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1 Introduction 

To draw inferences about real-world situations, correlation and linear 
regression models are applied to describe a linear relation between two 
variables with a formula. To construct such a model, the observed data 
points are represented in a scatterplot – one variable on the horizontal axis 
and the other on the vertical axis. After the scatterplot is drawn, the data are 
examined to find a pattern that can often be modelled with a line (Figure 1). 
The line with the best fit is called “regression line.” The formula for the 
regression line can be used to summarize the current situation or make 
predictions. The strength of this relation can be indicated by a measure 
called “correlation.”  

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Regression line to approximate a relationship between age and 
peak heart rate. 

The relevance of correlation and regression models in the real world implies 
the importance of supporting secondary school students’ learning and 
understanding of these statistical techniques. The relevance of regression 
models within statistics as a whole is evident from the history of statistics. 
Many statisticians have contributed to the development of modelling by 
correlation and regression. Since Pearson (1857-1936), this type of 
modelling has been a part of statistics (Stigler, 1986). The origin of 
regression can be found in the natural sciences, in real-world problems in 
astronomy and geodesy such as the distribution of measurement errors for 
heavenly bodies moving around the sun (Stigler, 1986). Nowadays, many 
academic statistics courses acknowledge the relevance of correlation and 
regression and include these techniques in their curricula. In secondary 
school this relevance is less trivial. For many upper-secondary school 
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students in the Netherlands  correlation and regression are an optional topic 
within mathematics, often taught in only a few lessons. In secondary 
education, mathematics textbooks often take a formal methodological 
approach with few or no real-world examples (Estepa & Sánchez-Cobo, 
1998). Despite the techniques often being introduced through a context, the 
focus is on learning the techniques in a formal way. After such lessons, the 
students are supposed to be able to construct a formula for a regression line 
and calculate a measure for correlation, but it may be asked whether they 
understand what they are doing. The offered data set is often carefully 
chosen and the search for a signal amongst the “noise” (variability) has not 
been the focus of teaching (Konold & Pollatsek, 2002). Afterwards, students 
probably will still not be able to draw real-world inferences when they meet 
real-world problems with messy data, especially when they are working 
with their own sampling and measurements. These formal approaches 
ignore the fact that variability is omnipresent in real-world data and can 
affect people’s lives (Wild & Pfannkuch, 1999). When learning is tightly 
focused on formal learning objectives, it can become meaningless for 
students (Ainley, Pratt, & Hansen, 2006). 

Our study is intended to find a more meaningful way of teaching correlation 
and regression. Rather than starting with explaining the formal techniques, 
what Freudenthal (1973) called anti-didactic inversion, we start with 
authentic applications and work towards understanding correlation and 
regression and their applicability. Applicability is one reason to use 
authentic professional practices as a basis for the design of teaching 
materials. Teaching that is based on authentic professional practices can 
provide students with a sense of relevance for real world situations and a 
better understanding of the real world (Berlin & White, 1992). It can 
motivate students to learn correlation and regression and to apply their 
knowledge in other scientific and real-life contexts (Bray, 1969). 

Another reason to base design and teaching on authentic professional 
practices is that students may get the opportunity to experience coherence 
between mathematics and the natural sciences. Professionals in 
mathematics-related fields draw upon interdisciplinary knowledge when 
they have to solve their real-world problems (English, 2009). This is 
especially true when professionals have to deal with statistical inferences. 
Traditionally, in the Netherlands, but also in other countries, school subjects 
such as mathematics, biology, geography and physics are taught separately 
in secondary education. Despite the creation of new school subjects that 
combine subjects (e.g., Nature, Life and Technology), teaching subjects 
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separately remains the core of secondary education. Separate teaching of 
subjects often results in the acknowledged problem that students are not able 
to use concepts they learn in one subject in other subjects. Bransford, Brown 
and Cocking (2000, p. 62) wrote: “Transfer is also affected by the context of 
original learning; people can learn in one context, yet fail to transfer to other 
contexts.” This lack of transfer points to the fact that many students do not 
see the coherence between different disciplines. When teaching is inspired 
by authentic professional practices and goes beyond mathematization by 
considering interdisciplinary elements, students can experience the teaching 
as more meaningful (Prins, 2010).  

2 Purpose and main research question of the project 

The purpose of this research project is to investigate how to support upper-
secondary school students’ learning and understanding of statistical 
correlation and regression models in such a way that they can apply the 
techniques in new situations and experience coherence between 
mathematics and the natural sciences. This purpose would be achieved were 
we to design a valid and effective teaching and learning strategy.  

By “valid” we mean that the strategy must be in line with prevailing 
epistemological ideas of the school subjects involved. The strategy is 
considered effective if students can solve a real-world problem by correctly 
using correlation and regression models, if they understand the concepts and 
process of modelling and if they are able to combine mathematical and 
statistical techniques with concepts from the natural sciences to solve the 
real-world problem. The fundamental assumption underlying our research 
project is that basing the design of the teaching and learning strategy on 
authentic professional practices can help us achieve our purpose. In line 
with this purpose our main research question is: 

What are characteristics of a valid and effective teaching and 
learning strategy to teach students about correlation and 
regression in such a way that they experience coherence between 
mathematics and the natural sciences? 
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3 Authentic professional practices 

We define an authentic professional practice as the practice of a professional 
who works according to a characteristic procedure leading to an outcome 
(cf. Bulte et al., 2005). To engage students in meaningful educational tasks 
it is necessary to adapt the authentic professional practices for educational 
use. Often a simplification is needed because the real-world situation may 
be too complex for secondary school students (Westbroek, 2005).  

Innovation commissions in the Netherlands promote context-based 
education. Some of these commissions for science education even promote 
inspiring teaching through authentic practices (Apotheker, Bulte, de Kleijn, 
Van Koten, Meinema, & Seller, 2007; Boersma et al., 2007). Authentic 
practices often use mathematical tools to model data. Mathematics has a 
long tradition of using models and modelling and some researchers in 
relation to modelling stress the importance of linking back mathematical 
solutions to the contextual problem (e.g., Galbraith & Stillmann, 2006). In 
our opinion this linking back is an important element of learning when this 
learning is inspired by authentic professional practices. When drawing 
inferences for a real-world problem, the solution must make sense in the real 
world.  

Research into mathematical modelling shows that several educational 
choices are possible. Zbiek and Conner (2006, p. 89) start their report with a 
possible motivation for engaging students in modelling:  

To prepare students to work professionally with mathematical 
modelling, to motivate students to study mathematics by showing 
them the real-world applicability of mathematical ideas and to 
provide students with opportunities to integrate mathematics with 
other areas of the curriculum. 

This is a fair reason to engage students in modelling. However, in their 
conclusions, Zbiek and Conner focus on mathematical concepts and 
procedures. For Galbraith and Stillmann (2006, p. 143) the modelling 
processes are the most important and “other” mathematical concepts and 
procedures are an “additional benefit.”  

In science education there are some successful examples of teaching and 
learning strategies inspired by authentic practices. For example, Prins 
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(2010) used an authentic professional practice of water treatment to teach 
students chemical contents. He elaborated the claim of Bennett and Holman 
(2002) that it must be possible to involve students in models and modelling 
and evolving their understanding when the approach is linked to 
recognizable real-world problems. This water treatment practice is of great 
importance worldwide and thus recognizable for students. One of the steps 
in his modelling approach was regression. From a chemistry-didactical 
perspective, Prins focused on modelling chemical processes with regression, 
but we had our focus on statistics as the bridge between mathematics and 
professional practices in which scientific knowledge is used to solve 
authentic problems with correlation and regression. 

There is little research on basing teaching and learning strategies for 
mathematics on authentic professional practices. In this study we see 
supporting students to learn about correlation and regression inspired by 
authentic professional practices as a chance to learn about how students 
draw inferences at school level beyond correlated real-world data. Little is 
known about this, even though many real-world problems deal with 
relationships between two or more quantitative variables and less is written 
about teaching correlation and regression to upper-secondary school 
students. 

Summarizing, we investigated whether a teaching and learning strategy 
inspired by authentic professional practices can be a useful approach to 
teach students about correlation and regression in such a way that they 
experience coherence between mathematics and the natural sciences. This 
strategy includes a specially designed instructional unit and its rationale 
which for example describes how the unit can be used. As we explain in 
section 7 of this chapter, we conducted design research (Barab & Squire, 
2004; Van den Akker, Gravemeijer, McKenney, & Nieveen, 2006) to 
answer our research question. 

4 Informal inferential reasoning at the basis of four studies 

Over the last decades there has been a shift in statistics education research 
from statistical procedures to conceptual understanding (Makar & Rubin, 
2009) and informal inferential reasoning (Makar & Ben-Zvi, 2011; Pratt & 
Ainley, 2008). In everyday life, informal reasoning can be characterized as a 
process in which a person builds a model of an authentic problem (Perkins, 
Farady, & Bushey, 1991); it is used in non-deductive situations, such as 
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decision making (Voss, Perkins, & Segal, 1991). In education, informal 
knowledge may help students to combine knowledge based on real-world 
experience with their pre-knowledge and should be considered in designing 
curricula (Gravemeijer & Doorman, 1999; Smith, diSessa, & Roschelle, 
1993). In the context of statistics education a definition for informal 
inferential reasoning is: “the way in which students use their informal 
statistical knowledge to make arguments to support inferences about 
unknown populations based on observed samples” (Zieffler, Garfield, 
delMas, & Reading, 2008, p. 44). In line with the shift to informal 
inferential reasoning in current statistics education research, we wanted to 
investigate how to support students’ informal inferential reasoning when 
learning about correlation and regression as used by professionals. To 
support this reasoning it is important that students develop several statistical 
key concepts, for example variability and sampling (Bakker, 2004).  

In our research project, modelling by means of correlation and regression 
was central, but we focused different studies on different aspects. In Chapter 
2 we address informal inferential reasoning in the broad sense. In the next 
two chapters we focus on key concepts that underpin informal inferential 
reasoning. In Chapter 3 we present our investigation of how students reason 
about variability when engaged with measurement tasks using correlation 
and regression models. An advantage of involving students in measurement 
activities is that it invites them to make connections between the real world 
and the world of data. Also, measurement activities seem suitable for 
teaching about variability in interdisciplinary contexts. In Chapter 4 we 
investigate how students can develop a rich understanding of sampling by 
shuttling between context and statistics. This shuttling between – in our case 
scientific – contexts and statistics is important beyond the development of 
statistical concepts, such as sampling. Hence we zoom out in Chapter 5 to 
study more broadly to what extent students experience the coherence 
between mathematics and the natural sciences, with statistical concepts and 
modelling techniques as the bridging tools. In relation to this coherence and 
informal inferential reasoning Ben-Zvi and Garfield (2010, p. 359) wrote:  

... statistics can be viewed as a type of bridge that connects 
mathematics and science, in that it provides the mathematical 
foundations for analysing data gathered in the real world (science). 
It seems natural to introduce and use statistics as part of both 
mathematics instruction (e.g., ideas of chance, measures of centre 
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and variability) as well as in science (e.g., variability in 
characteristics of plants and animals). 

 
 
 

 
 

 
 
 
 

 

 

 

Figure 2. In this study the focus on Informal Inferential Reasoning 
(Chapter 2) led to studies of two key concepts underlying this reasoning, 
variability (Chapter 3) and sampling (Chapter 4). The first three studies, 
in particular the study in Chapter 2, were at the basis of our study of 
coherence (Chapter 5). 

