicit, we work out indicator 1f as an illustrative example. The other 
indicators were elaborated in a similar way. Indicator 1f states: “Students note 
that working with a larger sample (usually) leads to a better estimate of the 
content.”  In the design phase we designed a student activity in which students 
collect data, analyze their data, and formulate an inference on the basis of a 
given investigation question. The activity concerns the context of a black box 
experiment and is built up according to the educational ideas of repeated and 
growing samples. The full HLT incorporated a detailed description of the 
designed activity, including all implementation issues involved. During the 
implementation phase in lesson 1, students worked on the designed activity in 
pairs and noted their data collection and data analysis, as well as their inference 
(estimate of the content) along with an indication of their (un)certainty, on their 
worksheet as an answer to tasks 1–3. In the following whole-class discussion, 
the results were exchanged and discussed. Subsequently the teacher posed the 
question: “What happens if we enlarge the viewing window?” Different options 
were exchanged and discussed, with attention for the uncertainty involved. 
After the whole-class discussion, students doubled the sample size (larger 
window) of their black box and again collected data, analyzed these and made a 
new inference with an indication of their (un)certainty, and noted the results on 
their worksheet as an answer to tasks 4–6. After that, students were asked in 
task 7 on the student worksheet to compare their answers for tasks 1–6 and 
draw a conclusion about the effect of sample size on the estimate of the content. 
During the analyses we used data from tasks 1–7 on the student worksheets and 
video data of the whole-class discussion. The data analysis of these sources is 
elaborated on below. 

All video data, both whole-class discussions and teacher-student 
interactions, were transcribed and coded. The code book consisted of the 
indicators in Table 2.3. The unit of analysis during the discussions and 
interactions was a central question brought forward by the teacher to check out 
the indicators, and the corresponding reactions by the students. For example, a 
central question in the discussion of step 1 was “What do you know for sure 
about the number of yellow balls in the black box?” which refers to indicators 
1c and 1f. To distinguish clear instances and less clear instances, the evidence 
was coded as strong, weak or no evidence. Strong evidence refers to indicators 
that were explicitly present during the class discussion or interaction, for 
example conclusions that were expressed literally or assumptions that were used 
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and repeated more than once. Weak evidence refers to indicators that were 
partly observed, for example incomplete conclusions or assumptions discussed 
indirectly. No evidence refers to indicators that were attended during the 
discussion but were not confirmed or contradicted.  

Student worksheets were coded according to the same code book. The 
worksheets consisted of structured and open tasks. For the analysis, only open 
tasks were used in which students were explicitly asked to clearly motivate their 
answer. The worksheets contained specific tasks that were directly related to the 
indicators. For example, task 6 (“Are you sure of your estimate from a larger 
sample?”) and 7 (“What did you learn from a larger sample?”) on Worksheet 1 
refer to indicators 1d and 1e, respectively. The frequency with which each 
indicator was coded was noted. 

Indicators that were not attended to during the whole-class discussion or 
on the worksheet were indicated as “non-applicable.” A second coder was used 
to analyze the video data of the whole-class discussions and the teacher-student 
interactions, as well as the answers to open tasks on the worksheets. A random 
sample of 25% of the data was checked by the second coder. Cohen’s kappa 
was .83, indicating a good interrater reliability. 

Results 
For each hypothesis, this section describes whether the supporting indicators 
were observed.  

First Step: Sample 
The hypothesis in the first step, introducing the concept of a sample, was 
confirmed as the indicators 1a to 1f were coded in the data collected. Table 2.4 
displays the observed indicators.  

Table 2.4. Overview of Results for LT Step 1 

Indicators 
Student worksheet  
(N = 20) (observed 
number of students) 

Video (strong, 
weak, no 
evidence) 

1a. Students note that their sample 
results vary  Non-applicable Strong 

1b. Students choose a repeated 
sampling approach, with calculating 
the average, to estimate the number 
or proportion of yellow balls 

n = 20 Strong 
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1c. Students note that it is possible to 
estimate the content based on 
samples 

n = 20 Strong 

1d. Students note that it is impossible 
to determine the exact content based 
on samples 

n = 20 Strong 

1e. Students note that the larger the 
sample size, the more confident they 
are on their estimate 

n = 17 Strong 

1f. Students note that working with a 
larger sample (usually) leads to a 
better estimate of the content 

n = 20 Strong 

The strategies for investigating the number of yellow balls in a black box with a 
small viewing window that students showed on their worksheet, corresponded 
to indicator 1a to 1d. Table 2.5 gives an overview of these results on Worksheet 
1 on small samples from the black box. 

As a first strategy, after shaking up the box to mix the objects, most students (14 
out of 20) counted the visible yellow balls in the viewing window and 
extrapolated this number into the total content. They then repeated this shaking 
and counting five to ten times and used the average of these counts to estimate 
the content. This strategy was also expressed during the whole-class discussion, 
in which Ruben (all names are pseudonyms) added the following:  

Teacher: How did you get the estimate? 

Joerie: We counted the number of yellow balls and counted the total 
number of balls in the window. Then we converted the numbers 
into the total content. We repeated this about ten times and then 
calculated the average. 

Teacher: Are there students with a different approach? 

Ruben: Well, about the same thing, but we counted the orange balls, there 
are less of them, and then converted to the total. We repeated this 
about seven times and calculated the average. 
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Table 2.5. Answers on Worksheet 1 on Small Samples (size 20) from the Black 
Box (N = 20, number of students) 

Task Students’ answers Examples from written work 
1. Estimate
the number of
yellow balls
in the black
box.

682, 750, 750, 625, 700, 730, 
700, 735, 700, 725, 750, 675, 
675, 730, 750, 725, 682, 733, 
700, 625  
(estimate of each student) (n = 
20). 

2. Explain
your
estimate.

Approach 1: count balls, 
calculate average, convert to the 
contents of the entire box (n = 
14). 

We took ten samples with 
twenty balls, calculated the 
average and multiplied this 
by 50. 

Approach 2: estimate the ratio of 
yellow balls after shaking a few 
times and convert to the entire 
box (n = 6). 

Always around 15 – 16 
yellow and the remaining 
orange. 

3. How
confident are
you about
your
estimate?

Not confident (n=2). 

Quite confident (n=16). 

Most confident (n=2). 

Not sure, just guessing. 

We don't know exactly, but 
it's about this number. 

Most confident, but not 
100% sure, because we 
calculated the averages and 
extrapolated this number to 
the content. 

As a second strategy, after shaking up the box, some students (6 out of 20) 
based their estimate not on counts, but on ratios. For example, one of these 
students indicated: “We have shaken the black box several times and there are 
always about 15–16 yellow balls and the remaining ones are orange.” All 
students decided to shake and measure several times, which showed that the 
students were confronted with sampling variation when estimating the content 
and opted for repeated sampling to get a better estimate. The students’ estimates 
ranged from 625 to 750. Most students were quite confident about their 
estimate. Only two students indicated that it was a guess and two students were 
most confident—although not 100% sure—because their estimate was based on 
a calculation with the average from multiple counts. 
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As a follow-up activity, students worked with a larger viewing window. 
Most students were more confident about their estimate based on a larger 
window and all students noted that a larger window led to a better estimate of 
the content, which corresponded to indicators 1e and 1f. Table 2.6 provides an 
overview of these results with students’ answers on Worksheet 1 with larger 
samples from the black box. 

Table 2.6. Answers on Worksheet 1 with Large Samples (size 40) from the 
Black Box (N = 20) 

Task Students’ answers Examples from written 
work 

4. Estimate the
number of yellow
balls in the black
box.

744, 750, 714, 720, 720, 730, 
720, 728, 725, 725, 750, 731, 
731, 730, 714, 725, 744, 728, 
725, 720 (estimate of each 
student) (n = 20). 

5. Explain your
estimate.

Approach 1: count balls, 
calculate average, convert to 
the contents of the entire box 
(n = 20). 

6. Are you
confident about
your estimate from
a larger sample?

More confident than before, 
with the small window (n = 
17). 

More sure because the 
estimates are now less 
variable. 
More sure because you have 
more information. 

Still not confident (n = 3). Not sure yet because the 
results still vary. 

7. What did you
learn from a larger
sample?

A larger sample size gives a 
better estimate (n = 20). 

A larger sample gives more 
information about the 
content. 

With this larger window, all students used the first strategy of counting the 
number of yellow balls several times and converting the average to the entire 
content. This time students’ estimates showed less variation, as they ranged 
from 714 to 750. Most students (17 out of 20) wrote that they were more 
confident of their estimate based on this larger sample. Some students 
mentioned in this respect: “We are more confident because the estimates are 
now less variable” and others quoted: “More sure because you have more 
information.” Three students wrote that they were not confident because the 
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sample results still varied. However, these three did indicate in the next task that 
the best way to estimate the content was to use a larger sample. 

Although the students initially gave a numerical value as an estimate of 
the total number of balls, they later switched to an interval, which revealed 
indicators 1c and 1d. This transition became clearly visible during the 
discussion when the teacher explicitly asked: “What do you know for sure 
about the number of yellow balls in the black box?” 

Daphne: Well, that three-quarters of the balls are yellow, and one-quarter 
are orange. 

Teacher: Are you sure about the three-quarters? 

Daphne: Yes, a bit more or less, because…. Yes, there are more yellow 
balls than orange balls. 

Bas: I think the number of yellow balls is around, uhm, 700. It may be 
little less. In any case, it is between the 625 and 750. 

Jesse: Yes, it is in any case between 600 and 800. 

Here, Bas took the extreme values of the observed samples as limits for the 
possible number of yellow balls. Jesse took a broader interval. Both showed that 
they understood that sample results vary, but can be used to estimate the 
population. Jesse’s reply indicated that he understood that these extreme values 
were global estimators that might vary due to chance. 

Second Step: Frequency Distribution 
Regarding the second step, introducing the concept of frequency distribution, 
the hypothesis was confirmed. The results showed that indicators 2a to 2e were 
observed. Table 2.7 displays the observed indicators.  

The whole-class discussion focused on the question “What happens if this 
experiment is repeated?” Students mentioned that results that resembled the 
population proportion were most likely to appear and that strong deviations 
were unlikely but possible, which confirmed the expected students’ behavior as 
described in 2a and 2b. However, it seemed that some students overestimated 
the possibility of strongly deviating results, as they suspected that with a large 
number of repetitions there would certainly be outliers. At the same time, 
students seemed to become aware of the difference between possibility and 
chance, which followed from the next interview fragment. 
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Teacher: What sample result is unlikely? 

Iris: Eh, that all the balls are orange. 

Bas: That is possible, though there are more than 40 balls in the box. 

Iris: Yes, but little chance that this will happen.  

Table 2.7. Overview of Results for LT Step 2 

Indicators Student 
worksheet 
(N = 20) 
(observed 
number of 
students) 

Video 
(strong, 
weak, no 
evidence) 

2a. Students note that sample results 
corresponding to the population proportion 
will often occur; 

Non-applicable Strong 

2b. Students note that strongly deviating 
sample results are unlikely to appear; Non-applicable Strong 

2c. Students sketch a graph of the frequency 
distribution with a top at the population 
proportion (in this case 30); 

n = 20 Non-
applicable 

2d. Students sketch a graph of the frequency 
distribution in which the extreme values (in 
this case 0–10 and 35–40) hardly occur;  

n = 20 Non-
applicable 

2e. Students estimate the probability of ranges 
of particular sample results on the basis of 
their sketched frequency distribution1,2,3;  

 n = 12 Non-
applicable 

1Supplement: Students estimate the 
probability of ranges of particular sample 
results roughly 

n = 20 Non-
applicable 

2Supplement: Students estimates did not 
correspond to their frequency distribution 
sketched 

n = 7 Non-
applicable 

3Supplement: Students overestimated the 
probability of strongly deviating results n = 6 Non-

applicable 
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All students were able to understand the frequency distribution of data from 
repeated sampling, as they made a good sketch of a visualization (or a model) of 
their expectations in a distribution with a peak at 30 and falling to (almost) zero 
at the extremes, which corresponded to indicators 2c and 2d. In doing so, all 
students demonstrated that they were aware that samples vary, but that a sample 
result that resembled the population proportion (75%) would occur most 
frequently in more than 100,000 repetitions. The drawings could be divided into 
the four types shown in Figure 2.3. Eleven students correctly sketched the 
frequency distribution in the shape of a bar diagram with a peak at 30 and a 
negative skew (Type 1). Five students indicated that for so many repeated 
samples, the sample results would not increase/decrease monotonously, but 
local peaks might occur (Type 2). These five students also correctly sketched 
the global features of the frequency distribution, although local peaks are 
unlikely to occur in such a large number of repetitions. These students probably 
thought that coincidence played a role in this, and they did not (yet) realize that 
the distribution of samples will stabilize after so many repeated samples (known 
as the law of large numbers, which we do not expect students to understand 
here). Two students sketched an almost linear course (Type 3) and two students 
outlined a smooth curve (Type 4). However, the latter might be caused by the 
word sketch rather than draw in the task.  

Table 2.8. Students’ Estimate of the Probability of a Range of Particular 
Sample Result on Worksheet 2 (N = 20) 

Task Probability Examples of written work 
1. How do you
estimate the
probability of a
sample result
(number of
yellow balls) of
less than 10 at a
sample size of
40? (population
proportion 75%)

(Almost) 0% 
(n = 6) Very small, but it is possible though. 

1% (n = 6) 
A very small probability actually, 
almost 1%, because there are simply 
many more yellow than orange balls. 

5% (n = 3) 
 ... because there will always be a 
chance, only it gets less because the 
larger majority has that color. 

10% (n = 3) 75 out of 100 balls are yellow. 
Empty (n = 2) (due to time limitations) 

Students were able to estimate the probability of certain sample results roughly, 
but their estimates did not always correspond to their sketched frequency 
distribution and some students overestimated the probability of strongly 
deviating results, and, as a consequence, indicator 2e was only partially 
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observed. In several tasks, students were asked to estimate the probability of 
ranges of particular sample results. As an example, Table 2.8 shows the results 
of one task, in which students were asked to estimate the probability of a sample 
result of less than 10 in a sample of 40 from a population (size 1,000 and 
proportion 75%). 

Table 2.9. Illustrative Example of the Working Method on Worksheet 2 

Task Illustrative example from one student’s 
work 

Sketch the expected frequency 
distribution on the number of 
yellow balls in a sample of 40, if 
the first-step physical experiment 
were repeated 100,000 times.  
(population proportion 75%) 

 

How do you estimate the 
probability of a sample result 
(number of yellow balls) of less 
than 10 at a sample size of 40? 
(population proportion 75%) 

I estimate the probability at 10%, because 
most balls are yellow. 

Although it was expected that students would describe their estimate of the 
probability in words, students apparently felt the need to quantify it (probably 
because this activity was part of the mathematics lesson) and chose to use 
percentages. All students estimated the probability of a sample result under 10 
less than or equal to 10%, with only six out of twenty students estimating this 
probability close to zero. These answers demonstrated that students understood 
that the probability of a strongly deviating result was small. However, this 
probability was overestimated as six of them indicated that it would be 5% or 
higher. 

A remarkable result in determining the probability of ranges of particular 
sample results was that the frequency distribution sketched by the students did 
not always correspond to their answers (7 out of 20). Table 2.9 shows an 
example. Although this student wrote down a numerical value, suggesting that 
he made a calculation or at least made a specific estimate from his sketch, the 
value did not match his sketched frequency distribution. It seemed that the 
estimate was based on his intuitive idea of probability rather than being 
calculated or estimated using his frequency distribution. However, two other 
students explicitly mentioned that they did calculate the probability, “I estimate 
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the probability at 0.01% which is about 10 out of 100,000 times.” In this case, 
the calculation shown was the basis for the correct reasoning. 

Type 1: Correctly sketched frequency 
distribution in the form of a bar graph 
with a peak at 30 and a negative skew 
(n=11).  

Type 2: Correctly sketched global 
form of the frequency distribution in a 
bar graph with a peak at 30, but with 
(unlikely) local peaks (n=5).  

Type 3: Correctly sketched global 
form of the frequency distribution in a 
bar graph with a peak at 30, but with 
almost linear progression (n=2). 

Type 4: Correctly sketched global 
form of the frequency distribution 
with a peak at 30, but with an 
unrealistic smooth line (continuous 
distribution) (n=2). 

Figure 2.3. Four types of students’ sketches (N = 20) of the expected results of 
repeated sampling (100,000 repetitions) with sample size 40 in a frequency 
distribution 

Third Step: Simulated Sampling Distribution 
With regard to the third step, introducing the concept of simulated sampling 
distribution, the hypothesis was confirmed as the data analysis revealed 
indicators 3a to 3e. Table 2.10 displays the observed indicators.  

The students were able to simulate the sampling distributions at varying 
sample sizes and from varying number of repetitions and to use these 
distributions as a model for interpreting the variation and uncertainty involved. 
By comparing these distributions, they noted on their worksheet that a larger 
sample size led to less variation in the accompanying estimate of the population 
and hence to a better inference, and in addition they noted on their worksheet 
that a larger number of repetitions lead to less variation in the mean of the 
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samples and hence to a better estimate of the population, which confirmed 
indicators 3a to 3d.  

Figure 2.4. Example of filled-in table on Worksheet 3 

The students could simulate the sampling distributions from repeated sampling 
easily and independently. They determined the most common sample results for 
samples with different sizes and different number of repetitions by checking the 
boundaries of the 95% area with the computer tool. This tool also made it easy 
to determine the average sample result. Students were asked to examine the 
effect of sample size and number of repetitions on the sampling distributions. In 
order to investigate this, they could use the tables on their worksheet. Figure 2.4 
displays one filled-in table of a student. 

The students were free to decide which population proportion, sample 
size, and number of repetitions they wanted to examine and compare. Based on 
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the simulated sampling distributions, they filled in Columns 2 and 3 and 
subsequently converted these values to the accompanying estimates of the 
population (size 1,000) in Columns 4 and 5. 

By comparing sampling distributions with different sample sizes, students 
noted that there was less variation in the corresponding estimates of the 
population and concluded that a larger sample size led to a more accurate 
outcome. Table 2.11 gives an overview of students reasoning about the effect of 
sample size on the estimate of the population. In the same way, students 
compared simulated sample distributions for a varying number of repetitions 
and found that the average sample result for a large number of repetitions 
remained almost the same, and from this they concluded that more repeated 
samples provided a better estimate of the population. 

Table 2.10. Overview of Results for LT Step 3 

Indicators Student worksheet 
(N = 20) 
(observed number 
of students) 

Video 
(strong, 
weak, no 
evidence) 

3a. Students compare the simulated 
sampling distributions at varying sample 
sizes and note that repeated sampling with 
a larger sample size leads to less variation 
in the accompanying estimate of the 
population; 

n = 20 Strong 

3b. Students compare the simulated 
sampling distributions at varying sample 
sizes and note that repeated sampling with 
a larger sample size leads to a better 
estimate of the population; 

n = 20 Strong 

3c. Students compare the simulated 
sampling distributions from varying 
number of repetitions and note that from 
repeated sampling with a larger number of 
repetitions, the mean of these samples is 
less variable; 

n = 20 Strong 
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3d. Students compare the simulated 
sampling distributions from varying 
number of repetitions and note that 
repeated sampling with a larger number of 
repetitions, leads to a better estimate of the 
population; 

n = 20 Strong 

3e. Students describe how the simulated 
sampling distribution from repeated 
sampling can be used to determine most 
common sample results; 

Non-applicable Weak 

Table 2.11. Students’ Estimate of the Probability of a Certain Sample Result on 
Worksheet 2 (N = 20) 

Since most students used the boundaries of the 95% to compare the sampling 
distributions, the teacher asked several individual students what these 
boundaries meant and how one could use them. These video-taped interactions 
between teacher and student (TSI) showed that the students’ overall idea of the 
95% area was correct. For example, based on the screen with the 95% area of 
the sampling distribution one student explained:  

Task Examples from written work 
1. What do you notice
when you compare the
population estimates
from a small sample size
with those from a larger
one?

The estimates from a larger sample size are closer 
together.  

With a larger sample size, the average sample 
result, and the population estimate, are closer 
together. 

With a larger sample size, there is less variation in 
the population estimates. 

2. Based on the
simulated sample
distributions, draw a
conclusion on the effect
of sample size on the
estimate of the
population. Complete the
following sentence:
A larger sample size …

… leads to a more accurate conclusion. 

… gives a more precise picture of the number in the 
population. 

… reduces the spread of the estimates, which in turn 
makes your estimate of the population more precise. 
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The 95% area consist of two borders, a limit at 2.5% and a limit at 
97.5% of the sample results. This is so that you can clearly see 
what the most common sample results are. The sampling variation 
is sometimes very large because you carry out many samples. 
Through the 95% area you can see clearly what the samples 
usually have as a result. 

Not all students were surveyed, and the open nature of the question made it hard 
to confirm their understanding of the 95% area; as a consequence, we 
considered indicator 3e as partly observed, even though all students were able to 
describe how the sampling distribution could be used as a model to interpret 
variation and uncertainty and to determine most common sample results. 

Conclusion and Discussion 
In this research we looked for opportunities to make ISI accessible to 9th-grade 
students. Educational guidelines were extracted from literature and translated 
into hypotheses about a learning trajectory for students. We addressed the 
question of how the first part of a learning trajectory that focuses on repeated 
sampling with a black box introduces students to the concepts of sample, 
frequency distribution, and simulated sampling distribution. This article reports 
on the design, implementation and evaluation of the first three steps of a LT for 
ISI.  

The first step of the LT focused on the introduction of sampling. The 
hypothesis was that students would become aware of sampling variation with 
categorical data and investigate the effect of repeated sampling and sample size 
on estimating the population, by conducting the designed activity with the black 
box. The results show that the indicators associated with the hypothesis were 
observed. The LT enabled students, inexperienced with sampling, to reason 
with sample data in a short period of time, including the handling of variation 
and uncertainty. To estimate the population—the content of the black box—
students chose a repeated sampling approach to reduce errors caused by 
sampling variation. In this specific black-box context, students viewed their 
sample as “a subset of the population” and not as “a small-scale version of the 
population” which supports reasoning about variation (Saldanha & Thompson, 
2002). Students did not know how to interpret the variation in data, as they 
noted that they were not entirely confident about their estimates due to the 
variation in outcomes. This result is in line with studies by Tversky and 
Kahneman (1971) and Ben-Zvi et al. (2012). The use of whole-class discussions 
where students exchange and compare their results from repeated sampling 
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(Wild & Pfannkuch, 1999), along with the growing-samples principle (Bakker, 
2004; Ben-Zvi et al., 2012), in which students discuss and test their expectations 
about increasing sample sizes, was found transportable to our LT. Along the 
lines of this approach, students predicted what would happen in a following 
larger sample. While drawing larger samples and exchanging the results, the 
role of sample size on variation became visible for students. Students 
experienced and noted that a larger sample size (usually) leads to less variation 
in the estimate of the population proportion and hence to a better inference. The 
confrontation with diversity in sample data from the black box supported 
students’ inferential reasoning about the boundaries of variation. Estimates of 
the population proportions were supported by arguments on sampling variation, 
repeated sampling, and sample size. As such, this physical black-box 
experiment seemed a meaningful context to introduce students to the concept of 
sampling. 

The second step of the LT focused on the introduction of the concept of 
frequency distribution from repeated sampling. The hypothesis was that for 
students the frequency distribution was primarily a visualization of results 
obtained from repeated samples. Through considering how this distribution 
might look like with many repeated samples, students were stimulated to make 
the conceptual switch to using it as a model for interpreting variation and 
uncertainty. Along this way, it was expected that during this step, through 
discussing the question “What happens if this experiment is repeated” and by 
imagining and visualizing the frequency distribution of 1,000 repeated samples 
from the black box, students would understand that most sample results will be 
close to the population proportion and that strong deviations are unlikely. In 
addition, they were expected to understand that this frequency distribution can 
be used to estimate the probability of ranges of specific sample results (for 
example a result of less than ten). The results from step 2 show that most of the 
corresponding indicators were observed. The question of what happens if the 
experiment is repeated (Rossman, 2008) was found crucial in this LT. It 
promoted students’ inferential reasoning as they considered and discussed 
possible sample results. Moreover, this question led to discussion about the 
difference between probability and chance. By having students draw a sketch of 
their expectations for many repeated samples in a bar chart, the shape of 
frequency distribution became visible.  

This visualization offered a lead to more enhanced reasoning about 
variation and uncertainty. As all students were able to consider, sketch, and 
reason about variation and uncertainty with the frequency distribution on 
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repeated sampling, students were expected to be able to determine the 
probability of ranges of particular sample results by using their prior knowledge 
of ratios. However, as a remarkable result, not all students applied their prior 
knowledge of ratios to their sketched frequency distribution; some determined 
the probability on other (maybe more intuitive) ideas. Another finding in this 
respect is that some students overestimated the probability of strong deviations, 
which is not surprising at this stage, but can be a point for attention in 
subsequent lessons. From these results, visualizing the expected frequency 
distributions on many repeated samplings facilitated more enhanced reasoning 
about variation and uncertainty, where determining the probability of particular 
sample results is a point for attention.  

The third step focused on the introduction of the concept of sampling 
distribution. The hypothesis was that students would understand that this 
distribution can be used as a model for investigating variation and uncertainty. 
More particularly, that students understand that sampling with a larger number 
of repetitions leads to less variation in the mean and hence to a better population 
estimate, and that sampling with a larger sample size reduces the variation in the 
accompanying estimates of the population and hence leads to a more certain 
inference, by simulating and comparing sampling distributions with varying 
sample sizes and from varying number of repetitions. The results of step 3 show 
that the indicators that supported the hypothesis were observed. From students’ 
experience with the frequency distribution of many repeated samples in step 2, 
the transition to the simulation of the sampling distribution, also called 
resampling (Garfield et al., 2015; Manor & Ben-Zvi, 2015; Watson & Chance, 
2012), was easily made. The students were already familiar with the shape of 
this distribution. The students were able to determine the most likely sample 
results by using the digital tool. Here they used the boundaries of the 95% area, 
which were available in the tool. The students simply adopted these boundaries. 
Although most students were able to give a correct description of these 
boundaries, the results do not confirm whether all students understood these 
boundaries and their application. The comparison of distributions from repeated 
sampling gave them insight into the effect of repeated sampling and sample size 
on the estimate of the population. As such, the results show that students were 
able to use the idea of a simulated sampling distribution as a model for further 
investigating variation and uncertainty. 

This study gave an insight into how a LT that focuses on the concept of 
sample, frequency distribution, and sampling distribution can enhance 9th-grade 
students’ informal inferential reasoning. The results show how students used 
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these concepts to underpin their inferences, especially with regard to variation 
and uncertainty. In addition, the results show what barriers students encountered 
during their work on the HLT.  

From the viewpoint of the researcher as an experienced teacher, the main 
element in this LT that allowed students to go through the three steps smoothly 
seemed to be the accessibility of the three successive steps. From their concrete 
experiences with sampling variation in step 1, through imagining and 
visualizing the scaling up of this experiment in step 2, the students could easily 
make the transition to reasoning with the sampling distribution in step 3. From 
their point of view, the computer took over their manual work. This approach 
provided them insight into how the sampling distribution arises and how it can 
be used as a model for investigating possible sample results to interpret 
variation and uncertainty. Known difficulties concerning the three main 
concepts of sample, frequency distribution, and sampling distribution, hardly 
occurred and apparently were avoided. As a consequence, this approach seems 
to help students engage with these concepts, which supports them in using new 
insights in new situations, making ISI accessible. 

In our study, the idea of model of to model for was primarily used as a 
design heuristic to promote emergent modeling (Gravemeijer, 1999). In 
retrospect, we have become intrigued by what happens cognitively when 
students make the transition from seeing a graph as a representation (model) of 
a frequency distribution to seeing a dataset as a distribution with particular 
characteristics that help to make inferences (model for). It seems promising to 
analyze such transitions through the theoretical lens of objectification 
(reification, reflective abstraction, or hypostatic abstraction). Where it concerns 
the learning of function (Sfard, 1991), it is known that students initially see 
functions as processes, and typically not as objects with characteristics. The 
desired dual understanding of functions or other mathematical objects as both 
process- and object-like has been referred to as “procept” (Gray & Tall, 1994). 
In our case, we speculate that the sampling process in which students see 
(sampling) distributions emerge may be such a process view, which forms a 
basis for seeing a distribution as an object (cf. Bakker, 2007b). From such a 
perspective, the question arises whether objectification is indeed the mechanism 
that enables the cognitive transition between the learning steps, and thus 
conceptualization.  

Objectification involves constructing an object in a representational 
system, for example the visualization of a sample, experimenting with this 
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object and then observing the results of experimenting, as a reflection phase. 
New objects can be created in the reflection phase, when part of an object is 
seen as an entity in itself (Bakker, 2007a). The central point of this reflection 
phase is that the new objects formed by this process can be used as a means for 
further objectification, for new, higher-level processes, and for further steps in 
improving additional knowledge, and thus conceptualized as an independent 
entity. According to Sfard and Lavie (2005), the development of objectification 
begins with participation in offered routines with the object, whereby these 
routines gradually transform into real explorations with the object as an 
independent entity. They emphasize that this learning process is a one-way 
street, which is difficult to reverse, making it hard for adults to recognize. With 
regard to the transfer from LT step 1 to step 2, objectification may involve the 
transfer of sampling as the process of creating elements of a dataset, to a sample 
as an element or new object in the frequency distribution from repeated samples 
in step 2. In this way, objectification can be viewed as the mechanism 
underlying the ideas of repeated and growing samples. With regard to the 
transfer from LT step 2 to 3, objectification may facilitate the transfer of the 
frequency distribution as a model of results generated from repeated sampling 
into a model for further investigating variation and uncertainty. Given the 
importance of such mechanism of objectification we recommend follow-up 
research in this area. 

Our advice for redesign of the HLT focuses on two main points. The first 
point includes the integration of students’ prior knowledge about proportions to 
determine the probability of ranges of particular sample results with the 
frequency distribution. This could be achieved by calculating proportions by 
using (and discussing possible) units on the vertical axis of the (expected) 
frequency distribution and by applying and discussing this distribution in 
multiple and more different situations. The second point for redesign is to pay 
more attention to reasoning with the simulated sampling distribution in various 
situations and not automatically use the 95% area. Discussion on students’ 
analyses and not only on the results, will support students’ development of 
strong mathematical arguments (McClain, McGatha, & Hodge, 2000). 

Considerations for using the LT in other settings are the following. The 
LT was implemented in the classroom of the teacher-researcher, who was very 
familiar with the class and the designed materials. We are aware that this 
favorable condition should be taken into account when readers want to use the 
ideas presented here in other contexts. Researchers who would like to repeat 
such activities should also consider that most Dutch students are not used to 
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whole-class discussions during the mathematics lessons. In our research, it was 
important to encourage them to reason and discuss with each other from the 
beginning of the trajectory. Teachers and researchers should also take into 
account that Dutch students are used to closed assignments from their textbook 
and are unfamiliar with working with more open and inquiry-based tasks. 
Another point of consideration is that we worked with pre-university students, 
the top 20% of our education system. In other situations, students may need 
more time. As the results in this research are based on a small-scale pilot in the 
class of the teacher-researcher, these results are not generalizable to a regular 
classroom without further research. 

This research that focused on repeated sampling with the black box as a 
first part of a LT seems a promising proof of principle how to make ISI—e.g., 
reasoning about variation and uncertainty—accessible for students along the 
lines of sample, frequency distribution, and simulated sampling distribution. 
The results of this study will be used to revise the first part of the LT, and as a 
next step, in a follow-up study, to (re)design the whole LT, and to improve 
effectiveness, efficiency, scale up and compare our HLT with alternatives. 
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Abstract 
Digital technology is indispensable for doing and learning statistics. When 
technology is used in mathematics education, the learning of concepts and the 
development of techniques for using a digital tool are known to intertwine. So 
far, this intertwinement of techniques and conceptual understanding, known as 
instrumental genesis, has received little attention in research on technology-
supported statistics education. This study focuses on instrumental genesis for 
statistical modeling, investigating students’ modeling processes in a digital 
environment called TinkerPlots. In particular, we analyzed how emerging 
techniques and conceptual understanding intertwined in the instrumentation 
schemes that 28 students (aged 14–15) develop. We identified six common 
instrumentation schemes and observed a two-directional intertwining of 
emerging techniques and conceptual understanding. Techniques for using 
TinkerPlots helped students to reveal context-independent patterns that fostered 
a conceptual shift from a model of to a model for. Vice versa, students’ 
conceptual understanding led to the exploration of more sophisticated digital 
techniques. We recommend researchers, educators, designers, and teachers 
involved in statistics education using digital technology to attentively consider 
this two-directional intertwined relationship. 

Keywords 
statistical modeling, instrumental genesis, statistical reasoning, TinkerPlots, 
simulated sampling distribution 
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Introduction 
The increasing use of digital technology in our society requires an educational 
move towards learning from and with digital tools. This is particularly urgent 
for statistics education where digital technology is indispensable for interpreting 
statistical information, such as real sample data (Gal, 2002; Thijs, Fisser, & Van 
der Hoeven, 2014). For such interpretations, understanding underlying 
statistical models is fundamental (Manor & Ben-Zvi, 2017). Current 
technological developments offer digital tools—for example TinkerPlots, 
Fathom, and Codap—that provide opportunities to deepen understanding of 
statistical modeling and models. These digital tools enable students to build 
statistical models and to use these models to simulate sampling data, and 
therefore offer means for statistical reasoning with data (Biehler, Frischemeier, 
& Podworny, 2017). As such, modeling with digital tools is promising for 
today’s and tomorrow’s statistics education. 

Although statistics education is developing as a domain distinct from 
mathematics, the use of digital tools is a shared problem space and collaboration 
within shared spaces can strengthen each domain (Groth, 2015). From other 
domains in school mathematics, for example algebra, it is well known that as 
soon as digital tools are used during the learning process, the development of 
conceptual understanding becomes intertwined with the emergence of 
techniques to use the digital tool (Artigue, 2002; Drijvers, Godino, Font, & 
Trouche, 2013). For teachers, researchers, educators, and designers, insight into 
this intertwined relationship of learning techniques and concepts is a 
prerequisite for deploying digital tools in such a way that they are productive 
for the intended conceptual understanding. In the meantime, due to a lack of 
insight into this intertwining, undesired influence of techniques for using the 
digital tool on the intended conceptual development can be overlooked. This 
complex relationship, however, has so far received little attention in research on 
technology-supported statistical modeling processes.  

A useful perspective to grasp the relationship between the learning of 
digital techniques and conceptual understanding is instrumental genesis 
(Artigue, 2002). In this theoretical view, learning is seen as the simultaneous 
development of techniques for using artifacts, such as digital tools, and of 
domain-specific conceptual understanding, for example statistical models and 
modeling. The perspective of instrumental genesis seems promising to gain 
knowledge about learning from and with digital technology. As such, the aim of 
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this study is to explore the applicability of the instrumental genesis perspective 
to statistics education, and to statistical modeling processes in particular.  

Theoretical Framework 
In this section we elaborate on two main elements of this study: statistical 
modeling and instrumental genesis. 

Statistical Modeling: Techniques and Concepts 
Digital tools for statistical modeling have the potential to deepen students’ 
conceptual understanding of statistics and probability, and enable them to 
explore data by deploying techniques for using the tool. They also offer 
possibilities to visualize concepts that previously could not be seen, such as 
random behavior (Pfannkuch, Ben-Zvi, & Budgett, 2018). Such educational 
digital tools, for example TinkerPlots, provide opportunities for statistical 
reasoning with data, as students build statistical models and use these models to 
simulate sample data (Biehler et al., 2017).  

Modeling processes with a digital tool such as TinkerPlots require the 
development of digital techniques. Digital TinkerPlots techniques for setting up 
statistical models and simulating data are helpful to introduce key statistical 
ideas of distribution and probability (Konold, Harradine, & Kazak, 2007). The 
research by Garfield, delMas, and Zieffler (2012) suggests that students can 
learn to think and reason from a probabilistic perspective—or, as the authors 
call it, “really cook” instead of following recipes—by using TinkerPlots 
techniques to build a model of a real-life situation and to use this model for 
simulating repeated samples. This way to understand the probability involved in 
inferences is also reflected in our previous study (Van Dijke-Droogers, Drijvers, 
& Bakker, 2020) in which an approach based on repeated sampling from a black 
box filled with marbles seemed to support students in developing statistical 
concepts. In this approach, students developed TinkerPlots techniques to 
investigate what sample results would likely occur by chance. Statistical 
modeling in the study presented here requires TinkerPlots techniques for 
building a model by choosing a graphical representation (e.g., a bar or pie 
chart), entering population characteristics (e.g., population size, attributes, and 
proportions) and entering the sample size, of a real-life situation from a given 
context to solve a problem. Next steps include TinkerPlots techniques for 
simulating repeated samples by running the model and visualizing the results in 
a sampling distribution, for enabling to reason about probability—taking into 
account number of repetitions and sample size—and to answer the problem 
using simulated data.  
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Statistical modeling processes with TinkerPlots also require, in addition 
to the development of TinkerPlots techniques, an understanding of the concepts 
involved. The literature elaborates several viewpoints on statistical modeling. 
We discuss three viewpoints and indicate how we incorporated them in our 
study. First, Büscher and Schnell (2017) argue that the notion of emergent 
modeling (Gravemeijer, 1999)—the conceptual shift from a model of a context-
specific situation to a model for—can also be applied to statistical reasoning in 
a variety of similar and new contexts. Second, statistical modeling involves the 
interrelationship between the real world and the model world. This relationship 
is elaborated in Patel and Pfannkuch’s framework (2018) that displays students’ 
cognitive activities about understanding the problem (real world), seeing and 
applying structure (real world–model world), modeling (model world–real 
world), analyzing simulated data (model world), communicating findings 
(model world–real world). Third, for reasoning with models and modeling, 
Manor and Ben-Zvi (2017) identify the following dimensions: reasoning with 
phenomenon simplification, with sample representativeness, and with sampling 
distribution. Statistical modeling includes the process of abstracting the real 
world into a model and then using this model for understanding the real world. 
In short, Büscher and Schnell (2017) emphasize the importance of developing 
context-independent models for statistical modeling processes, Patel and 
Pfannkuch (2018) outline the interaction between the real and the model world, 
and Manor and Ben-Zvi (2017) address the different dimensions when 
reasoning with models. These viewpoints provide insight into the development 
of concepts for statistical modeling. In the study presented here, we embodied 
the viewpoints in the design of students’ worksheets. On these worksheets, 
students are requested to build and run a model of a real world situation in 
TinkerPlots and to use this model, by simulating and interpreting the sampling 
distribution of repeated samples, to understand the real world situation.  

