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Chapter 1

Introduction

Figure 1 shows a drawing from the picture book De Verrassing (Van Ommen, 2003).
The picture book tells the story of a woolly sheep who is measuring the thickness of
her fur over time in order to know when she has enough wool to knit a sweater, as a
present for her friend. This drawing shows the relationship between time and
thickness of fur as a line in the graph. There is also a second line in the graph,
presumably representing the sheep’s weight over time. The intriguing story of the
sheep makes it easy for children to conjecture about the graph’s meaning and even
recognize the relationship between the two measures and time (Van den Heuvel-
Panhuizen et al., 2009). This picture book drawing is an example of how children
already from a very young age are informally introduced to graphical representations
of dynamic data.

Figure 1. Drawing from “The Surprise” [Dutch: De Verrassing], Van Ommen (2003, p. 3)

The ability to use graphs to produce, present, and understand complex dynamic
information (e.g., quantities changing over time) by making flexible use of already
given representations, is becoming increasingly important in current society. On the
internet, on television, and in the newspapers graphical representations are frequently
used to present data to transmit information to the viewer or reader in a presumably
clear and concise manner. Yet, high levels of graphical understanding are sometimes




Introduction

necessary in order to interpret these graphs correctly. For example, take a look at the
graph presented in Figure 2. Here we see a line graph published in an online article
of the Dutch Centraal Bureau voor de Statistiek (Central Bureau of Statistics) (cbs.nl,
2013). The graph represents the employed versus the unemployed labor force. When
taking a superficial look at this graph it almost seems as if the employed labor force
is as large as the unemployed labor force. This would be a rather strange conclusion.
When looking more closely at the specific values given on the y-axes of the graph
(both on the left and on the right) it is shown that the left y-axis starts at the value of
0, while the right y-axis starts at the value of 6800. This difference in starting values
makes the interpretation of this graph a rather complex endeavor. Although both axes
have scales with steps of 100, they differ in the range they cover.
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Figure 2. Graph representing the employed labor force (right axis) versus the unemployed
labor force (left axis) from 15 till 65 years, given per month, cbs.nl (2013)

This example shows that high levels of graph interpretation skills, as well as the
ability to critically evaluate graphs, are important when reading and interpreting
complex everyday information that is presented to us. In order to interpret and
recognize the deeper underlying meaning of these representations one has to develop
an understanding of the formal aspects of graphical representations (e.g., the meaning
of the axes, variables, the slope, and rate of change) as well as the reasoning
associated with graphs (e.g., gaining a deeper understanding about the relationship
between variables, drawing inferences, reasoning logically, evaluating evidence, and




Chapter 1

solving problems related to graphs) (Ainsworth, 2006; Friel et al., 2001; Shah &
Hoeffner, 2002). Sophisticated skills like the ones described here, are currently
referred to as 21% century or higher-order thinking (HOT) skills. The importance of
problem solving and HOT is increasingly recognized both internationally (e.g.,
NCTM, 2000; OECD, 2019) and nationally (e.g., Thijs et al., 2014; Van den Heuvel-
Panhuizen & Bodin-Baarends, 2004). Also, there is increasing awareness that the
foundation of HOT in mathematics has to be laid at young age (Common Core State
Standards State Initiative, CCSSI, 2010; Goldenberg et al., 2003; NCTM, 2000).
However, as Kolovou et al. (2009) have revealed, the primary mathematics
curriculum in the Netherlands provides very few opportunities to practice HOT, a
situation which nowadays still persists (Gravemeijer et al., 2017; Van Zanten & Van
den Heuvel-Panhuizen, 2018). Therefore, there is growing consensus to revise the
mathematics curriculum and pay more attention to HOT (Dutch Association for the
Development of Mathematics Education, NVORWO, 2017; Ontwikkelteam
Rekenen-Wiskunde, 2019). Specifically, to meet the needs of primary school aged
students, HOT should be embedded in innovative instructional settings. One
promising approach would be to develop activities that include the active role of the
body to build up conceptual metaphors rooted in embodied cognitions, in order to
reach higher levels of mathematical understanding as embodied cognition (e.g.,
Gallese & Lakoff, 2005; Hall & Nemirovsky, 2012).

Against the background of providing primary school students more opportunities to
develop HOT within mathematics, the Beyond Flatland project was initiated with a
grant (405-14-303) from the Netherlands Initiative for Education Research (NRO).
In this project possibilities for enriching a “flat” arithmetic-focused mathematics
curriculum were explored by incorporating higher-order mathematical activities in
the primary school classroom. The Beyond Flatland project consisted of three part-
projects. This thesis is the result of one of these three part-projects and addresses the
graphing of motion. The other two part-projects considered the mathematics domains
of early algebra and probability. The PhD study described in this thesis focused on
stimulating fifth-grade students’ reasoning with motion graphs, as an approach to
incorporate HOT within mathematics activities in primary school. The graphing of
motion — including both graph interpretation and graph construction activities — is
rarely addressed in primary school mathematics textbooks. As a consequence, not
many teachers capitalize on the opportunities this mathematical domain offers for
developing students’ HOT, although there is ample evidence that students at this age
can deal with representations in which motion data are visualized (e.g., diSessa et al.,
1991; Van Galen et al., 2012). Students’ reasoning about motion graphs could benefit
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Introduction

from the incorporation of bodily experiences during graph-related activities (e.g.,
Deniz & Dulger, 2012; Mokros & Tinker, 1987; Nemirovsky et al., 1998; Robutti,
2006). The idea that bodily experiences — including touching, gesturing, perception,
and moving one’s whole body — are relevant to the field of mathematics, can be
positioned within contemporary work on embodied cognition (e.g., Gallagher &
Lindgren, 2015; Hall & Nemirovsky, 2012; Lakoff & Nufiez, 2000; Radford et al.,
2017; Tran et al., 2017). In order to extend these existing lines of research, this PhD
thesis aims at gaining more insight into the foundational role of bodily experiences,
as concrete activities, for cognition and mathematical activity, by taking into account
opportunities bodily experiences offer to support the learning of mathematical
concepts, and more specifically, reasoning about motion graphs.

1. Theoretical background
1.1 HOT: Why is it important?

To be able to participate in a society characterized by vast technological innovations,
skills such as collaborating, problem solving, generating and evaluating evidence,
ICT literacy, critical thinking, and creativity, among others, are considered to be of
increasing importance (Scott, 2015; Voogt & Pareja-Roblin, 2010). This array of
skills, which are not necessarily new, but historically have not had a systematic place
in education, are nowadays popularly referred to as 215 century skills (see, for
example, the categorization of 21% century skills on http://www.atc21s.org). HOT is
often mentioned in relation to these 21% century skills, and can be defined as: “the
mental engagement with ideas, objects, and situations in an analogical, elaborative,
inductive, deductive, and otherwise transformational manner that is indicative of an
orientation toward knowing as a complex, effortful, generative, evidence-seeking,
and reflective enterprise” (Alexander et al., 2011, p. 54). The ability to apply HOT is
considered to be relevant in preparing students for a future that is currently unknown
(e.g., Forster, 2014; OECD, 2016). For education, in addition to declarative (i.e.,
knowing “that”), and procedural knowledge (i.e., knowing “how”) the question has
become how to support students in developing this HOT (i.e., knowing “why”’) (Van
Streun, 2001).

One often cited categorization of cognitive skills within an educational context is the
Taxonomy of Educational Objectives (Anderson & Krathwohl, 2001; Bloom, 1956),
namely knowledge, comprehension, application, analysis, synthesis, and evaluation.
Within educational science the top three levels — analysis, synthesis, and evaluation
— are often used to operationalize HOT. The underlying assumption of this
classification, as well as other definitions or operationalizations of HOT presented in
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the educational literature (see also Resnick, 1987), is the conceptualization of HOT
as domain-general. This means that there are general aspects of HOT that are shared
across academic domains and that can be stimulated regardless of the academic
content taught (Alexander et al., 2011). For example, many studies have focused on
developing domain-general HOT such as critical thinking skills or problem solving,
without specifically addressing the particularities of what one has to critically think
about, or what type of problem has to be solved. According to Alexander et al. (2011)
such domain-general conceptualization of HOT is not tenable. In their view, HOT
“exhibit[s] distinctive qualities arising from the nature of the domain within which
the task or activity is situated” (emphasis added, p. 51). This domain-specific view
on HOT implies that thinking becomes higher order due to increasing experience
within particular academic domains such as history, language, and mathematics, and
as a consequence should be stimulated within these respective domains (Ericsson,
2003). Students’ ability to apply HOT, including critical thinking and problem
solving, is considered to be an important goal of Dutch mathematics education
(NVORWO, 2017; Ontwikkelteam Rekenen-Wiskunde, 2019).

In order to study domain-specific mathematical HOT in sufficient depth, and to
provide ideas about how HOT can be supported within mathematics education, the
research in this thesis has taken a particular focal point: graphing and graphing
motion with Grade 5 students. The domain of motion graphs offers many
opportunities for HOT, such as reasoning about (graphically represented) change and
relationships, reasoning about the quantities represented in the graph (e.g., distance,
time), or combinations thereof (i.e., speed) as well as reasoning about the
simultaneous coordination of the values (magnitudes) of the quantities in the graph
(i.e., covariational reasoning, Saldanha & Thompson, 1998). The domain of motion
graphs also offers ample opportunities to translate between a motion situation and its
graphical representation, as well as constructing graphical representations of a motion
situation. The operationalization of mathematical HOT within the domain of
graphing motion offers a concrete translation of the more generally formulated
educational objectives put forward for developing 21% century skills.

1.2 HOT in the context of graphing motion: Developing graph sense

In this thesis, the term graph sense (Friel et al., 2001; Robutti, 2006) is adopted to
frame the HOT associated with graphs in primary mathematics education. This graph
sense is related to number sense (e.g., Resnick, 1989) and symbol sense (Arcavi,
1994), and “develops gradually as a result of one’s creating graphs and using already
designed graphs in a variety of problem contexts that require making sense of data”

12
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(Friel et al., 2001, p. 145). For example, for young children, who have little
experience with graphing and the reasoning associated with graphs, answering graph-
related questions implies dealing with a problem situation for which they do not yet
have an appropriate, automated strategy to solve or explain them. Yet, this does not
mean that they are unable to reason about such representations. When looking back
at the example of the sheep in Figure 1, Van den Heuvel-Panhuizen et al. (2009)
showed how this drawing stimulated five- and six-year old children to conjecture
about its meaning. They saw that the sheep was measuring her weight and the
thickness of her fur and when seeing this drawing they naturally made the connection
between the information the sheep was gathering and the line in the graph, moving
upwards. The children in their study started to reason about the meterstick the sheep
is holding and the graphical representation on the wall. They even noticed that the
graph has something to do with the days of the week. Presented in isolation, the graph
would have been meaningless to a five- or six-year old child. Yet, the question
implicitly posed in the story — will the sheep have enough wool to knit a sweater? —
made the representation meaningful to them, enabling the children to draw some
inferences from the given situation in relation to its representation in the graph.
Further, in their reasoning about the graph, the children build upon their informal and
intuitive understandings of certain phenomena through a few very natural everyday
cognitive mechanisms. For example, in realizing that the line in the graph moving
upwards was related to an increase in the sheep’s fur over time, the children made
use of a spatial embodied conceptual metaphor (e.g., “growth is up”) (e.g., Wilson &
Golonka, 2013). Conceptual metaphors like these arise naturally from correlations
with experiences in everyday reality (Lakoff, 2014; Lakoff & Nuifiez, 2000). This
example thus shows that mathematical ideas are grounded in everyday bodily
experiences and intuitions, whereby the inferential structures of these experiences are
mapped — through conceptual metaphors — onto abstract concepts (Nufiez et al.,
1999).

Whereas graph interpretation implies the reading of a graphical representation and
extracting meaning from it, graph construction refers to the building of something
new. Constructing a graph can, for example, be done by plotting points that are
provided in a table or as a function (quantitative graph construction; Leinhardt et al.,
1990) or by sketching the shape of the graph as a response to a description of a motion
situation, without explicitly focusing on numerals (qualitative graph construction;
Krabbendam, 1982). Graph construction is sometimes seen as more difficult than
graph interpretation because interpretation “only” involves reading a representation
which is already there (Leinhardt et al., 1990), whereby one can naturally build on
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intuitions and everyday experiences, in order to make sense of the graph. In
education, graph interpretation activities are more common than graph construction
activities even though there is compelling evidence that young students are very well
able to construct graphical representations of motion. An example is given in the
study by diSessa et al. (1991) that showed young students’ ability to create graphs to
describe the motion of a car that slows down, stops, and then drives away slowly (see
also Sherin, 2001). When asked to come up with ways of representing this real-world
motion situation using paper-and-pencil (students previously had modelled another
motion situation by using a simulation program) students’ drawings showed a
multitude of graphical solutions. Although research reports students’ difficulty with
representing motion continuously (see also McDermott et al., 1987), these students
showed a transition from discrete representations of the motion situation to
continuous representations of that same motion situation. The setting in which
graphing activities take place contributes to how well students construct, and as a
consequence, interpret graphs of others. A learning environment that invites students
to participate actively in developing and maintaining the practice of graphing (also
as collective and shared social practice), is more likely to commit students to
construct representations that are convincing and meaningful to them (Roth &
McGinn, 1997).

In this PhD thesis, both graph interpretation and graph construction activities are
addressed. Offering young students opportunities to interpret and construct graphs
might engender high levels of reasoning. A focus on reaching higher levels of
reasoning as part of generating mathematical understanding is also the objective of
Realistic Mathematics Education (RME; e.g., Freudenthal, 1973, 1991; Treffers,
1978, 1987). RME is a domain-specific instruction theory, which has informed the
development of a learning trajectory presented and evaluated in this PhD thesis. RME
can be characterized by six core principles, being the activity principle (having
students actively involved in the learning process), the reality principle (starting with
known meaningful situations), the level principle (using models to bring students to
a higher level of understanding), the intertwinement principle (integrating
mathematical subdomains), the interactivity principle (creating opportunities for
classroom discussions), and the guidance principle (having teachers in a proactive
role in creating a powerful learning environment) (Van den Heuvel-Panhuizen,
2001). Although RME is one of the dominant strategies within Dutch mathematics
education, as evidenced in the (more or less) RME-oriented mathematics textbooks
used in most Dutch primary school mathematics classrooms, the principles of this
theory are often underexposed throughout most instructional activities. In the
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following paragraph I will shortly introduce the value of the reality principle and the
level principle as instruction strategies for this particular research project.

1.3 Learning environments supporting students’ understanding of motion
graphs

According to Freudenthal (1991) mathematics is first and foremost a human activity,
whereas our surrounding reality can be mathematically organized, a process he called
mathematization. Thus, fundamental to the process of doing mathematics is the idea
that mathematics ideally emerges from real-world situations before moving on to the
formal world of mathematics. Real-world here refers to situations that are
experientially real to a student, and more specifically, situations that are meaningful.
Asking students to solve a real-life problem that is situated in a rich meaningful
context can help students attach meaning to the mathematical constructs they develop
to solve the problem. Later on the context-specific model of the problem situation
that can be formed in the beginning of the learning process can be generalized and
can become a model that can be used to solve other problem situations and reach a
higher level of mathematical reasoning (Van den Heuvel-Panhuizen, 2003). This
means that models serve a so-called bridging function between these informal
situation-specific solutions and formal mathematics; they shift from a model of to a
model for (Streefland, 1985). A similar approach can be found in the aforementioned
study of diSessa et al. (1991), in which drawings, invented by the students
themselves, served as a direct model of a students’ informal mathematical activity.
Subsequently, these drawings were taken as a starting point on which formal
approaches towards graphing were built. In some cases, models are so powerful that
they can also be used for all kinds of other situations.

Over the past couple of decades technology-rich environments such as simulations
(e.g., Noble etal., 2001; Roschelle et al., 2000), video modelling (e.g., Boyd & Rubin,
1996), and motion sensors (e.g., Nemirovsky et al., 1998; Robutti, 2006) have been
frequently used to allow students to interactively explore and experiment with
graphically represented motion. These technologies offer students opportunities to
connect physical phenomena to a wide variety of representations (Hegedus et al.,
2017). For example, Nemirovsky et al. (1998) described the work of two students
who walked in front of a motion sensor, graphing their own movements. The
reasoning of these students transformed throughout the activities: from language they
used to define their own movements, to language they used to describe their own
motion represented as a line in the graphical representation. This study showed how
the used motion sensor became a defining element, serving as a bridge between the
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real-world situation and the formal representation of that situation as a mathematical
graph. Research has shown that the use of motion sensor technology is relatively
successful (e.g., Urban-Woldron, 2015). It comprises various elements that are
helpful when coming to understand graphs: providing a real-time immediate link
between situation and graph, providing students with real-time graphical
representations of their own’, others’ or objects’ motion, either in reality or via the
screen of a computer, providing students the opportunity to adjust a graph simply by
adjusting the motion represented in the graph (Glazer, 2011), and allowing students
to start using graphs “both as objects to be talked about and as structural resources in
communication” (Roth & McGinn, 1997, p. 101).

A learning environment using motion sensor technology, in which students for
example are allowed to graph their own movements, capitalizes on students’
perceptual-motor experiences to learn graphing conventions (e.g., Arzarello et al.,
2007). This offers opportunities to connect “the mathematics of change to its
historical and familiar roots in experienced motion” (Kaput & Roschelle, 2013,
p. 20). For example, knowing or being told that the graph of a time-distance
relationship does not go “backwards” is quite different from actually experiencing
with your body that the line in the graph represents the unidirectional quantity time.
This linking between a concrete physical experience and the abstraction of that
experience as a mathematical graph closely aligns with theories of embodied
cognition. Already from an early age we bodily experience motion as continuous
change. The fundamental experience of moving through space can serve as a
grounding metaphor by which the line in the graph becomes meaningful, while also
providing a starting point to reason about the graph as a mathematical object (Lakoff
& Nuifiez, 2000). The importance of embodied action and interaction for
mathematical thinking and learning, as evidenced in theoretical perspectives of
embodied cognition (Abrahamson & Bakker, 2016; Hall & Nemirovsky, 2012),
throws yet another light on the relative success of using motion sensor technology in
the classroom. There is convincing behavioral (e.g., Kelton & Ma, 2018; Ruiter et
al., 2015) and neuroscientific (e.g., Gallese & Lakoff, 2005; Lakoff, 2014;
Pulvermiiller, 2013) evidence that bodily experiences are indeed helpful for the
teaching and learning of mathematics (e.g., Abrahamson & Bakker, 2016) as well as
reaching higher levels of mathematical reasoning.
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1.4 Opportunities to support reasoning about motion graphs: an embodied
cognition perspective

The embodiment hypothesis suggests that physical experiences are relevant not only
for developing early motor skills (e.g., Piaget, 1964), but also for higher-level
cognitive functioning (e.g., Koziol et al., 2012; Radford et al., 2005). An example
can be found in the bodily-based experience of balance. When we were young, we
probably have had countless opportunities to play on a seesaw. This fundamental
experience of being in balance might serve as a grounding metaphor to aid our
understanding of the equal sign (e.g., 3 + 1 =4) (e.g., Nufiez et al., 1999). There exist
different views on the exact role of the body in explaining cognitive processes (e.g.,
Chemero, 2011; Clark, 1999, Goldman, 2012). At the one end of the embodied
continuum the role of the body is perceived as providing input for the brain, which
helps generate abstract cognition. For example, providing students with activities in
which they work with the bodily-based experience of being in balance, can add depth
to one’s understanding of the abstract concept of the equal sign. The mental processes
that are activated are supposed to be similar to the cognitive processes taking place
when doing mental simulation and disembodied abstract reasoning (Margolis &
Laurence, 2007). At the opposite end of the embodied continuum, the role of the body
is perceived as more radical, where the assumption of mental cognitive processes is
regarded as unnecessary because cognition resides in the interaction of the body in
and with the physical world, thus fundamentally altering the nature of cognition
(Wilson & Golonka, 2013). For example, when trying to catch a fly ball, there is an
ongoing real-time interaction between body and environment in order to successfully
catch it (e.g., Kiverstein, 2012; Wilson & Golonka, 2013). Although differing in the
ways of how cognition and abstract mental processes are defined, all these embodied
views have the relevance of the body as interactional entity in common; either with
oneself, others, the environment, or combinations thereof (Wilson, 2002).

2. Research directions of this thesis

The research presented in this thesis mainly focuses on the evaluation of a learning
environment consisting of a six-lesson teaching sequence incorporating embodied
activities related to graphing — both graph interpretation and graph construction —
using motion-detecting graphing technology (e.g., Brasell, 1987; Mokros & Tinker,
1987). In this respect, we bring together — and build upon — previous work done
within the field of mathematics and science education (e.g., Anderson & Wall, 2016;
Brasell, 1987; Deniz & Dulger, 2012) as well as previous work done within the field
of embodied cognition (e.g., Nemirovsky et al., 1998; Robutti, 2006) in order to
investigate how both research strands combined might be a fruitful way to develop

17



Chapter 1

students’ reasoning about graphs of motion. The new findings that emerge from this
analysis will give us insight into students’ development of graphical reasoning.

3. Structure of this thesis

This PhD thesis consists of a series of articles. The first aim of the research presented
in this PhD thesis is investigating whether and to what extent mathematical activities
in the domain of graphing motion are prone to elicit students’ HOT. The second aim
is investigating the role of bodily experiences and their potential to support students’
reasoning about motion graphs. A third and final aim of this PhD thesis is whether
HOT stimulated within the domain of graphing motion has the potential to foster high
levels of reasoning in another slightly related mathematics domain, namely the
domain of early algebra, providing further insight in the extent to which HOT can be
regarded domain-specific, domain-general, or both. The empirical data gathered in
this project covered students’ micro development over the six-lesson teaching
sequence and students’ macro development over the schoolyear. An overview of the
structure of this thesis, including the topics addressed in the respective chapters, is
provided in Figure 3.

Graphing motion Early algebra

Review
Embodied learning
environments

Chapter 2
(Study 1)

Intervention
Reasoning about motion graphs,
through physical experiences ~ t----------------------m--- >
(i.e., embodied learning
environment)

Chapter5
/\ (Study 3)

Domain of linear
equations

Micro- Macro-
development development
Chapter 3 Chapter 4
(Study 2) (Study 2)

Figure 3. Overview of the structure of this thesis including the studies presented in the
respective chapters
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Chapter 2 reports on a systematic literature review of the research literature that made
use of an embodied learning environment to support students’ understanding of
graphing motion. The main objective for carrying out this literature review was to
obtain more insight into the characteristics of embodied learning environments and
their potential for mathematics thinking and learning in general and graphing motion
in particular. This chapter addresses the following main research question:

What does the research literature report on teaching students graphing
motion using learning environments that incorporate students own bodily
experiences?

Chapter 3 reports on the study in which we investigated the potential of an embodied
learning environment — consisting of a six-lesson teaching sequence — to support
students” HOT, as their reasoning about graphing motion, and more specific, their
reasoning about the variables represented in the graph (i.e., distance, time, and speed).
In this embodied learning environment students are offered graphing activities in
which their own bodily movements are visualized as a line in the graphical
representation, using motion sensor technology. The analysis focused on students’
micro-development over the lessons, indicated by their performance on lesson-
specific graph interpretation and graph construction tasks. Moreover, we illustrated
how the direct physical experiences in the embodied learning environment played a
key role in students’ evolving understanding about distance-time graphs, by
providing an in-depth case study of one student’s experiences throughout the lessons.
In this case study, we focused on the interactions between the student and the motion
sensor, and between the student and her peers. We answer the following research
question:

How does students’ reasoning about graphing motion develop over a six-
lesson teaching sequence within an embodied learning environment?

In Chapter 4, we report on the effectiveness of the six-lesson teaching sequence
offering students’ embodied support. Following the thesis that physical (bodily)
experiences are helpful for learning and cognition we investigated whether the
teaching sequence offering students direct embodied support (see Chapter 3 of this
thesis) had a differential effect on students’ ability to interpret and construct graphical
representations of motion than a teaching sequence offering students indirect
embodied support. We made use of a cohort-sequential design in which the teaching
sequence was given to the students in three successive cohorts, one class per cohort
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for each instructional condition. This chapter is about the longitudinal study. The
analysis focused on students’ macro-development over the schoolyear. We answer
the following research question:

To what extent does embodied support in a six-lesson teaching sequence on
graphing motion affect the development of students’ graphical reasoning?

And lastly, in the study that is presented in Chapter 5 we investigated whether a
teaching sequence stimulating students’ domain-specific mathematical HOT has the
potential to affect students’ reasoning in another mathematics domain, namely linear
equation solving. For this, we included both the macro-developmental data presented
in the previous chapter (i.e., students’ written responses to the graph interpretation
and graph construction task) and additional data from the same students concerning
their written responses to tasks in which they solved systems of informal linear
equations. In this final study we ask:

To what extent does a six-lesson teaching sequence on graphing motion
affect the development of students’ graphical and algebraic reasoning?

Chapter 6 brings together the findings from all studies carried out for this PhD
research and consists of a summary of the main findings and conclusions. Theoretical
and practical implications as well as directions for future research and practice are
proposed and the limitations of this thesis are addressed.
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Chapter 2

Embodied learning environments for graphing motion:
A systematic literature review

Abstract

Embodied learning environments have a substantial share in teaching interventions
and research for enhancing learning in science, technology, engineering, and
mathematics (STEM) education. In these learning environments, students’ bodily
experiences are an essential part of the learning activities and hence, of the learning.
In this systematic review, we focused on embodied learning environments supporting
students’ understanding of graphing change in the context of modelling motion. Our
goal was to deepen the theoretical understanding of what aspects of these embodied
learning environments are important for teaching and learning. We specified four
embodied configurations by juxtaposing embodied learning environments on the
degree of bodily involvement (own and others/objects’ motion) and immediacy
(immediate and non-immediate) resulting in four classes of embodied learning
environments. Our review included 44 articles (comprising 62 learning
environments) and uncovered eight mediating factors, as described by the authors of
the reviewed articles: real-world context, multimodality, linking motion to graph,
multiple representations, semiotics, student control, attention capturing, and
cognitive conflict. Different combinations of mediating factors were identified in
each class of embodied learning environments. Additionally, we found that learning
environments making use of students’ own motion immediately linked to its
representation were most effective in terms of learning outcomes. Implications of this
review for future research and the design of embodied learning environments are
discussed.

Keywords: Embodied cognition theory, Mathematics education, Graphing
motion, Learning environments, Mediating factors
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1. Introduction

Within the domain of STEM teaching and learning a large number of studies have
been conducted incorporating embodied mathematics activities (e.g., Abrahamson &
Lindgren, 2014; Tran et al., 2017). These are activities in which students’ perceptual-
motor experiences play an explicit role in the learning process (Lindgren & Johnson-
Glenberg, 2013). Using perceptual-motor activities within mathematics education fits
within the theoretical framework of embodied cognition (e.g., Barsalou, 2010;
Gallese & Lakoff, 2005; Glenberg & Gallese, 2012; Nuiiez et al., 1999; Wilson,
2002). This theory emphasizes the idea that learning and cognitive processes are
taking place in the interaction between one’s body and its physical environment. Yet,
as is described by Hayes and Kraemer (2017), little is known about how embodied
processes, such as moving your body through space, contributes to STEM learning
(see also DeSutter & Stieff, 2017; Han & Black, 2011; Kontra et al., 2015). Therefore,
it is no surprise that recent reviews call for more research into principles of embodied
(i.e., motion- and body-based) interventions for mathematics learning, as well as a
systematic inventory of their presumed usefulness (Nathan et al., 2017; Nathan &
Walkington, 2017). In line with these reviews, we want to shed light on the
significance of embodied cognition theory for mathematics teaching and learning.
Yet, we want to take a small step back and take a critical look at the extant research.
We particularly focus on a mathematics domain that has a tradition of including
bodily experiences for learning: graphing change in the context of modeling motion.

Reviewing the operationalization of aspects of a theory in learning environments can
be a helpful strategy to elaborate a theoretical perspective (Bikner-Ahsbahs &
Prediger, 2006) and can help demonstrate how theoretical considerations are useful
for the teaching and learning of mathematics (Sriraman & English, 2010). Therefore,
we decided to review research literature to map the existing landscape of embodied
learning environments supporting students’ understanding of graphing motion. In this
way, we aim to elucidate the potential of these embodied learning environments for
students, teachers, mathematics education researchers, and curriculum designers, and
to assess their theoretical relevance in order to advance and inform the embodied
cognition thesis.

1.1 Embodied cognition

Considering bodily experiences as fundamental for learning has a rather long history
in the educational and developmental sciences, and has recently received an increased
interest through the embodied cognition paradigm (e.g., Abrahamson & Bakker,
2016; Radford et al., 2005; Wilson, 2002). Piaget (1964) described how during the
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first sensorimotor developmental stage a child acquires “the practical knowledge
which constitutes the substructure of later representational knowledge” (p. 177).
However, according to Piaget, the significance of sensorimotor cognition would be
temporary and limited to the first stages of cognitive development. In the 1980s, this
interpretation changed (Nuiiez et al., 1999), leading to the now common proposition
that “sensorimotor activity is not merely a stage of development that fades away in
more advanced stages, but rather is thoroughly present in thinking and
conceptualizing” (Radford et al., 2005, p. 114, see also Oudgenoeg-Paz et al., 2016).
Accordingly, current embodied cognition theories emphasize that the role of
perception-action structures is not limited to concrete operational thought but extends
to abstract higher-order cognitive processes involved in language and mathematics
as well (Barsalou, 1999). Likewise, accepting perception-action as a basic building
block of cognition implies a view on cognition as, at least partly, situated (or
embedded), where the interaction of the body with objects in their real spatial context
is a major gateway to cognition.

Embodied cognition theory refers to a variety of different but related theories varying
in how the relationship between (lower-order) sensorimotor processes and (higher-
order) abstract cognitive processes is conceived. The conceptualization of this
relationship can be more or less radical—a distinction that relates to, but does not
coincide with, the distinction between “simple” and “radical” embodiment as
proposed in the research of Clark (1999). As Clark (1999) describes, simple, non-
radical views of embodiment posit that bodily experiences and interactions of the
body with the environment can support or influence (“on-line” and “offline”)
cognitive processes like the use of finger-counting can help to build the concept of
number. The bodily experiences are considered to add “color” to abstract concepts,
yet without fundamentally altering the a-modal discursive nature of these concepts.
This simple, non-radical view on embodiment is fully compatible with the
computational (cognitivist) approach to cognition, as the embodiment of cognition is
seen as an additional but not essential phenomenon (Goldinger et al., 2016; Goldman,
2012; Wilson, 2002).

A radical reading of embodiment, in contrast, holds that all human cognition emerges
through, and exists in, the recurrent cycles of perception-action of the physical body
in its environment (Glenberg, 1997; Kiverstein, 2012). Per this view, real knowledge
resides in immediate environmental perception-action cycles (Wilson & Golonka,
2013), which make mental representations, such as abstract concepts in mathematics,
“empty and misguided notions” (Goldinger et al., 2016, p. 962). Hence, the radical
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view has difficulty with explaining how cognition evolves in the absence of direct
environmental stimuli (as in off-line cognitive activities, see also Pouw et al., 2014)
or, for example, when dealing with symbolic language or mental arithmetic, which
are “hungry” for mental representation (Clark, 1999; Wilson & Golonka, 2013). This
view is at odds with rationalist or mentalist approaches as in computational models
of cognition.

Many embodiment researchers position themselves somewhere in-between the
simple and radical view in line with Goldman (2012), who claims that there is
compelling behavioral and neuroscientific evidence for a moderate view of
embodiment (see also Gallese & Lakoff, 2005; Lakoff, 2014; Pulvermiiller, 2013). A
moderate view on embodied cognition acknowledges the critical importance of
bodily experiences as part of the meaning of both concrete and abstract concepts, thus
as constituting the fundament of all human knowledge, but allows for two additional
resources: (1) the non-immediate (off-line) grounding of cognition in bodily
experiences through imagining or mentally simulating perceptions and actions by re-
using the sensorimotor circuits of the brain involved in actual (on-line) perceiving or
performing these actions (also referred to as mirroring, see below); and (2) the
connection, based on Hebbian-associative learning, of the system of multimodal
sensorimotor cognition to a system of a-modal (verbal) conceptual knowledge
(Anderson, 2010; Lakoff, 2014; Pulvermiiller, 2013). With these two additional
resources, moderate embodiment endorses a view on human cognition as essentially
situated and embodied, while allowing for grounded but abstract mental processes,
such as reasoning and combining elementary embodied concepts into more complex
abstract concepts. According to this view, acquired action-perception structures can
be re-used through mental simulation, as perceptual symbols (Barsalou, 1999), in
situations where on the basis of previous experiences and well-established skills, new
(and increasingly abstract) ideas need to be constructed and understood, also in off-
line contexts (Anderson, 2010; Koziol et al., 2011).

In line with embodiment theories, various studies have shown the positive effects of
one’s own bodily involvement on learning (e.g., Dackermann et al., 2017; Johnson-
Glenberg et al., 2014; Nemirovsky et al., 2012). For example, a study by Ruiter et al.
(2015) investigated the influence of task-relevant whole bodily motion on first-grade
students’ learning of two-digit numbers. Here, step size (small, medium, large)
represented different sized number units (1, 5, 10). They found that students in the
task-relevant whole bodily motion conditions outperformed students in the non-
motion condition (where the movements were task-irrelevant) on students’ learning
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of two-digit numbers. Other studies have shown the beneficial effects of part-bodily
motion on learning, such as students’ hand gestures (Alibali & Nathan, 2012; Goldin-
Meadow et al., 2009), finger tracing (Agostinho et al., 2015), finger counting
(Domahs et al., 2010), or arm movements (Lindgren & Johnson-Glenberg, 2013;
Smith et al., 2014). Similarly, giving students the opportunity to observe or influence
movements of other persons or of objects, instead of making these movements
themselves, can lead to improved understanding as well, which suggests, in line with
the moderate embodiment position, involvement of mirroring or simulation
mechanisms (De Koning & Tabbers, 2011; Van Gog et al., 2009). In the study of
Bokosmaty et al. (2017), fifth-grade students observed a teacher demonstrating a
geometry concept. The students improved their understanding of geometry after
manipulating the geometric properties of triangles as well as observing their teacher
doing so. Influencing and observing the movements of others and objects entails other
ways of bodily involvement than making movements of your own. A large proportion
of the research on observing others or objects has been devoted to observing teachers’
use of gestures (e.g., Singer & Goldin-Meadow, 2005) and observing the movements
of somebody or something else through video examples or animations (e.g., De
Koning & Tabbers 2011; Post et al., 2013).

Perceptual-motor experiences encompass a wide variety of bodily activities ranging
from observing and influencing other (human) movements to making movements
oneself. In a moderate embodiment perspective, following the mirroring systems
hypothesis (e.g., Rizzolatti & Craighero, 2004), all these ways of directly and
indirectly involving the body can be regarded as “embodied” (Van Gog et al., 2009).
According to the mirroring systems hypothesis, the same sensorimotor areas in the
brain are activated when observing actions by others as when performing these
actions oneself (e.g., Anderson, 2010; Calvo-Merino et al., 2006; Gallese & Lakoff,
2005; Schwartz et al., 2012). Indeed, brain imaging studies show similar patterns of
brain activation when subjects hear or read a story in which a particular action is
described, when they imagine the event involving this action, or acting out the
specific event (Grézes & Decety, 2001; Pulvermiiller, 2013; Pulvermiiller & Fadiga,
2010), implying that understanding a concept (e.g., the verb kicking) relies on motor
activation (Goldman, 2012; Pulvermiiller & Fadiga, 2010).

In addition to the different levels of bodily involvement, also the immediacy of the
embodiment of cognitive activities can differ between learning situations. Immediate
cognitive activities are activities where immediate, or on-line, perceptual-motor
interaction with the physical environment is available to the student (Borghi &
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Cimatti, 2010; Wilson, 2002). For example, Smith et al. (2014) had fourth-grade
students create both static and dynamic angle representations by moving their arms
in front of a Kinect sensor. The angles, reflected in the position of their arms, were
immediately represented on the digital blackboard. This immediate link between
students’ physical experiences and the abstract visual representation of angles
facilitated students’ improved understanding of angle measurement after completing
the body-based angle task. However, many embodied learning environments present
learners with non-immediate, or off-line, cognitive activities. Typically, in non-
immediate learning situations students first have bodily experiences, as, for example,
when they explore the shapes of particular objects, which are then followed by the
learning activity where the to be learned concepts are presented (Pouw et al., 2014).
In situations where an immediate task-relevant interaction with the physical
environment is not available, embodied simulation mechanisms may play a crucial
role. According to De Koning and Tabbers (2011), through embodied simulations,
previously acquired sensorimotor experiences are made available for knowledge
construction processes in the learning activity (e.g., Barsalou, 1999).

1.2 Embodied learning environments for graphing motion
1.2.1 Relevance of embodied learning environments for graphing motion

Through learning environments based on embodied cognition theory students are
provided with opportunities to ground abstract formal concepts in concrete bodily
experiences (Glenberg, 2010). Such embodiment-based learning environments are
often used in efforts to support students’ understanding of graphing motion by, for
example, showing how distance changing over time is represented graphically. Like
many topics within mathematics, developing an understanding of graphical
representations describing dynamic situations, can be challenging for students.
Among other things, students experience difficulties with distinguishing between
discrete and continuous representations of change, recognizing the meaning of the
represented variables and their pattern of co-variation (Leinhardt et al., 1990), and
differentiating between the shape of a graph and characteristics of the situation or the
construct it represents (e.g., McDermott et al., 1987; Radford, 2009a). Yet, graphical
representations representing dynamic situations are foundational for the study of
mathematics and science, and the absence of a solid understanding of graphical
representations can make learning about rate and functions in the study of calculus
and kinematics even more difficult (Glazer, 2011).
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Learning environments supporting students’ understanding of graphs of change and
motion often incorporate students’ own motion experiences. According to Lakoff and
Nuiiez (2000), experiencing change, in the context of graphs and functions, is related
to the embodied image schemes of fictive motion and the source-path-goal schema.
Essentially, these embodied image schemes allow to conceptualize static
representations as having dynamic components (Botzer & Yerushalmy, 2008).
Metaphorical projection, by means of these image schemes, is the main embodied
cognitive mechanism providing the link between the source-domain experiences
(such as moving through space) and target-domain mathematical knowledge (such as
developing an understanding of graphically represented motion) (e.g., Font et al.,
2010; Nunez et al., 1999).