5 Students’ informal inferential reasoning 

Informal inferential reasoning (Pfannkuch, 2006a) is about drawing 
generalizations from data samples with respect to populations (Ben-Zvi, Gil, 
& Apel, 2007) or processes (Bakker, Kent, Derry, Noss, & Hoyles, 2008). 
In drawing informal inferences, the focus is on reasoning and conceptual 
understanding and less on statistical procedures (Gil & Ben-Zvi, 2011). An 
explicit link between statistical inferences and tendency is made by Makar 
and Rubin (2009, p. 85). They see “acknowledgement of a mechanism or 
tendency that extends beyond the data at hand” as an important idea to draw 
inferences. We focus on tendencies that can be modelled by means of 
correlation or regression. There is also evidence that if students are able to 
draw informal inferences, they have easier access to formal methods 
(Zieffler, Garfield, delMas, & Reading, 2008). For making informal 
statistical inferences, Makar and Rubin (2009, p. 85) considered four 
elements critical: 
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• Notions of uncertainty and variability articulated through language 
that breaks from the mathematical convention of claims of certainty; 

• Reliance on the concept of aggregate (as opposed to individual 
points) through the use of generalizations about the group; 

• Acknowledgement of a mechanism or tendency that extends beyond 
the data at hand; 

• Evidence for reasoning based on purposeful use of data. 

These elements are needed for accessibility to informal inferential reasoning 
with data. Real contexts play a significant role in students’ informal 
inferential reasoning. Pfannkuch (2011) stressed this significance by arguing 
that learning about real-world situations (data in context) and the knowledge 
students bring to tasks and their physical and social learning environment 
(learning-experience-contexts) need to be taken into account when students 
have to develop this kind of reasoning. Pfannkuch (p. 44) reasoned about “a 
constant interaction between the contextual and statistical domains.” Such 
interaction inspired us to investigate how to support students’ informal 
inferential reasoning (Chapter 2), their shuttling between contextual and 
statistical domains (Chapter 4) and their experiences of coherence between 
scientific contexts and the mathematical underpinning of correlation and 
regression (Chapter 5). 

5.1 Students’ reasoning about variability through measurement 

activities 

Variability is a big idea related to informal inferential reasoning (Rubin, 
Hammerman, & Konold, 2006). Reasoning about variability is important 
because it is omnipresent and has a practical effect on people’s lives (Wild 
& Pfannkuch, 1999). Since this omnipresent variability is one of the key 
ideas of statistics, Wild and Pfannkuch (p. 226) see the consideration of 
variability as a fundamental type of statistical thinking. They distinguish the 
components: “noticing and acknowledging,” “measuring and modelling for 
the purposes of prediction, explanation and control,” “explaining and 
dealing with,” and “investigative strategies.” By investigative strategy they 
do not mean the investigative cycle (Problem, Planning, Data Collection, 
Analysis, Conclusions), but for example looking at the patterns of variability 
in many different ways. Finding a trend (regression line) or discussing a 
deviation from the trend is one such example. In our study we assumed that 
the components of variability mentioned by Wild and Pfannkuch are 
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important for secondary school students too and that measuring and 
modelling are suitable activities to stimulate reasoning about variability. 
However, there are many types of variability; the type referred to most often 
in this study is variability around a model (e.g. Figure 3). This variability is 
partly due to real (natural) variability and partly due to measurement error. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Variability around a model for heart rate of frequency of a 
student per speed of a threadmill. 

Tasks about variability can be rewarding and meaningful for students. As an 
example, Makar and Rubin (2009, p. 83) mention: “one area of focus has 
been on reasoning about variation and distributions within the context of 
making meaning of the data.” When students get the opportunity to analyse 
their own measurements, they have to take into account variability in order 
to draw a meaningful inference. However, Smith, Van den Heuvel-
Panhuizen and Teppo (2011) argue that the conceptual principles that 
underlie measurement procedures are poorly learned by students. These 
researchers (2011, p. 617) wrote: 

Weak learning of measurement—particularly of the conceptual 
principles that underlie measurement procedures—undermines 
students’ ability to learn and understand more advanced 
mathematical and scientific content and hence their access to 
important kinds of skilled work—both professional and not. 

We suggest a learning focus on measurement, because measurement 
activities may be suitable to give students a sense of coherence between 
subjects. A reason for this is that measurement is at the interface of 
phenomena and data. The coordination of the two is important in authentic 
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professional practices. In this study we investigate whether students 
demonstrate understanding of all four components of reasoning about 
variability when they engage in measurement activities inspired by authentic 
professional practices (Chapter 3). This would underpin our idea that 
measurement activities can assist in developing a rich notion of variability. 

5.2 Students’ conceptual development of sampling for shuttling 

between context and statistics  

In this study we focus on another statistical key concept, sampling. In 
Chapter 3 the connection (shuttling) between the real world and data was 
made through measurement. In the study reported in Chapter 4, we designed 
sampling tasks based on authentic professional practices that asked for an 
approach in which students shuttle between the context and the statistics. 
According to Wild and Pfannkuch (1999, p. 28) statisticians experience this 
“shuttling between the contextual and statistical spheres” as a continuous 
process. The shuttling requires a deep understanding of several concepts, 
some of which are statistical (cf. Bakker & Derry, 2011). From an 
inferentialist perspective, students thus need to broaden the scope of using 
and understanding statistical concepts beyond the statistical domain. It is for 
this reason that in this study we focus on sampling and its underlying 
concepts such as sample size, randomness, distribution, informal confidence 
interval and the relationship between sample and population (based on 
Pfannkuch. 2008). In short: shuttling is the main learning goal and 
conceptual development underlying sampling is the means to this end. 

Sampling is a neglected area in secondary school statistics education, 
although recently more has been published on students’ understanding of 
sampling (e.g., Garfield, delMas, & Chance, 1999; Konold & Kazak, 2008; 
Saldanha & Thompson, 2003; Wild, Pfannkuch, Regan, & Horton, 2011). 
There is very little research on upper-secondary school students. Because 
sampling is a key aspect related to variability and informal inferential 
reasoning, we stress in our study the importance of supporting students to 
reason about sampling. 

5.3 Coherence between mathematics and the natural sciences 

Chapters 2 and 3 focus on students’ connections and shuttling between 
scientific phenomena and data with a focus on variability and sampling. Our 
last study investigated the broader theme of coherence, statistics as a bridge 
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between mathematics and the natural sciences. In this context, coherence at 
the attained curriculum level can be defined as students’ ability to apply 
knowledge from both mathematics and the natural sciences when solving a 
real-world problem. The need for this study stems from the criterion that our 
teaching and learning strategy must be effective in the sense that students 
can solve real-world problems, understand the concepts and process of 
modelling and are able to combine mathematical and statistical techniques 
with concepts of the natural sciences to solve these problems. Edelson and 
Reiser (2006, p. 335) claim that “engaging learners in authentic practices 
can assist them in understanding the structure of knowledge, or the 
epistemology, of the domain under study”. In line with these researchers we 
suggest that it can help to make the strategy effective if the students 
understand the concepts of mathematics and the natural sciences, but also 
see the coherence between them. 

As part of our teaching and learning strategy we had to design an 
instructional unit, because while many existing educational materials do 
present a problem by introducing a real-world context to show the students 
when certain mathematical concepts can be used, they do not link back to 
formulate a real-world solution. This implies that students often see the 
different school subjects as isolated subjects (Claxton, 1991). As suggested 
before, students are often offered very clean noiseless data sets which results 
in less understanding of variability and sampling.  

In sum, our teaching and learning strategy is meant to teach correlation and 
regression in such a way that students can experience coherence between 
mathematics and the natural sciences. Authentic professional practices are 
chosen to stimulate students’ ability to use correlation and regression in new 
contextual situations. Informal inferential reasoning is a key part of 
students’ statistical reasoning in this strategy. Closely related to informal 
inferential reasoning are variability and sampling, which are given full 
attention in the strategy. 

6 Specific research questions  

To test whether the strategy is effective it is important to know whether 
students are supported to make predictions by using correlation and 
regression models when they analyse correlated data. Therefore the question 
in our first study is: 
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RQ1:  How does a teaching and learning strategy based on authentic 
practices support students in making statistical inferences about 
authentic problems with the help of correlation and linear 
regression? 

As a result of the cyclic design process, indications were found that when 
students had to make inferences, they needed to reason about variability. 
Therefore the instructional unit was adapted and investigated in study 2: 

RQ2: How do secondary students consider variability within 
measurement activities based on authentic professional 
practices? 

To study the support of students’ conceptual understanding of another 
statistical key concept, sampling, we investigated in study 3: 

RQ3: What is the potential of tasks based on authentic professional 
practices to support students in developing concepts that 
underlie sampling in such a way that they can shuttle between 
contextual and statistical spheres? 

To know whether the strategy of teaching statistical modelling inspired by 
authentic professional practices offers students the possibility to experience 
coherence between mathematics and the natural sciences, we addressed the 
following question in the last study: 

RQ4: To what extent can professional practices serve as meaningful 
contexts to show students connections between mathematics, 
statistics, science and professional practices? 

7 Educational context 

All student participants were upper-secondary school students (Grade 11 
and 12, aged 16-18 years) at three similar Dutch schools and all within the 
pre-university track (VWO). These grades were chosen because the strategy 
was conducted to contribute to a recently introduced school subject, 
“Nature, Life and Technology.” Since 2007, NLT is an optional subject for 
students of science streams in addition to the usual science and mathematics 
subjects. About 40% of Dutch schools offer this subject to their students. 
The main aims of NLT (Eijkelhof & Krüger, 2009, p. 2) are to: 
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1. offer pupils a modern view on science and technology, which 
includes insight into current developments in a wide range of topics, 
the cooperation between various types of experts and the role of 
mathematics in science; 

2. challenge pupils to study developments in science and technology in 
depth; 

3. offer options in choosing topics according to the interest of pupils, 
the expertise of teachers and opportunities in the region of the 
school; 

4. assist pupils in their orientation on a career in science and 
technology; 

5. contribute to continuous innovation in science and mathematics 
education. 

Besides the author, two other teacher-volunteers were involved in this study. 
The background of the first teacher (also the researcher) is mathematics and 
biology, the second teacher is a mathematician and the last teacher’s 
background is physics and mathematics. The author is the principal 
researcher, the co-promotor contributed to the data collection, offered 
editorial support and acted as an advisor, the promotors contributed editorial 
support, advice and general supervision. 

8 Outline of the PhD project  

8.1 Design research 

The design research we conducted consisted of three phases. In phase 1, we 
designed a teaching and learning strategy inspired by a literature study and 
meetings which were held with students, teachers, academic experts from 
educational institutes, universities and innovation commissions and 
professional experts.  

First, there was the challenge of finding suitable authentic professional 
practices. As the decision was taken to base the strategy on educationalized 
authentic professional practices (AuPPs) we formulated the following set of 
selection criteria based on the aims of NLT, the criteria for the selection of 
authentic modelling (Prins, Bulte, van Driel, & Pilot, 2008) and advice from 
respective professionals:  
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1. Professionals in the AuPP use correlation and regression models. 
2. The modelling activities seem suitable to adapt for students in 

grades 11 and 12. 
3. The AuPP offers a chance for students to perform a measurement 

experiment. 
4. A sufficiently rich and authentic data set from this AuPP was at our 

disposal. 
5. The AuPP should give students the opportunity to identify 

themselves with the professional. 
6. The AuPP should induce students to appreciate the educational 

activities. 
7. The AuPP should give students the opportunity to make their own 

inferences based on the data. 
8. The authentic activities from the AuPP should give students the 

opportunity to experience coherence between mathematics and 
natural sciences. 