Understanding and reasoning with the simulated sampling distribution 
from repeated samples is, as mentioned by Manor and Ben-Zvi (2017), essential 
for statistical modeling. However, the concept of sampling distribution is 
difficult for students. The study by Garfield, delMas, and Chance (1999) 
focused on the design of a framework to describe stages of development in 
students’ statistical reasoning about sampling distributions. Their initial 
conception of the framework identified five levels that evolve from (1) 
idiosyncratic reasoning—knowing words and symbols related to sampling 
distributions, but using them without fully understanding and often incorrectly– 
through (2) verbal reasoning, (3) transitional reasoning and (4) procedural 
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reasoning, towards (5) integrated process reasoning—complete understanding 
of the process of sampling and sampling distributions, in which rules and 
stochastic behavior are coordinated. In our study, these levels will be used to 
indicate students’ conceptual understanding of statistical modeling. Students’ 
difficulties in reasoning with the sampling distribution are often related to 
misconceptions about basic statistical concepts such as variability, distribution, 
sample and sampling, the effect of sample size and confusion of results from 
one sample with the sampling distribution. According to Chance, delMas, and 
Garfield (2004), ways to improve students’ level of understanding statistical 
modeling include techniques for exploring samples, comparing how sample 
behavior mimics population behavior, and for both structured and unstructured 
explorations with the digital tool. As such, conceptual understanding of 
statistical modeling involves the building, application and interpretation of 
context-independent statistical models—in our study the sampling distribution 
of repeated sampling—to answer real-life problems.  

Instrumental Genesis 
Using digital tools in a productive way for a specific learning goal requires 
insight into the intertwined relationship between emerging digital techniques 
and conceptual understanding. A useful perspective to grasp the intertwining of 
learning techniques and concepts is instrumental genesis. A fundamental claim 
in this theory is that learning can be seen as the intertwined development, driven 
by the student activity in a task situation, of techniques for using artefacts—for 
example a digital tool—and cognitive schemes that have pragmatic and 
epistemic value (Artigue, 2002; Drijvers et al., 2013). In this perspective, the 
conception of “instrument” and instrumental genesis are used in the sense 
described by Artigue (2002): 

The instrument is differentiated from the object, material or 
symbolic, on which it is based and for which is used the term 
“artefact”. Thus an instrument is a mixed entity, part artefact, part 
cognitive schemes which make it an instrument. For a given 
individual, the artefact at the outset does not have an instrumental 
value. It becomes an instrument through a process, called 
instrumental genesis, involving the construction of personal 
schemes or, more generally, the appropriation of social pre-existing 
schemes. (p. 250) 

According to Vergnaud (1996), a scheme is an invariant organization of 
behavior for a given class of situations. Such a scheme includes patterns of 
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action for using the tool and conceptual elements that emerge from the activity. 
In the study presented here, the tasks on students’ worksheet intend to construct 
personal instrumentation schemes consisting of TinkerPlots techniques and 
conceptual understanding of statistical modeling. The identification of schemes 
can structure and deepen the observation of students’ emerging technical actions 
and statistical reasoning, and hence provides insight into the intertwined 
development of techniques and concepts.  

As the application of instrumental genesis within the field of statistics 
education hardly exists, we present an example from a study within the context 
of algebra. Table 3.1 shows an instrumentation scheme concerning the use of a 
symbolic calculator for solving parametric equations, from a study by Drijvers 
et al. (2013). The intertwined relationship can be seen, for example, in scheme 
D. Here, students were asked to solve the parametric equation with respect to x.
On the one hand, in order to use the correct techniques, students must be able to
identify the unknown in the parameterized problem situation to enter the correct
command “solve with respect to x” into their computer algebra calculator. On
the other hand, the available options of the tool invite students to distinguish
between the parameter and the unknown. In the study by Drijvers et al., the
identification of students’ instrumentation schemes provided insight into how
the learning of techniques for using a computer algebra system and the
conceptual understanding of solving parametric equations emerged in tandem.
Furthermore, the identified schemes helped the researchers to reveal several
conceptual difficulties students encountered while solving parametric equations
with the digital tool.

As a second example, we present the findings from one of the scarce 
studies on instrumental genesis within the field of statistics education, 
conducted by Podworny and Biehler (2014). In their study, within a course on 
hypothesis testing and randomization tests with p values, university students 
used simulations with TinkerPlots. Students noted their own schemes to plan 
and structure their actions. These schemes drawn up by students proved useful 
as a personal work plan; however, it was difficult to identify common 
instrumentation schemes and to unravel how TinkerPlots techniques and 
conceptual understanding emerged together. Our study differs from theirs, as we 
identified our students’ schemes by observing their actions and reasoning.  

In general, instrumental genesis is considered an idiosyncratic process, 
unique for individual students. Yet, it takes place in the social context of a 
classroom, and as researchers we are interested in possible patterns. As such, 
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identifying instrumentation schemes concerns the complexity of unraveling 
patterns in the diversity of individual schemes that students develop. The study 
presented here seeks to identify common instrumentation schemes by observing 
students’ actions and reasoning when statistically modeling in TinkerPlots, and 
then to use these schemes to zoom in on the genesis of the schemes to reveal 
how emerging TinkerPlots techniques and the conceptual understanding of 
statistical modeling intertwine. 

Table 3.1. Example of an Instrumentation Scheme for Solving Parametric 
Equations with a Computer Algebra System (Drijvers et al., 2013) 

Digital techniques Conceptual understanding 

A. Use the Solve-option of the
Graphing Calculator and
enter the given function

Knowing that the Solve command can be 
used to express one of the variables in a 
parameterized equation in other variables 

B. Enter the ‘=0’ sign Knowing the difference between an 
expression and an equation 

C. Enter the unknown to solve
(𝑥𝑥)

Realizing that an equation is solved with 
respect to an unknown  

D. Solve the equation with
respect to 𝑥𝑥

Being able to identify the unknown in 
the parameterized problem situation 

E. Give the solution for the
parametrized equation

Being able to interpret the result, 
particularly when it is an expression, and 
to relate it to graphical representations 
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Research Aim and Question 
To explore the applicability of the instrumental genesis perspective to statistics 
education, and to statistical modeling in particular, we conducted an explorative 
case study. This study focuses on 14-to-15-year-old students’ intertwined 
development of learning techniques for using TinkerPlots and conceptual 
understanding of statistical modeling. We address the following question:  

Which instrumentation schemes do 9th-grade students develop 
through statistical modeling processes with TinkerPlots and how 
do emerging techniques and conceptual understanding intertwine 
in these schemes?  

Methods 
This study is part of a larger design study on statistical inference. Our previous 
study focused on the design of a learning trajectory in which students were 
introduced to the key concepts of sample, frequency distribution, and sampling 
distribution, with the use of digital tools (Van Dijke-Droogers et al., 2020). As a 
follow up, this study focuses on the specific role of digital techniques on 
conceptual understanding by examining how 28 9th-grade students work on 
TinkerPlots worksheets, which were designed to engage in statistical modeling.  

Design of Student Worksheets 
A suitable stage to investigate students’ instrumental genesis—their 
development of schemes that include TinkerPlots techniques and conceptual 
understanding of statistical modeling—is after the introduction of the tool and 
the concepts, when they engage in the emergent modeling process of applying 
gained knowledge in new real-life situations. Prior to working with the 
TinkerPlots worksheets, students had a brief introduction to the tool and 
concepts. These preparatory activities were designed within the specific context 
of a black box with marbles and involved three 60-min lessons. Two of these 
lessons concentrated on physical black box experiments and one on simulations. 
Both the physical and simulation-based preparatory activities introduced 
students to statistical modeling by addressing concepts such as sample, 
sampling variation, repeated sampling, sample size, frequency distribution of 
repeated sampling and (simulated) sampling distribution (Chance et al., 2004). 
The introduction of TinkerPlots techniques was done in the third 60-min lesson 
through a classroom demonstration of the tool by the teacher, followed by 
students practicing themselves using an instruction sheet. On this instruction 
sheet, the TinkerPlots techniques for making a model, simulating repeated 
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samples and visualizing the sampling distribution were listed. The brief 
introduction on techniques and concepts focused on the black box context only.  

For the study reported here, we designed five worksheets. In one 60-min 
lesson per worksheet, we invited students to apply and expand their emerging 
knowledge from the preparatory black box activities in new real-life contexts. 
The design of the worksheets was inspired by studies from Patel and Pfannkuch 
(2018), Manor and Ben-Zvi (2017), and Chance et al. (2004). In each 
worksheet, the students were asked to build and run a model of a real world 
situation in TinkerPlots and to use this model, by simulating and interpreting the 
sampling distribution of repeated samples, to understand the real world 
situation. The structure of these worksheets is shown in Table 3.2. In each 
Worksheet (W1 to W5) a new context was introduced. We chose contexts with 
categorical data to minimize the common confusion between the distribution of 
one sample and sampling distribution (Chance et al., 2004) and to optimize the 
similarity with the black box context in the preparatory activities. When 
carrying out the tasks on W1 to W5, students could use the TinkerPlots 
instruction sheet from the preparatory activities. The aim of the worksheets was 
to expand students’ understanding of statistical modeling—that is, the building, 
application and interpretation, of context-independent statistical models; in our 
study, the sampling distribution of repeated sampling—by using TinkerPlots as 
an instrument. 

Participants 
We worked with two groups, each consisting of fourteen 9th-grade students. 
Group 1 consisted of students in school year 2018–2019 and Group 2 of 
students in school year 2019–2020. All students were in the pre-university 
stream, and thus belonged to the 15% best performing students in our 
educational system. The students were inexperienced in sampling and had no 
prior experience in working with digital tools during mathematics classes.  

The students in Group 1 went through the preparatory activities described 
earlier during the regular math lessons in school. Their teacher had been 
involved in the research project and had already carried out these lessons 
several times. All twenty students from the class were invited to participate in 
the session at Utrecht University’ Teaching and Learning Lab (a laboratory 
classroom) and fourteen of them applied. During the lab session, these students 
worked on Worksheets 1–3 (W1 to W3), the initial phase of the teaching 
sequence. For practical reasons—such as missing regular classes and travel 
time—multiple research sessions with the same students were not possible.  
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Table 3.2. Structure of Designed Worksheets 1–5  

Worksheet component Student activity 

a. Explore and identify
important factors from
a given real-life
problem to build a
population model in
TinkerPlots

Try to understand the situation and the data 
collection by defining the problem, making 
predictions and considering variation. Apply 
structure by identifying all known real world 
factors, considering model tools in TinkerPlots to 
represent real world factors and evaluating 
whether all relevant factors are included in the 
model. 

b. Build and run the
model by simulating
sample results and
examine the behavior
of the model

Use TinkerPlots to examine the behavior of the 
model by visualizing single sample results and 
repeated sample results in respectively sample and 
sampling distributions by, checking variation in 
simulated data distributions at varying sample 
sizes and varying number of repeated samples, 
comparing these data with the contextual 
knowledge, evaluating model fit by checking how 
simulated data mimic the model. 

c. Examine and interpret
the simulated results
by using the sampling
distribution

Interpret the results of simulated data by 
identifying and using TinkerPlots tools to answer 
specific tasks and, in addition, by considering (the 
probability of a specific) range of outcomes, 
sampling variability, effect of sample size and 
number of repeated samples. 

d. Answer the problem
using the simulated
data

Communicate findings by stating background to 
the problem, making model informed decisions, 
recognizing effects of underlying randomness and 
stating limitations of the decisions. 

Therefore, one school year later, we performed lab sessions again, but with a 
different group of students, here called Group 2. These students from the same 
school and with the same teacher as Group 1, went through the same 
preparatory lessons and W1 to W3 during their regular math lessons at their 
school. Again, fourteen students applied to participate in the research sessions at 
the university. These students in Group 2 were similar to those in Group 1: 
They performed at a similar level in mathematics, as their overall grades for the 
school year averaged 6.6 on a scale of 10, which was comparable to 6.9 in 
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Group 1. In addition, students’ performance in the preparatory tasks averaged 8 
on a scale of 10 in both groups. The teacher judged the starting level of the two 
groups to be similar. During the research sessions, the students of Group 2 
worked on W4–W5, the more advanced phase of the teaching sequence. An 
overview of participants can be found in Table 3.3. 

Table 3.3. Overview of Participants and Data Collection 

Participants Data collection 

Group School 
year 

Average 
math 
grade 

Average grade 
preparatory 

tasks 

Data from 
students’ work 

Total time 
duration 

recordings 

1 (n=14) 2018 –
2019 6.9 8 W1–W3 

Initial phase 28 hrs 

2 (n=14) 2019 –
2020 6.6 8 

W4–W5 
More advanced 

phase 
17 hrs 

Data Collection 
The data consisted of video and audio recordings from two classroom 
laboratory sessions. During the first 5-hour session in Utrecht University’ 
Teaching and Learning Lab, the fourteen students of Group 1 worked in teams 
of two or three on the designed W1–W3. The advantage of this lab setting over 
a classroom environment was that detailed video recordings could be made of 
students’ actions in TinkerPlots and their accompanying conversations. The 
students were specifically asked to express their thoughts while solving the 
problem, the think-aloud method (Van Someren, Barnard, & Sandberg, 1994). 
The teams worked on a laptop, the screen of which was displayed on an 
interactive whiteboard. Figure 3.1 shows the setup in the lab. During the second 
lab session, we collected video and audio recordings from fourteen students of 
Group 2, while working on W4–W5.  

Data Analysis 
The data analysis consisted of three phases: (1) identifying common 
instrumentation schemes, (2) examining the global scheme genesis process 
during the work, and (3) examining the scheme genesis process in depth (Table 
3.4). 
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Figure 3.1. Students working with TinkerPlots in Utrecht University’s 
Teaching and Learning Lab  

Table 3.4. Overview of Data Analysis 

Phase and objective Outline Data-driven / 
theory-driven 

Phase 1:  
Qualitative Data 
Analysis  
Identification of 
students’ 
instrumentation 
schemes 

Step 0 (Prior to data collection): 
Preformulating instrumentation 
schemes based on theories on 
statistical modeling 

Theory-driven 

Step 1: Observing each student at a 
certain local segment of the teaching 
sequence 

Data-driven 

Step 2: Categorizing data from step 
1, by using preformulated 
instrumentation schemes 

Data- and 
theory- driven 

Step 3: Identifying global patterns of 
instrumentation schemes for more 
students, by using the categorized 
data of step 2 

Data- and 
theory- driven 

Phase 2: Interpretive 
Content Analysis  
Examination of 
students’ scheme 

Defining technical levels for 
TinkerPlots techniques and 
conceptual levels for understanding 
statistical modeling 

Theory-driven 
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development by 
identifying their 
TinkerPlots techniques 
and levels of 
understanding 
statistical modeling 
during the work 

Refining and specifying technical 
and conceptual levels in each 
instrumentation scheme 

Data- and 
theory-driven 

Assigning levels to student actions 
when working on W1 and W5 

Data- and 
theory-driven 

Phase 3:  
Case study 
More detailed 
examination of 
students’ scheme 
development 

Further examining how TinkerPlots 
techniques and understanding 
statistical modeling intertwine in the 
schemes students develop, that is, 
how techniques may support 
conceptual understanding and the 
other way around, by zooming in on 
developing personal schemes of 
students 

Data-driven 

In phase 1 of the analysis, we used a combined approach of theory-driven (prior 
to data collection) and bottom-up (based on the data) to identify emerging 
instrumentation schemes. The final results can be found in Table 3.7. To 
identify the schemes, we conducted qualitative data analysis as defined by 
Simon (2019): A process of working with data, so that more can be gleaned 
from the data than would be available from merely reading, viewing, or 
listening carefully to the data multiple times (p. 112). In step 0, prior to the data 
collection, we defined preformulated schemes. These schemes were based on 
the theories on statistical modeling (Büscher & Schnell, 2017; Chance et al., 
2004; Gravemeijer, 1999; Manor & Ben-Zvi, 2017; Patel & Pfannkuch, 2018), 
and instrumental genesis (Artigue, 2002), and on expertise developed in 
previous interventions (Van Dijke-Droogers et al., 2020). In these 
preformulated schemes, specific TinkerPlots techniques were related to 
students’ understanding of statistical modeling. In step 1, we observed each 
student at a certain local segment of the teaching sequence, for example 
building a model of the population (W1 Task 5), and analyzed the techniques 
and concepts that were manifested in students’ actions and reasoning at that 
local segment. In step 2, we categorized the data from step 1 by using the 
preformulated schemes. To do this categorization, at the same time as 
preformulated schemes were assigned, we expanded, refined and adjusted them 
to include the observed data. In step 3, we used the categorized data of step 2 to 
identify patterns for more students. By systematically and iteratively going 
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through the categorized data, both within one student over several schemes and 
across students, we identified global patterns in emerging instrumentation 
schemes. These global patterns occurred to a certain extent in every student and 
across students while working on each worksheet. By adapting the 
preformulated schemes to the global patterns, we identified students’ 
instrumentation schemes.  

Table 3.5. Technical Levels for Using TinkerPlots 

Level Description 
1. Non-user

2. Limited user

3. Developing user

4. Experienced user

5. Expert / Discerning
user

Students are not able to carry out the TinkerPlots 
techniques. 

Students carry out the TinkerPlots techniques by 
following the instructions stepwise; the techniques 
are still carried out hesitantly; haphazard trial and 
error or simply trying something. 

Students carry out correct TinkerPlots techniques 
by following the instructions most of the time; 
incorrect techniques are used but later corrected. 

Students carry out correct TinkerPlots techniques 
fluently—that is, fast and without mistakes—
sometimes augmented by newly explored 
TinkerPlots techniques.  

Students make well considered decisions for 
correct TinkerPlots techniques.  

Concerning phase 2 of the analysis, the data for examining students’ 
instrumental genesis, that is, their scheme development during the work, we 
used interpretive content analysis (Ahuvia, 2001). This variant of content 
analysis allowed us to identify both explicitly observed and latent content of 
students’ technical actions and reasoning. To identify possible progress in 
students’ TinkerPlots techniques, we defined five technical levels of 
proficiency. These levels were based on Davies’ (2011) levels of technology 
literacy and refined by both our experiences from previous research and the 
collected video data. Davies defined six levels of users (non-user, potential user, 
tentative user, capable user, expert user and discerning user) each of which 
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corresponds to ascending levels of use: none, limited, developing, experienced, 
powerful, and selective. For our study (Table 3.5) we merged the last two levels 
of technology literacy, as our students were unable to reach the highest level in 
the short period of time working on W1 to W5. Based on the observed data, we 
specified the five technical levels for using TinkerPlots, for each 
instrumentation scheme. The specified technical levels were used to analyze 
students’ scheme development during the work on W1 and W5, respectively. To 
identify possible progress in students’ understanding of statistical modeling, we 
defined five conceptual levels. The conceptual levels are displayed in Table 3.6. 
The conceptual levels were merely based on the previously described levels by 
Garfield et al. (1999). These conceptual levels for understanding statistical 
modeling were further specified for each instrumentation scheme on the basis of 
the observed video data and prior experiences.  

Table 3.6. Conceptual Levels of Understanding Statistical Modeling 

Level Description 
1. Incorrect

reasoning
Wrong statements and/or incorrect using words and 
symbols related to the specific item of conceptual 
understanding. 

2. Idiosyncratic
reasoning

Knowing words and symbols related to the specific item of 
conceptual understanding but using them without fully 
comprehending and often incorrectly.  

3. Verbal
reasoning

Verbal understanding of the item but unable to apply it to 
the actual behavior. For example, the student can 
reproduce that results from a larger number of repeated 
samples lead to a better estimate of the population but does 
not understand how key concepts such as variability and 
range are integrated. 

4. Transitional
reasoning

Correctly identifying one or two features of the item 
without fully integrating these features. For example, 
identifying and relating just one or two of the features (1–
3) in understanding that results from more repeated
samples lead to a better estimate of the population: more
repeated samples lead to (1) a smoother sampling
distribution, without local peaks, with (2) a peak at the
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population proportion and (3) to an average that resembles 
the population. 

5. Integrated
process
reasoning

Understanding of the process of sampling and sampling 
distributions.  For example, understanding the effect of 
simulating a larger number of repeated samples to the 
shape, peak and average of the sampling distribution and 
that, as a consequence, more repeated samples lead to a 
better estimate of the population.  

The specification of both the technical and conceptual levels for coding the data 
was discussed in-depth with experts in this domain. Although the students 
worked in teams of two or three, we analyzed their proficiency levels 
individually. We did so as we noticed considerable differences in individual 
proficiency within one team and also because there was cooperation and 
consultation between teams. To check the reliability of the first coder’s analysis, 
a second coder analyzed the video data of students’ activities with W1 and W5, 
for both the coding of technical and conceptual levels. A random sample of 5% 
of the data (30 out of 600 fragments) was independently rated by the second 
coder. The second coder agreed on 85% of the codes. Deviating codes, which 
were limited to two levels difference at most, were discussed until agreement 
was reached.  

In phase 3, to further examine the intertwined relationship between 
developing TinkerPlots techniques and understanding statistical modeling, that 
is, how techniques may support conceptual understanding and vice versa, we 
used case studies to investigate students’ instrumental genesis. In these case 
studies, we zoomed in on developing personal schemes of students in both the 
initial and more advanced phase. 

Results 
In this section, we first present the six instrumentation schemes we identified, 
each including TinkerPlots techniques and conceptual understanding of 
statistical modeling (Table 3.7). Second, we describe students’ global scheme 
development during the work, by presenting the levels at which the students 
used the techniques and concepts while working on Worksheets 1 and 5. Third, 
we describe two students’ cases to reveal in more detail the intertwinement of 
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emerging techniques and conceptual understanding in the personal 
instrumentation schemes that students developed. 

Identified Instrumentation Schemes  
In observing students’ work, we identified six instrumentation schemes, called 
(A) Building a model, (B) Running a model, (C) Visualizing repeated samples,
(D) Exploring repeated samples, (E) Exploring sample size, (F) Interpreting
sampling distribution (see Table 3.7). Column 1 provides a description of each
scheme, column 2 displays a screenshot of students’ TinkerPlots techniques for
the scheme at stake, and column 3 shows students’ understanding of statistical
modeling that we could distil from their reasoning during these actions. Each
instrumentation scheme incorporates a specific modeling process, ranging from
building a population model by exploring and identifying important information
in a given real-life problem in scheme A, to answering a given problem by
interpreting the simulated sampling distribution from repeated sampling in
scheme F. As such, the identified instrumentation schemes display how specific
TinkerPlots techniques occurred simultaneously with particular elements in
students’ understanding of statistical modeling.

Students’ Global Scheme Development 
We now describe students’ instrumental genesis by presenting the observed 
levels at which the students used the TinkerPlots techniques and demonstrated 
their understanding of statistical modeling in their reasoning, throughout the 
teaching sequence. In each Worksheet (W1 to W5), instrumentation schemes A 
to F were addressed. Data from group 1 while working on W1 were used to 
indicate students’ level in the initial phase of the teaching sequence, and data 
from group 2 while working on W5 for the more advanced phase. Students' 
technical actions with TinkerPlots were coded in technical levels for each 
scheme and for each student. For example, concerning W1 scheme A, five 
students out of fourteen in group 1 were unable to build a population model. 
They encountered difficulties in finding the input options for the parameters of 
the population model or for graphical representations of the model and, 
therefore, we coded their actions for W1 scheme A as technical level 1. As 
another example, concerning W5 scheme A, six students out of fourteen in 
group 2 were capable of making well thought out choices from newly explored 
TinkerPlots options to make a model, for example by using non-instructed 
options for graphical representations like pie chart or histogram, and we coded 
their actions technical level 5.  
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Students’ average technical levels for each instrumentation scheme on 
respectively W1 and W5 was calculated to identify students’ global 
development during the work. For example, students’ average technical level 
score on W1 in scheme A was calculated from five students whose actions were 
coded technical level 1, seven students who scored level 2 and two students on 
level 3, which resulted in an average technical level score of 1.8. Likewise, we 
coded students’ reasoning and calculated their average conceptual levels for 
each scheme A to F, while working on W1 and W5. The change in performance 
on technical and conceptual level from the initial phase in W1 to the more 
advanced phase in W5 is visualized in Figure 3.2. When comparing students’ 
work on W1 to W5, students showed an improving level of proficiency in their 
application and control of the tool as well as in their usage and expression of 
statistical concepts in their accompanying reasoning. As students’ development 
of TinkerPlots techniques and conceptual understanding of statistical modeling 
was observed simultaneously, the results show a co-development of techniques 
and concepts.  

It is interesting to note that in schemes C and D we observed more 
progress in students’ average conceptual level score than for their technical 
level score. Both these schemes required more complex TinkerPlots techniques 
than the other schemes. In the initial phase, concerning these two schemes, most 
students of group 1 worked carefully according to the TinkerPlots instruction 
sheet, which enabled them to use the correct techniques. For example, 
concerning students’ TinkerPlots techniques in scheme C during the initial 
phase with W1, all fourteen students had difficulty using the history option in 
TinkerPlots to visualize the sampling distribution. They all followed the 
instruction stepwise. Seven of them made mistakes in their actions—for 
example, not knowing how to enlarge the history window to enter all required 
information or not being able to select a useful characteristic for the history 
option—which made it difficult for them to visualize a correct sampling 
distribution, and as such, their actions were coded technical level 2. The other 
seven students made a correct visualization, although they encountered 
problems with displaying a clear bar chart or entering the correct values, and, as 
such, their actions were coded technical level 3. Students’ reasoning during the 
initial phase focused on the correct technical actions. For the seven students that 
were unable to visualize a correct sampling distribution, we also observed 
incorrect reasoning, that is, wrong statements or incorrectly using words and 
symbols related to sample, variability, repeated samples and sampling 
distribution, and we coded their reasoning conceptual level 1. In the data of five 
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of the seven students that managed to display a correct sampling distribution, 
we observed superficial but correct reasoning, that is, noticing that the graph 
looks more or less the same as on the instruction sheet and reading the values on 
the horizontal axis for common sample result; as such, we coded their reasoning 
conceptual level 2. The two other students that visualized a correct sampling 
distribution were in one team. They discussed that the shape of the sampling 
distribution was not in line with their expectations, as they expected a smooth 
bell curve. Later in this section we present in detail the work of these two 
students. 

Figure 3.2. Development of students’ average Technical Level (TL) and 
Conceptual Level (CL) for each instrumentation scheme from Worksheet 1 to 5. 



Statistical modeling processes through the lens of instrumental genesis 

79 

In the more advanced phase (W5), with regard to students’ technical level in 
Scheme C, all fourteen students in group 2 displayed a correct sampling 
distribution and were coded level 3 or higher. Four of them explored a quick 
start for simulating and adding repeated sample results to a sampling 
distribution; their actions were coded technical level 5. Concerning students’ 
conceptual level in scheme C with W5, all students’ reasoning was coded level 
4 or higher, as they correctly stated that more repeated samples led to a 
smoother shape of the sampling distribution with a peak and average that 
resembled the modeled population proportion. For example, a student quoted:  

This is in line with our expectations. Most of the sample results 
seem to be in between 43 and 47. This bar at 42 is a bit high [local 
peak], but yeah, it can happen that within these 100 repeated 
samples, there are incidentally more with 42...  

With regard to the intertwinement of developing techniques and conceptual 
understanding, based on our findings in scheme C and D, it appeared that for 
schemes that required complex TinkerPlots techniques, a strong technical focus 
in the initial phase occurred together with less proficiency on conceptual level, 
and, additionally, that in the more advanced phase within those schemes, 
students’ statements shifted from discussing techniques to reasoning with 
concepts, which resulted in more progress for conceptual understanding. In 
schemes A, B, E and F, we observed a more balanced co-development. Lastly, it 
is worth mentioning that in the advanced phase most students (10 out of 14) 
were capable of using the simulated sampling distribution from repeated 
sampling as a model for determining the probability of a specific range of 
sample results, and, as such, to interpret the statistical model to solve a given 
problem. 

Two Cases 
In this section, we present two cases of students as illustrative examples of how 
we zoomed in on the observed data to reveal the intertwining of emerging 
TinkerPlots techniques and conceptual understanding of statistical modeling in 
the personal schemes students develop. First, we present the case of Elisha and 
Willie (all student names are pseudonyms) while working on W1, as it 
illustrates how conceptual understanding influenced TinkerPlots techniques and 
vice versa in the initial phase. Second, we present the case of William and 
Brenda while working on W5 in the more advanced phase. 
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Figure 3.3. Tasks 5 and 8 from Worksheet 1 

Breakfast worksheet 
Introduction: Research at a primary school into the breakfast habits of pupils 
showed at the beginning of the school year that 210 of the 300 pupils eat 
breakfast daily. The school management wants to investigate again the 
number of students having daily breakfast at the end of the school year. 
However, asking all pupils is a lot of work and therefore they decide to take a 
sample of 30.   
…… 
Task 5: Assume that the number of pupils having daily breakfast remained 
the same during the school year. Use TinkerPlots to simulate sample results 
(number of pupils having daily breakfast) from the given population and 
sample size. Fill in the table below, based on the simulated results. 

Sample size 30 Simulated sample results in 
interval notation […;…] 

Most common results 

Exceptionally low results 

Exceptionally high results 
….. 
Task 8: In the past school year, a lot of attention has been paid to stimulating 
'daily breakfast' at the school. The school management wants to use the 
results from the sample of 30 to determine whether the breakfast behavior of 
pupils has improved. Suppose the sample shows that 23 out of 30 pupils have 
breakfast daily. Can the school management, based on this result, conclude 
that the pupils' breakfast behavior has improved? Support your answer with 
the simulated sample results. 
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4a. 4b. 

Figure 3.4. Building a population model on Worksheet 1 task 5: the expected 
model (4a) and Willie and Elisha.s model (4b) 

The Case of Elisha and Willie 
We focus on Elisha and Willie¶s work on W1 tasks 5 and 8 (Figure 3.3). We 
start by highlighting some of their actions and reasoning, followed by an 
evaluation of how their developing TinkerPlots techniques influenced their 
conceptual understanding and vice versa. To answer W1 task 5, we expected 
students in scheme A of the instrumentation scheme to develop TinkerPlots 
techniques for entering the population characteristics as shown in Figure 3.4a. 
+owever, when entering the sample size in scheme B, Elisha and Willie 
incorrectly entered 100. Later on, when they arrived at scheme F—interpret the 
results using the sampling distribution—the following discussion in Excerpt 1 
took place while the two students were looking at the simulated sampling 
distribution on their screen (see Figure 3.5a). 

>Excerpt 1@ 

Willie: According to this graph, the sample results vary between 58 and 
80 pupils who have breakfast every day >silence@. But... how is this 
possible" We only have 30 pupils in one sample«... 

Elisha: <es, but we have already filled in 100 >points to the input option 
µrepeat¶ on the screen, see Figure 3.4b@ and we should have 
entered 30. 

Willie: But why, we do it >simulating repeated samples@ 100 times, don
t 
we" We do it 100 times with 30 pupils. 
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Elisha: Yes, exactly. We repeat it 100 times with 30 pupils. And now, we 
get for one such thing [points at the visualization of one sample on 
the screen] a result of 73 pupils who eat breakfast daily and 27 not, 
that is not correct. So, here [points again to the input option 
‘repeat’ on the screen, see Figure 3.4b], we should have entered 
the sample size, which is 30, instead of entering 100.  

Following this discussion, they deleted their work and started again by entering 
a population model, but now with a correct sample size of 30. This time, in 
Scheme C, they entered 100 for the number of repeated samples. This resulted 
in the simulated sampling distribution of Figure 3.5b. Here, the discussion in 
excerpt 2 took place. 

[Excerpt 2] 

Willie: This graph looks weird. What went wrong? Look at all those 
bumps. 

Elisha: Let's do it again [more repeated sampling]. And maybe, we 
should simulate more than 100 repeated samples. The more, the 
better, right? 

Willie: [After simulating 200 extra repeated samples, their simulated 
sampling distribution looked like Figure 3.5c]. Yes, that's the way 
it should look like. Next time we just have to enter more 
repetitions right away. That’s simply the best. So, for now, most 
of the samples are between 18 and 24.  

a 
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Figure 3.5. Willie and Elisha¶s simulated sampling distributions from repeated 
sampling for Worksheet 1 task 5 (a) Simulated sampling distribution for 
Worksheet 1 with an incorrect sample size of 100 instead of 30. (b) Simulated 
sampling distribution for Worksheet 1 with sample size 30 and 100 repeated 
samples, showing a µbumpy¶ shape. (c) Simulated sampling distribution for 
Worksheet 1 with sample size 30 and 300 repeated samples, showing a 
µsmooth¶ shape. 

After the discussion in excerpt 2, they used the simulated sampling distribution 
(Figure 3.5c) to correctly answer task 5 and 8. For task 5, they stated that most 
common sample results will vary from 18 to 24 out of 30, they indicated sample 
results varying from 15 to 17 out of 30 as exceptionally low and results varying 
from 25 to 27 exceptionally high. They ignored the possibility of sample results 
below 15 and above 27, probably as these results were not displayed on the x 
axis of their simulated sampling distribution. For task 8, they stated that 23 out 
of 30 seemed to be better than 21 out of 30, however, 23 was not exceptionally 
high and, therefore, the school management could not conclude that the 

b 

c 
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breakfast habits of pupils have improved. Elisha added that she regarded a 
sample of 30 as very small in this case. 

In summary, the case of Elisha and Willie showed how their conceptual 
understanding and TinkerPlots techniques co-developed and influenced each 
other. From excerpt 1, it seems that they mixed up the option in TinkerPlots for 
entering sample size with entering the number of repeated sampling. When the 
(incorrect) simulated sampling distribution was displayed on their screen, this 
sampling distribution did not correspond to their conceptual expectations. The 
mismatch led them to investigate the options available to see what the problem 
was, which resulted in applying the correct technical option for entering sample 
size. Here, their conceptual understanding fostered their technical actions. From 
excerpt 2, we see how Elisha and Willie used the technical options for repeated 
sampling to get a better, less “bumpy and smoother” representation of the 
sampling distribution. The technique of increasing the number of repeated 
samples helped them understand the effect of more repeated samples by giving 
them a better picture of the sampling distribution. In this way, the technique of 
repeated sampling fostered their conceptual understanding of the effect of 
adding more repeated samples on the sampling distribution in Scheme D. 

From excerpt 2, it was difficult to distil the depth of the students’ 
conceptual understanding about adding more repeated samples in scheme D. 
Although they stated that they should enter a larger number of repetitions next 
time, and that a larger number of repetitions would lead to a better graph of the 
sampling distribution, they did not express clearly how they thought these two 
were related. However, later on, in W1 task 14, they explicitly mentioned that 
next time they should simulate a larger number of repeated samples at once in 
order to reduce the influence of possible outliers and to achieve a well-shaped 
sampling distribution. Combining students’ statements over several tasks and 
schemes helped us to identify their understanding of specific concepts.  

The Case of William and Brenda 
We focus on the work of William and Brenda on W5 tasks 7 and 9 (Figure 3.6). 
Instead of getting started with TinkerPlots after reading task 7, these two 
students started a 5-min discussion about possible answers. Excerpt 3 presents a 
small part. 
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Figure 3.6. Tasks 7, 9, and 12 from Worksheet 5 

>Excerpt 3@ 

William:  42 out of 50, that¶s not 90�, because then it should be 45, this 
is not enough. So don¶t buy it. 

Brenda: I agree. 42 is not sufficient.  Don
t do it. 

William: 2r... (silence)... it
s just a small sample size, only 50. In our 
earlier social media task with a sample of 50, there was a lot of 
variation, then 42 is not that unusual. 

Worksheet 5: LED lights 
Introduction: A do-it-yourself shop is not satisfied with the quality of LED 
lights they sell. There are too many complaints from customers about 
defective lights. They are therefore considering a switch to supplier B. This 
supplier guarantees that at least 90� of the lights will function. The do-it-
yourself shop has therefore ordered a batch of 10,000 LED lights. Before 
selling them in the shop, they use a sample to verify whether the supplier
s 
claim is correct. 

« Task 7: Suppose there are 42 functioning LEDs in the sample (size 50). 
What advice would you give the shop about the purchase of the batch of LED 
lights" -ustify your answer. 

« Task 9: 2n closer inspection, the shop doubts whether a sample size of 50 
would be appropriate. Which sample size would you recommend" -ustify 
your answer. 

« Task 12:  Because the shop has doubts about the quality of the LED lights 
from supplier B, they ordered a batch of 10,000 from supplier C. They also 
examine this batch with a sample of 50 to determine whether this batch may 
be better than the batch of supplier B. 
2pen the file �LED lights supplier C� with TinkerPlots. Simulate repeated 
samples from the hidden population model of supplier C. Based on the 
simulations, estimate the number of functioning LEDs in the total batch of 
10,000 LEDs. -ustify your answer. 
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Figure 3.7. William and Brenda’s simulated sampling distributions from 
repeated sampling for Worksheet 5 task 7. (a) Simulated sampling distribution 
for 100 repeated samples in Worksheet 5 with a left border of the grey area at 
5%. (b) Simulated sampling distribution for 100 repeated samples in Worksheet 
5, second attempt, with a left border of the grey area at 16%. (c) Simulated 
sampling distribution for 500 repeated samples in Worksheet 5 with a left 
border of the gray area at 5%. 

As the discussion progressed, they decided to model the task in TinkerPlots. 
Without discussing the TinkerPlots techniques, they succeeded within a few 
minutes and without any hesitations to display the sampling distribution as 
shown in Figure 3.7a. Their goal was to determine the most common results— 
in their strategy the middle 80% of the samples—by placing borders for the 
lowest and highest 10%. After they moved the lower border of the gray area 

c 

b 

a 
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back and forth a number of times, it turned out to be impossible to get exactly 
10� into the left part of the sampling distribution. 2n that point, the following 
discussion took place. 

>Excerpt 4@ 

William: This is not a good sampling distribution. 

Brenda: +ow is that" 

William: It is not possible to get 10� here >pointing to the left part in 
the sampling distribution@. It is either 5� or 13� 

Brenda: And now what" There
s not much we can do with this. Can
t 
we do it again" Then maybe it will be better. 

They decided to delete everything and start all over again. This resulted in the 
sampling distribution of Figure 3.7b. Then the discussion in Excerpt 5 took 
place. 

>Excerpt 5@ 

William: This isn
t much better... now we have 8� or 16�... 

Brenda: Let
s just do it again. 

William: Again" Wait, I think we can do this again faster. We can leave 
this >points to sub screen 1, 2 and 3@ and only have to do the 
repeats again.  

>....@ 

William: We should have discovered this earlier, that would have saved 
us a lot of work with the previous worksheets. In fact, we 
always investigate the same thing, but with a different subject. 

Brenda: +ow do you mean" 

William: Well, we investigate possible sample results with a given 
samples size to answer the questions. It doesn
t really matter 
whether it
s breakfast, social media or lights. 

This third attempt also resulted in a left area smaller than 10�. At that moment 
they decided to increase the number of repetitions, as that usually gives a better 
picture. After William said: �<ou can probably add samples in a quick way, 
without starting all over,� they explored the techniques and soon found out how 
to add samples. This resulted in the sampling distribution of Figure 3.7c. 
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[Excerpt 6] 

William: I don't think there is any point in adding more repetitions, it 
remains the same. 42 is apparently exactly at the border of 
common results. And now what? 

Brenda: The sampling distribution hardly changes, so there's no need 
for more repetition. I think 42 is not much. Most results are 
higher 

William: Okay, based on these sampling distributions we find 42 to be 
too few. So our advice is not to buy! 

Later on, when they worked on W5 task 9, they fully agreed that the sample size 
was too small. Brenda stated: “The larger sample the better the results, but very 
large is not convenient,” at which point William proposed to pick a sample size 
of 200.  As with task 7, they wanted to explore a fast way in which they did not 
have to remove all the sub screens. To this end, they discussed the views on 
each sub-screen and finally decided that only sub screen 1 could remain. Here, 
they discussed concepts such as sample size, difference between sample size 
and number of repeated samples, and the relationship between the tables and dot 
plots. When using a fast method for larger sample size, the effect of larger 
sample size confirmed their conjecture. 