1.2.2 Operationalizing embodied learning environments for graphing motion

Over the past years, many efforts have been undertaken to categorize embodied
learning. For example, taxonomies of embodied learning have been developed in the
context of technology (Johnson-Glenberg et al., 2014; Melcer & Isbister, 2016), full-
body interactions (Malinverni & Pares 2014), learning with manipulatives (Reed,
2018), and, more generally, for the field of learning and instruction (Skulmowski &
Rey, 2018). The taxonomy of embodied learning described by Johnson-Glenberg et
al. (2014) consists of four degrees of embodiment in which each degree entails a
different level of bodily involvement, or motoric engagement. Skulmowski and Rey
(2018) combined the two lowest degrees of motoric engagement found in the research
of Johnson-Glenberg et al. (2014) into the category lower levels of bodily
engagement, such as observation and finger tracing, and the two highest degrees into
the category higher levels of bodily engagement, such as performing bodily
movements and locomotion. Both taxonomies consider the conceptual link between
the concrete bodily experience and the intended concept, termed gestural congruency
(Johnson-Glenberg et al., 2014) or task-integration (Skulmowski & Rey, 2018). In
both taxonomies, the bodily experience can be conceptually related to the learning
content or not. We also see gestural congruency and task-integration as important
elements on which embodied learning environments can vary. However, for
embodied learning environments supporting students’ understanding of graphing
change, the congruency between a motion event (either experienced or observed) and
the graph of that motion is already an essential element of the learning environment,
which will make task integration a less informative dimension for the purpose of this
review.
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The aforementioned levels of bodily involvement provide us with a base to categorize
embodied learning environments supporting students understanding of graphing
motion. A further way to categorize embodied learning environments supporting
students’ understanding of graphing motion refers to the contiguity of motion and
graph. The graphical representation of motion can be constructed simultaneously
with the motion event or at a later moment. For this temporal aspect, we use the term
immediacy. Because the motion and the corresponding representation are located in
different representational spaces (i.e., the space in which you move/influence/observe
versus the space in which the motion is represented), this distinction between
immediate (or on-line) activities versus non-immediate (or off-line) activities might
be especially relevant for classifying embodied learning environments supporting
students’ understanding of graphing motion.

In sum, to get a grip on the plethora of embodied configurations of the learning
environments that one can come across in educational research literature, we propose
to categorize embodied learning environments supporting students’ understanding of
graphing motion on two dimensions: bodily involvement and immediacy (see
Figure 1). For bodily involvement, a distinction is made between own motion and
observing others/ objects’ motion. One’s own motion entails a direct bodily
experience, while the motion of others/objects is experienced indirectly. For the
latter, mirror neural activity is the main embodied cognitive mechanism, as the
mirror-neuron system is activated when observing movements made by
others/objects. In line with this, we defined bodily involvement on a scale ranging
from “motor execution,” referring to one’s own motion, till “motor mirroring,”
indicating that when observing others/objects’ motion, an individual starts to rely on
(neural) mirroring mechanisms (e.g., Anderson, 2010; Gallese & Lakoff 2005;
Schwartz et al., 2012).

For immediacy, a distinction is made between immediate and non-immediate (see
Figure 1), taking into account the distinction between “on-line” cognitive activities
and “off-line” cognitive activities (Pouw et al., 2014; Wilson, 2002). In the first case,
an immediate task-relevant interaction with the physical environment is acted out,
whereas in the second case this interaction is not simultaneously available. For the
latter, embodied simulation is the main theoretical embodied cognitive mechanism,
meaning that previously acquired sensorimotor experiences are activated.
Accordingly, we defined immediacy on a scale ranging from “direct enactment,”
referring to cognitive activity that is situated in the participant—environment
interaction in the presence of direct environmental stimuli, till “reactivated
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enactment”, indicating that within non-immediate learning environments, an
individual starts to rely on embodied simulations, which are re-activations of
previous sensorimotor experiences.

Bodily involvement

d »
w Ll
Motor mirroring Motor execution
A £
[}
£
‘g ¢ Observing and influencing ¢ Whole and part bodily
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Figure 1. Taxonomy for embodied learning environments supporting students’ understanding
of graphing motion based on bodily involvement and immediacy

Each quadrant of the taxonomy presented in Figure 1 may give room for specific
factors that are prone to mediate learning. Reviews on embodied learning have
identified valuable features of embodied learning environments that impact students’
learning processes. For example, in their review of embodied numerical training
programs, Dackermann et al. (2017) detected three working mechanisms of
embodied learning environments: mapping mechanisms between the bodily
experience and the intended concept, interactions between different regions of
personal space, and the integration of different spatial frames of reference. Tran et al.
(2017) also found mapping mechanisms (as movements being in accordance with the
mental model of the mathematical concept) to be an important factor within embodied
learning environments. Additionally, they posit that the movements students make
should be represented visibly to give them the opportunity to observe and reflect on
these movements. Within the context of graphing motion, we expect aspects like
participant—environment interactions, attentive processes, mapping mechanisms, and
multimodal aspects of the learning environment to be of importance.
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1.3 Research focus

In this article, we describe a review of the research literature on teaching graphing
change and, more specifically, graphing motion (e.g., graphical representations of
distance changing over time). We focused on learning environments in which
students’ bodily experiences are an essential part of the learning activities and the
learning. We were especially interested in articles in which these embodied learning
environments are used, described, and empirically evaluated, for example, by means
of an experiment. Based on these articles, we aimed to specify the embodied
configurations that constitute these learning environments; identify the presumed
factors that mediate learning within these learning environments, as described by the
authors; and evaluate the efficacy of these learning environments by considering the
learning outcomes. Since graphing motion is a key topic within both mathematics
and science and already present within the early grades, we decided to include studies
from primary education to higher education. To guide our review, we formulated the
following four research questions: What does the research literature on teaching
students graphing motion using learning environments that incorporate students own
bodily experiences report on...

1. ...the embodied configuration (in terms of bodily involvement and immediacy)
of these learning environments?

2. ..the presumed factors mediating learning within these learning
environments?
3. ..the relationship between the learning environments’ embodied

configuration and the factors that mediate learning?
4. .. .the efficacy of embodied learning environments for graphing motion?

2. Method
2.1 Literature search

The literature search was carried out in four databases: Web of Science, ERIC,
PsycINFO, and Scopus. As a first quality criterion, we searched for empirical
research articles published in peer-reviewed journals and written in the English
language. We did not set a publication date restriction to the articles because we are
also interested in articles not (yet) mentioning embodied cognition as the main or
related theory, but still applying its core features, for example, in the field of
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kinesthetic learning. There were no further methodological restrictions, so we
included articles with qualitative studies, quantitative studies, and mixed-method
studies. In a stepwise process, we defined a query consisting of Education x Learning
facilitator x Domain % Graph x Graph variables (for the full query, see Appendix
2.1). Our initial search, conducted on April 6, 2017, generated 1953 journal articles
(see Figure 2). After deduplication, 1651 unique publications remained.

2.2 Selection of articles

The selection process was facilitated by organizing all publications and coding
information in a database, using Excel. Selection decisions were frequently discussed
with all authors. We first performed a quick scan of the full text of the 1651 articles
to identify the articles on graphing motion. Articles not written in English (153), not
about education and learning (979), not in the STEM domain (307), not including
graphing activities (80), not containing motion data (94), or not having a full-text
available (2) were excluded (see Figure 2). This resulted in 36 relevant articles for
the purpose of the review. By snowballing the reference lists of these articles, 13
additional articles of interest were found. Then we inspected the full texts of these 49
articles’ methodology and results, only including articles in which the embodied
learning environments were sufficiently described (i.e., containing a clear description
of tools and tasks) and the bodily experiences could be considered task relevant. This
resulted in the exclusion of five articles and the final selection of 44 articles for our
analysis.

2.3 Data extraction and analysis

The 44 articles were first coded in terms of the contextual information regarding the
studies carried out, comprising school level, sample, subject matter domain, research
design, tools, learning activities, intervention length, dependent measures, and
reported learning outcomes. Then we zoomed in on the learning environments, our
units of analysis. A learning environment is a setting (e.g., a classroom) in which a
set of activities is provided to the participants (e.g., a teaching sequence given to a
group of Grade 5 students). In many articles, the learning environments differed
between conditions. The 44 articles contained a total of 62 different embodied
learning environments. Some of these learning environments were used as a control
condition and some as experimental conditions. Hereafter, we coded the learning
environments on their bodily involvement and immediacy as an indication of their
embodied configuration. Finally, we extracted the presumed mediating factors for
students’ understanding of graphing motion from each article and looked at the four
classes of embodied learning environments in which they were mentioned.
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Figure 2. Flowchart of search strategy showing the numbers of included and excluded articles
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Bodily involvement gives an indication of students’ engagement with a movement,
ranging from an action of the whole body to observing the movement of others. For
example, a learning environment in which a student has to move a small toy car over
the table by moving part of her/his body was qualified as part bodily motion.
However, due to lacking information in most of the articles, the number of bodily
actions and their duration was not coded. Immediacy gives an indication of the
temporal alignment of motion and graph. This temporal alignment relates to whether
or not there is an immediate task-relevant interaction with the physical environment.
For example, a learning environment in which a student has to move in front of a
motion sensor and later constructs a graph using this data was qualified as non-
immediate, whereas a learning environment where the graphical representation is
constructed in parallel with the movement of that student was qualified as immediate.
These latter learning environments were often technology enriched since technology
eases the immediate representation of a graphical representation alongside a motion
event. See Table 1 for a description of the degrees of bodily involvement and
immediacy.

Table 1
Coding categories of bodily involvement and immediacy of embodied learning environments

Category Description
Bodily involvement
Own motion
Whole bodily motion Students move their body from one point to another and exert
control over the graphical representation of the movement.

Part bodily motion Students move part(s) of their body (e.g., an arm or a hand)
and exert control over the graphical representation. The
students’ body is stationary (i.e., it does not move through

space).
Others/objects’ motion
Influencing and Students influence others’ or objects” motions, represented in
observing others’ or the graphical representation. This can happen in reality
objects’ motion (setting a real pendulum in motion) or in a computer

environment (putting in values that influence a motion).

Looking at or observing Students observe the motion of other persons’ or objects’

others’ or objects motion. The students do not affect the motion or
motion representation in any way.
Immediacy
Immediate The graphical representation of the motion is constructed in

parallel to the motion. There is no delay.

Non-immediate The motion is not directly translated into a graphical
representation. The construction of the graph based on the data
happens at a different (later) stage.
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Learning environments containing more than one degree of bodily involvement and
immediacy were assigned to the highest degree. For example, when a learning
environment included both whole-bodily motion and influencing and observing
others’ or objects’ motion, the learning environment was assigned to the category
whole bodily motion. The same holds for immediacy. Learning environments
containing both immediate and nonimmediate bodily experiences were assigned to
the category immediate. An independent second rater coded a subsample of 12
articles containing 20 learning environments (> 25%). Inter-rater reliability was very
good for the bodily involvement dimension (Cohen’s Kappa = 1.00) and good for the
immediacy dimension (Cohen’s Kappa = 0.74). We clustered the learning
environments into four main classes in which the degrees of bodily involvement and
immediacy are combined: Class I — Immediate Own Motion, Class II — Immediate
Others/Objects’ Motion, Class III — Non-immediate Own Motion, and
Class IV — Non-immediate Others/Objects’ Motion.

In order to extract the mediating factors from the described studies, the articles were
carefully read and indications of mediating factors, presumed by the authors, were
recorded. First, these mediating factors were recorded based on the terminology used
by the authors. Later, these factors were clustered in categories. Finding a new
mediating factor sometimes led to changing the categories or combining and splitting
mediator categories. For example, an article mentioning gesturing as supporting
students’ understanding of graphing motion first fell in a category labeled “gestures.”
Later, we decided to create a category “semiotics” in which we grouped all mediating
factors related to meaning supported signs systems. In this respect, throughout several
iterations of reading and data extraction, we came to eight overarching mediator
categories: real-world context, multimodality, linking motion to graph, multiple
representations, semiotics, student control, attention capturing, and cognitive
conflict.

2.4 The subject matter domains addressed in the articles

As a result of our search query, all articles either addressed topics from the domains
of mathematics and physics or integrated topics from both domains. The
mathematics-oriented articles used motion to address the teaching and learning of
graphs as visual representations of dynamic data (e.g., Boyd & Rubin, 1996; Robutti,
2006). Some of these articles also included more advanced topics like functions and
the mathematics of change (calculus) (e.g., Ferrara, 2014; Salinas, et al., 2016). Most
of the articles in physics addressed the relation between distance traveled, velocity,
and acceleration (kinematics) (e.g., Anderson & Wall, 2016; Mitnik et al., 2009).
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Articles that used an integrated approach addressed both aspects from physics, such
as distance traveled, velocity, and acceleration and from mathematics, like slope and
rate of change (e.g., Nemirovsky et al., 1998; Noble et al., 2001).

All articles, in both mathematics and physics, included learning environments in
which data are represented by means of graphs. These data can be first-order data
such as distance and time measures, which can be represented in distance—time
graphs (e.g., Deniz & Dulger, 2012; Kurz & Serrano, 2015) or derived data resulting
in velocity—time graphs or acceleration—time graphs (e.g., Anderson & Wall, 2016;
Nemirovsky et al., 1998; Struck & Yerrick, 2010). Also, in some mathematical
learning environments, graphs were drawn of functions (e.g., linear and quadratic
functions) (e.g., Noble et al., 2004; Salinas et al., 2016; Stylianou et al., 2005;
Wilhelm & Confrey, 2003) or, related to physics, of uniform and oscillatory motion
(e.g., Kelly & Crawford, 1996; Metcalf & Tinker, 2004).

2.5 Efficacy of embodied learning environments for graphing motion

Of all included articles (n = 44), 26 articles gave information about the efficacy of
the embodied learning environments for graphing motion. In these articles, the
learning outcomes of multiple groups or pre- and post-tests were compared. To
ensure the robustness of our evaluation of the reported learning outcomes, we carried
out a quality check of the research design of the articles and the reported learning
outcomes per learning environment (Appendix 2.2). The study design of these
26 articles was either (quasi)experimental (z = 15) or descriptive (n = 11). The mean
quality rating (range, 5-20) for this subset of articles was 11.77, with a standard
deviation of 2.93. From this quality rating, we infer that the methodological quality
of this subset of articles is sufficient.

3. Classes of embodied learning environments

The 62 learning environments were classified on bodily involvement and immediacy
(see Figure 3). Class I — Immediate Own Motion was the largest (34 learning
environments) Class Il — Non-immediate Own Motion was the smallest (4 learning
environments). The other two classes contained the same amount of learning
environments (12 learning environments each).

42



Embodied learning environments for graphing motion

Immediate Non-immediate
[ | [ |
Own motion Others/objects’ motion Own motion Others/objects’ motion
[ 1 [ [ 1 [
. Looking at or . Looking at or
i Part bodily Influencing observing Whole bodil Part bodil Influencing observing
Whole _bOdI|V motion others/objects’ others/objects’ i Y i Y others/objects’ others/objects’
motion motion : ) motion motion motion : )
motion motion

[ 1 [ 1 [ 1 [ 1 I 1 [ 1 I 1 [ 1

(n=26) (n=8)° (n=4) (n=8) (n=3)e (n=1)f (n=6)e (n=6)"
L J L J L J L J
Class | Class Il Class Il Class IV

a  Anderson & Wall, 2016**; Brasell, 1987; Deniz & Dulger, 2012; Espinoza, 2015; Ferrara, 2014; Kelly & Crawford, 1996; Kurz & Serrano,
2015; Metcalf & Tinker, 2004; Mokros & Tinker, 1987; Nemirovsky et al., 1998; Radford, 2009; Robutti, 2006; Solomon et al., 1991; Struck
&Yerrick, 2008; Stylianou et al., 2005; Svec et al., 1995; Svec, 1999; Taylor et al., 1995; Thornton & Sokoloff, 1990; Wilhelm, & Confrey,
2015; Wilson & Brown, 1998; Zucker et al., 2014%****

Anastopolou et al., 2011; Botzer & Yerushalmy, 2006; Botzer & Yerushalmy, 2008; Holbert & Wilensky, 2014; Kuech & Lunetta, 2002;
Nemirovsky, 1994; Noble et al., 2001; Russell et al., 2003

Altiparmak, 2014; Espinoza, 2015; Kozhevnikov & Thornton, 2006; Salinas et al., 2016

Anastopolou et al., 2011; Brungardt & Zollman, 1995; Ferrara, 2014; Kozhevnikov & Thornton, 2006**; Noble et al., 2004; Skordoulis et al.,
2006; Zucker et al., 2014

e Anderson & Wall, 2016; Brasell, 1987; Deniz & Dulger, 2012

f Heck & Uylings, 2006

g Anderson & Wall, 2016; Carrejo & Marshall, 2007; Roschelle et al., 2010**; Simpson et al., 2006; Woolnough, 2014

h Boyd & Rubin, 1996; Brungardt & Zollman, 1995; Mitnik et al., 2009**; Zajkov & Mitrevski, 2012**

Note. *(***) = The number of asterisks indicates the number of similar embodied learning environments within an article.

o

a o

Figure 3. Four classes of learning environments based on bodily involvement and immediacy

3.1 Class | — Immediate own motion

In 30 out of the 34 learning environments that belonged to Class I — Immediate Own
Motion, motion sensor technology was used (e.g., Anderson & Wall, 2016; Ferrara,
2014; Nemirovsky et al., 1998), allowing for the immediate representation of a
student’s motion as a graph. For example, in the study of Robutti (2006), students
started by interpreting a description of a motion situation, which was followed by
sketching a graph of this situation. Finally, students acted out the motion event by
walking in front of the motion sensor. The translation of their movements into a
graphical representation happened immediately and was represented on the screen of
a graphing calculator. An example where students used parts of their body can be
found in Anastopoulou et al. (2011). They asked students to replicate distance—time
and velocity—time graphs by moving their hands in front of a motion sensor. Again,
an immediate translation of the motion into a graphical representation was provided.
In other studies, it was not the motion of students’ hands that was represented, but
the motion of an object that students moved with their hands, for example, a motion
sensor attached to a wheel which was rolled over a table (Russell et al., 2003). In
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another study, students were asked to replicate given distance—time, speed—time, or
acceleration—time graphs by rotating a disc-shaped handle on top of a rotational
motion sensor (Kuech & Lunetta, 2002). In the remaining studies of this class, no
motion sensor technology was used. Instead, students were for example asked to
move a computer mouse over a mousepad, while at the same time this motion was
represented on the screen of the computer (Botzer & Yerushalmy, 2006, 2008).

3.2 Class Il — Immediate others/objects’ motion

A total of 12 learning environments fell within the category of activities in which
students influenced or observed the motion of another person or object without
moving (parts of) their own body while getting an immediate representation of that
motion. Most studies dealing with moving physical objects were situated in
kinematics laboratory settings within physics classes. The used objects varied widely.
In one learning environment (Espinoza, 2015), a pendulum system was used,
allowing students to exert control over its movement, while a graph of the pendulum's
movement was immediately presented to the students by means of motion sensor
technology.

Other learning environments in this class dealt with simulated motion using computer
software, such as SimCalc Mathworlds. In Salinas et al. (2016), students controlled
the movements of an animated avatar by building and editing mathematical functions.
The students pressed play to see the corresponding animation, while both the
animation and graph were presented simultaneously to the students. Another example
of using software can be found in Noble et al. (2004). They provided students with a
simulation of an elevator moving up and down and a two-dimensional graph with
unlabeled axes, representing the velocity in floors per second on the y-axis and the
time in seconds on the x-axis.

Finally, in some learning environments within Class [I—Immediate Others/objects’
Motion, another person demonstrated motion events. For example, in Anastopoulou
etal. (2011), a teacher demonstrated hand movements that were captured by a motion
sensor and transferred to distance—time and velocity—time graphs, thus allowing the
students to see the teacher’s hand motion and the corresponding graphs in real time
(see also Kozhevnikov & Thornton, 2006; Zucker et al., 2014).

3.3 Class Il = Non-immediate own motion

In three out of the four learning environments belonging to Class III — Non-immediate
Own Motion, the data collection occurred manually, which caused a slight delay
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between the motion event and its graphical representation (e.g., Anderson & Wall,
2016; Heck & Uylings, 2006). For example, in Deniz and Dulger (2012), students
walked at varying speeds while carrying a bottle of water with a hole in the bottom.
Every second, one drop of water fell through this hole. Thus, by measuring the time
of traveling and the distance between the drops of water, the students could construct
position—time graphs. In the fourth learning environment within this class, the
construction of the graphical representation was intentionally delayed. Brasell (1987)
tested whether different time delays between the whole-bodily motion and the
graphical representation could facilitate an equivalent linking in memory.

3.4 Class IV — Non-immediate others/objects’ motion

In 6 of the 12 learning environments within Class IV — Non-immediate
Others/objects’ Motion, students had to construct a graph after they had observed the
movements of physical objects (e.g., Anderson & Wall, 2016; Carrejo & Marshall,
2007; Mitnik et al., 2009) or the movements within a video or a simulation
environment (e.g., Boyd & Rubin, 1996; Zajkov & Mitrevski, 2012). For example,
in Carrejo and Marshall (2007), students had to record time and distance measures of
a ball, using a spark timer, and then construct several graphs of the ball’s motion.
Here, graph construction happened some time after the motion was finished.
Similarly, in another learning environment (Anderson & Wall, 2016), students built
ramps and had to choose three objects to roll off the ramp while collecting time and
distance measures with timers and measuring tapes. In the article of Mitnik et al.
(2009), students observed the movements of a robot moving through space. After all
data were collected (i.e., the robot had completed the movement), the students
combined distance and time measures of the robot’s movements and used this for
constructing distance—time and velocity—time graphs. In Boyd and Rubin (1996),
students watched videotaped motion events and analyzed these videotaped motion
events at a later stage.

In the learning environment described by Brungardt and Zollman (1995), the delay
between motion and graph was deliberately used. Students were shown graphs of
object motion, several minutes after they had seen the real videotaped motion event,
to assess whether the real-time nature of simultaneously presenting graph and motion
had an effect on students’ understanding of graphs. Finally, some of the simulation
environments within this class asked students to first program the movements of an
animated object, either in algebraic or graphical form, after which they could see the
movements of the objects (e.g., Roschelle et al., 2010). Also, a simulation
environment (ToonTalk) was used in the article of Simpson et al. (2006). Using this
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software, students were asked to define the properties of a spacecraft in such a way
that it could successfully land on the moon. Here, the graphical representation was
not immediately presented after the movement. First, students saw the movements of
the ToonTalk object, and second, position—time and velocity—time graphs were
plotted from the data.

4. Mediating factors within embodied learning environments

Our analysis uncovered eight mediating factors: real-world context, multimodality,
linking motion to graph, multiple representations, semiotics, student control,
attention capturing, and cognitive conflict. These mediating factors are to a different
extent theoretically aligned with the embodiment framework. Authors sometimes
attributed more than one mediating factor to a learning environment. For the
62 embodied learning environments, we found 127 instances in which authors
mentioned a mediating factor. In two articles, with two learning environments each,
the authors did not mention mediating factors at all (Brungardt & Zollman, 1995;
Deniz & Dulger, 2012). In Table 2, the eight mediating factors and the articles in
which they were mentioned are presented.
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Chapter 2

4 1 Real-world context

When authors mention the real-world context as a mediating factor, they refer to
experiences of the students with the real world (e.g., Boyd & Rubin, 1996; Carrejo &
Marshall, 2007; Heck & Uylings, 2006; Struck & Yerrick, 2010; Wilhelm & Confrey,
2003). Mitnik et al. (2009) gave students the opportunity to study the motion of a
robot in the real world, by making the environment more explorative and immersive.
In another example, specific parts of the learning environment were related to both
the real world and formal contexts, by having authentic player-created graphs that
looked like typical velocity—time graphs (Holbert & Wilensky, 2014). Also, other
authors claim their learning environments to be almost identical to the real world
(e.g., Mitnik et al., 2009; Thornton & Sokoloff 1990). Solomon et al. (1991) use the
term “micro world” to indicate that the used learning environment consisted of a
world less complex than the real world. According to Thornton and Sokoloff (1990)
through a learning environment containing real-world elements, links can be made
between students’ personal experiences, physical actions, and formal mathematics or
physics concepts.

Another finding was that embodied learning environments using a real-world context
are often presented as a natural venue for scientific exploration (Holbert & Wilensky,
2014; Thornton & Sokoloff, 1990; Woolnough, 2000). For example, Mokros and
Tinker (1987) emphasize how the use of microcomputer-based laboratories provided
students with genuine scientific experiences. Using elements from the real world also
has the advantage of being prone to draw on students’ prior knowledge and
experiences (Altiparmak, 2014; Taylor et al., 1995). For example, in a simulation
environment used in Noble et al. (2004), students, over the course of the activities,
started recognizing the movement of an elevator in the graph.

4.2 Multimodality

The articles describing learning facilitators related to the multimodality aspect of the
learning environment are all referring to the role of intertwining modalities. This
means that by the nature of the tool or the instruction, at least two of the modalities
of seeing, hearing, touching, imagining, or motor actions are simultaneously
activated. In most of the learning environments, seeing and motor action are involved
(Anderson & Wall, 2016; Botzer & Yerushalmy, 2006; Nemirovsky et al., 1998;
Noble et al., 2004; Radford, 2009b; Russell et al., 2003). Additionally, Anastopoulou
et al. (2011) mention how the interactive technology in their learning environment
activated communicative modalities together with these two sensory modalities. In
the same line, Mokros and Tinker (1987) emphasize how their use of microcomputer-
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based laboratories gave students valuable kinesthetic experiences, sometimes using
their own bodily motion as data, thus activating the learning modalities perception
and motor action (see also Robutti, 2006). Furthermore, Botzer and Yerushalmy
(2008) mention the modality touching. In their learning environment, students’ hand
motion with a computer mouse was captured and shown in graphs. When students
retraced the graphs with their fingers on the visual display of the computer, a blend
of seeing, touching, and motor action manifested itself. A similar intertwining of
multiple modalities is discussed by Ferrara (2014) focusing on the multimodal nature
of mathematical thinking. The motion of a student walking in front of a motion sensor
was represented on a larger screen in front of the classroom. When the student tried
to make sense of the graphical representation of his own motion, this resulted in
perceptual, perceptual-motor, and imaginary experiences, manifested by the student’s
verbal expression of thinking.

4.3 Linking motion to graph

Linking motion to graph as a mediating factor can either refer to the motion of the
student (e.g., Anderson & Wall, 2016; Espinoza, 2015), to the motion of somebody
else (e.g., Anastopoulou et al., 2011; Skordoulis et al., 2014), or to the motion of
objects (e.g., Brungardt & Zollman, 1995; Simpson et al., 2006). In these learning
environments, students experienced or observed a link between motion and the
corresponding graphical representation. In some instances, authors primarily focus
on how the learning environment provided this linkage between motion and graph
(e.g., Kurz & Serrano, 2015; Metcalf & Tinker, 2004; Stylianou et al., 2005; Svec,
1999), while other authors focus more on how students were engaged in connecting
the graph to the motion (e.g., Anastopoulou et al., 2011; Deniz & Dulger, 2012;
Nemirovsky et al., 1998; Heck & Uylings, 2006). A few authors emphasize how this
linkage might facilitate a corresponding linking in memory, whereas the information
in the graph is a direct result of students’ own motion (e.g., Brasell, 1987; Brungardt
& Zollman, 1995; Kozhevnikov & Thornton, 2006; Mokros & Tinker, 1987; Struck
& Yerrick, 2010). While in almost all learning environments the linkage between an
actual (or simulated) motion and the corresponding graph is explicit, some authors
also refer to linking motion to graph at a more abstract level (e.g., Botzer &
Yerushalmy, 2006, 2008; Boyd & Rubin, 1996, Espinoza, 2015; Ferrara, 2014;
Holbert & Wilensky, 2014; Robutti, 2006; Russell et al., 2003; Thornton & Sokoloff,
1990). This means that the actual motion helped to conceptualize what lies behind
the graphical representation, such as the sensory aspects of the motion experience
(Mokros & Tinker, 1987) or mathematical abstractions (Mitnik et al., 2009; Svec,
1999).
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4.4. Multiple representations

All learning environments mentioning the mediating factor multiple representations
refer to multiple representations of a particular motion. Sometimes one and the same
motion is represented in multiple graphs (e.g., Anastopoulou et al., 2011; Brasell,
1987; Kelly & Crawford, 1996; Kozhevnikov & Thornton, 2006; Nemirovsky, 1994;
Skordoulis et al., 2014; Wilson & Brown, 1998; Svec, 1999). For example, in Kuech
and Lunetta (2002), the same motion was represented as a position—time, velocity—
time, or acceleration—time graph. Also in the article of Botzer and Yerushalmy (2006,
2008), the students’ own motion was visualized in multiple graphical formats. Here,
the two dimensions of the motion of the students’ hand over the mousepad were
represented in two graphs.

Within other learning environments, the motion was represented to the students in
multiple formats (e.g., Altiparmak, 2014; Espinoza, 2015; Nemirovsky, 1994;
Wilhelm & Confrey, 2003; Wilson & Brown, 1998). In these learning environments,
a motion was represented by, for example, a graph, table, or formula (e.g., Kuech &
Lunetta, 2002). Furthermore, some articles mention acting out of the motion itself as
a representation. In this respect, Anastopoulou et al. (2011) refer to kinesthetic, in
addition to graphical and linguistic, representations of motion. Similarly, Zucker et
al. (2014) mention how the representations in their learning environment included the
“physical motion of an object in front of the sensor” (p. 443) in addition to words,
graphs, tables, and animated icons (see also Simpson et al., 2006).

4.5 Semiotics

The mediating factor semiotics entails the use of meaning-supporting sign systems.
This means that in the learning environment, symbols, signs, gestures, and language,
including metaphors, are explicitly used to signify meaning. Botzer and Yerushalmy
(2006) describe how gestures served as “an intermediate stage between the sensory
experience and the use of formal language” (p. 8) (see also Anastopoulou et al., 2011;
Ferrara, 2014). Representing the graphs’ mathematical features through gesturing
enabled students to elaborate on the meaning of graphs (Botzer & Yerushalmy, 2008).
Another important component of semiotics is the role of (conceptual) metaphor and
metaphorical projection. For example, Botzer and Yerushalmy (2008) mention the
possible activation of the fictive motion mechanism, when students actively explored
graphical representations, enabling them to conceptualize static graphs as
representing motion (see also Ferrara, 2014; Nemirovsky et al., 1998). Nemirovsky
(1994) and Noble et al. (2004) describe how the learning environment and its tools
offered the student a so-called field of possibilities with graphically represented
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symbols which had to be interpreted. In this respect, Nemirovsky (1994) refers to
symbol-use, in which symbol-use not only depends on the configuration of the
learning environment but also on personal intentions and specific histories,
conceptualized as extra symbolic components. Other authors concentrate on students’
knowledge objectification (i.e., the meaning making process) from an explicit
semiotic perspective. Robutti (2006) uses semiotic mediation to refer to the
objectification of knowledge, consisting of several steps marked by different semiotic
means, including gestures, words, metaphors, and cultural elements to explain the
graphical representation (see also Botzer & Yerushalmy, 2008). Similarly, Radford
(2009b) provides a semiotic analysis of the way students used their semiotic means
in the process of knowledge objectification. Throughout this analysis, the interplay
of action, gesture, and language is emphasized.

4.6 Student control

The mediating factor student control explicitly refers to students being in control in
the learning environment allowing them to manipulate either the motion event or its
graphical representation. Most of these articles refer to student control as being in
control of the (physical) motion (e.g., Anderson & Wall, 2016; Nemirovsky et al.,
1998; Russell et al., 2003; Struck & Yerrick, 2010). In this respect, students are able
to directly manipulate the visual display (Anastopoulou et al., 2011). Brasell (1987)
adds how this direct manipulation of the graphical representation made the graphs
“more responsive [...] and more concrete” (p. 394). Moreover, when students are
able to control the movement represented in the graphical representation, they might
feel more engaged (Anastopoulou et al., 2011), making the learning activities more
meaningful (Mokros & Tinker, 1987). Other articles refer to student control as being
in control of the graphical representations already present in the learning
environment. In this respect, Botzer and Yerushalmy (2008) mention how student
control over the graphical tools was stimulated by actions as dragging, stretching, and
shrinking the graphs, and that these actions strongly contributed to students’
understanding of graphical signs. Similarly, in the learning environment of Salinas et
al. (2016), students performed their own actions on a graphical representation, which
resulted in a change of the graph. For example, an action on a position—time graph
led to a corresponding change in a velocity—time graph. These actions in the learning
environment produced by the students are an essential component of doing
mathematics (e.g., formulating and testing mathematical conjectures).
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4.7 Attention capturing

Learning environments mentioning the mediating factor attention capturing as a
learning facilitator refer to affordances in the learning environment that direct
students’ attention. In most learning environments, atfention capturing implies
directing students’ attention toward important visual features of the graphical
representation (e.g., Botzer & Yerushalmy, 2008; Deniz & Dulger, 2012;
Nemirovsky et al., 1998; Russell et al., 2003). These visual features are especially
prominent when the graph is displayed alongside the motion event, making specific
changes in the motion event (e.g., changes in speed or changes in direction) directly
observable to the student (e.g., Brasell, 1987). Moreover, because changes in motion
are highlighted in the graphical representation, it becomes clearer to the student what
the relevant aspects of the graph are that they have to attend to (Kozhevnikov &
Thornton, 2006). In the learning environment of Holbert and Wilensky (2014),
students explored the relationship between a car’s velocity and acceleration using
several game mechanics, which ultimately allowed students to relate the car’s
graphically represented speed with visual environmental cues. Other learning
environments intend to capture the students’ attention by making changes in the
representations. Boyd and Rubin (1996) mention how the changes between video
frames in their video environment drew students’ attention to the differences between
the frames. The learning environment of Noble et al. (2004) involves activities related
to velocity, using different but related representations. These authors talk about the
active nature of perception and how, in a familiar display, students are prone to
recognize, and focus on, what is new.

4.8 Cognitive conflict

The final mediating factor we identified in the articles is cognitive conflict, which
refers to students’ conflicting conceptions. In general, this means that students, by
means of a tool, are confronted with new information that conflicts with their existing
knowledge or ideas (e.g., Simpson et al., 2006; Zajkov & Mitrevski, 2012). The
student taking part in the learning environment of Nemirovsky (1994) had already
some ideas about the concept of velocity and the meaning of velocity graphs. While
progressing through the activities, she continuously had to deal with symbolic
representations of her movement that did not make any sense to her. This conflict
made her rethink the meaning of the graphs. Something similar is described in the
article of Svec et al. (1995) who use the term disequilibrium to denote the conflict
between the students’ own beliefs and the gathered data. As opposed to cognitive
conflicts within a person, also the cognitive conflict between students, initiated
through (small) group discussions, is mentioned (Kuech & Lunetta, 2002). In a
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matching activity, students disagreed about the specific motion that would best match
a particular graph, which resulted in cognitive conflict among the students. Other
articles use the mediating factor cognitive conflict to indicate not only students’
personal conflicting beliefs about a certain concept or phenomenon but also
conflicting beliefs generated within different educational domains (i.e., mathematics
and physics). Both Carrejo and Marshall (2007) and Woolnough (2000) focus on
students’ personal experiences with a concept and the concept taught within the
domain of mathematics and the domain of physics. It appeared to be difficult for
students to integrate similar concepts within these different areas, causing cognitive
conflict (Woolnough, 2000).

5. Mediating factors within the four classes of mathematical learning
environments

In this section, we elaborate on the relationship between the eight mediating factors
and each class of embodied learning environments. The bar chart given in Figure 4
shows the occurrence of the perceived mediating factors per learning environment
for each class.

In Class I — Immediate Own Motion, all eight perceived mediating factors were
present, as opposed to seven mediating factors for Class II — Immediate
Others/Objects’ Motion, five mediating factors for Class II — Non-immediate own
motion, and six mediating factors in Class IV — Non-immediate Others/Objects’
Motion. Class I — Immediate Own Motion was the largest class, containing most
learning environments (n = 34). Moreover, Class III — Non-immediate Own Motion,
only containing four learning environments in total, mentioned five (different)
mediating factors in total. Therefore, each mediating factor has a share of 20%.
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Figure 4. The occurrence of mediating factors per learning environment for each class of
embodied learning environments

The mediating factors linking motion to graph and multiple representations are
present in each of the four classes. Moreover, these two mediating factors have a
substantial share within each class (between 16% and 35%). The mediating factors
real-world context and attention capturing are present in each of the four classes as
well (between 5% and 20%). Multimodality is mentioned as a mediating factor in
learning environments present in Class I — Immediate Own Motion (14%),
Class II — Immediate Others/Objects” Motion (8%), and Class III — Nonimmediate
Own Motion (20%), but not in Class IV — Non-immediate Others/Objects’ Motion.
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The mediating factor cognitive conflict is rather present within Class IV — Non-
immediate Others/Objects’ Motion. Cognitive conflict has a substantial share within
this class (26%), especially when compared with the other three classes, where
cognitive conflict either is not perceived as a mediating factor (Class II — Immediate
Others/Objects” Motion and Class III — Non-immediate Own Motion) or holds a
minor share (Class I — Immediate Own Motion, 4%). Student control is mentioned
relatively little as a mediating factor when compared with the other mediating factors
(less than 9%). Something similar holds for the mediating factor semiotics. Semiotics
is only present in the first two classes, representing learning environments containing
an immediate translation of the embodied experiences (less than 10%).

6. Impact of embodied learning environments

For 26 articles, we conducted a more fine-grained analysis of the reported effects on
students’ learning in order to give an indication of the efficacy of each class of
embodied learning environments. A summary of these 26 articles, including study
design, tools, intervention length, description of activities, outcome measures, effect
sizes, reported results, and quality appraisal score, are given in Appendix 2.3.

6.1 Effect sizes

We calculated effect sizes using the common standardized mean difference statistic
Hedges g for all learning environments for which adequate statistical information
regarding their effectiveness was provided (n = 11). A positive g value indicates that
the experimental group has a higher outcome score than the control group, or that a
posttest outcome score was higher than a pretest outcome score (e.g., in the case of
pre—post comparisons, see also Borenstein et al., 2009). When articles made a
comparison between groups and included a pretest, we calculated an adjusted effect
size by subtracting the pretest effect size from the post-test effect size (Durlak, 2009).
Additionally, we corrected for upwards bias for samples smaller than N= 50 (Durlak,
2009). Information regarding the statistical significance of the mean differences as
provided by the authors was documented as well. Since there was variability in the
experimental design, the data used, and outcome measures between the reviewed
studies, we could not directly compare effect sizes or compute an overall effect size.