It was not easy to find authentic professional practices that met all these 
criteria. Some practices were too difficult for educational use (criterion 2). 
Often more than two variables were involved or the regression model was 
not linear. Fifteen AuPPs were investigated. Table 1 indicates for each 
AuPP which criteria were met (+) or not (-).  

Input on criteria led to the choice of three AuPPs that met most criteria: 
“sport physiologist,” “researcher water treatment for monitoring height of 
dykes,” and “calibrator.” From the three chosen AuPPs the sport 
physiologist’s practice was the only one that met criterion three. For this 
AuPP a small pilot with two students was conducted. This resulted in a first 
draft of the educational teaching and learning strategy to be tested in the 
second phase of the design research. The AuPPs of researchers monitoring 
the height of dykes to prevent flooding and professionals calibrating 
measuring instruments were chosen because they met criterion 4. 

Phase 2 of the design research contained an iterative approach of designing 
the strategy, evaluation and revision. Our revisions were mainly concerned 
with elaborating variability to help students to think more about variability 
in statistical data. Especially the first cycles needed more attention to 
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variability. The strategy was tested six times over a period of three years 
(2008 – 2011). We call each of these six experiments a “macrocycle.” 
(Figure 4). 
 
Table 1 
Potentially AuPPs and the eight criteria. 

  criterion 

AuPP Variables 1 2 3 4 5 6 7 8 

Bookbinder Back vs. Thickness + + + - + - + + 

Crash tester Power vs. Deviation + - + - + + + + 

Bungee jump Time vs. Weight + - + - + + + + 

Laboratory technician Power vs. Elongation line (fishing) + + + - + - + + 

Sport physiologist Heart rate vs. Effort (power / time) + + + + + + + + 

Laboratory technician Sand content vs. Solids + - + - - - + + 

Sport physiologist Step size vs. Velocity + + + - + + + + 

Laboratory technician Light intensity vs. Amperage + - + - + + + + 

Laboratory technician Concentration vs. Speed of sound + + + - + - + + 

Laboratory technician Forward voltage vs. Temperature + + + - - - + + 

Laboratory technician Light transmission vs. Concentration + + + - - - + + 

Sport physiologist Weight vs. Contraction of muscle + + - - + + - - 

Laboratory technician Sound vs. Distance + + + - + + - + 

Calibrator E.g. Temperature vs. Temperature + + - + + + + + 

Researcher Water  

treatment 

Time vs. Height deviation + + - + + + + + 

 
 

 
 
 
 
 

 

 

 

 

 

Figure 4. Design research (based on Gravemeijer & Cobb, 2007). 
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Each macrocycle contained around nineteen lessons (minicycle). The 
analyses of the lessons often influenced the next lessons. During four 
macrocycles all lessons were recorded. In two cycles it was only possible to 
record part of the lessons. 

Phase 3 includes the retrospective analyses of all the research findings. Our 
research questions required the use of a mixed method approach. The use of 
qualitative as well as quantitative approaches helped to get a holistic view of 
the research outcomes. The quantitative approach examines whether the 
interventions of the design research are effective and the qualitative 
approaches examines how and why they work.  

8.2 The design of the instructional unit 

The special designed instructional unit includes three chapters, each with 
several tasks and subtasks (See Appendix B). Each chapter was inspired by 
one AuPP. The intention of the first chapter was to introduce conceptual 
ideas in an intuitive way and stimulate students’ motivation to learn. The 
intention of the second chapter was to provide students with a more formal 
approach to the concepts and chapter three to give the students the 
possibility to apply what they had learned. 

We based chapter one on the practice of sport instructors and physiologists 
who identify the best training program for clients. Apart from introducing 
students to the need for statistics in such an authentic practice, this chapter 
was also meant to familiarize them with collecting data, scatterplots, 
variability, sampling and correlation in an informal sense.  

 

 
 
 
 
 
 
 

 
Figure 5. Students from the fifth macrocycle measuring physical 
condition using a sphygmomanometer (right figure). 
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In chapter one, students had to visually estimate the linear part of the model, 
but it had been planned that students would later see the need for a more 
reliable method to find the formula for a regression line and to measure 
correlation. This was intended to motivate them to learn about regression 
lines and correlation in relation to scientific applications. We further 
assumed that if the teacher inspired students to participate in classroom 
discussions, they would be able to reason in depth about variability. 

Two key tasks were measuring condition (Figure 5) and measuring the peak 
heart rate and the threshold heart rate frequency (Figure 6).  

 

 
 

 
 
 
 
 
 
 
 

Figure 6. Figure from the instructional unit to explain to students how 
they could perform the experiment of running a treadmill to determine 
their peak heart rate and their threshold heart rate frequency. 

We based chapter two on the practice of monitoring the height of dykes. A 
dyke is a natural or artificial slope or wall to regulate water levels, 
preventing flooding. A major problem is that the height of dykes decreases 
over time. Dykes should therefore be monitored to predict when action must 
be taken to prevent flooding. This authentic problem was introduced by 
showing the students a video. 

The students were given authentic, satellite generated data (Dentz et al., 
2006) for the detection and monitoring of surface deformation. Students had 
to model the data set to predict the day to heighten the dyke (to simplify the 
problem seasonal cyclic issues are ignored), which shows the deformation 
of the height at a particular location on a certain dyke over eight years 
(Figure 7). 

(Beats per min.) 



Introduction 
 

27 
 

Figure 7. Picture made by a student using Excel to predict the last day to 
decide about heightening a dyke. The student used the outer lines to indicate 
the margin around the regression line (in the middle). 

The key educational task in chapter two is to draw an inference about when 
the height of a dyke should be increased to prevent flooding. The students 
needed to have an aggregate view of a data set, presented in scatterplots, in 
order to see trends. To support students’ understanding of correlation and 
regression, this part was designed as follows: First, students would speculate 
about possible strategies for producing a regression line. It was also 
expected that once they saw the meaning of using regression lines when 
making predictions in the dyke monitoring context they would learn more 
about the mathematical background of regression. Next, using a spreadsheet, 
the students learned how to calculate the formula of a regression line and 
how to calculate correlation coefficients. At the end of the second chapter 
the students practiced their newly-acquired skills in a new situation: to find 
and judge the regression line for two measuring instruments after they made 
a scatterplot for two similar variables (temperature versus temperature) 
instead of two different variables (heart rate versus power or deformation 
versus day). 

We based chapter three on the authentic professional practice of calibrating 
measurement devices with the help of regression and correlation. An 
authentic key task for the students was to analyse the data from two 
thermometers and making decisions about which thermometer was most 
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suitable for a particular purpose. In this case, correlation, which was 
elaborated in the first two chapters, was used as a measure for how well the 
measurements from a thermometer matched a standard. What was new in 
this chapter was that there was no time dimension when using regression 
lines and there was no future value to predict. The students were expected to 
experience a non-trivial transfer to a new situation of comparing two 
variables of the same kind. 

9 Structure of the thesis 

The PhD thesis comprises a set of articles (Chapters 2, 3, 4 and 5), each 
addressing a different perspective of this research to answer the main 
research question (Chapter 1). Table 2 gives an overview of the titles with 
the corresponding research questions of each study. 
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Table 2 
Outline of the research 

Chapter Title Main research question 

1 Introduction What are characteristics of a valid and 

effective teaching and learning strategy to 

teach students about correlation and 

regression in such a way that they 

experience coherence between 

mathematics and the natural sciences? 

  Research question 

2 Authentic practices as contexts for 

learning to draw inferences beyond 

correlated data. 

How does a teaching and learning strategy 

based on authentic practices support 

students in making statistical inferences 

about authentic problems with the help of 

correlation and linear regression? 

3 Secondary students’ considerations 

of variability in measurement 

activities based on authentic 

practices 

How do secondary students consider 

variability within measurement activities 

based on authentic professional practices? 

4 Supporting students' conceptual 

development for shuttling between 

context and statistics: The case of 

sampling 

What is the potential of tasks based on 

authentic professional practices to support 

students in developing concepts that 

underlie sampling in such a way that they 

can shuttle between contextual and 

statistical spheres? 

5 Meaningful statistics in 

professional practices as a bridge 

between mathematics and science: 

An evaluation of design research. 

To what extent can professional practices 

serve as meaningful contexts to show 

students connections between 

mathematics, statistics, science and 

professional practices? 

6 Conclusion and discussion 
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Abstract 
 

To support 11th-grade students’ informal inferential reasoning, a teaching and 
learning strategy was designed based on authentic practices in which professionals 
use correlation or linear regression. These practices included identifying suitable 
physical training programmes, dyke monitoring, and the calibration of 
measurement instruments. The question addressed in this study is: How does a 
teaching and learning strategy based on authentic practices support students in 
making statistical inferences about authentic problems with the help of correlation 
and linear regression? To respond to this question we used video-recordings of 
lessons, audio-taped interviews, classroom field notes, and student work from a 
teaching experiment with 12 Dutch students (aged 16–17 years). The analysis 
provided insights into how the teaching and learning strategies based on authentic 
practices supported them to draw inferences about authentic problems using 
correlated data. The evidence illustrates how an understanding of the authentic 
problem being solved, collecting their own data to become acquainted with the 
situation, and learning to coordinate individual and aggregate views on data sets 
seemed to support these students in learning to draw inferences that make sense in 
the context. 

Keywords: statistical reasoning, inferential reasoning, authentic professional 
practice 

 
Figure 1. Schematic picture of a dyke  
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1 Introduction 

This paper analyses how a teaching and learning strategy, based on authentic 
practices using correlation and regression, supported the development of informal 
inferential reasoning by 11thgrade students (16–17 year olds). Informal inferential 
reasoning (Pfannkuch, 2006) can be characterized as the reasoning processes 
required to make informal statistical inferences, which Makar and Rubin (2009) 
defined as probabilistic generalizations beyond the data that are supported by data-
based evidence. The importance of looking “beyond the data” (Curcio, 1987,  
p. 384) to some wider universe is widely acknowledged to be at the heart of 
statistics. The GAISE report (Franklin et al., 2005), for example, argued that by the 
end of secondary school students should have learned to look beyond the data, 
hinting at generalizations from a sample to a process or a population. 

Statistical inference, typically connoting formal statistical techniques, has long 
been considered a topic too difficult for most secondary school students. To give 
students a sense of what it means to draw a statistical inference without formal 
techniques such as hypothesis testing, researchers over the past few years have 
worked on ways to study and develop informal statistical inferences at primary and 
middle school levels (Ben-Zvi, 2006; Paparistodemou & Meletiou-Mavrotheris, 
2007) or in the workplace (Bakker, Kent, Noss, & Hoyles, 2009), but rarely at 
upper-secondary school level, the focus of this paper. Despite the growing interest 
in informal inferential reasoning, research in this area is still in its infancy. Most 
studies concern the comparison of two data sets (e.g., boys vs. girls; grade 6 vs. 
grade 7), but little is known about how students draw inferences at school level 
beyond correlated data, even though many real-world problems deal with 
relationships between two or more quantitative variables. Learning to draw 
conclusions through correlation and regression is important because it allows 
students to study trends and to learn to provide statistical evidence for predictions 
beyond correlated data.  

One of the problems with the teaching of correlation and regression to 11th-graders 
is that there is a lack of educational materials that take advantage of informal 
inferential reasoning in contexts that are meaningful to students. Existing materials 
are often quite formal and hardly engaging (Vuijk, 2001), or otherwise too informal 
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for grade 11 (Roodhart, Kindt, Pligge, & Simon, 1998).Wild, Pfannkuch, Regan, 
and Horton (2009, p. 2) noted more generally:  

“Mathematics teachers desperately need interesting learning activities 
with obvious real-world relevance and statistics is capable of satisfying 
that need.”  