In summary, the case of William and Brenda in the more advanced phase 
showed a focus on conceptual understanding when reading the task, a focus that 
we saw in almost all students in W5. Excerpt 4 illustrates how the two students, 
after reading task 7, discussed concepts such as variation, probability and 
sample size. Moreover, in this excerpt, they related this task to a previous task 
and context (the context of W3). This also appeared in the second part of 
excerpt 5, here we saw how the use of similar TinkerPlots techniques in 
different worksheets and contexts enabled William to discover a context-
independent pattern. The TinkerPlots techniques helped him to identify 
technical patterns in the modeling process and thus to view the concepts 
involved at a more abstract—context-independent—level. Regarding the 
intertwined relationship between TinkerPlots techniques and conceptual 
understanding, excerpt 5 showed how their understanding—in this case their 
overestimation of variation in many repeated samples—triggered them to 
explore new techniques. Also, the other way around, how in excerpt 6 the 
techniques helped them to understand that the sampling distribution of many 
repeated samples remains stable. Also, their work on W5 task 9 showed, as in 
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the case of Willie and Elisha, a two-directional relationship between 
TinkerPlots techniques and conceptual understanding. Their understanding of 
statistical modeling concerning a general approach and patterns, resulted in a 
search for more advanced TinkerPlots techniques by using already modeled 
parts of the process in their sub-screens, and also, the techniques strengthened 
them in their conjecture about the effect of sample size.  

Discussion 
The aim of this study was to explore the applicability of the instrumental 
genesis perspective to statistics education, and to statistical modeling in 
particular. We identified six instrumentation schemes for statistical modeling 
processes with TinkerPlots, describing the intertwined development of students¶ 
digital techniques and conceptual understanding. We noticed an increase in their 
mastery of the tool as well as in their statistical reasoning, evidencing students¶ 
co-development of techniques and conceptual understanding. We observed a 
two-directional intertwinement of techniques and concepts. The two student 
cases showed in more detail how students¶ understanding of concepts informed 
their TinkerPlots techniques and vice versa. Although we found a two-
directional intertwining in all schemes and phases of the teaching sequence, at 
particular moments we noticed more emphasis in one direction.  

In the more advanced phase of the teaching sequence the results show 
how the use of similar TinkerPlots techniques over different worksheets and 
contexts enabled students to discover context-independent technical patterns. 
Students¶ identification of those technical patterns in the modeling process 
enabled them to view concepts at a higher, more abstract level. We interpret this 
as emergent modeling (Gravemeijer, 1999), which involves the conceptual shift 
from a model of a context-specific situation to a model for statistical reasoning 
in a variety of similar and new contexts. Although the emphasis here was on 
technical patterns that informed students¶ conceptual understanding, we also 
saw the opposite direction intertwined in this process, as their conceptual 
understanding concerning a general approach and patterns resulted in a search 
for more advanced techniques by using already modeled parts of the process on 
their screen. 

In a short period of time, students—who were inexperienced in taking 
samples and working with digital tools—learned to carry out the modeling 
processes, including interpreting the simulated sampling distribution. Regarding 
this promising result, we discuss some possible stimulating factors. As a first 
factor, it appeared from the identified instrumentation schemes that the required 
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techniques in the digital environment of TinkerPlots strongly align with key 
concepts for statistical modeling. This strong alignment probably facilitated 
students to overcome initial difficulties concerning variability, distribution, 
sample and sampling, the effect of sample size, difference between the sample 
and sampling distribution (Chance, delMas, & Garfield, 2004), which we hardly 
observed in the more advanced phase. For example, concerning the common 
confusion between the sample and sampling distribution, the distinct 
visualization of sample and sampling results within the digital environment of 
TinkerPlots enabled students to distinguish between both distributions. As a 
second factor, the required TinkerPlots techniques invited students to 
phenomenon simplification (Manor & Ben-Zvi, 2017). For example, in the 
initial phase we observed difficulties in distilling sample size and population 
proportion from the context given for entering the correct model, while these 
difficulties hardly occurred in the more advanced phase. As a third factor, 
applying similar statistical modeling processes in TinkerPlots to varying real-
life contexts allowed students to distinguish and interact between the model 
world—using the same digital environment—and the real world using varying 
contexts (Patel & Pfannkuch, 2018). 

The findings presented in this paper should be interpreted in the light of 
the study’s limitations. First, the results of this research are based on students in 
a classroom laboratory instead of students’ regular classroom environment. By 
conducting the preparatory activities in students’ regular classrooms and 
maintaining the same student teams, lesson design and a familiar teacher, we 
tried to reduce the influence of the classroom laboratory setting at the 
university. Second, due to practical reasons we were confined to working with 
two groups of students, group 1 in the initial phase and group 2 in the more 
advanced phase of the teaching sequence. Differences between both groups may 
have affected students’ global scheme development. However, the students in 
both groups performed at a similar level in mathematics and their performances 
in the preparatory tasks were comparable. The teacher judged the starting level 
of the two groups to be similar. Third, distilling students’ conceptual 
understanding from their reasoning was challenging. However, by combining 
the sometimes flawed statements made by the students with their accompanying 
activities—such as their next action with the tool or their statements later on in 
their process—we tried to identify their understanding of the concepts. Fourth, 
we worked with pre-university students, the top 15% achievers in our 
educational system. Other students may need more time.  
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Although we focused on statistical modeling processes using TinkerPlots, 
we consider our findings on the intertwining of emerging digital techniques and 
conceptual understanding applicable to the broader field of statistics education, 
and to other educational digital tools as well. Digital tools for other areas in 
statistics education also structure and guide students’ thinking by providing 
specific options for entering parameters and commands and/or by facilitating 
explorative options that may strengthen students’ conceptual understanding.  

Overall, we conclude that the perspective of instrumental genesis in this 
study proved helpful to gain insight into students’ learning from and with a 
digital tool, and to identify how emerging digital techniques and conceptual 
understanding intertwine.  

Implications 
The study’s results lead to implications for the design of teaching materials and 
digital tools, and for future research. In designing teaching materials, it is 
important to take into account the two-directional relationship between 
emerging digital techniques and conceptual understanding, both during 
instruction and during practice. Attention to digital techniques in the initial 
phase, especially to more complex ones, seems to have a positive effect on 
learning the associated concepts later on. The development of context-
independent techniques and concepts requires sufficient time and practice for 
students with different contexts and situations. In designing digital tools, the 
intertwined relationship between digital techniques and conceptual 
understanding calls for attentive consideration of how the digital techniques are 
related to the concepts, to deploy the digital tool in a productive way for the 
intended learning goal.  

This also suggests an implication for future research on statistics 
education using digital tools. Although we focused on statistical modeling using 
TinkerPlots—that is, solving real-life problems by the building, application and 
interpretation, of the sampling distribution of repeated samples—we assume our 
global findings also hold for other statistical processes and digital tools. 
However, the specific intertwining of emerging digital techniques and 
conceptual understanding is unique for each digital tool and intended learning 
goal. To identify the specific intertwinement, we recommend using the 
perspective of instrumental genesis in analyzing video and conversation data, 
which can be added by using clinical interviews.  

On a final note, this study gave an insight into the applicability of the 
instrumental genesis perspective in the context of statistics education, and 
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statistical modeling with digital tools in particular. Instrumental genesis seems a 
fruitful perspective to design technology-rich activities and to monitor students’ 
learning. 



Introducing Statistical Inference: 
Design of a Theoretically and Empirically Based 

Learning Trajectory 

This chapter is based on 

Van Dijke-Droogers, M. J. S., Drijvers, P. H. M., & Bakker, A. (submitted). 
Introducing Statistical Inference: Design of a Theoretically and Empirically 
Based Learning Trajectory.  
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Abstract 
This paper comprises the results of a design study that aims at developing a 
theoretically and empirically based learning trajectory on statistical inference 
for 9th-grade students. Based on theories of informal statistical inference, an 8-
step learning trajectory was designed. The trajectory consisted of two similar 
four step sequences: (1) experimenting with a physical black box, (2) 
visualizing distributions, (3) examining sampling distributions using simulation 
software, and (4) interpreting sampling distributions to make inferences in real-
life contexts. Sequence I included only categorical data and Sequence II 
regarded numerical data. The learning trajectory was implemented in an 
intervention among 267 students. To examine the effects of the trajectory on 
students’ understanding of statistical inference, we analyzed their posttest 
results after the intervention. To investigate how the stepwise trajectory fostered 
the learning process, students’ worksheets during each learning step were 
analyzed. The posttest results showed that students who followed the learning 
trajectory scored significantly higher on statistical inference and on concepts 
related to each step than students of a comparison group (n=217) who followed 
the regular curriculum. Worksheet analysis demonstrated that the 8-step 
trajectory was beneficial to students’ learning processes. We conclude that ideas 
of repeated sampling with a black box and statistical modeling seem fruitful for 
introducing statistical inference. Both ideas invite more advanced follow-up 
activities, such as hypothesis testing and comparing groups. This suggests that 
statistics curricula with a descriptive focus can be transformed to a more 
inferential focus, to anticipate on subsequent steps in students’ statistics 
education.   

Keywords 
design based research, learning trajectory, simulating repeated samples, 
statistical inference, TinkerPlots 
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Introduction 
Statistical inference is at the heart of statistics, as it provides a means to make 
substantive evidence-based claims under uncertainty when only partial data are 
available (Makar & Rubin, 2018, p. 262). Interpreting inferences with 
associated uncertainty is difficult for students, which is why, in most countries, 
inferences are not taught until Grade 10 or higher. Students' difficulties in 
learning inferences mostly relate to limited understanding of key statistical 
concepts, such as sample, variability and distributions, and to problems with 
understanding complex formal procedures (Castro Sotos et al., 2007). Engaging 
in activities that involve informal inferences in the early years, within primary 
education or early years of secondary school, seems to facilitate learning about 
more complex inferential statistics later on (Makar & Rubin, 2009; Van Dijke-
Droogers, Drijvers, & Bakker, 2020).  

However, the pre-grade-10 statistics curriculum in most countries, 
including the Netherlands, focuses on descriptive statistics without paying 
attention to inferences—with the exception of for example New Zealand, where 
a full learning line including inferential activities was developed starting from 
primary school. Promising results for informal inferential activities encourage 
investigating how these can be embedded in current curricula with a descriptive 
focus. Within most mathematical curricula, only limited time is available for 
statistics. As such, we need efficient learning trajectories, and knowledge about 
crucial steps in such a trajectory.  

In this study, we use knowledge from literature on (informal) statistical 
inference, and apply knowledge on learning progressions to design and evaluate 
an innovative learning trajectory (LT) on introducing 9th-grade students in the 
pre-university stream—the 15% best performing students of the Dutch 
educational system—to the key concepts for statistical inference. Following 
Duschl et al. (2011), we will address the following aspects: how the design 
process included the selection of the core idea of the LT; how theories on 
statistical inference inform the design of the LT; the identification of the starting 
and end point of the LT; how the successive learning steps of the LT mediate 
learning; and how the LT aligns with current curricula. To empirically verify 
the effects of the designed LT, we implemented the LT at five different Dutch 
schools with eleven participating teachers and a total of 267 students. We 
analyzed both students’ performance after the intervention, and their progress 
during the learning process.  
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Theoretical Background 
Statistical Inference 
Statistical inference concerns interpreting sample results, drawing data-based 
conclusions, and reasoning about probability. For students, it is difficult to 
understand formal procedures to substantiate their inferences. Many difficulties 
involve a poor understanding of the key statistical concepts: sample, variability 
and distributions. These key concepts, including the understanding of the effect 
of sample size and the idea that a sample characteristic—such as mean or 
median—can be used to compare distributions, are essential for understanding 
inferences (Bakker, 2004; Chance, delMas, & Garfield, 2004; Konold & 
Pollatsek, 2002; Saldanha & Thompson, 2002; Watson & Kelly, 2008). There is 
a strong relationship between these concepts: understanding the sampling 
distribution relies on understanding the key concept of a sample, in particular on 
understanding the balance between sample representativeness and sample 
variability (Batanero et al., 1994). Common misconceptions involve neglecting 
the effect of sample size on the variance of sample mean or sample proportion 
(Tversky & Kahneman, 1971). Another common difficulty involves 
probabilistic reasoning, as students tend to provide deterministic explanations 
and not to consider the variability involved (Rossman, 2008).   

To help students overcome difficulties involved in statistical inference, 
informal approaches have been sought in recent decades. In general, this 
informal approach focuses on making inferences about unknown populations 
based on observed samples without using formal techniques, such as hypothesis 
testing. Makar and Rubin (2009) define informal statistical inference in main 
principles: generalization beyond data, data as evidence for these 
generalizations, and probabilistic reasoning about the generalization. Informal 
inferences include data-based claims that go beyond the collected data, in which 
the uncertainty involved can be expressed in informal probabilistic reasoning 
about the likelihood of the claim. Offering informal activities at an early age—
before the more formal activities in Grade 10 or higher—facilitates the 
understanding of key concepts and probabilistic reasoning required for 
statistical inference (Paparistodemou & Meletiou-Mavrotheris, 2008; Van 
Dijke-Droogers et al., 2020).  

The Design of a Learning Trajectory 
The design of an LT entails a conjectured route through a set of educational 
activities to support students to achieve the intended learning goals. Although 
learning is a personal process, unique for each student, a conjectured LT intends 
to describe a “possible taken-as-shared learning route for the classroom 



Introducing Statistical Inference 

97 

community” (Gravemeijer et al., 2003, p. 52); a learning route needs empirical 
validation. Successful implementation of theory in educational practice involves 
the design and evaluation in real classrooms of powerful LTs that embody our 
present understanding of effective learning (De Corte, 2000). 

The theory of Realistic Mathematics Education (Cobb, 2011; 
Freudenthal, 1983) provides design heuristics for the development of learning 
activities in an LT. First, the learning activities should be set in a context that 
enables students to immediately engage and develop associated mathematical 
concepts. As such, the learning activities support students in progressing 
towards a toolkit of key concepts associated with the learning goals of the LT. 
Second, the activities should be structured to support students in developing 
models of their concrete mathematical activity that can be used as model for a 
network of mathematical objects and relationships (Gravemeijer, 1999; 
Streefland, 1991). 

The Current Study 
The study is part of a larger study to gain knowledge about a theoretically and 
empirically based learning trajectory to introduce 9th-grade students to the key 
concepts of statistical inference. From another study (Van Dijke-Droogers, 
Drijvers, & Bakker, submitted) on the overall effects of the LT on students’ 
statistical literacy, we know that the LT had a significant positive effect on 
students’ understanding of statistical inference as measured by comparing pre- 
and posttest results. In the study reported here, we want to know how students 
learned something about statistical inference in terms of the intended LT-step 
related learning goals of the trajectory. When it comes to experimental studies 
that only report pre-post results, a common concern is that the reader may still 
not know how to benefit from the intervention reported (Savelsbergh et al., 
2016). We therefore consider it worth spelling out in more detail the design of 
the 8-step LT, and its effects on students’ understanding of LT-step related 
goals for statistical inference and analyze students’ progression during the 
large-scale intervention. As such, we address the following research questions: 

What are the specific effects of the designed LT on students’ 
understanding of statistical inference, in terms of the intended LT-
step related learning goals? 

How do the designed LT steps foster students’ learning processes? 
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Methods 
The designed LT aims at introducing students to key concepts of statistical 
inference by using theories of informal statistical inference. We first outline the 
design of the LT. We incorporated two main ideas: repeated sampling with a 
black box and statistical modeling with a digital tool. Second, we describe the 
intervention characteristics and data analysis.  

An Outline of the LT 
This study comprises the results of a third cycle of design based research. 
During cycle 1 and 2, the LT was (re)designed, implemented and evaluated, to 
identify the feasibility of the LT, and to further define the starting and ending 
points of the LT. 

The design of the LT consists of two similar sequences of four learning 
steps. Sequence I concerns only categorical data and includes the following 
steps: (1) experimenting with a physical black box, (2) visualizing distributions, 
(3) examining sampling distributions using simulation software, and (4)
interpreting sampling distributions to make inferences in real-life contexts. In
Sequence II, following Rossman (2008), more complex numerical data are
addressed during LT steps 5 to 8. The first three steps of Sequences I and II
involved 45 minutes each. In the last step of Sequences I and II, three different
real-life contexts were offered with a time duration of 45 minutes per context.
An outline of each LT step including a brief description, examples of learning
activities, and the intended learning goals, is presented in Table 4.1. A more
detailed description can be found in Supplementary Material A.

Repeated Sampling with a Black Box 
Repeated sampling with a black box serves as a guiding activity through all 
steps of the LT. A black box refers to a box of which only part of the content is 
visible—for example, a box with a viewing window that is filled with marbles 
or a box filled with notes (see the pictures in Table 1 at LT Steps 1 and 5, 
respectively). The black box activities instantiate design heuristics of Realistic 
Mathematics Education (Cobb, 2011; Freudenthal, 1983). Starting within the 
engaging context of a physical black box experiment—in both Sequences I and 
II—enables students to immediately involve and orient towards developing key 
statistical concepts (Van Dijke-Droogers et al., 2020). In Sequence I, activities 
with a physical black box filled with marbles in LT steps 1 and 2 enable 
students to explore the sampling variability involved in repeated sampling. 
Varying the size of the viewing window in the physical black box activities 
allows students to explore the effects of sample size. These activities 
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incorporate ideas of the growing sample task (Bakker, 2004) and repeated 
sampling that make key statistical concepts more accessible for students (Van 
Dijke-Droogers et al., 2020). Specifically, when those activities are 
accompanied by classroom discussions for exchanging and comparing sample 
results (Wild & Pfannkuch, 1999). The idea of repeated sampling with a 
physical black box is extended in statistical modeling activities in LT steps 3 
and 4. In Sequence II, the activities evolve in a similar way from starting with a 
physical black box filled with notes in LT steps 5 and 6 to statistical modeling 
in LT steps 7 and 8.  

Statistical Modeling with Digital Technology 
Statistical modeling activities with educational digital tools facilitate—on an 
informal level—the exploration of key concepts for statistical inference (Biehler 
et al., 2013; Garfield et al., 2015; Manor & Ben-Zvi, 2015; Rossman, 2008; 
Saldanha & Thompson, 2002; Watson & Chance, 2012). Digital environments 
such as TinkerPlots provide opportunities to easily simulate and visualize 
(repeated) samples. In the designed LT, the statistical modeling activities start 
within the familiar context of a black box, where students build a model of a 
black box—for example filled with 200 red and 400 blue marbles—to simulate 
sample results. By visualizing sample and sampling distributions, at varying 
sample sizes and at varying number of repeated samples, students explore 
(un)likely sample results. The modeling activities within the black box context 
gradually evolve to modeling real-life contexts. Modeling activities include 
building a model, simulating (repeated) samples, visualizing and interpreting 
the results, to solve a given problem. As with the physical black box activities, 
these modeling activities attend all stages of the statistical investigation cycle 
several times, as students collect data, analyze their data using sample and 
sampling distributions, and interpret the results to answer the question posed. 
Subsequent modeling activities involve applying gained knowledge into new 
contexts, where students deploy modeling activities to solve real-life problems.  

Applying similar digital techniques within varying contexts encourages 
students to identify context-independent patterns of technical actions (Van 
Dijke-Droogers, Drijvers, & Bakker, in press). These context-independent 
technical patterns combined with a context-independent understanding of key 
statistical concepts, facilitate the conceptual shift from a model of to a model 
for, known as emergent modeling (Gravemeijer, 1999; Streefland, 1991). As 
such, statistical modeling enhances the use and understanding of context-
independent statistical models, which is essential for interpreting inferences. 
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Participants 
Eleven teachers participated in the intervention, with a total of 267 students 
(Grade 9, aged 14–15 years) from thirteen classes at five different schools. The 
teachers were trained for the intervention in two 3-hour sessions in which they 
worked through students’ lessons and materials themselves, guided by the 
researcher. The teachers decided to replace all regular 9th-grade statistics 
lessons with the LT to save time. The students had no experience with using 
digital tools during their mathematics lessons. Students were instructed in using 
TinkerPlots in LT step 3 through a demonstration by a teacher and they received 
an instruction sheet for modeling black boxes that they could use during LT 
steps 4 to 8. They had some basic knowledge of descriptive statistics: center and 
distribution measures, such as mean, quartiles, class division, absolute and 
relative frequencies, and boxplot. A comparison group with students who 
followed the regular curriculum was used to interpret students’ performance on 
statistical inference. The comparison group consisted of 217 students from ten 
classes. All students in the comparison group attended 10–16 regular 9th-grade 
statistics lessons during their mathematics lessons. The participating students, 
for both the intervention and comparison group, belonged to the 15% best 
performing students in our educational system. 

Data Collection and Analysis 
For Phase 1, addressing the first research question, we developed a pre- and 
posttest for Statistical Inference (SI) at the school level, inspired by Watson and 
Callingham’s (2003, 2004) work on statistical literacy. The pre- and posttest can 
be found in Supplementary Material C and D. Both tests were part of a broader 
study on the effects of the designed LT on students’ statistical literacy (Van 
Dijke-Droogers et al., submitted). For the study presented here, we focused on 
the SI Items of the posttest. The posttest contained 18 SI Items. We selected 
four Items from Watson and Callingham (2004), and we designed 14 new Items 
related to concepts of SI as addressed in the LT. For the design of the new 
Items, we used the structure and phrasing of their Items. To analyze the validity 
of the designed test, we conducted two pilot tests in different classrooms, each 
consisting of 25 students. Concerning the concurrent validity of the new 
designed SI Items, students’ average level scores in the pilots on new designed 
and existing SI Items were not significantly different (Mnew = 2.49, SDnew = 
0.71, Mex = 2.78, SDex = 1.38, n = 50, t(49) = –1.6; p = .11). To assess the 
content and construct validity of test Items, the results of each pilot were used 
for in-depth discussion with experts in this area on content, construct, 
vocabulary, and clarity. Cronbach’s alpha value was .81, indicating a good 
reliability (Taber, 2018). For the data collection, the participating teachers from 
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both the intervention and comparison group conducted the test, according to a 
clear instruction for testing, from their own students during their regular 45-min 
mathematics lessons.  

For the data analysis in phase 1 on the posttest results, we defined six SI 
levels, based on Watson and Callingham’s levels for statistical literacy (see 
Table 4.2). Given that LT steps 1 to 4 and 5 to 8 involve similar concepts and 
approaches, we defined specific levels for couples of two: steps 1 & 5, steps 2 
& 6, steps 3 & 7, steps 4 & 8 (see Supplementary Material B). By pairing the 
LT steps, we were able to analyze at least four test Items per couple. For the 
coding, we developed Item-specific level-codes (e.g., Figure 4.2 and 4.3). Two 
assessors coded test data from the participating students with the SI level scores 
0–6. To indicate students’ performance on the test, we compared students’ test 
scores for both the intervention and comparison group, and as such, for 
attending the LT or regular statistics curriculum. Students’ results on the pretest 
were used to identify students’ initial level. Although the comparison group 
attended the regular statistics lessons prior to the pretest, we conjectured similar 
pretest results for both groups on statistical inference as the regular lessons only 
concerned descriptive statistics. For statistical significance, we used one-way 
ANOVA for comparing results from both groups, paired t test for analyzing 
students’ progression between the pre- and posttest, and chi-squared test for 
comparing students’ distribution over the levels. For reliability of the analysis, a 
third coder was asked to process independently a random set of 5% (80 Items) 
of the data with students’ reasoning. The third coder agreed on 83% of the 
codes. Deviating codes, which were limited to one or two levels difference at 
most, were discussed until agreement was reached. Adjustments in the coding 
were also applied to the rest of the data. 

Table 4.2. Levels for Statistical Inference based on Levels for Statistical 
Literacy by Watson and Callingham (2003) 

Level General level description 

1  Idiosyncratic Idiosyncratic engagement with context, tautological use of
terminology 

2  Informal 

Only colloquial or informal engagement with context 
often reflecting intuitive non-statistical beliefs, single 
element of complex terminology and setting, and basic 
one-step table and graph readings and calculations, not 
referring to statistical information given 
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3  Inconsistent 

Selective engagement with context, often in supportive 
formats, appropriate recognition of conclusions but 
without justification, and qualitative rather than 
quantitative use of statistical ideas, not always referring to 
statistical information given 

4  Consistent
Non-critical 

Appropriate but non-critical engagement with context, 
multiple aspects of statistical terminology usage, and 
statistical skills associated with simple probabilities, and 
graph characteristics, not always referring to statistical 
information given 

5  Critical 

Critical, questioning engagement in familiar and 
unfamiliar contexts that do not involve proportional 
reasoning, but which do involve appropriate use of 
terminology, appreciation of variability, explicitly 
referring to statistical information given 

6  Critical
Mathematical 

Critical, questioning engagement with context, using 
proportional reasoning, showing appreciation of the need 
for uncertainty in making predictions, and interpreting 
subtle aspects of language, explicitly referring to 
statistical information given 

In phase 2, addressing the second research question, we used two principles by 
Wilson (2009) for assessing learning progression. The first principle outlines a 
developmental perspective regarding the development of students’ 
understanding of particular concepts and skills over time—that is, during the LT 
instead of assessing final performance. This perspective requires clear 
definitions and a theoretical framework of what and how students are expected 
to learn. In our study, these are embedded in the description of the designed 8-
step LT. The second principle involves the match between the LT and 
assessment. To establish a strong match, we formulated indicators for success of 
each LT step. In the design of the learning activities on students’ worksheets, 
specific tasks were included that correspond to these indicators. Table 4.3 
displays the indicators and corresponding learning activities on students’ 
worksheet, for each LT step (see Table 4.1 for corresponding learning goals in 
each LT step).   

Data included students’ worksheets 1 to 8 from each LT step, 
accompanied by teachers’ and researchers’ notes. We collected 267 worksheets 
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from Sequence I, LT step 1 to 4, and 224 worksheets from Sequence II. The 
teacher took notes about each lesson. After each lesson, the researcher contacted 
the teacher—through email, call or a meeting in person—to evaluate the lesson 
given and to discuss the following steps. In addition, we used researchers’ 
observation data from two visits in each class about how the teacher and 
students interacted with the intervention materials. For the data analysis in 
Phase 2, we coded students’ reasoning on their worksheets, for the specific 
tasks in each LT step, according to the indicators. Students were explicitly 
asked to clearly motivate their answers on their worksheets. Teachers’ and 
researchers’ notes were included in the analysis.  

Table 4.3. Overview of Indicators and Corresponding Learning Activities on 
Students’ Worksheet, for each LT step 

LT
step Indicators Task description per indicator [Worksheet 

Task] 

1. 

a. Making inferences
about content
physical black box

a. Students make inferences about the content
of the physical black box using a small and
large viewing window [W1.3; W1.6]

b. Interpreting effect
of larger viewing
window

b. Students mention that an inference based on
a larger viewing window is more reliable as it
provides more information about the content
[W1.8]

2. 

a. Drawing expected
sampling distribution
from repeated
samples

c. Students draw the expected sampling
distribution from 100,000 repeated samples,
with sample size 40, from a black box filled
with 250 yellow and 750 orange marbles [W2a]

b. Using (given)
sampling distribution
to determine the
probability of sample
results

d. Students use a given sampling distribution
from 1500 repeated samples (size 50) to
determine the probability of a certain range of
sample results [W2b.5]

3. 

Using statistical 
modeling in 
TinkerPlots to 
determine the 
probability of sample 
results  

e. Students determine most likely sample
results for a black box filled with 300 orange
and 200 yellow marbles and samples size 50,
using statistical modeling in TinkerPlots
[W3.15]

4. Using statistical
modeling in
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TinkerPlots for 
a. Interpreting effect
of sample size in
real-life contexts

a. Students argue that it is a smart decision of
the school management to take a larger sample
size [W4.10]

b. Probabilistic
reasoning in real-life
contexts

b. Students argue that the school management
cannot be certain about the breakfast habits of
students, based on a sample result [W4.11]

c. Determining the
probability of sample
results, in real-life
contexts

c. Students use their simulated sampling
distribution to determine the probability of
(un)likely sample results [W4.18]

d. Informal
hypothesis testing

d. Students determine at what sample results a
school can conclude that the breakfast habits of
students have improved, using statistical
modeling in TinkerPlots— informal hypothesis
testing [W4.18]

5. 
Making inferences 
about content 
physical black box 

Students make inferences about the height of 
the population based on samples from a 
physical black box filled with 4,000 notes—
each note contains the height and gender of one 
person [W5] 

6. 
Drawing expected 
population 
distribution 

Students draw a visualization of the population 
distribution (height of 4,000 persons in the 
physical black box with notes) they expect, 
based on the sample data found [W6] 

7. 

Using statistical 
modeling in 
TinkerPlots (given 
model) for 
a. Making inferences
about the population
distribution

a. Students sketch the expected population
distribution (height of 4,000 persons in the
physical black box with notes) using statistical
modeling in TinkerPlots with a given model for
varying sample sizes [W7.1; W7.8]

- using a small
sample size
- using a large sample
size
b. Interpreting effect
of sample size on
expected population

b. Students mention that a larger sample size
better reflects the population distribution [7.15]
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distribution 
c. Making inferences
about the population
mean

c. Students make inferences about the expected
population mean [W7.1; W7.8]

d. Interpreting effect
of sample size on the
expected population
mean

d. Students mention that a larger sample size
leads to a better estimate of the population
mean [7.16]

e. Determining the
probability of sample
results (concerning
the sample mean)

e. Students determine the probability of certain
sample results [W7.6; W7.13]

8. 

Using statistical 
modeling in 
TinkerPlots to 
determine the 
probability of sample 
results, in real-life 
contexts 

Students make inferences about the population 
proportion of students that spent more than 12 
hours per week on sports, using statistical 
modeling with a hidden model of the 
population (size 4,000) and sample size 500 
[W8.5; W8.6] 

Results 
We first present students’ results on the posttest to answer research question 1. 
Next, we present students’ progress during the intervention to address research 
question 2. 

Posttest Results on Students’ Understanding of Statistical Inference 
With regard to students’ Statistical Inference (SI) level at the posttest, we 
reported in another study (Van Dijke-Droogers et al., submitted) that a one-way 
ANOVA between both groups indicated that the level score for the intervention 
group who attended the LT was significantly higher than for the comparison 
group (+0.67, F(1, 482) = 75.0, p < .0005). The results in the study presented 
here indicate that the intervention group scored significantly higher than the 
comparison group on each coupled LT steps 1 and 5 on using samples, LT steps 
2 and 6 on visualizing distributions, LT steps 3 and 7 on repeated sampling and 
effect of sample size, and LT steps 4 and 8 on solving real-life problems. The 
results are displayed in Table 4.4. Although we conjectured a similar pretest 
score for both groups, the results showed that the initial level of the intervention 
group on statistical inference was significantly lower than for the comparison 
group—probably because the comparison group followed their (descriptive) 
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statistics lessons prior to the pretest. The comparison group was not taught 
statistics between the pre- and posttest, which explains their similar scores on SI 
at both tests.   

Table 4.4. Students’ Mean Level Scores on the coupled LT steps at the Pre- and 
Posttest  

Intervention 

(n = 267) 

Comparison 

(n = 217) 

Intervention 
minus 
Comparison 

M (SD) M (SD) M(inv.) – 
M(comp.) 

Pretest 

SI1  2.45 (0.65)  2.72 (0.71) – 0.27***
Step 1 & 5  2.10 (1.34)  2.43 (1.41) – 0.33**
Step 2 & 6  2.54 (0.91)  2.77 (0.96) – 0.23**
Step 3 & 7  2.48 (0.68)  2.75 (0.66) – 0.27***
Step 4 & 8  2.62 (0.94)  2.83 (0.92) – 0.21*

Posttest 

SI1  3.34 (0.84)  2.67 (0.84) + 0.67***
Steps 1 & 5  3.52 (1.26)  2.94 (1.26) + 0.58***
Steps 2 & 6  3.44 (1.31)  2.84 (1.42) + 0.60***
Steps 3 & 7  2.39 (1.04)  1.85 (0.97) + 0.54***
Steps 4 & 8  3.65 (0.97)  2.91 (1.00) + 0.74***

Progress 
Pre to Post 

SI1 + 0.89 (0.92)*** – 0.04 (0.71) + 0.93***
Step 1 & 5 + 1.42 (1.71)*** + 0.52 (1.57) *** + 0.90***

Step 2 & 6 + 0.91 (1.50) *** + 0.06 (1.48) + 0.85***

Step 3 & 7 –0.09 (1.15) – 0.89 (1.00) *** + 0.80***

Step 4 & 8 + 1.04 (1.18)*** + 0.08 (1.05) + 0.96***

*** p < .0005, ** p < .005, and * p < .05 
1Main results for SI (Chapter 5) 
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We now elaborate on three posttest Items for which the results of the 
intervention and comparison group were quite different. The first Item is from 
Watson and Callingham (2004) and the second and third are newly designed 
Items. First, we present the results for posttest Item 1 (see Figure 4.1). Most 
students of the intervention group (63.7%) based their advice on data from 
research by Consumer Report among 400 participants, and only the minority 
based their advice on the personal experiences of Mrs. Jones’ friends (35.6%). 
However, in the comparison group, we observed an inverse situation. Here, the 
majority of the students based their advice on the experiences of the friends 
(71.0%), and only a few students based their opinion on the Consumer Report 
survey (5.9%). A chi-squared test on the distribution over levels in percentages 
between both groups, confirmed a significantly higher score for the intervention 
group (χ2(2) = 80.84, p < .0005). The results show that students who attended 
the LT drew their conclusion on data-based claims. Preferring statistical 

Mrs. Jones wants to buy a new car, either a Honda or Toyota. She wants 
whichever car will break down the least. She read in Consumer Report that for 
400 cars of each type, the Toyota had more breakdowns than the Honda. She 
talked to three friends. Two were Toyota owners, who had no major 
breakdowns. The other friend used to own a Honda, but it had lots of 
breakdowns, so he sold it. He said he’d never buy another Honda. 

Which car should Mrs. Jones buy? Explain your answer 

Level Code Description 
5 3 Honda based on larger sample size, admitting uncertainty 
1 2 Doesn’t matter due to uncertainty  

Honda, without mentioning sample size 
1 1 Toyota, because of her friends’ experiences 
0 0 Other 

Group Average 
score 

Percent of students per level 
Level 5 Level 1 Level 0 

Comparison 
group 1.87 5.9% 71,0% 23.1% 

Intervention 
group 3.54 63.7% 35.6% 0.7% 

 

Figure 4.1. Students’ achievements on posttest Item 1, taken from Watson and 
Callingham (2004) 
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information over personal intuition and bias is an important step towards 
statistical inference. 

To investigate the game time of 1500 students at a secondary school, a sample 
is taken. The students in the sample are asked how much time in hours per week 
they spend on gaming. They decide to randomly question 30 students at the 
entrance of the school. 

6a. Draw in the graph below the sample results you expect. 

6b. What average game time(s) do you expect for a sample of 30 students? 

Level Code Description 
6 2 Range of values corresponding to (the peak of) the graph 

(at Item 6a) 
Single value corresponding to the graph, with a measure 
of uncertainty 

4 1 Single value corresponding to the graph 
0 0 Other values (not corresponding to the graph) 

Group Average 
score 

Percent of students per level 
Level 6 Level 4 Level 0 

Control group 3.18 19.3% 50.4% 30.3% 
Intervention 
group 3.94 28.1% 56.1% 15.7% 

 

Expected game time of secondary school students in a sample of 
30  

.. .. .. .. .. .. .. .. .. .. 
Game time in hours per week 

Figure 4.2. Students’ achievements on posttest Item 6b, newly designed Item 

Second, we present the results on posttest Item 6b, a newly designed Item (see 
Figure 4.2). Most students from both groups noted one specific value as their 
estimate of the sample result. In the intervention group, more students 
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considered sampling variability (28.1%) than in the comparison group (19.3%). 
In the comparison group, almost one-third of the answers (30.3%) did not match 
their answer given in Item 6a, while for the intervention group, only a smaller 
one-sixth (15.7%) did so. A chi-squared test on the distribution over levels 
confirmed a significantly higher score for the intervention group (χ2(2) = 6.57, 
p < .05). 

6c. Explain your answers to Items 6a and 6b. 
……………………….………………… 

Level Code Description 
5 5 Statement considering the effect of small sample sizes on 

variability to explain the shape of the graph and/or the 
range of values for the average at respectively Item 6a and 
Item 6b; the statement is bedded in the context 

4 4 Statement considering variability to explain the shape of the 
graph and/or the range of values for the average at 
respectively Item 6a and Item 6b; the statement is bedded in 
the context 

3 3 Statement considering variability to explain the shape/peak 
of the graph and/or the average (one value or a range) at 
respectively Item 6a and Item 6b; the statement is bedded in 
the context 

2 2 Statement without variability to explain the shape/peak of 
the graph and/or the average (one value or a range) at 
respectively Item 6a and Item 6b; the statement is bedded in 
the context 

1 1 Vague statement of variability, using context 
0 0 Statement without variability, only using context 

Group Average 
score 

Percent of students per level 
Level 5 Level 4 Level 3 Level 2 L  

Comparison group 1.19 0.4% 2.1% 13.0% 20.6% 2
Intervention group 1.97 0.4% 9.7% 20.6% 31.8% 3

 

Figure 4.3. Students’ achievements on posttest Item 6c, newly designed Item 

Third, we regard the results for posttest Item 6c, a newly designed posttest Item 
related to Items 6a and 6b (see Figures 4.2 and 4.3). Most students in the 
comparison group (63.9% for levels 0–1) focused on the context, without 
referring to the data from their sketched graph in posttest Item 6a or their 
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average in Item 6b, and without taking variability into account. For the 
intervention group, most students (62.6% for levels 2–5) did relate data from 
their graph or average to the context, however, half of these students (31.8%, 
level 2) argued a specific sample value without taking variability into account. 
A chi-squared test on the distribution over levels, confirmed a significantly 
higher score for the intervention group (χ2(5) = 28.19, p < .0005). As such, the 
results for Items 6b and 6c show that students who were taught using the LT 
performed better on making data-based claims with reference to statistical 
information and accompanied by probabilistic reasoning.   

Results on Students’ Learning Progression 
This section describes whether the supporting indicators for LT steps 1 to 8 
were observed in students’ worksheets (see Table 4.5). Column 3 presents the 
percentage of students that correctly elaborated the indicator in their work. In 
the following part, we highlight results from LT steps 2, 3, 4 and 7, that 
provided us with insight into how each of these LT steps fostered or hindered 
the students’ learning process. 