6.2 Learning outcomes and reported effects

All 20 learning environments within Class I — Immediate Own Motion reported
positive learning outcomes. In most of these learning environments, comparisons
were made with other embodied learning environments and/or a control condition
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(n = 13), while for the other learning environments, pre—post comparisons were made
(n = 7). In some articles, a statistical analysis was performed on the data (n = 6), all
of which resulted in statistically significant differences. Among these articles, three
reported at least one significant medium to large effect (g > 0.50; Ellis, 2010) on a
measure associated with graphing motion (Brasell, 1987; Mokros & Tinker, 1987;
Svec, 1999). For example, in Brasell (1987), viewing an immediate representation of
one’s own motion seems to be advantageous for pre-university students’
understanding of distance—time graphs (g = 1.22 and g = 1.01), although students in
the nonimmediate motion representation environment also outperformed the controls
on distance— time graphs, but not on velocity—time graphs.

For five of the ten learning environments within Class II — Immediate Others/objects’
Motion, comparisons were made with other learning environments (n = 3), or a
control condition (n = 2). When comparisons were made with learning environments
belonging to the first class (n = 2), students in the second class performed less well
(e.g., Anastopoulou et al., 2011; Zucker et al., 2014). When a comparison was made
with a learning environment belonging to the fourth class (n = 1), the reported
learning outcomes were positive, but nonsignificant with a small effect (g = 0.29,
Brungardt & Zollman, 1995). When comparisons were made with a control condition
(n = 2), the results were either positive with one statistically significant medium to
large effect (g = 0.81, Altiparmak, 2014), or a non-significant small effect (g = 0.20,
Espinoza 2015). For the other five learning environments, pre—post comparisons
were made. Three of these belonged to the same article (Kozhevnikov & Thornton,
2006) in which the reported learning outcomes were all positive, of which one
showed a significant large effect (g = 2.09) of the intervention on students’
understanding of force and motion and a moderate effect on spatial visualization
ability (g = 0.62).

For both learning environments within Class III — N on-immediate Own Motion, a
comparison was made with a learning environment belonging to the first class and/or
a control condition, for which no strong results in favor of this class were reported
(Brasell, 1987; Deniz & Dulger, 2012). In the article of Deniz and Dulger (2012),
students seemed to benefit less from the intervention, which consisted of walking
with a bottle of water with a hole in it, than the students who received an immediate
graphical representation of their own movement on the screen of the computer, with
a relatively small negative effect size (g = — 0.39).
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Finally, in Class IV — Non-immediate Others/objects’ Motion (n = 10), six learning
environments were compared with another learning environment, belonging to
Class I (n =1)orClass Il (n = 1), Class IV (n = 2) or being part of a control condition
(n = 2). In the article making a comparison with a learning environment in the second
class, a non-significant small negative effect was found (g = — 0.29; Brungardt &
Zollman, 1995). In Mitnik et al. (2009), two learning environments belonging to
Class IV were compared. In one condition, students made use of a real robot whereas
in the other condition students watched a simulation of a robot. Results were in favor
of the first condition with a statistically significant large effect (g = 0.76). The two
learning environments in Roschelle et al. (2010) involved Smartgraphs software, one
for Grade 7 and one for Grade 8 students. Students using this software seemed to
score higher on the outcome measures than students in the control conditions,
especially on outcome measures associated with reasoning about and representing
change over time. The four learning environments in which pre—post comparisons
were made all reported positive learning outcomes regarding outcome measures
associated with graphing change, for example, students’ ability to interpret and
calculate slope (Woolnough, 2000).

7. Discussion and conclusion
7.1 Summary of the results

In this study, we evaluated 62 embodied learning environments supporting students’
understanding of graphing motion, derived from 44 research articles. In order to know
more about the embodied configurations of these learning environments, we
developed a taxonomy in which embodied learning environments were juxtaposed
on their degree of bodily involvement (own and others/objects’ motion) and
immediacy (immediate and non-immediate). This resulted in four classes of
embodied learning environments: Class I — Immediate Own Motion,
Class II — Immediate Others/objects’ Motion, Class III — Non-Immediate Own
Motion, and Class IV — Non-Immediate Others/objects’ Motion. Our analysis showed
that immediate own motion experiences were most common in the embodied learning
environments; 34 out of the 62 learning environments belonged to this class.

According to the authors of the reviewed articles, a large variety of situations or
characteristics of the embodied learning environments mediated the learning of
students. After clustering these situations or characteristics, we recognized eight
mediating factors, namely, real-world context, multimodality, linking motion to
graph, semiotics, attention capturing, multiple representations, student control, and
cognitive conflict. All these factors have their own specific role in how and why they
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mediate learning within such a learning environment. Each class of embodied
learning environments has a particular embodied configuration and entails different
combinations of mediating factors. Within some classes, particular mediating factors
are more common than within other classes. For example, within Class I — Immediate
Own Motion, the factors multimodality, linking motion to graph, and multiple
representations were most common. This implies that the embodied configuration in
this learning environment gives students the opportunity to deploy multiple
modalities in order to link their own motion to the graphically represented motion
and interacts with multiple representations throughout this process. Out of the eight
mediating factors, two were mentioned in all four classes: real-world context and
multiple representations. These mediating factors seem to be relevant for learning
environments supporting students’ understanding of graphing motion, regardless of
their embodied configuration.

Our analysis of the 26 studies in which a comparison was made with another learning
environment, with a control condition, or between pre- and post-measures to
demonstrate the possible impact of embodied learning environments on students’
learning revealed how embodied learning environments with only lower levels of
bodily involvement, irrespective of the immediacy of the translation of the embodied
experiences, seemed to be less effective. These findings imply that students’ own
motion experiences might be most beneficial for learning graphs of change and that
learning by observing others/objects’ motion is not as effective within this domain.
Consequently, these findings give more weight to the mediating factors (e.g.,
multimodality, linking motion to graph, and multiple representations) present in
Class I — Immediate Own Motion, than to the mediating factors in the other learning
environments with different embodied configurations.

7.2 Limitations

For quality purposes, we only reviewed research articles published in peer-reviewed
journals. As a result of this we might have missed studies on embodied learning
environments that have been published elsewhere. Another limitation of our study is
related to the challenges we met when classifying the embodied learning
environments. Due to the fact that the learning environments often included multiple
activities with different levels of bodily involvement and different levels of
immediacy, for each learning environment we assigned the highest level of bodily
involvement and immediacy that was found in the activities. Consequently, the
learning environments with multiple activities were more often classified as whole
bodily motion and immediate than as one of the lower levels of bodily involvement
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and immediacy. Moreover, regarding the levels of bodily involvement, to avoid
further complexity of our review, we did not distinguish between observing the
movement of a human model and observing the movement of an object, even though
some studies have suggested that this is a relevant aspect to consider (Hoffler &
Leutner, 2007; Van Gog et al.,, 2009). These studies posit how non-human
movements are less likely to trigger the mirror-neuron system as opposed to human
movements. We, however, consider our topic of interest (graphs of objects/humans
moving through space) to have such a clear and direct link to the human action
repertoire of moving through space, that if it is an object such as a cart or a car moving
that is observed, the same brain activation will take place as with the observation of
a human (see also Martin, 2007). Another shortcoming of our review is that we did
not limit our investigation of mediating factors to those factors that were empirically
tested. To have a broad scope of possible mediating factors, we included each
mediating aspect mentioned in the articles in our review and clustered them.
Therefore, since these mediators are based on the self-reported information provided
by the authors of the articles, the evidence for the found mediating factors is not
equally strong. Interestingly though, regarding the mediating factors that were found,
not many authors seem to link their study to semiotics while this factor can be seen
as fundamental to these kinds of learning environments. Similarly, even though all
learning environments seem to contain some aspects of multimodality and multiple
representations, again not all authors see those aspects as essential or helpful
elements of their learning environments, which is yet another interesting finding of
our study. Therefore, more research is needed into the effects of these mediating
factors, to determine whether, and to what extent, they are helpful in learning
environments supporting students’ understanding of graphing motion. A further
limitation we would like to address is the wide variety of articles included in our
review. This variety led to considerable variation in, for example, the level of
education of the participants (ranging from primary education to higher education)
and intervention length (ranging from two tasks to 20 class sessions). Even though
including this wide variety of articles gives insight in the breadth and depth of the
research conducted in this mathematics domain, it also makes it difficult to generalize
the results found in the various articles. This especially pertains to the presumed
mediating factors per class of embodied learning environments and to the respective
efficacy of each class of embodied learning environments. To be more precise
regarding the efficacy of embodied learning environments, for example regarding the
influence of age, topic, or intervention length, more targeted research is necessary.
Our review is also limited by the fact that the reviewed articles include few
comparison studies and, as a result, our evaluation of the efficacy of embodied
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learning environments on student learning was rather constrained. A final limitation
of our study relates to our choice to focus on the embodied approach to teaching
graphing motion. This means that we did not address the full spectrum of a
mathematical topic such as graphing change. Moreover, in addition to offering
students an embodied learning environment other approaches can also be used for
teaching students graphing motion. The embodiment approach is just one
perspective, yet in our opinion, a valuable one.

7.3 Future directions

In this review, we presented a new taxonomy to classify embodied learning
environments (see Figure 1). The taxonomy was based on two important embodied
cognitive mechanisms: mirror neural activity and embodied simulation, which were
operationalized by looking into the levels of bodily involvement and immediacy. This
combination was not encountered in any of the already existing embodied learning
taxonomies, although some taxonomies also considered levels of bodily involvement
(e.g., Johnson-Glenberg et al., 2014; Skulmowski & Rey, 2018). By including
immediacy as a further way to classify embodied learning environments, we
developed a method to consider learning environments that deal with both immediate,
or on-line, cognitive activities and non-immediate, or off-line, cognitive activities.
To be precise, observing others/ objects can be theoretically aligned with off-line
cognitive activity because the mirroring systems hypothesis and embodied simulation
share some common characteristics (i.e., the sensorimotor circuits of the brain are re-
used through embodied simulation when perceiving someone else performing a
particular action). For that reason, we think our taxonomy to be especially relevant
for embodied learning environments supporting students’ understanding of graphing
motion because when graphing motion, the bodily experience (e.g., the space in
which you move) is often separated from the visualization of the motion (e.g., the
graphical representation) in both space and time (e.g., Gallese & Lakoff, 2005;
Rizzolatti et al., 1997), which is conveniently captured as immediacy in our scheme.

Although we think that combining bodily involvement and immediacy in our
taxonomy provides a more precise insight in the understanding of embodied learning
environments than previous taxonomies did, further research is necessary into the
distinctions between the different quadrants of our taxonomy. Therefore,
comparisons are needed of the different configurations of embodied learning
environments to find out whether and how the embodied configurations of learning
environments affect learning. Moreover, the specificity of this taxonomy, including
the two embodied cognitive mechanisms, mirror neural activity and embodied
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simulation, presented along two dimensions, is crucial for categorizing learning
environments concerned with dynamic representations. This expresses the need for
different subfields of embodied learning research to take into account tailored
taxonomies when systematically reviewing the embodiment literature.

We think of at least two ways to use our newly developed taxonomy. First, the
classification of embodied learning environments on bodily involvement and
immediacy may be used to inform and design new learning environments. The levels
of bodily involvement and immediacy can be used as guidance for researchers and
curriculum designers, providing them with concrete support on how to incorporate
important theoretical distinctions (i.e., mirror neural activity and embodied
simulation) for the design of embodied learning environments supporting students’
understanding of graphing motion. Second, the taxonomy may also serve as a
framework to categorize embodied learning environments not specifically related to
the graphical representation of motion, but to other changing quantities as well, for
example temperature. Temperature as well as motion can be directly experienced
through the senses. Reed and Evans (1987) found how students’ experiences with the
mixing of water at two different temperatures helped them to perform a similar task
in an unfamiliar domain (mixing acid solutions) and helped them to understand
functional relations. Additionally, we suggest our taxonomy to be valuable for
embodied activities outside the domain of graphing change, within, for example, the
domain of number learning and number representation. As with graphs of change in
the context of modeling motion, embodied activities within this domain often involve
(whole) bodily activities. In the article of Fischer et al. (2011), students were given
tasks that aim to train their basic numerical competencies by making whole bodily
movements. In this respect, kindergartners saw a number on a digital blackboard after
which they had to jump left or right depending on whether this number was smaller
or larger than a standard value. Here, the experience is immediate since students are
immediately confronted with the position of the numbers on the number line.

In our review, we included a wide variety of learning environments, originating from
different traditions of views on cognition. Namely, besides research taking an explicit
embodied cognition perspective (e.g., Botzer & Yerushalmy, 2008; Robutti, 2006), we
also incorporated research investigating, for example, real-time versus delayed aspects
of video learning within the area of kinematics graphing (e.g., Brasell, 1987). This has
given us the opportunity to re-evaluate existing research from an embodied cognition
perspective. These various theoretical perspectives have led to eight mediating factors.
We propose that the mediating factors identified in our review can be seen as situated
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between the theoretically grounded embodied configurations of learning environments,
that is, the allocation of learning environments on bodily involvement and immediacy,
and the learning that takes place. For example, the mediating factor real-world context
stems from viewing cognitive activity as grounded in the real world (e.g., Morse &
Ziemke, 2007; Wilson, 2002), by which a connection is established between real-world
activity and the intended concept. In the case of graphing motion, there should be a link
between the real-world activity of motion and the graphical representation of this
motion as the intended concept. The mediating factor linking motion to graph is related
to the mapping mechanisms that structure the abstract mathematical concept by means
of bodily experiences (Font et al., 2010) and through (perceptual-grounding) processes
like embodied simulation (Barsalou, 2010). Multimodality as a mediating factor is an
essential aspect of embodied cognition as well. A multimodal view on cognition
encompasses the idea that conceptual knowledge depends upon a rich interrelated
coordination of modality-specific systems (Barsalouet al., 2003). This is also where the
mediating factor semiotics plays a role, as “mathematical ideas are conveyed using rich,
multimodal forms of communication, including gestures and tangible objects in the
world” (Nathan et al., 2017, p. 1499). Also, the mediating factor of attention capturing,
as the processing of perceptual information linked to sensory motor experiences, is
necessary to trigger (intentionally or unintentionally) a response (e.g., Gibson, 1979;
Grafton, 2009). Next, in many learning environments, students are given multiple
representations of their bodily experiences, letting them perceive multiple variations of
the same concept in relation to their movements. This can help them in developing a
solid understanding of graphically represented motion. Moreover, student control of
the bodily experience implies subsequent agency over the resulting graphical
representation. According to Johnson-Glenberg (2018), this is a feature of (virtual
reality) embodied learning environments and a function of students’ ability to
manipulate content. And finally, cognitive conflict might arise when the graphical
representation contradicts expectations (e.g., misalignment between motion and
students’ ideas about the shape of the graph). Even though the eight mediating factors
can be fitted within embodied cognition theory, it is important to note that not every
mediator will be readily associated with this theory. For example, the mediator
cognitive conflict will more likely evoke cognitivist ideas such as conflicting
conceptions when interacting with other students. We think that for this mediator—as
well as for the other mediators—to have a clear link with embodied cognition theory,
the workable element has to be located at the sensorimotor level, for example, as was
primarily the case in the included articles, when a student walks in front of a motion
sensor and is then confronted with a graphical shape contradictory to what they
expected.
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The wide variety of the found mediating factors can be a function of the focus we had
in our study on the domain of graphing motion. Therefore, more research is needed
to establish the genuine role of each mediating factor within the learning
environments and their link with embodied learning. One concrete suggestion for
doing so is investigating the mediating factors present in embodied learning
environment within different mathematical domains. This would provide more
specific information about mediating factors that are related to the embodied
configuration of learning environments (i.e., domain-general mediating factors) and
mediating factors that are related to a particular domain (i.e., domain-specific
mediating factors). When we know more about the concrete working mechanisms of
each mediating factor, this might ultimately lead to a better understanding of
embodied learning within this (and other) mathematics domain.

7.4 Concluding remarks

The ubiquity of embodied activities in mathematics and science learning
environments raises important questions regarding the embodied configurations of
these learning environments and in what ways and to what extent these bodily
experiences are helpful for the learning process (e.g., Nathan et al., 2017). We hope
that the insights regarding our classification of these learning environments and the
eight factors mediating learning within the four classes of learning environments will
provide researchers and curriculum designers with an integrative approach for
designing embodied learning environments. Furthermore, we hope that this will lead
to new insight in how mathematics and science activities including bodily
experiences can be used for mathematics teaching and learning.
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Chapter 3

Supporting primary school students’ reasoning about
motion graphs through physical experiences

Abstract

Reasoning about graphical representations representing dynamic data (e.g., distance
changing over time), including interpreting, creating, changing, combining, and
comparing graphs can be considered a domain-specific operationalization of the
general 21% century skills of creative, critical thinking and solving problems. This
paper addresses the issue of how these 21% century skills of interpreting and creating
graphs can be supported in a six-lesson teaching sequence about graphing motion. In
this teaching sequence, we focused on the potential of an embodied learning
environment to facilitate the development of primary school students’ reasoning
about motion graphs by having primary school students (9-11 years) “walk” graphs
in front of a motion sensor to generate distance-time graphs. We asked: How does
students’ reasoning about graphing motion develop over a six-lesson teaching
sequence within an embodied learning environment? Based on the collected data, we
examined changes in students’ level of reasoning on graph interpretation and graph
construction tasks using a repeated measurement design. Additionally, we present
two teaching episodes showing instances of how perceptual-motor experiences
during the lessons aided students’ reasoning about graphical representations of
motion. Results show that students went from iconic understanding towards
understanding in which they reasoned based on one or two variables when
interpreting and constructing graphical representations of motion events. At these
higher levels of reasoning these students showed understanding of modelling motion
in line with the intended 21% century skills of generating, refining, and evaluating
graphs.

Keywords: Distance-time graphs, Embodied cognition, Graphing motion, Motion
sensor technology
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1. Introduction

Twenty-first century competences include the need for equipping students with an
integrated set of knowledge, skills, and attitudes, for example being creative,
innovative, and communicative (see the categorization of 21% century skills on
http://www.atc21s.org). Such competences are typical of STEM learning in general
and mathematics learning in particular (English, 2016; Honey et al., 2014). The
capacity to deal with large amounts of new information through media and
technology is becoming increasingly important in today’s society. This includes the
ability to use graphs to produce, present, and understand complex dynamic
information (Binkley et al., 2012), as well as making flexible and creative use of
representations. Reasoning about graphical representations, making connections
between the variables on the horizontal and vertical axes, such as time and distance,
creating graphical representations, critically evaluating data represented in graphs,
using graphs to communicate findings to others, and also, making comparisons within
and between graphs, are important components of higher-order thinking skills within
science and mathematics (e.g., Boote, 2014). Promoting students’ fluency with
graphs, as well as stimulating related higher-order reasoning can therefore be a
fruitful way to incorporate 21% century skills within mathematics classrooms. This is
also in line with the framework for robust learning, which suggests that domain-
specific learning environments are needed to support students in “becoming
knowledgeable, flexible, and resourceful disciplinary thinkers” (Schoenfeld, 2016,
p- 3). There is general consensus (see also NCTM, 2000) that laying a strong
foundation for these higher-order thinking skills should start in primary school and
that this also applies to the introduction of graphs (e.g., Friel et al., 2001).

2. Background of the study
2.1 Reasoning about graphical representations

Similarly to number sense (e.g., Resnick, 1989) and symbol sense (Arcavi, 1994),
students have to acquire a graph sense, which “develops gradually as a result of one’s
creating graphs and using already designed graphs in a variety of problem contexts
that require making sense of data” (Friel et al., 2001, p. 145). Graph sense can be
considered as representing a way of thinking, rather than as a specific set of rules and
skills that can be transmitted to others (Friel et al., 2001). Such graph sense includes
the interpretation or construction of graphs and the ability to distinguish between
discrete and continuous representations. It also includes the ability to recognize the
meaning and significance of the represented variables, the slope, and the more general
visual characteristics of the graph (e.g., Friel et al., 2001; Robutti, 2006). In this
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article, we focus on graphs representing the bivariate relationship of distance
changing over time. In such graphs, varying the scale of the graph changes the shape
of the graphically represented motion, which offers opportunities for students to
reason about the relationship between the represented variables and the (qualitative)
understanding of slope (e.g., Nemirovsky et al., 2013; Zaslavsky et al., 2002). Even
when students are not focusing on numerals and symbols, they can develop graph
sense (see also Krabbendam, 1982). This graph sense reflects the ability to look at
the represented information at a qualitative global level, becoming sensitive to and
focusing on a general trend in the graph itself (Leinhardt et al., 1990). More
specifically, graph interpretation on a global scale implies “looking at the entire graph
(or parts of it) and gaining meaning about the relationship between the two variables
and, in particular, their pattern of co-variation” (Leinhardt et al., 1990, p. 11), whereas
graph construction implies the visualization of a certain relationship as representing
shapes of trends on the graphs’ axes (Matuk et al., 2019).

In summary, graph sense equals the development of a robust understanding enabling
a student to overcome most of the difficulties often associated with making sense of
graphs. One such difficulty is iconic interpretation of a graph, which occurs when
students connect the overall shape of the graph with visual characteristics of the
situation represented in the graph. A common example of iconic interpretation would
be to interpret a rising line in a distance-time graph as an actual representation of a
physical situation such as a car driving up a hill (see also Clement, 1985). Resisting
the temptation to interpret a graph by its superficial characteristics might also equate
to aspects of critical thinking.

2.2 Developing graph sense: A 21 century skill

The development of graph sense is an important component of 215 century learning.
It includes the skills of interpreting and creating graphs, but also more generally,
learning to use flexibly and creatively and evaluate critically graphical
representations not earlier encountered, and the ability to apply this understanding in
different problem situations. Developing graph sense can be challenging even for
university students (e.g., Brasell & Rowe, 1993). Nevertheless, younger students
already possess the ability to reason with, and construct (graphical) representations
of dynamic situations. For example, a study by DiSessa et al., (1991), investigated
the ability of students aged 11 to 12 to generate, critique, and refine representational
forms. These authors showed how these students developed understanding of
different kinds of representations, by drawing graphs of a given motion situation.
Here, students started with discrete representations of a motion event before moving
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on to continuous representations of that motion event. The instructional approach
used in this study can be considered as emergent modelling, which implies that
students make a specific “model of” a situation which at a later stage can be used as
a “model for” formal mathematical reasoning (Streefland, 1985). For example,
students are provided with a task about a particular motion situation for which they
have to develop a graphical solution which is situation-specific. The produced graph
can be seen as a model of the original motion situation. During this so-called
reinvention process, graphs emerge from the students’ own activities. When looking
at a graph representing different motion situations (or with different represented
variables), students can apply their acquired understanding of the graph as a
mathematical model of a particular motion situation as a model for reasoning about
the represented variables in the graph (Doorman & Gravemeijer, 2009). Therefore,
students’ own inventions (or close approximations), based on experiences with a real-
world phenomenon are a powerful starting point on which to build conventional
graphing (DiSessa et al., 1991).

Researchers have often designed tasks involving software environments linking
animations and graphs (Roschelle et al., 2000) or motion sensor technology, where a
link is forged between a student’s own motion and the corresponding graphical
representation. Following Mishra and Henriksen (2018), taking advantage of such
technology is an important aspect of learning in the 21% century, since “technology
can powerfully change how and what we teach” (p. 15). For example, students can
manipulate specific elements of a graphical representation by means of graphing
software. In a fairly easy way, technology can show how zooming in on the graphs’
axes might affect the graphical representation of a situation but does not change the
situation itself (Godwin & Sutherland, 2004). This offers students more opportunities
to not only generate, but also refine and critically evaluate graphical representations.
When using motion sensor technology students not only learn to use technological
tools but are also stimulated to test their hypotheses about the graphs produced by
these tools. Nemirovsky et al. (1998) showed how two students (aged 9 and 10)
became fluent tool users when using a computer-based motion detector for creating
distance-time graphs of their own movements. Throughout the activities the students
developed ways of seeing the graphical representation as a representation of—and as
a response to—their bodily actions. Initially, the students experienced how distance-
time graphs have some specific idiosyncratic traits (e.g., the line in the graph cannot
go backwards), while eventually, the graphical representation became an object they
understood and were able to reason with. The use of motion sensor technology has
proven to be powerful in offering students a direct experience of their own bodily

77

Iw



Chapter 3

movement (e.g., Deniz & Dulger, 2012; Mokros & Tinker, 1987). Through the
support of motion sensor technology, students’ perceptual-motor experiences are
employed to learn graphing conventions (e.g., Arzarello et al., 2007) and thus offer
opportunities to connect “the mathematics of change to its historical and familiar
roots in experienced motion” (Kaput & Roschelle, 2013, p. 20). This linking between
a physical experience and the abstraction of that experience as a graph closely aligns
with an embodied cognition approach.

2.3 Embodied cognition

Embodied cognition theory posits that both concrete and abstract higher-order
thinking and reasoning, like language and mathematics, are embedded in
sensorimotor schemes that one can acquire through physical interactions of one’s
body with the environment (see also Pouw et al., 2014). Hence, learning takes place
by enacting knowledge or concepts through bodily activities. This entails that
gestural and other bodily activity are fundamental constituents of cognition (e.g.,
Radford, 2009b). When adopting a moderate position towards embodied cognition
(Goldman, 2012), it is assumed that even when concrete actions and perceptions are
not readily available, previously acquired action-perception structures can be
simulated, in terms of re-use or re-activation, and may serve the formation of new
(abstract) ideas and thoughts (e.g., Barsalou, 2010).

2.3.1 Embodied learning environments

Following this idea of embodied cognition, developing graphical reasoning has often
been investigated in learning environments enriched with direct physical experiences.
In these embodied learning environments, bodily experiences are an essential part of
the learning activities (e.g., Johnson-Glenberg et al., 2014; Skulmowski & Rey,
2018). In the context of graphing motion these bodily experiences can be manifold
and range from making whole-, or part-bodily movements, to observing someone, or
something else, moving (Duijzer et al., 2019, see Chapter 2 of this thesis). In some
studies, the focus has (inter alia) been on students’ use of gestures and their
supportive role in expressing ideas and supporting learning graphical reasoning with
motion sensor technology (e.g., Radford, 2009a, 2009b; Robutti, 2006). Radford
(2009a, 2009b) focused on the semiotic process in which signs, words, and gestures
all work in unison to develop students’ graph sense. In particular, the work of a small
group of Grade 8 students showed that throughout the graphing activities, including
a motion sensor, the students slowly abandoned their iconic interpretation of the
graph and reformulated their interpretation in terms of the movements present in the
graph (Radford, 2009a). Throughout this process students pointed towards

78



Supporting primary school students' reasoning through physical experiences

characteristics of the graph, data points, lines, and axes. They also made gestures
expressing the shape of graphs and indicating motion represented in the graphs (see
also Robutti, 2006). Other studies more specifically addressed the role of whole
bodily motion in learning activities, for example by looking into how perceptual and
motor activities merge when students are engaged in a mathematics activity
(Nemirovsky et al., 2013). Similarly, Ferrara (2014) presented two teaching episodes,
focusing on a 7-year-old student’s perceptual, bodily, and imaginary experiences
when walking in front of a motion sensor. This student became able to connect his
movements with the graph(s) representing his movements and, a year later, was also
able to communicate his understanding of the graph to others.

3. The current study

Although the aforementioned studies illustrate the importance of perceptual-motor
experiences when reasoning about graphs of motion, they all have a rather laboratory
character. These studies presented in-depth analyses of the development of a few
students (see also Nemirovsky et al., 1998; Robutti, 2006). It is unclear whether the
experiences of those few students could also be elicited in a whole classroom setting,
and if so, to what extent this engenders the development of higher-order reasoning,
and the potential of these activities to stimulate 215 century skills. In the context of
graphing motion, we operationalize the 21% century skills of being creative and
thinking critically as students’ ability to generate, refine, and evaluate graphical
representations as well as making flexible and creative use of representations.
Following embodied cognition theory, we assume that students — when interacting
with motion sensors and collaborating with their peers — start to reason about the
connection between their bodily movements and the representation of those
movements as a graph. Thus, developing graph sense might be a fruitful way to
integrate 215 century skills in the mathematics classroom.

Most studies conducted in the primary grades using motion sensor technology
focused on instructional activities concerning graph interpretation, for example,
interpreting a graph as a response to one’s own movements in front of the motion
sensor (e.g., Nemirovsky et al., 1998). Moreover, in studies in which students’
developing understanding about motion graphs was actually measured, tests often
include graph interpretation items, using a multiple-choice format (see also Deniz &
Dulger, 2012). Graph sense however, does not contain only graph interpretation, but
also graph construction (Friel et al., 2001). Research has shown that students of all
ages experience difficulties with both graph interpretation and graph construction.
Moreover, the skill to present data and communicate this data to others is vital for
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many future professions (e.g., Leinhardt et al., 1990). Therefore, it is important that
both interpretation and construction skills are addressed in lesson activities, as well
as afterwards on lesson-specific tasks, and that students are given the opportunity to
show their reasoning when interpreting and constructing graphs.

In the current study, we investigate the development of primary school students’
understanding of — and reasoning about — motion graphs in a whole class teaching
and learning setting. Our focus is on graphing change in the context of modelling
motion. To elicit students’ reasoning about motion graphs, we developed an
embodied learning environment consisting of a six-lesson teaching sequence. In this
embodied learning environment, students made distance-time graphs of their own
movements by moving in front of a motion sensor. As such, we expected that students
would no longer consider the resulting graphical representation as a standalone,
isolated entity, but as a reference to their own bodily experiences. Students were
given ample opportunities to reason about the resulting graphical representations—
throughout the lessons and afterwards on lesson-specific graph interpretation and
graph construction tasks—enabling them to communicate their understanding about
the graphs. More specifically, we answer the following research question:

How does students’ reasoning about graphing motion develop over a six-
lesson teaching sequence within an embodied learning environment?

In answering this research question, we first investigate the development of students’
reasoning over the six-lesson teaching sequence by looking at their performance on
graph interpretation and graph construction tasks. We then provide an in-depth
analysis of how the embodied learning environment might have supported the
students in their ability to generate, refine, and reason about graphical representations
of motion. For this, we particularly focus on one student and her interactions with the
motion sensor technology and her peers.

4. Method
4.1 Participants

To answer the research question, the teaching sequence was taught in three primary
school classes (Grade 5; 9—11 years) in the area of Utrecht, The Netherlands, between
October 2016 and June 2017. Only schools sharing similar demographics were
contacted. Classes were chosen based on teachers’ willingness to participate.
Participation was voluntarily. A total of seventy students participated in this study;
28 girls (40%) and 42 boys (60%) (Mag. = 10.4, SD = 0.45). For seven students (out
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of 77) we did not get parental consent to use the data. The research was conducted in
accordance with the ethical guidelines of the Institutional Review Board of the faculty
of Social and Behavioural Sciences at Utrecht University. All students took part in
the teaching sequence as part of their regular classroom instruction.

4.2 Procedure

Each lesson took about 50 minutes and was taught by the first author supported by a
teaching assistant. The lessons were given weekly in 6 consecutive weeks. In Lessons
3-5, in the first part of the lessons, the class was split into four small groups to allow
students to work individually with the motion sensors. These small groups were
supervised by research team members who followed a lesson script in order to ensure
implementation fidelity. The small-group activities took 30 minutes. The remainder
of the lessons was given to the entire class. After each lesson, students responded to
two lesson-specific tasks: one task related to graph interpretation and the other to
graph construction. A repeated measurement design was used: every second task was
also provided to the students after the subsequent lesson (i.e., the second task
provided after Lesson 1 was the same as the first task after Lesson 2).

4.3 Data collection

We collected data from various sources: videotaped lessons, student material, and
student responses to lesson-specific tasks after each lesson. Within one class we
videotaped a small group of students (» = 7) from whom video permission was
obtained. Video sections in which students were engaged with the motion sensor
technology were identified and transcribed. We chose to mainly focus on one student,
Celine. She showed a progression over the lessons, which was representative for
many of the other students. Throughout the lessons Celine showed high motivation,
creativity, and attention towards the activities. She was also able to explain her
thinking fluently. Based on her score in the mathematics test of the Dutch student
monitoring system and the population data of this test (Cito LOVS; Janssen et al.,
2010), she can be considered a slightly above average student. We present two
teaching episodes, consisting of interactions between Celine and the students with
whom she worked.
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4.4 Materials
4.4.1 Teaching sequence on graphing motion

In the first lesson, students developed their own representations of a motion situation.
In the following lessons, situations in which distances were measured at particular
moments were proposed. Finally, students solved problems by modelling dynamic
data and reconstructing events from continuous graphs. The problems or tasks did
not explicitly ask them to perform calculations, the required reasoning was mainly
global and qualitative (see also Leinhardt et al., 1990). In particular, the teaching
sequence started from informal graphs to working with discrete graphs and finally
continuous graphs. During this trajectory the concepts of scaling on the graphs’ axes,
qualitative understanding of slope, and qualitative methods of graph interpretation
and construction were addressed. See Table 1 for an overview of the teaching
sequence, examples of the types of graphs presented in each lesson, and a description
of key activities.
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In addition to the activities per lesson, students also received a problem-solving task
that spanned the entire teaching sequence. A description of this problem-solving task
and how it is related to the respective lessons of the teaching sequence can be found
in Appendix 3.1.

In order to provide an immediate link between the dynamic situation of moving in
space and its graphical representation, we used a motion sensor which directly
represented the dynamic situation as a distance-time graph. As such, during the
lessons, students’ embodied experiences of moving in front of the motion sensor
played a central role. The motion sensor was used in all lessons except Lesson 1. In
Lesson 2 and Lesson 6 most students observed other students who were walking in
front of the motion sensor. From Lesson 3 to Lesson 5 all students walked in front of
the motion sensor individually. The craggy graphs created by the motion sensor
offered students opportunities to reason about and critically reflect on these graphs,
to separate essential elements from noise (e.g., neglecting the vertical strokes caused
by someone being out of the sensor), and to discuss how these elements relate to the
movement in front of the sensor (see also Figure 4, right panel). Throughout the
lessons the teacher coordinated the small group and classroom discussions by asking
open-ended questions such as “What do you think would happen if...?”, “Why do
you think s0?”, “Can you think of more ways to achieve a similar result?”’, “Do you
see a pattern?”, thus stimulating students’ thinking and argumentation but leaving
them free to come up with their own ideas.

4.4.2 Motion sensor technology

We made use of two ultrasonic €Motion sensors, developed by CMA, in conjunction
with Coach6 Software (Heck et al., 2009). The tool was programmed to provide a
single graph in which the distance between the sensor and the nearest object was
displayed over a period of 30 seconds. The graph was projected either on the digital
classroom board (Lesson 2 and 6) or on the screen of laptop computers (Lesson 3-5).
When a student moved backwards, the distance between the sensor and the student
increased, when a student moved forwards, this distance decreased.

4.4.3 Lesson-specific tasks: graph interpretation and graph construction

In the lesson-specific tasks all provided graphs were distance-time graphs (with and
without measurement units) describing the motion of a person or object. The graph
interpretation tasks consisted of a graph for which the students had to decide whether
three different situations or graphs could fit the given graph, see Figure 1. The graph
construction tasks consisted of a description of a motion situation including multiple
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variables on the basis of which students had to draw a graph representing that
situation, see Figure 2. For each graph interpretation task students also had to answer
an open-ended question, which probed them to make their reasoning explicit.

Task 1 Task 3 Task 5
Provided at the end of Provided at the end of Provided at the end of
Lesson 1 Lesson 2 & 3 Lesson 4 & 5
| : | . E
o e &
-~ — // E .
2 5
- "
+ + +
Which of the situations Which of the situations Which of the graphs
below could fit the graph? below could fit the graph? below depicts the same
trip?

How do you know?

How do you know?

How do you know?

Y B % oA ® B & w
T s

Figure 1. Lesson-specific graph interpretation tasks
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Task 2
Provided at the end of
Lesson 1 & 2
o L J
A B

A person walks in 10
seconds from point A to
point B

+
Draw a graph that could fit
this situation

Task 4
Provided at the end of
Lesson 3 & 4

[ ]
A B

A person walks slowly
from point A to point B
and then fast back to point
A again

+
Draw a graph that could fit
this situation

Task 6
Provided at the end of
Lesson 5 & 6

Lisa and Jan are going to
school. Lisa leaves the
house a little earlier than
Jan. Halfway she waits for
Jan to catch up. They
continue their journey
together and arrive at the
same time.

+
Draw a graph that could fit
this situation

Figure 2. Lesson-specific graph construction tasks

4.5 Data analysis
4.5.1 Coding scheme for students’ level of reasoning about graphs

Students’ responses to the lesson-specific tasks were analyzed to investigate the
development of their level of reasoning over the teaching sequence. These responses
and explanations were categorized by means of a coding scheme. The development
of this coding scheme occurred in conjunction with the analysis of the qualitative
data. First, research team members individually classified the student responses and
later these classifications were compared and if necessary revised. After several
discussion and revision rounds, we agreed upon having four main codes that enabled
us to categorize student responses to the lesson-specific tasks of graph interpretation
and graph construction, from less to more sophisticated: unrelated reasoning, iconic
reasoning, single variable reasoning, and multiple variable reasoning (for details and
examples of these codes, see Table 2). In this categorization, the 21 century skills
of generating, refining, and evaluating graphs are captured by focusing on the extent
to which students included the information about the different variables in their
reasoning. To validate our categorization into iconic reasoning, single, and multiple
variable reasoning, we compared this process to the categories used in several other
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studies on graphical reasoning. For example, Lingefjird and Farahani (2017)
identified three categories: (1) intuitive and iconic interpretations, (2) scientifically
grounded interpretations and (3) a combination with influences from both 1 and 2.
Similarly, Johnson et al. (2019) included an iconic category and three other
categories: motion of objects, individual quantities, and relationship between
quantities. Our categories resemble these earlier categorizations.

The three different graph interpretation tasks were all of similar difficulty: the same
type of reasoning led to the correct answer and explanation. In the three graph
construction tasks, students had to represent a given situation graphically. The
difficulty of these graph construction tasks gradually increased in the sense that the
situations students had to model became more complex. We chose this approach
because during graph construction, a student has to generate something that is not
there yet (Leinhardt et al., 1990). When interpreting a graph, a student has to evaluate
and recognize elements that are already apparent. Therefore, our graph interpretation
tasks could, from the start, be more complex.
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Table 2

Coding scheme used for students’ level of reasoning on the graph interpretation and graph

construction tasks

Level of reasoning  Code

Description of students’ reasoning

Graph interpretation
Example

Graph construction
Example

Unrelated reasoning RO

Iconic reasoning R1

Single variable R2
reasoning

Multiple variable ~ R3
reasoning

Student reasons...
...without referring to the
graphical representation or the
motion event

“It is a guess.’