Statistics, mathematics, and science education have increasingly aimed to be 
“context-based” to show students the relevance of what they learn (Lijnse & 
Klaassen, 2004; Schoenfeld, 1985; Shaughnessy, Garfield, & Greer, 1996). One 
trend in science education that we find particularly promising for statistics 
education is that of using authentic practices as a source of inspiration for 
designing educational materials. In our study, we considered authentic professional 
practices in which particular functional scientific knowledge is needed, for 
example the practice of predicting dyke heights, for which regression lines are 
used. The underlying conjecture we made is that students will then more easily see 
the point of developing such knowledge than they do in traditional approaches in 
which theory is taught prior to application. For example, inspired by real weather 
forecasting, Lee and Songer (2003) designed weather forecasting tasks in which 
students had to collect local data, compare weather data from geographically 
different regions, interpret real-time weather maps, and make forecasts. They found 
that this approach helped students to develop rich understanding about scientific 
knowledge. 

In line with this idea we have designed a teaching and learning strategy (explained 
in more detail later) on the basis of authentic practices in which professionals use 
correlation or linear regression to deal with scientific problems that arise in their 
work. Our approach is in line with the aims of a new school subject called Nature, 
Life, and Technology for grades 11 and 12 (16–18 year olds), which the Dutch 
government introduced to foster better connections between mathematics and the 
natural sciences and to make these subjects more attractive to students. The 
research reported in this paper deals with students taking this subject and was 
designed to investigate the conjecture that when learning activity contexts are 
chosen from authentic practices that are recognizable and relevant from a student 
perspective, students can be supported to learn statistical reasoning about real-
world phenomena. This paper therefore focuses on the following research question: 
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How does a teaching and learning strategy based on authentic practices 
support students in making statistical inferences about authentic problems 
with the help of correlation and linear regression? 

With informal inferential reasoning beyond correlated data as a learning goal, we 
first address the conceptual understanding which, according to the literature, might 
support this. Next we summarize the literature on how authentic practices can 
inspire the design of educational materials that foster such conceptual 
understanding. Then we elaborate on our teaching and learning strategy by 
describing our educational materials and the accompanying hypothetical learning 
trajectory. Subsequently we describe the setting of this research and the data 
sources, and clarify the analytical method followed. The research question and 
findings are addressed in the last two sections. 

2 Theoretical background 

2.1 Learning goal: informal inferential reasoning supported by linear 

regression models 

Makar and Rubin (2009, p. 85) argued that the following ideas are critical for 
students in order to be able to draw statistical inferences:  

1. notion of uncertainty and variability articulated through language that 
broke from mathematical convention of claims of certainty,  

2. reliance on the concepts of aggregate (as opposed to individual points) 
through the use of generalizations about the group,  

3. acknowledgement of a mechanism or tendency that extends beyond the 
data at hand, 

4. evidence for reasoning based on purposeful use of data.  

The  development of these ideas requires considerable support. For example, 
students’ difficulties in understanding the sources of variability in data have been 
widely reported (Moritz, 2004; Shaughnessy & Noll, 2006; Wild & Pfannkuch, 
1999). It is also well known from the statistics education literature that aggregate 
thinking and identifying tendencies are not easily developed by school students 
(Bakker & Gravemeijer, 2004; Konold & Higgins, 2002). More generally, it is 
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known that people find it hard to use data as evidence for conclusions (Andriessen, 
2006; Kuhn Berland & Reiser, 2009). Although some researchers report valuable 
student intuitions about correlation (Cobb, McClain, & Gravemeijer, 2003; Moritz, 
2004), educational research further shows students’ difficulties in judging 
correlation and regression, both on an intuitive level and after teaching. The 
literature reports that seeing trends in scatter plots is far from trivial (Batanero, 
Green, & Serrano, 1998; Ben-Zvi, 2000), even for professionals who know the 
context very well (Hoyles, Bakker, Kent, & Noss, 2007; Noss, Pozzi, & Hoyles, 
1999). A focus on the aforementioned list of ideas guided the design of our 
teaching and learning strategy in addition to the design heuristics elaborated in the 
next section. 

2.2 Design heuristics: using authentic practices as inspiration for educational 

materials 

A key concern for educational researchers is tomake scientific concepts and 
activities meaningful to students. Over the past decades various approaches, such 
as context-based science and mathematics education, have been proposed and 
tested (Bennett, Lubben, & Hogarth, 2007). Contexts, however, can be used in very 
different ways (Gilbert, 2006). One extreme is to use contexts as areas of 
application without framing such settings in advance. This approach has often been 
criticized. Freudenthal (1973), for example, referred to it as an “anti-didactic 
inversion” and suggested confronting students with problem situations first so as to 
promote “guided reinvention,” discovering particular mathematical knowledge 
under the guidance of the teacher and the educational materials. Another extreme is 
to ask students to participate in authentic out-of-school practices such as 
environmentalist groups (Roth & Lee, 2006). This is, however, not possible in 
mass schooling situations. 

Our own use of context is that of using authentic practices in which particular 
statistical or scientific knowledge is used as a rich source of inspiration for 
designing educational materials. Such practices have clear motives and the 
scientific knowledge used is functional (Prins, Bulte, Van Driel, & Pilot, 2009). If 
it is possible to adapt such a practice to an educational context that students still 
recognize as relevant, one might expect students to see the need to learn and use 
particular scientific knowledge. For many science educators this has been a reason 
to seek inspiration for the design of educational materials for science in authentic 
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practices (Edelson, 1998; Lee & Songer, 2003; Prins et al., 2009; Roth & Lee, 
2006;Westbroek, 2005;Westra, 2008).  

Westbroek (2005) and Westra (2008) combined this approach of basing 
educational materials on authentic practices with a problem-posing approach 
(Lowrie, 2002; Lijnse & Klaassen, 2004; Kortland, 2001). This latter approach 
emphasizes that students should always know what the motives for their learning 
activities are. This requires designers to investigate how elements from authentic 
practices could be “educationalized” to elements of a learning environment in 
which students experience the concepts learned and the learning itself as relevant 
(Westbroek, Klaassen, Bulte, & Pilot, 2010). Relevant elements of an authentic 
practice are motives to perform certain actions and procedures, and knowledge is 
used as a tool to achieve particular goals. 

Westbroek (2005), for example, based her educational materials on the professional 
practice of water quality testing to engage students in the question of how drinking 
and swimming water are tested in practice. In line with the problem-posing 
approach this helped students to predict the next step in testing water quality and 
develop the chemical knowledge required in this step. The students worked with 
measurement tools similar to, but simpler than, those used in actual practice. In this 
way, Westbroek designed an educational version of an authentic practice that gave 
students a clear goal and made the chemical knowledge to be learned meaningful to 
them. Prins and colleagues (2009) proceeded along these lines and used authentic 
motives for modeling drinking water treatment. They concluded that an authentic 
practice can offer inspiration for designing an environment that meaningfully 
involves students in modeling processes. Since the emphasis in educational 
materials designed by Prins and associates is on chemistry, the statistical 
knowledge of regression required to model water treatment processes was at the 
service of chemical modeling. In contrast, we chose regression and correlation as 
central means to support informal inferential reasoning.  

3 Teaching and learning strategy 

As mentioned in the introduction, there were no materials available that matched 
our ideas of a teaching and learning strategy on how to support the intended 
learning. We therefore decided to design materials ourselves by means of 
educational design research (Barab & Squire, 2004; Van den Akker, Gravemeijer, 
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McKenney, & Nieveen, 2006). We use the term “teaching and learning strategy” to 
include both the concrete educational materials (teaching unit with three chapters, 
Excel spreadsheet, and TI-Nspire software) and a hypothetical learning trajectory 
(HLT). Simon (1995) defined HLT in the context of a lesson as a description of 
students’ prior knowledge, learning goals, and hypotheses about how the learning 
processes were supported by the educational materials. Bakker (2004) used the 
HLT notion for longer-term learning processes (about 15 lessons). In such longer 
learning trajectories, hypotheses can be global and local. The global ones address 
the overarching ideas, which in our case are variability, aggregate, tendency, and 
evidence (see previous section); the local ones are tied to each specific task. Given 
that we have already discussed the learning goals of the teaching and learning 
strategy, we now summarize only students’ prior knowledge and the ideas behind 
the educational materials. 

3.1 Students’ prior knowledge 

Dutch students typically learn less about statistics than students in countries that 
are well represented in the statistics education literature (e.g., New Zealand 
Ministry of Education, 2007; Council for theMathematical Sciences, 2004; 
National Council of Teaching Mathematics, 2000). By the end of grade 10, Dutch 
students have learned little more than some descriptive statistics with a focus on 
graphical representations and measures of center and spread. Scatter plots were 
new to our students in grade 11. In this paper we first report on “learning to make 
statistical inferences about an authentic problem” and elaborate on four conceptual 
ideas that still had to be developed:  

1. supporting students to coordinate individual and aggregate views on data 
sets,  

2. recognizing a trend that extended beyond the data,  
3. making sense of variability,  
4. using data as evidence when drawing an inference. 

The students were not used to aggregate features of data sets such as trends, or in 
this case regression lines, and they were not used to thinking about variability. In 
the educational materials specially designed as part of the teaching and learning 
strategy we created opportunities for students to reason informally about 
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underlying trends, to extend their understanding of these trends in order to make 
better inferences. Our students also had little experience with spreadsheets. 

3.2 Educational materials 

We briefly describe the educational materials and accompanying HLT. The 
educational materials consisted of three chapters, each based on an authentic 
practice in which correlation and/or regression was used to address a problem. 

3.2.1 Chapter 1: Identifying a Sports Program to Improve Physical Condition 

The first chapter was based on the practice of sport instructors and physiotherapists 
who identify the best training program for clients (mostly athletes). Apart from 
introducing students to the need for statistics in such an authentic practice, this 
chapter also served to acquaint students with collecting data themselves and to 
familiarize them with scatter plots, variability, and correlation in an informal sense. 
To illustrate the HLT of this chapter we first describe a central task: just like 
athletes, the students had to collect data of their heart rate frequency (HRF) when 
increasing the intensity of their training. HRF increases proportionally with the 
invested power. If the efforts exceed a certain point, threshold HRF, the linear 
proportionality will disappear and the HRF will approach the peak heart rate 
(Gellish et al., 2007). The threshold HRF is where required energy does not only 
rely on aerobic sources anymore but starts to draw on anaerobic sources. When 
drawing on anaerobic sources the body produces lactic acid, which causes muscle 
pain and consequent “burn” during intensive training. It is important for athletes to 
keep their use of energy in the aerobic area, because if someone frequently trains in 
the anaerobic area, his or her threshold HRF will decrease, and muscle problems 
will occur at lower HRFs. The upper bound where the HRF still acts as a linear 
function of the invested power, called the point of deflection (Conconi, Ferrari, 
Ziglio, Droghetti, & Codeca, 1987), is a good approximation for the threshold HRF 
(Figure 2), from which the optimal HRF for training programs can be determined. 

Determining the threshold HRF can be seen as an informal statistical inference 
because it is measured only indirectly through a point of deflection that is derived 
from a set of data that inevitably involve measurement error. Therefore it is a 
generalization beyond the data which should be phrased in probabilistic terms (i.e., 
non-deterministic or uncertain language) (Makar & Rubin, 2009). 
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Figure 2. Theoretical model of heart rate frequency as a function of  power 
during a cycling test (reconstructed from Conconi et al., 1987). 