Table 4.5. Overview of Results for LT Steps 1 to 8 

LT step in 
Sequence I 
Categorical data 

Indicator 
Observed 
result 
(N = 267) 

1. Experimenting
with physical
black box

a. Making inferences about content
physical black box 100% 

b. Interpreting effect of larger viewing
window 88% 

2. Visualizing
distributions

a. Drawing expected sampling distribution
from repeated samples 91% 

b. Using (given) sampling distribution to 
determine the probability of sample results  99%

3. Modeling a
black box

Using statistical modeling in TinkerPlots to 
determine the probability of sample results  77%

4. Modeling real-
life contexts

Using statistical modeling in TinkerPlots 
for 
a. Interpreting effect of sample size in real-
life contexts 98% 

b. Probabilistic reasoning in real-life
contexts 83% 
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c. Determining the probability of sample
results, in real-life contexts 73% 

d. Informal hypothesis testing 30% 
LT step in 
Sequence II 
Numerical data 

Indicator 
Observed 
result 
(N = 224) 

5. Experimenting
with physical
black box

Making inferences about content physical 
black box 100% 

6.Visualizing
distributions Drawing expected population distribution 76% 

7. Modeling a
black box

Using statistical modeling in TinkerPlots 
(given model) for 
a. Making inferences about the population
distribution
using a small sample size 52% 
using a large sample size  81% 
b. Interpreting effect of sample size on
expected population distribution 57% 
c. Making inferences about the population
mean 100% 
d. Interpreting effect of sample size on the
expected population mean. 69% 
e. Determining the probability of sample
results (concerning the sample mean) 32% 

8. Modeling real-
life contexts

Using statistical modeling in TinkerPlots to 
determine the probability of sample results, 
in real-life contexts 

80% 

Step 2: Visualizing the black box sampling distribution to make inferences 
(categorical data) 
In LT step 2, for indicator 2a, most students (91%) drew a correct visualization 
of the expected sampling distribution as a global bell-shaped curve with a peak 
at 30. These students’ drawings could be divided in four types (see Figure 4.4). 
For indicator 2b, 99% of the students correctly determined the probability of a 
sample result of more than 34 orange marbles based on the sampling 
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distribution given. Students’ drawings and statements demonstrate their 
emerging understanding of the sampling distribution—that is, understanding the 
visualization of the frequency distribution from repeated sampling and using the 
distribution as a model for determining the probability of certain sample 
results—in the context of a black box. Although high deviating results were 
overestimated in some students’ drawings and incorrect local peaks appeared, 
most students correctly drew a bell-shaped curve with a peak at the population 
proportion. Furthermore, most students correctly determined the probability of a 
certain range of sample results using the sampling distribution given. In a short 
period of time, after just one lesson, students were able to draw and interpret the 
(expected) sampling distribution. We assume that the physical experiments from 
LT step 1, combined with classroom exchange and discussion, facilitated 
students for LT step 2. As such, we consider LT steps 1 and 2 as essential 
elements to foster students’ learning progress. 

Step 3: Modeling a black box to make inferences (categorical data) 
For step 3, the findings evidence that 77% of the students were able to use 
statistical modeling in TinkerPlots to determine most likely sample results 
within the context of a black box. The other 23% of the students incorrectly 
noted a vague or deterministic answer, for example: “According to TinkerPlots 
probably more orange than yellow marbles” or “A sample will contain 30 
orange and 20 yellow.” Teachers noted that most students independently 
deployed the required statistical modeling processes in TinkerPlots. Only a few 
students needed help in applying the correct digital techniques or interpreting 
the displays on their screen, for example the sample and sampling distributions. 
Teachers’ feedback for those students mainly consisted of referring to the 
physical black box experiment and TinkerPlots instruction sheet, in particular 
by making explicit the similarities between the experiment and the TinkerPlots 
environment. As such, the initial physical black box activities in LT step 1 and 
2 proved meaningful for introducing statistical modeling activities in step 3.  

Step 4: Modeling real-life contexts to make inferences (categorical data) 
In LT step 4, for indicator 4a and 4b, most students were able to use statistical 
modeling for interpreting the effect of larger sample size (98%) and for 
probabilistic reasoning in real-life contexts (83%). We observed more context-
independent terminology than in steps 1 to 3, as students’ statements involved 
samples, sample size, probability and variability. Teachers indicated that in the 
first of three lessons in step 4 about one-third of the students had difficulties 
applying statistical modeling in new contexts. Teachers’ instruction with 
reference to the black box context worked well for those students with 
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problems. During lessons two and three of step 4, these difficulties hardly 
occurred. Teachers mentioned that students were inclined to refer back to the 
black box context in their (verbal) reasoning while working on their tasks with 
real-life contexts.  

W2a Task description (for indicator 2a). This task is about a black box filled 
with 250 orange and 750 yellow marbles with a viewing window of 40. The 
number of observed yellow marbles per sample is noted. Consider what sample 
results you expect from 100,000 repeated samples. Make a sketch below, the 
horizontal axis displays possible sample results 0 to 40 and the vertical axis 
(without values) the frequency 
Category Observed 

result 
N = 243 

Category Observed 
result 
N = 243 

Category 1: Bell curve with 
peak at 30 and (almost) all 
results between 20 and 40  

Category 2: Bell curve 
with peak at 30, and 
(almost) all results 
between 20 and 40 
with (incorrect) local 
peaks  

45% 23% 

Category 3: Bell curve with 
peak at 30, and (almost) all 
results between 0 and 40  

25% Category 4: Smooth 
bell curve with peak at 
30  

7% 

Figure 4.4.  Four types of correct student drawings (𝑁𝑁 = 243) of the expected 
results of repeated sampling (100,000 repetitions) with sample size 40 in a 
sampling distribution, with percent per type 



Chapter 4 

118 

For indicator 4c and 4d, 73% of the students substantiated their statement with 
data found by statistical modeling in TinkerPlots. Of all students, 31% correctly 
stated that the school management can conclude that the breakfast habits of 
pupils are improved for unlikely high sample results—that is, for sample results 
above 80—and 42% incorrectly mentioned improvement for results higher than 
the common ones of 70, based on their TinkerPlots data found. Of all students, 
27% did not refer to their TinkerPlots data found (see Figure 4.5). 

Students’ inferences within new real-life contexts accompanied by more 
sophisticated probabilistic reasoning—that is, more context-independent 
language and statistical terminology—confirmed their emerging understanding 
of key concepts. Students used their simulated sampling distribution as a model 
for probabilistic reasoning in real-life contexts, which is an important step 
towards emergent modeling. Regarding indicator 4d, using the sampling 
distribution to determine at what sample results it is likely that a given model 
can be rejected—an informal approach of hypothesis testing—appeared difficult 
for students. Although from steps 1 to 3, students were familiar with sampling 
variability, they did not transfer this knowledge to their claim and tend to use 
the deterministic approach that any sample proportion found, higher than the 
population proportion, indicates a change of population. These results confirm 
earlier studies about students’ difficulties in understanding hypothesis testing 
(Stalvey et al., 2019). Nevertheless, 30% of the students correctly indicated 
when a given model should be rejected.   

Step 7: Modeling a black box to make inferences (numerical data) 
In LT step 7, for indicator 7a: making inferences about the population 
distribution, students tended to reflect the shape of one sample distribution 
found in TinkerPlots directly to the population (see Figure 4.6). However, when 
using a small sample size, a strict reflection often results in an incorrect 
irregular shape of the expected population distribution. Sample distributions for 
small sample sizes are less stable—sometimes even called dancing 
distributions—than for larger sample sizes. About half of the students (52%) 
compensated for these irregular shapes by comparing several (simulated) 
sample distributions, probably based on their experiences in LT steps 5 and 6—
concerning classroom exchange and discussion of varying sample distributions 
found from the physical black box experiment. 
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Figure 4.5. Percent of students per category of answers on Worksheet 4 Task 
18  

For indicator 7b, regarding the effect of sample size on the expected population 
distribution, most students (78%) correctly stated that the distribution from a 
larger sample better reflects the population distribution. Most of these students 
(73%) explicitly mentioned that larger sample sizes lead to more stable 
distributions: less variability, smoother bell-curve, a peak at the population 
mean, and fewer local peaks; the other 27% of these students stated that a larger 
sample contains more information which results in a ‘bigger’ distribution: has a 
wider range of results and higher bars. For 22% of the students we found 
incorrect statements, for example: “The distributions for small and large sample 
sizes are quite similar.” For making inferences about the population mean using 

W4 Task Description. At the beginning of the school year, 210 out of 300 
pupils had breakfast daily. At the end of the school year, the school 
management wants to investigate whether pupils’ breakfast habits have 
improved (e.g., more pupils are having breakfast daily). They decide to take a 
sample of 30. 
Specific Task Category of 

answers 
Examples of students’ 
work 

Observed 
result 
N = 267 

W4.18 (for 
indicator 4c)  
The school 
management 
decides to take a 
sample of 100. 
At which sample 
result (size 100) 
is it likely that 
pupils' breakfast 
habits have 
improved? 

Correct: 
referring to 
TinkerPlots 
data and 
considering 
sampling 
variability 

“At unlikely high 
samples results. In 
TinkerPlots most 
common results are 
between 60 and 80, so for 
results higher than 80” 

31% 

Correctly 
referring to 
TinkerPlots 
data, but 
incorrect 
conclusion 

“For sample results 
higher than 70, cause in 
TinkerPlots most results 
were around 70” 

42% 

Incorrect, not 
referring to 
data 

“For sample results 
higher than 70, cause at 
the beginning of the 
school year 210 out of 
300 had breakfast daily” 

27% 
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small and large samples, most students (69%) stated that a larger sample leads 
to a better estimate of the population mean: more stable, precise and reliable. 
The other 31% stated that for the expected population mean, using small or 
large samples sizes were quite similar.  

Task description. Sketch of expected population distribution for the content of 
the black box (height of 4,000 students) (for indicator 7a) 
 [W7.1] … , using a small sample size 
(40) 

 [W7.8] .... , using a large sample size 
(500) 

Examples of students’ 
work at W7.1 

Observed 
result 

Examples of students’ 
work at W7.8 

Observed 
result 

Sketch of the expected 
population distribution 
(correct) 

52%
Sketch of the expected 
population distribution 
(correct) 

81% 

Sketch of expected 
irregular-shaped 
distribution with local 
peaks 

48% 

Sketch of expected 
irregular-shaped 
distribution with local 
peaks 

19% 

Figure 4.6. Percent of students per category of answers on Worksheet 7 Tasks 1 
and 8  
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Regarding indicator 7e, most students (68%) had difficulties determining the 
probability of certain sample results. Students’ problems mainly consisted of 
confusing the sample and sampling distribution. For example, when students 
were asked to determine the probability of a sample mean below 1.55 m, 
students tended to refer to their simulated sample distribution instead of the 
sampling distribution; we also observed the other way around, when students 
were asked to determine the probability that a person’s height is below 1.55 m. 
We assume that the emphasis on three distributions—that is, sample, population 
and sampling distribution—in LT steps 5 and 6 caused confusion.  

Overall, teachers explicitly mentioned that the black box as guiding 
activity through the learning trajectory was clear and useful, especially the 
strong similarities between the physical black box and statistical modeling in 
TinkerPlots. Furthermore, teachers described the black box as a concrete, 
engaging activity that is free of bias—meaning not related to students’ personal 
preference or prior knowledge. The learning of digital techniques for using 
TinkerPlots in a short period of time took some time and effort. Teachers 
indicated that investing in these techniques was worthwhile, and that most 
students deployed the techniques rather easily. 

Conclusion and discussion 
This article reports on a design study that aimed for a theoretically and 
empirically underpinned design of an LT for introducing statistical inference in 
Grade 9. We addressed several aspects involved in design research on LT’s as 
advised by Duschl et al. (2011). To evaluate the designed LT, we analyzed the 
progression made by 267 students. First, the analysis of the posttest results 
indicates that students’ understanding of statistical inference as addressed in the 
coupled LT steps—in LT steps 1 and 5 on using samples, in LT steps 2 and 6 on 
visualizing distributions, in LT steps 3 and 7 on repeated sampling and effect of 
sample size, and in LT steps 4 and 8 on solving real-life problems—was 
significantly higher among students who took part in the LT than among 
students who followed the regular curriculum. These results demonstrate a 
higher score for all eight learning steps and, with that, a deeper understanding of 
the statistical concepts offered in each step. As such, it appears that all eight 
steps combined led to students’ higher performance on statistical inference. 
Second, the analysis of students’ worksheets, accompanied by teachers’ and 
researcher’s notes, confirms that all eight steps of the learning trajectory 
combined contributed in fostering students’ learning. In addition to developing 
the statistical concepts addressed within each learning step, we also observed 
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progress across the eight successive learning steps—for example, in using more 
abstract statistical terminology, data-based reasoning, and context-independent 
use of statistical concepts and models. As such, the results empirically 
substantiate the theoretically designed learning trajectory.  

Although research shows that reasoning and interpreting sampling 
distributions is difficult (Batanero et al., 1994; Castro Sotos et al., 2007; 
Chance, del Mas, & Garfield, 2004), the findings show that students can 
develop key concepts of statistical inference—sample, variability, and 
distributions—in a short period of time by using the black box sampling as 
guiding activity. Starting from LT steps 1 and 2, students developed an 
emerging understanding of the sampling distribution, initially as a visualization 
or model of their results, and gradually as a model for determining the 
probability of certain sample results. The strong similarity between the physical 
black box activities and the modeling activity in the digital environment of 
TinkerPlots facilitated the connection of the model to the real world (Konold & 
Kazak, 2008; Patel & Pfannkuch, 2018). In following LT steps, the black box 
served as a guiding paradigm for students’ reasoning and teacher instructions 
about key concepts, in particular while modeling real-life phenomena. 

Based on the promising results of this study into an LT for introducing 
statistical inference—designed on the basis of current ideas and theories in this 
area—we identify the following design heuristics as useful. First, the learning 
activities should be placed in a context that allows students to develop statistical 
concepts directly related to the learning goals of the LT—that is, a context that 
is recognizable to students, engaging, activating, and representative for the 
concepts at stake. Second, although activities may focus on specific statistical 
concepts, they should be viewed within the broader perspective of the entire 
statistical investigation cycle. Here, it is essential that students go through this 
cycle repeatedly, using different contexts with increasing levels of abstraction 
and complexity. Third, visual and enactive similarity between material and 
digital sources must be ensured for performing statistically identical procedures. 
Fourth, explorative and iterative activities with simulation software should be 
embedded to facilitate the development of context-independent conceptual 
understanding. Fifth, activities should be structured to support learners in 
developing a model of their concrete statistical activity that can then be used as 
a model for a network of statistical concepts and relationships. 

However, when higher order thinking activities were addressed in the LT, 
such as informal hypothesis testing or reasoning about population distributions, 
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we saw confusion among students. Apparently, more time and more iterations 
are needed to anchor the key concepts before proceeding to more complex 
statistical concepts and ideas. We therefore suggest in Sequence II—steps 5 to 
8—to focus on repeated sampling using the sample mean and to omit making 
inferences about the population distribution. In this way, the key concepts for 
statistical inference from Sequence I that emerge from the sample proportion of 
categorical data for repeated sampling can be further elaborated in Sequence II 
by using the sample mean of numerical data. 

To address more complex statistical concepts in a follow-up LT, repeated 
sampling with a black box (or boxes) may also be used as guiding activity. With 
regard to hypothesis testing, which is difficult for many students (Stalvey et al., 
2019), a hypothesis concerning the black box content can be used to introduce 
the idea of hypothesis testing. For example, by providing a physical black box 
filled with marbles and letting students test whether the given proportion is 
likely to be true. This also holds for other statistical concepts and ideas, such as 
determining the critical area and comparing groups, where the black box 
provides opportunities for engaging and guiding activities.  

Concerning the use of digital technology in the LT, investigating in 
learning to use a digital tool—which took time and effort from both teachers 
and students—appeared fruitful for students’ understanding of statistical 
inference. The digital techniques for using the tool enabled students to identify 
context-independent patterns in action that seemed to facilitate the transition 
towards emergent modeling. This transition was reflected in students' 
worksheets when they referred to similar previous technical actions and in 
students’ terminology that evolved from concrete terms to more abstract 
statistical terminology, for example from the term “viewing window” to 
“sample.” The development of a statistical vocabulary is essential for students’ 
understanding of concepts (Watson & Kelly, 2008). 

The results of this study can be positioned within the findings of our 
larger study. The findings from the larger study using all assessment Items of 
the pre- and posttest indicate that the LT also stimulated other domains of 
statistical literacy (Van Dijke-Droogers et al., submitted). These findings 
suggest that the current Dutch pre-10th grade curriculum can be enriched with 
informal statistical inference; we assume that this also holds for other countries 
with a focus on descriptive statistics in lower secondary mathematics curricula. 

Of course, this study comes with some limitations. Teachers’ 
implementation of the LT varied, for example in the amount of teacher guidance 
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and instruction during the teaching sequence. These differences were visible in 
students’ worksheets, with the reasoning of students with the same teacher 
being more or less similar. Furthermore, we encountered practical limitations 
during the intervention, such as difficulties with installing TinkerPlots on the 
school’s computer network and lesson shortening due to extremely high 
temperatures. The installation problems caused some delay but did not affect 
our study. Due to the lesson shortening, we collected 224 completed worksheets 
in Sequence II, instead of the 267 in Sequence I.  

On a final note, the findings suggest that curricula with a strong 
descriptive focus can be enriched with an inferential focus—at least for this type 
of student population—with the benefit of students learning more about 
inference, but not less about descriptive statistics. We recommend that 
educators and researchers involved in the design of teaching materials consider 
the embedding of black box activities combined with statistical modeling, to 
anticipate subsequent steps in the students’ statistics education.  



Effects of a Learning Trajectory for Statistical Inference 
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Abstract 

In our data-driven society, it is essential for students to become statistically 
literate. A core domain within statistical literacy is statistical inference, the 
ability to draw inferences from sample data. Acquiring and applying statistical 
inference is difficult for students and, therefore, usually not included in the pre-
10th-grade curriculum. However, recent studies suggest that developing a good 
understanding of key statistical concepts at an early age facilitates the 
understanding of inferences later on. This study evaluates the effects of a 
learning trajectory for statistical inference on Dutch 9th-grade students’ 
statistical literacy. Theories on informal statistical inference and repeated 
sampling guided the learning trajectory’s design. For the evaluation, we used a 
pre-post research design with an intervention group (n = 267). To interpret the 
significant learning gains of this group, we compared students’ results with 
national baseline achievements from a comparison group (n = 217) who 
followed the regular 9th-grade curriculum, and with international studies using 
similar test items. Both comparisons indicated that the learning trajectory had a 
significant positive effect on students’ statistical literacy and on the ability to 
make inferences in particular, but also on the other domains of statistical 
literacy. These findings suggest that current statistics curricula for Grades 7–9, 
usually with a strong descriptive focus, can be enriched with an inferential 
focus.  

Keywords 
statistical literacy, statistical inference, learning trajectory, assessment 
instrument, learning effects 
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Introduction 
In our data-driven society, it is essential for citizens to be statistically literate. 
Both our daily activities and professional practices increasingly rely on 
statistical information we obtain, either from taking measurements or through 
media reports. Statistical literacy concerns the ability to interpret, critically 
evaluate, and communicate about statistical information and messages (Gal, 
2002). The growing use of and dependence on statistical data requires an 
educational approach in which students learn to create and critically evaluate 
data-based claims (Ben-Zvi et al., 2015) and, as such, to become statistically 
literate.  

A core domain of SL is drawing inferences from sample data. However, 
learning and applying statistical inferences (SI) is difficult for students (Castro 
Sotos et al., 2007; Konold & Pollatsek, 2002). Therefore, in many countries, 
including the Netherlands, it is not offered in the pre-10th-grade curriculum. 
Recent studies suggest that developing, at an early age, a good understanding of 
key statistical concepts of sample, variability and distributions facilitates the 
understanding of SI later on (Ben-Zvi et al., 2015; Zieffler et al., 2008). 
Innovative educational software for simulating samples and repeated sampling 
offers opportunities to make these key concepts accessible (Biehler et al., 2013). 

To support students’ SI, a learning trajectory (LT) for 9th-grade students 
(14–15-years old) was designed to introduce the key concepts of SI (Van Dijke-
Droogers et al., 2020). Theories of informal statistical inference (Makar & 
Rubin, 2009) complemented by ideas of growing samples and repeated 
sampling (Bakker, 2004), constituted the design of the LT. This simulation-
based LT comprises an investigative approach that includes all stages of the 
statistical investigation cycle—from collecting data to interpreting the results—
with an emphasis on interpreting sample data and reasoning about probability. 
Although the focus of the LT is on SI, the approach concretizes broader 
underlying statistical concepts, such as measures of center and spread, 
distribution and correlation, by means of visualizations. As such, our conjecture 
is that the designed LT for introducing SI will also have a stimulating effect on 
the other, more descriptive-focused, domains of statistical literacy. Currently, 
the typical Dutch pre-10th-grade curriculum is mainly focused on those 
descriptive domains. In this regard, the purpose of the LT is to expand the 9th-
grade curriculum with SI, the more complex domain of statistical literacy, 
without neglecting the current educational goals on the other domains.  
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The aim of the study reported here is to evaluate the effects of the 
designed LT for introducing statistical inference on students’ statistical literacy. 
Therefore, we wanted to assess students’ performance on SI, and their 
achievements on the other descriptive-focused domains of statistical literacy as 
offered in the regular curriculum. Because such assessment instruments with a 
specific focus on SI hardly exist for our age group, we developed a pre- and 
posttest, by adapting and expanding already validated tests. This assessment 
instrument enabled us to establish students’ performance on both tests, and 
hence to evaluate the effects of the designed LT for statistical inference on 
students’ statistical literacy, and on the SI domain in particular.  

Theoretical Background 
Domains of Statistical Literacy 
Statistical literacy (SL) concerns critical thinking that uses statistical 
information as evidence (Schield, 2004). This includes the ability to read and 
interpret numbers in statements, surveys, tables and graphs and studies how 
statistical associations are used as evidence for causal connections. Although SL 
has several definitions, the most-used one comes from Gal (2002), where SL is 
portrayed as the ability to interpret, critically evaluate, and communicate about 
statistical information and messages. According to Rumsey (2002), SL includes 
the understanding of basic statistical concepts and ideas in data awareness, 
production, understanding, interpretation and communication.  

Three domains of SL can be distinguished (Watson & Callingham, 2003). 
The average and chance (AC) domain covers determining measures of center 
and spread, and calculating and interpreting chance issues, as reflected in the 
mathematics curriculum in most Western countries (Watson & Callingham, 
2004). The graphing and variation (GV) domain entails creating and 
interpreting visual representations of data with the variation involved. The 
sampling and inferences domain focuses on statistical inference and, as such, 
can be considered as the statistical inference domain within SL. This SI domain 
covers working with samples and drawing inferences, where interpreting the 
relationship between these two is particularly important in the process of 
statistical decision making.  

Many secondary school curricula make a distinction between statistics 
without probability (descriptive statistics, exploratory data analysis), as 
addressed in the GV and AC domains, and statistics with probability (inferential 
statistics) as addressed in the SI domain. The latter is usually taught at upper 
levels (Burrill & Biehler, 2011). This also holds for the Dutch secondary school 
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curriculum, in which statistics education progresses from descriptive statistics 
in the early years, to preparing for a more formal approach to inferential 
statistics from Grade 10 and in higher education (Van Dijke-Droogers et al., 
2017; Van Streun & Van de Giessen, 2007). In the Dutch curriculum for Grades 
7–9, the first two domains of SL are embedded in the descriptive statistics, 
whereas the SI domain is not addressed at all.  

Statistical Inference 
Statistical inference (SI) is at the heart of statistics as “it provides a means to 
make substantive evidence-based claims under uncertainty when only partial 
data are available” (Makar & Rubin, 2018, p. 262). As such, SI can be 
considered both an outcome and a reasoned process for probabilistic 
generalizations from data (Makar & Rubin, 2009). SI concerns interpreting 
sample results, drawing data-based conclusions, and reasoning about 
probability. For most students, it is difficult to understand SI and the uncertainty 
involved. Several studies focused on the introduction and conceptualization of 
SI. The offering of educational activities of SI at an early age on informal level, 
combined with the frequent recurrence of such activities later on, seems to make 
SI accessible for students, in particular at the school level (Makar & Rubin, 
2009; Paparistodemou & Meletiou-Mavrotheris, 2008; Van Dijke-Droogers et 
al., 2020; Zieffler et al., 2008). In general, this informal approach focuses on 
ways in which students without knowledge of formal statistical techniques, such 
as hypothesis testing, use their statistical knowledge to underpin their inferences 
about an unknown population based on observed samples. A widely used 
framework for informal statistical inference identifies three main principles: 
generalization beyond data, data as evidence for these generalizations, and 
probabilistic reasoning about the generalization (Makar & Rubin, 2009).  

SI requires an understanding of the key concepts of sample, variability 
and distribution—including frequency distribution and (simulated) sampling 
distribution. These concepts can be introduced at the school level by using ideas 
of simulating repeated samples (Garfield et al., 2015; Manor & Ben-Zvi, 2017; 
Rossman, 2008; Saldanha & Thompson, 2002; Watson & Chance, 2012) and 
growing samples (Bakker, 2004; Ben-Zvi et al., 2012; Wild et al., 2011). Digital 
tools such as TinkerPlots offer opportunities for simulating repeated samples 
and to visualize concepts, such as random behavior, distribution and probability 
(Garfield et al., 2012; Konold et al., 2007; Pfannkuch et al., 2018). Working 
with such simulations stimulates the understanding of statistical models and 
modeling processes, that are essential for SI. In the LT we designed, students 
start with interpreting the sampling distribution obtained from repeated 
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sampling with a physical black box filled with marbles. As a follow-up, 
students build and run a model of a real world situation in TinkerPlots and use 
this model, by simulating and interpreting the sampling distribution of repeated 
samples, to understand the real world situation, and to draw inferences. An 
overview of the LT can be found in Table 5.2. 

Assessing Statistical Literacy and Inference 
Assessment instruments at the secondary school level for SL, with a focus on 
SI, are scarce. The situation is very different at the tertiary level; think of the 
web-based ARTIST project—Assessment Resource Tools for Improving 
Statistical Thinking—by Garfield, delMas and Chance (2002), the CAOS 
project—Comprehensive Assessment of Outcomes in a First Statistics Course—
by delMas et al. (2007), the GOALS project—Goals and Outcomes Associated 
with Learning Statistics—by Garfield et al. (2012), and the BLIS project—
Basic Literacy in Statistics—by Ziegler (2014). The latter project, BLIS, 
involves a compilation of existing Items from the other projects supplemented 
with simulation-based questions. The Items in these projects require students to 
think and reason, not to compute, use formulas, or recall definitions.  

The only studies that seemed useful for our students were the ones by 
Watson and Callingham (2003, 2004) and the LOCUS project (Whitaker et al., 
2015), as both focused on Grades 6 to 12. Watson and Callingham's studies 
appeared to be particularly suited, as they specifically distinguished between the 
three domains of SL. Their approach allowed to identify students' SL, and also 
their performance on the domain of SI in particular. Using archived data from 
1993–2000, Watson and Callingham empirically developed a 6-level hierarchy 
of SL that helped to identify the distribution of Australian middle school 
students’ SL across the levels. Their hierarchical levels for SL are presented in 
Table 5.1. A follow-up study by Callingham and Watson (2017) showed that 
the level construct had remained appropriate and stable over time. This finding 
suggests that the identified levels provide a good basis for determining the level 
of SL in secondary education. In addition, their longitudinal analysis indicates 
that the statistical literacy hierarchy can be used to monitor students’ progress. 

Research Question 
This study focuses on the question: 

What are the effects of a learning trajectory for statistical 
inference on 9th-grade students’ statistical literacy?  
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To answer this question, we examined the effects of the LT on students’ 
proficiency in the domains of SL, SI in particular. Although the designed LT 
concentrates on statistical inference—the SI domain of SL—we conjectured that 
a focus on more complex learning activities for SI would also have a positive 
effect on students understanding of the other domains of SL.  

Table 5.1. Levels of Statistical Literacy as presented by Watson and 
Callingham (2003, p. 14) 

Level Characteristic of level 

6. Critical
Mathematical

Critical, questioning engagement with context, using 
proportional reasoning particularly in media or chance 
contexts, showing appreciation of the need for 
uncertainty in making predictions, and interpreting 
subtle aspects of language. 

5. Critical

Critical, questioning engagement in familiar and 
unfamiliar contexts that do not involve proportional 
reasoning, but which do involve appropriate use of 
terminology, qualitative interpretation of chance, and 
appreciation of variation. 

4. Consistent
Non-critical

Appropriate but non-critical engagement with context, 
multiple aspects of terminology usage, appreciation of 
variation in chance settings only, and statistical skills 
associated with the mean, simple probabilities, and 
graph characteristics. 

3. Inconsistent

Selective engagement with context, often in supportive 
formats, appropriate recognition of conclusions but 
without justification, and qualitative rather than 
quantitative use of statistical ideas. 

2. Informal

Only colloquial or informal engagement with context 
often reflecting intuitive non-statistical beliefs, single 
elements of complex terminology and settings, and basic 
one-step straightforward table, graph and chance 
calculations. 

1. Idiosyncratic

Idiosyncratic engagement with context, tautological use 
of terminology, and basic mathematical skills associated 
with one-to-one counting and reading cell values in 
tables. 
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Methods 
To evaluate the effects of the LT, we used a pre-post research design with an 
intervention group (n = 267) who engaged with the LT. To interpret the learning 
gains of the intervention group, we compared their results with national baseline 
achievements from a comparison group (n = 217) who followed the regular 
Dutch curriculum at an earlier stage, and compared the results with those of 
Australian students (Callingham & Watson, 2017). 

An Outline of the Learning Trajectory 
A Learning Trajectory (LT) is a design and a research instrument to structure 
and connect all elements involved in learning a particular topic. An LT consists 
of a set of learning goals for students, learning activities that will be used to 
achieve these goals, and conjectures about the students’ learning process. It 
includes the simultaneous consideration of mathematical goals, student thinking 
models, teacher and researcher models of students’ thinking, sequences of 
teaching tasks, and their interaction at a detailed level of analysis of processes 
(Clements & Sarama, 2004). 

The designed LT introduces the key concepts for statistical inference to 
9th-grade students by using an investigative approach with a physical black box 
and simulation-based methods (Van Dijke-Droogers et al., 2020), see Table 5.2. 
Ideas of repeated sampling and growing samples instantiate the design, both for 
working with the physical black box filled with marbles and for simulating 
samples using TinkerPlots. All stages of the statistical investigation cycle are 
addressed in the LT, as students collect both physical and simulated data, 
analyze their data using the sampling distribution, and interpret the results to 
answer the question posed. The emphasis is on interpreting sample data and 
reasoning about probability. Recent views on statistical models and modeling 
(Büscher & Schnell, 2017; Manor & Ben-Zvi, 2017; Patel & Pfannkuch 2018), 
and educational guidelines on the use of context, digital tools, exchange and 
comparison of sample results, making predictions, and engagement in both 
physical and simulation-based activities, are embedded in the design. The 
investigative approach and learning activities in the more complex SI domain 
also attend to the other domains of SL. For example, the AC domain, average 
and chance, is addressed as students summarize their obtained sample data in 
measures of center and spread. As another example, the graphing part of the GV 
domain is given attention in the visualizations of both sample results and 
population models, and the variation part is targeted as students explore results 
of repeated samples. 
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The LT comprises eight learning steps that are split into two similar parts of 
four. Part one considers only categorical data and includes the following steps: 
(1) experimenting with a physical black box, (2) visualising distributions, (3) 
statistical modeling using TinkerPlots, (4) applying models in new real-life 
contexts. Subsequently, in part two, LT steps (5) to (8) include similar steps, 
now using more complex numerical data. The eight steps of the LT were 
organized in two sequences of six 45-minutes lessons, with a total of twelve 
lessons.

Design of the Assessment Instrument 
To evaluate the effects of the designed LT, we needed an assessment instrument 
to measure 9th-grade students’ SL, and SI in particular. To measure the effects 
of the LT on students’ proficiency—i.e., students’ progress when working with 
the LT—we developed an assessment instrument consisting of a pre- and 
posttest, inspired by Watson and Callingham (2003, 2004). Following Ziegler 
(2014), we used existing items from validated tests for the design of the tests, 
supplemented by simulation-based items. As such, we used the approach of a 
pre- and a posttest from delMas et al. (2017), test items for statistical reasoning 
with levels from Watson and Callingham (2004), and expanded these with 
newly designed items on statistical inference and simulation. 

The pre- and posttest each contained ten clusters of items. Each cluster 
included two to six sub items, with a total of 39 and 34 items on the pre- and 
posttest respectively. Both tests had a similar composition and a time-duration 
of 45 minutes. For each test, we selected five clusters of items from Watson and 
Callingham (2004) that covered the three domains of SL. We selected one 
cluster item applicable for secondary level from the CAOS test (delMas et al., 
2007). As context was found to be an important factor affecting the difficulty of 
items for students, the selection of items was based on educational background, 
as well as on familiarity with the context. Table 5.3 provides an overview of the 
composition of the pre- and posttest, with reference to sources and 
accompanying domains of SL.  

Figure 5.1 shows an example of an item from a validated test, in the AC 
domain. The level scores in this item refer to Watson and Callingham’s (2003) 
hierarchical levels 1 to 6 for SL, supplemented with the null level for incorrect 
or uncompleted items. As Figure 5.1 shows, the answers could not be given on 
each level: It was not possible to formulate an answer on levels 1 and 2, the 
informal and inconsistent level, as all possible answers include the context 
information given—level 3 or higher—or the answer is incorrect—level 0. 

Effects of a Learning Trajectory for Statistical Inference 
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Table 5.3. Overview of Clusters and Items in the Pre- and Posttest 

Number of Items 
(clusters) 

Source Domain of SL 

Pre Post 

17 (5) 18 (5) Watson & Callingham AC – GV – SI 

3 (1) 2 (1) CAOS AC 

19 (4) 14 (4) Newly designed SI 

Similarly, based on the item context, some items could only be coded to a 
maximum level score of 4 instead of 6. As such, for the selection of items, the 
chosen items had to be similar in maximum level score on the pre- and posttest, 
for each domain of SL, to compare students’ scores on both tests. The average 
maximum scores for SI items on the pre- and posttest were similar, both around 
5.6, and, for the GV items, the average maximum scores were also similar, with 
around 3.7 for both tests. For AC, however, the maximum scores on the selected 
items in the pre- and posttest were rather different, with 5.7 and 4.6, 
respectively. To compensate for this difference, a correction was applied to the 
posttest results, so that students’ level scores on the pre- and posttest could be 
properly compared. Using the corrected AC scores, the average maximum score 
on SL was about 5.5 for both tests. As such, we considered the selected items 
on the pre- and posttest comparable for both tests, on all domains of SL. 

As we were specifically interested in the effects of the LT on students’ 
understanding of the concepts of SI as addressed in the LT, four additional 
items were designed for this study, focusing on the SI domain. For the design, 
we chose recognizable contexts and used the structure and phrasing of items 
from the two previously described tests. Figure 5.2 shows an example of a 
newly designed item with its levels. The level scores of these new items were, 
as with the existing items, based on Watson and Callingham’s (2003) level 
descriptions, and on the exemplary Items they formulated on the SI domain 
(2004).  

To analyze the validity of the designed assessment instrument for our 
Dutch 9th-grade students, we conducted two pilot tests in different classrooms, 
each consisting of 25 students, for the pretest. Concerning the concurrent 
validity of the new designed SI items, we expected the students to score on the 

Note. SL = Statistical Literacy, AC =Average and Chance, GV = Graphing and 
Variation, SI = Statistical Inference. 
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newly designed SI items at a similar level to the existing SI items from Watson 
and Callingham (2004). Students’ average level scores in the pilots on newly 
designed and existing SI items were not significantly different (Mnew = 2.49, 
SDnew = 0.71, Mex = 2.78, SDex = 1.38, n = 50, t(49) = –1.6; p = .11). For the 
other domains, GV and AC, all items were from already validated tests. To 
assess the content and construct validity of all test Items for our students, the 
results of each pretest pilot were used for in-depth discussion with experts in 
this area on content, construct, vocabulary, and clarity. In a similar way, the 
posttest was piloted in two other classrooms. The posttest pilots took place after 
the large-scale implementation of the pretest. Based on our pretest experiences, 
the initial designed posttest was modified slightly—for example, the number of 
items was reduced from 38 to 34. The results of the two posttest pilots, each 
consisting of 25 students who did not follow the LT or other statistics education 
in the intervening weeks, were thoroughly examined to ensure the pre- and 
posttest were comparable.  

Pretest Item 
Nine students in a science class weighed a small object separately on the same 
scales. The weights (in grams) recorded by each student are: 6.3   6.0   6.0   15.3  
6.1   6.3   6.2   6.15   6.3. The students had to decide on the best way to 
summarize these values. Ben said, “I’d use the most common value to get the 
mode. That’s 6.3.” 
Is Ben’s approach a good way to summarize the information? Explain your 
answer. 
Level Description Examples of students' reasoning 

6 

Statistical and contextual 
responses incorporating both 
positive and negative aspects of 
method 

“Yes, because Ben is using the 
most common weight for the Item. 
However, he does not look at the 
other weights and if the most 
common weight was an extreme 
value it would be inaccurate” 

5 

Statistical response – positive 
evaluation 

“Yes, the majority of times it was 
weighed at 6.3” 

Statistical response – negative 
evaluation 

“No, doesn’t take into account the 
other weights” 
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4 

Claims of inaccuracy but with 
no statistical response – 
negative evaluation 

“No, the mode might weigh more 
than the others”. 
No, it’s not accurate”. 
“No, three people might have 
weighed wrong” 

Claims of accuracy but with no 
statistical response – positive 
evaluation 

“Yes, it’s the average weight" 

3 

Recommendation of other 
methods 

“No, he should have added them up 
and divided by 9” 

Tautological but positive 
evaluation based on majority or 
“most common” 

“Yes, because he is using the most 
common” 

Methodological reasons – 
positive and/or negative 
evaluations 

“Yes, it’s easy”. 
“No, too much calculating” 

0 
No reason or apparent logic 
regardless of evaluation 
No response 

Figure 5.1. Item with corresponding level description from Watson and 
Callingham (2004, p. 138) 

Concerning the reliability of the tests, Cronbach’s alpha values were .84 and .85 
on the pre- and posttest respectively, indicating a good reliability (Taber, 2017). 
To assess the difficulty of the items, p values were calculated. To assess the 
discrimination of the items, we used Rit (Item–test correlation) and Rir (item–
rest correlation), using classical test theory. See Table 5.4 for an overview of the 
reliability of item characteristics on the pre- and posttest, with accompanying 
ratings. For the pretest, we observed moderately difficult items with four easy 
Items (p value > .80) and one difficult item (p value <.20). Rit and Rir values > 
.30 are indicated as good items, scores between .20 and .30 as medium, and 
scores < .20 as poor items (Ebel & Frisbie, 1991). The pretest Rit values 
indicated five poor items, twelve moderate and twenty-two good items, and, the 
Rir scores indicated eight poor items, sixteen moderate and fifteen good items. 
For the posttest, we observed moderately difficult items with four easy items 
and no difficult items. The Rit values indicated one poor item, nine moderate 
and 24 good items, and the Rir scores indicated two poor items, thirteen 
moderate and nineteen good items. We considered these item scores on the pre- 
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and posttest to be most acceptable. The pre- and posttest can be found in 
Supplementary Material C and D.  

Pretest Item  
To analyze the number of candies with 
strawberry taste in a roll of ‘Minitos’, 
700 rolls were checked. Each roll 
contained 20 candies. From each roll 
the number of candies with strawberry 
flavor was counted. The results of 
these counts are shown in the graph.  
Pieter claims that he had a roll in 
which half the candies were 
strawberry-flavored last week. Explain 
what you think of his claim. 