>

...on the basis of the shape of
the graphical representation or
superficial characteristics of the
motion event
“The staircase has almost
the same shape as the
graph.” [Task 1C]

...on the basis of a single
variable (distance or time or
speed)
“The boat moves forwards
and the graph as well, if
the graph goes up it means
you go forward.”
[Task 3A]

...on the basis of multiple
variables (distance and/or time
and/or speed)
“No, because the graph
represents time and
distance, it would if it
represents the distance
upwards!” [Task 1C]

Student constructs graph...
...without taking the description
of the motion event into account

]
S

...on the basis of superficial
characteristics of the description
of the motion event

...taking into consideration a
single variable (distance or time
or speed)

...taking into consideration
multiple variables (distance
and/or time and/or speed)

]
:

!

| o %l

Note. The complete coding scheme, including examples of student responses per task, can be found in
Appendix 3.2 (graph interpretation) and Appendix 3.3 (graph construction).
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4.5.2 Teaching episodes

To investigate how students’ perceptual-motor experiences in front of the motion
sensor aided their reasoning about the graphical representations, we analyzed two
teaching episodes in more detail. We focus particularly on Lesson 3 (Episode 1) and
Lesson 5 (Episode 2). In these lessons crucial moments in which the relation between
students’ experiences and their reasoning in terms of generating, refining, and
evaluating graphs were apparent could be distinguished.

Lesson 3 marks the beginning of the critical evaluation of how motion is represented
in a continuous graph. Students encounter situations in which iconic interpretations
lead to incorrect conclusions. They experience that particular aspects of movements
relate to features of the graph (e.g., relating the direction of a motion to an increasing
distance from a given point), which offers opportunities for the students to extend,
refine, and develop reasoning by challenging their pre-existing conceptions of motion
graphs. In this lesson, students have their first individual experiences in front of the
motion sensor.

In Lesson 5 the element of scale is explicitly introduced. Students interpret the shape
of the graphs in relation to the graphs’ features and connect points in the graph to
distance and time values on the axes and to locations in space. Additionally, making
the students sensitive for how changes in scale on the graph’s axes relate to what the
graph will look like challenges students’ critical thinking skills. Again, in Lesson 5,
students enact motion in front of the sensor individually.

The two teaching episodes took place in the same class. We zoom in on one particular
student, named Celine. At the end of the first and second lesson Celine had only
shown instances of iconic reasoning. In our description, we took a micro-analytic
approach (see also Nemirovsky et al., 2013), focusing on Celine’s reasoning when
interacting with the motion sensor, including her gestures and movements, to get a
good grasp of her developing understanding. We also describe the actions of her
peers, thus showing how she, in interaction with her classmates, comes to correctly
interpret the concepts of time, distance, and speed as represented in the graphs.
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5. Results

5.1 Students’ level of reasoning over the teaching sequence

Students’ answers on the graph interpretation and construction tasks improved over
the teaching sequence, as shown by more frequent occurrences of high levels of
reasoning (Level R2 and R3) towards the end of the teaching sequence. Figure 3
shows the proportion of students with a particular level of reasoning for both graph
interpretation and construction tasks. For Task 1, the lesson-specific task
administered after the first lesson, students’ reasoning could be qualified as iconic
reasoning (Level R1: 55%). That is to say, reasoning in which the graphical
representation was interpreted as an analogous depiction of the represented situation,
for example on Task 1A “In the graph it goes up and here the airplane also goes up”.
A smaller proportion of the students reasoned while taking into account a single
variable (Level R2: 40%), for example on Task 1A “He travels a distance and then
he continues”, whilst only 3% of the students showed reasoning in which they
referred to the graph as representing a bivariate relationship (Level R3), for example
on Task 1A “Because he travelled a certain amount of distance within a certain
amount of time”.

Over the course of the teaching sequence the frequency of students’ iconic reasoning
on graph interpretation gradually decreased (from about 50% in Lesson 2 to 9% in
Lesson 5), whereas the frequency of students’ single variable reasoning increased
towards the third lesson (from about 46% in Lesson 2, to 78% in Lesson 3) and then
decreased in Lesson 4 and again slightly increased towards Lesson 5 (62% in Lesson
4 and 66% in Lesson 5). Examples of students’ single variable reasoning were
responses such as “The distance increases just as with the hot air balloon and this is
shown in the graph” (Task 3B) and “The one in the top is stretched more but there it
is 30 kilometer and here as well” (Task SA). The decline in the frequency of single
variable reasoning co-occurred with an increase of the frequency of students’
multiple variable reasoning (from less than 7% in Lesson 1-3 to 25% in Lesson 5).
An example of such reasoning was on “He moves till 30 kilometers in 15 minutes,
then waits, and after 30 minutes back again” (Task SA). Students’ reasoning on the
graph construction tasks showed a comparable pattern. From the first lesson onwards
most students were able to incorporate at least two variables correctly when creating
a graph of a given motion situation. This skill continued to increase towards Lesson
6 (from about 54% in Lesson 1 to 78% in Lesson 6). This increase co-occurred with
a gradual decrease on iconic reasoning from Lesson 3 onwards (Level R1: from about
38% in Lesson 3 to 0% in Lesson 6).
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5.2 Perceptual-motor experiences and developing graph skills

When looking at the changes in students’ level of reasoning on the lesson-specific
tasks, Lesson 3 and 5 appear to be benchmark lessons. First, for graph interpretation,
there were more students who reasoned based on a single variable on Task 3 after
Lesson 3 than after Lesson 2 (+32%). In the first teaching episode, we show students’
interactions with the motion sensor and related reasoning in the third lesson. Second,
from Lesson 4 till 5 (Task 5), there were fewer students who reasoned based on single
variable (-5 %). Additionally, there were more students who reasoned in a
covariational manner, taking into account multiple variables when interpreting the
graph(s) (+18%). During the fifth lesson, students moved in front of the motion
sensor individually. Furthermore, during this lesson, more emphasis was placed on
the graphs’ axes (e.g., focusing on scale and intervals on the x-axis and y-axis),
prompting students to be critical of how a particular scaling on the graph’s axes would
change its appearance, which Task 5 assessed more explicitly. In Episode 2 we show
a short excerpt of an interaction between a few students to show the kind of reasoning
during the fifth lesson.

5.2.1 Episode 1: Walking a given graph

In Lesson 3, after some exploration of the motion sensor, students had to replicate
the distance-time graph depicted in Figure 4 (left panel), to do this they had to
interpret the graph in terms of distance from the sensor, where and when to start and
stop, and about time, because each wave takes a certain amount of time.

Figure 4. Given graph of back-and-forth movement in front of the motion sensor (left panel)
and a graph produced by a student (right panel).

First, the graph was discussed with the students, then Mark was chosen to walk the
graph. Initially, Mark walked faster than the graph required. Amir and Celine
discussed Mark’s movements and what they thought he should change. The graph
walked by Mark showed fewer curves than the given graph in the same time-interval,
while covering more distance.
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Celine: He is making them bigger. [Gestures the shape of the
curve Mark is walking]

Celine: They have to be closer together

Teacher: How could we make the graphs more similar?
Celine: A little faster... and a slightly shorter distance?

SAEENE

While Mark was walking the graph, it became clear that his graph was not entirely
similar to the given graph. Celine noticed that Mark’s waves were larger than the
ones in the given graph. He covered more distance, while it also took him longer to
make each curve. In sharing her ideas, she used gestures to describe the shape of the
graph (Lines 1-2). Initially, Celine did not describe the wave shape of the graph
verbally, but her gesture clarified what she meant. She corroborated this gesture when
she said “they have to be closer together” (Line 3). Celine shared specific ideas about
the movements associated with a certain shape in the graph. She further mentioned
that someone should walk “a little faster” covering a “slightly shorter distance”
(Line 5). Celine’s interpretation includes the variables time and distance in a
covariational manner. Her reasoning, considering both time and distance, and
combining them with speed, was prompted by her observation of Mark’s movements
in front of the sensor.

This is an example of how technology can be used to our advantage in strengthening
the domain-specific 21% century skills of generating, refining, and evaluating
graphical representations. The technology and the activity allowed the students to
critically look at what went on with the graphical representation, when desired results
are absent. Words and gestures helped the students to connect the shape of the graph
(e.g., concavity of the curve) to the movements needed to reproduce the graphs (e.g.,
walking faster). Moreover, the students became increasingly able to communicate the
relational aspect of the variables distance and time, when interpreting and describing
the graphs. Celine’s reasoning shows how the embodied learning environment
prompted students to move beyond iconic interpretations of the graph, illustrated by
some students who initially started to jump in front of the sensor. The graph that Mark
walked, prompted Celine to pose a specific hypothesis, showing that Celine was very
well able to describe in words what should be changed in the situation in order to
change the appearance of the graph. This was rather exemplary, over the course of
the lesson students became increasingly able to distinguish between relevant and
irrelevant movements, and between relevant and irrelevant parts of the graph. The
students became aware of the graphs’ shape at a global level (a curve, possible and
impossible shapes).
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5.2.2 Episode 2: Experiencing that speed matters

In Lesson 5, students’ interpretation of the scale on the graph’s vertical axis was
explicitly addressed. At the start of this episode the teacher asked what motion was
represented by the graph on the left in Figure 5. After a short discussion, the students
reached the conclusion that someone should walk slowly away from the sensor, then
fast towards the sensor, and finally stand still, while performing this sequence three
times in total.

Time (in seconds)

Figure 5. Given graph (left) and a graph (right) produced by a student by moving in front of
the motion sensor.

Vanessa was chosen to walk the graph. First, the students discussed from where to
start walking. This required them to connect a specific point in the graph to a specific
position in the classroom, considering that the graph describes the distance from the
sensor, represented on the vertical axis. Then, the teacher activated the sensor.
Vanessa started walking the graph, first walking backwards, then forwards, standing
still, and walking backwards again. All students paid close attention to her
movements and the graph on the screen of the computer. Initially, Vanessa walked
away and towards the sensor at a constant speed.

6 Celine: Now, walk faster forwards again. [Raises her arm,
7. gesturing Vanessa to walk faster towards the sensor,

8 indicating in her gesture an increase in speed and repeating
9 her gestures several times very quickly]

10.  [Vanessa walks towards the sensor, stands still, and walks
11.  backwards]

12.  Celine: Slowly backwards and then fast forwards. [Repeats
13.  the gestures she just made, urging Vanessa to walk faster
14.  towards the sensor]
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Immediately hereafter, Vanessa walked towards the sensor a little faster than she did
before. After this, the resulting graph on the screen was compared with the given
graph. A short discussion unfolded about the aspects that differed between the two
graphs. The highest point in the graph just walked by Vanessa did not match the given
graph.

15.  Teacher: How high is the highest point here? [Points

16.  towards the graph)

17.  Celine: Two meters so... [Takes one large step backwards,
18.  and another large step backwards] ...over here

Even though the teacher discussed the graph and the different paces of walking with
the students beforehand, Vanessa did not yet incorporate this in her walking. Celine,
however, seemed to understand that in order to make the graph similar to the given
graph, Vanessa should walk faster towards the sensor than when walking away from
it. In order to communicate her ideas, Celine resorted to the use of metaphoric-
representational gestures, enacting Vanessa’s walk. With her gestures, she explicated
how Vanessa should walk faster, as if she were conducting the movement herself,
corroborating it by saying “walk faster forwards” (Lines 6-9). Furthermore, as shown
in the second half of the interaction, for Celine it was self-evident that, when walking
towards a specific point, the vertical axis conveys positional information of the
variable distance (Line 17-18). This understanding is indicated by Celine’s walking
while saying “two meters, so...” (Line 17) and “...over here” (Line 18), which can be
interpreted as deictic signs, showing where someone should be according to the
highest point in the graph. This seems to be an important step in the development of
Celine’s reasoning. By using “here” (Line 18), to denote this point, Cecile is
explicitly linking the position in the graph to a position in walking space, even
without having the direct feedback of the motion sensor. Throughout the activity she
shows her ability to deploy the 215 century skills of flexibly and creatively using the
graphical representation and relate the representation to the real world situation it
represents. Moreover, the link made by Celine is quantitative, making two large steps,
indicating the first and the second meter.

6. Discussion

By offering students opportunities to interpret and create graphical representations of
motion, this study proposed a domain-specific operationalization of the 21% century
skills of using graphs to produce, present, and understand complex dynamic
information. Students participated in activities that were situated in an embodied
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learning environment in which they were asked to interpret, create, change, combine,
and compare graphical representations of their own and other’s motion.

6.1 Students’ development in levels of reasoning on graph interpretation and
graph construction

Based on our analyses of students’ level of reasoning, at the beginning of the lessons,
students’ graph interpretation skills were relatively weak. Students were inclined to
interpret a graph as a literal depiction of the situation, which was also found in
previous research investigating students’ graph interpretation skills (e.g., Clement,
1985; Mokros & Tinker, 1987). These iconic interpretations were quite persistent in
students. Even after students were introduced to graphs describing distance-time
relationships (from Lesson 2 onwards) iconic reasoning was still the most prominent
level of reasoning on graph interpretation tasks. Only after Lesson 3, which was the
first lesson in which students enacted motion in front of the motion sensor
individually, which provided them with opportunities to generate, refine, and
critically evaluate motion graphs, the iconic level of reasoning became less common.
For the graph construction tasks students also improved over the lessons, showing an
increase in students’ answers including higher levels of reasoning towards the end of
the six-lesson teaching sequence, despite the fact that the motion situations students
had to model became more complex. From the third lesson onwards students rarely
constructed iconic graphs, whereas they often drew graphs in which more than one
variable was correctly taken into account.

Overall, we found that multiple variable reasoning was more often present in
students’ answers on graph construction than on the graph interpretation tasks, which
more often included single variable reasoning. According to Leinhardt et al. (1990)
graph construction is more complex than graph interpretation because “interpretation
relies on and requires reaction to a given piece of data (e.g., a graph, an equation, or
a data set) [whereas] construction requires generating new parts that are not given”
(Leinhardt et al., 1990, p. 12). In this same line, Berg and Smith (1994) conjectured
how graph construction tasks might force students to consider both local and global
aspects of graph construction which leads to higher levels of cognitive engagement.
They contrast this with graph interpretation tasks in which students do not have to
consider local aspects of the graph and more often choose a graph that fits the picture
of the situation, in an iconic way. This is consistent with our results. In Lesson 3,
when comparing students’ reasoning on Task 2 and Task 3, both with the same graph,
they more often showed iconic interpretations on the graph interpretation task and
more multiple variable reasoning on the graph construction task. In our study,
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students reached high levels of reasoning when constructing graphs of motion, taking
into account various aspects of distance-time relations present in the motion
situations. This indicates that the graph construction tasks challenged the students to
deploy high-levels of cognitive engagement, illustrating the usefulness of such tasks
for higher-order thinking activities, in line with the intended 21 century skills of
interpreting and creating graphical representations.

6.2 The role of perceptual-motor experiences in developing graphing skills

Over the two episodes Celine’s reasoning went from iconic interpretations towards
covariational interpretations (i.e., distance changing over time) (see also Radford,
2009a). The first episode focused on students’ modelling of motion represented in a
given graph by moving in front of the motion sensor individually. Celine incorporated
signs, words, and gestures to come to a deeper understanding of graphically
represented motion (see also Radford, 2009a), by coordinating the (observed) motion
with the graphical representation on the screen. For example, Celine made use of
iconic representational gestures (Roth, 2001). Botzer and Yerushalmy (2008) argue
how such gestures imply that Celine mentally stretched the graph in order to compare
it with the original one, as such revealing her perceptual-motor and analytical
thinking (see also Robutti, 2006). The second episode introduced speed more
explicitly, noticeable in the steepness of slope as a result of walking at varying speeds
in front of the sensor. In both Vanessa’s and Celine’s reasoning, moving, and
gesturing the concept of speed was apparent (see also Radford, 2014).

6.3 Limitations of the study

There are some limitations to the current study. First, this study is only based on
students in three classes. Including more classes would enhance the robustness of our
findings. Second, in order to show students’ development over time we primarily
focused on students’ writing on the lesson-specific tasks and we illustrated how this
reasoning was elicited during the lessons in the teaching episodes. According to
Radford et al. (2004) “a direct translation of actions into symbols require[s] the
students to undergo a dynamic process of imagining, interpreting and reinterpreting”
(p- 73). More research is necessary to establish how students’ physical experiences
in the lessons relate to their answers on the lesson-specific tasks students performed
on paper. For example, to what extent do students use their experiences of moving in
front of the motion sensor? A research methodology with think-aloud protocols when
solving the lesson-specific tasks might be suitable. A third, related limitation is that
students’ reasoning on the lesson-specific interpretation tasks might not be a precise
reflection of their understanding. It could be that they did not write down their entire
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reasoning. We observed students’ covariational reasoning throughout the lessons but
did not see this level of reasoning in their answers to the lesson-specific graph
interpretation tasks.! In that sense, the results for the graph interpretation tasks might
underestimate their full understanding which provides another explanation for the
limited occurrence of multiple variable reasoning on these tasks.

6.4 Concluding remarks

This study contributes to theories of mathematical thinking and learning by showing
how embodied activities engenders high levels of mathematical reasoning. As such,
our study was an extension of previous research that showed the capability of students
this age to model dynamic data and reason about the relationship between multiple
variables, when engaging in immediate own motion learning activities. Experiences
in primary grades do not usually provide children the opportunity to engage in
mathematics and science activities that involve modelling motion. We found that
embodied activities using technology can be applied in an authentic and realizable
classroom setting (see also Deniz & Dulger, 2012). As opposed to previous studies
incorporating graphing activities, we asked students to also create graphs instead of
only interpret given graphs. The lesson-specific tasks used in our study were fit to
capture the intended domain-specific 21% century skills of generating, refining, and
evaluating (motion) graphs. We saw a gradual decrease in the occurrence of iconic
reasoning over the lessons while higher levels of reasoning (i.e., reasoning with a
single variable or multiple variables) were more noticeable towards the end of the
lessons. Students’ thinking about these graphs went beyond merely replicating factual
information and can be considered, for students at this age, as higher-order thinking.
Students’ perceptual-motor experiences in front of the motion sensor seemed to have
been crucial in achieving this. The activities allowed them to reason about and
critically evaluate graphical representations while using their creative thinking skills
in adjusting their movements in order to replicate graphs more closely. This illustrates
the potential of a sequence of embodied, constructive and reflective activities using
technology.
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'In a later carried out analysis we found that the students sometimes did show, on the lesson-specific
graph interpretation tasks, instances of covariational reasoning similar to the reasoning students
showed on the pre- and post tasks used to measure their development over the lessons; see
Chapter 4 of this thesis.
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Chapter 4

Moving towards understanding: Students interpret and
construct motion graphs

Abstract

Bodily experiences are associated with powerful forms of understanding, yet not
much research has investigated to what extent bodily experiences benefit the
development of graphical reasoning. We examined the effectiveness of providing
embodied support in a teaching sequence of six lessons on motion graphs, including
both graph interpretation and graph construction activities, on fifth-grade students’
reasoning about graphically represented motion. Divided over nine classes 218
students took part in our study. Students in three classes received lessons on graphing
motion with direct embodied support, three classes received lessons on graphing
motion with indirect embodied support, and three classes served as a baseline
condition and received lessons on a different mathematics topic. Development of
students’ graphical reasoning was measured on four tasks. All students were given
these same tasks four times with two months intervals. The teaching sequence on
graphing motion took place either after the first, second, or third measurement. We
used a cohort-sequential design to assess the intervention effect, the condition effect
and the fading effect. Results showed that students improved their graphical
reasoning at post-intervention-measurements when compared to their performance
before the intervention. Moreover, students in the teaching sequence with direct
embodied support showed a slightly larger gain in their graphical reasoning than
students in the teaching sequence with indirect embodied support. These results
suggest that embodied support as a learning facilitator can improve reasoning about
graphing motion in primary school classrooms.

Keywords: Distance-time graphs, Embodied cognition, Graphing motion, Motion
sensor technology
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1. Introduction

The ability to understand and reason about graphical representations is a core part of
science and mathematics proficiency and, therefore, an important topic in education
(OECD, 2000; Roth & Bowen, 2003). Reasoning about graphical representations
involves a broad range of skills ranging from encoding basic visual and spatial
information in the graph, such as the scaling of the axes, the slope or the intercept, to
relating these features to the conceptual or scientific phenomenon they represent,
such as a sloped straight line in a distance-time graph reflecting constant speed (Shah
& Hoeffner, 2002). Since graphing is often addressed within mathematics lessons,
when graphing linear functions, students are mostly confronted with idealized
examples, whereas graphs representing real-world phenomena often contain
ambiguous elements such as noise or non-linearity (Lai et al., 2016). This might be
one of the reasons that students are unable to apply their apparent understanding of
graphs within mathematics lessons to graphs they encounter outside the mathematics
classroom (McDermott et al., 1987). In the Dutch primary school mathematics
curriculum, graphing is only briefly treated. Since graph comprehension — and
reasoning about graphs — can be challenging, even for otherwise capable learners and
expert users (e.g., McDermott et al., 1987; Roth & Bowen, 2003), it is generally
agreed upon that students should be offered ample opportunities to acquire the skills
associated with graph interpretation and construction, and to reason about these
graphs (e.g., NCTM, 2000; Wang et al., 2012; Wavering, 1989).

In this study, we aimed to foster students’ graphical reasoning in primary school. To
this end we developed a teaching sequence on motion graphs representing the real-
world phenomenon of distance changing over time. In such graphs, students are
prompted to connect elements of the graphical representation to the physical event
that is represented and to reason about the relationship between the variables on the
horizontal and vertical axis as well as their pattern of covariation (Leinhardt et al.,
1990). We investigated both short-term and middle-long-term effects of this teaching
sequence on students’ reasoning about graphs. Following recent proposals to include
bodily experiences in teaching graphing (e.g., Duijzer, Van den Heuvel-Panhuizen,
Veldhuis, Doorman & Leseman, 2019, see Chapter 2 of this thesis), stemming from
the wider embodied cognition approach to learning and development (see below), we
investigated in particular whether a teaching sequence on motion graphs
incorporating direct physical experiences has a stronger effect on students’ graphical
reasoning than a teaching sequence without such direct physical experiences.
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2. Theoretical background
2.1 Graphical reasoning

Recognizing visual features of a graph, such as data points and values on the axes,
interpreting relationships represented by these features, and connecting these
relationships to what the graph actually represents, are three essential processes for
comprehending graphs (Shah & Hoeffner, 2002). Graph comprehension is related to
developing graph sense (Friel et al., 2001; Robutti, 2006). Graph sense, like number
sense (Resnick, 1989) and symbol sense (Arcavi, 1994), is a holistic construct. It is a
way of thinking, of becoming sensitive for what various graphs might represent and
for how various (non-standard) phenomena might be graphed, both locally and
globally. It also includes the ability to distinguish between discrete and continuous
representations, to recognize the meaning and significance of the slope, and the more
general visual characteristics of the graph (e.g., Robutti, 2006). A student should
become flexible in recognizing and using these components, and should also be able
to explain their thinking and communicate it to others using graph related language
(Friel et al., 2001). When, for example, reasoning about representing the dynamic
situation of distance changing over time in graphs, students should be given the
opportunity to connect the represented physical situation (i.e., motion) with visual
elements of the graphical representation (e.g., the slope, rate of change), and vice
versa (e.g., McDermott, 1987). Graph sense encompasses both graph interpretation
and graph construction (Friel et al., 2001), although the latter has only rarely been
addressed in research on lesson activities (e.g., Leinhardt et al., 1990; Mevarech &
Kramarski, 1997).

The extent to which students are able to comprehend and reason about graphical
representations depends upon many factors such as prior personal experiences, basic
everyday intuitions, and familiarity with the graph’s conceptual content (Friel et al.,
2001; Janvier, 1981; Shah & Hoeffner, 2002; Vitale et al., 2015). When graphs
represent changes over time (e.g., increase of distance or length), which are
particularly difficult for students to understand (Arzarello & Robutti, 2004), several
misconceptions about interpreting and constructing graphs can arise (Glazer, 2011).
For example, a student can interpret a graph as an iconic representation of a real event
(Bell & Janvier, 1981; Leinhardt et al., 1990). This might happen when a student
interprets the intersection of two lines in a speed-time graph as the moment when two
persons or objects meet. Such reasoning about the graph is not necessarily illogical,
because the student simply builds upon informal and intuitive understandings
encountered in everyday reality, and applies this knowledge to the graph (e.g., Elby,
2000; Lakoff & Nuiiez, 2000). Similarly, when asked to construct a graph, a student
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might draw a line representing the actual path of motion like a map (e.g., McDermott,
1987; Mevarech & Kramarski, 1997). Various studies have shown that such an iconic
or pictorial way of reasoning about graphs representing change over time can be quite
persistent in students (Clement, 1985; Mokros & Tinker, 1987). These superficial
interpretations might hamper the deeper conceptual understanding of graphs as
representing a specific meaningful relationship between more than one variable
(Lai etal., 2016; Leinhardt et al., 1990). Being able to resist superficial interpretations
and instead draw correct inferences about what a graph actually represents is an
important part of graphical reasoning.

2.2 Fostering graphical reasoning

In order for students to develop their graphical reasoning, teachers should preferably
build on a students’ informal and natural intuitions, and as a consequence circumvent
aforementioned misconceptions. It is thus important that students should be offered
ample opportunities to discover the deeper relationship between the variables on the
axes and reason about their pattern of covariation (e.g., Friel et al., 2001; Lai et al.
2016; Leinhardt et al., 1990; Mokros & Tinker, 1987). Covariational reasoning, for
young students, entails the mental coordination of the values of two quantities, while
keeping in mind that at every moment the other quantity also has a value (Carlson et
al., 2002; Saldanha & Thomspon, 1998). This covariational reasoning is important
when interpreting and constructing graphical representations, because it enables
students to make a connection between the two variables represented on the graph’s
axes (Saldanha & Thompson, 1998).

Instructional approaches targeting students’ graphical understanding can be divided
in two main categories; on the one hand, approaches in which the focus is more on
quantitative or local aspects of graphing, on the other hand approaches in which the
focus is more on qualitative or global aspects (e.g., Leinhardt et al., 1990). Choosing
scales, fitting the paper, reading points in the graph, and letting students plot points
from data given in tables, are instructional activities that lead to a focus on graphs’
local aspects when interpreting the meaning of a graph or when drawing a graph (e.g.,
Berg & Smith, 1994; Hattikudur et al., 2012; Lai et al., 2016). When following these
more or less fixed routines, a deeper conceptual understanding of the relational aspect
of the represented variables might not be sufficiently supported (Yerushalmy &
Schwartz, 1993). For example, when a student plots points in a graph and produces a
correct slope, this does not necessarily imply understanding of what the slope
represents (Vitale et al., 2016). Additionally, Thompson and Carlson (2017) argue
how the plotting of points in the graph and “connecting points” without a deeper
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discussion of the values between successive points, often hampers a deeper
understanding of the line in the graph as representing a relationship between two
continuously changing quantities.

In contrast, without instructional emphasis on numerals and procedures, students
have been found to look at the represented information at a more qualitative and
global level (e.g., Krabbendam, 1982). An advantage of a more qualitative, global
approach is that it resembles how one might judge a graph in real-life, which often
excludes performing calculations on the graph’s represented values (Cleveland &
McGill, 1984). Another advantage is that when interpreting a graph, students can
focus on the graph’s general shape (Leinhardt et al., 1990), and when constructing a
graph students can visualize a relationship between two variables as shapes of trends
mapped onto the graphs’ axes (Matuk et al., 2019). As described by Castillo-Garsow
et al. (2013), thinking about the relationship between two variables as continuously
changing necessarily involves thinking about motion. This thinking about motion
might act as an embodied conceptual metaphor (Lakoff & Nufez, 2000), which maps
early everyday experiences with motion to the abstract concept of (graphically
represented) continuous change (see also Lakoff, 2014).

In addition to a focus on local or global aspects of graphing, particular learning
facilitators that are included in the design of learning environments have been found
to foster students’ graphical reasoning. For example, in a study by diSessa et al.
(1991) students (11-12 years) invented representations of a motion story about a car
travelling through the desert by first drawing discrete representations and then
moving on to continuous representations of this motion event. This meaningful
motion situation and the emphasis on students’ own inventions turned out to be
powerful learning facilitators for the development of students’ qualitative reasoning
about these motion representations. Another example can be found in the work of
Noble et al. (2004). Sixth-grade students were asked to make block representations
of a moving elevator, using physical cubes. The block representations were then
transferred into a simulation environment. The elevator in the environment moved in
accordance with the motion represented by the blocks. Over the course of the
activities, the students were reasoning about the “fastness” of the elevator, without
explicitly referring to more quantitative ratio-based descriptions of the movement.
Students’ reasoning about this particular motion situation was presumed to support
more formal reasoning about multiplicative relationships. In both of these examples
the real-world context, thus the context of the travelling car and the moving elevator,
supported students’ (qualitative) reasoning about the (graphical) representations,
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which allowed them to further develop their formal mathematical reasoning as well
as to partake in more conventional graphing practices.

Another often used learning facilitator, already shortly mentioned, known to facilitate
students’ qualitative reasoning about graphs is the use of real-time motion and
simulation environments (Stroup, 2002). For example, in a study of Nemirovsky et
al. (1998) students familiarized themselves with the graphical representation of their
own movements in front of a motion sensor that was connected to a desktop
computer. This approach allowed the students to reason about the relationship
between changes in their own movements and the resulting changes in the graphical
representation. In learning environments making use of motion sensor technology,
physical experiences are an explicit part of students’ learning activities. Moreover,
through the use of motion sensor technology, the line in the graphical representation
becomes meaningful to the students since the line in the graph is connected to their
own bodily movements and thus in experienced motion (Kaput & Roschelle, 2013).
Using motion sensor technology by which a graphical representation appears in real-
time also provides a valuable entry-point into reasoning about continuous change
represented in graphs (e.g., distance changing over time), because motion
experienced with your own body, or observed, must have a value at every point in
time. The explicit introduction of bodily experiences in learning activities is in
accordance with an embodied cognition approach.

2.3 Enriching graph instruction: An embodied perspective

Learning environments, in which students’ own bodily experiences are an explicit
part of the learning activities, are also termed embodied learning environments (e.g.,
Johnson-Glenberg et al., 2014; Skulmowski & Rey, 2018). The ways in which
students are provided with opportunities for bodily engagement in learning
environments supporting students understanding of graphing motion can vary widely,
ranging from whole- or part-bodily movements to observing someone or something
else moving (Duijzer, Van den Heuvel-Panhuizen, Veldhuis, Doorman & Leseman,
2019). Including bodily experiences in learning environments is based on the premise
that all cognitive processes originate from the perceptions and actions of our body in
interaction with our immediate environment (e.g., Pouw et al., 2014; Wilson, 2002).
The resulting action-perception schemes are considered to be the fundament of our
cognitive architecture. Also, observing movement of others or mentally simulating
actions by activating previously acquired action-perception structures are considered
to be part of the embodied cognition continuum. Our brain enables us to simulate
particular action-perception structures (and invent new ones) (Van Gog et al., 2014),
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by re-using the sensorimotor circuits of the brain that were involved in previous
experiences of perceiving and acting (e.g., Anderson, 2010; Pulvermiiller, 2013).
More specific, through the (simulated) enactment of mathematical structures with our
body, content-specific action-perception structures evolve which constitute a source
domain that can be metaphorically projected to target concepts (Abrahamson &
Bakker, 2016; Lakoff & Nufiez, 2000).

In a recent review of research into embodied learning environments (Duijzer, Van
den Heuvel-Panhuizen, Veldhuis, Doorman & Leseman, 2019) it was shown that,
although physical experiences are often utilized in learning environments supporting
students’ understanding of graphing motion, not much comparative research into the
development of primary school students’ understanding of motion graphs has been
conducted to date. Of the six studies that did investigate this age group, only one
study (Deniz & Dulger, 2012) took a quasi-experimental approach in a classroom
setting, the other studies reported (short-term) case studies, involving one or two
students (e.g., Ferrara, 2014; Nemirovsky et al., 1998), or observational research
(e.g., Anderson & Wall, 2016). Deniz and Dulger (2012) compared two inquiry-based
lesson sequences on motion and temperature of which one was enriched with real-
time graphing technology and the other with traditional non-digital laboratory
equipment. Both lesson sequences incorporated physical experiences, yet only the
technology group received immediate feedback provided by the tool. These
technology lessons inter alia consisted of specific movements students had to perform
in front of a motion sensor (three lessons on motion, three lessons on temperature,
six hours in total), which were displayed in real-time on a computer screen.
Afterwards the graphs were discussed with the students. Results showed that using
the real-time graphing technology significantly improved students’ ability to interpret
motion and temperature graphs. Based on their systematic review, Duijzer, Van den
Heuvel-Panhuizen, Veldhuis, Doorman and Leseman (2019) concluded that
embodied learning environments making use of students’ own motion immediately
linked to its representation, which was often done through the use of motion sensor
technology, were most effective. Thus, embodied learning environments providing
students with direct physical experiences have been found to be helpful in supporting
students’ understanding of motion graphs.

3. The present study

In the present study, we investigated the middle-long-term learning outcomes of a
six-lesson teaching sequence, supporting students’ reasoning about motion graphs,
featuring a particular sequencing of mathematical graphing tasks. Embodied learning
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environments supporting students’ understanding of graphing motion have been
found to be effective in small-scale one-to-one settings, however, to date, in the
primary grades their effects have rarely been studied in whole-classroom settings
(Duijzer, Van den Heuvel-Panhuizen, Veldhuis, Doorman & Leseman, 2019). To this
end, we developed a teaching sequence on graphing motion for primary school
students. Following the proposal that higher levels of (mathematical) understanding
are grounded in physical experiences regarded as embodied cognitions, we developed
two parallel versions of this teaching sequence differing in their degree of directness.
The teaching sequence in which students were offered direct embodied support,
involved graphing activities in which students’ own bodily movements were
visualized as a line in the graph, using motion sensor technology. The teaching
sequence in which students were offered indirect embodied support involved
graphing activities that were mostly paper-and-pencil based or projected on the
digital blackboard. Students did work with an image of the motion sensor context,
but without the presence of the physical tool. A third group of students served as a
baseline condition and received lessons on a different mathematics topic.

The study was carried out in primary school classrooms. As a truly randomized
design was not feasible, we used a cohort-sequential design with three cohorts which
received the lesson sequence in the first, second and third trimester of the school year,
respectively. Each cohort comprised of two classes who received either the direct or
the indirect embodied support instruction in the trimester where the lesson sequence
was provided. A fourth cohort was included as baseline condition. This cohort
received a series of lessons on another mathematical topic. We wanted to investigate
the potential effects of the embodied learning activities on students’ graphical
reasoning ability in the context of modelling motion. We formulated the following
research question:

To what extent does embodied support in a six-lesson teaching sequence on
graphing motion affect the development of students’ graphical reasoning?

To assess students’ learning progress as a result of the teaching sequence, tests were
administered before and after the teaching sequence. The tests consisted of a number
of graphical reasoning tasks and required students to explain in writing their
reasoning when solving the tasks. Students’ written responses were subsequently
evaluated with regard to the level of graphical reasoning displayed. We will analyze
changes in students’ graphical reasoning by performing a longitudinal analysis on the
task level following Item Response Theory (IRT), allowing us to model intra- and
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inter-individual changes in growth. This approach enables us to increase this study’s
power, to disentangle faulty reasoning from simple mistakes, and to get better insight
in changes in levels of reasoning over time. We hypothesize that students taking part
in a teaching sequence on graphing motion will, on average, change in their graphical
reasoning from lower to higher levels of reasoning more than can be expected based
on mere maturation or multiple testing. Additionally, in line with existing research
on embodied learning environments, we hypothesize that students receiving a
teaching sequence with direct embodied support will outperform students taking part
in a teaching sequence with indirect embodied support.

4. Method
4.1 Participants and study design

Schools and classes were chosen based on the willingness of the teachers to
participate, resulting in a convenience sample. A total of 237 fifth-grade students
from seven elementary schools, divided over nine classes participated in our study.
From 19 students we did not obtain written parental consent to collect data. The final
sample consisted of 218 students (Grade 5; M = 10.47, SD = 0.47; 94 female, 43%)
divided over two instruction conditions (indirect support condition, n = 68; direct
support condition, » = 70) and a baseline condition (z = 80). All schools were located
in the area of Utrecht, the Netherlands. The study was conducted between October
2016 and June 2017. The research was approved by the Ethical Review Board of the
faculty of Social and Behavioral Sciences at Utrecht University.

All students participated in a teaching sequence of six lessons on graphing motion
(with direct and indirect embodied support) or a non-related topic (probability) in the
baseline condition as part of their regular classroom instruction. The study adopted a
cohort-sequential design, meaning that for each research condition, one cohort of
students participated in the teaching sequence in the first trimester of the school year,
the second cohort of students in the second trimester, and the third cohort of students
in the third trimester. To compose the cohorts, the six classes that would receive the
teaching sequence on graphing motion were first clustered in three pairs on matching
general school characteristics. Next, in consultation with the teachers, each pair was
assigned to one of the three cohorts. Finally, per cohort, the two classes were
randomly assigned to one of both instruction conditions. This design allowed us to
(1) have the same researcher teaching all the lessons on graphing motion, and (2) to
compare the learning curve during the six-lesson teaching with the baseline condition
and post intervention conditions (when not yet having had the teaching sequence).
Table 1 gives an overview of the study research design..
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4.2 Teaching sequence and procedure

The main goal of the teaching sequence was to help students become acquainted with
graphs representing the bivariate relationship of distance changing over time, and
foster students’ reasoning about these graphs. The instruction sequence started with
informal graphing activities (Lesson 1), followed by a transition from discrete to
continuous graphs (Lesson 2), and to continuous graphs (Lesson 3 onwards). Table 2
gives an overview of the teaching sequence, including the main topic per lesson and
its key activities.