Like for many other statistical inferences, especially about scientific phenomena, a 
graphical representation of the data is crucial. The global conjecture from the HLT 
for Chapter 1 was that students would recognize the linear trend in the data up to a 
certain value and find the threshold HRF from a scatter plot. In Chapter 1 visually 
estimating the location of the linear model suffices, but it was hoped that students 
would later see the need for more sophisticated and reliable methods to measure 
correlation and model data sets. This would motivate them to learn more about 
regression lines and correlation in relation to scientific applications. It was further 
assumed that if the teacher stimulated students to reason in classroom discussions, 
that they would get a feel for natural variability as well as measurement error 
through their experience of collecting data. This would presumably give them a 
sense of which mechanisms cause variability while perceiving tendencies in the 
data. 

3.2.2 Chapter 2: Monitoring the height of dykes 

The second chapter is based on the practice of monitoring the height of dykes. A 
dyke is an artificial longitudinal land elevation with the aim of preventing flooding. 
Dyke monitoring is a vital issue for the Netherlands because the majority of the 
Dutch population lives below sea level. A major problem is that dykes’ heights 
decrease over time, for instance through subsidence  (the downward displacement 
of land relative to sea level). At some points (called “critical values” by the 
Ministry of Transport and Water Management) they are so low that high sea water 
levels are a danger. Dykes should therefore be monitored so action can be taken to 
prevent flooding. Moreover, sudden height changes can indicate weaknesses in the 
dykes. We introduced this authentic problem by showing the students a video. To 
find a way to deal with this problem we gave students authentic data (Dentz et al., 
2006) generated by satellites for the detection and monitoring of surface 
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deformation. The data set could be modelled with a linear function (we chose to 
ignore the seasonal cyclic issues to simplify the problem), which shows the 
deformation of the height of a certain dyke at a particular position over several 
years. 

The key educational task in Chapter 2 is to make an inference about when the 
height of a dyke should be increased, just as professional research organizations for 
dyke monitoring do. These predictions require students to have an aggregate view 
of a data set, presented in scatter plots, in order to see trends. To support students’ 
understanding, the chapter was designed as follows. First, students speculate about 
possible criteria for producing a regression line. Once they see the power of 
regression lines when making predictions in the dyke monitoring context they learn 
more about the mathematical background of regression. Next, using a spreadsheet 
the students learn how to make scatter plots, how to calculate the formula of a 
regression line, and how to calculate correlation coefficients. At the end of the 
chapter the students practice the skills they have developed in a new situation. 

3.2.3 Chapter 3: Calibration of thermometers 

The third chapter assesses students’ aptitude for making inferences with the help of 
regression and correlation. The students were given a final assignment about the 
calibration of thermometers to make decisions about which thermometer was most 
suitable for a particular purpose. In this case, correlation, which was elaborated in 
the first two chapters, can be used as a measure for how well the measurements of 
a thermometer fit those of a standard. What makes this problem context different 
from the dyke monitoring is that there is no time dimension when using regression 
lines and there is no future value to predict. This implies a non-trivial transfer to a 
different situation of comparing two variables of the same kind instead of one 
being time. Whereas correlation coefficients were not used to make predictions in 
the dyke monitoring context, here they help students to make a decision about 
which thermometer is the best. 

4 Method 

To gain insight into how the teaching and learning strategy supported students’ 
inferential reasoning, we analyzed the data collected in a teaching experiment with 
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12 students, from December 2008 to March 2009. This teaching experiment was 
part of a design-based research with three design cycles (Barab & Squire, 2004; 
Van den Akker, Gravemeijer, McKenney, & Nieveen, 2006), but given the paper’s 
main question we do not report on the cyclical design process. All students (5 boys, 
7 girls) were from the grade 11 pre-university track, consisting of academically 
successful students who had chosen to study the aforementioned new school 
subject Nature, Life, and Technology. Courses within this subject typically involve 
project-based learning and put less emphasis on direct instruction and the textbook 
than typical mathematics and science chapters. Students participated in classroom 
discussion but also worked in pairs and small groups. Our strategy required 
students to reason more than they were used to. 

Data collection in the teaching experiment included transcripts from video-
recorded lessons and audio-taped interviews, field notes, and a final assignment. 
The teaching and learning strategy was enacted by the first author in 19 lessons (a 
total of 16 hours) each of which consisted of several tasks. 

In order to give an impression of how students’ learning was supported by the 
educational materials and how well this learning was predicted in the HLT we 
compared the actual learning trajectory (ALT) with the conjectures from the HLT 
for each task (while we recognize that it is not possible to detect students’ “actual” 
learning, we chose to use this more conventional phrase to describe the observed 
learning that was inferred from the data we collected.) To find evidence and 
counter-evidence for the conjectures formulated in the HLT, the transcripts, field 
notes, interviews, and final assignment were analyzed with the help of a data 
analysis matrix.  

Table 1 shows 1 of the 94 rows (one for each task or subtask, columns 1–2) in the 
data analyses matrix used to compare our predictions (column 3) with the actual 
observations (columns 4–6). This subtask will be described in the results section. 
The fourth column gives representative examples of transcripts from classroom 
interaction, followed by a conclusion or clarifying comments based on field notes, 
and transcripts. The result column (Res) summarizes how well the HLT and ALT 
match by means of “−”, “±”, or “+.” The − sign was used when the observations 
suggested that the conjectures were confirmed for a maximum of one-third of the 
students. The + sign was used when observations suggested that the conjectures 
formulated in the third column were confirmed for at least two-thirds of the 
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students; for the intermediate cases we used the ± sign. The choice of the three 
categories (−, ±, +) was motivated by the fact that two categories would be too 
coarse for an evaluation and more than three categories would suggest more 
precision than can be justified. In cases where the observations did not include all 
students, the clarification column also includes the number of observations (e.g., 
“based on eight observations”). In five cases we were not able to assign one of the 
three categories and left the matrix cells empty because the observations did not 
provide us with enough information. The first author made the first coding 
decisions; the others judged the texts of the columns “Conjecture,” “Transcript 
excerpt,” and “Clarification” on clarity and consistency and did 10 random checks 
of the “Result” column. This led to small changes of the content of several matrix 
cells. 

In this paper, we focus on those tasks that involved statistical inferences to look for 
a general trend in the actual learning of drawing contextually realistic inferences. 
On the basis of the observations of the aforementioned analyses we illustrate 
students’ struggles and successes in order to gain insight into how the teaching and 
learning strategy supported students to make statistical inferences beyond 
correlated data from authentic practices. 

Table 1 
Row 5f from data analysis matrix 

No Task Conjecture Transcript 
Excerpt 

Clarification  Res 

5f The graph of 
Gellish’s formula is 
an approximation of 
reality. The 
Measured values 
did not lie exactly 
on the line of the 
formula. What 
might the graph in 
reality have looked 
like? Make a sketch 
of at least 30 points 

Students take 
variability 
into account 

T:       Do you think 
all Gellish’s 
data points are 
just on this line 
[made by 
Leon]? 

Leon: No, they are 
scattered 
around the line. 

4 of 8 observed 
students used a 
ruler to draw 
the line. Only 2 
made a cloud of 
data points 

- 
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5 Result 

5.1 Learning to make statistical inferences about an authentic problem 

To address the research question, we compared the findings of the ALT with the 
conjectures in the HLT and the data analysis matrix explained in the method 
section. For each inference-related task Table 2 shows to what extent our 
conjectures were supported by the data. The conjectures in the HLT were often 
supported by the ALT and more so toward the end than in the beginning. Because 
many of these conjectures were of the form “students will learn/understand that . . .” 
we concluded that the overall pattern was that students tended to make better 
inferences about authentic problems as they gained experience, even though the 
tasks became more difficult toward the end. We also conclude that the teaching and 
learning strategy supported the students’ learning process reasonably well. To give 
a sense of the quality of inferences we next give a few examples in chronological 
order. Tasks illustrated below in subsequent sections, including 5f, which we 
predicted badly, are indicated by bold type numerals in Table 2. All tasks in this 
table involve informal inferential reasoning (IIR). 

Table 2 
ALT results compared with HLT conjectures for the tasks involving IIR 

+    x x   x x x x 
± x  x         
-  x    x x     
Task: 5d 5f 6a 6c 7 8 9c 9e 10b 11c 15 

            

+ x  x x  x x x  x  

±  x       x   

-     x       

Task: 17 23b 23c 24aI 24aII 24c 25d 34a 34c 42  

 
Note: Tasks 5d until 17 concern the authentic practice of identifying a sports program to improve physical 
condition; the others concern monitoring the height of dykes. 
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5.2 Supporting students to coordinate individual and aggregate views on data 

sets 

In mathematics lessons the students had always used mathematical functions rather 
than correlated data. Hence, we first wanted to ensure they understood the origin of 
linear models such as Gellish’s formula: PHR = 207 – 0.7A, where PHR is peak 
heart rate and A is age. After a brief introduction to scatter plots we therefore asked 
students to sketch what Gellish’s original data points might have looked like before 
he came up with this formula. We expected that students would sketch similar 
“clouds” but now surrounding a line. 

Despite our attempt to focus the students’ view on the variability of the individual 
data points behind the aggregate of Gellish’s formula, half of the observed students 
used a ruler to draw a line instead of plotting a cloud of data points. Two other 
students drew points that were almost collinear. Only two students took natural 
variability into account and scattered the points around the line representing 
Gellish’s formula. Table 1 summarizes the comparison of the HLT and ALT for 
this task. 

When the teacher subsequently asked the students who used the ruler if the data 
points that Gellish found were all exactly on the line, they realized the points must 
have been scattered around the line. In this task, help with understanding variability 
was apparently not sufficient in the first HLT, but the episode also indicates that 
what students learned here was something new to them. Apparently it was 
necessary to offer students more support than we had anticipated to think through 
what real data summarized by a linear trend might look like. Even with these 
academically bright students a brief introduction appeared necessary to help them 
link the aggregate view of the line with the data-point view underlying Gellish’s 
formula. In future research we will investigate if this can be done by adjusting the 
materials and making use of explicit classroom discussion. 

Another interpretation is that their conflict between their experience with functions 
previously (no variability) and the variability they were confronted with in the 
tasks supported them in developing new, albeit still emerging, understandings of 
variability in authentic contexts (Makar, Bakker, & Ben-Zvi, this issue). In other 
words, the fact that they initially saw this as perfectly linear allowed them to 
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confront this assumption, and this was facilitated by the authentic nature of the 
problem context. 

We wondered why students had struggled with subtask 5f and realized that they 
had had too little experience with collecting data and with this type of correlated 
data. Moreover, from a student perspective there might not have been a good 
reason to sketch such data—in contrast to the aims of a problem-posing approach. 
To support students making realistic inferences we realized it was important to 
bring students into a position, guided by the design of the learning and teaching 
strategy, to formulate the need for extending their knowledge. In a next subtask, 6c, 
the teacher more carefully prepared a motive for students’ activities. Preferably 
students themselves should be aware of the authentic problem and formulate this 
problem to be further investigated. We suggest that if students have a better view 
of the authentic problem, it will be easier for them to have an aggregate view on 
the data. For example, the teacher tried to assist students to understand the point of 
the next task. 