Results for 700 candy rolls 

Number of strawberry candies in one 
roll 

Level Description Examples of students' reasoning 

6 

Statement admitting 
possibility, but also 
acknowledging the 
unlikelihood of the event, 
based on graph 

“Well, it is possible that Pieter is 
telling the truth, but it is very 
unlikely. According to the graph, 
there is less than 2% chance” 

Statement of low likelihood 
based on being an outlier, 
with reference to the graph 

“The story of Pieter is very unlikely. 
According to the graph, there is very 
little chance of having 10 strawberry 
candies in one roll, however, maybe 
he was extremely lucky” 

4 

Statement of impossibility or 
possibility based on being an 
outlier without mentioning 
the graph 

“Maybe Pieter was lucky, it seems 
very unlikely to have that number of 
strawberry candies in one roll” 

3 

Definite statement of 
impossibility or possibility, 
without explicitly referring to 
the graph 

“Pieter is exaggerating, it is 
impossible to have that number of 
strawberry candies in a role” 

2 

Statement of possibility 
without acknowledging 
unlikelihood or reference to 
the graph 

“That is a large number of strawberry 
candies” 
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0 

Statement based on personal 
experience “I hope Pieter likes strawberry flavor” No reason or apparent logic 
regardless of evaluation 

Figure 5.2. Newly designed Item with corresponding level description on the SI 
domain of statistical literacy (SI = Statistical Inference) 

Table 5.4. Reliability and Item Characteristics of the Pre- and Posttest 

Pretest Posttest 
Average 
measure 

Rating Average 
measure 

Rating 

𝑝𝑝 value .54 Moderately 
difficult 

.62 Moderately 
difficult 

Rit value .35 Good .42 Good 
Rir value .30 Medium/good .36 Good 

Cronbach’s 𝛼𝛼 .84 Good .85 Good 

Participants 
Figure 5.3 provides an overview of participants and data collection. The 
participating students from both the intervention and comparison group were in 
the pre-university stream, and thus belonged to the 15% best performing 
students in our educational system. 

For the intervention group, through a national call, in for instance 
newsletters for math teachers and on Social Media, we invited Dutch teachers 
who were willing to implement the LT in their regular mathematics lessons. 
Eleven of them applied, with a total of 267 9th-grade students (aged 14–15 
years) from thirteen classes in five different schools. Two teachers participated 
with two of their classes. The teachers were instructed for the LT during two 
similar 3-hr sessions. The first session focused on LT steps 1–4 and included 
the 45-min lessons 1 to 6. The teachers worked through students’ lessons and 
materials themselves, guided by the researcher. The second session was similar 
to the first one and concentrated on LT steps 5–8, lessons 7 to 12. The project 
materials consisted of a teacher guidebook and students’ materials, such as 
worksheets, datasets, and physical black boxes with marbles. The teachers of 
the intervention group decided to eliminate all the regular 9th-grade statistics 
lessons to save time for the LT.  
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Figure 5.3. Overview of data collection and statistics education for the 
intervention and comparison group in grade 9. GV, AC and SI refer to the three 
domains of SL: graphing and variation (GV), average and chance (AC), and 
statistical inference (SI) 

Subsequently, we invited a comparison group through a national call, with 
teachers who did not participate in the intervention, but who were interested in 
using the assessment instrument to identify the SL of their students. The effort 
for teachers in the comparison group was considerably lower than for the 
intervention group. The six teachers of the comparison group only administered 
the pre- and posttests on their students (217 in ten classrooms). All students in 
the comparison group attended 10–16 regular statistics lessons during their 
mathematics lessons before the pretest. The regular curriculum focused on the 
AC and GV domains of SL, as described earlier in the section on the domains of 
SL. The comparison group attended no statistics lessons in between the pre- and 
posttest, and therefore, we expected their results on both tests to be similar. As 
such, the average results on the pre- and posttest for the comparison group could 
be used as Dutch baseline achievements for the SL of 9th-graders.  

One might suggest that posttest results of the two groups are not 
comparable because the posttest of the intervention group was taken within 1–2 
months after the intervention, and in the comparison group not until 3–4 months 
after education. Taking into account the time span between education and 
assessment, we could also compare the pretest results of the comparison group 
(1–3 months after education) with the posttest of the intervention group (1–2 
months after education). However, in retrospect, the comparison group's results 
on the pretest, which was taken 1–3 months after their education, was not 
significantly different from their results on the posttest. Since the results of the 
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comparison group on the pre- and posttest hardly differ, we considered the 
consequences of the intervening time to be negligible. 

We are aware that teachers from the intervention group who were willing 
to ‘go the extra mile’ were possibly more motivated for teaching statistics. 
However, the teachers of the comparison group also volunteered, mainly 
because they were interested in the performance of their students in the field of 
statistics. In this regard, the teachers from both groups had an above-average 
interest in teaching statistics. Students in both groups belonged to the 15% best 
achieving students in the Dutch educational system. They all successfully 
completed the regular statistics curriculum in Grades 7 and 8. Students’ grade 
level, from both the intervention and the comparison group, was described as 
average according to their performance on mathematics and statistics tests. As 
such, we assumed both groups to be comparable.  

Data Collection 
The data consisted of pre- and posttests from the intervention and comparison 
group. The pretest was taken in months 7–8 of the school year 2019–2020, from 
the participating students of both groups. The participating teachers took the 
test, according to a clear instruction for testing, from their own students during 
their regular 45-min mathematics lessons. The posttest was taken in months 9–
10 of the school year in a similar way, by the teachers during their regular 
lessons in their own school, see Figure 5.3. 

Data Analysis 
For the analysis, we first graded the pre- and posttest level scores for the 
intervention group on the domains of SL with two assessors, and we compared 
the scores of the intervention group with Dutch baseline achievements from the 
comparison group. Second, we compared the level scores for both groups with 
findings by Callingham and Watson (2017).  

First, for assessing students’ proficiency on the domains of SL, the pre- 
and posttest data from the participating 9th-grade students were coded with the 
level scores 0-6 for SL (Watson & Callingham, 2003), as described in the 
section on the assessment instrument. To indicate students’ progress for the 
intervention group, we compared changes in students’ pre- and posttest scores. 
To indicate students’ achievements, we compared the posttest scores of the 
intervention and comparison group, and as such, for being taught through the 
LT or the regular statistics curriculum. Graphical representations were used for 
data exploration. Several statistical measures were calculated, such as center 
and spread, and proportions for level scores. For significance, we used paired t 
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tests for comparing pre- and posttest results, one-way ANOVAs for comparing 
results from both groups, and chi square tests for comparing students’ 
distribution over the levels. For students’ proficiency level at SL, we calculated 
the mean of students’ average scores on the AC, GV and SI domain, allowing 
us to compensate for the inequality in the number of Items per domain.  

Second, to further interpret the effects of the LT on students’ SL, we 
compared our findings with the studies by Watson and Callingham and with 
their distribution of Australian students from Grades 6 to 9 found across the 
levels for SL. As our assessment instrument was mainly based on their validated 
tests and hierarchical level construct for SL, we considered the results for our 
students to be comparable to theirs. In this regard, we expected the distribution 
in levels for our 9th-graders to be broadly similar to their distribution found for 
grade 9, and also expected that most students would score on level 3–4 for SL. 
Concerning the comparison of our students’ average level scores with those of 
Australian students (Callingham & Watson, 2017), estimates for the Australian 
students’ average level score per grade were calculated using the distribution of 
students across the levels.  

For reliability of the analysis, a second coder was asked to independently 
grade a random set of 5% (250 Items) of the pre- and posttest data with 
students’ reasoning. The third coder agreed on 83% of the codes. Deviating 
codes, which were limited to one or two levels difference at most, were 
discussed until agreement was reached. Adjustments in the coding were also 
applied to the rest of the data. 

Results 
In this section, we first present the level scores for the intervention group on the 
domains of SL at the pre- and posttest, and we compare these results with Dutch 
baseline achievements from the comparison group. Second, to further interpret 
students’ level scores, we compare our results with findings from Watson and 
Callingham (2017). 

Students’ Level Scores for SL 
Table 5.5 displays students’ proficiency on the domains of SL in level scores 
for the pre- and posttest for the intervention and comparison group, including 
their progress from pre to post.  

When comparing the results for SL on the posttest, a one-way ANOVA 
between both groups indicated significantly more proficiency on SL for 
students who followed the LT in comparison with Dutch baseline achievements 
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from the comparison group, who followed the regular curriculum (+0.33; F(1, 
482) = 24.6, p < .0005). On the pretest, a one-way ANOVA between both
groups indicated the average level score for the intervention group on SL was
significantly lower than the score for the comparison group (–0.37; F(1, 482) =
34.9, p < .0005). The lower score was to be expected, as the intervention group,
unlike the comparison group, did not have 9th-grade statistics lessons prior to
the pretest. Furthermore, the lower level score of –0.37 for the intervention
group relative to the comparison group on the pretest turned out to be almost
equal in size to their higher level score of + 0.33 on the posttest. Since the
intervention group had an educational disadvantage of about one school year
relative to the comparison group at the pretest, their score on the posttest could
be interpreted as almost one school year advantage.

Table 5.5. Students’ Mean Level Scores on the Domains of SL at the Pre- and 
Posttest for the Intervention and Comparison group, Including their Progress 
from Pre to Post 

Intervention 
(n = 267) 

Comparison 
(n = 217) 

Intervention 
minus 

Comparison 
M (SD) M (SD) M(I) –M(C) 

Pretest 

SL  2.60  (0.61)  2.97  (0.68) – 0.37***
SI  2.45  (0.65)  2.72  (0.71) – 0.27***
GV  2.07  (0.63)  2.29  (0.58) – 0.22***
AC  3.29  (1.38)  3.92  (1.31) – 0.63***

Posttest 

SL  3.28 (0.69)  2.95 (0.78) + 0.33***
SI  3.34 (0.84)  2.67 (0.84) + 0.67***
GV  2.59 (0.81)  2.38 (0.88) + 0.21*
AC  3.92 (0.88)  3.80 (1.06) + 0.12

Pre to 
Post 

SL + 0.68 (0.86)*** – 0.02 (0.73)  0.70*** 
SI + 0.89 (0.92)*** – 0.04 (0.71)  0.93*** 
GV + 0.52 (0.98)*** + 0.09 (0.94)  0.43*** 
AC + 0.63 (1.53)* – 0.11 (1.45)  0.74*** 

* p < .05, ** p < .005, and ***p < .0005
Note. SL = Statistical Literacy; SI, GV, AC are domains of SL; SI = Sampling and
Inference, GV = Graphing and Variation; AC = Average and Chance.
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Regarding students’ progress on SL, a paired t test between the pre- and posttest 
for the intervention group indicated the average posttest score was significantly 
higher than the score on the pretest (+ 0.68, t(266) = 13.0, p < .0005). The 
average level score for the comparison group on the pretest was, as expected, 
not significantly different from their score on the posttest (–0.02, t(216) = 0.4, p 
= .65). Students’ results on SL confirmed our conjecture that following the LT 
had a clear positive effect on students’ SL. 

Students’ Level Scores on the Specific Domains of SL 
With regard to the SI domain of SL, on the posttest, a one-way ANOVA 
between both groups indicated that the level score for the intervention group 
who followed the LT was considerably higher in comparison with the Dutch 
baseline achievements from the comparison group (+0.67, F(1, 482) = 75.0, p < 
.0005). For the comparison group, the pre- and posttest scores on SI were again, 
as for SL, not significantly different, using a paired t test for differences 
between the pre- and posttest (–0.04, t(216) = 0.9, p = .40). On the pretest, 
however, when comparing both groups, the score for the intervention group was 
slightly, but significantly, lower than the level score for the comparison group 
(–0.27, F(1, 482) = 18.5, p < .0005). We did not expect this lower score. 
Although the comparison group followed the regular statistics curriculum, the 
SI domain was not offered in the regular lessons, so we expected a similar score 
for both groups. Concerning students’ progress for the intervention group, a 
paired t test between the pre- and posttest indicated that their average level 
score on the posttest was considerably higher than on the pretest (+0.89, t(266) 
= 13.0, p < .0005). The results for the intervention group were in line with our 
expectations, as we hypothesized that the investigative approach and more 
complex learning activities for SI as embedded in the LT would support all 
domains of SL, and SI in particular.  

Concerning the GV domain of SL, a one-way ANOVA between both 
groups indicated that the posttest score for the intervention group was slightly, 
but significantly, higher than the score for the comparison group (+0.21, F(1, 
482) = 7.4, p = .01). Although we expected the intervention group that followed
the LT with a focus on SI to progress in the other domains, we did not expect
them to reach higher scores than the baseline achievements from students who
followed the regular curriculum with a focus on GV and AC. The pre- and
posttest scores for the comparison group on the GV domain were not
significantly different (+0.09, t(216) = 1.4, p = .18). With respect to students’
progress on GV, a paired t test between the pre- and posttest for the intervention
group indicated that their posttest score was significantly higher than their
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pretest score (+0.52, t(216) = 8.7, p < .0005). Regarding students’ level for the 
GV domain, it is important to note that the average maximum scores for the test 
Items used in this domain were, as elaborated earlier in the methods section, 
considerably lower than for Items in the other domains. Therefore, the GV level 
score cannot be used for comparison with other domains.  

For the AC domain, a one-way ANOVA between both groups indicated 
that the posttest score for the intervention group that followed the LT was 
comparable with the Dutch baseline achievements from the comparison group 
(+0.12, F(1, 482) = 1.8,  p = .18). As for the GV domain, the posttest score on 
the AC domain for the intervention group was higher than we expected, as the 
LT focused on SI. Concerning students’ progress, a paired t test between the 
pre- and posttest for the intervention group indicated that their posttest score 
was significantly higher than their pretest score (+0.63, t(266) = 15.8, p < 
.0005). The comparison group scored similar on both the pre- and posttest (–
0.11, t(216) = 1.1, p = .26). The findings on the domains for SL confirmed our 
conjecture that following the LT had a clear positive effect on students’ SL and 
SI, and more moderate effects on the GV and AC domains.  

Students’ Level Score on SL in Comparison with those of Australian 
Students   
To further interpret the proficiency of students, we compared our results with 
those of Australian students (Callingham & Watson, 2017). In doing this, we 
compared the distribution of students over the levels for SL, and we compared 
students’ average level scores on SL. The distribution of students over the levels 
of SL on the pre- and posttest, is presented in Table 5.6. 

Table 5.6. Students’ Distribution over Levels of SL 

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

Pretest SL 
intervention (n = 267) 11.2% 25.5% 56.6% 6.7% - - 

Posttest SL 
intervention (n = 267) 1.1% 13.5% 44.6% 39.3% 1.5% - 

Pretest SL 
comparison (n = 217) 4.1% 17.5% 53.9% 23.5% - - 

Posttest SL 
comparison (n = 217) 6.5% 20.3% 46.1% 27.2% - - 
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Figure 5.4. Comparison of students’ level scores on statistical literacy (SL) 
with Australian grade results from findings by Callingham and Watson (2017) 
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The pretest scores for the intervention group corresponded most closely to the 
performance of Australian students in grade 6 (Callingham &Watson, 2017) 
and, as such, were lower than we expected. Figure 5.4 visualizes the comparison 
of students’ distribution over the levels. A chi-squared test on the distribution 
over levels in percentages, between the pretest score for the intervention group 
and each Australian grade 6 to 9, confirmed the highest p value, and with that 
the best fit, for grade 6 (χ2(4) = 6.26, p = .18). The pretest mean level score for 
the intervention group 2.60 (0.70) also corresponded to the estimate of the mean 
level score for Australian grade 6. The estimates per grade were calculated 
using the distribution of their students across the levels. Table 5.7 summarizes 
the comparison of both groups with Australian grade results, based on the 
distribution of students over the levels and average level scores. Regarding the 
posttest score for the intervention group, the results corresponded most closely 
to Australian Grades 7–8. The chi-squared test confirmed the similarity between 
the posttest scores for the intervention group and Grades 7–8, as the highest p 
values found were χ2(4) = 6.2, p = .184 and χ2(5) = 11.3, p = .05, for Grades 7 
and 8 respectively. The posttest average level score for the intervention group 
3.28 (0.69) also corresponded most closely to the estimate of the level score for 
Australian Grade 8 (3.3). The pre- and posttest scores for the comparison group 
were quite similar. According to the findings by Callingham and Watson, the 
scores for the comparison group corresponded most closely to Australian 
Grades 6–7. The chi-squared test confirmed the similarity, as the highest p 
values found were for Australian Grades 6 and 7 (χ2(4) = 9.3, p = .05 and χ2(4) 
= 5.8, p = .22 respectively). The mean level score for the comparison group on 
the pretest 2.97 and the posttest 2.95 also corresponded to the estimate of the 
level score for Australian Grades 6-7, respectively 2.6 and 3.1. 

Concerning the effects of the LT, the posttest score on SL for the 
intervention group that followed the LT appeared to be more advanced than the 
score for the comparison group. Moreover, from the comparison with findings 
by Callingham and Watson (2017), the advantage for the intervention group on 
SL corresponded again, as in our earlier findings, with about one school year 
higher. Furthermore, the calculated estimates of students’ average level score 
per grade from the study of Callingham and Watson indicated that students’ 
progress per year from Grades 6 to 9 is roughly 0.25. When we compare the 
posttest SL level score for the intervention group 3.28 (0.78) with the score for 
the comparison group 2.95 (0.69), the difference of 0.33 between both groups 
again corresponds to a level difference of more than one school year. 
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Table 5.7. Students’ Proficiency in Comparison to Grade-Results of Australian 
Students (Callingham & Watson, 2017), Based on the Distribution of Students 
over the Levels and the Average Level Scores 

Dataset Statistics 
education 

Distribution and average level 
similar to that found in grade X 
by C&W 

Pretest Intervention 
group (n = 267) 

No 9th-grade
statistics lessons Grade 6

Pre- and posttest  
Control group (n = 217) 

Regular 9th-
grade 
curriculum 

Grade 6-7 

Posttest Intervention 
group (n = 267) 

Learning 
Trajectory Grade 7-8 

Conclusion and discussion 
The aim of this study was to evaluate the effects of a learning trajectory for 
statistical inference on 9th-grade students’ statistical literacy, and on their SI in 
particular. Theories of informal statistical inference complemented by ideas of 
growing samples and repeated sampling, guided the design of the LT.  

Based on students’ level scores on the pre- and posttest and the 
comparison with Dutch baseline achievements from the comparison group, we 
conclude that the LT had a significant positive effect on students’ SL, and in 
particular on the SI domain. Furthermore, students who were taught using the 
LT showed significant improvements on the other domains of SL as well. With 
regard to SL, the posttest results showed significantly more proficiency for 
students who followed the LT in comparison to the Dutch baseline 
achievements from the comparison group. Regarding the domains of SL, 
students’ level score on the SI domain for the intervention group was 
significantly higher than for the comparison group. Furthermore, the scores for 
the intervention group on the GV domain—graphing and variation—were 
slightly, but significantly higher than for the comparison group, and their scores 
on the AC domain—average and chance—were comparable with the national 
baseline achievements from the comparison group. In comparing our results 
with those of Australian students (Callingham & Watson, 2017), the posttest 
results for the intervention group corresponded most closely to Grades 7–8, 
while the national baseline achievements from the comparison group equaled 
Grades 6–7.  
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Furthermore, the lower level score on SL on the pretest for the 
intervention group relative to the comparison group turned out to be almost 
equal in size to their higher posttest score. Since the intervention group had an 
educational disadvantage of about one school year relative to the comparison 
group at the pretest, their score at the posttest could be interpreted as an almost 
one school year lead. Moreover, the comparison with findings by Callingham 
and Watson also reflected a one school year lead, as the results for the 
intervention group were most similar to Grades 7–8, while those for the 
comparison group were more equivalent to Grades 6–7. 

In discussing these conclusions, there are a few points to consider. The 
first involves the low level of proficiency of our students on SL relative to 
Australian students (Callingham & Watson, 2017). We expected our students to 
score one the posttest on grade 9 level, and not on Grades 6–7 and Grades 7–8, 
for the intervention and comparison group respectively. These lower scores may 
be due to the fact that our Dutch pre-10th-grade statistics curriculum is more 
limited than the Australian curriculum for students in Callingham and Watsons’ 
research (https://www.australiancurriculum.edu.au/). Another issue in this 
respect is that the average maximum attainable score on the GV Items on both 
tests was lower (about 3.7) than for the other domains (about 5.5), which 
negatively affected students’ overall SL scores. When we compensate for the 
lower GV Item scores, the SL average level scores of participating students 
increase by about 0.3. When we then compare the adjusted SL scores with the 
Australian grade-results, the grade-results for our students increase with almost 
one school year, and, as such, were closer to our expectations. 

The second point considers effect sizes. The use of effect sizes is 
complex and disputed, and only makes sense for comparing similar studies 
(Bakker et al., 2019; Cohen, 1988; Schäfer & Schwarz, 2019; Simpson, 2017). 
The only study we could find that is similar enough to judge the differences 
found is Novak (2014), since it shares content and design with ours. Novak’s 
study involved the evaluation of a simulation-based intervention for an 
introductory statistics course at the university level. A pre-post research design 
was used with two random intervention groups and a total of 64 students, where 
both groups followed a slightly different simulation-based intervention. By 
comparing the pre- and posttest, Novak found a significant learning effect on 
students’ statistical knowledge with Cohen’s d = 0.45, and the effect on 
students’ conceptual knowledge was approaching significant with Cohen’s d = 
0.18. In comparing our results with theirs, the effects of the LT on students’ SL 
and on the SI domain appeared considerably positive with Cohen’s d = 0.90 and 
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Cohen’s d = 1.12 respectively, and we also found clear positive effects on the 
GV and AC domains. 

Limitations of our study are the following. First, we worked with students 
from the pre-university level, the 15% best performing students of our 
educational system. As such, the results in this research are not generalizable to 
regular classrooms without further research. Second, the intervention group 
took the posttest close after following education based on the LT. The 
comparison group completed their 9th-grade statistics lessons in the first part of 
the school year. By the time of the pretest, conducted 1–3 months after 
completing their statistics lessons, the students from the comparison group had 
possibly forgotten specific topics that not often recur, such as the median. To 
identify possible changes in their performance due to the time interval of a few 
months, the pre- and posttest were taken at two separate moments with an 
intervening time period of about two months. The tests were taken at the same 
time of the school year as for the intervention group to limit influences such as 
natural growth, in months 7–8 and 9–10 respectively. Taking into account the 
time span between education and assessment, we could also compare the pretest 
results of the comparison group (1–3 months after education) with the posttest 
of the intervention group (1–2 months after education). However, as the 
performances of the comparison group on both tests were comparable, this does 
not affect our conclusion. Third, we did not examine differences due to 
instructors’ or students’ background. We recommend taking both issues into 
account in future research.  

We present two points for recommendations. First, in this study, the 
identified levels of SL by Watson and Callingham (2003, 3004) proved well 
applicable for evaluating the effects of the LT. The development of a pre- and 
posttest, consisting of Items from validated tests—mainly from Watson and 
Callingham—supplemented by equivalent newly designed SI Items, enabled us 
to assess students’ SL, and their SI in particular. Both newly designed and 
existing test Items were found appropriate, with a Cronbach’s alpha greater than 
.84 on the pre- and posttest. In analyzing the results, the levels of SL appeared 
useful to examine students’ proficiency. Furthermore, the findings by 
Callingham and Watson (2017) proved useful for interpreting students’ results, 
and, with that, the effect of the LT. Therefore, we recommend researchers and 
educators who intend to investigate the SL of secondary school students to use 
the levels of SL by Watson and Callingham for assessing and evaluating 
students’ results.  
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Second, for the participating teachers of the intervention group, 
implementing the LT required considerable effort. In our study, 11 teachers 
from five different schools were willing to invest in the LT. The load for 
teachers from the comparison group was limited to administering two tests, 
making it easier for teachers to participate. Using a comparison group was of 
added value to interpret the intervention group results. Therefore, we 
recommend researchers and educators interested in the effects of an LT, who 
are for practical reasons confined to an intervention group with considerable 
effort for participating teachers, to consider the use of national baseline 
achievements from a comparison group. Furthermore, as highlighted by several 
researchers, much work remains to be done to obtain a good understanding of 
how to assess the practical and substantive effects of educational interventions, 
this study contributes by presenting a pre-post research design in which 
students’ results were compared with Dutch baseline achievements from a 
comparison group and with findings from international studies.  

To end with, the LT highly affected students’ performance on SL and SI, 
and we also indicated significant positive effects for the AC and GV domains. 
Although the LT was not focused on the latter two, the investigative approach 
and more complex learning activities for SI as embedded in the LT appeared to 
have a positive effect here as well. These findings suggest that current statistics 
curricula for grades 6–9, usually with a strong descriptive focus, can be 
enriched with an inferential focus—at least for the pre-university level. The 
benefit will be that students learn more about inference and not less about the 
other domains of statistical literacy, to anticipate subsequent steps in students’ 
statistics education. 
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Statistical thinking will one day be as necessary for efficient citizenship 
as the ability to read and write (attributed to H. G. Wells (1866–1946), in 

Watson, 2006, p. vii) 

Introduction 
The field of statistics (education) is changing rapidly. Over the past decades, the 
use of data in society increased tremendously due to technological innovations 
that provide opportunities to easily collect, store, analyze and represent data. As 
citizens and professionals, we are confronted daily with statistical information, 
which requires us to be statistically literate: to be able to interpret, critically 
evaluate, and communicate about statistical information and messages (Gal, 
2002). These changes in the field of statistics necessitate an educational 
emphasis on developing statistical literacy and learning from and with 
technology.  

Making inferences is the main goal of statistics. As such, the ability to 
draw conclusions about processes and populations based on samples is 
essential. However, research in statistics education shows how challenging this 
is for students (Castro Sotos et al., 2007; Konold & Pollatsek, 2002). In many 
countries, including the Netherlands, statistical inference is not taught until 
Grade 10 or higher. Most students’ difficulties relate to a limited understanding 
of key concepts required for statistical inference—such as sample, variability, 
and distribution. A way to overcome these problems involves offering informal 
statistical inference, before the transition to more formal inferential statistics 
(Makar & Ruben, 2009; Paparistodemou & Meletiou-Mavrotheris, 2008; Van 
Dijke-Droogers et al., 2020; Zieffler et al., 2008). In general, this informal 
approach focuses on ways in which students without knowledge of formal 
statistical procedures, such as hypothesis testing, use their statistical knowledge 
to underpin their inferences about an unknown population based on observed 
samples. Statistical modeling activities with educational digital tools facilitate—
on an informal level—the exploration of concepts for statistical inference 
(Biehler et al., 2013; Manor & Ben-Zvi, 2015). These digital tools offer 
opportunities to easily visualize and explore concepts as sampling, variability 
and distribution.  

In many countries, including the Netherlands, the statistics curriculum is 
evolving from descriptive statistics in the early years to more complex 
inferential statistics later on. Little is known about how to embed (informal) 
statistical inference earlier in current curricula. As such, there is a need for 
efficient learning trajectories, and knowledge about crucial steps in such a 



General Discussion 

157 

trajectory, that can extend the descriptive curricula in early years with 
inferential activities. To address this, the aim of this study was to gain 
knowledge about a theoretically and empirically based learning trajectory to 
introduce 9th-grade students to statistical inference. We addressed the following 
guiding research question:  

How can a theoretically and empirically based learning trajectory 
introduce 9th-grade students to statistical inference? 

The formulated research question involved both the design and evaluation of a 
learning trajectory. A design-based research approach seemed suitable to 
address this dual question. Three cycles were completed evolving in size of the 
trajectory and implementation scope. Furthermore, between cycles 2 and 3, a 
domain-specific case study was conducted into learning from and with 
technology. 

Research Overview and Main Findings 
Currently, one of the five Content Standards of the US National Council of 
Teachers of Mathematics (NCTM) encompasses the following specific 
expectations on statistical inference for grades 9–12: 

Each and every student should use simulations to explore the 
variability of sample statistics from a known population and to 
construct sampling distributions. Furthermore, students should 
understand how sample statistics reflect the values of population 
parameters and use sampling distributions as the basis for informal 
inference (NCTM, n.d.) 

In Chapter 2 we discussed the first research cycle concerning the first three 
steps of a learning trajectory for introducing statistical inference. In this starting 
phase of the research, defining design guidelines for a learning trajectory 
appeared challenging. Based on a literature study, personal experience as a 
teacher–researcher, and brainstorm sessions with a focus group, design 
guidelines were distilled. The focus group consisted of an experienced teacher, 
two teacher-researchers, a teacher educator, two experienced researchers, a 
statistician, and an educational developer. A hypothetical learning trajectory 
was developed, based on the guidelines distilled. The two main ideas 
incorporated in the design of the trajectory were repeated sampling with a black 
box and the use of simulation software for statistical modeling. The trajectory 
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aimed to introduce students to the key concepts for statistical inference. As 
such, we addressed the following research question: 

RQ1: How can repeated sampling with a black box introduce 9th-
grade students to the concepts of sample, frequency distribution, 
and simulated sampling distribution? 

To empirically evaluate the hypothetical learning trajectory, we conducted a 
teaching experiment with twenty 9th-grade students. Indicators of observable 
learning behavior of students that supported the hypotheses were drawn up for 
each learning step of the trajectory. The results showed that most indicators 
were observed. We assume that the strong coherence and construction between 
the three learning steps stimulated the students to go through the steps fluently. 
From their concrete black box experiences in step 1, by visualizing the scaling 
up of this experiment in step 2, students could easily make the transition to 
interpreting the simulated sampling distribution in step 3. Figure 6.1 illustrates 
the similarity between steps 1 to 3. These first three steps of the learning 
trajectory provided students insight into how a sampling distribution can be 
constructed and how it can be used as a model for interpreting variation and 
uncertainty. These findings suggested a promising way to introduce students to 
(informal) statistical inference. 

In Chapter 3, we presented a case study into learning from and with 
technology. Earlier studies indicated that the use of digital tools for statistical 
modeling offers means for introducing statistical inference, as those tools have 
the potential to deepen students’ conceptual understanding of statistics and 
probability (Pfannkuch, Ben-Zvi, & Budgett, 2018). Such educational digital 
tools, for example TinkerPlots, provide opportunities for statistical reasoning 
with data, as students build statistical models and use these models to simulate 
sample data (Biehler et al., 2017). As such, the use of statistical modeling 
seemed promising. In this study, we focused on how students’ statistical 
modeling processes in TinkerPlots fostered their development of statistical 
concepts. We particularly examined 9th-grade students’ intertwined 
development of learning techniques for using TinkerPlots and their 
understanding of statistical concepts, by using the theoretical perspective of 
instrumental genesis (Artigue, 2002). In this study, we addressed the following 
question:  

RQ2: Which instrumentation schemes do 9th-grade students 
develop through statistical modeling processes with TinkerPlots 



General Discussion 

159 

and how do emerging techniques and conceptual understanding 
intertwine in these schemes? 

Figure 6.1. Similarity between the digital environment of TinkerPlots in step 3 
and the physical black box experiment in steps 1 and 2 

A suitable phase to examine students’ instrumental genesis was after the 
introduction of the tool and the concepts, when acquired knowledge is applied 
in new situations, in step 4 of the learning trajectory. The data for this study 
consisted of video and audio recordings of two laboratory sessions with a total 
of 28 students. In particular, we analyzed how the development of digital 
techniques and the learning of statistical concepts were intertwined in the 
instrumentation schemes that students developed. We observed a strong 
intertwining between students’ emerging technical and conceptual 
understanding. Techniques for using TinkerPlots helped students to explore 
context-independent technical patterns that facilitated a conceptual shift from a 
model of to a model for (Gravemeijer, 1999). Vice versa, students’ conceptual 
understanding led them to explore more advanced digital techniques. These 
findings demonstrated that investing in learning digital techniques in the 
meantime had a positive effect on the development of statistical concepts. 

Chapter 4 considered the third research cycle and reported on the design, 
implementation and evaluation of the whole 8-step learning trajectory. Findings 
from the first two research cycles and the case study were elaborated in the 
(re)design of the trajectory in cycle 3. Research cycle 2—the implementation of 
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the trajectory in three classes at different school—is not elaborated in this 
thesis; however, the findings were incorporated in cycle 3. The aim of this third 
cycle was to empirically substantiate the designed learning trajectory by 
analyzing students’ progression during a large-scale intervention. We were 
specifically interested in how the eight steps of the trajectory fostered students’ 
understanding of statistical inference. Our focus was on both students’ learning 
processes and on their achievements for statistical inference. As such, the 
following research questions were addressed: 

RQ3.1: What are the specific effects of the designed Learning 
Trajectory (LT) on students’ understanding of statistical inference, 
in terms of the intended LT-step related learning goals? 

RQ3.2: How do the designed steps of the learning trajectory foster 
students’ learning processes? 

The designed learning trajectory included eight learning steps, divided into two 
similar sequences of four: (1) experimenting with a physical black box, (2) 
visualizing distributions, (3) investigating sampling distributions using 
simulation software, (4) interpreting sampling distributions for inferences in 
real-life contexts. Steps 1 to 4 included only categorical data and steps 5 to 8 
regarded numerical data.  

Finding participating teachers for the intervention was challenging, as the 
curriculum in Grade 9 allowed little time for adding an extensive learning 
trajectory like this. However, after some promotional activities, we were able to 
implement the learning trajectory in an intervention among 267 students in 13 
classes at different schools. A pre- and posttest were developed to evaluate 
students’ performance on the intended LT-step related goals for statistical 
inference, and a comparison group of 217 students—who attended the regular 
9th-grade curriculum—was used to indicate the results found. The analysis of 
test results demonstrated that students’ understanding of statistical inference as 
addressed in the coupled LT steps—in LT steps 1 and 5 on using samples, in LT 
steps 2 and 6 on visualizing distributions, in LT steps 3 and 7 on repeated 
sampling and effect of sample size, and in LT steps 4 and 8 on solving real-life 
problems—was significantly higher among students who took part in the LT 
than among students who followed the regular curriculum. In addition, the 
analysis of students’ worksheets, accompanied by teachers’ and researcher’s 
notes, showed that the eight steps of the learning trajectory fostered students’ 
learning processes. As such, the results empirically substantiated the 
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theoretically designed learning trajectory. Again, ideas of repeated sampling 
with a black box and statistical modeling proved fruitful for introducing 
statistical inference. Both ideas also have potential for embedding in more 
complex follow-up activities, such as testing hypotheses and comparing groups. 
These findings suggested that current statistics curricula with a descriptive focus 
can be extended with an introduction to statistical inference.  

In Chapter 5 we presented the effects of the learning trajectory on 
students’ proficiency on all domains of statistical literacy, and inferences in 
particular. Although the trajectory concentrated on statistical inference, we 
conjectured that the focus on more complex inferential activities would have a 
positive effect on students’ understanding of all domains of statistical literacy. 
In this chapter, we addressed the following research question:   

RQ4: What are the effects of a learning trajectory for statistical 
inference on 9th-grade students’ statistical literacy?  

For the evaluation of the effects of the learning trajectory, a pre-post research 
design with the intervention group (n = 267) from the third research cycle was 
used. To indicate the learning effects, students’ test results were compared with 
a national baseline and international findings. For the national baseline, we used 
the results of a comparison group (n = 217) that followed the regular 9th-grade 
curriculum, and the international comparison was done using an Australian 
study with similar test design. The comparison with the national baseline 
showed that the intervention group scored significantly higher on statistical 
literacy, and in particular on the domain of statistical inference. The comparison 
with the international study showed that the posttest results of the intervention 
group were similar to the results for Grades 7–8 of the international study, while 
the results of the comparison group were similar to those of Grades 6–7.  

Finally, the results indicated that the learning trajectory had a strong 
positive effect on students’ statistical literacy, and in particular on the domain of 
statistical inference. We also found significant positive effects for the other two 
domains of statistical literacy—graphing and variation, and average and chance. 
We assumed that the inquiry-based approach and the more complex learning 
activities for statistical inference, as embedded in the learning trajectory, 
brought about the positive effect on the other domains. These findings suggest 
that current statistics curricula for grades 6–9, usually with a strong descriptive 
focus, can be enriched with an inferential focus—at least for preparatory 
university education (VWO). The benefit will be that students learn more about 
inference and not less about the other domains of statistical literacy, to 
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anticipate subsequent steps in students’ statistics education. See Figure 6.2 for 
an impression of the intervention(s). 

Figure 6.2. Impressions of the intervention 

Contributions 
This research contributes theoretical insights that are closely related to a 
practical educational design. As Lewin (1952) wrote: “There is nothing more 
practical than a good theory” (p. 169). Scientific knowledge is gained about 
learning and teaching statistical inference, through designing and evaluating a 
learning trajectory for 9th-grade students. In addition, methodological 
knowledge is gained about how to design and evaluate an innovative learning 
trajectory through design-based research, ending with a quantitative analysis in 
the last cycle.  

Scientific Contribution: Introducing Statistical Inference 
As the field of statistics and its education are changing rapidly, knowledge 
about efficient learning trajectories is needed for the successful and sustainable 
implementation of curriculum changes (Biehler et al., 2018). In this regard, 
Ben-Zvi, Gravemeijer, and Ainley (2018) express the need to think about 
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learning environments and their design to support sustainable change in 
students’ understanding of key statistical ideas. 

Engaging in Statistical Inference Impacts on Statistical Literacy  
Although statistical inference is considered a more complex domain of 
statistical literacy, this study demonstrated that the designed learning trajectory 
for statistical inference had a significant positive effect on all domains of 
statistical literacy. As such, engaging in (informal) inferential activities also 
promoted students’ capacity on other statistical literacy domains. This insight 
into a joint development of (informal) statistical inference and literacy, allows 
in educational practice for an early introduction of statistical inference. An early 
introduction can support a sustainable change in students’ understanding of 
statistical concepts required for both making inferences and statistical literacy.  

Currently, the Dutch curriculum, as in many other countries, evolves 
from descriptive statistics in the earlier years to an inferential focus later on. In 
early years—pre-10th grade—the focus is on the statistical literacy domains of 
graphing and variation, and average and chance. Later on, the domain of 
statistical inference is given attention. The results of this research advocate an 
earlier introduction of statistical inference. The positive effects of the learning 
trajectory on the other domains of statistical inference are presumably due to the 
inquiry-based approach of the learning trajectory, in which all phases of the 
statistical investigation cycle are addressed several times—that is, posing a 
question, collecting data, analyzing data, to answer the question posed. This is 
consistent with previous studies and theories that advocate a holistic approach 
(Ainley, Pratt, & Hansen, 2006; Franklin et al., 2007; Lehrer & English, 2017; 
Van Dijke-Droogers, Drijvers, & Tolboom, 2017).   