The teaching sequences in the conditions with indirect and direct embodied support
were taught by the first author of this paper, and in the case of direct embodied
support with the help of a teaching assistant. Each teaching sequence consisted of six
lessons, about 50 minutes each, one lesson per week, divided over 6 weeks. Two
weeks before the start of the intervention a general reasoning test was administered.
One week before a cohort started with the teaching sequence all students completed
the graphical reasoning assessment; this was done for the three cohorts (M1-M3).
Finally, after all cohorts had completed the teaching sequence there was a final
assessment (M4; see also Table 1).
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4.3.1 Instruction conditions

In the instruction condition with indirect embodied support (hereafter: indirect
support condition) the students were provided with graphing activities that were
paper-and-pencil based (including spoken narratives as well as illustrations of a
motion sensor), presented on work sheets or on the digital blackboard. The activities
on the digital blackboard were sometimes visualized dynamically, but mostly
consisted of non-dynamic illustrations of motion situations of non-human moving
objects, such as a toy car travelling a particular distance within a particular period of
time. Although the motion situations referred to source-domain embodied
experiences (e.g., moving your body through space), the graphing activities in the
indirect support condition did not involve students enacting the movements in the
classroom. Therefore, the degree of embodied support in this instruction condition
was low. Similar motion situations and graphing activities were also provided to
students in the instruction condition with direct embodied support (hereafter: direct
support condition), but instead of only providing the context as an illustrated
narrative, students were explicitly prompted to physically enact the situations, using
a motion sensor technology. The motion sensor registered enaction and provided
students with a direct linkage between their movements and the representation of
their movements as a line in the distance-time graph presented on the screen of a
computer or the digital blackboard. Therefore, the degree of embodied support in this
instruction condition was high. In Figure 1, the difference between both instruction
conditions is further explained by giving an example of the lessons’ setup. Shown is
an activity part of Lesson 2, in which distance is measured at discrete time-intervals
(5 seconds).
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With indirect embodied support With direct embodied support
e Motion sensor illustrated on digital e  Motion sensor physically present
blackboard (see white circle) (see white circle)
e  Sensor measures every 5 seconds e  Sensor measures every 5 seconds
Toy car simulates movement in e  Student walks in front of motion
front of motion sensor sensor

e A graph appears in real-time
e A graph appears in real-time

Figure 1. Difference in set-up between the conditions with indirect and with direct embodied
support

4.3.1.1 Motion sensor technology

In the direct support condition, we made use of two ultrasonic €Motion sensors,
together with Coach6 Software (CMA, Heck et al., 2009). The motion sensor was set
to measure the distance between the sensor and the nearest object or person over a
30-second trial, providing a single distance-time graph. The graph was presented on
the digital blackboard (Lesson 2 and 6) or on the screen of laptop computers
(Lesson 3-5). When moving toward the sensor, the distance between the sensor and
the student decreased. When moving from the sensor this distance increased.
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4.4 Measures

4.4.1 General mathematics performance

In order to obtain an indication of students’ overall mathematics performance, data
from the Dutch student monitoring system (CITO LOVS: Janssen et al., 2010),
provided by the schools, were used. In this system, schools record their students’
results on the biannual standardized mathematics tests. We used the scores of the
students on the end-term Grade 4 tests as an indication of their overall mathematics
performance (norm population end-term Grade 4: M =91.9, SD = 10.6, CITO, 2015).

4.4.2 General reasoning

As a measure of students’ general reasoning ability, an abbreviated version of the
Raven Standard Progressive Matrices (Raven SPM: Raven et al., 2000), consisting
of two sets of 9-items, was used (Bilker et al., 2012). Raven’s SPM is a test of general
reasoning ability and fluid intelligence. Each item consists of a set of pictorial
geometric design elements, in black and white. Students are asked to identify the
missing element which completes the specific pattern represented by the set. The test
was administered to all students in their classrooms during class time, following the
instructions in the test’s manual.

4.4.3 Graphical reasoning

Students’ graphical reasoning about distance-time graphs was assessed four times by
a paper-and-pencil test consisting of exactly the same four tasks at each measurement
moment: three graph interpretation tasks and one graph construction task. The four
tasks were part of a larger test that also included nine other problems related to two
other mathematical domains, namely algebra (four tasks) and probability (five tasks).
In this study we only include students’ performance on the tasks related to graphing
motion. Students’ received a correctness score on their answer to each task (correct
= 1, incorrect = 0; minimum score = 0, maximum score = 4). On Task 2 students
could receive partial credit (i.e., resulting in three possible scores for this task “0”,
“0.5”, 1.”). In addition, in order to assess students’ reasoning, all tasks included an
open-ended question, which probed students to make their thinking explicit, by
asking them “how do you know?”” Students were requested to explain their reasoning
in writing and the written responses were coded afterwards for the level of reasoning
displayed (see below).

Table 3 shows two tasks as examples. The tasks were developed in such a way that
students with different levels of understanding, could show different levels of
reasoning in solving them. For example, Task 1 shows a distance-time graph
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representing the movement of a car. The speed of the car — the hidden quantity — can
be visually deduced by inspecting the steepness of slope. Discovering this hidden
quantity can be corroborated with reasoning in which a student explicates that the car
in this particular segment travels the largest distance (e.g., when compared to the
other segments within the graph), or with reasoning in which a student explicates how
the steepness of slope qualitatively represents “distance changing over time” or
quantitatively, by taking into account the numerals on the axes. At these higher levels
of reasoning a student also reasons about the given quantities on the axes in an
(informal) covariational manner.

Task 3 represents the graph construction task, including an empty graph and a
description of a motion situation. The motion situation consists of three separate
parts, in which the train travels at different speeds. Each part of the motion situation
implies different rates of change (“twice as fast between 11 and 12 o’clock™). These
differences should be made visible by the students in the empty graph. In order to
construct a correct graph a student should take into account the relative differences
in speed between the three different segments, by quantifying them. In this task,
applying the principle “steeper slope means faster movement” does not necessarily
result in the correct graph.
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Table 3
Example tasks graph interpretation (left panel) and graph construction (right panel)
Task 1 Task 3
A car drives through town A train ride.
A train travels twice as fast between 10:00
and 11:00 o’clock than between 11:00 and
12:00 o’clock. The train stands still from
12:00 to 13:00 o’clock.
e
—5 % 120
2 g
E * 2 100
B F ~
= 20 £
S E < a0
E 16 D 8
E C § 60
8 2 2
a8 S
s 40
B
4 20
A
Time of travelling (in minutes) 10004 1o 12004 13004
Time
la. Between which points does the car goes 2a. Draw a graph that fits the description
fastest? above.
1b. How do you know? 2b. How do you know?
Correct answer for this task: Correct answer for this task:
B-C .
3
5
g e
® + i 1.
Score: correct (1), incorrect (0) Rl mowe game s

Tid

Score: correct (1), incorrect (0)

4.4.3.1 Coding scheme for students’ level of reasoning

To evaluate students’ explanations of how they arrived at a particular solution of the
three graph interpretation tasks and the graph construction task, a coding scheme was
developed based on an open exploratory analysis of students’ explanations. At first,
the work of a few students was examined. All research team members first
individually categorized these students’ responses. Later these classifications were
compared, discussed, and revised until agreement was obtained. Finally, this resulted
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in one coding scheme, applicable to reasoning on both graph interpretation and graph
construction tasks, consisting of four categories with increasing sophistication in
level of reasoning: unrelated reasoning (RO0), iconic reasoning (R1), single variable
reasoning (R2) and multiple variable reasoning (R3).

For the graph interpretation tasks, students’ written explanations were coded. For the
graph construction tasks we took another approach. The students in our sample
showed a richness of graphical solutions, yet the majority of the students explained
these solutions by simply restating the description of the motion situation as their
answer. We assumed students’ graphical solutions to be a direct indication of their
levels of reasoning outlined above. Therefore, for the graph construction task, we
coded students’ reasoning as a function of students’ ability to correctly take into
account the variables on the graph’s axes. We distinguished between students who
constructed: an illogical graph without taking into account the description of the
motion situation (Level RO), a graph based on superficial characteristics of the motion
event (Level R1), a graph taking into account a single variable correctly (Level R2),
and a graph taking into account multiple variables correctly (Level R3). This highest
level of reasoning included, yet was not restricted to, responses that showed a
student’s informal covariational reasoning.

The coding of the graph interpretation and graph construction tasks resulted in four
reasoning scores per measurement moment. In Table 4, the four codes can be found
including a description and examples of student’s reasoning per category.
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Table 4
Coding scheme used for students’ level of reasoning on the graph interpretation and graph
construction tasks

Description of students’ reasoning

Graph interpretation Graph construction
Level of reasoning  Code Example Example
Student reasons... Student constructs graph...
Unrelated reasoning RO ...without referring to the ...without taking the description

graphical representation or the  of the motion event into account
motion event
“You can see” 1.
“I guessed” | :

Iconic reasoning R1 ...on the basis of the shape of ...on the basis of superficial
the graphical representation or  characteristics of the description
superficial characteristics of the of the motion event
motion event
“Because those two points
are the highest”
“Over there the line is the

longest” —
Single variable R2 ...on the basis of a single ...taking into consideration a
reasoning variable (distance or time single variable (distance or time
or speed) or speed)
“Between B and C, the line

goes upwards from 4 till 12, E
so he gives a lot of gas” I
“There he drives 8

kilometers and everywhere

else this is 4 or less” R
Multiple variable ~ R3 ...on the basis of multiple ...taking into consideration
reasoning variables (distance and/or time  multiple variables (distance
and/or speed) and/or time and/or speed)

“The car drives 8
kilometers in 5 minutes.

So, in the shortest period of
time, the most kilometers.”

..\w-.....m_.
v s e B E

Note. The complete coding scheme, including examples of student responses per task, can be found in
Appendix 4.1 (graph interpretation) and Appendix 4.2 (graph construction).

125

I-h



Chapter 4

An independent second rater coded the four tasks on the four measurements of a
subsample of 21 students (336 responses, approximately 10% of all responses). Inter-
rater reliability was high with an overall inter-rater reliability of Cohen’s
Kappa =.92.

4.5 Data analysis
4.5.1 General mathematics performance

We provide sample means and standard deviations for students’ general mathematics
performance and general reasoning. One-way analyses of variance (ANOV As) were
conducted in order to compare the baseline and the two instruction conditions for
differences on general mathematics performance and general reasoning prior to the
intervention. A Pearson chi-square test was conducted to test for unintended
differences in students’ level of reasoning on M1, so before any lessons. Further, we
used frequencies of students’ level of reasoning (RO, R1, R2, R3) on the graphical
reasoning test to calculate the proportion of students using a particular level of
reasoning for the baseline condition, and both instruction conditions.

4.5.2 Modelling change in underlying ability

To model students’ development in graphical reasoning we adopted an approach in
which we combined multi-group Latent variable Growth curve Modelling (LGM),
suitable to study longitudinal trends, with assumptions from Item Response Theory
(IRT), suitable for categorical data. LGM is a versatile approach for modelling
systematic intra- and interindividual differences in change over time and offers many
advantages for the modelling of longitudinal data compared to more traditional
statistical methods (Willet & Bub, 2005). In our study, we assumed that a student’s
graphical reasoning would change over the four measurement occasions. We
expected a slight increase in reasoning level due to growing familiarization with the
tasks and maturation, and a larger increase due to the teaching sequence on graphing
motion. The IRT assumption is that graphical reasoning ability itself cannot be
directly observed: it is a hypothetical latent ability that underlies the observed
reasoning levels in the students’ written answers; scored as unrelated reasoning (R0),
iconic reasoning (R1), single variable reasoning (R2) and multiple variable reasoning
(R3). Thus, the four reasoning levels can be mapped onto the underlying latent
graphical reasoning ability. According to IRT, the reasoning levels shown by students
on particular tasks are a function of students’ unobserved (latent) reasoning abilities
and the difficulty of the different levels of reasoning on these tasks. Students’ abilities
and the tasks’ difficulties are placed on the same scale, allowing to express students’
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reasoning abilities as the probability of showing particular levels of reasoning on
these tasks and to express the difficulties of the tasks as the proportions of students
showing particular levels of reasoning on these tasks. LGM with IRT yields estimates
of students’ growth in reasoning ability expressed as the increased probability of
showing higher levels of reasoning on a particular set of tasks. We estimated students’
individual growth trajectories based on four partial individual effects. Students may
show individual differences in their reasoning on the pre-measurement (intercept
effect) and in the rate of change over time (slope effect) for the subsequent three
measurements. In addition to the intercept and the slope effect, we included an
intervention effect and a weakening effect. With the intervention effect we model
students’ change in ability after partaking in the teaching sequence. For example, an
intervention between M1 and M2, might lead to a change in students’ graphical
reasoning ability between the measurements on M1 and M2, and may extend to a
change between M3 and M4. The weakening effect takes into account the possibility
that the intervention effect might fade-out over time. Two control variables (general
mathematics performance and general reasoning) were included as predictors in the
LGM analyses to control for individual differences in general mathematical ability
and general reasoning ability. Finally, to answer the main question of the current
study, condition was added as a predictor into the model since we assumed that the
intervention effect might depend on the specific condition students are in (indirect or
direct embodied support). Hence, by adding condition as a predictor we could
investigate whether the instruction condition impacted changes in students’ reasoning
ability over time, thus answering the question whether students in different
instruction conditions differ in growth trajectories. In a stepwise procedure we first
estimated an unconditional model that served as our baseline model only including
the intercept effect and the slope effect. In the next step we added the intervention
effect and the weakening effect. We then added the two general measures (general
mathematics performance and general reasoning) as predictors of the intercept and
the slope effect. Both predictor variables were grand mean centered. In the final step,
we added condition as a predictor of the intervention effect. The multi-group latent
growth curve model, with time varying effects added, was estimated using Mplus
(Version 8; Muthén & Muthén, 2012-2017). A logit link was used to map the
likelihood of using a certain level of reasoning (Level RO, R1, R2, or R3) onto
students’ latent graphical reasoning ability. The logit link implies that we had to use
robust Maximum Likelihood Estimation (MLR). As a consequence, because MLR
provides no chi-square goodness of fit index, we used the Aikake Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) as relative overall fit
measures. We report the change in AIC (A4/C) and BIC (ABIC) for each comparison
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between models. Both fit indices take into account sample size and the number of
parameters. We followed the commonly applied rule that lowest AIC and BIC
represent the best model fit. Further, we provide parameter estimates and significance
values of the separate effects and the predictors.

4.5.3 Missing data

Of the 218 students in this study, 213 had complete data on general mathematics
performance, and 217 had complete data on general reasoning. For the students with
missing data on these measures, values were imputed based on class averages. Four
students in the conditions with direct or indirect embodied support missed either M2
or M3, while the subsequent measure was present. To avoid having missing post-
measurements, we decided to substitute the missing measurement point with the
subsequent one. For example, a student in Cohort 1, receiving the intervention
between M1 and M2, missed M2. For this student we treated M3 as if it were M2 and
M4 as if it were M3.

5. Results
5.1 Preliminary analyses and descriptive statistics

There were no significant differences on students’ general mathematics performance
(F(2,210)= 0.77, p = .465, partial > = .007), general reasoning (F(2, 214) =0.29,
p =.752, partial #> = .003), and level of graphical reasoning on M1 (y*(6) = 10.88,
p = .092) between the baseline condition and the two instruction conditions. Table 5
presents per condition, for each cohort, the means and standard deviations of general
mathematics performance and general reasoning, as well as the correctness scores on
the graphical reasoning test for all four measurement moments. Although they did
not have an intervention on graphing motion, students in the baseline condition did
seem to improve in their correctness scores over the school year (+ 0.70), as did
students in the indirect (+1.03) and direct support condition (+ 1.08).
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The development of students’ level of reasoning on the graphical reasoning test for
all four tasks together is shown in Figure 2 for the baseline condition. The proportions
of level of reasoning are shown for each measurement occasion. There was some
decline of R1 reasoning over time, but a slight increase of R3 reasoning. Overall, the
proportions of level of reasoning (R0-R3) in the baseline condition stayed rather
stable over time.

Baseline condition

1.0
0.9 RO
S g R1
S o
‘a ——R2
3 07
S —e—R3
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o
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0.1
0.0
1 2 3 4

Virtual Measurement Occasion

Figure 2. Proportions of level of reasoning (RO, R1, R2, R3) for each measurement occasion
for the Baseline condition

In Figure 3, the development of students’ reasoning is shown for the indirect support
condition (left panel) and the direct support condition (right panel). In this figure
measurement occasions are aligned between cohorts, such that the intervention is set
to start and end at the same virtual time points for all cohorts. This alignment was
necessary in order to be able to visually compare the development of students in the
different cohorts, since students in the different cohorts participated in the teaching
sequence in different time periods. Students in Cohort 1 participated in the teaching
sequence during the first time-period (October — November), directly after the first
measurement occasion; students in Cohort 2 received the teaching sequence during
the second time-period (January — February), performing two measurements before
the teaching sequence; and students in Cohort 3 participated in the third time-period
(April — May), performing three measurements before the teaching sequence. When
aligned in Figure 3, students in Cohort 1 are shown as having participated in virtual
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measurements 3 to 6, students in Cohort 2 in virtual measurements 2 to 5, and
students in Cohort 3 in measurements 1 to 4. This allows for a direct comparison of
the improvement of students in all cohorts following their participation in the
teaching sequence by inspecting the change between virtual measurement occasions
3 and 4.

After partaking in the teaching sequence more students in both the direct and indirect
support condition showed reasoning on the basis of a single variable (R2) as well as
reasoning on the basis of multiple variables (R3). Additionally, students in the direct
support condition exhibited a larger gain in the frequency of R2 and R3 reasoning
(R2: + 21% points and R3: + 15% points) than students in the indirect support
condition (R2: + 7% points and R3: + 6% points).
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5.2 Effects of embodied support on students’ graphical reasoning ability

To investigate the general effectiveness of both instruction conditions in terms of
immediate (post-test) and middle-long-term (follow-up) effects, latent growth curve
analysis was used to model intra-individual change in graphical reasoning over the
four measurement points, corrected for general mathematics ability and general
reasoning. First, an unconditional growth model, including the intercept effect and
the slope, but no other effects was estimated. The fit of this model (AIC = 7970.16;
BIC = 8031.08) serves as our baseline. Adding the intervention effect and the
weakening effect to the model resulted in an improvement in the overall relative
model fit (A4IC = 83.69; ABIC = 73.54). In addition to the overall fit measures also
structural parameters of the model are of interest (Wald tests). The effect of the
intervention on students’ reasoning was significant (1.10, p <.001). There was also
a significant weakening effect on the delayed measures after the intervention (-0.47,
p <.001). The addition of general mathematics performance and general reasoning
as predictors of the intercept further improved our model (A4IC = 86.21;
ABIC =79.44). Both predictors are significant predictors of the intercept effect
(general mathematics performance: 0.52, p < .001, general reasoning: 0.23,
p =.001).To investigate the effect of embodied support on students’ reasoning about
motion graphs on the immediate and delayed post-test, instruction condition was
added as a predictor of the intervention effect. In this way we modelled the
relationship between students’ changes in graphical reasoning over the four
measurement points and the specific condition they are in. After adding the condition
effect to our model, we found an improvement in model fit (A4IC =7.64;
ABIC = 4.25). Condition turned out to be a significant predictor of the intervention
effect (p = .001), explaining 25% of the variance of the intervention effect. Thus,
students receiving direct embodied support during the teaching sequence displayed
higher levels of reasoning after the intervention than students that received indirect
embodied support.

In order to gauge the effect of instruction condition, it is helpful to visualize the
results. Figure 4 shows these effects for the baseline (left) and the three cohorts
separately. The lines in the graphs show the visualization of the additive relationship
between the intercept effect, the slope effect, the intervention effect, and the
weakening effect, for students in the direct support condition (top line) and students
in the indirect support condition (bottom line).
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Table 6 presents the fit indices and parameter estimates of our final model including
all four partial effects (i.e., intercept, slope, intervention, weakening), as well as the
three predictors (general mathematics performance, general reasoning, condition).

Table 6

Fit indices and parameter estimates of the final LGM model including all partial effects,
control measures, and the effect of condition

Model AIC/BIC df Model parameter Estimate p-value
(two-tailed)

Intercept, Slope, 7792.624/ 193  Intercept (mean) 0.0 fixed

Intervention effect, 7873.852 Slope (mean) 0.128 .003

Weakening effect Intervention (mean)  1.125 <.001

+ Condition as Weaken (mean) -0.443 <.001

predictor of the General 0.044 <.001

intervention effect mathematics

+ General performance

mathematics (mean)

performance General reasoning 0.088 .001

+ Non-verbal (mean)

reasoning Condition 0.309! .001
(regression /)

Note. 'Condition was coded as 1 Direct support condition and -1 Indirect support instruction
condition

5.3 Reaching higher levels of reasoning: Examples of two growth trajectories

In order to explicate what the above quantitative analysis implies in relation to the
activities that were conducted in the classroom, and the reasoning of the students on
the tasks used to assess their levels of reasoning, in this final section we provide the
growth trajectories of two students over the schoolyear (see Table 7). We focus on
Task 1. The trajectories given below are not representative for the entire sample of
students, they serve as an illustration. Both trajectories show growth in reasoning
ability as a result of the intervention and some post-intervention fading of this effect.
Following the findings of the quantitative analysis, indicating that the direct support
condition was more effective on students’ growth in graphical reasoning, we restrict
ourselves to the instruction condition offering direct embodied support.

135

I-h



Chapter 4

Table 7
Growth trajectories of Elliot and Levi showing their reasoning on the four measurement
moments
Name M1 M2 M3 M4
Elliot [CD-EF] [B and C] [BC] [BC]
“I think so, “because in 5 “Because “I looked and
because these are  minutes they between these then I have
small pieces” travel 12 points you have written down the
kilometers” the most answer”
kilometers in a
short time
period”
Levi [B-C] [b and c] [btoc] [BC]
“It is the longest”  “I looked at “I looked at “Nowhere it goes

where the lines in
the graph were
going up the
highest”

which one was
the longest and
the time”

as fast in the
graph. He travels
in 5 minutes, 8
kilometers, he
never does this at
another moment
in the graph”

5.3.1 Trajectory 1 — Cohort 1: Elliot

On the measurement before the intervention (M1), Elliot based his answer on some
superficial characteristics of the graph, resulting in Level R1. The answer of Elliot is
“C-D and E-F”, which is an incorrect answer. Elliot corroborates his answer with:
“Because these are the shortest pieces”. With shortest pieces this student refers to the
line segments in the graph. On the measurement directly after the intervention (M2)
the reasoning of Elliot has changed. He now uses the variables distance and time in
an informal covariational manner: “because in 5 minutes they travel 12 kilometers”,
using both quantities represented on the axes of the graph in his reasoning. On the
third measurement moment (M3), Elliot still reasons according to the highest level
(R3), still showing reasoning in an informal covariational manner, yet without
explicitly mentioning the numerals. Instead he qualitatively refers to the given
quantities “most kilometers” and “little time”. On the final measurement (M4), Elliot
does not show reasoning that is related to the graphical representation anymore.
Instead his reasoning is merely procedural, resulting in Level R0O. The growth
trajectory of Elliot illustrates how a student can show an increase in level of reasoning
from pre- to post intervention and a weakening effect on one of the delayed measures,
as was found in the quantitative analysis described above.
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5.3.2 Trajectory 2 — Cohort 3: Levi

On the first measurement moment, Levi shows reasoning according to Level R1, see
Table 7. He, like Elliot, focuses on a particular line segment being “the longest”.
Although his answer is correct: “BC”, the reasoning associated with his answer can
be considered superficial. On the second and third measurement moment, without
having had an intervention, Levi shows reasoning according to Level R2. For
example, on measurement moment 2 he states: “I looked at which one was the longest
and the time”. Although the first part of this answer is similar to his answer given on
measurement moment 1, this time he corroborates his answer with explicitly
mentioning the variable time, indicating that he incorporated the quantity time given
on the y-axis of the graph. Finally, on the fourth measurement moment, directly after
having had the intervention, he shows reasoning according to Level R3: “Nowhere it
goes as fast in the graph, he travels in 5 minutes, 8 kilometers, he never does this at
another moment in the graph.” The growth trajectory of Levi shows how Levi
throughout the schoolyear shows growth, regardless of having had an intervention.
Yet, his reasoning after the intervention clearly is more elaborate.

6. Discussion

In this study, we examined whether a six-lesson teaching sequence on motion graphs
raised students graphical reasoning. We defined graphical reasoning as a mixture of
qualitative and quantitative reasoning about a single variable or about multiple
variables, as opposed to reasoning in an iconic or pictorial way. We took students’
written responses to the open-ended graph interpretation and graph construction tasks
as reflecting their reasoning and coded this reasoning on four levels of increasing
complexity and appropriateness. In line with previous research, the present study
investigated the added benefit of direct bodily experiences, compared to indirect
bodily experiences in the teaching sequence. We thus asked: To what extent does
embodied support in a six-lesson teaching sequence on graphing motion affect the
development of students’ graphical reasoning? The teaching sequence focused on
problem situations involving motion, situated in a real-world context that was
presented on worksheets and modelled on the digital blackboard in the instruction
condition offering indirect embodied support and was presented on paper and
physically enacted in the instruction condition offering direct embodied support. In
our method and analyses, we took into account both short-term and middle-long-term
effects of the intervention.

We modelled individual changes in graphical reasoning ability using latent growth
modelling. We found that students’ graphical reasoning improved after taking part in
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the teaching sequence on motion graphs. Students more often used reasoning taking
into account a single variable (Level R2) or taking into account multiple variables
(Level R3). We also found that students taking part in the direct embodied support
condition benefited more from the intervention than students in the indirect embodied
support condition. Students receiving direct embodied support showed more often
higher levels of graphical reasoning (Level R2 and Level R3) after partaking in the
teaching sequence than students receiving indirect embodied support. This shows that
an embodied learning environment incorporating immediate whole-bodily motion
activities is more helpful in stimulating students’ reasoning about graphs than when
students do not perform immediate whole-bodily motion activities, and instead
receive an illustrated model of this motion sensor context on worksheets and the
digital blackboard. This finding underscores previous research within this specific
mathematics domain (e.g., Deniz & Dulger, 2012), and other mathematics domains
(e.g., Fisher et al., 2011). For a review on this topic, see Duijzer, Van den Heuvel-
Panhuizen, Veldhuis, Doorman and Leseman (2019). The difference in terms of
estimated abilities, between the two conditions, was about one standard deviation.
The proportion explained variance, however, was small (> = .25). This can be
explained by the fact that students in the indirect support condition, were also
confronted with activities that capitalize on bodily-based experiences. For example,
the object of the toy car used in the indirect support instruction condition, to some
extent, might have caused neural activity in the human brain similar to the neural
activity induced when viewing another person’s action or performing an action (see
also Beauchamp & Martin, 2007; Chao & Martin, 2000; Chouinard & Goodale,
2010). Additionally, the graphing of motion itself capitalizes on experienced motion,
whereby these experiences with real motion can act as metaphorical mappings
between source-domain experiences (such as real movements through space) and the
graphical representation, even in the absence of direct physical experiences (e.g.,
Barsalou, 1999; see also Castillo-Garsow et al., 2013).

In previous research it has been established that when students partake in graphing
activities, using for example a motion sensor and desktop laptop, several graph
reading errors, such as iconic and pictorial interpretations of graphs can be overcome
(e.g., Brasell, 1987; Deniz & Dulger, 2012; Duijzer, Van den Heuvel-Panhuizen,
Veldhuis & Doorman, 2019, see Chapter 3 of this thesis; Mokros & Tinker, 1987).
These findings were mostly based on tests consisting of multiple-choice questions.
In our study, we added complexity and depth to the analyses by taking into account
students’ written explanations as indications of their level of reasoning and changes
therein over a prolonged period of time. We illustrated these changes by

138



Students interpret and construct motion graphs

incorporating two qualitative examples presenting the growth trajectories of two
students. At the highest level of reasoning (Level R3) these students reasoned about
the variables distance and time in an informal covariational manner. Additionally,
these qualitative examples showed the added value of including students’ written
explanations in the statistical analysis. For example, Levi gave the correct answer on
each of the four measurement moments, yet his written explanations show a clear
increase in the level of understanding over time. At the first measurement, he
incorporates a superficial characteristic of the graph in his reasoning, while at the
final measurement (M4) his reasoning changed to reasoning in which he took into
account both variables. Thus, including students’ written explanations gave us more
information regarding their understanding than when we would have only looked at
students’ correctness scores. This approach is in line with Lai et al. (2016), who show
the importance of incorporating a direct measure of reasoning by giving students the
opportunity to elaborate on their answers in achievement tests. In this sense, we
demonstrated that students’ reasoning taking into account iconic or pictorial aspects
of the graphs (Level R1), was often replaced by reasoning in which they took into
account one or more of the relevant variables (Level R2 and Level R3), regardless of
the correctness of their answer.

6.1 The value of direct versus indirect embodied support

The motion sensor context used in our study is just one example of digital technology
that has been utilized over the past couple of decades to support learning in
mathematics and science classrooms. The digital element of the motion sensor entails
the real-time translation of movement into a digitalized graphical representation of
that movement. The context of the motion sensor was used extensively in the teaching
sequence offering direct embodied support. In the instruction condition offering
indirect embodied support, the students did not have the opportunity to benefit from
a motion sensor in the physical way. They were offered this context on paper and on
the digital blackboard. Thus, on the basis of our comparison between instruction
conditions, we cannot determine exactly which specific elements of the teaching
sequence were most helpful in facilitating students graphical reasoning. Both
instruction conditions involved sense making activities that were perceptually
experienced (Barsalou, 1999; see also Goldman, 2012).

Further, we operationalized direct embodied support as making whole bodily
movements in front of the motion sensor. Yet, due to the nature of the motion sensor
context, the whole bodily motion activities in front of the sensor to some extent has
more advantages than the physical experience of motion alone. It includes physical
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movement as well as immediate feedback provided by the tool. Even though this
immediate feedback was sometimes also provided to the students in the teaching
sequence with indirect embodied support, the combination of physical experiences
with real-time feedback in one instruction condition makes it difficult to disentangle
their respective unique effects. Future research could address this by creating a
condition in which students for example do not receive immediate real-time feedback,
but delayed feedback (see also Brasell, 1987), to isolate the effects of the real-time
feedback provided by the tool. Another possibility is to isolate the unique
contribution of own bodily motion experiences. For example, by letting students
work with a dynamic model of the activities’ set-up. An example of such a learning
environment is presented in the study of Salinas et al. (2016), who gave students the
opportunity to control an animated avatar in a computer software program. The
movement of the avatar is presented alongside the corresponding graph. The students
could influence or control the motion of the avatar, but could not move their selves,
eliminating the possibility of direct physical experiences.

6.2 Limitations, strengths, and future research

This study has some limitations that we have to mention here. First, even though
students’ reasoning on the test items provided us with a window into their thinking
processes, we cannot be sure that we captured the full breadth of students’
understanding, when only looking at their written responses to the tasks. It might be
worthwhile to include more extended measures such as think-aloud protocols when
solving the tasks. A second, related limitation, is that we included only four tasks to
measure students’ development in reasoning about motion graphs. Even though using
few tasks is a considerable advantage when thinking about the mental effort imposed
on the students, future research might consider using more tasks, specifically more
graph construction tasks. A third, and final, limitation worth mentioning is that even
though we have investigated the teaching sequence in a realistic classroom setting,
which enhanced the ecological validity of our study and the applicability of the
approach in education, a drawback of this approach is that some of the teaching time
was consumed by the procedural aspects of setting up the equipment. Also, the use
of motion sensor technology in the classroom might have had a distracting effect as
well. Since not all students are walking at the same time in front of the sensor some
students sometimes were disengaged, either by the other small group working with
the sensor, or by talking with their peers (see also Anderson & Wall, 2016). A
suggestion for future research is to let students work in even smaller groups (e.g.,
three or four students) on the tasks.
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This study also has several strengths. First, an important difference between previous
research on graph understanding in the primary grades and the current study is that
we looked at the development of students’ graphical reasoning over a year. We
included multiple measurements to look at students’ longitudinal development and to
take into account fade-out effects of the intervention. We indeed found a fade out
effect for the intervention. Second, from a statistical point of view, this study is
innovative in the sense that the used latent growth curve model incorporated
categorical responses to the tasks, which allowed us to model gradual changes in
levels of reasoning (Boom & Ter Laak, 2007). Third, our cohort-sequential research
design enabled us to “re-use” student groups per instruction condition, whereby the
groups served as their own control group, depending on the specific cohort. This
resulted in the need of fewer participants overall, which is an advantage from both a
practical and ethical point of view. Fourth, we incorporated a baseline condition that
helped us to more accurately estimate the intercept effect and the slope effect, thus
increasing this study’s statistical power. As a fifth strength we would like to mention
the contribution of our study to the existing literature, by presenting a way of
incorporating whole bodily movements in whole-classroom lesson activities.

6.3 Conclusions and implications for education

The aim of this study was to incorporate (physical) experiences during graphing
activities as embodied support in mathematics lessons in order to positively
contribute to fifth-grade students’ understanding of distance-time graphs. This study
showed that the used activities resulted in higher levels of graphical reasoning, thus
demonstrating the usefulness of incorporating graphing activities in the primary
school mathematics classroom. Additionally, this study showed the added value of
physical activities, as whole bodily movements in front of the motion sensor, on
students’ graphical reasoning. The current study adds to a growing body of evidence
that physical experiences are indeed helpful for mathematics learning in general and
graphical understanding in particular. Yet, what exactly caused this growth is
something further research could explore.

Even though on the basis of this study we cannot make strong statements, we do think
our study has some implications for graphing motion in primary school mathematics
classrooms. First, through carefully designed lesson activities involving problem
situations situated in a real-world context, capitalizing on students’ intuitive
understandings of representing motion, students’ graphical reasoning can be
improved. Second, our study shows that it is possible to implement embodied
activities, that are activities enriched with immediate whole-bodily motion
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experiences, in an authentic classroom setting (see also Deniz & Dulger, 2012),
which adds to research investigating practical applications of embodied cognition
approaches for education and learning. In this respect, our study confirms findings
from previous research into embodied mathematics learning showing the feasibility
of incorporating these type of physical bodily-based activities in whole classrooms.
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Chapter 5

Fifth grade students’ reasoning on graphs of motion and
linear equations

Abstract

Although the domains of graphing and algebra involve similar aspects of domain-
specific mathematical higher-order thinking (HOT), including reasoning about
covariation, research investigating the conceptual overlap between elementary
understanding of graphing and algebra is scarce. In this study, we investigated the
effects of a six-lesson teaching sequence about graphing motion on students’
graphical reasoning and students’ algebraic reasoning. We assessed 138 fifth-grade
students’ development in reasoning on four graphing motion tasks (graph
interpretation and construction) and four linear equation solving tasks, four times
over one school year. Both mathematical domains draw on the application of
covariational thinking, which in both task-groups was operationalized as the HOT
skills extracting, using and combining sources of information about mathematical
relationships. Results from our analyses using latent growth curve modelling showed
that the lessons on graphing led to a significant improvement in students’ graphical
reasoning, as well as an — albeit smaller — significant improvement on students’
algebraic reasoning. There was also a strong correlation between initial level of
reasoning on both domains, yet no correlation between development on both domains
was found. This implies that the intervention on graphing motion did affect students’
algebraic reasoning, but that this relationship was not related to individual
improvements in both mathematics domains.

Keywords: Motion graphs, Linear equations, Domain-specific mathematical
higher-order thinking
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1. Introduction

Ollie and Eve are going to school. Eve leaves home a little earlier than Ollie.
Halfway she waits for Ollie to catch up. They continue their journey together and
arrive at the same time.'

In order to draw an accurate distance-time graph of the situation above, a 10-year old
student should understand the relationship between time and distance and how this
relationship can be represented graphically to represent the movements of Eve and
Ollie. This task is far from easy. When constructing a line-graph, students should be
able to visualize a relationship between two changing variables with the graph’s axes
as a reference. This implies a deep understanding of how combining these two
variables can be represented as a line in the graphical representation. Constructing
graphical representations, reasoning about graphically represented change (e.g.,
motion), making connections between variables on the two axes, and being able to
critically reflect on the information presented in these (or similar) graphs, among
others, can be regarded for 10-year old students as domain-specific mathematical
higher-order thinking (HOT) (e.g., Boote, 2014; Kramarski & Mevarech, 2004). We
consider these activities as requiring HOT for these students, due to their non-
algorithmic nature and their deviation from routine procedures (e.g., Murray, 2014).

HOT in interpreting and constructing graphical representations involves reasoning
about complex mathematical concepts. An important example of such a concept is
covariation (Fitzallen, 2012; Leinhardt et al, 1990). Within a graph, covariation is
depicted as the relationship between two sets of measurements that vary along
numerical scales, with each data point referring to a particular value of two variables
at the same time (Fitzallen, 2012; Hattikudur et al., 2012). According to Saldanha
and Thompson (1998), for young children, covariational reasoning entails the mental
activity of coordinating the values of two quantities, while thinking about each
quantity in turn (e.g., first time, then distance, then time, and so on). This
covariational reasoning is important for students in order to make a connection
between the two variables represented on the axes of a graph. The notion of covarying
quantities is also important in other mathematical domains, like functions and
algebra, when students have to think about how changes in values of one variable are
related to changes in another variable. This is considered a prerequisite for the
development of functional thinking (Panorkou & Maloney, 2016).

! Adapted example from Lesson 6 of the teaching sequence used in the current study.
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Covariational reasoning, on the one hand can be seen as domain-specific: used within
graphs (e.g., using shapes of graphs to describe change) or within algebra (e.g., using
the structure of equations to identify the similarity of a + 2b =3 and 2a + 4b =6). On
the other hand, it calls upon processes that are similar across mathematics domains,
such as covariational reasoning in terms of extracting, using, and combining sources
of information about mathematical relationships (e.g., simultaneously coordinating
the values of two quantities) within both graphs and algebra. HOT is considered to
be of increasing importance in our knowledge intensive society (Forster, 2014;
OECD, 2019). There is general consensus that laying a strong foundation for these
HOT skills should start in primary school (e.g., NCTM, 2000) and that this also
applies to the introduction of graphs (Friel, et al., 2001) and early algebra (Kaput,
2008). Yet, opportunities within primary school mathematics education to raise the
level of students’ mathematical thinking, have been found to be rather scarce. For
example, in Dutch mathematics textbooks, opportunities for students to show and
develop HOT are virtually absent (Kolovou et al., 2009; Van Zanten & Van den
Heuvel-Panhuizen, 2018).

In this study, we investigated opportunities the domain of motion graphs offers for
promoting transfer of HOT to the domain of linear equations. We analyzed the effect
of a teaching sequence on graphing motion, including activities targeting students’
domain-specific HOT (e.g., making connections between a motion event and its
representation in the graph, reasoning about changing quantities), while also
touching upon more general components of mathematical HOT (e.g., extracting,
using, and combining sources of information about mathematical relationships), on
students’ reasoning about graphing motion and solving systems of informal linear
equations (hereafter: linear equation solving) (informal: without formal notation).
The findings of this study will provide further insight into the extent to which
mathematical HOT can be stimulated within and across mathematics domains.