In this case, after reviewing the information on aerobic and anaerobic use of energy 
in a classroom discussion, the teacher hoped students would “reinvent” the idea of 
doing a physical test in order to have a more complete view on the problem. One 
student, Jolan, used the phrase “stress test” to describe a test similar to the one 
further on in the educational materials. Her description of the “stress test” suggests 
that she was not thinking of individual measures but had ideas of what the model 
would look like, facilitating an aggregate view of the data when she would draw a 
graph of her data collected in the next task.  

In the next lesson the students went to the gym to do a test similar to the one Jolan 
described. In the running test the students gathered their own data in order to make 
an informal inference about the threshold point. During the physical test, Leon kept 
a record of Jolan’s heart rate values. The teacher wanted to support Leon making 
an inference and tried to understand if Leon had an aggregate view on the data. 

T:  Do you already see a trend? 
Leon:  Well, it does not go up very quickly. Now it is [increasing by] 4. Before that 

3, and before that 4. Before those 13; and before that 21. 
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Leon, like others, seemed to focus on the individual deviations of the data points 
instead of the aggregate. He noticed that the values were reaching the limit and did 
not “go up very quickly,” but he did not demonstrate a more aggregate view of the 
data. Some students showed evidence of an aggregate view already from their 
graph. Most students drew a graph corresponding to the model in Figure 1, but 
some drew a graph like that in Figure 2. 

 

 
 

Figure 3. Graph made by Maria of her data collected in the gym (Task 6c). 

Initially, it was not clear if Maria had demonstrated an aggregate view of the data 
necessary to identify the threshold value (which might not be one of the data 
points); however, when the teacher said that her graph (Figure 3) looked like 
Figure 1, Maria did not fully agree: 

Maria:  You can clearly see a difference between walking and running. When you 
suddenly start to run, your heart rate accelerates. 

T:  [addressed to the whole class] Maria has another remark to make! 
Maria:  That there is suddenly a steep rise. I think that’s the point of deflection from 

walking to running. 

Maria’s comments suggest that she indeed seemed to adopt the aggregate view 
required by linking the data to the contextual problem. She was not focused on the 
individual data points but recognized a trend and modelled her data. She noticed 

Running speed km/hr 
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that her graph differed from the graph in Figure 1, owing to another deviation from 
a linear trend (Figure 3). Immersion in the contextual situation most likely helped 
her find a plausible explanation for this (cf. Gil & Ben-Zvi, this issue; Roth & Lee, 
2006) and thus to look beyond the data. 

 
Figure 4. Data used in Task 24: deformation of height from a dyke at position 90 
for 3034 days (more than eight years). Day = 0 is taken as reference point for 
comparison with other positions. 

5.3 Recognizing a trend that extended beyond the data 

For a different type of reasoning about trends in order to make informal inferences 
we jump to Chapter 2 in which students learned to produce scatter plots using a 
spreadsheet (Excel). Subtask 24a showed a scatter plot (Figure 4) and asked, “What 
happens with the height of the dyke at this position during these years and what 
intervention may be needed?” In the HLT we conjectured that the students by 
thinking through the context would recognize a downward trend and suggest a 
realistic solution, taking into account a safety margin (e.g., sea levels might be 
higher than normal, there might be a storm or high tide, and ground movements 
cause temporary changes to the height of the dykes). Our analysis suggested that 
the students recognized the trend beyond the data and made an inference about 
heightening the dyke, but they struggled to articulate a solution that drew on the 
context of the authentic problem (see the + and − in Table 3). During this task the 
focus was on recognizing the trend. The students struggled to find a realistic 
solution in which variability is taken into account.  
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Table 3 
Row 24a from the Data Analysis Matrix 

No  Task  Conjecture  Transcript excerpt Clarification  Res  
24a I  What happens 

with the height 
of the dyke at 
this position 
during these 
years?  

Students 
recognise a 
downward 
trend.  

Ciska: The dyke 
becomes less  
high.  
T: Yes, especially at 
the end of the scatter 
plot you recognised a 
clear trend.What can 
you do?  
Ciska: Heighten the 
dyke.  

Most students 
recognised the 
trend.  

+ 

24aII  What 
intervention 
may be needed?  

The students 
can find a 
realistic 
solution.  

Sanno:Produce a 
regression line.  
T: And when you 
have the regression 
line, what then?  
Sanno:Then you can 
make a prediction 
when to heighten the 
dyke.  

Most students 
had problems 
finding a 
realistic 
solution. They 
used only the 
regression 
value.  

- 

 

5.4 Making sense of variability 

In line with the HLT, the teacher asked the students to give reasons for the 
variability in the deformation of the height of the dyke (subtask 24c), and thus 
encouraged them to treat the data as “numbers with a context” (Moore, 1992, p. 
15). This was considered important to assist students to recognize the variation 
around a roughly linear trend, something that they found difficult during the 
aforementioned Task 5. We allowed students to ignore the cyclic effect caused by 
ground movements because this would require too much time to be spent on 
geographical information.  

T:  You saw [in the video] that after the flooding disaster a standard (critical 
value) was formulated for the height of dykes, and that nowadays still 30% of 
the dykes. . . 

Marco:  Are not high enough. 
T:  Yes, they didn’t meet the standard. 
Maria:  I understand that. Sea level rises also. They can heighten the dykes, but after 

50 years these are too low again, because the sea level rises. 
T:  Yes, you have to intervene in time. 
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Maria:  Yes, but I understand that they can’t do everything right. 
T:  How can you anticipate? 
Maria:  Heighten at once. Heighten more than needed at the moment. 

This example illustrates how the teacher supported these students’ awareness of the 
contextual problem with reference to the introductory video the students had 
watched. We conjectured students would see that variability affects the timing of 
heightening the dyke, and Maria indeed seemed to do so (when probed). 

Several students (e.g., Susan) did not immediately see the importance of a margin 
given the variability of both the dyke height and the sea level (subtask 24c), but 
some did (e.g.,Maria using probabilistic [uncertain] language like “about,” “could,” 
and “surprise”). Our idea was to focus their attention on the need for a measure of 
this variability. 

T:  Why could it be important to have a measure, a norm, for variability? 
Maria:  Then you can see how much they deviate. If you think, because of the 

regression line, that there will be flooding in about 5 years, you do not 
necessarily have to do anything. But because there is variation, it could be 
that there is a too low position after three years. 

T:  Yes, indeed. 
Jolan:  So, you have to take a lower height into account. 
Susan:  But why is it important? 
Maria:  To prevent an unpleasant surprise. 

 
Table 4 
Results of the final assignment 
Students 

 
Draw 

Regression 
Line

Calculate 
Regression 

Line

Calculate 
Correlation 

Conclusion 

 
Link the 
Context 

Marco & Danny + + + + + 
Birte & Leon + + + + + 
Sanno & Ciska + - + + - 
Maria & Jolan + - + + - 
Theo & Susan + + + + + 
Hanne & Wiebe - - + + + 

 
Note: A plus sign refers to an appropriate answer, a minus sign to an inappropriate or missing answer. The final 
assignment is described in the section on the educational materials. 



Drawing inferences beyond correlated data 

 

55 
 

This last remark from Maria satisfied Susan (analysis of Susan’s final assignment 
suggested that she came to understand the importance of variability, see Table 4). 
This last excerpt suggests that the use of an authentic practice helped students to 
think about variability in concrete terms such as varying dyke heights, surprises, 
and chance of flooding. The analysis provided further evidence that they gained 
insight into correlated data in relation to the authentic problems in using the 
context of the problem to explain their reasoning. We also think that the authentic 
practices chosen were appropriate to foster students’ awareness of the role of 
variability. The contextual problems from these practices appeared to help students 
understand the relevance of variability and seemed to encourage students to make 
realistic inferences. The teacher-led classroom discussions appeared to further 
assist students by stressing the role of variability in the problem contexts. 

5.5 Using data as evidence when drawing an inference 

Understanding variability brought the students closer to addressing a key aim of 
Chapter 2, which asked them to use the data set as evidence to predict the day 
when a dyke should be heightened. The next transcript (from subtask 25d) 
illustrates how these students understood the role of regression lines within this 
context. 

T:  But how do you know what height is needed? 
Maria:  Looking at the data of the rising sea level, and watch the subsidence. 
Sanno:  Construct a regression line! 
T:  What about this regression line? 
Sanno:  Then you can predict the day to take action. 

Sanno probably meant that the formula of the regression line would give him the 
opportunity to predict the (precise) day before which action has to be taken, 
possibly forgetting about the variability of dyke height. 

The context about monitoring the heights of dykes is complex. Drawing a valid 
inference — in this case a prediction of when to heighten a dyke — not only 
requires coordinating knowledge about regression lines and the context of the data 
but also knowledge of risk (cf. Eijkelhof, 1996; Pratt et al., in press). In the 
unlikely event that dykes are relatively low and water levels high, such a situation 
can have a disastrous effect; hence there is a clear need to stay well above the given 
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critical value. In theory, it is possible that students interpreted the given critical 
value as already taking such safety margins into account. However, we have no 
data suggesting they did at this stage. 

In the next example it appeared that students had no problems with formal 
calculations (subtask 34a) but struggled to find a solution for the authentic 
problem, because they again did not take the variability into account. 

Susan:  You have to see when it [the regression value] is –25. 
Jolan:  You can construct a formula. 
Susan:  Yes, we have a and b [regression coefficients]. 
Jolan:  Then you can use your calculator. 
T:  Yes, but now you want to know when the deformation is −25. 
Sanno:  You substitute H=−25 [using the formula for the regression line]. I get d = 

5116.9 [day]. 
Susan:  That’s the moment the flooding starts. 

From this wording (“the moment the flooding starts”) we infer that Susan probably 
did not realize that the regression line only predicts when the dyke height might 
reach a particular value. Other students did not take the safety margin into account 
either. After some interrogation by the teacher Danny realized this, but he did not 
know how to deal with this extra complication. 

T:  What did you calculate? 
Marco:  The a and b, from the regression line [as in y = ax + b], I suppose. 
Danny:  From the trend line: y=−0.00533x + 2.273104. 
T:  Yes, only we have now an H [height] and a d [day]. 
Danny:  Is that also the critical value? 
T:  No. 
Danny:  How can you calculate that one? 

Similarly Susan confirmed that she did “not know how to calculate the safety 
margin.” During the final interviews students expressed that they had learned how 
to calculate the formula for a regression line, but did not mention the role of 
variability. 

R:  What did you learn in these lessons? 
Danny: I learned how to use a spreadsheet. In the beginning I didn’t know how to use 

it, now I do. 
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R:  So, you didn’t use a spreadsheet often? 
Danny:  Yes, but now more. I understand it better now, and I have learned how to 

make a graph and a regression line. 

The last excerpts and results from the final assignment (Table 4) suggest that 
students were capable of calculating the formula for the regression line and making 
inferences based from these lines, but considering and calculating a safety margin 
remained difficult for them. 

The students’ final assignment suggested that they were able to make realistic 
inferences about which thermometer was best to use for sterilization in a hospital 
pharmacy. Although regression lines and formulas were not strictly necessary to 
answer this question they were used by five of the six student pairs. All students 
correctly computed the correlations between thermometer data and a golden 
standard (see Table 4) and judged the thermometers to be accurate enough based 
on high correlations (around 0.999). Four pairs of students made critical remarks 
about their conclusion, showing they had kept an eye on the context. For example, 
Birte and Leon wrote: 

Whether this is sufficient depends on the function of the thermometer. 
For measuring the body temperature it is allowed to be less accurate than 
for measuring the air. In this case it is a thermometer for sterilisation in a 
hospital pharmacy. This does not have to be quite accurate. 