Networking Theories 
Statistics education has matured into a discipline distinct from mathematics 
education, with its own perspectives on teaching and learning (Groth, 2015). 
Although statistics education has its own character, in many countries it is part 
of the secondary mathematics curriculum, including in the Netherlands. 
Coordinating perspectives from statistics and mathematics through boundary 
interactions between the two can strengthen both areas of education (Groth, 
2015). Given the landscape of strategies for connecting theoretical perspectives 
(Prediger, Bikner-Ahsbahs, & Arzarello, 2008), this research contributes by 
locally integrating mathematical ideas into statistics education research, that is, 
Realistic Mathematics Education theory and the perspective of Instrumental 
Genesis. 
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Connecting mathematics and statistics education: Realistic Mathematics 
Education 
As stated by Ben-Zvi et al. (2018), theories of constructivism and Realistic 
Mathematics Education (RME) (Freudenthal, 1983) provide a conceptual 
foundation to guide the design of learning environments for statistics education. 
According to the constructivist theory, new knowledge and understandings are 
grounded on students’ prior experiences, understandings, and practices (Cobb, 
1994; Piaget, 1978; Vygotsky, 1978). RME provides domain-specific design 
heuristics that encompass guided reinvention, didactical phenomenology, and 
emergent modeling (Gravemeijer, 2004); guidelines that serve for the design of 
mathematical learning experiences and that proved useful in our study.  

Based on these theories, repeated learning experiences with statistical 
concepts were incorporated in the design of the learning trajectory. Within and 
between each sequence of four learning steps, learning experiences with the key 
concepts of sample, variability and distributions, were embedded using the 
black box paradigm. Starting in learning steps 1 and 2 with the physical black 
box experiment, students developed a beginning understanding of the key 
concepts. Initially, the distribution was used as a visualization or model of 
sample results found, and gradually in steps 3 and 4, students were able to use 
the distribution as a model for determining the probability of particular sample 
results. The strong similarity between the physical black box activities and the 
modeling activities in the digital environment of TinkerPlots facilitated the 
connection of the model to the real world (Konold & Kazak, 2008; Patel & 
Pfannkuch, 2018). In the following learning steps, the black box served as a 
guiding paradigm in students’ reasoning and in the teacher's instruction of key 
concepts, particularly during modeling real-life phenomena.  

Several studies have indicated that reasoning and interpreting sampling 
distributions is difficult (Batanero et al., 1994; Castro Sotos et al., 2007; 
Chance, delMas, & Garfield, 2004). From the findings in this research, it 
appeared that students could develop the key concepts of statistical inference, 
including interpreting sampling distributions, in a short period of time by using 
black box sampling as a guiding activity. The design of the black box paradigm 
was based on the RME design heuristics for guided reinvention—for example, 
exploring sampling variability and using repeated sampling; for didactical 
phenomenology—exploring context-independent patterns; and emergent 
modeling—the conceptual shift from a model of to a model for. As such, the 
RME perspective strengthened the design of the learning trajectory for statistics 
education. 
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Connecting theories on statistics education and on instrumental genesis 
The use of digital tools is a shared problem space (Groth, 2015) between 
mathematics and statistics education. It is known from research in mathematics 
education that once digital tools are used during the learning process, the 
development of conceptual understanding becomes intertwined with the 
emergence of techniques for using the digital tool. A theoretical perspective that 
is useful to investigate this intertwining is instrumental genesis (Artigue, 2002; 
Drijvers, Godino, Font, & Trouche, 2013).  

Using the theoretical perspective of instrumental genesis enabled us to 
unravel students’ development of instrumentation schemes consisting of digital 
TinkerPlots techniques and conceptual understanding. The scheme 
developments revealed a strong intertwining in both directions between learning 
digital techniques and developing conceptual knowledge. The instrumental 
genesis perspective appeared helpful to demonstrate that and how investing in 
learning digital techniques simultaneously had a positive effect on the 
development of statistical understanding (see Chapter 3). Although we focused 
on statistical modeling processes using TinkerPlots, we consider our findings on 
the intertwining of emerging digital techniques and conceptual understanding 
applicable to the broader field of statistics education, and to other educational 
digital tools as well. Digital tools for other areas in statistics education also 
structure and guide students’ thinking by providing specific options for entering 
parameters and commands and by facilitating explorative options that may 
strengthen students’ conceptual understanding. As such, the perspective of 
instrumental genesis seems applicable for research into learning from and with 
technology in statistics education. 

To conclude, this research contributes to insights into the joint 
development of statistical inference and statistical literacy by demonstrating that 
engaging in (informal) inferential activities simultaneously may promote 
students’ capacity in other statistical literacy domains. Furthermore, this 
research presents fruitful insights by connecting theories of mathematics 
education research, that is, Realistic Mathematics Education and instrumental 
genesis, into statistics education research.   
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Methodological Contribution: Design-Based Research 
A design-based research approach (Bakker, 2018; McKenney & Reeves, 2012) 
proved effective for the design and evaluation of the innovative learning 
trajectory. Design-based research consists of a cyclical process in which 
educational materials are designed, implemented in teaching practice, and 
evaluated, for subsequent cycles of redesign and testing. Starting from a 
theoretically informed design, the trajectory was empirically tested in several 
cycles for further improvement. 

Cyclic Scaling Up the Length of the Learning Trajectory 
A cyclic scaling up in length of the trajectory allowed for a constructivist 
approach in the development of the learning trajectory. This research aimed at 
both the design and the evaluation of a learning trajectory. A constructivist 
approach enabled us to answer initial questions of: “What do we as educational 
designers want students to construct?” and “How do we create learning 
trajectories in which students construct what we want them to construct?” 
(Cobb, 1994). An initial focus on the first learning steps, allowed for monitoring 
students’ changing conceptions that provided insights as starting points for 
following steps. Although the design included a complete 8-step learning 
trajectory from the start in cycle 1, our focus for analysis and evaluation was 
initially on the first three learning steps. These three steps introduced the key 
concepts: sample, variability, and distributions, which were fundamental to 
subsequent steps in the trajectory. This focus on the initial steps enabled a 
specific examination of whether and how the paradigm of the black box and 
statistical modeling promoted students’ learning in steps 1 to 3. The results from 
these steps informed about the starting point in learning step 4. In cycle 2, the 
full learning trajectory was again conducted, with a focus on step 4. From the 
results, the need emerged to further investigate learning with and from 
technology in the fourth step—more specifically into the application of 
statistical modeling with TinkerPlots and students’ development of statistical 
concepts. As the construct and coherence in learning steps 1 to 4 were similar to 
steps 5 to 8, regarding categorical and numerical data respectively, the first two 
cycles and the case study provide knowledge about the whole trajectory. 

Cyclic Scaling Up the Number of Participants 
As addressed by Arnold et al. (2018), scalability is important in research 
regarding learning trajectories. However, experimenting with innovative 
learning trajectories in educational practice is complex, in particular on a large 
scale. Maass et al. (2019) stated: “Implementing innovations in one classroom 
can be a challenging endeavor, and it is even more demanding across a whole 
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school. However, it becomes exponentially more challenging when scaling up 
an innovation aims to reach many schools” (p. 304). In the initial cycle(s) of 
design-based research, a design is still in the experimental phase and it is 
unclear whether and how the learning trajectory will work. Teaching time with 
students is scarce and teachers want to fill their teaching time efficiently. 
Experimental aspects make it hard to ensure the effectiveness of the trajectory. 
To reduce this problem, we chose a small-scale start in cycle 1 with subsequent 
scaling up in cycles 2 and 3. For this purpose, cycle 1 was conducted in one 
class with 20 students, taught by the teacher-researcher. The teacher-researcher 
was able to make adjustments during the teaching practice to ensure the 
students’ learning efficiency. Based on the results, a (re)design was developed 
for scaling up in cycle 2 to three classes with a total of 60 students. The three 
participating teachers were not involved in the design of the trajectory and were 
aware of the experimental aspect. The researcher was present during each lesson 
as an observer and the teacher(s) and researcher discussed extensively before 
and after each lesson, to ensure the intended learning goals were addressed. 
Cycle 2 was not elaborated as a separate study in this thesis, but the results were 
incorporated in the (re)design for cycle 3.  

In cycle 3, the learning trajectory was evaluated on a larger scale. 
However, scaling up was an intensive process, as it required all educational 
materials to be unambiguous, complete, and feasible to minimize discrepancies 
in implementation. Also, the participating teachers had to be trained in several 
sessions for implementing the trajectory as intended. Despite the fact that 
researchers and teachers both strived for an effective learning trajectory, they 
aimed for slightly differing goals. On the one hand, the teachers’ goals were 
specifically focused on their students’ learning achievements, for which a fully 
developed learning trajectory was preferred. The researchers, on the other hand, 
wanted to gain new knowledge about crucial elements of the trajectory, which 
meant that experimental components—the effectiveness of which was not yet 
certain—were also incorporated in the design. To identify possible tension or 
misunderstanding due to these differing goals, we kept in close contact with the 
participating teachers during the large-scale intervention.   

A Quantitative Evaluation in the Final Cycle 
The third cycle aimed at quantifying the effects of the learning trajectory on 
students’ learning. Measuring students’ performance on pre- and posttests, for 
an intervention and comparison group, with the use of statistical methods is a 
convincing way to make claims about the effects of a learning trajectory. 
However, in design-based research, a quantitative approach is not commonly 
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used. In experiments, the focus is typically on the learning product rather than 
the process. As indicated by Savelsbergh et al. (2016), a common concern is 
that for experimental studies that only report pre-post results, it remains unclear 
to the reader how to benefit from the intervention reported. Evaluating the 
effects of a learning trajectory requires finding out that the trajectory works and 
also how it works; a focus on both process and product. To this end, the 
quantitative analysis in cycle 3 focused on both students’ global achievements 
on statistical literacy—and inferences in particular—and on specific step-related 
goals for statistical inference. 

For the evaluation of the trajectory in cycle 3, a pre- and posttest were 
developed, inspired by the work of Watson and Callingham (2003, 2004) on 
testing statistical literacy at the school level. A total of 267 students in 13 
classes at different schools participated in the intervention. Students’ 
performance on the test were used to verify that the trajectory works. To 
indicate students’ learning progress, the results obtained were compared to both 
national and international findings. Both comparisons confirmed that 
participating in the designed trajectory had a significant positive effect on 
students’ statistical literacy, and in particular on the domain of statistical 
inference (see Chapter 5). To analyze how the trajectory works, we specifically 
examined the effects of the 8-step learning trajectory on students’ understanding 
of step-related goals for statistical inference. As such, we analyzed students’ 
progression during the large-scale intervention, using students’ worksheets and 
their test scores on learning step-related test Items (see Chapter 4).  

To conclude, this research contributes to methods of educational research 
by presenting how complexities involved in experimenting with innovative 
educational materials can be overcome by using design-based research with 
cyclic scaling up—in number of participants and length of the learning 
trajectory. Evolving from a small-scale qualitative focus in cycles 1 and 2 to a 
more quantitative large-scale approach in cycle 3 enabled us to develop an 
empirically based learning trajectory—that is, to design a learning trajectory 
and to evaluate that and also how it works.   

Limitations 
This thesis presents a learning trajectory for introducing statistical inference that 
proved to be effective for Dutch 9th-grade students in the pre-university stream. 
In designing this trajectory, we opted for an approach with a black box 
experiment combined with statistical modeling. This was an approach that 
proved beneficial. However, one might wonder whether other approaches for 
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(informal) statistical inference may also provide positive results, such as starting 
from meaningful data contexts (Franklin et al., 2007; Pfannkuch, 2011) or 
expanding the growing samples principle (Bakker, 2004). Our research did not 
look at this question. However, we demonstrated that it is possible to introduce 
a complex domain of statistical literacy, such as inferences, at a younger age.  

Evaluating the effect of the trajectory by using pre- and posttests for an 
intervention and comparison group, raises issues of generalization and causality. 
The use of evidence-based randomized controlled trials on the effectiveness of 
educational materials has its limitations (Olsen, 2004). Although no strict 
statistical claims from sample to population and causal effects can be derived, 
the quantitative analysis in research cycle 3 does provide insight into the effects 
of the learning trajectory on the achievements of the students we worked with. 
For the intervention group, we worked with teachers who volunteered to 
participate. These teachers were willing to invest time and effort in the 
implementation of an innovative statistics project, and as such were above 
average motivated. These teachers were inexperienced in teaching statistical 
inference, as this is not offered in the current pre-10th curriculum, and 
inexperienced in teaching from and with technology. They implemented the 
learning trajectory for the first time, which made them inexperienced and 
unfamiliar with the learning materials. When repeated in a following year, with 
the same teachers, it will probably be easier for them to implement. The effect 
of a learning trajectory strongly depends on the way it is implemented by the 
teachers. We consider the positive effects found, for 267 students with thirteen 
teachers at different school, as a strong indication that the learning trajectory 
works—when implemented as intended. To investigate the effect of the learning 
trajectory, we focused on students’ cognitive achievements. We did not address 
the effects of the trajectory on other aspects related to students’ learning, such 
as involvement, autonomy, relevance, commitment, engagement, motivation 
and expectations.  

Implications for future research and educational design 
Based on the findings in this study, we suggest the following directions for 
future research and educational design. 

Joint Development of Statistical Inference and Statistical Literacy 
The results in this research demonstrated a joint development of statistical 
inference and statistical literacy, for the group of students we worked with—that 
is, for 9th-grade students in pre-university education. These students had basic 
statistical knowledge from their descriptive statistics lessons in Grades 7 and 8, 
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such as using graphs and calculating measures of center and spread. Engaging 
in (informal) inferential activities in earlier years or in other educational levels 
may also promote a joint development. However, our research was focused on a 
specific educational level and age. More research is needed to investigate this 
joint development for students with less prior knowledge and on other 
educational levels.  

Networking Theories for Mathematics and Statistics Education 
This research presented fruitful insights by connecting theories of mathematics 
education research—that is, Realistic Mathematics Education and instrumental 
genesis—into statistics education. When integrating perspectives from two 
educational areas, insights into both areas can be strengthened. Networking 
theories is especially urgent for mathematics and statistics education, where 
there are several shared problem spaces (Groth, 2015). On top of that, in 
educational practice, mathematics and statistics lessons are often taught by the 
same mathematics teacher, for whom integrating knowledge from both areas 
can be beneficial. We therefore recommend more research with networking 
theories to strengthen insights for both mathematics and statistics education. 

The Lens of Instrumental Genesis on Using Technology in Statistics 
Education 
In this research, we focused on students’ statistical modeling processes using 
TinkerPlots. The perspective of instrumental genesis helped to gain insight into 
students’ learning from and with technology. Revealing students’ 
instrumentation schemes provided insight into how the learning of the tool 
related to the development of statistical concepts. We consider our findings on 
the intertwined development of digital techniques and conceptual 
understanding, to be applicable to the broader field of statistics education, and 
perhaps also when using other digital tools. More research is needed to explore 
the applicability of instrumental genesis for other topics, other educational 
levels, and with other digital tools. 

Recommendations for Educational Practice 
In this section we highlight recommendations for educational practice that 
appeared from our findings.  

Addressing Statistical Inference in Early-grade Curricula 
This research presents a learning trajectory for statistical inference in 
descriptive-oriented pre-grade 10 curricula. The findings suggest that current 
statistics curricula for grades 6–9, usually with a strong descriptive focus, can 
be enriched with an inferential focus—at least for preparatory university 
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education (VWO). The benefit will be that students learn more about inference, 
and not less about the other domains of statistical literacy, to anticipate 
subsequent steps in students’ statistics education. Introducing (informal) 
statistical inference in these early years of secondary school seems feasible, 
effective, and beneficial for students’ follow-up statistics education. However, 
implementing innovations within educational curricula is complex. A combined 
approach of top-down and bottom-up seems most effective (Fullan, 1994). 
More research is needed into how innovations can be successfully addressed in 
current statistics curricula with a descriptive focus.  

Broadening of the Black Box Paradigm 
The black box activities, combined with statistical modeling, proved engaging 
and promoted students to achieve the intended learning goals. We assume that 
these activities can also be applicable for younger students or students in other 
streams of secondary education—that is, not pre-university level. Furthermore, 
the ideas of the black box and modeling also seem applicable to more complex 
statistical concepts, such as comparing groups or hypotheses testing—which are 
difficult for many students (Stalvey et al., 2019). For example, providing a 
physical black box filled with marbles and having students test whether the 
given ratio is likely to be true, can be an informal approach to hypotheses 
testing. We recommend teachers and educators involved in the design of 
teaching materials for introducing statistical inference to consider these ideas. 

Preparing Mathematics Teachers for Innovations in Statistics Education 
To successfully implement learning trajectories for statistics, we recommend to 
carefully prepare participating mathematics teachers. In many countries, 
including the Netherlands, secondary statistics education is part of the 
mathematics curriculum. The differing nature of statistics—more contextual and 
less deterministic—makes it less popular among many mathematics teachers. In 
addition, many mathematics teachers in the early years of secondary education 
are inexperienced and not trained to teach inferential statistics. On top of that, 
most mathematics teachers are not used to work with technology in class, and 
they are not accustomed to an inquiry-based teaching approach that differs from 
the often instruction-based regular lessons. 

Using Technology in Statistics Education 
Technology is indispensable for doing and learning statistics. However, many 
mathematics teachers are insufficiently trained to teach statistics by digital 
means. For the participating teachers in our research, learning how to use a new 
digital tool themselves, as well as learning how to teach with a digital tool and 
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how to teach students to use a digital tool, appeared challenging. In daily 
educational practice, teachers typically lack time and opportunities to develop 
their proficiency for teaching and learning from and with digital tools. More 
research is needed into how teachers can be adequately prepared for using 
technology in statistics education. 

In many schools, teaching with digital tools is also limited due to 
practical issues. During the implementation of our learning trajectory, we were 
confronted with several practical problems, such as computer shortage, 
difficulties with scheduling in computer rooms, problems with installing new 
software on a school network and poor internet facilities. More research is 
needed into how schools can be sufficiently facilitated in both materials and 
knowledge for effective deployment of technology, especially within statistics 
education.   

The use of technology in education increased tremendously in the past 
year, due to the COVID pandemic. The abrupt school closure in many 
countries, including the Netherlands, resulted in a disorderly explosion of using 
all kinds of digital learning environments. The vast body of experiences gained 
provided a new impulse to teaching and learning with technology. These 
developments call for research into sustainable educational innovations in 
which the use of technology can be integrated into the regular educational 
system. 

Personal Reflection as a Teacher-researcher 
Starting this research project involved transitioning from a familiar educational 
world into an unfamiliar scientific world. Combining both worlds, in the role of 
a teacher-researcher, is identified by Bakx et al. (2016) as boundary crossing. In 
this regard, boundaries encompass socio-cultural differences, which lead to 
discontinuity in action or interaction (Akkerman & Bakker, 2011). Boundary 
crossing is defined by Bakker and Akkerman (2014) as efforts made by 
individuals or groups at boundaries to establish or restore continuity in action or 
interaction across practices. As a beginning researcher, the assimilation into the 
scientific culture, the novelty of academic knowledge and skills, and the 
unfamiliarity with fellow researchers, were challenging aspects. Balancing time 
and flexible switching between the two worlds remained a concern throughout 
the project. When implementing and coordinating the intervention(s), both 
worlds—and with that both roles—intersect. On the one hand, it was 
challenging to observe and analyze intervention data as a researcher, and not as 
a teacher. On the other hand, teacher experiences were beneficial in designing 



General Discussion 

173 

the intervention, organizing it practically, and guiding participating teachers. 
Research by Bakx et al. (2016) indicates that more teacher-researchers 
recognize the challenges described in boundary crossing. However, they did not 
mention the ambiguity in roles that might occur when both worlds intersect, as 
is the case with intervention studies—research in educational practice. 

This research project made a rich contribution to my professional 
development as a teacher at a micro, meso and macro level (Akkerman & 
Bruining, 2016). At the micro level in my own teaching practice, this research 
project provided insight into students’ learning processes and how to promote 
these. For example, the designed learning trajectory was implemented in my 
classes and knowledge gained was also integrated into the teaching of other 
mathematics topics. At the meso level as a teacher in the school, this research 
provided an advanced analytical view on the school as educational system. For 
example, this research provided insight into integrating (inter)national 
educational theories, materials and approaches at the school level, and also 
insight into the coherence between groups within the school and the educational 
system, with varying goals and perspectives—for example teachers, students, 
authors of textbooks and educational designers. At the macro level of the 
(regional and national) mathematics education community, the research findings 
were disseminated to mathematics teachers by arranging workshops, and by 
publishing findings in journals for mathematics teachers. As a result, several 
teachers implemented the designed learning trajectory in their classrooms, in a 
variety of educational levels and grades—for example in Grades 10–12 and 
higher education. The informal exchange of their experiences was a valuable 
continuation and addition to this research project.  

As a researcher, this project enabled me to develop and increase my 
competencies and passion for conducting research. Functioning within the 
scientific community deepened my perspective on teaching and research. 
Working with experts at the Freudenthal Institute was a unique learning 
experience. Also, collaboration with international colleagues broadened my 
view on education in many ways. In summary, this research project 
strengthened my professional development in a broad scope—as a professional 
in the classroom, within the school, and within the (inter)national world of 
education and research. 
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Supplementary Materials 

Supplementary Material A: Overview of the Eight-step LT 
Step 1 starts with a physical black box experiment. Students examine the 
content of a black box filled with 1,000 marbles in the colors yellow and 
orange. By counting the number of yellow marbles in a viewing window with 
20 visible marbles—and later using a larger window with 40 visible marbles—
they examine how many yellow marbles there are in the whole box. By 
repeatedly shaking the black box and counting the visible yellow marbles, 
students become aware of sampling variability.  

In this physical experiment of step 1, students collect sample data to 
estimate the population—here the content of the black box. By taking repeated 
measurements, i.e., samples, and exchanging them within the classroom, they 
are confronted with sampling variability. Students experience that an estimate 
can be made based on a sample, but that the content cannot be determined with 
absolute certainty. By repeating this experiment using a larger viewing window, 
students experience that the corresponding estimates vary less and provide a 
better picture of the population. The hypothesis for step 1 is that students get an 
idea of the concept of a sample with associated uncertainty. This activity 
incorporates theories of repeated and growing samples (Bakker, 2004; Saldanha 
& Thompson, 2002; Wild & Pfannkuch, 1999) and informal statistical inference 
(Makar & Rubin, 2009), combined with design principles of Realistic 
Mathematics Education (Freudenthal, 1983) and ideas of using meaningful 
contexts (Ainly et al., 2006). From step 1, in which students experience the 
variability and uncertainty of samples and the added value of using repeated and 
larger samples, raises the question of what happens when we further increase 
the size and number of repeated samples. Students experienced in this step that 
conducting more repetitions and using larger sample sizes requires more time 
and effort. As a follow-up, in step 2 they use a thought experiment to explore 
possible sample results for a large number of repetitions. 

In step 2, students make a sketch of the sample results they expect when 
the black box experiment of step 1 is repeated many times. They sketch the 
expected frequency distribution for 100,000 repeated samples of size 40 from a 
black box filled with 750 yellow and 250 orange marbles. Sketched 
distributions are exchanged and discussed in classroom. As a follow-up within 
step 2, students determine the probability of a certain range of sample results 
from a given distribution for 1,500 repeated samples. 
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In sketching the frequency distribution in step 2, students visualize the 
sampling variability they expect for a large number of repetitions, based on their 
experiences with the black box in step 1. Furthermore, students use their 
experience in sketching the frequency distribution from repeated samples, for 
interpreting a given distribution to determine the probability of a certain range 
of sample results. The hypothesis for step 2 is that students get to understand the 
concept of frequency distribution for repeated samples by sketching one and, 
subsequently, that they understand that the distribution facilitates them to 
determine the probability of a certain range of sample results. In this step, 
theories on making predictions—or using “What if” questions—and reasoning 
with the frequency distribution from repeated sampling (Rossman, 2008; 
Watson & Chance, 2012) are incorporated. From step 2 emerges the question of 
how to get a distribution of repeated samples to determine the probability of 
certain sample results, in a quick and easy way. Therefore, in step 3, students 
are introduced to the digital environment of TinkerPlots. 

Figure 1. Similarity between the digital environment of TinkerPlots in LT 
step 3 and the black box experiment in LT steps 1 and 2 

In step 3, students use statistical modeling within the digital environment of 
TinkerPlots to examine the probability of certain sample results by interpreting 
the simulated sampling distribution of repeated samples, within the context of a 
black box. Statistical modeling includes building a model (i.e., of a black box 
filled with marbles), simulating repeated samples, visualizing the sampling 
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distribution and interpreting the results. Subsequently, students experiment with 
varying sample sizes and number of repeated samples to investigate the effects 
of size and repetitions on the estimate of the population. 

The digital environment of TinkerPlots has strong similarities with 
students’ experiences from step 1—the viewing window with marbles—and 
step 2—their sketched visualizations of the frequency distribution of repeated 
samples (see Figure 1). The hypothesis in step 3 is that students recognize the 
digital environment of TinkerPlots from their physical black box experiments 
and visualizations, and that these experiences facilitate them to deploy statistical 
modeling and to interpret the simulated sampling distribution. According to 
Chance et al. (2004), ways to improve the understanding of sampling 
distributions include exploring samples, comparing how sample behavior 
mimics population behavior, and conducting both structured and unstructured 
explorations with the digital tool. Step 3 constitutes on theories about working 
with a computer model for simulations that has a strong connection with a 
concrete experiment (Chance et al., 2007; Konold & Kazak, 2008; Manor & 
Ben-Zvi, 2015)—here the black box experiment— and about working with 
simulations of many repeated samples to determine whether a sample result is 
likely (Garfield, et al., 2015; Manor & Ben-Zvi, 2015; Watson & Chance, 
2012). These theories are combined with ideas about experimenting with 
various sample results from a given population to explore the effects of sample 
size and number of repetitions on sampling variability (Wild et al., 2011), and 
accordingly, on the probability of the inference about the population. From 
steps 1–3, students get to understand that statistical modeling can be helpful to 
determine the probability of certain sample results, within the context of the 
black box. However, statistical modeling with a black box is context-specific 
and therefore, in step 4 students examine how statistical modeling can be used 
more generally in other situations and contexts. 

In step 4, students use their statistical modeling experiences from the 
black box context in new real-life situations and contexts. As such, students use 
statistical modeling with TinkerPlots to solve a given problem. For example, 
within the context of social media and in particular the use of WhatsApp, 
students investigate whether the use of WhatsApp within their class deviates 
from the national standard—according to research by Newcom: 90% of Dutch 
students aged 15-19 years uses WhatsApp on a daily basis. By collecting data 
from each student in class, for example 21 out of 25 students use WhatsApp on 
a daily basis, students investigate whether a sample result of 21 in a sample of 
25 from a population proportion of 90% is (un)likely.  
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The application in several new contexts, using the same digital techniques 
for statistical modeling in TinkerPlots, enables students to identify general 
patterns and to develop a context-independent use of statistical modeling, 
known as emergent modeling (Gravemeijer, 2008). Using statistical modeling 
for solving real-life problems includes the process of abstracting the real world 
into a model and then using this model for understanding the real world. Patel 
and Pfannkuch (2018) elaborated this relationship between the real and model 
world in a framework that displays students’ cognitive activities about 
understanding the problem (real world), seeing and applying structure (real 
world–model world), modeling (model world–real world), analyzing simulated 
data (model world) and communicating findings (model world–real world). In 
this regard, Manor and Ben-Zvi (2017) identified several dimensions: reasoning 
with phenomenon simplification, with sample representativeness, and with 
sampling distribution. These theories on statistical modeling were elaborated in 
step 4, where students build and run a model of a real-world situation in the 
model world of TinkerPlots and use this model—by simulating and interpreting 
the sampling distribution of repeated samples—to understand the real world 
situation.  

In steps 1 to 4, students are introduced to the key concepts of statistical 
inference: sample, sampling variability, sample size, repeated sampling, 
frequency and sampling distributions, probability and uncertainty. During these 
four LT steps, students only use categorical data. From these steps emerges the 
question of how to use statistical modeling with other data. Therefore, in steps 5 
to 8, students go through similar learning steps to steps 1 to 4, but now using 
numerical data. The hypothesis is that this iterative approach facilitates students 
to anchor, expand and deepen their understanding of the key concepts. Step 5 to 
8 mainly constitute on theories mentioned in step 1 to 4; in the following we 
focus on the new elements. 

In step 5, as in step 1, students conduct a physical experiment, but this 
time using a black box filled with 4,000 notes. Each note contains information 
on gender and height for a 14-years-old Dutch student, for example: boy – 155 
cm. In couples of two, students randomly draw a sample of 40 from the black
box. They summarize their sample data by calculating measures of center and
spread, and visualizing their findings. The sample results are exchanged and
discussed within the classroom, focusing on sampling variability and drawing
inferences about the population.
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Students compare and discuss the sample results found—both the 
visualizations and measures of center and spread—focusing on similarities and 
differences between samples and on what these varying sample data say about 
the population. Finding similarities between samples with numerical data, in 
particular for a small sample size, is more difficult than for the categorical data 
in steps 1 to 4—for example, the comparison of categorical data in step 1 only 
considered the number of yellow marbles. Drawing inferences about the 
population based on several samples requires merging the information found. 
Students experience that the use of a sample characteristic—such as the sample 
mean—is helpful to merge information found in repeated samples with 
numerical data. The hypothesis in step 5 is that students understand that a 
sample characteristic, for example the sample mean, combined with the sample 
distribution, can be used to obtain a picture of the population distribution. From 
step 5, in which students discussed how to use numerical data from repeated 
samples to draw inferences about the population, raises the question of how the 
population distribution at stake—the content of the black box filled with 4,000 
notes on students’ gender and height—can be pictured based on the sample 
results found. As a next step, students are asked to visualize the population 
distribution they expect based on the numerical data from the samples found. 

In step 6, students draw a sketch of the population distribution—that is, 
the height of the 4,000 students in the black box—they expect based on the 
exchanged and discussed sample results from step 5. The hypothesis in step 6 is 
that students use the sample mean and distributions found in step 5 to visualize 
the expected population distribution. During a whole class discussion, the 
expected population distributions are exchanged and discussed, and also 
compared with the real population distribution. From steps 1 to 4, students 
explored through statistical modeling that for categorical data, using larger 
sample sizes and more repetitions lead to better estimates of the population. 
From step 5 and 6 emerges the need for better estimates when working with 
numerical data. As a follow-up in step 7, students use statistical modeling with 
numerical data to explore the effects of larger samples on the sample mean and 
sample distribution, and accordingly, on the probability of the inference about 
the population distribution. 

In step 7, students use statistical modeling in TinkerPlots with a given 
model of the population. The population model consists of the numerical data 
from the 4,000 students in the black box with notes, considering gender and 
height. Entering the exact population model in TinkerPlots for statistical 
modeling is complex and time-consuming, and therefore students use a given 
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model. Students use repeated sampling to explore the effects of sample size on 
the sample mean and sample distribution. The hypothesis is that students 
understand that—for numerical data—larger sample sizes better reflect the 
population distribution. They also experience that the sample mean for larger 
sample sizes varies less and better resembles the population mean. From step 7 
emerges the question of how to apply statistical modeling with numerical data 
in other contexts and situations. 

In step 8, students use statistical modeling in TinkerPlots to solve a real-
life problem, by working with a given or a hidden model of the population. For 
example, students investigate whether the time on sports per week within their 
class deviates from that of 4,000 Dutch students in a given population model. 
By collecting data from each student in class, for example the mean sporting 
time for 25 students is six hours a week, students investigate whether a sample 
mean of six hours from the given population is (un)likely. When working with a 
hidden population model, students are unable to see the model. By simulating 
and visualizing (repeated) samples they make inferences about the population 
mean and distribution. The hypothesis is that the iterative process of statistical 
modeling, with both categorical and numerical data within varying contexts, 
facilitates students to make the conceptual transition to emergent modeling. 
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n 

gi
ve

n.
 

Fo
r e

xa
m

pl
e 

(c
on

ce
rn

in
g 

th
e 

de
sc

ri
pt

io
n 

of
 a

 
sa

m
pl

e)
: A

 sa
m

pl
e 

is 
a 

sm
al

l, 
re

pr
es

en
ta

tiv
e,

 
ra

nd
om

ly
 c

ho
se

n 
pa

rt
 o

f 
th

e 
po

pu
la

tio
n 

th
at

 c
an

 
be

 u
se

d 
to

 e
st

im
at

e 
th

e 
po

pu
la

tio
n,

 w
he

n 
ex

am
in

in
g 

th
e 

w
ho

le
 

po
pu

la
tio

n 
is

 
im

po
ss

ib
le

.  
 

Fo
r e

xa
m

pl
e:

 D
ra

w
in

g 
a 

be
ll 

cu
rv

e 
fo

r t
he

 
ex

pe
ct

ed
 sa

m
pl

in
g 

di
st

ri
bu

tio
n 

fro
m

 a
 la

rg
e 

nu
m

be
r o

f r
ep

ea
te

d 
sa

m
pl

es
, w

ith
 a

 p
ea

k 
at

 
th

e 
po

pu
la

tio
n 

pr
op

or
tio

n 
an

d 
ap

pr
op

ri
at

e 
va

ri
at

io
n.

 

Fo
r e

xa
m

pl
e:

 P
os

sib
le

 
sa

m
pl

e 
re

su
lts

 w
ith

 a
 

sm
al

l s
iz

e 
ro

ug
hl

y 
re

se
m

bl
e 

th
e 

po
pu

la
tio

n,
 

th
es

e 
(s

am
pl

e)
 re

su
lts

 
m

ay
 v

ar
y 

an
d 

co
nt

ai
n 

lo
ca

l p
ea

ks
 b

ut
 st

ro
ng

 
de

vi
at

io
ns

 h
ar

dl
y 

ex
is

t. 

Fo
r e

xa
m

pl
e:

 T
he

 
fil

lin
g 

w
ei

gh
t o

f t
he

 ja
m

 
ja

rs
 in

 th
e 

sa
m

pl
e 

is
 

lo
w

er
 th

an
 re

qu
ir

ed
. 

Th
e 

sim
ul

at
ed

 sa
m

pl
in

g 
di

st
ri

bu
tio

n 
sh

ow
s t

ha
t 

th
e 

m
ea

su
re

d 
w

ei
gh

t 
oc

cu
rs

 in
 le

ss
 th

an
 5

%
 

of
 th

e 
sa

m
pl

es
. I

t i
s 

po
ss

ib
le

 th
at

 th
e 

la
rg

e 
ba

tc
h 

m
ee

ts
 th

e 
re

qu
ir

em
en

t, 
bu

t t
ha

t i
s 

no
t v

er
y 

lik
el

y.
 

5 
C

ri
tic

al
 

C
rit

ic
al

, q
ue

st
io

ni
ng

 
en

ga
ge

m
en

t i
n 

fa
m

ili
ar

 a
nd

 
un

fa
m

ili
ar

 c
on

te
xt

s 
th

at
 d

o 
no

t i
nv

ol
ve

 
pr

op
or

tio
na

l 
re

as
on

in
g,

 b
ut

 w
hi

ch
 

do
 in

vo
lv

e 
ap

pr
op

ria
te

 u
se

 o
f 

te
rm

in
ol

og
y,

 
ap

pr
ec

ia
tio

n 
of

 
va

ria
tio

n,
 e

xp
lic

itl
y 

re
fe

rr
in

g 
to

 st
at

is
tic

al
 

in
fo

rm
at

io
n 

gi
ve

n.
 

C
rit

ic
al

 re
as

on
in

g 
us

in
g 

so
m

e 
st

at
is

tic
al

 
ar

gu
m

en
ts

, t
er

m
in

ol
og

y 
an

d 
de

fin
iti

on
s, 

an
d 

ad
dr

es
sin

g 
un

ce
rta

in
ty

 if
 

ne
ed

ed
. 

D
ra

w
in

g 
or

 re
ad

in
g 

a 
vi

su
al

iz
at

io
n,

 in
cl

ud
in

g 
so

m
e 

as
pe

ct
s o

f 
va

ria
tio

n 
in

vo
lv

ed
. 

U
si

ng
 c

rit
ic

al
, b

ut
 

si
m

pl
e 

pr
op

or
tio

na
l 

re
as

on
in

g,
 a

tte
nd

in
g 

so
m

e 
as

pe
ct

s o
f 

un
ce

rta
in

ty
 in

 m
ak

in
g 

pr
ed

ic
tio

ns
. 

U
si

ng
 c

rit
ic

al
, b

ut
 

si
m

pl
e 

pr
op

or
tio

na
l 

re
as

on
in

g 
in

 a
ns

w
er

in
g 

a 
re

al
-li

fe
 p

ro
bl

em
 

ac
co

m
pa

ni
ed

 b
y 

so
m

e 
st

at
is

tic
al

 a
nd

 
co

nt
ex

tu
al

 a
rg

um
en

ts
, 

an
d 

at
te

nd
in

g 
th

e 
un

ce
rta

in
ty

 in
vo

lv
ed

. 
Fo

r e
xa

m
pl

e 
(c

on
ce

rn
in

g 
th

e 
de

sc
ri

pt
io

n 
of

 a
 

sa
m

pl
e)

: A
 sa

m
pl

e 
is 

a 
sm

al
l p

ar
t o

f t
he

 
po

pu
la

tio
n 

th
at

 c
an

 b
e 

us
ed

 to
 e

st
im

at
e 

th
e 

Fo
r e

xa
m

pl
e:

 D
ra

w
in

g 
a 

be
ll 

cu
rv

e 
fo

r t
he

 
ex

pe
ct

ed
 sa

m
pl

in
g 

di
st

ri
bu

tio
n 

fro
m

 a
 la

rg
e 

nu
m

be
r o

f r
ep

ea
te

d 
sa

m
pl

es
, w

ith
 a

 p
ea

k 
at

 
th

e 
po

pu
la

tio
n 

Fo
r e

xa
m

pl
e:

 P
os

sib
le

 
sa

m
pl

e 
re

su
lts

 w
ith

 a
 

sm
al

l s
iz

e 
ro

ug
hl

y 
re

se
m

bl
e 

th
e 

po
pu

la
tio

n,
 

bu
t o

ve
re

st
im

at
in

g 
ou

tli
er

s. 

Fo
r e

xa
m

pl
e:

 T
he

 
fil

lin
g 

w
ei

gh
t o

f t
he

 ja
m

 
ja

rs
 in

 th
e 

sa
m

pl
e 

is
 

lo
w

er
 th

an
 re

qu
ir

ed
. 

Th
e 

sim
ul

at
ed

 sa
m

pl
in

g 
di

st
ri

bu
tio

n 
sh

ow
s t

ha
t 

th
is

 w
ei

gh
t h

ar
dl

y 
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po
pu

la
tio

n,
 w

he
n 

ex
am

in
in

g 
th

e 
w

ho
le

 
po

pu
la

tio
n 

is
 

im
po

ss
ib

le
. 

pr
op

or
tio

n,
 b

ut
 

ov
er

es
tim

at
in

g 
(o

r 
ne

gl
ec

tin
g)

 th
e 

nu
m

be
r 

of
 o

ut
lie

rs
. 

oc
cu

rs
. T

he
 la

rg
e 

ba
tc

h 
w

ill
 m

os
t l

ik
el

y 
no

t m
ee

t 
th

e 
re

qu
ir

em
en

t. 

4 
C

on
si

st
en

t N
on

-
cr

iti
ca

l 

A
pp

ro
pr

ia
te

 b
ut

 n
on

-
cr

iti
ca

l e
ng

ag
em

en
t 

w
ith

 c
on

te
xt

, 
m

ul
tip

le
 a

sp
ec

ts
 o

f 
te

rm
in

ol
og

y 
us

ag
e,

 
an

d 
st

at
is

tic
al

 sk
ill

s 
as

so
ci

at
ed

 w
ith

 
si

m
pl

e 
pr

ob
ab

ili
tie

s, 
an

d 
gr

ap
h 

ch
ar

ac
te

ris
tic

s, 
re

fe
rr

in
g 

to
 st

at
is

tic
al

 
in

fo
rm

at
io

n 
gi

ve
n.