2. Theoretical background
2.1 The nature of higher-order thinking

Within educational science a distinction is often made between higher- and lower-
order cognitive abilities or thinking skills (e.g., Lewis & Smith, 1993). Higher-order
cognitive abilities, such as creativity, reasoning, and concept formation, are based on
— and influenced by — lower-order cognitive abilities, such as attention, perception,
and motor development (Shuxian, 2009). A similar division can be found in Bloom’s
taxonomy (1956), in which the three bottom levels; knowledge, comprehension, and
application, are assumed to serve the transition towards the three upper levels;
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analysis, synthesis, and evaluation. Within educational science the top three levels
are often used to operationalize HOT. According to Levine (1999), HOT “enables
students to grapple with intellectually sophisticated challenges, integrate multiple
ideas and facts, undertake difficult problems, and find effective and creative solutions
to dilemmas whose answers are not immediately obvious” (p. 217). This definition
stresses how HOT is quite different from memorization, factual recall, and the
following of routine or fixed solution procedures. Rather, HOT implies a deep
command of these basic and more advanced skills, while also knowing how to apply
them within new contexts (e.g., Murray, 2014). What can be considered as HOT for
one individual, might be a routine thinking procedure for someone else. Therefore,
the application of HOT in the classroom (and what makes it different from lower-
order thinking activities) also depends on the nature of a task and a person’s
intellectual experience (Alexander et al., 2011; Lewis & Smith, 1993).

Most conceptualizations of HOT reflect the longstanding belief that thinking skills
largely consist of generic components, such as the three top levels of Bloom’s
taxonomy, which can be applied to any academic domain, regardless of disciplinary
knowledge (e.g., Greeno, 1987; Leighton, 2004; Resnick, 1987). Yet, others have
taken a different position. Alexander et al. (2011, p. 54) conceptualize HOT as “the
mental engagement with ideas, objects, and situations in an analogical, elaborative,
inductive, deductive, and otherwise transformational manner that is indicative of an
orientation toward knowing as a complex, effortful, generative, evidence-seeking,
and reflective enterprise” while also “exhibit[ing] distinctive qualities arising from
the nature of the domain within which the task or activity is situated” (emphasis
added, p. 51-53). In order to make specific use of the resources within a domain, one
will always need the incorporation of disciplinary knowledge (Tricot & Sweller,
2014). Per this view, HOT originates from — and is intricately linked to — specific
topics within academic domains (e.g., Alexander et al., 2011; Ericsson, 2003). For
example, within the domain of motion graphs, critically evaluating a graph can be
seen as domain-specific HOT. This is also in line with the framework Teaching for
Robust Understanding (TRU), which suggests that domain-specific learning
environments are needed to support students in “becoming knowledgeable, flexible,
and resourceful disciplinary thinkers” (Schoenfeld, 2016, p. 3).

2.2 Reasoning about motion graphs in the primary school mathematics
classroom

A graph is a visible object yet entails invisible mathematical concepts or relationships
that are to be constructed by the student. When interpreting a motion graph, students
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should be able to extract the relevant pieces or segments from the graph and give an
interpretation of this information in relation to the physical situation the graph
represents (e.g., Friel et al., 2001; Janvier, 1981; Shah & Hoeffner, 2002; Vitale et
al., 2015). For example, the slope in a distance-time graph represents the relationship
between two variables, distance and time, which simultaneously represents another
physical quantity, namely speed. Students can derive speed from the distance-time
relationship as represented in the graph, by qualitatively or quantitatively inspecting
the slope. Moreover, speed is visually present in the steepness of slope: a steeper
slope means faster movement, as more distance is covered (on the vertical axis) in
the related time interval (on the horizontal axis). Slope is an important concept within
graphs in both mathematics and physics (Planinic et al., 2012). Another important
concept is scale. The axes of a graphical representation have a certain scale that can
be adjusted. Through the adjustment of the scale of the axes, the shape of the
represented relationship changes, which offers opportunities to reason about this
relationship as well as about the (qualitative aspects of) slope (Nemirovsky et al.,
2013; Zaslavsky et al., 2002). When reasoning about representing the dynamic
situation of distance changing over time, students are prompted to connect the
represented physical situation (i.e., motion) with visual elements of the graphical
representation (i.e., the slope, rate of change, scaling on the axes). For example,
understanding that adapting the scale of a graph changes the appearance of the graph
but does not alter the information represented in the graph is an important step when
coming to understand and work with graphical representations. It involves flexibility
and sensitivity regarding the visualization of change and relationships as well as the
ability to reason about the relationship between the two variables and their pattern of
covariation (Leinhardt et al., 1990).

2.3 Domain-specific HOT in graphing motion and linear equation solving

Graphing and linear algebra, including graphing motion and linear equation solving,
are often addressed together in mathematics education. This connection can be
explicit, for example writing an equation to represent the relationship between
distance and time in a problem involving motion at constant speed (e.g., Thompson
& Carlson, 2017) or implicit, as in the research of Nemirovsky and Rasmussen
(2005). Nemirovsky and Rasmussen describe a learning arrangement incorporating
kinesthetic activity with a physical tool, called the water wheel, which was supposed
to support students in their understanding of motion graphs. Interestingly, this
specific activity also led to the construction and interpretation of formal algebraic
expressions, while the construction and interpretation of these formal algebraic
expressions was not explicitly taught. They also describe that to date, few studies
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have been conducted investigating the interplay between kinesthetic activities and
equations, or other symbolic expressions. This idea that using kinesthetic activities
as direct perceptual-motor experiences in mathematics learning activities can be
helpful for learning within and across mathematics domains, is informed by theories
of embodied cognition. Theories of embodied cognition posit that all thinking and
learning (including formal abstract mathematics) is grounded in concrete physical
interactions of our body with the surrounding world (Lakoff & Nuiiez, 2000).

Within the domain of motion graphs various mathematics concepts are addressed. A
graphical representation is a formal symbol system, representing a relationship
between two variables, showing a pattern of covariation. Within a distance-time
graph, speed is a hidden quantity which can be deduced by synthesizing the
information represented on the x- and y-axis. When constructing a distance-time
graph, speed can be qualitatively visualized in the steepness of slope, or
quantitatively, by taking into account the values of the variables on the x- and y-axis.
In order to solve a graphing question for which there is no fixed solution procedure
(e.g., questions involving trends or relationships that cannot be directly answered by
extracting information regarding specific points), HOT is required, because
information found in the graph has to be combined and visual comparisons have to
be made within and between graphs. This requires flexibility of students to switch
between representations, descriptions of situations, or between other ways of
representing data, such as tables or equations.

Within the domain of linear equations, equality is an important concept, meaning that
the expressions on both sides of the equal sign represent the same value. During the
process of solving for the unknown this equality of the equation should be
maintained. This makes a correct understanding of equality crucial for solving linear
equations (e.g., Bush & Karp, 2013; Kieran et al., 2016). When solving a system of
linear equations, the information from multiple equations needs to be combined in
order to find the values of the unknowns. For this, students need to reason about the
relationships between these unknowns and their pattern of covariation (i.e., how
changes in the one result in changes in the other). Consider the following example:
Lotte buys one pizza and one soda for €10. The next week, she buys three pizzas and
two sodas for €27. What is the price of one pizza and what is the price of one soda??
To solve this problem, a student needs to reason about the unknown price of a pizza
in relation to the unknown price of a soda. In addition, when combining the

2 Adapted example from one of the algebra tasks used in the current study
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information from both equations, a student has to reason about the relationship
between the value of unknowns in one equation in relation to the relationship between
the value of the unknowns in the other equation. In the example above, the first
equation (i.e., pizza + soda = 10) fits two times in the second equation (i.e., 3 pizzas
+ 2 sodas =27). In order to isolate the price of one pizza, a student for example might
reason about changes in the total price when subtracting one pizza and one soda from
the second equation, or when they replace the pizza and the soda by the price of 10
(on the basis of the first equation).

Within the domains of motion graphs and linear equations, covariation, as the
simultaneous coordination of two quantities’ values, is a core concept. We cannot
automatically assume that this concept is similar across domains, yet we can describe
this essentially domain-specific concept as also involving more general HOT skills
occurring within both mathematical domains. In particular, reasoning about
covariation involves extracting, using, and combining sources of information about
mathematical relationships. For example, students can extract the information found
on the graphs’ axes, take into account their interrelatedness, and combine the given
quantities into something new. Similarly, students can extract the information
provided in equations in a system of equations, take into account their
interrelatedness, and combine this information to find unknown values or
relationships. Given that the concept of covariation is important to both domains, it
would be worthwhile to investigate whether stimulating reasoning about such HOT
within one domain, might potentially result in the development of HOT within the
other domain. Due to similarity in general elements of covariational reasoning across
both domains (i.e., extracting, using, and combining sources of information about
mathematical relationships), achieving application of HOT in the other mathematical
domain, even when this reasoning is not targeted explicitly, seems promising.

Challenging domain-specific mathematics activities could offer a fruitful starting
point to elicit HOT in the domain of motion graphs. To this end, we developed two
parallel versions of a six-lesson teaching sequence on graphing motion, resulting in
two instruction conditions, in which fifth-grade students explored graphs
representing the bivariate relationship of distance changing over time (see also
Duijzer et al., 2020, see Chapter 4 of this thesis). The two instruction conditions
offered either direct or indirect embodied support to the students. In the instruction
condition offering direct embodied support, students were allowed to “walk graphs”
in front of a motion sensor. Students experienced directly, with their own body, how
changes in movement resulted in changes in the graphical representation. In a
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previous study (Duijzer et al., 2019, see Chapter 3 of this thesis), it was shown how
these direct physical experiences during the lessons engendered high levels of
graphical reasoning. In the instruction condition offering indirect embodied support,
students received this motion sensor context on worksheets and the digital
blackboard. Students partaking in the instruction condition offering direct embodied
support improved slightly more than students partaking in the instruction condition
offering indirect embodied support (Duijzer et al., 2020). In the present study, both
instruction conditions are included.

3. The present study

In the present study we investigated transfer of receiving lessons within the domain
of motion graphs towards linear equation solving. The domain-specific mathematical
HOT that was stimulated throughout these lessons might have the potential to transfer
to the domain of linear equations. In parallel, another study was carried out to
investigate the effect of receiving lessons within the domain of linear equations,
towards students’ ability to reason about graphing motion (Otten, Duijzer et al.,
2020). We assume that transfer might take place on the basis of students’ reasoning
about covariation, which in both mathematical domains plays an important role. More
specifically, reasoning needed within both mathematical domains requires the HOT
skills of extracting, using, and combining sources of information about mathematical
relationships. We formulated the following research question: To what extent does a
six-lesson teaching sequence on graphing motion affect students’ graphical and
algebraic reasoning?

We used two series of four tasks to assess primary school students’ improvement of
graphical and algebraic reasoning. On the graphing tasks, students were asked to
reason about problems with two changing variables presented on the horizontal and
the vertical axes of a graph or constructing the relationship between two changing
variables as a graph. On the algebra tasks, students were asked to reason about
problems involving a system of informal linear equations. Solving these
mathematical problems requires handling the underlying covarying relationship
between variables. We hypothesized that after partaking in the teaching sequence on
graphing motion students would show an improvement in their ability to reason about
linear equation solving. The presence or absence of an intervention effect on students’
algebraic reasoning, which was not intentionally taught, would give us more insight
regarding the extent to which domain-specific mathematical HOT can also stimulate
more general components of mathematical HOT as indicated by the presence of HOT
in the other mathematics domain.
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4. Method
4.1 Participants

Participants were 150 fifth-grade students from six classes from six different
elementary schools. From 12 students we did not receive permission to use the
collected data. Our final sample consisted of 138 students (53 female, 38%). The
average age of the students was 10.5 years (SD = 0.4). Schools, teachers, and students
participated on a voluntary basis. All schools were located in the area of the city of
Utrecht, the Netherlands. Data were collected between October 2016 and June 2017.
The Ethical Review Board of the faculty of Social and Behavioural Sciences at
Utrecht University approved of this study.

4.2 Study design and procedure

Participants six-lesson teaching sequence on graphing motion was provided to the
students as part of their regular classroom instruction at different moments during the
school year. We adopted a cohort-sequential design, meaning that Cohort 1 received
the teaching sequence in the first trimester of the school year. Cohort 2 received the
teaching sequence in the second trimester of the school year. And Cohort 3 received
the teaching sequence in the third trimester of the school year. Table 1 gives an
overview of the study design.

Table 1
The cohort-sequential design of the study
Phase
Cohort Oct. — Nov. 2016 Jan. — Feb. 2017 Apr. — May 2017.
1 (n = 45) M1 Teaching sequence ~ \[2 M3 M4
Graphical reasoning
2 (n = 45) M1 M2 Teaching sequence M3 M4

Graphical reasoning

3 (n = 48) M1 M2 M3 Teaching sequence N4

Graphical reasoning

The six-lesson teaching sequence was taught to the students by the first author of this
paper, with the help of a teaching assistant. Each lesson took approximately 50
minutes. The lessons were divided over 6 weeks, one lesson per week. Two weeks
before participating in the teaching sequence, all students completed an abbreviated
version of Raven’s Progressive Matrices (Bilker et al., 2012). One week before the
first cohort of classes participated in the teaching sequence, all students in all cohorts
completed a mathematical HOT test, consisting of four tasks related to graphing
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motion and four tasks related to linear equation solving. After each cohort completed
the teaching sequence there was another assessment, so four times in total (M1-M4).
Students were tested in their own classroom. All students completed the test at the
same time, which took approximately 45 minutes.

4.3 Teaching sequence

The aim of the teaching sequence was to teach students about graphs representing the
bivariate relationship of distance changing over time (i.e., distance-time graphs), and
elicit students’ reasoning about these graphs. An overview of the teaching sequence,
including the topic and key activities per lesson, is given in Table 2 (see also Duijzer
etal., 2019; Duijzer et al., 2020). Students’ reasoning about graphical representations
was stimulated by asking them to explain, hypothesize, evaluate, compare, and
discuss their ideas with other students in small groups.

4 .4 Instruction condition

Two parallel versions of the teaching sequence were developed, resulting in two
instruction conditions. In the instruction condition offering direct embodied support,
physical experiences with graphing motion, using motion sensor technology, were a
major part of the lesson activities. In the instruction condition offering indirect
embodied support, the students were given the motion sensor context with graphing
activities that were paper-and-pencil based or presented on the digital blackboard.
The graphing motion activities on the digital blackboard were mostly non-dynamic
and contained motion situations dealing with non-human moving objects, such as a
toy car travelling a particular distance within a particular period of time. Similar
situations were also provided to students in the instruction condition offering direct
embodied support, but instead of only providing students illustrated versions of these
situations, students were explicitly prompted to physically enact the situations, in
front of the motion sensor. The movements performed by the students in front of the
motion sensor directly corresponded with the real-time representation of those
movements as a line in the graph. Both instruction conditions draw on the source-
domain bodily experiences of moving through space. Previous research showed that
both conditions were effective in stimulating students’ graphical reasoning (Duijzer
et al., 2020).

159

Ic.n



Chapter 5

Tabel 2

Overview of the six-lesson teaching sequence on graphing motion

Lesson title

Main topic
Activities

1. Motion: reflecting and representing

2. From discrete to continuous graphs

3. Continuous graphs of “distance to” (1)

4. Continuous graphs of “distance to” (2)

5. Scaling on the graphs’ axes

6. Multiple movements and their
graphical representations

Informal graphical representations
Reason with variables and construct representations
of a real-world situation

Measuring distance

Measure distance in discrete intervals and
continuously, and reason about differences between
discrete and continuous graphs

Reason with continuous graphs

Coupling specific movements to their representation
as a line in the graph

Coupling a concrete situation to a graphical
representation

Reason with continuous graphs

Coupling specific movements to their representation
as a line in the graph

Investigating how speed is represented in the
steepness of slope

Reason about the relationship between two variables
through scaling
Construct graphs with different scales on the axes

Generate, refine, and reason about simultaneous
movements and their representation as a graph
Critically evaluate points of intersection and their
meaning

4.5 Measures

4.5.1 General mathematics performance

To obtain a measure of students’ general mathematics performance we used test
performance data from the Dutch student monitoring system (CITO LOVS: Janssen
et al., 2010). This information was provided by the schools. Schools use this (or a
similar) system to monitor students’ performance on the biannual standardized

160



Fifth grade students' reasoning on graphs of motion and linear equations

mathematics tests. We collected students’ results from the end-term Grade 4 test
(norm population end-term Grade 4: M =91.9, SD =10.6, CITO, 2015).

4.5.2 General reasoning

In order to obtain a measure of students’ general reasoning we administered an
abbreviated version of the Raven Standard Progressive Matrices (Raven SPM: Raven
et al., 2000), consisting of two sets of 9-items (Bilker et al., 2012). Raven’s SPM is
a test of non-verbal reasoning ability and fluid intelligence. We administered the test
to all students in one session in their classroom, following the test manual’s
instructions.

4.5.3 Mathematical HOT

Mathematical HOT was measured by collecting students’ responses on four graphing
tasks and four algebra tasks. For all tasks, students were invited to elaborate on their
answer by answering the question “How do you know?”” These written responses of
the students were coded as an indication of their graphical reasoning.

4.5.3.1 Graphing tasks

Table 3 shows two tasks. Task 1 (left) shows a distance-time graph. The graph
represents the movement of a car, as indicated by the graph’s heading. The speed of
the car — the hidden quantity — can be deduced by a global visual inspection of the
slope of the line or by looking at the specific numerals on the x-axis and y-axis and
calculating the distance travelled within a period of time (and compare this with the
other segments present within the graph), thus comparing rate of change. In order to
respond to the interpretation task, the students have to grasp the meaning of the
variables on the x-axis and the y-axis and compare segments within the graph. Task
2 (right) shows an empty graph and a description of a motion situation. The motion
situation consists of three separate parts, in which the train travels at different speeds,
which implies different rates of change in the graph (“twice as fast between 11 and
12 o’clock”). These differences should be quantified and visualized in the graph.
Simply applying the principle “steeper slope means faster movement” does not
necessarily lead to a correct graph, because the position versus time curves
corresponding to the movements described in the motion situation and the relative
differences in speed between the three segments have to be taken into account.
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Table 3
Example tasks graphing motion including exemplary solutions of two students

A car drives through town A train ride.
A train travels twice as fast between 10:00
and 11:00 o’clock than between 11:00 and
12:00 o’clock. The train stands still from
12:00 to 13:00 o’clock.

v
—g § 120
E * g 100
2 F x
T p
£ £ < 80
E S B
S S
s 40
B
4 20
A
o 10 20 30
Time Of trave/ling {m minutes) 10:00u 11:00u 12:00u 13:00u
Time
la. Between which points does the car goes 2a. Draw a graph that fits the description
fastest? above.
1b. How do you know? 2b. How do you know?
Solution: Solution:
“The car travels in 10 minutes 12 kilometres,
that is the fastest of what has been shown in =
the graph.” ; o 77—
T 4, 1 1
£ A I
::; L /f
U =TT
W Ay ———
/// |
’I
/
100 1100 12000 13:00u

Tijd
“because of the text”
Note. The complete coding scheme, including examples of student responses for each task, can be found in
Duijzer et al., 2020 (See Chapter 4 of this thesis).
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4.5.3.2 Graphing tasks: Combining sources of information

In Table 3, Task 1 (bottom left panel), an example of a student’s reasoning is given.
In this answer, the student explicitly refers to the car driving “fastest” between point
B and D and compares this with the other segments in the graph “of what has been
visualized in the graph”. Furthermore, by providing the answer “B and D”, and
corroborating this answer by stating that “the car travels 12 kilometers within 10
minutes”, a reference is made to the correct quantities for time and distance. In Table
3, Task 2 (bottom right panel), a student draws three possible lines in the empty graph.
These three solutions are all correct translations of the accompanying text. In that
sense, this student seems to understand the relative differences in speed between the
three different segments in the story, as well as differences between the distances the
train travels when the first segment has different speeds. In both examples, students
showed their HOT by combining the information found on the x- and y-axis of the
graph.

4.5.3.3 Algebra tasks

The algebra set of tasks consisted of four tasks in which students were asked to solve
a system of informal linear equations. Two tasks required students to find the value
of unknown variables. See Table 4 (left) for an example of this type of task. Two
other tasks required students to find relationships between variables. See Table 4
(right) for an example of this type of task. In order to find the correct solution to the
problems students have to combine information from both the two given equations.

4.5.3.4 Algebra tasks: combining sources of information

In Table 4 (bottom left panel), a student’s solution on the algebra task is given. It
shows how this student coordinates the value of the little ball in the two equations
and combines the information from both equations to come to her final answer. This
shows the simultaneous coordination of the values of two quantities. In Table 4 (right
panel), another student’s solution on another algebra task is shown. This particular
student includes information (“4[1:2(1” and “[1:[1”) taken from the equation on the
right, while also showing that [] equals <=. In both these examples students show their
HOT by combining information from both given equations.
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Table 4
Example tasks algebra including exemplary solutions of two students
Aan beide kanten even awaar.
B:+@+@-=
G+r@-= o 4
]
3a. Vulin: i
® = 6 Welke nog meer aan beide kanten even owaar?
—+ —t
3b. Hoe weet je dit? S g 8 §
o work =R g
9ehanld &
dt‘lsg?zbal/ Wﬂf‘,mg(,gmdl & a
Van het bakletje! 3‘94@ exTefiEy 6c e
6b. Hoe weet je dit? 6d. Hoe weet je dit?
Len U 0o
A O e R Y
£)i09 HUNR A
\i{]ﬂl |. :_ /'E\
la. Fill in: 2a. Fill in:
1b. How do you know? 2b. How do you know?

Solution:

“A little ball is taken away, so the adjoining
number is the number of the little ball!”

Note. The complete coding scheme, including examples of student responses for each task, can be found in
Otten, Van den Heuvel-Panhuizen et al., 2020.

4.6 Coding scheme for students’ reasoning showing HOT

For both the graphing tasks and the algebra tasks separate (domain-specific) coding
schemes were developed to indicate students’ level of reasoning, that shared a
common structure to qualify reasoning in terms of three levels of complexity (Duijzer
et al., 2019, 2020; Otten et al., 2019, Otten, Van den Heuvel-Panhuizen et al., 2020).
For the graphing tasks, reasoning about the variables in the graph was taken as point
of departure. The highest level of reasoning, Level R2, indicates reasoning on the
basis of multiple variables (distance, time, and/or speed), which can be considered
equivalent to the HOT of extracting, using, and combining sources of information
about mathematical relationships is present. The intermediate level of reasoning,
Level R1, indicates reasoning on the basis of one variable (distance, time, or speed).
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When students reason according to Level R0, they do not take into account any of
the variables but rather reason on the basis of iconic or superficial characteristics of
the graph. The level of reasoning, Level R0, indicates no apparent reasoning (e.g.,
“I do not know”). For the algebra tasks a similar distinction between levels of
reasoning was made. The highest level of reasoning, Level R2, indicates reasoning
on the basis of two given equations, indicating the HOT of extracting, using, and
combining sources of information about mathematical relationships. The
intermediate level of reasoning, Level R1, indicates reasoning on the basis of one of
the two given equations. The lowest level of reasoning, Level R0, indicates reasoning
without taking into account any of the given equations. Table 5 shows the alignment
between both coding schemes and the overarching HOT.

Table 5

Alignment between the coding schemes of graphing and algebra in relation to HOT in terms
of extracting, using, and combining sources of information about mathematical relationships

Code Graphing Algebra HOT

RO; No reasoning No reasoning No reasoning

RO2 Iconic/superficial
reasoning

R1 Reasoning with a single Reasoning on the basis of  Reasoning taking into
variable one equation account one source of

information

R2 Reasoning with multiple Reasoning on the basis of  Reasoning taking into

variables two equations account more than one

source of information

4.7 Data analysis

4.7.1 Preliminary analysis and descriptive statistics

Sample means and standard deviations are given for students’ general mathematics
performance and general reasoning. Proportions of students using a particular level
of reasoning per measurement moment (M1 — M4) were also calculated. To calculate
these proportions we summed the occurrences of a particular level of reasoning
(graphical reasoning: RO;, RO,, R1, R2; algebraic reasoning: RO, R1, R2), per
measurement moment, for all four tasks together, and divided this by the total
occurrence of all levels of reasoning, for all four tasks together, for that same
measurement moment. Finally, students’ changes in graphical and algebraic
reasoning from pre- to post-intervention were mapped as either positive change (+),
no change (=), or negative change (—). The nine resulting possible combinations
between graphing and algebra (e.g., + on graphing and + on algebra; + on graphing

165

Ic.n



Chapter 5

and — on algebra) were reported in percentages of students showing this particular
combination.

4.7.2 Modelling change in graphical and algebraic reasoning

Modelling shifting frequencies in (or proportions of) students’ levels of graphical
reasoning and students’ levels of algebraic reasoning over the four measurements can
be realized if we assume two underlying continuous latent abilities for each
participant, one for each domain. The latent ability for graphical reasoning represents
the probability of achieving a level of reasoning on graphical tasks, and, likewise, the
latent ability for algebraic reasoning represents the probability of achieving a level of
reasoning on algebraic tasks. Item Response Theory (IRT) modeling was used to map
the reasoning levels (i.e., Level R0O;, Level RO2, Level R1, or Level R2 for graphical
reasoning, and Level RO, Level R1, or Level R2 for algebraic reasoning) to a
student’s latent ability, in each domain. The probability of using a particular level of
reasoning in the two domains is determined by both the task difficulty and students’
latent ability in each domain. Latent variable Growth curve Modeling (LGM) was
used to model changes in latent ability for each domain over measurements.

LGM offers many advantages for the modelling of longitudinal data when compared
to more traditional statistical methods (Willet & Bub, 2005). LGM assumes an
underlying latent ability that varies between individuals and can change over time
(e.g., due to repetition or experience, or due to participating in an intervention). LGM
also permits participants to have different values for the individual growth parameters
allowing us to model intra- and inter-individual differences in change over time. We
specified one integrated LGM model incorporating a growth trajectory for graphical
reasoning and a separate growth trajectory for algebraic reasoning. In order to model
changes in both graphical and algebraic reasoning, these individual growth
trajectories were estimated based on four partial individual effects: the intercept effect
(representing individual differences in reasoning on the pre-measurement), the slope
effect (representing rate of change over time for the subsequent three measurements),
the intervention effect (representing students’ change in ability after partaking in the
teaching sequence), and the weakening effect (accounting for the possibility that the
intervention effect might fade-out over time).

Extending the LGM to a cohort sequential multi-group LGM by including the three
cohorts of the intervention as groups, allowed us to evaluate the unique effect of the
intervention on students’ reasoning in addition to possible spontaneous development
that can be attributed to a baseline growth trajectory not related to the intervention,
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thus allowing a stronger causal interpretation of the effects (Duncan & Duncan,
2009). Because for each cohort the intervention took place at a different moment
between measurements, the loadings for the intervention and weakening effect
differed between cohorts. For example, for Cohort 1, for which the intervention took
place between measurement moment M1 and M2, the intervention could only have
an effect on measurements moments M2 to M4. Similarly, for this cohort weakening
could only have an effect on the delayed measurement moments M3 and M4. Apart
from this, no differences between cohorts were allowed in the model.

We included general mathematics performance and general reasoning ability as time-
invariant predictors of the graphing motion intercept and the linear equation solving
intercept, in a stepwise process. Both predictor variables were grand mean centered.
Including both predictors turned out to be a severe complication in the process of
model estimation. Because general mathematics ability and general reasoning ability
were correlated, we decided to only use general mathematics ability in the LGM
model.

4.7.3 Assessment of model fit

We used Mplus 8, with the Weighted Least Squares Means and Variances adjusted
estimator (WLSMV), a PROBIT link, and Delta parameterization (Muthén &
Muthén, 1998- 2017). As an evaluation of model fit, we report the root mean square
of approximation (RMSEA; Browne & Cudeck, 1993), the comparative fit index
(CFI), and the Tucker-Lewis-index (TLI) (Little, 2013). Conventional
recommendations are that the RMSEA should be lower than .08, and the CFI and the
TLI should be higher than 0.90 (Little, 2013).

4.7.4 Missing data

Of the 138 students in this study, 135 students had complete data on general
mathematics performance and 137 on general reasoning. For the missing data of these
students, values were imputed based on class averages. Our model could only be
estimated if all levels of reasoning, on all tasks, for each of the three cohorts, and for
each measurement moment appear at least once. This means that when none of the
students showed a certain level of reasoning on any of the tasks on any of the four
measurement moments, the model could not be estimated. For the second item, on
the graphing tasks, Level R2 showed three empty cells, therefore we decided to join
Level R1 with Level R2 for this item.
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5. Results
5.1 Preliminary analyses and descriptive statistics

Students’ scores on general reasoning ability differed between Cohort 1 (M =9.97,
SD = 2.60), Cohort 2 (M =11.93, SD =2.78.), and Cohort 3 (M = 10.25, SD = 2.57),
F(2, 135) = 7,64, p < .001, partial #> = .102. Tukey’s post-hoc test revealed a
significant mean difference (p = .002) between Cohort 1 and Cohort 2.

Figure 1 shows the development of students’ level of reasoning on the graphical
reasoning tasks (left panel) and the algebraic reasoning tasks (right panel). In this
figure the measurement occasions (M1 — M4) are aligned between cohorts. Each
cohort of students participated in the teaching sequence at different time periods.
Students participating in Cohort 1 received the intervention between measurement
moments 1 and 2. This cohort is shown in virtual measurement moments 3 to 6.
Students participating in Cohort 2 received the intervention between measurement
moment 2 and 3. This cohort is shown in virtual measurement moments 2 to 5.
Students participating in Cohort 3 received the intervention between measurement
moment 3 and 4. This cohort is shown in virtual measurement moment 1 to 4.
Aligning the three cohorts in this way allows for a direct visual comparison of the
development of students’ graphical and algebraic reasoning.
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With regard to students’ levels of graphical reasoning, taking part in a six-lesson
teaching sequence resulted in an overall increase in the frequency of reasoning on the
basis of a single variable (R1: +14%) as well as an overall increase in the frequency
of reasoning on the basis of multiple variables (R2: +11%), here shown as group
averages per cohort of students. Also, we saw an overall decrease of answers in which
students did not show any reasoning (RO;: —11%) and answers in which students
reasoned on the basis of iconic or superficial characteristics of the graph (R02: —15%).
Likewise, with regard to students’ levels of algebraic reasoning, after partaking in the
teaching sequence we saw a decrease of answers in which students did not show any
reasoning (RO: —6%), while reasoning on the basis of one equation remained the
same. Also, reasoning on the basis of both equations occurred more often (R2: +7%).
This effect was short-term as it faded out over time. The frequency of students’
reasoning on the basis of both equations decreased again from measurement moment
4 to measurement moment 5 (R2: —3%) and measurement moment 6 (R2: —5%).
Regarding students’ initial levels of graphical reasoning and algebraic reasoning a
difference is noticeable between students’ reasoning on the graphing tasks and
students’ reasoning on the algebraic tasks. The frequency of higher levels of
reasoning was higher at the start of the intervention on the algebraic reasoning tasks
than on the graphical reasoning tasks, giving students more room for improvement
on the graphical reasoning tasks than on the algebraic reasoning tasks.

5.2 Frequencies of students' combined levels of graphical and algebraic
reasoning on the pre- and post-intervention measures

We subsequently looked at students’ development on either their graphical or
algebraic reasoning from pre- to post intervention. Table 6 shows students’
development on graphical and algebraic reasoning combined.

Although there were students who showed a negative change from pre- to post-
intervention or stayed the same on both measures (29/138), the majority of the
students seemed to improve on both their graphical reasoning as well as their
algebraic reasoning (51/138) or stayed the same on both measures (36/138). Yet,
these descriptive statistics do not take changes in students’ levels of reasoning before
and/or after the pre- and post-intervention measures into account. The LGM analysis,
which we will turn to now, does precisely that.
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Table 6

Number of students’ showing either positive change (+), no change (=), or negative change
(-) on their graphical and algebraic reasoning from pre- to post-intervention

Graphs
+ = - Total
Algebra + 51 (37%) 8 (6%) 5 (4%) 64 (46%)
= 22 (16%) 6 (4%) 5 (4%) 33 (24%)
- 23 (17%) 4 (3%) 14 (10%) 41 (30%)
Total 97 (70%) 18 (13%) 24 (17%) 138 (100%)

5.3 Effect of the intervention modelled with a multi-group LGM

The LGM model including all four measurement moments had an overall fit in terms
of RMSEA that was acceptable (.062, 90% CI [.050 - .072]). However, fit in terms
of CLI and TFI was insufficient, with fit indices below the critical cut-off values
(CFI= .789, TLI = .811). Extensive exploration of analysis and model options,
including suggestions given by modifications indices provided by Mplus, did not lead
to clear improvements of CLI- and TFI-fit, however they did reveal robustness of the
relevant parameter estimates. We suspect that the strict assumptions of our model
(needed to test our hypotheses) combined with the small sample size per cohort (<49)
made it difficult to obtain a better overall model fit, but that the main results are
nevertheless informative and trustworthy.

Due to the use of a Probit model, the effects, shown in Table 7, are scaled such that
they represent standard deviations for the latent ability. Therefore, the given values
can be interpreted as standard effect sizes. There was a clear positive effect of the
intervention on students’ graphical reasoning (0.59 SD, p < .001), which was also
found in a previous study (Duijzer et al., 2020). There was also a small positive effect
of the intervention on students’ algebraic reasoning (0.30 SD, p =.003).
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Table 7
Parameter estimates of the final multi-group LGM model
Graphing Algebra

Model parameter M p-value var M p-value var
Intercept® @0 XX 0.22 @0 XX 0.45
Slope 0.05 .305 0.02 -0.06 227 0.02
Intervention 0.59 .000 0.31 0.30 .003 0.31
Weakening -0.16 .055 @0 -0.03 812 @0

Predictor regression 8
General reasoning 0.45 .000 0.40 .000
ability on Intercept

Covariances
Intercept G with 0.96 .000
Intercept A
Intervention G with 0.12 917

Intervention A
Note. * Although non-significant we allowed the intercepts in cohort 2 and cohort 3 to deviate from 0.

In order to support the interpretation of the effect size of the intervention on either
latent ability, it is helpful to visualize the results, see Figure 2a and Figure 2b. Due to
the scaling of the Probit model with the delta parametrization in Mplus, both figures
show a standard normal distribution representing the latent abilities of all
participants, for the graphical reasoning Task 1 and the algebraic reasoning Task 1.
Scales are anchored at zero for the average ability on the measurement directly before
the intervention. The shift of the curve, therefore, represents the increase in average
ability due to the intervention. In both Figure 2a and Figure 2b, a clear shift of the
curve to the right is present, representing the positive intervention effects that were
found. The area under the curve limited by the vertical borders shows the probability
of a student reasoning according to a particular level. This holds that the larger the
area under the curve for a particular level of reasoning, the larger the probability that
a particular student reasons according to that level. Because the thresholds did not
change, the intervention effects become salient. When comparing both Figure 2a and
Figure 2b, for students’ graphical reasoning (Figure 2a) a larger shift to the right is
shown than for students’ algebraic reasoning (Figure 2b), which corresponds with the
aforementioned effects.

The correlation between the hypothetical abilities of graphical reasoning and
algebraic reasoning, for the four tasks, on the first measurement moment, was
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moderate and significant (» = .346-.349, p < .001). This indicates that students’
reasoning within one domain did covary with reasoning in the other domain.
However, we were more interested in correlations between improvements possibly
due to the six-lesson teaching sequence. The unstandardized covariance between the
intervention effect on graphical reasoning and the intervention effect on algebraic
reasoning was small and non-significant (» = .004, p = .922). Because the variance of
the intervention effects of graphical reasoning and algebraic reasoning was
constrained to be equal (to avoid negative variance on the latent ability for algebraic
reasoning) the standardized covariance (also low and non-significant »=.116,
p =.917), is not trustworthy. Nevertheless, it is clear that improvement in one domain
was not related to improvement in the other domain.

173

Ic.n



Chapter 5

(j]oued 1ybu) ANjige Buluoseal
oleigable siuspnis uo pue (jaued ya|) Aljige Buluoseads [eolydelt siuspnis uo (ybu 8yl 01 SUIYS) S10948 UONUSAIBIU| ‘qZ pue ez ainbi4

RN o[eag nqoId
- s~
g 3
s g
£ &
=4 =
= o
g g
= Z

0y o &3] A 104
Buluoseau olelqab|y Buluosea. |eoiydels

174



Fifth grade students' reasoning on graphs of motion and linear equations

6. Discussion

The present study focused on the development of students’ mathematical HOT across
two distinct, but related domains (graphing motion and linear equation solving). This
HOT was formulated in terms of extracting, using, and combining sources of
information, for which students draw on their ability to reason about covariation. We
investigated whether an intervention, consisting of six lessons targeting graphing
motion would affect not only students’ graphical reasoning but also affected their
ability to reason about problems in which they were asked to solve a system of
informal linear equations. In a cohort-sequential design with overlapping
measurement moments between cohorts, students received the intervention either at
the beginning, halfway, or at the end of the school year. LGM analysis allowed us to
investigate students’ development in these domains. The dependent variables were
students’ graphical reasoning and algebraic reasoning measured with four graphing
tasks and four algebraic tasks which were coded with regard to students’ level of
reasoning.

6.1 Summary of the results

Initial exploration of changes in students’ levels of graphical and algebraic reasoning
(i.e., positive, negative, or no change) revealed that a large number of students
showed positive change from pre- to post-intervention, on both their graphical and
their algebraic reasoning. These descriptive statistics demonstrated a possible effect
of the intervention, as well as an indication of a relationship between growth in both
domains. A more precise, sensitive, and trustworthy analysis was looked after with
LGM. Results of the LGM analysis showed that students indeed significantly
improved their graphical reasoning as was visible in a positive linear growth of their
graphical reasoning ability (see also Duijzer et al., 2020). Further inspection showed
that students also significantly improved their algebraic reasoning. This effect
(0.30 SD) was not as strong as the effect on students’ graphical reasoning (0.59 SD).
Students at the start of the intervention already showed relatively high levels of
algebraic reasoning, which could be an explanation for this smaller effect. We found
a strong relationship between students’ initial levels of graphical and algebraic
reasoning. However, when evaluating the relationship between students’ growth in
graphical reasoning and students’ growth in algebraic reasoning, when taking into
account this initial correlation, no correlation between improvement between the
domains was found. This means that students who improved their graphical reasoning
after the intervention on graphing motion did not systematically improve their
algebraic reasoning, and vice versa. Even though students as a group improved, this
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improvement was not related to individual students’ improvement in each of these
mathematics domains. No transfer of HOT to the domain of solving systems of
informal linear equations appeared to take place.