This quote illustrates how students drew informal statistical inferences about 
authentic problem situations with the help of correlation. We supported them by 
teaching them in the first two chapters how to produce the formula for a regression 
line and how to calculate the correlation. We also allowed a lot of time for students 
to work out the meaning of this all in relation to the authentic problems. As stated 
before, few students had problems using the learned techniques in the new situation 
of the calibration of thermometers. We noticed, however, that most students 
struggled with the fact that the practices of the first two chapters were dealing with 
a time variable, whereas the thermometers needed an approach where they had to 
compare two variables that were the same. 
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6 Discussion 

This paper addresses the question of how a teaching and learning strategy 
supported 11th-graders to make statistical inferences beyond correlated data about 
authentic problems from professional practices. We summarize our response to the 
research question, then reflect on the role of context, followed by a discussion of 
limitations and future research, and finally draw some conclusions regarding the 
study. 

6.1 Learning to make statistical inferences about authentic problems 

The results section provides evidence that students’ inferential reasoning was 
reasonably well supported by the educational materials and shows that their 
observed learning was reasonably well predicted in the HLT. From the analysis it 
appears that the teaching and learning strategy focusing on core ideas such as 
coordinating individual and aggregate views on data sets, recognizing trends, 
making sense of variability, and using data as evidence, helped students to make 
more and better informal statistical inferences over the course of the teaching 
experiment. We also provided examples in which students struggled with an 
aggregate view on a data set. 

Learning about correlation and regression seemed meaningful to students because 
they recognized its role in authentic situations. Recognizing a trend that extended 
beyond the data seemed to be accessible for most of the students, but making a 
realistic prediction for the dyke height context made the students struggle, because 
they often forgot to take the variability into account. We also illustrated through the 
excerpts that the use of authentic practices also provided the students with multiple 
challenges. For example, one of the points we intend to improve in a next design 
cycle is how to address the problem of risk involved in dyke monitoring. With 
regard to risk (cf. Pratt et al., in press), we had underestimated the difficulty of 
taking it into account in the dyke context. Giving students a critical value of a dyke 
height leaves open many issues such as: What risk of flooding do we consider 
acceptable? What safety margin is already included in a critical value defined by 
the Ministry of Transport? What variability in sea water levels can we expect? 



Drawing inferences beyond correlated data 

 

59 
 

Another point for consideration is that students had become used to the time 
dimension in the contexts of Chapters 1 and 2, and to using regression rather than 
correlation, which hindered transfer to situations such as calibration, in which 
correlation is not time-dependent but involves two variables of the same type. The 
results of the final assignment suggest, however, that the authentic practices of the 
first two chapters helped students to use correlation and linear regression to 
understand that practitioners in many fields use these techniques in their daily 
professional work and to realise they can use these techniques in many situations 
themselves. 

6.2 Reflection on context 

We chose authentic practices as the contexts for our educational materials, and our 
study suggests that this had both advantages and challenges. A major advantage 
was that students generally saw the practical value of correlation and regression 
and were generally able to draw realistic inferences. The need to account for 
variability was more critical in the more complex context of Chapter 2, allowing 
students to build on the foundational skills of data collection and linear modelling 
from Chapter 1. Apart from challenges in finding suitable practices that appeal to 
students and in which the desired techniques are used, a principal challenge for the 
designer is to appropriately modify the level of complexity of authentic practices 
for student use. For educational purposes the authentic problems and tools in our 
study needed to be simplified so students could reasonably work with them. For 
example, dyke monitoring is much more complex than predicting a linear 
downward trend. There may be sudden subsidence or weaknesses in the structure 
of the dykes, and there are seasonal effects in ground movements that we chose to 
ignore in the educational materials. Additionally, we had to choose the knowledge 
that students needed about causes of variability carefully because many more 
factors can influence dyke height and measurement error than we could 
accommodate. Keeping students focused on the learning goals thus requires careful 
design but also places high demands on the teacher in terms of their own 
knowledge of the context. 
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6.3 Limitations and future research 

A teaching experiment on correlation and regression with a small group of students 
in the highest tier of general education can only suggest “proof of principle” that it 
is possible to base the teaching and learning strategy on authentic professional 
practices. In addition, the designer of the educational materials was also the teacher 
in this case. Additional research with more students, other topics, and other 
teachers is required before we can draw more general conclusions about whether 
such teaching and learning strategies based on authentic practices is effective at a 
larger scale. In this paper we have not focused on teaching because we first wanted 
a better understanding of how the strategies would be enacted in principle. It is for 
this reason that we used the term “hypothetical learning trajectory”; in future 
research we intend to use the term “hypothetical teaching and learning trajectory.” 
When working with other teachers, it is necessary to articulate more explicitly what 
teaching approaches they could adopt to benefit from the potential of the teaching 
and learning strategy. In the light of our experience in Dutch classrooms we 
assume that the common focus on self-reliant learning (Bos, 1996) is at odds with 
our own approach, which involved peer interaction and classroom discussions on 
“how?” and “why?” questions about contextual problems. 

7 Conclusions 

Given the results of this study we conclude that the teaching and learning strategy 
generally supported students in learning to draw informal statistical inferences 
beyond correlated data. Students were generally able to link much of their formal 
statistical knowledge and scientific concepts to contextual problems when making 
informal statistical inferences. Although the study involved only 12 students and 
favorable conditions, this study suggests strong potential for basing statistics 
instruction on authentic practices. In these authentic contexts, statistical concepts 
and techniques are used for purposes that students can relate to and can therefore 
potentially support students’ learning, provided the teaching and the educational 
materials are of sufficient quality. As common in design-based research, support 
cannot be attributed to one feature of the designed teaching and learning strategy 
but is most likely the result of several features that are attuned to each other. We 
mention a few of these possible features as well as some deliberations behind them. 
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The tasks, inspired by authentic problems, seemed realistic enough so that students 
experienced authenticity and felt engaged. The tasks were of increasing difficulty 
and provided students with many opportunities to reason about scatter plots, 
variability, regression lines, and correlation in relation to contextual problems. The 
tasks in which students had to collect and model their own data fuelled the 
perceived need to find a solution for the contextual problem and to study the 
educational materials. This was also enforced by following the problem-posing 
approach in which students had to formulate the need for extending their 
knowledge of mathematics and the natural sciences. We suggest that this support 
assisted students to make statistical inferences about an authentic problem, but also 
helped students grasp ideas underlying statistical inference such as coordinating 
individual and aggregate views on data sets, recognizing trends that extended 
beyond the data, making sense of variability, and using data as evidence when 
drawing inferences. 
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Abstract 

 
This study analyses considerations of variability by students in Grade 12 (aged 17-
18) when they engage in measurement activities that we designed on the basis of 
authentic professional practices in which correlation and regression are used. 
Analysis of students’ reasoning during these activities in one classroom (N = 13) 
suggests that students considered variability in several ways: noticing and 
acknowledging variability, measuring and modelling variability, explaining 
variability and using investigative strategies. We conclude that the measurement 
tasks based on authentic professional practices helped students to reason about 
relevant aspects of variability. Finally, curricular and research implications are 
discussed. 
 
Keywords: Variability; Measurement; Modelling; Authentic Professional 
Practice; Correlation and Regression 
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1. Introduction 

Variability is everywhere. Variability is the phenomenon that something is apt or 
liable to vary or change (Reading & Shaughnessy, 2004). Wild and Pfannkuch 
(1999, p. 235) stress that “variability affects all aspects of life and everything we 
observe. No two manufactured items are identical, no two organisms are identical 
or react in identical ways.” Repeated measurements also vary. Such variability 
leads to a state of not having enough information, certainty and knowledge to 
accurately analyse and describe a situation. For example, a sports physiologist who 
measures a person’s heart rate and uses a formula to describe this person’s physical 
condition faces various ways to consider variability. If she identifies an unusual 
heart rate, she should check if this is due to true physiological aspects, choice of 
measurement device, or measurement error. 
 
Variability “is the reason why people have had to develop sophisticated statistical 
methods to filter out any messages in data [a signal] from the surrounding noise” 
(Wild & Pfannkuch, 1999, p. 236). A signal in data does not just refer to “true” 
values approximated with measure of central tendency, but can also describe 
stability in variability measured with a range, interquartile range or standard 
deviation. A signal – conceptualized here as stability in variability – can also be the 
shape of a distribution (Bakker, 2004) or a trend (e.g., Fitzallen, 2012). Variability 
is a thus a broader concept than spread or variation (Shaughnessy, 2007) and 
statistics therefore is not merely the science of variability (MacGillivray, 2004), but 
also the science of identifying and modelling stability or signals in the noise 
(Konold & Pollatsek, 2002). 
 
In many statistics curricula there is a focus on identifying and measuring centres of 
data sets (Sorto, 2006) rather than on reasoning about variability. However, 
variability is an area of difficulty for students. As Reading and Shaughnessy (2004, 
p. 203) pointed out: “Students’ current lack of understanding of the nature of 
variability in data may be partly due to the lack of emphasis of variability in our 
traditional school mathematics curriculum and textbooks.” In a review of Dutch 
secondary school mathematics textbooks with statistics chapters, we found that 
none of them had a reference to variability or variation. Hjalmarson, Moore and 
delMas (2011) stress that the lack of tasks that require students to measure 
variability may impede their understanding of variability. They found a few 
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examples of tasks in engineering textbooks that provoked students to measure 
variability, but these tasks were disconnected from a real-world context. 
 
In our research we have designed tasks to engage students in considering 
variability in rich ways. As we will explain later, we assumed that measurement 
tasks based on authentic professional practices would assist in this aim. The goal of 
this article is to gain knowledge about how students in Grade 12, aged 17-18, 
consider variability in these measurement tasks based on an authentic professional 
practice. 

2 Theoretical background 

2.1 Variability 

Variability is a multifaceted concept, like other statistical key concepts such as 
distribution (Bakker, 2004) and sampling (Pfannkuch, 2008). Hence Reid and 
Reading (2008) argue that the development of students’ understanding of 
variability should be evaluated by thorough assessment of multiple facets of 
variability. This implies that it is important to engage students with rich activities 
that develop ways to consider variability when they engage in measurement 
activities. In their analysis of statisticians’ thinking, Wild and Pfannkuch (1999) 
distinguished four ways to consider variability: 

 
1. Noticing and acknowledging variability 
2. Modelling or measuring variability for the purpose of predicting, 

explaining and controlling 
3. Explaining and dealing with variability 
4. Using investigative strategies to handle variability 

 
Reading and Shaughnessy (2004) added “describing” and “representing variability” 
for educational use. We adapted the framework of Wild and Pfannkuch (1999) and 
incorporated Reading and Shaughnessy’s (2004) additions (describing and 
representing) which we describe in Section 3.4. 
 
To understand variability, one needs to consider both statistical and contextual 
worlds in relation to each other (Ben-Zvi & Aridor, in press). However, education 
typically focuses on only one of these components. Statistics education (as part of 
mathematics education) tends to focus on techniques that often neglect authentic 
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application or cross-curricular content. Conversely, content areas such as science 
education may focus on scientific content, but pay little attention to statistical 
techniques (Estepa & Sanchez-Cobo, 1998; Reading & Shaughnessy, 2004). The 
outcome of this discrepancy is that students are inexperienced in applying 
statistical concepts to contextually rich content or authentic tasks in science. Makar 
and Confrey (2007) argue that students who engage in statistical inquiry with a 
compelling purpose, such as modelling experiences with authentic data, gain a 
deeper understanding of data analysis, the context itself and modelling. However, 
one challenge is to design learning activities that connect statistical techniques in 
authentic contexts that are rich in scientific content. This can help students 
acknowledge, notice, quantify and control statistical variability and seek 
meaningful explanations for variability in applications of science. In the next 
section we argue that measurement activities can establish such scaffolding. 