 

A
pp

ro
pr

ia
te

 re
as

on
in

g.
 

U
si

ng
 c

or
re

ct
 b

ut
 si

m
pl

e 
or

 in
co

m
pl

et
e 

as
pe

ct
s o

f 
st

at
is

tic
al

 a
rg

um
en

ts
, 

re
fe

rr
in

g 
to

 st
at

is
tic

al
 

in
fo

rm
at

io
n 

gi
ve

n.
 

D
ra

w
in

g 
or

 re
ad

in
g 

a 
vi

su
al

iz
at

io
n,

 in
cl

ud
in

g 
si

m
pl

e 
as

pe
ct

s o
f 

va
ria

tio
n,

 re
fe

rr
in

g 
to

 
st

at
is

tic
al

 in
fo

rm
at

io
n 

gi
ve

n.
 

A
pp

ro
pr

ia
te

 re
as

on
in

g.
 

U
si

ng
 si

m
pl

e 
as

pe
ct

s o
f 

pr
ob

ab
ili

ty
 re

la
te

d 
to

 th
e 

st
at

is
tic

al
 in

fo
rm

at
io

n 
gi

ve
n,

 b
ut

 fo
cu

si
ng

 o
n 

co
nt

ex
t; 

of
te

n 
re

fe
rr

in
g 

to
 p

er
so

na
l b

el
ie

fs
. 

A
pp

ro
pr

ia
te

 re
as

on
in

g 
in

 a
ns

w
er

in
g 

a 
re

al
-li

fe
 

pr
ob

le
m

 a
cc

om
pa

ni
ed

 
by

 si
m

pl
e 

st
at

is
tic

al
 a

nd
 

pr
ob

ab
ili

st
ic

 a
rg

um
en

ts,
 

bu
t f

oc
us

in
g 

on
 

co
nt

ex
tu

al
 a

rg
um

en
ts

, 
re

fe
rr

in
g 

to
 st

at
is

tic
al

 
in

fo
rm

at
io

n 
gi

ve
n.

 

Fo
r e

xa
m

pl
e 

(c
on

ce
rt

in
g 

th
e 

de
sc

ri
pt

io
n 

of
 a

 
sa

m
pl

e)
: A

 sa
m

pl
e 

is 
a 

sm
al

l p
ar

t o
f t

he
 

po
pu

la
tio

n 
th

at
 c

an
 b

e 
us

ed
 to

 e
st

im
at

e 
th

e 
po

pu
la

tio
n.

 

Fo
r e

xa
m

pl
e:

 D
ra

w
in

g 
th

e 
ex

pe
ct

ed
 sa

m
pl

in
g 

di
st

ri
bu

tio
n 

fro
m

 a
 la

rg
e 

nu
m

be
r o

f r
ep

ea
te

d 
sa

m
pl

es
 w

ith
 a

 p
ea

k 
at

 
th

e 
po

pu
la

tio
n 

pr
op

or
tio

n,
 b

ut
 a

lso
 

ot
he

r l
oc

al
 p

ea
ks

. 

Fo
r e

xa
m

pl
e:

 P
os

sib
le

 
sa

m
pl

e 
re

su
lts

 w
ith

 a
 

sm
al

l s
iz

e 
re

se
m

bl
e 

th
e 

po
pu

la
tio

n 
m

os
t o

f t
he

 
tim

e,
 b

ut
 in

 th
e 

gi
ve

n 
co

nt
ex

t (
I t

hi
nk

) i
t i

s 
pr

ob
ab

ly
 le

ss
. 

Fo
r e

xa
m

pl
e:

 T
he

 
fil

lin
g 

w
ei

gh
t o

f t
he

 ja
m

 
ja

rs
 in

 th
e 

sa
m

pl
e 

is
 

lo
w

er
 th

an
 e

xp
ec

te
d.

 
Al

th
ou

gh
 th

e 
sim

ul
at

ed
 

sa
m

pl
in

g 
di

st
ri

bu
tio

n 
sh

ow
s v

ar
yi

ng
 sa

m
pl

e 
re

su
lts

, t
he

 m
ea

su
re

d 
w

ei
gh

t i
s t

oo
 lo

w
. T

he
 

la
rg

e 
ba

tc
h 

do
es

 n
ot

 
m

ee
t t

he
 re

qu
ire

m
en

ts.
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3 
In

co
ns

is
te

nt
 

Se
le

ct
iv

e 
en

ga
ge

m
en

t 
w

ith
 c

on
te

xt
, o

fte
n 

in
 

su
pp

or
tiv

e 
fo

rm
at

s, 
ap

pr
op

ria
te

 
re

co
gn

iti
on

 o
f 

co
nc

lu
si

on
s b

ut
 

w
ith

ou
t j

us
tif

ic
at

io
n,

 
an

d 
qu

al
ita

tiv
e 

ra
th

er
 

th
an

 q
ua

nt
ita

tiv
e 

us
e 

of
 st

at
is

tic
al

 id
ea

s, 
no

t a
lw

ay
s e

xp
lic

itl
y 

re
fe

rr
in

g 
to

 st
at

is
tic

al
 

in
fo

rm
at

io
n 

gi
ve

n.
 

A
pp

ro
pr

ia
te

 b
ut

 
in

co
m

pl
et

e 
re

as
on

in
g,

 
w

ith
ou

t j
us

tif
ic

at
io

n,
 n

ot
 

al
w

ay
s e

xp
lic

itl
y 

re
fe

rr
in

g 
to

 st
at

is
tic

al
 

in
fo

rm
at

io
n 

gi
ve

n.
 

D
ra

w
in

g 
or

 re
ad

in
g 

a 
vi

su
al

iz
at

io
n,

 w
ith

ou
t 

co
ns

id
er

in
g 

va
ria

tio
n 

in
vo

lv
ed

. 

A
pp

ro
pr

ia
te

 c
on

cl
us

io
ns

 
in

 re
as

on
in

g,
 b

ut
 

w
ith

ou
t j

us
tif

ic
at

io
n,

 
an

d 
w

ith
ou

t c
on

si
de

rin
g 

va
ria

tio
n 

an
d 

pr
ob

ab
ili

ty
, o

fte
n 

fo
cu

si
ng

 o
n 

co
nt

ex
t  

A
pp

ro
pr

ia
te

 re
as

on
in

g 
in

 a
ns

w
er

in
g 

a 
re

al
-li

fe
 

pr
ob

le
m

, b
ut

 w
ith

ou
t 

ju
st

ifi
ca

tio
n,

 a
nd

 
w

ith
ou

t c
on

si
de

rin
g 

va
ria

tio
n 

an
d 

pr
ob

ab
ili

ty
, o

fte
n 

fo
cu

si
ng

 o
n 

co
nt

ex
t. 

Fo
r e

xa
m

pl
e 

(c
on

ce
rn

in
g 

th
e 

de
sc

ri
pt

io
n 

of
 a

 
sa

m
pl

e)
: A

 sa
m

pl
e 

is 
a 

sm
al

l p
ar

t o
f t

he
 

po
pu

la
tio

n 
th

at
 

in
di

ca
te

s t
he

 p
op

ul
at

io
n,

 
w

he
n 

ex
am

in
in

g 
th

e 
w

ho
le

 p
op

ul
at

io
n 

is
 

im
po

ss
ib

le
. 

Fo
r e

xa
m

pl
e:

 D
ra

w
in

g 
th

e 
ex

pe
ct

ed
 sa

m
pl

in
g 

di
st

ri
bu

tio
n 

fro
m

 a
 la

rg
e 

nu
m

be
r o

f r
ep

ea
te

d 
sa

m
pl

es
 w

ith
 o

nl
y 

on
e 

to
 

th
re

e 
ba

rs
 a

t t
he

 
po

pu
la

tio
n 

pr
op

or
tio

n.
 

Fo
r e

xa
m

pl
e:

 P
os

sib
le

 
sa

m
pl

e 
re

su
lts

 w
ith

 a
 

sm
al

l s
iz

e 
ar

e 
an

 e
xa

ct
 

m
in

im
iz

ed
 c

op
y 

of
 th

e 
po

pu
la

tio
n.

 

Fo
r e

xa
m

pl
e:

 T
he

 
fil

lin
g 

w
ei

gh
t o

f t
he

 ja
m

 
ja

rs
 in

 th
e 

sa
m

pl
e 

is
 

lo
w

er
 th

an
 e

xp
ec

te
d.

 
Th

is
 h

ar
dl

y 
oc

cu
rs

, s
o 

th
e 

la
rg

e 
ba

tc
h 

do
es

 n
ot

 
m

ee
t t

he
 re

qu
ire

m
en

ts.
 

2 
In

fo
rm

al
 

O
nl

y 
co

llo
qu

ia
l o

r 
in

fo
rm

al
 e

ng
ag

em
en

t 
w

ith
 c

on
te

xt
 o

fte
n 

re
fle

ct
in

g 
in

tu
iti

ve
 

no
n-

st
at

is
tic

al
 b

el
ie

fs
, 

si
ng

le
 e

le
m

en
t o

f 
co

m
pl

ex
 te

rm
in

ol
og

y 
an

d 
se

tti
ng

, a
nd

 b
as

ic
 

In
fo

rm
al

 re
as

on
in

g 
w

ith
 

co
nt

ex
t, 

of
te

n 
re

fle
ct

in
g 

in
tu

iti
ve

, n
on

-s
ta

tis
tic

al
 

be
lie

fs
. 

D
ra

w
in

g 
or

 re
ad

in
g 

a 
vi

su
al

iz
at

io
n,

 b
as

ed
 o

n 
no

n-
st

at
is

tic
al

 b
el

ie
fs

; 
so

m
et

im
es

 w
ith

 
co

ns
id

er
in

g 
va

ria
tio

n 
in

vo
lv

ed
. 

In
fo

rm
al

 re
as

on
in

g 
in

 
w

ith
 a

 fo
cu

s o
n 

th
e 

co
nt

ex
t, 

of
te

n 
re

fle
ct

in
g 

no
n-

st
at

is
tic

al
 b

el
ie

fs
; 

so
m

et
im

es
 c

on
si

de
rin

g 
va

ria
tio

n 
in

vo
lv

ed
. 

In
fo

rm
al

 re
as

on
in

g 
in

 
an

sw
er

in
g 

a 
re

al
-li

fe
 

pr
ob

le
m

, o
fte

n 
re

fle
ct

in
g 

no
n-

st
at

is
tic

al
 

be
lie

fs
; s

om
et

im
es

 
co

ns
id

er
in

g 
va

ria
tio

n 
in

vo
lv

ed
. 

Fo
r e

xa
m

pl
e 

(c
on

ce
rn

in
g 

th
e 

Fo
r e

xa
m

pl
e:

 D
ra

w
in

g 
th

e 
ex

pe
ct

ed
 sa

m
pl

in
g 

Fo
r e

xa
m

pl
e:

 P
os

sib
le

 
sa

m
pl

e 
re

su
lts

 d
o 

no
t 

Fo
r e

xa
m

pl
e:

 T
he

 
fil

lin
g 

w
ei

gh
t o

f t
he

 ja
m
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on
e-

st
ep

 ta
bl

e 
an

d 
gr

ap
h 

re
ad

in
gs

 a
nd

 
ca

lc
ul

at
io

ns
, n

ot
 

re
fe

rr
in

g 
to

 st
at

is
tic

al
 

in
fo

rm
at

io
n 

gi
ve

n.
 

de
sc

ri
pt

io
n 

of
 a

 
sa

m
pl

e)
: A

 sa
m

pl
e 

is 
a 

sm
al

l g
ro

up
 o

f s
tu

de
nt

s 
th

at
 c

an
 b

e 
us

ed
 to

 
ex

am
in

e 
a 

sp
ec

ifi
c 

is
su

e.
 

di
st

ri
bu

tio
n 

fo
r a

 la
rg

e 
nu

m
be

r o
f r

ep
et

iti
on

s, 
w

ith
 a

 p
ea

k 
no

t 
co

rr
es

po
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Supplementary Material C 

Pre-test ‘Statistical Literacy’ Vwo 3 (Grade 9) 
English Version 

NOTE: Do not turn the page yet. Write down the information 
requested and read the instruction below carefully. 

Name: ………………………………………………. 

Group: …………………………………………………. 

School: …………………………………………….. 

Date of test: ……………………………….. 

This test is designed to examine the level of statistical reasoning among Vwo 3 students. 
The test consists of 10 open-ended questions. For the usability of these test results, it is 
strongly requested to explain your answers as clearly and completely as possible.  

You will have 40 minutes to complete this test. The answers can be written down in this 
booklet. It is not a problem if not all questions are answered.  

Questions may be completed with pen or pencil. A calculator is not required. 

Wait for your teacher to indicate that you can start the test. 
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Pre-test ‘Statistical Literacy’ 

Item 1 
To study the breakfast habits of the 600 students at a school, the researchers decide to 
question a part of the students. These students are asked whether they eat breakfast 
every day. The question a sample consisting of 30 random students. 

a. What/which number(s) of students do you expect to answer the question positively?

…………….. students. 

b. Explain your answer to 1a.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

c. Marieke claims that a sample of 30 students is too small and that it’s better to ask 100
students. Do you agree with Marieke?

………………………….. 

d. Why do you (dis)agree with Marieke?

…………………………………………………………………………………… 

…………………………………………………………………………………… 

e. The researchers decide to question two samples of students. The first sample,
consisting of 30 students, has 20 students that eat breakfast on a daily basis. The second
sample, consisting of 100 students, has 85 students that eat breakfast on a daily basis.
Estimate how many students at the school eat breakfast on a daily basis.

…………………………………………………… students 

f. Explain your answer to 1e.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Item 2 
You toss a fair coin five times in a row and each of those five tosses results in heads. 

a. What is the probability that the next toss will also result in heads?
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………………………………………………….. 

b. Explain your answer to 2a.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Item 3 
The following graphs describe some data collected about Grade 7 students’ heights in 
two different schools. 

a. How many students are 156 cm tall in each school?

School A ……................. students and school B …………………… students. 

b. Which graph shows more variability in students’ heights?

Graph …………………………………… 

c. Explain why you think this.

…………………………………………………………………………………… 

…………………………………………………………………………………… 



Pre-test ‘Statistical Literacy’ 

Item 4 
This pie chart was made after a questionnaire in the exam classes. 

a. What information does this chart show?

…………………………………………………………………………………… 

…………………………………………………………………………………… 

b. Is there something strange about this pie chart?

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Item 5 
Research centre Newcom found that 58% of Dutch adolescents between 15 and 19 years 
old uses Instagram on a daily basis (January 2019). A study is held with 50 of these 
adolescents. They are asked whether they use Instagram on a daily basis. 

a. What are the results you expect from this study?

I expect that …………………………………………….. of these adolescents use 
Instagram on a daily basis. 

b. Explain your answer to 5a.
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…………………………………………………………………………………… 

…………………………………………………………………………………… 

c. To get a bigger picture, the study is repeated in 100 large cities. In each of these
cities, the researchers ask a random group of 50 adolescents whether they use Instagram
on a daily basis. Sketch a bar graph of the results you expect to receive from these
samples.

d. Explain your bar graph.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

e. At one school, it turns out that 33 out of 50 VWO-3 students use Instagram on a daily
basis. Compare this result to the national results. What do you notice?

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Expected results from 100 samples 

0 5 10 15 20 25 30 35 40 45 50 
Result of the sample 
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Pre-test ‘Statistical Literacy’ 

Item 6 
a. Explain what we mean when we talk about a probability of 2%.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

At a middle school, 181 students are assigned to study the growth of mustard plant. 
Each of them receives 10 seeds and after a week they all measure the height of each of 
their plants in mm. Their results are shown in the graph below. 

b. Explain how likely you think it is for a set of plants to have an average height below
4 cm.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Yob, Xander and Marit missed the class and have to do the assignment later. They 
receive the same assignment, but each get a different type of potting soil for the seeds to 
grow in. Marit receives soil M, Xander soil X and Yob soil Y. 

c. After a week, Marit’s plants have an average height of 57 mm. Explain whether you
can now conclude that mustard plants have better growth in soil M.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Average height of 10 mustard plants after one week in mm 
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d. After a week, Xander’s plants have an average height of 64 mm. Explain whether you
can now conclude that mustard plants have better growth in soil X.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

e. After a week, Yob’s plants have an average height of 70 mm. Explain whether you
can now conclude that mustard plants have better growth in soil Y.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Item 7 
To analyze the number of candies with strawberry taste in a roll of ‘Minitos’, 700 rolls 
were checked. Each roll contained 20 candies. From each roll the number of candies 
with strawberry flavour was counted. The results of these counts are shown in the graph. 

a. What was the most common result?

…………………… 

b. Explain your answer to 7a.

Results for 700 candy rolls 

Number of strawberry candies in one roll 
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…………………………………………………………………………………… 

…………………………………………………………………………………… 

c. Pieter claims that he had a roll in which half the candies were strawberry-flavoured
last week. Explain what you think of his claim.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Item 8 
Nine students in a science class weighed a small object separately on the same scales. 
The weights (in grams) recorded by each student are shown below. 
6.3 6.0 6.0 15.3 6.1 6.3 6.2 6.15 6.3 
The students had to decide on the best way to summarise these values. 

a. Ben said, “I’d use the most common value to get the mode. That’s 6.3.” Is Ben’s way
a good way to summarise the information? Explain your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

b. Jane said, “I’d put them in order and use the middle value to get the median. That’s
6.2.” Is Jane’s way a good way to summarise the information? Explain your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

c. Ron said, “I’d add them all up and divide by 9 to get the mean. That’s 7.18.” Is Ron’s
way a good way to summarise the information? Explain your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

d. May said, “I’d leave out the 15.3 and use the mean of the others. That’s 6.17.” Is
May’s way a good way to summarise the information? Explain your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 
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e. Which of the ways described above would you use? Why?

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Item 9 
A class wants to raise money for their school trip to Movieworld. They could raise 
money by selling raffle tickets for a game system. Before they decide to have a raffle, 
they wanted to estimate how many students in the whole school would buy a ticket. 
They decide to do a survey to find out first. 
The school has 600 students in grades 1-6 with 100 students in each grade. 

a. How many students would you survey? How would you choose them? Explain your
answers.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

b. Shannon got the names of all 600 students in the school and put them in a hat. Then
she pulled out 60 names, of which 22 would want to participate. What do you think of
Shannon’s survey? Explain your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

c. Jake asked 10 students at an after-school computer games club, of which 5 would
want to participate. What do you think of Jake’s survey? Explain your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

d. Claire set up a booth at the exit of the school. Anyone who wanted to stop and fill out
a survey could. She stopped collecting surveys when she got 60 kids to complete them,
of which 37 would want to participate. What do you think of Claire’s survey? Explain
your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 



Pre-test ‘Statistical Literacy’ 

e. How many students of the 600 students in the entire school do you think would want
to participate in the raffle? You can use the results from Shannon, Jake and/or Claire.
Explain your answer and which results you used.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

Item 10 
A primary school had a sports day where every student could choose a sport to play. 
Here is what they chose. 

Netball Football Tennis Swimming Total 
Boys 0 20 20 10 50 
Girls 40 10 15 10 75 

a. What was the most popular sport for boys?

……………………………………………………………………………….. 
b. How many children were at the sports day?

…………………………………. children 
c. One of the tennis players was late.

Was this player a boy or a girl. Explain your answer.

…………………………………………………………………………………… 

…………………………………………………………………………………… 

End of the test 

Thank you for filling it out! 

Please write down your end time  …………………………………………….. 
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Post-test ‘Statistical Literacy’ Vwo 3 (Grade 9) 

English Version 

NOTE: Do not turn the page yet. Write down the requested information and 
carefully read the instruction below. 

Name: ………………………………………………. 

Group: …………………………………………………. 

School: …………………………………………….. 

Date of test: ……………………………….. 

This test is designed to examine the level of statistical reasoning among Vwo 3 
students. The test consists of 10 open-ended tasks. For the usability of these test 
results, it is strongly requested to explain your answers as clearly and 
completely as possible.  

You will have 40 minutes to complete this test. The answers can be written 
down in this booklet. It is not a problem if not all questions are answered.  

Questions may be completed with pen or pencil. A calculator is not required. 

Wait for your teacher to indicate that you can start the test. 
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Post-test ‘Statistical Literacy’ 

Item 1 
Mrs. Jones wants to buy a new car, either a Honda or Toyota. She wants whichever car 
will break down the least. She read in Consumer Reports that for 400 cars of each type, 
the Toyota had more breakdowns than the Honda. She talked to three friends. Two were 
Toyota owners, who had no major breakdowns. The other friend used to own a Honda, 
but it had lots of breakdowns, so he sold it. He said he would never buy another Honda. 

Which car should Mrs. Jones buy? Explain your answer 

………………………,because ………………………………………………. 

………………………………………………………………………………… 

………………………………………………………………………………… 

Item 2 
To get the average number of children per family in a town, a teacher counted the total 
number of children in a town. She then divided by 50, the total number of families. The 
average number of children per family was 2.2. 

For each of the following five statements, write down whether or not that statement is 
true and explain your answer. 

a. Half of the families in the town have more than two children.

………………………………………………………………………………… 

………………………………………………………………………………… 

b. There are a total of 110 children in the town.

………………………………………………………………………………… 

………………………………………………………………………………… 

c. There are 2.2 children in the town for each adult.

………………………………………………………………………………… 

………………………………………………………………………………… 

d. The most common number of children in a family is 2.
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………………………………………………………………………………… 

………………………………………………………………………………… 

Item 3 

According to jam manufacturer Heros, the large jars they produce contain on average 
510 grams of jam. Since the filling machine cannot fill to the gram accurately, some jars 
contain more and others less jam. The filling weight of each jar is registered in the 
factory. According to the manufacturer, a printout of the filling weight of 100,000 jars 
looks like the chart below. 

The customer who bought this batch of 100,000 jars decides to test with a sample 
whether the filling weight of the jars is in line with the manufacturer's registration. The 
customer takes a sample of 100 jars. 

a. Which sample average(s) do you expect for a sample of 100 jars?

………………………………………………………………………………… 

b. Explain your answer to 3a.

………………………………………………………………………………… 

………………………………………………………………………………… 

c. The result of the customer's sample is visualized in the graph below.

Registered filling weight of 100,000 jars of 
 

Filling weight per jar in grams 
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The average in this sample is 507 grams, which is less than the promised 510 grams. 
Based on this sample, can the customer conclude that the manufacturer’s registration is 
incorrect and that the manufacturer lied about the filling weight in the large batch of 
100,000 jars? Explain your answer. 

……………, because …………………………………………………………. 

………………………………………………………………………………… 

Item 4 
A class of students recorded the number of years their families had lived in their town. 
Here are two graphs that students drew to tell the story. 

a. What can you tell by looking at Graph 1?

………………………………………………………………………………… 

………………………………………………………………………………… 

Filling weight for sample of 100 jam jars 

Filling weight per jar in grams 
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b. What can you tell by looking at Graph 2?

………………………………………………………………………………… 

………………………………………………………………………………… 

c. Which Graph is better at presenting the information and “telling the story”? Explain
your answer.

Graph …………, because ……………………………………………….…… 

………………………………………………………………………………… 

Item 5 

A mathematics class has 13 boys and 16 girls in it. Each student’s name is written on a 
piece of paper. All the names are put in a hat. The teacher picks out one name without 
looking. 

Will he pick a boy or a girl? Explain your answer. 

…………………………, because ……………………………………………. 

………………………………………………………………………………… 

………………………………………………………………………………… 

Item 6 
To investigate the game time of 1500 students at a secondary school, a sample is taken. 
The students in the sample are asked how much time in hours per week they spend on 
gaming. They decide to randomly question 30 students at the entrance of the school. 



Post-test ‘Statistical Literacy’ 

a. Describe in the graph below the sample result that you expect. Choose suitable units
along the horizontal axis.

b. What average game time(s) do you expect for a sample of 30 students?

………………………………………………………………………………… 

………………………………………………………………………………… 

c. Explain your answers to 6a and 6b.

………………………………………………………………………………… 

………………………………………………………………………………… 

d. According to Patrick, a sample of 30 students is not enough and they have to ask at
least 150 students to get a good picture of the gaming behaviour of the 1500 students.

Expected game time of secondary school students in sample of 
30 

. . . . . . . . . . 

Game time in hours per week 

N
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Do you agree with Patrick? Explain your answer. 

………………………………………………………………………………… 

………………………………………………………………………………… 

e. According to Mayke, there is a big difference between the game times of boys and
girls. According to her, it is therefore better to examine the results of boys and girls
separately. There are 10 boys in her class. Their game time in hours per week is
described in the table below.

Game time per week 

in hours 
7 10 14 15 17 20 35 

Number of boys 

From Mayke’s class 
1 1 3 1 1 2 1 

The result from a sample of 100 boys at the school is described in the table below. 

Game time 
per week 

in hours 
0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39

Number of 
boys 

From the 
sample (100) 

4 15 20 25 15 10 8 3 

The school has 729 boys. What do you expect from the game time of the 729 boys in 
percentages? Describe your expectation in the table below.  

Game time per week 

in hours 
0-9 10-19 20-29 30-39 ≥40 

Percentage of boys 

in school 
..… % ..… % ..… % ..… % ..… % 
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f. Explain your values for the table of 6e.

………………………………………………………………………………… 

………………………………………………………………………………… 

Item 7 
The following information is from a survey about smoking and lung disease among 250 
people. 

Lung disease No lung disease Total 
Smoking 90 60 150 

No smoking 60 40 100 
Total 150 100 250 

a. Using this information, do you think that for this sample of people lung disease
depended on smoking?

………………………………………………………………………………… 

b. Explain your answer to 7a.

………………………………………………………………………………… 

………………………………………………………………………………… 

Item 8 
a. You throw a fair six-sided die. What result do you expect to get? Explain your answer

………………………………………………………………………………… 

………………………………………………………………………………… 

b. You intend to throw the die until you get a 6. What is the minimum number of times
you have to throw the die? And the maximum number of times?

Minimum: ………………………. Maximum: ...……………………………… 

c. Explain your answers to 8b.

………………………………………………………………………………… 
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………………………………………………………………………………… 

You now throw the die 60 times. 

d. In the table below, fill in how many times you think each number came up.

Number on die Times thrown 

1 

2 

3 

4 

5 

6 

Total 

e. Explain why you think these numbers are reasonable.

………………………………………………………………………………… 

………………………………………………………………………………… 

Michael did the same thing with four different dice. The results can be seen in the table 
below. 

Times thrown 

Number on die Die 1 Die 2 Die 3 Die 4 

1 10 12 9 55 

2 10 13 7 1 

3 10 11 12 1 

4 10 15 13 1 

5 10 8 9 1 

6 10 1 10 1 

Total 60 60 60 60 
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f. Do you think these are all “fair” dice? If not, which ones do you think aren’t “fair”?

Die 1: Fair / Unfair , because 
………………………………………………………………………………… 

………………………………………………………………………………… 

Die 2: Fair / Unfair , because 
………………………………………………………………………………… 

………………………………………………………………………………… 

Die 3: Fair / Unfair , because 
………………………………………………………………………………… 

………………………………………………………………………………… 

Die 4: Fair / Unfair , because 
………………………………………………………………………………… 

………………………………………………………………………………… 

Item 9 
a. Describe as clearly as possible what a sample is.

………………………………………………………………………………… 

………………………………………………………………………………… 

Do-it-yourself shop Prakkus is getting a lot of complaints about broken LED lights in 
the boxes of 20 lights. However, the supplier guarantees that at least 90% of the lights 
are in order. Prakkus decides to check the large stock of 10,000 boxes. They take a 
sample of 100 boxes with 20 lights each. Below you can see the number of good lights 
per box of 20 for a sample of 100. 
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b. What is your estimate of the probability that a random box from the large stock
contains exactly 15 good lights? Explain your answer.

………………%, because ..…………………………………………………… 

………………………………………………………………………………… 

c. What is your estimate of the probability that a random box from the large stock
contains less than 15 good lights? Explain your answer.

………………%, because ..…………………………………………………… 

………………………………………………………………………………… 

d. Do you think that the supplier's claim is correct and that indeed 90% of the lights
from the large stock are good? Explain your answer.

………………%, because ..…………………………………………………… 

………………………………………………………………………………… 

Number of good lights per box of 20 

Result from a sample of 100 boxes 
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e. Prakkus decides to
take another sample of
50. The result is
described in the graph
on the right.

The average in this sample is 16.4, the median is 17 and the mode is 18. Which centre 
size (average, median or mode) gives a clear description of the sample result? Explain 
your answer.  

………………%, because ..…………………………………………………… 

………………………………………………………………………………… 

Item 10 
The graph below shows how children came to school on one day. 

a. How many children walked to school?

……………………. children 

b. A new student came to school by car.
Is the new student a boy or girl? Explain your answer.

………………%, because ..…………………………………………………… 

………………………………………………………………………………… 
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c. Tom is not at school today.
How do you think he will come to school tomorrow? Explain your answer.

………………%, because ..…………………………………………………… 

………………………………………………………………………………… 

End of the test 

Thank you for filling it out! 

Please note your end time  …………………………………………….. 
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Samenvatting 
(Summary in Dutch) 

De overweldigende hoeveelheid data, grafieken en voorspellingen met 
betrekking tot de COVID-pandemie in de media het afgelopen jaar, illustreert 
het essentiële belang van statistiek. De afgelopen decennia is het gebruik van 
data enorm toegenomen vanwege technologische vernieuwingen die het 
mogelijk maken om eenvoudig data te verzamelen, op te slaan, te analyseren en 
representeren. Op basis van data worden ingrijpende beslissingen genomen en 
uitspraken gedaan, zowel door burgers als professionals. Het is daarom van 
belang om de statistische geletterdheid van onze leerlingen te ontwikkelen. Dit 
houdt in dat leerlingen toegerust worden om statistische informatie te 
interpreteren, kritisch te beoordelen en hier conclusies uit te trekken (Gal, 
2002). 

Een belangrijk onderdeel van statistische geletterdheid is het werken met 
inferenties, oftewel met steekproeven en populaties. Bij inferenties worden op 
basis van steekproefdata conclusies getrokken over een groter geheel of proces. 
Deze conclusies gaan vergezeld van onzekerheid omdat niet alles of iedereen is 
onderzocht. Het interpreteren van deze onzekerheid en het duiden van de 
waarschijnlijkheid van de conclusie is veelzijdig en complex.  

In veel landen, waaronder Nederland, wordt statistische inferentie daarom 
pas behandeld in de bovenbouw van het voortgezet onderwijs of in het hoger 
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onderwijs2. Uit onderzoek blijkt dat inferentiële statistiek hier een struikelblok 
is voor veel leerlingen en studenten. De moeilijkheden van leerlingen worden 
met name veroorzaakt door een beperkt begrip van kernconcepten die nodig zijn 
voor inferenties (Castro Soto et al., 2007; Konold & Pollatsek, 2002) zoals 
steekproef, variatie en verdelingen. Deze conceptuele problemen worden 
verergerd door een sterke onderwijsfocus op het aanleren van complexe, 
formele procedures.  

Om de moeilijkheden van leerlingen te overbruggen is in de afgelopen 
decennia gezocht naar informele onderwijsbenaderingen om conceptueel begrip 
te promoten. Het aanbieden van informele inferentiële activiteiten op jongere 
leeftijd zou het leren van de complexere inferentiële statistiek op latere leeftijd 
kunnen vereenvoudigen (Zieffler et al., 2008). Het gaat hierbij om het trekken 
van conclusies vanuit informele statistische kennis, dus niet vanuit formele 
procedures zoals hypothese toetsen of berekeningen met de normale verdeling. 
Makar en Rubin (2009) definiëren informele statistische inferentie in de 
volgende principes: het generaliseren van steekproefdata naar een groter geheel; 
data als bewijs van deze generalisatie; redeneren over de waarschijnlijkheid van 
deze generalisatie. Nieuwe digitale middelen bieden mogelijkheden voor het 
simuleren van steekproeven, waarmee leerlingen op informeel niveau de 
kernconcepten voor statistische inferentie kunnen onderzoeken.  

Het gebruik van technologie is onmisbaar voor het doen en leren van 
statistiek (Gal, 2002; Thijs, Fisser, & Van der Hoeven, 2014). De inzet van 
recente digitale leeromgevingen met opties voor statistisch modelleren, zoals 
VUstat en TinkerPlots, biedt een informele aanpak om het begrip van 
statistische concepten en modellen te verdiepen (Biehler, Frischemeier, & 
Podworny, 2017). Inzicht in statistische modellen is van fundamenteel belang 
voor het interpreteren van statistische inferenties (Manor & Ben-Zvi, 2017). 
Statistische modellen helpen om de waarschijnlijkheid van op steekproefdata 
gebaseerde conclusies te duiden. Digitale middelen voor het simuleren van 
steekproefdata uit populatiemodellen maken concepten visueel en toegankelijk. 
Het modelleren met zulke digitale middelen is veelbelovend voor het 
statistiekonderwijs nu en in de toekomst. 

2 Tevens geldt voor ons land dat de leerlingen met een technisch profiel in de 
bovenbouw—vanaf vwo 4—helemaal geen inferentiële statistiek krijgen, tenzij ze 
wiskunde D kiezen. 
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Kortom: het onderwijzen van statistische inferentie is belangrijk maar 
ook moeilijk. Het inbedden van informele statistische inferentie in eerdere 
leerjaren lijkt veelbelovend, met name in combinatie met het gebruik van 
digitale leermiddelen. Er is echter nog weinig bekend over hoe we ons huidige 
onderbouwcurriculum kunnen uitbreiden met een goed onderbouwd leertraject. 
Dit onderzoeksproject beoogt kennis te verwerven over een theoretisch en 
empirisch gefundeerd leertraject om statistische inferentie te introduceren bij 
vwo 3-leerlingen (Grade 9).   

Hoofdstuk 1: Introductie 
Dit onderzoeksproject volgde een ontwerpgerichte aanpak (Bakker, 2018). Deze 
aanpak kenmerkt zich door een cyclisch proces waarin onderwijsmateriaal voor 
leeromgevingen wordt ontworpen, geïmplementeerd en geëvalueerd, voor 
vervolgcycli van (her)ontwerp en testen (McKenney & Reeves, 2012). In de 
beginfase richtten we ons vooral op de ontwikkeling van een theoretisch 
gefundeerd ontwerp, met daarin een specificatie van beoogde leerdoelen en de 
uitwerking hiervan in een—op dat moment nog hypothetisch—leertraject. 
Naarmate het onderzoek vorderde, werden meerdere interventies met het 
leertraject uitgevoerd in de lespraktijk en geëvalueerd. Deze interventies werden 
in iedere cyclus opgeschaald in zowel de lengte van het leertraject als in het 
aantal deelnemers. In dit onderzoek zijn drie cycli doorlopen: beginnend met 
een onderwijsexperiment in één klas, via een interventie in drie klassen, naar 
een interventie in 13 klassen op verschillende scholen. Daarnaast is tussen 
cyclus 2 en 3 een verdiepende casestudie uitgevoerd naar het leren van en met 
technologie. Deze verdiepende casestudie richtte zich op de samenhang tussen 
het leren van gebruikstechnieken voor een digitale tool en het ontwikkelen van 
conceptueel statistisch begrip.  

Hoofdstuk 2. Herhaalde steekproeven met een black 
box als opstap naar statistische inferentie 
Dit hoofdstuk presenteert de resultaten uit de eerste 
cyclus—en daarmee de eerste studie—van dit 
ontwerponderzoek. Succesvolle implementatie van 
theorie in de onderwijspraktijk impliceert het 
stapsgewijze ontwerp en de evaluatie in echte 
klaslokalen van krachtige leertrajecten die ons 
huidige begrip van effectief leren belichamen (De 
Corte, 2000). De eerste cyclus richtte zich daarom op 
het ontwerp, de implementatie en de evaluatie van het 
eerste deel van het leertraject: leerstap 1 tot en met 3. 

Figuur 1. Afbeelding 
fysieke black box 
gevuld met balletjes 
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Allereerst werd op basis van literatuurstudie een hypothetisch leertraject 
(Simon, 1995) ontwikkeld voor het introduceren van drie kernbegrippen voor 
statistische inferentie: steekproef, frequentieverdeling en gesimuleerde 
steekproevenverdeling (ICT). Figuur 2 toont een overzicht van de drie 
kernbegrippen. 

Een hypothetisch leertraject bestaat uit leerdoelen voor de leerlingen, een 
beschrijving van leeractiviteiten met bijbehorende hulpmiddelen, materialen en 
taakstructuren, leerlingkenmerken, en onderwijsmethoden die leiden tot het 
vereiste leerproces en de beoogde leerdoelen (Sandoval, 2014; Simon, 1995). 
Het door ons ontworpen hypothetische leertraject werd vervolgens 
geïmplementeerd in één klas met 20 vwo 3-leerlingen. Voor de evaluatie van 
het traject werden bij elke leerstap indicatoren opgesteld over observeerbaar 
leergedrag van leerlingen die de hypothese van iedere stap ondersteunen. 

De hypothese in leerstap 1 was dat leerlingen zich bewust zouden worden 
van steekproefvariatie door het uitvoeren van experimenten met een fysieke 
black box gevuld met balletjes. Door het uitvoeren van herhaalde experimenten 
met een klein en groot kijkvenster, konden ze het effect van herhaalde 
steekproeven en steekproefomvang op de schatting van de populatie (inhoud 
black box) exploreren. De resultaten toonden aan dat de met de hypothese 
verbonden indicatoren werden waargenomen. De eerste leerstap stelde de 
leerlingen in staat om in korte tijd te redeneren met steekproefdata, inclusief het 
(informeel) interpreteren van variatie en onzekerheid. Zie Figuur 3 voor een 
impressie van leerstappen 1 tot en met 3. 

Figuur 2. Overzicht van de drie kernbegrippen voor statistische inferentie, zoals 
ingebed in stappen 1 tot en met 3 van het leertraject 
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Figuur 3. Impressies van leerstappen 1 tot en met 3. Links twee foto’s van 
leerstap 1, rechtsboven leerstap 2 en rechtsonder leerstap 3 

Leerstap 2 van het leertraject was gericht op het concept van de 
frequentieverdeling bij herhaalde steekproeven. De hypothese was dat 
leerlingen deze frequentieverdeling allereerst zouden interpreteren als een 
(visualisatie) model van de verkregen resultaten bij een bepaalde black box en 
dat de ontworpen leeractiviteiten hen zouden stimuleren om de conceptuele 
overstap te maken naar het gebruik hiervan als model voor het interpreteren van 
variatie en onzekerheid—deze conceptuele overstap van een model van een 
specifieke wiskundige situatie naar een model voor een netwerk aan 
gerelateerde wiskundige situaties is bekend als emergent modeling 
(Gravemeijer, 1999). In deze leerstap stonden twee activiteiten centraal. Ten 
eerste het schetsen van de verwachte frequentieverdeling bij 100.000 herhaalde 
steekproeven met de fysieke black box uit de eerste leerstap, en ten tweede het 
gebruik van een dergelijke frequentieverdeling om de waarschijnlijkheid van 
specifieke steekproefresultaten te bepalen. Uit de resultaten van deze leerstap 
bleek dat de meeste indicatoren werden waargenomen. Leerlingen waren in 
staat om een correcte schets te maken en de kans op specifieke 
steekproefresultaten te bepalen in de context van de black box—bijvoorbeeld 
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het bepalen van de kans op een steekproefresultaat van meer dan 35 gele 
balletjes bij een steekproef van 40 uit een populatie met een proportie van 75%.  