6.2 The nature of mathematical HOT in this study

The domains of graphing motion and linear equation solving require domain-specific
HOT, in terms of reasoning about covarying quantities. Nonetheless, the HOT
elicited in the domain of graphing motion did not result in the application of HOT in
the domain of linear equation solving. This finding, that some students’ graphical
reasoning and others’ algebraic reasoning improved without the presence of a
relationship between both, implies that the intervention on graphing motion did not
structurally elicited general elements of mathematical HOT relevant to both
mathematical domains. Somehow, for some students the domain-specific teaching
sequence only affected reasoning within the domain of graphing motion, whereas for
other students this only affected reasoning within the domain of linear equation
solving. This underscores a view on HOT as essentially situated within, and emerging
from, the domain in which the teaching and learning activities were carried out. We
thus may conclude that transfer of HOT to another — slightly related — mathematics
domain cannot be taken for granted. HOT is domain-specific even within a particular
academic discipline like mathematics, which is in line with the domain-specific view
on HOT as advocated by Alexander et al. (2001).

We did see students improving on their algebraic reasoning. Yet, what precisely
caused this development in algebraic reasoning, stimulated or not through the
intervention, and measured by the algebraic tasks is currently unknown. We cannot
explain this development conceptually on the basis of their development in HOT.
Yet, we can think of a few alternative explanations, in terms of learner characteristics
and contextual factors. For example, with regard to learner characteristics, the
observed development in graphical reasoning could to a certain extent be
motivational. The students partaking in our study could have become more interested
in the tasks they recognized as a result of the intervention, or vice versa, students
could have become more interested in tasks they did not recognize as a result of the
intervention. This motivational factor could potentially affect students’ performance
on the tasks within the domain of graphing motion or the tasks within the domain of
linear equation solving, which in turn could have affected the relationship between
graphical reasoning and algebraic reasoning. Also, contextual factors, such as extra-
curricular activities, may contribute to growth in either one of the domains. A
comparison of these relations was not possible in the current study due to our use of
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a limited set of measurements. Further research that includes child characteristics and
additional contextual factors may enhance our understanding of the relationship
between development in either one, or both of these mathematical domains.

6.3 Limitations and future directions

This study has some limitations we would like to point out. First, although covariation
plays a role in both the domain of graphing motion and the domain of linear equation
solving, there was limited conceptual overlap between the graphing motion
intervention and the tasks used to measure students’ development in algebraic
reasoning. In contrast, Nemirovsky and Rasmussen (2005) designed activities with
undergraduate students in which the chosen graphical and algebraic tasks were
informationally equivalent, sharing the same underlying quantitative structure. Our
primary interest was not in creating such overlap between intervention and tasks, but
rather in stimulating students’ thinking, including the underlying covariational
thinking that was deemed relevant to both mathematical domains. Future research
could investigate more precisely whether conceptual overlap between tasks could
result in the improvement of HOT in the domain of graphing motion parallel to the
domain of solving linear equations. Also, in order to elicit HOT within these two
separate yet related mathematics domains, the chosen activities could also explicitly
incorporate the learning strands of both graphing motion and linear algebra within
lesson activities. For example, within secondary mathematics education, graphs and
functions are often addressed together. In Dutch primary mathematics education both
mathematics topics are not an explicit part of the main curriculum. Yet, difficulties
students have with the function concept are often related to difficulties they
experience with graphs, especially with the understanding of time-dependent graphs
(Arzarello & Robutti, 2004). Strengthening graph sense while also exploring, for
example, linear functions in either graphical or algebraic form, could be a more
explicit aim of learning activities in primary education. This exploration of the
function concept can be taught through activities involving distance-time graphs
(e.g., Robutti, 2006; Gjevik & Sikko, 2019) and can be supported through the use of
technology-rich environments, including motion sensors (Robutti, 2006) or
simulation software (Roschelle et al., 2010; Sinclair & Armstrong, 2011). When
following such approach, the learning of graphs of motion and the learning of the
function concept becomes strongly connected to their origin within particular
mathematical domains, touching upon the whole array of knowledge and concepts
that are deemed relevant to that domain. According to Schoenfeld (2016) in order to
coming to grips with the thinking and learning within any discipline, it is important
to submerge oneself in the specific practices, habits, and knowledge of a particular
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discipline. We can assume that such approach paves the way to HOT since both
domain-specific HOT (as reasoning within each domain) as general elements of HOT
(as reasoning across both domains) are stimulated simultaneously.

Second, the rather sophisticated LGM model, with categorical outcome measures,
used in our study posed some serious difficulties throughout the process of model
estimation. Although we acquired sufficient model fit in terms of RMSEA, which in
the context of using categorical data is the most reliable fit measure to attend to
(Little, 2013), fit measures in terms of CFI and TLI were below the critical cut-off
values. For that reason, one should be careful in interpreting the obtained parameter
estimates as a summary of the relationship between the variables (West et al., 2012).
Therefore, the extent to which these significant results are meaningful, should not be
overestimated. Yet, extensive exploration of analyses and model options, including
suggestions given by modifications indices provided by Mplus revealed robustness
of the relevant parameter estimates. We assume that the strict assumptions of our
model combined with the rather small number of students per cohort in relation to
the complex data analyses that were conducted, made it difficult to obtain a better
overall model fit. Further research is necessary including a larger sample of students.
Third, we analyzed the students’ reasoning with a coding scheme for their written
explanations. These writings not always reflect their full understanding of the task.
For example, when a student writes down “I do not know” (coded Level RO1) this
does not necessarily mean that the student is unaware of the answer to the question.
It could also be that the student is unable to write down this understanding. One
solution to circumvent this problem would be to let students think-aloud during
solving these tasks or interview them afterwards.

6.4 Concluding remarks

The present study provides some preliminary insights regarding the development of
mathematical HOT across two distinct but related mathematical domains. We have
found that after partaking in an intervention students’ graphical reasoning improved,
yet without structurally improving their algebraic reasoning, and vice versa. This
begs the question as to whether there are general elements within HOT that can be
stimulated regardless of the mathematical domain from which the HOT originated.
This finding is in line with contemporary views on the development of HOT,
advocating that thinking becomes higher order due to increasing experience within a
particular academic domain (e.g., Alexander et al., 2011; Ericsson, 2003), as opposed
to long-held and persistent beliefs that HOT can be supported regardless of academic
content (e.g., Bloom, 1956; Resnick, 1987). Our study shows that even within an
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academic domain such as mathematics transfer of HOT from one mathematical
domain to another mathematical domain (in this study: on the basis of graphical
reasoning or as a result of similarity between both domains) cannot be taken for
granted. As such, this study contributes to a further conceptualization of the domain-
specific view on HOT and proposes that if one aims to promote students’ reasoning
in another mathematical domain than explicitly taught, providing students with an
explicit conceptual link between the targeted mathematical domains might be
essential.
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Chapter 6

“Look! The line in the graph... cannot go backwards!”

A summary and general discussion of students’ reasoning about graphs in
primary mathematics education.

The teaching of motion graphs is rarely included in the regular Dutch primary school
mathematics curriculum. This is a missed opportunity because more advanced
mathematical topics, such as dynamic graphs showing a change in distance over time,
have the potential to foster high levels of mathematical thinking and reasoning (e.g.,
reasoning about variables, slope, or covarying quantities). Against the background of
providing primary school students more opportunities to develop higher-order
thinking (HOT) within mathematics, as described in Chapter 1 of this thesis, the first
aim of this PhD thesis was to investigate whether and to what extent mathematical
activities in the domain of graphing motion could elicit fifth-grade students’
reasoning about motion graphs. A second aim of this PhD thesis was to investigate
the role of bodily experiences for mathematical cognition. We did this by taking into
account the opportunities bodily experiences offer to support the development of
students’ reasoning about motion graphs. To this aim, we conducted a systematic
literature review and developed, implemented, and evaluated an intervention
consisting of a six-lesson teaching sequence to teach the graphing of motion to fifth-
grade students. The literature review was conducted to shed light on the significance
of embodied learning environments supporting students’ understanding of graphing
motion. Here, we took a critical look at the extant research and included research
conducted in science, technology, engineering, and mathematics (STEM) education.
The teaching sequence we developed, implemented, and evaluated in parallel,
incorporated embodied mathematical activities, following the assumption that
reaching higher levels of mathematical thinking and reasoning depends to a large
extent upon opportunities for physical movement and embodied interactions (e.g.,
Gallese & Lakoff, 2005; Hall & Nemirovsky, 2012; Nuifiez et al., 1999).

Mathematical HOT in the context of graphing motion can be considered domain-
specific. Higher levels of mathematical reasoning arise as a consequence of
experiences within this particular domain (Alexander et al., 2011). This domain-
specific mathematical HOT inter alia draws on a student’s covariational reasoning
capacity (see also Radford, 2009). Covariational reasoning is the simultaneous
coordination of the magnitudes of quantities in the graph, while keeping in mind that
at every moment the other quantity also has a value (e.g., Saldanha & Thompson,
1998). This covariational reasoning, as the simultaneous coordination of the values
of quantities, is also present within other mathematical domains. One domain for
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which this particularly holds is the domain of early algebra (e.g., Kieran et al., 2016).
A third and final aim of this PhD thesis, therefore, was to investigate the potential of
the teaching sequence on graphing motion to engender mathematical HOT in the
domain of early algebra, as an indication of the extent to which HOT stimulated
within a particular mathematics domain can be regarded domain-specific, domain-
general, or both.

In this final chapter, 1 first summarize the findings of the studies reported in this
thesis. Thereafter, the implications of these findings for theory and practice are
discussed and suggestions for further research are given. The limitations of this thesis
are addressed. This chapter ends with the main conclusions of our research project.

1. Summary of the results

1.1 Embodied learning environments supporting students’ understanding of
motion graphs

The research literature reports on a wide variety of embodied learning environments,
originating from different traditions of views on cognition. In Chapter 2, we reported
on a systematic literature review of research that incorporated embodied learning
environments to support students’ understanding of graphing motion. We did so in
order to gain more insight in the breadth and depth of these embodied learning
environments and their educational potential. To get a grip on the defining
characteristics of these embodied learning environments, we categorized them on two
dimensions: bodily involvement and immediacy. For bodily involvement we
distinguished between own motion (direct bodily experience) and observing
others/objects’ motion (indirect bodily experience). For immediacy we distinguished
between immediate (“on-line” cognitive activities) and non-immediate (“off-line”
cognitive activities). Combining both dimensions resulted in a taxonomy of
embodied learning environments with four classes, each representing a specific
embodied configuration: Class I — Immediate own motion, Class II — Immediate
others/objects” motion, Class III — Non-immediate own motion, Class IV — Non-
immediate others/objects’ motion. Embodied learning environments that made use of
students’ own motion immediately linked to its representation (Class I), were most
common across the sample of reviewed articles.

The review then uncovered eight characteristics specific to embodied learning
environments supporting students’ understanding of graphing motion as described by
the authors of the reviewed articles, which we referred to as mediating factors: real-
world context, multimodality, linking motion to graph, multiple representations,
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semiotics, student control, attention capturing, and cognitive conflict. These eight
mediating factors have their own role in how they support learning within these
embodied learning environments. Some of these factors potentially bridge the gap
between source domain embodied experiences and the learning taking place. Two
examples are: linking motion to graph, by enabling students to observe a direct link
between motion and the corresponding graphical representation, and multimodality,
as through the nature of the tool or the instruction, at least two of the modalities of
seeing, hearing, touching, imagining, or motor actions are simultaneously activated.
Other factors have a more facilitating role in the learning process, for example
multiple representations (i.e., receiving multiple representations of a particular
motion event) and student control (allowing students to control the learning
environment by letting them manipulate the motion or the graphical representation).

The four classes that we specified, together with the eight mediating factors illustrate
the variety and, often, complexity of embodied learning environments as occurring
in education and research. Each class of embodied learning environments contained
different sets of mediating factors, increasing the number of qualitative different
learning environments substantially. Embodied learning environments that made use
of students’ own motion immediately linked to its representation (Class I) were found
to be most effective in terms of learning outcomes. In this particular class, the three
mediating factors, multimodality, linking motion to graph, and multiple
representations were most common. The two-dimensional framework and the
identified mediating factors, together with the synthesis of the evidence so far
regarding the efficacy of each class, can inform the future design — and evaluation —
of embodied learning environments.

One limitation of the review was that we based the mediating factors on the reported
information provided by the authors of these articles, which made the evidence for
the mediating factors not equally strong. A second limitation of this study pertained
to the wide variety of articles included in the review, which not only led to
considerable variation in various participant characteristics, it also made it difficult
to integrate the findings of the various articles regarding the effectiveness of the
studied learning environments. Still little (comparative) research had been done on
whether and to what extent embodied activities (that vary in their degree of embodied
support as direct or indirect physical experiences in learning activities) are helpful in
stimulating primary school students’ reasoning about motion graphs. More
comparative research is needed to determine which embodied configurations are
most effective.
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1.2 The effect of an embodied learning environments on students’ reasoning
about motion graphs

Chapter 3 and Chapter 4 of this thesis described the design, implementation and
evaluation of a six-lesson teaching sequence on graphing motion that was developed
in our research project. This teaching sequence had the explicit aim of stimulating
students’ reasoning about graphs representing the bivariate relationship of distance
changing over time. The results of the review described in Chapter 2 suggested that
learning environments in which students’ own motion becomes immediately linked
to its representation as a graph (e.g., distance-time graph, speed-time graph) are most
promising to support students in their understanding of these graphs. Following the
idea, based on embodied cognition theories, that perceptual-motor experiences are an
important entry-point into reaching higher levels of mathematical reasoning, we
developed two parallel versions of the teaching sequence. In one version, students
were offered direct embodied support, involving graphing activities in which
students’ own bodily movements were visualized as a line in the graph, using motion
sensor technology. In the other version, students were offered indirect embodied
support, involving graphing activities that were mostly paper-and-pencil based or
projected on the digital blackboard. Students did work with an image of the motion
sensor context and the related activities, but without the presence of the real tool.

Chapter 3 reported on the teaching sequence offering students direct embodied
support. The focus of the study presented in this chapter was on students’ micro-
development in reasoning about motion graphs over the six-lesson teaching sequence,
and the pivotal role of bodily experiences therein. We captured students’ micro-
development over the lessons by assessing, after each lesson, students’ graphical
reasoning using a series of graph interpretation and graph construction tasks. The
interpretation and construction tasks were alternated over the lessons. We analyzed
students’ written responses to these tasks. We found that from lesson 1 to 6 students
went from iconic understanding towards understanding in which they reasoned on
the basis of multiple variables when interpreting and constructing graphical
representations of motion events. At this higher level of reasoning, students’ often
showed instances of reasoning in an informal covariational manner (i.e., “covering
more distance in less time”) (see also Radford, 2009), in which they took into account
the two variables represented on the axes of the graph. In the analysis of two teaching
episodes of one student’s interaction with the teacher and other students, it was shown
in which ways this student started to reason about graphs at higher levels in relation
to her perceptual-motor experiences in front of the motion sensor. We found that the
student made sense of the problem of walking a specific graph by coordinating
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various modality-specific systems, including seeing, hearing, gesturing, and moving,
which she linked to the graphical representation that unfolded on the screen of the
computer. These movements, as well as anticipated and unanticipated features of the
graphical representation which emerged in real-time, were reflected in this student’s
reasoning about the graph. The technology used throughout the lessons was an
important facilitator in this process. For this and the other students, we found that the
bodily activities in front of the motion sensor engendered high levels of mathematical
reasoning about the variables distance, time, and speed, as well as combinations
thereof in an informal covariational manner (e.g., “Covering more distance in less
time results in a steeper slope”).

Chapter 4 reported about the evaluation study in which a cohort sequential
longitudinal design was used to investigate students’ changes in graphical reasoning
over the school year. We assessed students’ development in graphical reasoning over
the six-lesson teaching sequence by analyzing their written responses on four graph
interpretation and graph construction tasks. We compared the instruction condition
offering students direct embodied support (see Chapter 3) with an instruction
condition offering students indirect embodied support. The lessons in the indirect
support condition contained activities that were similar to the ones in the direct
support condition, yet without giving students the opportunity to physically enact the
given motion situations in front of a motion sensor. In this condition the movement
of an object (i.e., a toy car) was taken as point of departure. A third group of students
served as a baseline condition and received lessons on another mathematics topic.
We found a strong effect of the intervention on students’ reasoning about graphs of
motion over the school year, indicating that both versions of the teaching sequence
were highly effective. When comparing both instruction conditions, we found an
effect in favor of the instruction condition offering direct embodied support,
indicating that these students improved more in their graphical reasoning than
students’ in the indirect support condition.

As reported in Chapter 2 of this PhD thesis, and supported by empirical observations
in Chapter 3, the advantage of having embodied (perceptual-motor) experiences
when graphing motion, for example through the use of motion sensor technology, is
presumed to be mediated by the rich interrelated coordination of modality-specific
systems, the immediate link between motion and graph, and the various
representations of motion as a result of movements in front of the sensor. Each of
these three mediating factors has a specific role as to how and why they enable
learning within the embodied learning environment developed for this thesis.
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Multimodality as a mediating factor is an often mentioned and essential aspect of
embodiment. A multimodal view on cognition encompasses the idea that conceptual
knowledge depends upon a rich interrelated coordination of modality-specific
systems (Barsalou et al., 2003). The mediating factor linking motion to graph is
related to the mapping mechanisms that structure the abstract mathematical concept
by means of bodily experiences (Font et al., 2010), such as graphically represented
motion present in the physical world. Multiple representations as a mediating factor
refers to multiple representations of a particular motion event. Experiencing such
variation in motion and representation, and distinguishing between what changes and
what remains invariant, can be considered a necessary condition for learning
(Runesson, 2006).

1.3. Transfer of HOT to a related mathematics domain: linear equations

Mathematical HOT in the domain of graphing motion inter alia draws on a student’s
covariational reasoning capacity. This covariational reasoning is also relevant in
other mathematical domains. It seems plausible that elements of HOT relevant to
multiple mathematical domains can be strengthened within one mathematical domain
and transfer to the other mathematical domain, based on the assumption of domain-
general mathematical reasoning. In the final study of this thesis, reported in
Chapter 5, it was investigated whether the domain-specific teaching sequence on
graphing motion also resulted in HOT, on the basis of reasoning about covarying
quantities, in another mathematics domain, i.e., solving linear equations. We used a
similar approach as with graphical reasoning to assess students’ algebraic reasoning.
The findings of this study indicated that the domain-specific teaching sequence on
graphing motion apparently also resulted in a significantly higher mean level of
algebraic reasoning at the group level. This effect was not as strong as the effect on
students’ graphical reasoning. Yet, at the individual level, no correlation between
students’ growth in graphical reasoning and students’ growth in algebraic reasoning
was found. Thus, students who improved in graphical reasoning did not
systematically improved in algebraic reasoning, and vice versa. Based on these
findings we drew the tentative conclusion that the HOT that was targeted in our
research did not transfer to the domain of linear equation solving. Rather, the HOT
that students developed in the motion graph lessons was primarily domain-specific.
The finding that the students did show improvement in their algebraic reasoning after
partaking in the intervention warrants further research.
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2. Implications of the main findings and ways to move forward

Taken together, the findings of the studies reported in this thesis have several
implications for theory and practice. In the following paragraphs, I will first elucidate
some theoretical implications of the findings regarding embodied activities in
mathematics lessons and the nature of mathematical HOT, followed by some
recommendations for how to move forward. Subsequently, I will describe some
practical implications of the research presented in this thesis and how to implement
embodied graphing activities to support students’ mathematical HOT within primary
school mathematics education.

2.1 Theoretical implication: The value of direct and indirect embodied
support in mathematics activities

To frame the first theoretical implication of this thesis I would like to start with a
short example of a classroom interaction. During the first part of Lesson 3 given in
Cohort 1 (direct embodied support condition), students were prompted to think about
movements in front of the motion sensor and about possible and impossible graphs,
by asking them: “Can you make a letter of the alphabet?”” This rather simple question
resulted in a wealth of ideas. Students came up with many letters, most of which
would not be reproducible as a distance-time graph (e.g., the letter “A” or “O”). After
some time one of the students, who had not yet walked in front of the sensor, wanted
to make an O-shaped graph. After this 30-second trial the students as a group reached
the conclusion that making an O is impossible. This insight in the unidirectionality
of time was explicitly mentioned by one of the students who stated that: “It [the line
in the graph], cannot go backwards”. Then two other students added: “It [the motion
sensor] keeps measuring the distance.” The students’ conclusion — that making an O
is impossible — is a critical moment when students comes to understand the
particularities of motion graphs as graphically representing elapsed distance over a
certain period of time (e.g., Arzarello & Robutti, 2004), where time can only increase.

The importance of directly experiencing movements in front of the motion sensor
seemed twofold: (1) for students to see with their own eyes how a specific movement
can or cannot be represented as a time-distance graph, and (2) to prompt rich
interactions between students in which they collectively formulated hypotheses (i.e.,
making the letter O) and drawing conclusions (i.e., making an O is impossible: “The
line cannot go backwards”). These relatively simple activities, “walking” letters as
presented in the example above, among other activities, performed in front of the
motion sensor caused students to make a connection between their own movements
in front of the sensor and the line in the graphical representation. Through walking
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understanding emerged. This process was further facilitated through interaction and
reflection between the students and between the students and the teacher.

As just one example, the activity described above shows how whole-bodily
movements in front of the motion sensor resulted in the development of new
metaphorical thought, which was grounded in — or became connected to — their
already existing intuitive ideas about (the representation of) certain phenomena. To
be more precise, from their experiences in everyday reality students presumably were
aware of the unidirectionality of time (e.g., Friedman, 2000; McCormack &
Hoerl, 2017). This understanding of time is an embodied understanding, which
receives its meaning through our everyday use of various conceptual metaphors such
as: “the summer is ahead of us”, “time passes by”, or “it takes a long time” (Lakoff
& Nuiiez, 2000). These embodied understandings of the passing of time were
implicitly and explicitly present in the reasoning of the students (e.g., “it keeps
measuring the distance”), and became connected to the abstract formal representation
of motion as a line in the distance-time graph (e.g., “the line in the graph cannot go
backwards”). Students’ reasoning about the passage of time represented in the graph,
as a consequence of their bodily movements in front of the motion sensor, might seem
trivial at first. But, as discussed by Thompson and Carlson (2017), thinking about the
passage of (measured) time as continuous change when graphically representing
dynamic phenomena such as changes in height or changes in distance is a rather
complex endeavor (a learning progression from “chunky” images of change, to
“smooth” images of change), and essential for developing a robust understanding of
the concept of function. According to these authors, developing this understanding
could potentially benefit from metaphoric ideas such as fictive motion, which
involves thinking about a subject as if it is moving, while in reality nothing moves
(e.g., “The A2 goes from ‘s-Hertogenbosch to Amsterdam”). In a nutshell, this short
excerpt shows how the formation of new relevant metaphorical mappings between
source-domain experiences and target-domain knowledge took place, and as a
consequence, resulted in higher levels of reasoning about the graph as grounded in
bodily experiences (see also Lakoff & Nufiez, 2000).

Based on the studies presented in Chapters 2 to 4, and general literature on the role
of embodiment in human cognition, we infer that students who had only been asked
to draw graphs on paper and saw graphs on the digital blackboard acquired their
understanding about these graphs differently. The opportunity to directly experience
the line in the graph through physical activity was not present in the instruction
condition offering students only indirect embodied support. In this condition, a direct
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physical link with relevant source-domain embodied experiences was absent. Yet,
this does not mean that students could not make sense of the distance-time graphs
and the activities as grounded in bodily experiences. For example, in making sense
of the motion graphs these students were also provided the opportunity to build on
their intuitive understandings of motion phenomena in order to represent motion as a
line in the graph. Yet, the source-domain bodily experience of moving through space
was activated in a qualitatively different way, namely through observation and off-
line cognitive processing (see also Chapter 2), presumably on the basis of embodied
simulation (Barsalou, 1999). Embodied simulation theory explains how source-
domain experiences are activated when a direct (physical) link with that source-
domain is absent. Through embodied simulations, previously acquired sensorimotor
experiences are re-activated or re-used for knowledge construction processes in the
learning activity (e.g., Barsalou, 1999, 2010; De Koning & Tabbers, 2011).

Although both instruction conditions drew on universal source-domain bodily
experiences, resulting in conceptual metaphors that might be similar across
conditions, in the one condition these metaphors were implicit and internal, in the
other condition they were explicit and active (e.g., Gallagher & Lindgren, 2015), and
this likely explains why a stronger learning effect was found in the latter condition.
However, more fine-grained research with appropriate measurement tools (e.g., eye-
tracking, Lai et al., 2013; Worsley & Blikstein, 2014) is needed to obtain a deeper
understanding of how perception-action processes in embodied learning
environments activate, change, combine and blend elementary embodied cognitions
to ground abstract mathematical concepts, while extending the scope of this research
to other complex (and pivotal) concepts in mathematics as well (e.g., Abrahamson &
Sanchez-Garcia, 2016; Duijzer et al., 2017).

2.2 Theoretical implication: The nature of mathematical HOT

Based on Chapter 3 to Chapter 5 we can draw the tentative conclusion that both
direct and indirect embodied support in the teaching sequence stimulated higher
levels of graphical reasoning among primary school students, and more so in the
instruction condition offering direct embodied support (see Chapter 4). Transfer of
the effect of the learning environment for graphical reasoning to the domain of
algebra, however, could not be unambiguously established (see Chapter 5).

Potential transfer of the domain-specific concept of covariation and the related HOT
to another mathematics domain, such as linear equation solving, could possibly
benefit from letting students explicitly see and experience the interrelatedness and
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parallel forms of this concept across domains (Dreyfus & Eisenberg, 1982). I would
like to propose two aspects that could be considered relevant in doing so. The first
aspect pertains the stimulation of mathematical HOT by explicitly incorporating the
learning strands of both graphing motion and linear algebra within lesson activities.
For example, in secondary mathematics education, graphs and functions are often
addressed together. In Dutch primary mathematics education both mathematics
topics are not often an explicit part of the main curriculum. Yet, difficulties students
have with the function concept are often related to difficulties they experience with
graphs, especially with the understanding of time-dependent graphs (Arzarello &
Robutti, 2004). Strengthening graph sense while also exploring, for example, linear
functions in either graphical or algebraic form, could be more explicitly incorporated
in learning activities in primary mathematics education. For example, the exploration
of the function concept can be taught through mathematical activities involving
distance-time graphs (e.g., Gjovik & Sikko, 2019; Robutti, 2006) and can be
supported through the use of technology-rich environments, including motion sensors
(Robutti, 2006) or simulation software (Roschelle et al., 2010; Sinclair & Armstrong,
2011).

The second aspect pertains the activation of relevant source-domain bodily
experiences. As described in this thesis, the bodily experience of moving through
space can be considered one of the relevant source-domain bodily experiences for
graphically represented motion. Metaphorical projection, by means of image schemes
such as fictive motion or the source-path-goal schema, is the main embodied
cognitive mechanism providing the link between the source-domain experiences
(such as moving through space) and target-domain mathematical knowledge (such as
developing an understanding of graphically represented motion) (e.g., Font et al.,
2010; Nunez et al., 1999). The source-domain bodily experience of moving through
space served as a grounding mechanism for students’ graphical reasoning, through
elicited or instructed metaphorical projections (e.g., linking movement to projected
graphs, eliciting discussion about for example irreversible time), but not for students’
algebraic reasoning. Although this specific source-domain experience is also relevant
for students’ informal covariational reasoning or functional thinking (cf., Nunez et
al., 1999), pivotal to the domain of early algebra, this was not enough to achieve
spontaneous transfer to the domain of linear equation solving. Further research could
make an effort to build on the source-domain bodily experience of moving through
space to build up metaphorical projections that are relevant to both the domain of
graphing motion and the domain of linear equations (see also Nemirovsky &
Rasmussen, 2005). Also, a recent study (Otten et al., 2020) showed how a balance
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model, either physically or presented on worksheets was particularly helpful for
stimulating students’ algebraic reasoning. The balance model used in their research
drew on the source-domain bodily experience of being in balance (e.g., Nuiiez et al.,
1999). Combining the source-domain experiences relevant to both the domain of
graphing (moving through space) and the domain of algebra (being in balance), to
build shared metaphorical projections might be a fruitful approach to advance the
research in this area. These metaphorical projections could be more explicitly
activated through, for example, interaction and reflection on the resulting domain-
specific reasoning (e.g., reasoning about covarying quantities), in order to increase
the potential for transfer across domains (see also Gallagher & Lindgren, 2015).

2.3 Practical implications

There is a pressing need to incorporate sophisticated skills such as higher-order
thinking skills or 21 century skills in education, as is recognized at the international
(e.g., OECD, 2019) and national level (e.g., Ontwikkelteam Rekenen-Wiskunde,
2019; Thijs et al., 2014). In the Netherlands, the NVORWO (2017) has emphasized
that within mathematics education both basic mathematical skills (e.g., declarative,
procedural, factual knowledge) and mathematical HOT skills (e.g., mathematical
reasoning, modelling, visualizing, problem solving, developing a mathematical
attitude) should be supported. Furthermore, according to the NVORWO, these HOT
skills should be formulated in terms of longitudinal learning strands which can make
the transition from primary mathematics education into secondary mathematics
education more fluent. A recent analysis of the Inspectie van het Onderwijs (Dutch
school inspectorate, Onderwijsinspectie, 2019) showed that currently little attention
is paid to HOT activities in both primary and secondary mathematics education. Also,
primary school teachers appear to have little knowledge of the longitudinal learning
strands beyond primary school, into secondary mathematics education, which is
especially detrimental for high-performing students.

In line with the educational agenda outlined above, the question now is how the
results of this PhD thesis can contribute to incorporate HOT at the primary school
level. More specifically, what are the practical implications of the findings of this
PhD thesis? First, we think the learning environment that was developed and
implemented as part of this PhD thesis, and the activities therein, can serve as a
domain-specific operationalization of mathematical HOT at the primary school level.
Second, following recent proposals around embodied cognition, the learning
environment offering direct embodied support, using motion sensor technology, can
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be seen as a worthwhile approach to stimulate students’ domain-specific HOT, and
more specific their reasoning about these motion graphs.

Three elements are relevant to consider when implementing the graphing activities
as developed, implemented, and evaluated in this PhD thesis in primary mathematics
education. First, when students enter the classroom, they already have some intuitive
and informal notions of representations and motion phenomena, either from previous
education but more likely from the world outside school (e.g., an intuitive
understanding of the passage of time as fictive motion). It is important that education
provides students with opportunities to build on these intuitive understandings of
motion related phenomena in lesson activities. One way of doing so is to take these
intuitive understandings as a starting point, and on them build new understandings.
For example, by letting students invent their own representations of motion
situations, before moving on to formal mathematical representations. Having students
actively involved in the learning process, starting with known meaningful situations,
and using models to bring students to higher levels of mathematical thinking and
reasoning is central to the domain-specific instruction theory of Realistic
Mathematics Education (Treffers, 1987; Van den Heuvel-Panhuizen & Drijvers,
2020).

Second, according to Leinhardt (1990), for teachers to be able to build on students’
intuitive and informal knowledge of representations and graphing requires
“tremendous levels of content-specific knowledge on the part of the teacher because
he must be prepared to go in any of the several directions and to construct on the spot
several curriculum scenario’s” (p. 49) (see also Hill & Ball, 2004). Because each
student has their own idiosyncratic ways of interpreting a situation, or a situation
represented in a graph, it can be difficult for teachers to tap into students’ intuitive
notions of how a motion phenomenon is graphically represented, as well as their
(evolving) understandings of associated mathematics concepts (e.g., scale,
covariation, rate of change, steepness of slope). This requires high levels of
mathematical knowledge, and pedagogical content knowledge on the part of the
teacher. Yet, based on my own experiences in the classroom, as being that teacher,
the activities that we developed in the context of this research project, were met with
great enthusiasm. As shown in the excerpt described above, as well as in the teaching
episodes described in Chapter 3, rich interactions between students occurred over the
course of the lessons. This was not only the case in the instruction condition offering
students direct embodied support, but in the indirect support condition as well.
Students were challenged to ask questions to the other students and the teacher, to
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express their ideas, to pose hypotheses, and to explore all kinds of alternative
solutions, which turned out to be helpful in supporting their reasoning about these
graphs.

Third, the findings of this PhD thesis show that technologically enhanced learning
environments are ideal to ground students’ understanding of motion phenomena, as
well as their formal representation as a mathematical graph, in experienced motion.
The incorporation of direct physical experiences in mathematics lessons through the
use of motion sensor technology in the classroom, is quite different from regular
instruction in primary school. Especially those teachers with little preference for these
types of activities will need further support on how to successfully use these tools in
their own practice (e.g., Lyublinskaya & Zhou, 2008). In order to implement the
teaching sequence and to use motion sensor technology in primary mathematics
education, an effort should be made to sufficiently support primary school teachers
to use these instructional tools and the related materials.

3. Limitations of this PhD thesis

The study design chosen for this PhD thesis (see Chapters 3 to 5) allowed us to study
the effects of the teaching sequence on graphing motion in a real classroom setting,
resulting in high ecological validity. Yet, this particular study design inevitably had
some methodological drawbacks. First, we could not apply random assignment of
students to instruction conditions. Second, only a relatively small sample of students
could be included in our research. Because we performed quite advanced statistical
analyses on this relatively small sample of students, we have to be cautious regarding
the interpretations of these findings. A lack of power, as a result of the small sample
size, might have caused some of the fit measures to be below the conventional cut-
off criteria (see Chapter 5). We assume that increasing the sample size would result
in a more adequate reflection of the found effects. Nevertheless, we are fairly certain
that the main results (i.e., intervention effect and condition effect) so far are
trustworthy and convincing enough to warrant further investigations.

Another limitation pertains our focus on students’ written responses to the graphing
tasks (see Chapter 3 to 5). Although we think it is important to consider students’
written explanations as an insightful alternative to merely applying correctness scores
(i.e., right/wrong), or using answers to multiple-choice tests (e.g., Berg & Smith,
2004; Lai et al., 2016), we cannot be sure that the written explanations of the students
were a true reflection of their complete understanding. Previous research has shown
that this might not always be the case, and that verbal descriptions of students’

198



Summary and discussion

understanding often suffer from reliability and validity issues (e.g., Fagginger-Auer
et al., 2015; Torbeyns et al., 2015). In our study, we provided the students with clear
instructions on how to elaborate on their answer by asking them “how do you know”
(this instruction was given both written and orally). Further, we asked the student to
immediately write down their explanations, without any time delay, which adheres
to the guidelines for verbal reports outlined by Ericsson and Simon (1993). Yet, based
on the results presented in Chapter 3 we are inclined to think that the written
explanations of the students were actually an underestimation of their full
understanding, especially with regard to the tasks measuring students’ ability in graph
interpretation, and their reasoning in an informal covariational manner therein. Also,
our focus on measuring students’ understanding verbally, to a certain extent,
contradicts our focus on the embodied understanding that was elicited in the lessons,
through movements and reflections on those movements. Further research could
expand on the use of verbal assessment tasks with non-verbal assessment
methodologies to measure students’ understanding as embodied cognition. Several
non-verbal methodologies to uncover students’ strategies when solving mathematics
tasks are summarized by Torbeyns et al. (2015), one of which is eye-tracking. Schot
et al. (2015) conducted a study in which they investigated children’s strategies when
solving a number line task (i.e., placing a number on the number line). When solving
these tasks, children’s eye-movements were captured and compared to both the given
response, and the correct response, for each task separate. As such, a more fine-
grained understanding of the different strategies when placing numbers on the
number line were obtained. Similarly, in the domain of graphing motion, students
eye-movements could provide information regarding the variables students attend to,
as well as the simultaneous coordination of those variables, as covariational
reasoning, when solving particular graphing tasks. Yet, the use of eye-tracking could
not replace regular assessment in this domain. Therefore, another way to capture
students’ understanding of distance-time graphs (among others) could be to use the
motion sensor technology for assessment purposes. For example, students could be
asked to “walk” a set of given graphs, to obtain a direct physical measure of their
(embodied) understanding of the graph as representing a specific motion situation.

In order to measure students’ macro-development over the schoolyear we
incorporated four tasks, of which three were related to graph interpretation and one
to graph construction. Although incorporating a limited number of tasks certainly
contributes to the ecological validity of the research (i.e., more aptly reflecting
regular classroom practices), and adheres to the ethical guidelines for social research
practices, the incorporation of more tasks, especially more graph construction tasks,
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might have offered a fuller picture of the breadth of students’ understanding. Finally,
the lessons presented in this PhD thesis were given to the students by the researcher.
We cannot readily assume that primary school teachers will feel confident enough to
teach this particular mathematics topic to their students and to incorporate motion
sensor technology in their lessons (see also Lyublinskaya & Zhou, 2008).

4. Concluding remarks

We can draw a few main conclusions about the research presented in the chapters of
this PhD thesis: (1) graphical reasoning and the related HOT can be stimulated in
primary school mathematics classrooms, (2) students’ graphical reasoning benefits
from (physical) experiences offered within a teaching sequence targeting motion
graphs, and (3) the HOT that was targeted in our research did not transfer to the
domain of linear equation solving. Based on these findings we may infer that direct
— and to a lesser extent indirect — physical experiences can be considered a
worthwhile entry point to stimulate students’ graphical reasoning as domain-specific
HOT in primary mathematics education, strengthening the grounding of HOT in
embodied cognitions. Carefully chosen lesson activities can give students the
opportunity to build upon their informal and intuitive understanding of motion
phenomena, in relation to the formal representation of those phenomena, as a
mathematical graph. We found that when partaking in these activities, their reasoning
about these graphs (e.g., taking into account the variables represented on the axes)
was elicited. In the Beyond Flatland-project, of which this PhD thesis was a part-
project (see Chapter 1), possibilities for enriching a “flat” arithmetic-focused
mathematics curriculum were explored. This PhD thesis presents a small step in this
direction and provides a domain-specific operationalization of this HOT as students’
reasoning about motion graphs.
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In onze huidige samenleving worden we voortdurend geconfronteerd met een
overvloed aan grafisch gerepresenteerde informatie. Deze grafieken die we
tegenkomen in de krant, op de televisie, of op het internet kunnen informatie bevatten
die niet alleen van zichzelf complex is, maar soms ook op vrij complexe wijze
weergegeven wordt. Om de informatie in deze grafieken te beschouwen en hieruit de
relevante informatie te destilleren is grafiekbegrip essentieel. Grafiekbegrip omvat
naast grafiekinterpretatie en grafiekconstructie ook het kritisch kunnen beschouwen
van grafieken. Grafieken waarin een continue verandering is weergegeven, zoals
temperatuur of beweging, vragen in het bijzonder om het nodige inzicht. Het is dan
ook van belang om al op jonge leeftijd inzicht te ontwikkelen in zowel de formele
aspecten van grafieken (bijv. de betekenis van de assen, van de weergegeven
variabelen in de grafiek, van de helling, samengestelde grootheden) als het
ontwikkelen van de wiskundetaal die gebruikt wordt om over deze grafieken te
spreken (bijv. stijgen, dalen, constant, helling, horizontale en verticale as). Ook is het
van belang om tijdens het beschouwen van grafieken te oefenen met het redeneren
over samengestelde grootheden, beschrijven van oorzaak-gevolg relaties, logisch
redeneren en het oplossen van problemen gerelateerd aan grafieken. Deze complexe
vaardigheden worden ook wel aangeduid met 215-eeuwse vaardigheden of hogere-
orde vaardigheden (HOV).

Het onderwijzen van HOV wordt gezien als een belangrijk onderdeel van het reken-
wiskundeonderwijs in de 215 eeuw. Terwijl internationaal wordt benadrukt om de
fundamenten voor HOV op jonge leeftijd te leggen, wordt in het Nederlandse
basisonderwijs aan HOV vrijwel geen aandacht besteed. De meeste tijd wordt besteed
aan het uitvoeren van rekenprocedures. Om HOV te introduceren in het reken-
wiskundecurriculum op de basisschool, werd het Beyond Flatland project geinitieerd.
Dit project heeft als doel het “platte” reken-wiskundecurriculum te verrijken middels
het implementeren van hogere-orde wiskundige activiteiten in de rekenles. De
onderzoeken beschreven in dit proefschrift dragen hieraan bij vanuit een domein-
specifieke benadering van HOV en richten zich op wiskundige HOV binnen het
deeldomein grafieken.

Om aan te sluiten bij de behoeften van basisschoolleerlingen is het belangrijk de
relevante HOV in te bedden in innovatieve onderwijsarrangementen. Een kansrijke
aanpak is het introduceren van activiteiten waarbij ingezet wordt op de actieve rol
van het lichaam. Dit idee, dat fysieke ervaringen waardevol zijn voor wiskundig
redeneren, vormt de kern van theorieén die uitspraken doen over zogenoemde
embodied cognition (vertaling: belichaamde cognitie). Namelijk, de lichamelijke
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ervaringen die we opdoen gedurende basale fysieke activiteiten, zoals lopen door de
ruimte, balanceren op een evenwichtsbalk of het beklimmen van een trap, zorgen
voor de totstandkoming van bepaalde conceptuele metaforen die behulpzaam kunnen
zijn in het begrijpen en duiden van abstracte ideeén, waaronder wiskundige
concepten. Binnen theorieén van embodied cognition is het handelingsrepertoire van
het lichaam, meer specifiek perceptuele-motoractiviteiten, essentieel. Cognitie wordt
gevormd in interactie met jezelf, de ander en de omgeving.

Dit promotieonderzoek kent een drietal onderzoeksdoelen. Het eerste doel was te
onderzoeken of, en in hoeverre, wiskundige activiteiten binnen het domein grafieken,
meer specifiek afstand-tijdgrafieken, het redeneren van leerlingen over deze
grafieken kan stimuleren. We hebben ons gericht op leerlingen uit groep 7, in de
leeftijd van 9 tot en met 11 jaar oud. Een tweede doel van dit onderzoek was nagaan
wat de rol is van embodied ervaringen om het redeneren over de wiskundige
concepten gerelateerd aan grafieken te stimuleren. Om de rol van deze lichamelijke
ervaringen op het wiskundig redeneren te onderzoeken hebben we (1) een
systematische literatuurstudie uitgevoerd en (2) een interventie ontwikkeld,
geimplementeerd en geévalueerd. De systematische literatuurstudie richtte zich op de
werkzame elementen van embodied leeromgevingen gericht op grafieken van
beweging. De interventie bestond uit een reeks van zes lessen met daarin embodied
activiteiten. Wiskundige HOV gerelateerd aan afstand-tijd grafieken kunnen gezien
worden als domein-specifiek. Hogere niveaus van redeneren worden bereikt als
gevolg van een toenemende mate van kennis binnen dit deeldomein. Dit domein-
specificke element van wiskundige HOV maakt gebruik van het redeneren over
covariantie. Dit redeneren over covariantie speelt ook een rol binnen andere
wiskundige domeinen, waaronder algebra. Het derde en laatste doel van dit
promotieonderzoek was onderzoeken in hoeverre een interventie gericht op grafisch
redeneren ook HOV kan stimuleren binnen een ander wiskundig domein, namelijk
algebra. Om aan te sluiten bij bovenstaande onderzoeksdoelen zijn een aantal
deelstudies opgezet waarover achtereenvolgens is gerapporteerd in de Hoofdstukken
2 tot en met 5 van dit proefschrift.

Hoofdstuk 2 beschrijft de systematische reviewstudie die werd uitgevoerd om de al
bestaande embodied leeromgevingen gericht op grafieken van beweging in kaart te
brengen. In de onderzoeksliteratuur is veelvuldig gerapporteerd over embodied
leeromgevingen, al dan niet bewust. Deze leeromgevingen komen voort uit
verscheidene cognitieve tradities en invalshoeken. Middels een review zijn deze
onderzoeken systematisch bekeken, om zo meer inzicht te genereren in het educatieve
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potentieel van embodied leeromgevingen. De uiteindelijke selectie van artikelen
(n = 44) bevatte 62 embodied leeromgevingen. Om grip te krijgen op de belangrijkste
kenmerken van deze leeromgevingen hebben we deze leeromgevingen
gecategoriseerd op twee dimensies: bodily involvement (betrokkenheid van het
lichaam in de activiteit) en immediacy (de onmiddellijkheid van de activiteit). Wat
betreft de eerste dimensie is een onderscheid gemaakt tussen het zelf bewegen
(directe embodied ervaringen) en het observeren van andermans bewegingen of de
bewegingen van objecten (indirecte embodied ervaringen). Wat betreft de tweede
dimensie, immediacy, hebben we onderscheid gemaakt tussen immediate
(onmiddellijk: “online” cognitieve activiteiten) en non-immediate (niet-onmiddellijk:
“offline” cognitieve activiteiten). Beide dimensies gecombineerd resulteerde in een
taxonomie van embodied leeromgevingen met daarin vier afzonderlijke categorieén:
Categorie 1 — Immediate Own Motion, Categorie 2 — Immediate Others/Objects’
Motion, Categorie 3 — Non-immediate Own Motion, en Categorie 4 — Non-immediate
Others/Objects’ Motion. De embodied leeromgevingen behorende tot de eerste
categorie waren het vaakst voorkomend.

De systematische review resulteerde in acht karakteristieken, die gezien kunnen
worden als specifiek voor embodied leeromgevingen waarbinnen het leren over
bewegingsgrafieken centraal staan. Deze acht karakteristieken, hierna mediérende
factoren, zijn: real-world context (realistische context), multimodality
(multimodaliteit), linking motion to graph (koppeling tussen beweging en grafiek),
multiple representations (meerdere representaties), semiotics (semiotiek), student
control (controle), attention capturing (aandacht vangen), en cognitive conflict
(cognitief conflict). Deze acht medi€rende factoren hebben elk hun eigen rol in hoe
ze het leren binnen de leeromgeving bevorderen. Bijvoorbeeld, de medierende factor
linking motion to graph beschrijft hoe leerlingen de directe link tussen beweging en
de daarbij behorende grafiek kunnen observeren. Een andere factor multimodality
houdt in dat door de specificke kenmerken van een hulpmiddel (bijvoorbeeld een
bewegingssensor) of een bepaalde instructie, ten minste twee modaliteiten, zoals
zien, horen, aanraken, inbeelden, of motoractie, tegelijkertijd worden geactiveerd. De
vier categorieén in combinatie met de acht medi€érende factoren zijn kenmerkend
voor de complexe natuur van embodied leeromgevingen zoals deze kunnen bestaan
in onderwijs en onderzoek. Elke categorie kent een bepaalde combinatie van
medi€rende factoren. Als zodanig is er veel variatie mogelijk tussen embodied
leeromgevingen. Leeromgevingen die gebruik maken van de eigen beweging welke
onmiddellijk gelinkt wordt aan de grafische representatie van die beweging
(Categorie 1), zijn, aldus de review, het meest effectief in termen van leeruitkomsten.
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In deze specifieke categorie werden de drie mediérende factoren, multimodality,
linking motion to graph, en multiple representations het vaakst genoemd.

In de Hoofdstukken 3 en 4 wordt verslag gedaan van de twee deelstudies waarin de
potentie van fysieke ervaringen tijdens het leren over afstand-tijd grafieken is
onderzocht. In deze deelstudies is gebruik gemaakt van een embodied leeromgeving,
bestaande uit een zesdelige lessenserie, waarbij directe of indirecte embodied
ervaringen een rol speelden. Deze zesdelige lessenserie was gericht op het stimuleren
van het redeneren van leerlingen over grafieken, meer specifiek, het weergeven van
beweging met afstand als functie van tijd. Vanuit het idee, gebaseerd op theorieén
van embodied cognition, dat perceptuele-motorervaringen een belangrijk startpunt
zijn om hogere niveaus van wiskundig redeneren te bereiken, werden twee parallelle
versies van de lessenserie ontworpen. In de ene versie van deze lessenserie kregen de
leerlingen directe embodied ondersteuning door gebruik te maken van een
bewegingssensor. Hiertoe werden bij de bewegingssensor activiteiten ontwikkeld
waarin de eigen bewegingen direct gevisualiseerd (bijvoorbeeld geprojecteerd op het
digitale schoolbord) werden als een lijn in de afstand-tijdgrafiek. In de andere versie
van deze lessenserie kregen de leerlingen indirecte embodied ondersteuning door
gebruik te maken van pen en papier of projecties op het digitale schoolbord.
Leerlingen kwamen in deze conditie ook in aanraking met de context van de
bewegingssensor, echter zonder de aanwezigheid van de fysieke tool.

In de studie waarover werd gerapporteerd in Hoofdstuk 3 is dieper ingegaan op de
leeromgeving met daarin directe embodied ondersteuning. De focus van deze studie
lag op de micro-ontwikkeling van het grafisch redeneren van de leerlingen over de
zes lessen. De resultaten van de review gepresenteerd in Hoofdstuk 2 suggereerden
al enigszins dat een leeromgeving waarbij de eigen bewegingen onmiddellijk
gekoppeld konden worden aan de grafische representatie van die beweging (bijv.
afstand-tijdgrafieken, snelheid-tijdgrafieken) gezien kan worden als meest kansrijk
om het begrip van deze grafieken te vergroten. In deze studie hebben we dan ook
meer specifiek gekeken naar de rol van embodied ervaringen tijdens activiteiten met
de bewegingssensor in de ontwikkeling van het redeneren over grafieken. Deze
ontwikkeling over de lessen werd gemonitord middels grafiekinterpretatietaken en
grafiekconstructietaken na elke les. De resultaten lieten zien dat de leerlingen over
de zes lessen van een iconisch begrip van afstand-tijd grafieken naar een dieper
begrip gingen. Hierbij redeneerden de leerlingen over de grafieken door de variabelen
afstand en tijd, gerepresenteerd op de assen van de grafiek, impliciet of expliciet te
benoemen. Op dit hogere niveau van redeneren lieten de leerlingen ook informeel
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redeneren over covariantie zien (bijv. “het afleggen van meer afstand in minder tijd”).
Daarnaast bleek uit een kwalitatieve analyse van twee lesepisoden, waarbinnen de
interacties van een leerling met de docent en andere leerlingen centraal stonden, dat
deze vooruitgang in redeneren plaatsvond in relatie tot de perceptuele-
motorervaringen voor de bewegingssensor. Zo zagen we dat deze leerling meer
begrip ontwikkelde over het lopen van een bepaalde grafiek middels de codrdinatie
van verscheidene modaliteiten (zien, horen, gebaren, bewegen), die door de leerling
(al dan niet bewust) gekoppeld werden aan de grafische representatie die zich op het
scherm van de computer openbaarde. De bewegingen van deze leerling, evenals
bepaalde kenmerken van de grafische weergave die naar voren kwamen tijdens het
lopen van de grafiek, kwamen ook terug in het redeneren van de leerling over de
grafiek. De technologie die tijdens de lessen werd gebruikt, was een belangrijke
facilitator in dit proces. Kortom, bij deze en de andere leerlingen ontdekten we dat de
lichamelijke activiteiten voor de bewegingssensor resulteerden in hogere niveaus van
wiskundig redeneren in termen van het redeneren over de variabelen afstand, tijd en
snelheid (bijv. “meer afstand in minder tijd resulteert in een steilere helling”).

In de studie beschreven in Hoofdstuk 4 gaan we dieper in op het effect van directe
embodied ervaringen versus indirecte embodied ervaringen op het redeneren over
afstand-tijdgrafieken. In deze effectstudie maakten we gebruik van een cohort
sequentieel longitudinaal ontwerp om de veranderingen in het grafisch redeneren van
de leerlingen gedurende het schooljaar te onderzoeken. De ontwikkeling van de
leerlingen in hun grafisch redeneren werd vastgesteld middels het analyseren van hun
antwoorden op vier grafiekinterpretatie- en grafiekconstructietaken. De lessen in de
indirecte embodied conditie bevatten vergelijkbare activiteiten als de activiteiten in
de directe embodied conditie, echter zonder dat de leerlingen de mogelijkheid kregen
om bepaalde bewegingen zelf uit te voeren middels het gebruik van een
bewegingssensor. In deze indirecte embodied conditie werd de beweging van een
object (d.w.z. een speelgoedauto) als uitgangspunt genomen. De beweging van dit
object werd enerzijds weergegeven op papier, als beschrijving, en anderzijds
dynamisch, als projectie op het digitale schoolbord. Een derde groep leerlingen
diende als baseline conditie. Deze leerlingen kregen les over een ander wiskundig
onderwerp, namelijk kans. De leerlingen in zowel de directe als indirecte embodied
conditie gingen sterk vooruit in hun grafisch redeneren na het volgen van de lessen,
waarbij de resultaten van de leerlingen in de baseline conditie dienden als ijkpunt om
deze vooruitgang vast te stellen. Hieruit kunnen we afleiden dat de leerlingen in de
baseline conditie niet meer vooruit gingen dan je op basis van een reguliere
ontwikkeling over de tijd zou mogen verwachten. Dit geeft aan dat beide versies van
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de ontwikkelde lessenserie zeer effectief waren. Daarnaast vertoonden de leerlingen
in de directe embodied conditie een sterkere groei in hun grafisch redeneren dan de
leerlingen in de indirecte embodied conditie. Hieruit blijkt dat directe embodied
ervaringen kansrijk zijn in het stimuleren van het grafisch redeneren van leerlingen
in groep 5.

In de literatuur worden HOV veelvuldig geconceptualiseerd als domein-algemeen.
Dit houdt in dat HOV gestimuleerd kunnen worden ongeacht de context. Er is echter
ook onderzoek dat stelt dat HOV domein-specifiek zijn en juist ontwikkelen door een
groei in kennis en vaardigheden binnen een bepaald academisch domein. Wiskundige
HOV binnen het deeldomein afstand-tijd grafieken, waaronder het redeneren over
deze grafieken, maken onder meer gebruik van het vermogen van een leerling om te
redeneren over covariantie. Covariantie is een parameter die de mate van samenhang
tussen bepaalde variabelen uitdrukt. Dit redeneren over covariantie is ook relevant
binnen andere wiskundige domeinen, waaronder lineaire vergelijkingen. Meer
algemeen is het aannemelijk dat bepaalde elementen van HOV die relevant zijn
binnen meerdere wiskundige domeinen, versterkt kunnen worden binnen een van
deze domeinen en zo kunnen worden overgebracht naar het andere wiskundige
domein, op basis van domein-algemeen wiskundig redeneren (zoals het extraheren,
gebruiken, en combineren van meerdere bronnen van informatie). In de laatste studie
van dit proefschrift, waarover werd gerapporteerd in Hoofdstuk 5, werd onderzocht
of de domein-specifieke lessenreeks over afstand-tijd grafieken tevens resulteerde in
de ontwikkeling van HOV binnen een ander wiskundig domein: het oplossen van
lineaire vergelijkingen. Om het algebraisch redeneren over deze lineaire
vergelijkingen te onderzoeken werd gebruik gemaakt van vier taken waarin
leerlingen gevraagd werd lineaire vergelijkingen op te lossen. De bevindingen van
deze studie wijzen uit dat de domein-specifieke lessenreeks over grafieken
resulteerde in een significant hoger gemiddeld groepsniveau in het algebraisch
redeneren van de leerlingen. Dit effect was minder sterk dan het effect op het grafisch
redeneren. Echter, op individueel niveau werd geen verband gevonden tussen de
groei van leerlingen in hun grafisch redeneren en de groei van leerlingen in hun
algebraisch redeneren. Met andere woorden, de leerlingen die verbeterden in grafisch
redeneren, verbeterden niet hun algebraisch redeneren, en omgekeerd. Op basis
hiervan trekken we de voorlopige conclusie dat de HOV gestimuleerd in de
lessenreeks over grafieken niet per definitie resulteerde in HOV binnen een ander
wiskundig domein. De bevinding dat de leerlingen wel een verbetering in hun
algebraisch redeneren vertoonden na deelname aan de interventie, verdient nader
onderzoek.
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In Hoofdstuk 6 worden de resultaten van dit promotieonderzoek samengevat en is
gekeken naar de implicaties van dit onderzoek voor theorie en praktijk. Hierbij was
aandacht voor de beperkingen van het onderzoek en suggesties voor mogelijk
vervolgonderzoek. Op basis van de resultaten van het onderzoek beschreven in de
afzonderlijke hoofdstukken kunnen we een aantal algemene conclusies opstellen
aangaande directe versus indirecte embodied ervaringen in wiskundige activiteiten
voor het stimuleren van grafisch redeneren. Zo kunnen relatief simpele activiteiten,
zoals “het lopen” van grafiecken voor de bewegingssensor, ervoor zorgen dat
leerlingen op natuurlijke wijze een connectie maken tussen de eigen beweging en de
lijn in de grafiek. Hierdoor kunnen hogere niveaus van redeneren over deze afstand-
tijd grafieken worden bereikt. Het is aannemelijk dat de eigen bewegingen voor de
sensor resulteren in de totstandkoming van nieuwe embodied metaforen, welke
gekoppeld worden aan de al bestaande intuitieve ideeén over de grafiek. Ook
indirecte embodied ervaringen hebben geleid tot een dieper begrip van afstand-tijd
grafieken. Het is aannemelijk dat in de indirecte embodied leeromgeving lichamelijke
ervaringen op een kwalitatief andere wijze werden geactiveerd, meer waarschijnlijk
door middel van embodied simulatie. Daarnaast kan het stimuleren van het grafisch
redeneren van de leerlingen, binnen de leeromgeving die we hebben ontwikkeld in
het kader van dit promotieonderzoek, gezien worden als een domein-specifieke
operationalisatie van wiskundige HOV op het niveau van de basisschool. Dit is een
waardevol resultaat voor de huidige onderwijspraktijk waar de vraag bestaat hoe
HOV, als een belangrijk onderdeel van 21%“-eeuwse vaardigheden, gestimuleerd
kunnen worden. Om het reken-wiskundecurriculum te verrijken kunnen activiteiten
zoals we voor dit onderzoek hebben ontwikkeld, ingezet worden. Hierbij is het van
belang rekening te houden met de al bestaande ideeén van leerlingen over grafieken
door op deze ideeén voort te bouwen. Daarnaast is het van belang om het gebruik van
technologie, waaronder bewegingssensoren, in het basisonderwijs te faciliteren door
zowel de leerkracht te ondersteunen in het gebruik van dergelijke tools en de daarbij
behorende lesactiviteiten alsmede de leeromgeving zo in te richten dat de
bewegingssensor optimaal ingezet kan worden.
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D A NKWOORD

“En toen stapte hij in bed, trok zijn deken over zich heen, wreef in het donker

zijn voelsprieten over elkaar en fluisterde: “Dankjulliewel™

(Toon Tellegen, in: Dankjewel: Dierenverhalen om iemand te bedanken, 2012)



In de periode die voorafging aan de totstandkoming van dit proefschrift hebben een
fantastische groep onderzoekers, lieve vrienden en familie menig hoogte- en dieptepunt,
lief en leed met mij gedeeld.

Allereerst wil ik mijn (co-)promotoren bedanken voor de mogelijkheid die ze mij hebben
gegeven om dit promotieonderzoek te kunnen doen. Marja, je was een Kritische
supervisor, met ontzettend veel enthousiasme voor — en kennis over — het reken-wiskunde
onderwijs in binnen- en buitenland, iets wat de kwaliteit van dit proefschrift zeker ten
goede is gekomen. Paul, telkens was je er om met wat scherpe kanttekeningen en juist
geplaatste vragen, teksten, artikelen, en uiteindelijk dit proefschrift naar een hoger niveau
te tillen. Michiel V., jouw kwaliteiten als onderzoeker zijn bewonderenswaardig, en ik
ben blij dat je altijd de tijd en ruimte had (of maakte) om met me mee te denken. Hoe kan
ik je toch bedanken, wellicht met een kuipje Philadelphia? Michiel D., jouw rust en
kalmte hebben menig stressvol moment verlicht. Je inhoudelijke suggesties waren voor
mij altijd even waardevol, evenals de gesprekjes over alle niet promotie gerelateerde
zaken.

Jan, je was het Mplus-wonder van ons project. Al ging ik af en toe met lood in mijn
schoenen richting je kamer om de zoveelste inconsistentie met je te bespreken, jouw
humor en zekere nonchalance maakten van onze bijeenkomsten altijd weer een feestje!

Lieve Mara en Suzan, ik ben blij dat jullie als paranimfen naast mij staan. Mara, de
afgelopen jaren waren op vele vlakken onvergetelijk; van slenterend door New York tot
laminaat leggend in Utrecht, alle pieken en dalen, we hebben ze doorstaan. Zonder jouw
support was dit proefschrift er niet geweest. Suzan ook al was je geografisch gezien niet
altijd dichtbij, dat maakte eigenlijk niet uit. Naast alle gezelligheid en gedeelde interesses
kan ik zo genieten van je gave om altijd het positieve te zien.

Leerkrachten en leerlingen van basisscholen De Howiblo, CNS Abcoude, de
Willibrordschool, St. Ludgerus, Wereldwijs, De Rank, en De Regenboog, we kunnen wel
stellen dat jullie bewegingen voor dit onderzoek eigenlijk onmisbaar waren. Dat geldt
ook voor de onderzoeksassistenten en stagiaires die hebben geholpen met het verzamelen
(en coderen) van de data.

My (former) roommates from H2.08 and F2.14. Roos, als ik terugdenk aan die eerste
jaren denk ik met name terug aan je humor en je optimisme, aan de avonturen die we
hebben beleefd, aan heel veel lachen en een enkele traan. Dit proefschrift is af mede
dankzij jou. Dear Yan, although you cannot be here in person, your warm-heartedness,
kindness, and never ending interest in everyone around you including me, is something [
cherish. Ali, my modest colleague and roommate, you were the person who introduced
saffron to me, and I hope one day I will see the country where that saffron came from.
Ilona, dankjewel voor je rust, je heldere blik en je bemoedigende woorden.
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Er zijn ook heel veel andere collega’s geweest die dit promotietraject de afgelopen jaren
leuker, verfrissender, interessanter, en gemakkelijker hebben gemaakt! Collega’s van de
afdeling Orthopedagogiek, ik kijk met veel plezier terug op alle lunches, borrels, en
gesprekjes in de wandelgangen, en meer, die ik de afgelopen jaren met jullie heb gedeeld.
Collega’s van het Freudenthal Instituut, niet alleen stonden velen van jullie klaar om de
telefoon te beantwoorden als de techniek het weer eens liet afweten, ook heb ik genoten
van de interessante inhoudelijke besprekingen over allerhande onderwerpen, en de
gezellige koffie sessies op een aantal van de hotspots die de Uithof rijk is. Colleagues
from IPN, more specifically, Anke and Aiso, your hospitality and kindness have made it
a pleasure to be in Kiel during the first years of our project. En tenslotte, mijn (inmiddels
niet meer zo) nieuwe collega’s van de Marnix Academie, meer in het bijzonder mijn
kamergenoten van het MIC, maar ook alle lieve betrokken collega’s buiten die vier
muren, jullie warmte en interesse in mijn promoticonderzoek en jullie
relativeringsvermogen heeft me heel goed gedaan het afgelopen jaar.

Mijn oud-studiegenootjes, the saturated p-values, jullie mogen hier niet ontbreken. Veel
van ons zaten en zitten in hetzelfde schuitje, een moment met jullie is dan ook een feest
van herkenning. Eva, Eveline, Rianne, Ryanne, Marloes, jullie brachten me de nodige
afleiding en nieuwe inzichten, werk gerelateerd en persoonlijk, met fijne gesprekken,
leuke uitstapjes of beide.

Tenslotte mijn lieve vrienden en familie. Jullie zorgden voor een ander perspectief.
Tijdens dit traject heb ik niet alleen de nodige kennis en vaardigheden opgedaan wat
betreft het doen van onderzoek, maar heb ik me ook gerealiseerd dat het hebben van een
groep warme mensen om me heen met wie ik samen kan genieten, filosoferen en dromen,
van onschatbare waarde is — dan denk ik bijvoorbeeld aan samen zijn in je eigen
compartimentje, aan het kijken naar en genieten van kunst, aan eindeloze hoeveelheden
sushi, aan wandelend en fietsend door (de provincie) Utrecht of daarbuiten, treinend door
Europa, of vloggend door Kroati€, aan mijn “mental coach” en haar assistenten, en dan
niet alleen Dit maar zeker ook Dat — wat ben ik blij dat jullie er zijn.

Lieve familie, ouders, broers, ik ben gelukkig jullie in mijn leven te hebben, te zien, te
spreken. Ondanks dat jullie je vaak (hardop) hebben afgevraagd waarom ik dit eigenlijk
doe, ik heb me altijd gesteund geweten.

Terugkijkend op deze jaren ben ik boven alles dankbaar dat ik zoveel mocht ontvangen.
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Appendices 2.1 to 2.3 belong to Chapter 2 of this PhD thesis

Appendix 2.1

Sample Query and Sample Filters.

Education

Learning
facilitator

Domain

Topic

Variables

Filter(s)

(adult* OR child* OR class* OR course* OR curricul* OR education* OR
grade* OR instruct* OR kindergarten OR learn* OR lesson* OR
pedagogic* OR pupil* OR school* OR student* OR teach*)

AND

("body motion" OR bodily OR "conceptual metaphor*" OR embod* OR
"fictive motion" OR haptic OR kinesthetic* OR multimodal* OR
"multiple modalities" OR "perceptuo-motor" OR "physical event*" OR
"physical experience*" OR "physical participation" OR psychomotor OR
sensorimotor OR "sensory-motor" OR "sensuous cognition" OR cbr OR
coach OR "data-acquisition probeware" OR GeoGebra OR "graphing
calculator*" OR Kinect OR "learning in motion" OR manipulative* OR
mbl OR motiondetector OR "motion detector" OR motionsensor OR
"motion sensor" OR "motor simulation" OR "physical object*" OR
"physical tool*" OR "real-time graphing technology" OR "smartgraph*"
OR "Texas instruments" OR "TI-Nspire" OR Vernier OR video* OR
"virtual graphing program*" OR Wii)

AND

(engineering OR math* OR "physical science" OR physics OR science OR
stem)

AND
(graph* OR kinematics OR kinetics)
AND

(acceleration OR change OR data OR distance OR "dynamic data
modelling" OR motion OR time OR speed OR velocity)

AND
. In SCOPUS and Web of Science, the limitations were set to journal
articles.
. In ERIC, the limitations were set to journal articles and peer-

reviewed articles.
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Appendix 2.2
1. Quality check

We conducted a quality appraisal on the 26 studies making a comparison with a
comparison group and/or making pre-posttest comparisons. First, they were coded
based on their design, being (quasi) experimental or descriptive (see Barzilai, Zohar,
& Hagani, 2018). Articles were coded as (quasi) experimental if a research strategy
was used in which certain variables were controlled and actively manipulated by
applying an intervention (i.e., including a certain learning environment). Articles
were coded as descriptive if the outcomes of an intervention were described (i.e.,
including a report of a case study analysis of the specific occurrence of teaching
and/or learning present within the learning environment). Hereafter, by making use
of a coding scheme developed by Jabbar and Felicia (2015), we coded the articles’
methodology on seven quality indicators, being: control group, type of data
gathering, number of time-points, type of data analysis, sample size, research setting,
and quality of reporting. For a description and an illustration of each quality indicator
see Table 1. We assumed that an indicator was not met if there was no information
provided about the indicator in the article.
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Table 1
Quality indicators and scoring procedure

Criteria Description Score
A. Intemgl validity Preventing or minimizing bias:
(validity) e  Control group (Making a comparison 2
between groups, either receiving an
intervention, or not)
e  No control group 1
Data gathering
e  Collecting both qualitative and quantitative 1 (Yes)
data 0 (No)
Time-points
e  Multiple time-points (time series - 3
longitudinal)
e  Pre-posttest (before and after study) 2
e Posttest observation 1
Data analysis
e  Correlation/Regression analysis (association 3
between variables)
e  Factor analysis (clustering variables) 2
e Descriptive analysis }
e Qualitative analysis
B. External validity  Sample size (participants)
(generalizability, e 1-99 1
applicability, e 100-199 2
transferability) o 200-299 3
e 300-399 g
e 400 and above
Research setting
e  Related to real-world experiences and 2
context
e  Laboratory setting 1
Quality of reporting
e Adequate details of the relation between the 2 (Yes)
embodied learning environment, the activity 1 (Partly)
and the research questions 0 (No)
e  Adequate details of participants (age, gender,
academic background, and sampling
decisions) 2 (Yes)
1 (Partly)
0 (No)
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1.1 Explanation of each quality indicator
1.1.1 Control group

Articles were coded as with or without a control group (yes=2, no=1). A control group
could both be a condition receiving an intervention or a condition not receiving an
intervention.

1.1.2 Data gathering

Studies were coded as mixed method data gathering when they adopted a
methodology where they included both qualitative and quantitative data and reported
results from both data sources (yes=1, no=0).

1.1.3 Measurements

Studies were coded multiple measurements (3) if they included time series data
(longitudinal data or retention data), pre-test posttest (2) if they included a before and
after study, and posttest observation (1) if they included observational measures over
the course of a certain period or at the end of an intervention.

1.1.4 Data analysis

Data analysis was coded based on the statistical methods used (for example,
regression/correlation (3), factor analysis (2), descriptive analysis (1), or qualitative
analysis (1)).

1.1.5 Sample size

Sample size was coded ranging from very small (1-99) (1) to very large (400 and
above) (5), based on the work of Comrey and Lee (2009), cited in Jabbar and Felicia
(2015).

1.1.6 Research setting

The data collection was coded as real-world data collection when data-collection took
place in a real-world environment (e.g., at school) (2), and laboratory (e.g., outside-
school context) (1).

1.1.7 Quality of reporting

Indicating whether the studies provided adequate details about their study, coded
either sufficient (2), partly sufficient (1), or insufficient (0). These details included
information about the relation between the embodied learning environment, the
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activity and the research questions, and information about the participants such as
age, gender, academic background, and sampling decisions.

1.2 Quality appraisal

Scores for each quality indicator were added such that each article was given a quality
score (possible range: 5-20). Figure 1 shows a histogram of the scores allocated to
each article in the final selection of 26 articles. The mean rating was 11.77, with a
standard deviation of 2.93 (the mean rating of the entire sample was 10.27, with a
standard deviation of 2.97). Based on these scores we positioned the articles as being
of low (5-8), fair (9-12), high (13-16), or very high (17-20) quality. Every article
rated 13 and above, can be considered as providing methodologically high-quality
evidence of the effects of embodied learning environments on students understanding
of graphing change. Accordingly, 9 articles (35%) were appraised as being of high
quality, 14 articles (54%) were appraised as being of fair quality, and 3 articles (12%)
were appraised as being of low quality.
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Figure 1. Histogram of quality scores for the 26 articles.
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A histogram of the scores allocated to each article for the entire sample of articles
(n = 44) are given in Figure 2.
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Figure 2. Histogram of quality scores for the 44 articles.
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Appendices 3.1 to 3.3 belong to Chapter 3 of this PhD thesis
Appendix 3.1 The intruder task

In addition to the tasks as described in the two versions of the teaching sequence, in
both versions a problem-solving task “The intruder task”, which spanned the entire
six-lesson teaching sequence, had to be solved by the students. This addendum
provides a complete description of the problem-solving task that we developed. In
order to solve the problem, students have to use knowledge and skills related to
graphing motion. Students acquired this knowledge and skills throughout the
teaching sequence. We will first give a description of the problem-solving task, which
was inspired by a task as reported on by Espinoza (2015). We will then show how
the problem-solving task was related to the topics of the respective lessons in the
teaching sequence.

1. Problem description of the Intruder task

Each student received a booklet with a description of the task. The problem-solving

task was introduced as follows:
In a secret laboratory somewhere in the world new plants are being developed.
Seeds of these plants are extremely rare and very valuable. Yet, something
terrible has happened! In the middle of the night an intruder has broken into the
laboratory and has stolen the seeds of one of the plants. Because of the unique
characteristics of each plant it is important to find out from which plant the
intruder took some seeds. Can you help the police solve this problem?

Sensor 1

Lab 2

Figure 1. Floorplan of the laboratory.
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The students then received the information necessary to solve the problem: the
floorplan of the laboratory facility, including the positioning of the motion sensors
and the entrance doors to each lab, and seven graphical representations. This
information was introduced as follows:
In this booklet you will find information about the laboratory facility and the
burglary. You find a description of the plants, a floorplan of the laboratory
facility (including the four labs), and seven graphs. Two motion sensors are
positioned in the two main corridors of the facility. The motion sensors track the
movements of any person (or object) present within the facility. Using this
information, you are going to investigate from which lab (1-4) the intruder took
some seeds.

The intruder was in the building from 01:30 till 01:45. During the night several
graphs were made. Two graphs represent the movements each motion sensor
captured during the time period the intruder was inside, for each sensor. Five
graphs represent the temperature in the four labs and the corridor during this
same time period.

2. Description of the lessons and the problem-solving task

Table 1 shows how elements of the problem-solving task are related to the topics
addressed in the teaching sequence, per lesson. In Lesson 2, the students were asked
to more closely inspect the two graphs that belonged to the motion sensors, see Figure
2 and Figure 3. How the information was represented in each of the graphs was
discussed with the students. Motion graph 1 closely resembled a continuous graph,
whilst Motion graph 2 had longer periods of time in between measurement moments.
This distinction between discrete and continuous graphs was already discussed
during the first part of Lesson 2, where students had performed various activities
related to this distinction. After this discussion of the two motion sensor graphs,
students received Graph 2 in the same format as Graph 1.
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In Lesson 4, the first part of the problem could be solved. Students could deduce the
route of the intruder through the laboratory facility by combining the information
from both graphs. This resulted in two possible solutions to the task; the intruder was
in either Lab 2 or Lab 4.

Distance towards the sensor (in meters)
©
o

01:28 01:29 01:30 01:31 01:32 01:33 01:34 01:35 01:36 01:37 01:38 01:39 01:40 01:41 01:42 01:43 01:44 01:45 01:46 01:47
Time (in minutes)

Figure 2. Graph 1 — Motion sensor 1.

110/e oo o oo 0e oo e eoeoo0eooo 0000000000000 00000

Distnace towards the sensor (in meters)
%
o

20 ee®®e®

01:28 01:29 01:30 01:31 01:32 01:33 01:34 01:35 01:36 01:37 01:38 01:39 01:40 01:41 01:42 01:43 01:44 01:45 01:46 01:47
Time (in minutes)

Figure 3. Graph 2 — Motion sensor 2.
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In Lesson 5, the second part of the problem could be solved. In relation to the topic
addressed in this lesson, the importance of scaling of the axes was made salient. The
problem-solving task showed how each laboratory and the corridor has its own
temperature (Lab 1 =10 °C, Lab 2 =20 °C, Lab 30 =30 °C, Lab 4 = 40 °C, corridor:
15 °C). First, students were invited to think about how these temperature graphs could
possibly help in solving the problem. The students should infer that opening a door
would most likely cause a major fluctuation of the temperature inside the room if the
solution would be Lab 4, or to a lesser extent, if the solution would be Lab 2. Thus,
in order to know in which laboratory the intruder had been, students should closely
inspect the given temperature graphs (see Figures 4 till 8). Yet, the students were
given graphs with a similar scale on the y-axis leaving not much room for seeing
possible fluctuations in the temperature. Therefore, to be absolutely certain about a
possible solution it is necessary to change the scaling of the axes, to receive more
targeted information. The students, in small groups had to think about what
information they would like to receive (change the scale on the x-axis, the y-axis, or
both). After making this decision, the students received a version of the graphs they
requested (see Figures 9 till 12). On the basis of the now visible fluctuations students
could formulate an answer to the problem.
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0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 01:40 0141 0142 01:43 0144 0145 01:46 01:47

Time (in minutes)

Figure 8. Temperature graph representing the temperature in the corridor.

o131 o132 0133 o134 0135 o136, 0137 o138, 0139 o0

Time (in minutes)

Figure 9. Temperature graph with scaling on the x-axes, for Lab 2.

o131 o132 0133 o134 0135 o136, 0137 o138, 0139 o0

Time (in minutes)

Figure 10. Temperature graph with scaling on the x-axes, for Lab 4.
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43.0

220

Temperature (°C)

410

01:31 01:32 01:33 01:34 01:35 01:36 01:37 01:38 01:39 01:40

Time (in minutes)

Figure 11. Temperature graph with scaling on both the x-axis and the y-axis for Lab 4.

°

Temperatuur (°C)
IS
o

21.0

01:31 01:32 01:33 01:34 01:35 01:36 01:37 01:38 01:39 01:40

Time (in minutes)

Figure 12. Temperature graph with scaling on both the x-axis and the y-axis for Lab 2.

In Lesson 6, the final lesson in which the students worked on the intruder task, the
students received a written description of how the intruder escaped.

Unfortunately the intruder escaped! Luckily the police did catch the intruder. A

newspaper published a story related to the intruder’s escape. Can you draw the
graph based on this newspaper article?

Based on this written description of the pursuit of the intruder, students were asked

to graph the simultaneous movements of both the intruder and the police in a
distance-time graph.
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