In leerstap 3 lag de focus op het conceptualiseren van de gesimuleerde 
steekproevenverdeling. Hiervoor gebruikten leerlingen statistisch modelleren in 
een digitale omgeving om herhaalde steekproeven met de bijbehorende 
steekproevenverdeling te simuleren. De hypothese was dat leerlingen zouden 
begrijpen dat deze gesimuleerde verdeling kan worden gebruikt als een model 
voor het interpreteren van variatie en onzekerheid. In deze leerstap neemt de 
computer als het ware hun handwerk uit de eerste twee leerstappen over. De 
resultaten van leerstap 3 toonden aan dat ook hier de indicatoren die de 
hypothese ondersteunen, werden waargenomen.  

Figuur 4. De samenhang tussen het werken in de digitale omgeving van 
TinkerPlots in leerstap 3, en de fysieke black box-activiteiten in leerstappen 1 
en 2 

Op basis van de bevindingen in deze studie vermoedden we dat de sterke 
samenhang en opbouw tussen de drie leerstappen het voor leerlingen mogelijk 
maakte om deze probleemloos te doorlopen. Vanuit hun concrete ervaringen 
met steekproefvariatie in leerstap 1, gevolgd door het visualiseren van de 
opschaling van dit experiment in leerstap 2, konden leerlingen gemakkelijk de 
overgang maken naar het modelleren en interpreteren van de gesimuleerde 
steekproevenverdeling in leerstap 3. Zie figuur 4 voor een illustratie van deze 
samenhang tussen leerstap 1 tot en met 3. Deze eerste drie stappen van het 
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leertraject gaven leerlingen het benodigde inzicht in hoe een 
steekproevenverdeling ontstaat en hoe deze kan worden gebruikt als model voor 
het interpreteren van variatie en onzekerheid. Deze bevindingen suggereerden 
een veelbelovende manier om leerlingen te laten kennismaken met (informele) 
statistische inferentie.  

Hoofdstuk 3. Statistische modelleerprocessen bekeken door de lens van 
instrumentele genese 
Om meer inzicht te krijgen in het leren van en met technologie in leerstap 3 en 
verder werd een verdiepende casestudie uitgevoerd. Inzicht in leren met digitale 
middelen is voorwaardelijk om deze effectief te kunnen inzetten voor het 
bereiken van beoogde leerdoelen. Digitale leermiddelen voor statistiek, zoals 
TinkerPlots, bieden mogelijkheden voor statistisch modelleren via een 
informele aanpak. Deze digitale middelen faciliteren leerlingen om 
populatiemodellen te bouwen en deze modellen te gebruiken om steekproefdata 
te simuleren. Dit statistisch modelleren bevordert het inzicht in concepten en 
modellen die fundamenteel zijn voor statistische inferentie (Biehler et al., 2017; 
Manor & Ben-Zvi, 2017).  

Vanuit wiskundeonderwijs is bekend dat het aanleren van 
gebruikstechnieken voor een digitale tool en het ontwikkelen van conceptueel 
begrip met elkaar verweven zijn. Tot nu toe heeft deze verwevenheid van 
gebruikstechnisch en conceptueel begrip, bekend als instrumentele genese 
(Artigue, 2002), weinig aandacht gekregen in onderzoek naar 
statistiekonderwijs met digitale middelen. Deze verdiepende casestudie richtte 
zich daarom op de toepasbaarheid van het theoretisch perspectief van 
instrumentele genese binnen statistiekonderwijs, en meer specifiek bij het 
statistisch modelleren in de digitale omgeving van TinkerPlots.  

Een geschikte fase om de instrumentele genese van leerlingen te 
onderzoeken is na de introductie van de tool en de concepten, bij het toepassen 
van de verworven kennis in nieuwe situaties. Deze fase vindt plaats in leerstap 4 
van het leertraject. De data voor dit onderzoek bestonden uit video- en audio-
opnames van twee laboratoriumsessies met in totaal 28 leerlingen uit vwo 3 bij 
het uitvoeren van leeractiviteiten in stap 4 van het traject. In het bijzonder 
analyseerden we hoe de ontwikkeling van (gebruiks)technieken en conceptueel 
begrip verweven waren in de instrumentatieschema's die leerlingen 
ontwikkelden. We identificeerden zes instrumentatieschema’s, A tot en met F, 
voor statistisch modelleren met TinkerPlots. Figuur 5 illustreert als voorbeeld 
instrumentatieschema C. De linkerzijde van het figuur bevat een beknopte 
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beschrijving van het schema, in het midden is een schermafbeelding vanuit 
TinkerPlots weergegeven met een duiding van de gebruikte technieken, en de 
rechterzijde beschrijft het conceptueel begrip dat in dit schema aan de orde is. 

Instrumentaties Schema C: Visualiseer herhaalde steekproeven 
Simuleer herhaalde steekproeven en visualiseer deze in een steekproeven-

verdeling; Onderzoek het gedrag van het model 
TinkerPlots technieken Conceptueel begrip 

Bij het oplossen van een 
realistisch probleem kan het 
modelleren hiervan inzicht 
bieden. Door het invoeren van een 
(verwacht) populatiemodel, het 
simuleren van herhaalde 
steekproeven en het visualiseren 
hiervan in een steekproeven-
verdeling, kan het gedrag van het 
model worden onderzocht—
bijvoorbeeld het verkennen van 
veel voorkomende, uitzonderlijke 
hoge en lage steekproefresultaten.  
Een steekproevenverdeling is een 
weergave van de resultaten bij 
veel herhaalde (gesimuleerde) 
steekproeven in een frequentie-
verdeling. Langs de horizontale as 
staan de mogelijke steekproef-
resultaten en de verticale as geeft 
aan hoe vaak bepaalde resultaten 
voorkomen. Steekproefresultaten 
van eenzelfde populatie variëren 
op basis van toeval, waarbij 
resultaten die dichtbij het 
(populatie)model liggen vaker 
zullen voorkomen dan sterk 
afwijkende resultaten. 

Figuur 5. Voorbeeld van instrumentatieschema C voor statistische 
modelleerprocessen met TinkerPlots  
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We observeerden een sterke verwevenheid tussen het aanleren van 
technieken en het ontwikkelen van conceptueel begrip. Technieken voor het 
gebruik van TinkerPlots hielpen de leerlingen om contextonafhankelijke 
technische patronen te ontdekken, die de belangrijke conceptuele overstap van 
een model van naar een model voor (Gravemeijer, 1999) bevorderden. Meer 
concreet betekende dit dat leerlingen ontdekten dat gebruikstechnieken in 
specifieke contexten meer algemeen, dus contextonafhankelijk, toegepast 
konden worden. Dit ging gepaard met meer abstracte statistische terminologie—
bijvoorbeeld het invoeren van de steekproefomvang in plaats van het aantal 
bevraagde leerlingen. Omgekeerd leidde het conceptuele begrip van de 
leerlingen tot de verkenning van meer geavanceerde digitale technieken. Deze 
bevindingen toonden aan dat investeren in het aanleren van digitale technieken 
tegelijkertijd een positief effect heeft op het ontwikkelen van statistisch begrip. 

Hoofdstuk 4. Introductie in statistische inferentie: Ontwerp van een theoretisch 
en empirisch onderbouwd leertraject 
In dit hoofdstuk worden de resultaten van de derde studie—gebaseerd op 
onderzoekcyclus 3—gepresenteerd. Op basis van de eerste twee onderzoekcycli, 
de verdiepende casestudie en aanvullend literatuuronderzoek werd het 
(hypothetische) leertraject (her)ontworpen voor de derde cyclus. Deze cyclus 
omvatte het gehele traject van acht leerstappen, opgesplitst in twee 
vergelijkbare delen van vier: (1) experimenteren met een fysieke black box, (2) 
visualiseren van verdelingen, (3) onderzoeken van steekproevenverdelingen met 
behulp van simulatiesoftware, (4) interpreteren van steekproevenverdelingen 
voor inferenties in realistische contexten. De stappen 1 tot en met 4 zijn alleen 
gericht op categoriale data en in de stappen 5 tot en met 8 wordt gewerkt met 
numerieke data. Een overzicht van het gehele leertraject is weergegeven in 
tabel 1. 

De focus van deze studie was gericht op empirisch onderzoeken of en hoe 
het (vanuit bestaande theorieën) ontworpen leertraject het inzicht van leerlingen 
in statistische inferentie stimuleert. Hiervoor werd het leertraject 
geïmplementeerd in een interventie onder 267 leerlingen in 13 klassen op 
verschillende scholen. De tijdsomvang van het leertraject bestond uit zes 
lesuren per deel, met een totaal van 12 lesuren. We analyseerden de 
posttestresultaten van de leerlingen na de interventie om te onderzoeken of het 
traject inderdaad de beoogde leerstapgerelateerde doelen voor statistische 
inferentie stimuleerde. Om de posttestresultaten te kunnen interpreteren werden 
deze vergeleken met die van een vergelijkingsgroep (n = 217) die het reguliere 



228 

vwo 3-curriculum gevolgd had. De reguliere aanpak bestond uit 10–12 lessen 
gericht op beschrijvende statistiek. Tevens analyseerden we de werkbladen van 
de leerlingen tijdens elke leerstap om te onderzoeken hoe het stapsgewijze 
traject het leerproces bevorderde.  

De posttestresultaten toonden aan dat leerlingen die les kregen vanuit het 
leertraject significant hoger scoorden op alle specifiek leerstapgerelateerde 
doelen uit het leertraject dan leerlingen van een vergelijkingsgroep (n = 217) die 
het reguliere curriculum volgden. Deze leerdoelen omvatten in leerstap 1 en 5 
het gebruik van steekproeven, in leerstap 2 en 6 het visualiseren van 
verdelingen, in leerstap 3 en 7 het effect van herhaalde steekproeven en 
steekproefomvang, en in leerstap 4 en 8 het interpreteren van inferenties in 
realistische contexten. Dit betekent dat elk onderdeel uit de opbouw in 
leerstappen, zoals gepresenteerd in de laatste kolom van tabel 1, van essentieel 
belang is voor het totale leertraject. 

De analyse van werkbladen en notities van docenten en onderzoeker 
bevestigden het belang van elk onderdeel en de sterke samenhang in opbouw 
tussen elke leerstap uit het traject. Met name de koppeling tussen het fysieke 
experiment met de black box en de digitale leeromgeving (zoals weergegeven in 
figuur 4) bevorderde het inzicht van leerlingen in statistische modellen en 
modelleren. Dit inzicht maakte het voor leerlingen mogelijk om vervolgens in 
leerstap 4 en 8 inferenties te interpreteren in realistische contexten. 

De bevindingen in deze studie toonden aan dat en hoe het ontworpen 
leertraject werkt. Een aanpak gebaseerd op herhaalde steekproeven met een 
black box gecombineerd met statistisch modelleren in de digitale omgeving van 
TinkerPlots, bleek vruchtbaar voor het introduceren van statistische inferentie. 
Beide ideeën hebben tevens potentieel voor inbedding in meer complexe 
vervolgactiviteiten, zoals het toetsen van hypotheses en het vergelijken van 
groepen. Deze bevindingen suggereren dat informele inferentiële activiteiten al 
in de onderbouw van het voortgezet onderwijs geïntroduceerd kunnen worden, 
zodat beter kan worden geanticipeerd op vervolgstappen van leerlingen in 
statistiekonderwijs. 
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Hoofdstuk 5. De effecten van het leertraject voor statistische inferentie op de 
statistische geletterdheid van leerlingen 
Als laatste studie in dit onderzoeksproject, werden de effecten van het 
leertraject op de algehele statistische geletterdheid van leerlingen onderzocht. 
Statistische geletterdheid kan onderverdeeld worden in drie domeinen: (1) 
Statistische inferentie, (2) Grafieken en variatie, (3) Kans en gemiddelde. Het 
ontworpen leertraject was vooral gericht op statistische inferentie, het eerste 
domein. We vermoedden echter dat het leertraject ook positieve invloed zou 
hebben op de andere twee domeinen. Het reguliere vwo 3-curriculum was enkel 
gericht op domein twee en drie. Voor de evaluatie werd gebruik gemaakt van 
een pre-post onderzoeksopzet met de interventiegroep (n = 267) uit de vorige 
studie—de derde onderzoekcyclus. De pre- en posttest werden ontwikkeld op 
basis van reeds bestaande tests om de statistische geletterdheid—op alle drie 
domeinen, maar met name op statistische inferentie—van leerlingen te 
onderzoeken (uit onderzoek van Watson & Callingham, 2003; Watson & 
Callingham 2004; Callingham & Watson, 2017; delMas et al., 2007). Om de 
significante leerwinst van leerlingen uit de interventiegroep te interpreteren, 
hebben we de resultaten van deze leerlingen vergeleken met een nationale 
baseline en internationale prestaties. Voor de nationale baseline gebruikten we 
de pre- en posttestresultaten van de vergelijkingsgroep (n = 217) uit de vorige 
studie die het reguliere leerplan van vwo 3 volgde, en de internationale 
vergelijking werd gedaan aan de hand van een Australische studie met 
vergelijkbare testopzet.  

De nationale vergelijking van testresultaten toonde aan dat de 
interventiegroep significant hoger scoorde op statistische geletterdheid, en in het 
bijzonder op het domein van statistische inferentie. Tevens vonden we 
aanzienlijk positieve effecten voor de andere twee domeinen. Hoewel het 
leertraject niet gericht was op de andere domeinen, bleek het leertraject—
bestaande uit een onderzoekgerichte aanpak met digitale middelen en meer 
complexe leeractiviteiten voor statistische inferentie—ook hier een positief 
effect te hebben. Tabel 2 toont een overzicht van de resultaten voor de 
interventie- en vergelijkingsgroep. De laatste kolom in het vak ‘Posttest’ geeft 
het verschil weer tussen de resultaten van de interventie- en vergelijkingsgroep 
op de posttest. De eerste kolom in het vak ‘Pre naar post’ geeft de vooruitgang 
weer van de interventiegroep. Bij de pretestresultaten van de vergelijkingsgroep 
moet vermeld worden dat deze leerlingen de reguliere statistieklessen 
voorafgaand aan de pretest gevolgd hadden, waardoor hun pretestresultaten 
hoger zijn dan die van de interventiegroep. Tussen de pre- en posttest volgde 
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deze vergelijkingsgroep geen statistieklessen, wat zichtbaar is in de 
gelijkwaardige resultaten op beide tests voor deze groep”.  

Tabel 2. Gemiddelde leerlingscore op de domeinen van statistische 
geletterdheid bij de pre- en posttest voor de interventie- en vergelijkingsgroep, 
inclusief vooruitgang van pre naar post  

Interventie-
groep 
(n = 267) 

Vergelijkings-
groep 
(n = 217) 

Interventie – 
Vergelijking 

M (SD) M (SD) M(I) – M(C) 

Pretest 

SG  2.60 (0.61)  2.97 (0.68) –0.37***
SI  2.45 (0.65)  2.72 (0.71) –0.27***
GV  2.07 (0.63)  2.29 (0.58) –0.22***
KG  3.29 (1.38)  3.92 (1.31) –0.63***

Posttest 

SG  3.28 (0.69)  2.95 (0.78) + 0.33***
SI  3.34 (0.84)  2.67 (0.84) + 0.67***
GV  2.59 (0.81)  2.38 (0.88) + 0.21*
KG  3.92 (0.88)  3.80 (1.06) + 0.12

Pre naar 
post 

SG + 0.68 (0.86)*** –0.02 (0.73)  0.70*** 
SI + 0.89 (0.92)*** –0.04 (0.71)  0.93*** 
GV + 0.52 (0.98)*** + 0.09 (0.94)  0.43*** 
KG + 0.63 (1.53)* –0.11 (1.45)  0.74*** 

* p < .05, ** p < .005, en ***p < .0005
Noot. SG = statistische geletterdheid; SI, GV, KG zijn de drie domeinen binnen
SG; SI = statistische inferentie; GV = grafieken en variatie; KG = kans en
gemiddelde.

De vergelijking met de internationale studie toonde aan dat de posttestresultaten 
van de interventiegroep met 14–15-jarigen op statistische geletterdheid het 
meest overeenkwamen met die van Australische leerlingen in Grade 7–8 met 
een leeftijd van ongeveer 13 jaar. De resultaten van de vergelijkingsgroep met 
14–15-jarigen waren het meest vergelijkbaar met die van Australische 
leerlingen in Grade 6–7 met een leeftijd van ongeveer 12 jaar. Uit deze 
internationale vergelijking kunnen we opnieuw concluderen dat de 
interventiegroep aanzienlijk hoger scoorde, met ongeveer één leerjaar verschil, 
dan de vergelijkingsgroep. Opvallend is dat de resultaten van beide groepen met 
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leerlingen in de leeftijd van 14–15 jaar overeenkwamen met die van aanzienlijk 
jongere Australische leerlingen. Vermoedelijk komt dit doordat het 
statistiekaanbod in Australië uitgebreider is dan in Nederland. 

De bevindingen vanuit zowel de nationale als internationale vergelijking 
toonden aan dat het leertraject een significant positief effect had op de 
statistische geletterdheid van de leerlingen, en in het bijzonder op het domein 
van statistische inferenties. Tevens signaleerden we positieve effecten voor de 
andere domeinen. Op basis hiervan kunnen we constateren dat huidige 
statistiekcurricula met een sterk beschrijvende focus verrijkt kunnen worden 
met een inferentiële focus—in ieder geval voor de onderbouw van het vwo. Het 
voordeel hiervan is dat leerlingen meer leren over statistische inferenties en niet 
minder over de andere domeinen van statistische geletterdheid, om zo beter te 
anticiperen op vervolgstappen van de leerling binnen statistiekonderwijs.   

Hoofdstuk 6. Algemene discussie 
Dit onderzoeksproject heeft kennis opgeleverd over essentiële vernieuwingen in 
statistiekonderwijs. Theoretische inzichten werden ontwikkeld in nauwe 
samenhang met een praktisch onderwijsontwerp. Deze inzichten waren zowel 
inhoudelijk als methodologisch van aard.  

Inhoudelijke bijdrage 
Op inhoudelijk gebied draagt dit onderzoek bij aan inzicht in de samenhang 
tussen de ontwikkeling van statistische inferentie en statistische geletterdheid. 
Statistische inferentie wordt beschouwd als een complex domein van 
statistische geletterdheid, wat vaak pas op latere leeftijd wordt aangeboden. De 
resultaten in dit onderzoek toonden aan dat het ontworpen leertraject met 
(informele) inferentiële activiteiten een significant positief effect had op het 
domein van statistische inferentie, en eveneens op de andere twee domeinen van 
statistische geletterdheid—de domeinen grafieken en variatie, en gemiddelde en 
kans, beiden met een beschrijvende focus. Dit positieve effect van (informele) 
inferentiële activiteiten op de andere domeinen van statistische geletterdheid 
pleit voor het eerder introduceren hiervan. Leerlingen ontwikkelen dan al op 
vroege leeftijd statistische concepten die noodzakelijk zijn voor statistische 
inferentie en voor statistische geletterdheid. Het integreren van (informele) 
statistische inferentie bij de huidige aanpak voor statistische geletterdheid kan 
zo leiden tot een duurzame verandering in het leren van leerlingen. Het grote 
voordeel hiervan is dat leerlingen meer leren over inferenties, en hierdoor beter 
worden voorbereid op hun vervolgstappen in statistiekonderwijs. 
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Een tweede inhoudelijke bijdrage van het onderzoek betreft het 
netwerken van theorieën. Het statistiekonderwijs wordt steeds meer gezien als 
onderscheidend van het wiskundeonderwijs, met eigen perspectieven op 
onderwijzen en leren (Groth, 2015). Het integreren van onderwijsperspectieven 
vanuit verschillende disciplines is wenselijk om tot nieuwe kennis en inzichten 
te komen. Dit onderzoek draagt bij door theoretische perspectieven uit 
onderzoek naar wiskundeonderwijs te integreren in onderzoek naar 
statistiekonderwijs. Het theoretisch perspectief van Realistisch 
Wiskundeonderwijs (Freudenthal, 1983) werd gebruikt bij het ontwerp van dit 
leertraject voor statistiek. Op basis van de ontwerpheuristieken vanuit deze 
theorie werd het black box-paradigma uitgewerkt in concrete leeractiviteiten. 
Het black box-paradigma bleek effectief als leidende activiteit binnen de 
leerstappen van het traject. Het theoretisch perspectief van Instrumentele 
Genese werd gebruikt voor onderzoek naar het leren van en met technologie. 
Het toepassen van dit perspectief leidde tot inzicht in hoe leerlingen uit vwo 3 
concepten ontwikkelen bij het statistisch modelleren in TinkerPlots. Vanuit 
deze bevindingen lijkt het theoretisch perspectief van instrumentele genese 
breder inzetbaar binnen onderzoek naar statistiekonderwijs, zoals bij de inzet 
van andere digitale middelen en in andere onderwijsleerjaren en niveaus. 

Methodologische bijdrage 
Op methodologisch gebied draag dit onderzoek bij door te laten zien hoe de 
complexiteit die gepaard gaat bij het experimenteren met innovatief 
onderwijsmateriaal, overwonnen kan worden door gebruik te maken van 
ontwerpgericht onderzoek (Bakker, 2018). Een ontwerpgerichte aanpak met een 
cyclische opschaling in zowel het aantal deelnemers als in de lengte van het 
leertraject bleek effectief voor het ontwerp en de evaluatie van het innovatieve 
leertraject. De start met een kleinschalige interventie in de eigen klas van de 
docent-onderzoeker maakte het mogelijk om de leerdoelen voor het traject te 
expliciteren en de haalbaarheid ervan te beproeven. De evaluatie was hier 
vooral gericht op de eerste drie stappen van het leertraject. In deze stappen werd 
het fundament gelegd van het leertraject en de resultaten uit deze cyclus werden 
dan ook als uitgangspunt gebruikt voor het ontwerp van de vervolgstappen. In 
cyclus 2 werd opgeschaald naar drie klassen met 60 leerlingen. De evaluatie 
was hier voornamelijk gericht op leerstap 4. Aangezien leerstap 5 tot en met 8 
een vergelijkbare aanpak en benadering hadden als leerstap 1 tot en met 4, 
konden we door deze stapsgewijze opschaling een constructief ontwerp 
realiseren. 
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In cyclus 3 werd een kwantitatieve benadering gebruikt om de effecten 
van het leertraject te onderzoeken. Een kwantitatieve aanpak wordt zelden 
gecombineerd met ontwerpgericht onderzoek. Het kwantificeren, en daarmee 
samenhangend het opschalen naar een grote groep deelnemers, is een intensief 
proces. Bij het kwantificeren van de effecten van een leertraject is het van 
belang dat alle materialen eenduidig, compleet en haalbaar zijn, zodat het traject 
op de beoogde wijze door docenten kan worden uitgevoerd. Voor de evaluatie 
van het traject werd een pre-posttestaanpak met een interventie- en 
vergelijkingsgroep gebruikt. Bij de analyse van de testresultaten werd gekeken 
naar de prestaties van de leerlingen voor statistische geletterdheid, en tevens 
naar hun score op leerstapgerichte items. Daarnaast werden in cyclus 3 de 
werkbladen van leerlingen uit de interventiegroep geanalyseerd. Deze aanpak 
maakte het mogelijk om empirisch aan te tonen dat het leertraject werkt, en 
tevens hoe het leertraject werkt. Dit onderzoek toont aan hoe het werken met 
simulaties in een digitale omgeving van meerwaarde kan zijn op een zuiver 
fysieke onderwijsaanpak 

Beperkingen van het onderzoek 
Zoals elke studie heeft ook dit onderzoek uiteraard beperkingen. In dit 
onderzoek hebben we aangetoond dat het leertraject voor het introduceren van 
statistische geletterdheid een positief effect heeft op het leren van statistische 
inferentie bij vwo 3-leerlingen. Het is echter mogelijk dat andere aanpakken ook 
werken, waardoor niet zeker is of dit leertraject ook de meest effectieve manier 
is. Het onderzoek toont echter wel aan dat het ontworpen leertraject werkt. Bij 
het evalueren van de effecten van het leertraject is het moeilijk om de 
generaliseerbaarheid en causaliteit te waarborgen. Door te werken met een grote 
groep leerlingen met verschillende docenten op diverse scholen- bieden de 
resultaten een sterke indicatie dat het doorlopen van het leertraject (bij 
uitvoering zoals beoogd) een positief effect heeft op het leren van leerlingen. 

Aanbevelingen voor vervolgonderzoek en de onderwijspraktijk  
Vanuit deze studie doen we een aantal aanbevelingen voor vervolgonderzoek en 
de lespraktijk. Het aanvullen van bestaande statistiekcurricula met (informele) 
statistische inferentie lijkt haalbaar en wenselijk. Het veranderen van bestaande 
curricula is echter complex. Meer onderzoek is nodig voor succesvolle 
implementatie. Het paradigma van de black box lijkt tevens toepasbaar voor 
andere onderwijsniveaus en ook voor meer complexe vervolgactiviteiten zoals 
hypothese toetsen. Het ontwikkelen van efficiënte leertrajecten hiervoor vereist 
nader onderzoek. De inzet van technologie is onmisbaar voor statistiek 
(onderwijs), en voor statistische inferentie in het bijzonder. Wiskundedocenten 
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zijn vaak onervaren in het gebruik van digitale leermiddelen in de les. Tevens 
worden statistieklessen in de onderbouw van het voortgezet onderwijs vaak 
verzorgd door tweedegraads wiskundedocenten die onervaren zijn in het 
doceren van inferentiële statistiek. Onderzoek naar hoe docenten toegerust 
kunnen worden voor het doceren van inferentiële statistiek met behulp van 
technologie is wenselijk. Daarnaast kampen veel scholen nog met praktische 
beperkingen bij de inzet van computers en het installeren van software. 
Onderzoek naar mogelijkheden om deze praktische obstakels te beperken kan 
het gebruik van technologie in (statistiek)onderwijs bevorderen. Tot slot 
veroorzaakte de COVID-pandemie en bijbehorende schoolsluiting een 
overweldigende toename van technologie in de onderwijspraktijk. Deze actuele 
ontwikkeling vraagt om onderzoek naar duurzame onderwijsvernieuwingen 
waarin het gebruik van technologie geïntegreerd kan worden in het reguliere 
onderwijssysteem. 

Persoonlijke reflectie als docent-onderzoeker 
Dit onderzoeksproject heeft een rijke bijdrage geleverd aan mijn professionele 
ontwikkeling als docent en als onderzoeker. Dit onderzoek heeft mijn 
docentschap op zowel micro-, meso- als macroniveau (Akkerman & Bruining, 
2016) versterkt. Op microniveau in mijn eigen lespraktijk als docent heeft dit 
traject inzicht gegeven in leerprocessen van leerlingen en hoe deze bij het 
lesgeven gepromoot kunnen worden. Op mesoniveau als docent in de school 
heeft dit traject geleid tot een meer analytische blik op het schoolsysteem, en op 
vernieuwende (inter)nationale onderwijsaanpakken en methoden. Op 
macroniveau van de (regionale en landelijke) onderwijswereld zijn de 
onderzoeksresultaten via verschillende docentworkshops en artikelen in 
vaktijdschriften voor wiskundedocenten gedeeld. Diverse docenten zijn 
vervolgens zelf aan de slag gegaan met het ontworpen leertraject in allerlei 
onderwijsniveaus—zoals in de vwo-bovenbouw en in het hbo. Deze ervaringen 
vormden een waardevol vervolg en aanvulling op dit onderzoeksproject. Als 
onderzoeker heb ik mijn competenties in het doen van onderzoek kunnen 
ontwikkelen. Het functioneren in een wetenschappelijke omgeving heeft mijn 
kijk op onderwijsonderzoek verdiept en verbreed. Tevens heeft de intensieve 
samenwerking met internationale collega’s mijn visie op onderzoek in allerlei 
opzichten verruimd. Samenvattend heeft dit traject mijn brede professionele 
functioneren versterkt—zowel in de klas, binnen de school als binnen de 
(inter)nationale onderwijs- en onderzoekswereld. 
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Dankwoord 

Dit onderzoek was in veel opzichten een intensief project. Hierbij was de steun 
van anderen onmisbaar om het traject te doorlopen. De eerste fase was voor mij, 
als ervaren wiskundedocente, een onzekere zoektocht in een onbekende 
wetenschappelijke wereld. Het vinden van een passende onderzoeksrichting, het 
verwerven van benodigde kennis en onderzoeksvaardigheden, en het balanceren 
tussen onderwijs en onderzoek, vergden in het begin veel tijd, inspanning en 
doorzettingsvermogen. Mede door de betrokkenheid en begeleiding van directe 
collega’s op het Freudenthal Instituut voelde ik me gaandeweg steeds bekwamer 
als onderzoeker en werd mijn passie voor het doen van onderzoek vergroot. Het 
lesgeven in de onderwijspraktijk gecombineerd met onderzoeken hoe leerlingen 
leren heeft geleid tot een prachtige verbinding tussen mijn affiniteit voor 
onderwijs, onderzoek en wiskunde. 

Allereerst wil ik Paul en Arthur bedanken. Jullie intensieve, deskundige 
en betrokken begeleiding was voor mij essentieel. Bij de start van dit project 
kenden we elkaar nauwelijks, maar al snel was er een vertrouwd contact. Paul, 
jij bent vanaf het begin mijn houvast en tevens motor geweest. Vrijwel 
wekelijks hadden we contact, waarbij je heel gericht steeds nieuwe impulsen of 
andere invalshoeken aangaf. Je was enorm betrokken bij de inhoud, maar had 
tevens oog voor de persoonlijke kant. Zo was je standaard openingsvraag “Hoe 
gaat het met je?”, en was jouw doel tijdens een overleg om mij “nog meer en 
dieper te laten nadenken”. Dat laatste wist je iedere keer weer voor elkaar te 
krijgen. Tevens was er ruimte om te sparren over andere zijdelings gerelateerde 
ontwikkelingen, zoals opgedane ervaringen in de onderwijspraktijk of binnen 
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het FI, en de gedeelde liefde voor muziek. Deze balans tussen persoonlijke en 
inhoudelijke begeleiding maakte de samenwerking vertrouwd en effectief. 
Arthur, jouw gedrevenheid en waardevolle feedback, met name op het gebied 
van methodologie, heeft mij veel geleerd. Vanuit jouw analytisch perspectief 
gaf je steeds gerichte feedback over welke onderdelen in het geheel verder 
uitgediept konden worden. Naast detailopmerkingen, over bijvoorbeeld het 
gebruik van de En Dash, raakte jouw feedback de essentie van het onderzoek. 
Dit maakte dat deze vaak verregaande gevolgen had voor de hele 
onderzoeksopzet. Je zette dan als het ware het fundament recht, waardoor een 
betere cohesie en structuur ontstond. Dit leidde regelmatig tot waardevolle, 
inhoudelijke discussies, waarin je met weinig woorden een convergerende 
oplossingsrichting wist aan te geven. Arthur en Paul, de combinatie van jullie 
als begeleiders is een sterk concept. Jullie eigen professionele perspectieven die 
elkaar mooi aanvullen, gecombineerd met een sterke onderlinge relatie, 
resulteerden in een ijzersterke begeleiding. 

Als inspirator voor het doen van onderzoek wil ik Jos Tolboom 
bedanken. Jos, jij bent degene die mij jaren geleden aanspoorde om 
wetenschappelijk onderzoek te gaan doen. Dit was nog tijdens mijn 
masteronderzoek en resulteerde in een eenjarig NRO-onderzoekstraject. 
Gedurende dit kortlopende traject maakte jij mij wegwijs in de 
onderzoekswereld en deelde je tal van inspirerende en vernieuwende ideeën. 
Vanuit dit kortlopende traject ontkiemde mijn passie voor het doen van 
onderzoek, met als vervolg de uitvoering van dit promotieonderzoek. Tijdens dit 
promotietraject was jij ook degene die de klankbordgroep aanstuurde. Met name 
in de eerste jaren was het waardevol om met de personen in deze groep, ieder 
met hun eigen perspectief, te reflecteren op het onderzoeksproces. Bij deze wil 
ik naast Jos ook Swier Garst, Theo van den Bogaart, Peter Kop, Rijk Verkerk en 
Karma Dajani heel hartelijk bedanken voor de prettige 
klankbordgroepbijeenkomsten waarbij verschillende perspectieven op mijn 
onderzoek verdiept en bediscussieerd werden. Ook een woord van dank aan 
Walter Stevenhagen voor zijn gedreven inzet en constructieve bijdrage aan het 
ontwerp en de implementatie van de pre- en posttests in onderzoekcyclus 3. Met 
betrekking tot internationale contacten wil ik met name Rolf Biehler, Katie 
Makar en Dani Ben-Zvi bedanken voor de fijne en leerzame samenwerking, die 
mij geholpen heeft om dit onderzoek in een breder internationaal perspectief te 
plaatsen. 

De directie van de CSG Prins Maurits ben ik ontzettend dankbaar voor 
hun flexibiliteit, steun en meeleven bij het uitvoeren van dit onderzoekstraject. 
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In goed overleg was het steeds mogelijk om een werkbare balans te vinden 
tussen docenttaken en onderzoekstaken. Ook bij het integreren van beide, 
tijdens het uitvoeren van interventies stonden jullie open voor vernieuwing. Bij 
deze wil ik ook mijn wiskundecollega’s bedanken, met name Arjan van Wijk, 
Rijk Verkerk en Ellis Peekstok, die direct betrokken waren bij het onderzoek. 
Bedankt voor jullie inzet, praktische aanvullingen en inhoudelijke ideeën. 
Hierbij wil ik ook Swier Garst nogmaals noemen, die als wiskundecollega ‘van 
de overkant’ meerdere keren als interventiedocent heeft meegewerkt. Ook een 
woord van dank aan de interventiedocenten in de laatste onderzoekcyclus voor 
hun inzet en deelname aan het onderzoekproject. Mijn teamleider, Andre 
Knulst, wil ik persoonlijk bedanken voor zijn interesse en stimulans. Met name 
wil ik hierbij de waardevolle gesprekken benoemen over de balans tussen 
wetenschappelijk onderzoek en de onderwijspraktijk, en over mogelijke 
onderwijsvernieuwingen binnen de school en daarbuiten.   

Dan een woord van dank aan mijn kamergenoten en collega’s op het 
Freudenthal Instituut, met name Lonneke Boels en Annemiek van Leendert, 
voor hun steun en toeverlaat. Lonneke, jij was gedurende het hele traject mijn 
voorbeeld en houvast. Je maakte me wegwijs in het gebouw, introduceerde me 
bij personen en deelde handige tips en inhoudelijke ideeën over onderzoek 
doen. Je oprechte belangstelling, en de tijd die je nam om je te verdiepen in 
mijn onderzoek, zorgde voor waardevolle positief-kritische feedback. Ook was 
jij degene met wie ik de soms lastige balans tussen onderzoek, onderwijs en 
gezin kon delen en bespreken. Je nam altijd de tijd voor overleg. Tijdens onze 
gezamenlijke conferenties, met name ICOTS in Japan en de pre-SRTL in De 
Bilt, heb ik veel van je geleerd en genoten van de gezellige momenten. 
Annemiek, ook jou wil ik bedanken voor je interesse, de openhartige 
gesprekken en je gezelligheid. Tevens dank aan alle collega’s op het FI voor de 
fijne gesprekken in de wandelgangen, bij de koffieautomaat, tijdens de 
lunchmeetings en de NWD. Tot slot wil ik Nathalie Kuijpers bedanken voor 
haar onmisbare hulp bij het zetten van de ‘puntjes op de i’, qua taalcheck en lay-
out, in de manuscripten van deze thesis. 

Mijn mede-Dudoc-ers wil ik bedanken voor hun openheid in het delen 
van onderzoek ervaringen, de waardevolle inhoudelijke feedback en de 
gezelligheid tijdens de Dudoc-bijeenkomsten. Marie-Jetta, Sathyam, Gerben, 
Tim B., Melde, Tore, Tim van D., Farran, Jacqueline, Koen, Stefan, Pier en 
Kirsten, het was fijn om met ‘lotgenoten’ te kunnen sparren. Ook een woord 
van dank aan de Dudoc-programmaraad, Erik Barendsen, Wouter van 
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Joolingen, Martin Goedhart, Birgit Pepin en Marc de Vries, voor jullie 
openheid, interesse en inhoudelijke expertise.  

Naast de onderwijs- en onderzoekwereld waren vriendinnen van 
onschatbare waarde om te ontspannen en te relativeren. Marian, met jou kon ik 
alle mooie en moeilijke momenten delen. Bedankt voor je grenzeloze 
vertrouwen en onvoorwaardelijke liefdevolle steun: je schouder om op te huilen 
en je gezelligheid om van te genieten. Bianca, en ook Robert-Jan, bedankt voor 
je hartelijke meeleven en de plezierige activiteiten met onze gezinnen. Marleen, 
Marjan R. en Sonja bedankt voor jullie warme vriendschap, en Christa, Tabitha 
en Annette, bedankt voor de mooie muzikale momenten.  

Dan wil ik mijn lieve moeder bedanken die altijd voor me klaarstond. De 
aangename thee-momentjes waarin we allerlei zaken bespraken, je heerlijke 
appeltaart bij verjaardagen, je interesse en betrokkenheid bij alle activiteiten 
rondom ons gezin. Je liefdevolle adviezen en ook de zorgen die je deelde 
rondom mijn onderzoek en welzijn, waren waardevol om de juiste keuzes te 
maken. Ook mijn schoonouders wil ik bedanken voor hun steun op allerlei 
manieren, zoals de ontspannen koffie-uurtjes op de zondagmorgen, de zelf 
geteelde groente en fruit, en de praktische klusjes in en om het huis.  
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The increasing amount of data in media over the last year—think of 
COVID—illustrates the necessity for students to become statistically 
literate—including interpreting inferences. Drawing inferences involves 
making data-based claims under uncertainty when only partial data are 
available. However, inferences are challenging for students in Grade 10 
and higher. This thesis focused on the question: How can a theoretically 
and empirically based learning trajectory introduce 9th-grade students 
to statistical inference? To answer this question, we used a design-
based research approach, complemented with a case study into learning 
statistics from and with technology. The design of the trajectory was 
informed by theories on repeated sampling and statistical modeling 
using a black box paradigmatic context. The learning trajectory was 
implemented in teaching practice during three interventions. A pre- 
and posttest were designed to evaluate the trajectory’s effects in the 
large-scale final cycle. A national and international comparison of 
student results showed that students who took part in the learning 
trajectory (N = 267) scored significantly higher on statistical literacy 
than the comparison group that followed the regular curriculum  
(N = 217), in particular, on the domain of statistical inference. We also 
observed positive effects on other domains of statistical literacy. These 
findings suggest that current statistics curricula for grades 6–9, usually 
with a strong descriptive focus, can be enriched with an inferential 
focus—at least for pre-university education (VWO). The benefit of this 
early introduction is that students learn more about inference and not 
less about the other domains of statistical literacy, to anticipate for 
subsequent steps in students’ statistics education.  
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