2.2 Measurement 

Measurement is the assignment of numbers with units to objects or events 
(Pedhazur & Pedhazur Schmelkin, 1991) and can be described as ordering our 
surrounding world through numbers to better control that world (Adams & Harrell, 
2003; Buys & de Moor, 2005). It has been gaining greater importance in society, so 
to participate successfully in modern society, it is important that students learn to 
measure various phenomena in their environment and learn how to analyse the 
resulting measurements (Gooya, Khosroshahi, & Teppo, 2011; Lehrer & Kim, 
2009). 
 
An advantage of involving students in measurement activities is that it invites them 
to make connections between the real world and the world of data and thus learn to 
see that measurement cannot be absolutely accurate (Rabinovich, 2005). 
Measurement activities are suggested to be suitable for teaching about variability in 
interdisciplinary contexts (Enderson, 2003). These activities, with a discussion of 
the measurement process and the resulting data, can increase students’ 
understanding of the nature and importance of measurement (Moore, 1990). 
 
To understand measurement data and models, students need considerable 
contextual background, including knowledge of the phenomenon measured and the 
measurement procedure. Graphical representation of the data as part of the 
modelling process can help students to develop their understanding of variability 
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(delMas & Liu, 2005). Such representations allow students to see shapes or trends 
in data, help them to make predictions and draw attention to variability. Research 
on graphing by Roth and Bowen (2003) suggests that students should be involved 
in measurement processes in order to interpret resulting data and models. They 
argue that even scientists require much contextual background to interpret graphs 
and if not familiar with the data generation process, they find it difficult to read 
graphs in their own discipline. In fact, Roth and Bowen recommend that experience 
with research and participation in graphing practices was more important for 
correct graph interpretation than exposure to increasingly complex graphs. We 
therefore chose to involve students in measurement activities that stress the 
importance of contextual background when graphing and modelling real data. 
Inspired by research in science education (Prins, 2010; Westbroek, Klaassen, Bulte, 
& Pilot, 2010), we chose to base the design of activities on authentic professional 
practices. 

2.3 Authentic professional practices 

In this article we define an authentic professional practice (AuPP) as a patterned 
purposeful activity of professionals working on a problem that is exemplary for 
their profession. We identify two desired elements of authentic practices to attend 
to in the design of activities, in particular, the work of a sports physiologist. First, 
in line with Prins, Bulte, van Driel, & Pilot (2008), we note that professionals need 
to have specific content knowledge that underpins their practice; for example a 
sports physiologist must have certain knowledge of biology. Second, the 
professional works according to statistical procedures accepted in the profession; 
for example, the sports physiologist may use regression techniques during the 
modelling of data obtained by a fitness test. 
  
In science education, learning activities based on AuPPs can offer students 
meaningful contextual references to link abstract concepts (Lee & Butler-Songer, 
2003). The activities based on AuPPs inevitably have to be to simplified or 
modified to make them useful in an educational setting. Dierdorp, Bakker, 
Eijkelhof, van Maanen (2011) based their design of statistics activities on an 
authentic practice of monitoring the height of dykes in the Netherlands, in which 
students used their contextual knowledge to make sense of variability in real data. 
However, it appears that variability needs more attention in design and teaching, 
which led to the study reported here. 
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2.4 Research question 

Our article reports on research in which students in grade 12 (17-18 years old) 
reasoned about variability when engaged in a (simplified) practice of a sports 
physiologist. For example, to analyse aerobic and anaerobic respiration, students 
could measure heart rates under increasing power; then they could apply regression 
techniques to model variability in data in order to determine the ideal heart rate 
(threshold point) at which the working of muscles turns from aerobic to anaerobic 
metabolism. The idea underlying our research was that measurement activities 
based on suitable authentic practices could support students in considering 
variability in different ways. To evaluate this idea, we asked the following research 
question:  

 
How do secondary students consider variability within measurement 
activities based on authentic professional practices? 

3 Method 

3.1 Research setting 

The data presented here stem from a four-year PhD research project investigating 
how students can learn about the statistical key concepts of correlation and 
regression in multidisciplinary contexts, experiencing the links between 
mathematics and the natural sciences. The overall study was based on design 
research, which involved an iterative design process (Barab & Squire, 2004; Van 
den Akker, Gravemeijer, McKenney, & Nieveen, 2006) consisting of six research 
cycles. Each cycle included the design of a hypothetical learning trajectory (Simon, 
1995), a teaching experiment of about twenty lessons to implement and assess the 
instructional unit, analysis of classroom data and revision of the learning trajectory. 
This paper reports on the analysis of the fifth research cycle, which focused on 
students’ considerations of variability. 
 
As we were unable to find existing measurement activities in secondary school 
statistics based on authentic measurements by professionals, we designed an 
instructional unit ourselves. There was little education research to draw on because 
most of the research on measurement has been carried out in primary education, 
focusing on spatial measurement (Lehrer, 2003). Most research concerns relatively 
straightforward measurement of parameters such as length and volume with simple 
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technologies such as rulers and measuring jugs (Smith III, Van den Heuvel-
Panhuizen, & Teppo, 2011). What comes closest to what we envisioned is the work 
by Lehrer, Kim and Schauble (2007) in primary science education, which 
incorporates modelling and data analysis (see also English, 2009), topics related 
closely to variability and measurement. 
 
In the design of the learning trajectory for this fifth teaching experiment research 
cycle, we searched for suitable AuPPs that contained measurement activities in 
which professionals use correlation and regression models that could be adapted 
for students in grades 11 and 12. We also wanted students to appreciate the AuPPs 
and identify with the professionals in ways that coherently embrace mathematics 
and the natural sciences. It was particularly important for us that there would be at 
least one AuPP-based activity in which students could perform a measurement 
experiment. These considerations led us to the practices of sports physiologists 
identifying the best training procedure for their clients. Based on typical practices 
of this profession, we designed two measurement activities over six lessons 
(Section 3.3). 

3.2 Participants 

Thirteen students, seven boys and six girls, from an affluent school took part in this 
study. They were in the beginning of Grade 12 of the pre-university track, which is 
attended by the top 15% of academically high achieving Dutch students. The first 
author (T) taught these students at his own school in a small city. Our designed 
instructional unit was entitled, Statistics as a bridge between mathematics and the 
natural sciences and was part of their school subject Nature, Life and Technology 
(Eijkelhof & Krüger, 2009). The students participated in classroom discussions and 
worked in pairs and small groups. They were expected to reason more than they 
were used to in other school subjects. 

3.3 The measurement learning activities 

In this section we describe the two measurement activities, which spanned three 
lessons each (50 minutes per lesson). These measurement activities aimed to 
involve students in reasoning about variability in informal ways in relation to 
correlation and regression to prepare for the learning of formal correlation and 
regression modelling techniques in subsequent lessons. In the first measurement 
activity the students had to perform heart rate measurements and use a given model 
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to quantify physical condition. In the second measurement activity they were 
required to model their own measurements of heart rates under increasing power. 

3.3.1 Measurement Activity 1 (MA1): Measuring Condition 

MA1, which consists of six tasks with several subtasks, concerns the measurement 
of physical condition. Professional sports physiologists regularly use measurements 
and modelling techniques in their advice about the best training for their clients; in 
particular, accurate measurements and suitable statistical techniques are needed 
when they want to determine the physical condition of a person and assess their 
potential and risks. We assumed that students could engage easily with this context 
because many of them are concerned about their physical condition and do some 
sport themselves. They presumably have some prior knowledge of the AuPP and 
see the point of it. This would help them see the point of what they learn (cf. Lijnse 
& Klaassen, 2004). 
 
We developed an analysis framework (Section 3.4) based on Wild and Pfannkuch 
(1999), with Reading and Shaughnessy’s (2004) additions (describing and 
representing) incorporated. We added “describing” to noticing and acknowledging 
(consideration 1) and we consider representing to be an investigative strategy 
(consideration 4). Our framework therefore contains: 1) noticing, acknowledging 
and describing variability, 2) modelling or measuring variability, 3) explaining 
variability and 4) using investigative strategies to handle variability. 
 
The design aim of MA1, on the measurement of physical condition, was to prompt 
reasoning about the ways in which students consider variability. We expected to 
achieve this goal by allowing students to perform their own measurements and 
compare these with an existing model. We assumed that suitable AuPPs constitute 
rich contexts that are meaningful for students, which would make it easier for them 
to consider variability (Cobb & Moore, 1997) and be motivated to learn (Dierdorp, 
Bakker, Eijkelhof, & van Maanen, 2013). We conjectured that a) the authentic data 
would show enough “noise” to urge students to notice and acknowledge variability 
when they interpreted the data (Konold & Pollatsek, 2002), b) they would 
understand that the relation between power (measured in Watts) and heart rate 
could be modelled with a trend line, c) they would explain the noise by sources of 
variability and d) they would use investigative strategies such as representing the 
data with graphs to seek ways to interpret the variability. 
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Task 2a 
Introduction 
In this task you will measure the heart 
rate frequency the same way as 
professional sports physiologists do. 
The task concerns three measurements. 
First a measurement at rest. Secondly, 
a measurement after knee bends. 
Third, a measurement at rest again. 
Work in small groups. Every student 
will take the test and perform the 
measuring at least once. In the 
following text you can read how to 
perform the measurements. 
 
Heart Rate Measurement 
The person who takes the physical test 
needs to sit quietly for about one 
minute before starting the 
measurement process. Measure the 
heart rate of each person at rest. 
Measuring the heart rate is determining 
the pulsation frequency. We call this 
resting heart rate H1. Always measure 
the heart rate with your middle finger 
(possibly joined by the index finger). 
The artery is on the side of your 
thumb. 
Have someone else determine H1, so 
the person who gets tested doesn't need 
to keep an eye on the time.  

 Next, the testee does 30 deep knee bends 
in about 45 seconds. The back remains 
straight and the feet must keep contact 
with the ground. Each time your 
fingertips should touch the ground. 
Measure the heart rate (number of 
pulsations) directly afterwards, for 15 
seconds and convert it to rates per minute 
(H2). Sit quietly again. One minute later 
measure your heart rate again for 15 
seconds and convert it to one minute 
(H3). 
From these measured values an indication 
of your physical condition can be 
calculated using the Index Ruffier-
Dickson formula. This index is frequently 
abbreviated as IRD and is defined as: 
 

10

)13(2702 HHH
IRD


  

 
Translation from IRD to a qualitative 
indication of physical condition: 

IRD Physical 
Condition 

Below or equal to 0 excellent 
between 0 and 3 very good 
between 3 and 6 good 
between 6 and 8 moderate 
above 8 bad 

Figure 1. Task 2a from Measurement Activity MA1 (translated from Dutch). 
 

Heart rate increases with increased power (physical effort), but this happens less 
rapidly with people who are in good physical condition than with people who are 
less physically fit. In addition, people who train regularly recover more rapidly 
after physical effort (heart rate becomes normal again). Researchers have designed 
suitable tests to quantify physical condition by measuring heart rates. The Ruffier-
Dickson test (Paulet, Gratas, Dassonville, & Rochcongar, 1981), for example, uses 
heart rate frequencies at three relevant moments in a physical exercise to determine 
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physical condition. In MA1, partly presented in Figure 1, students were asked to 
use and discuss this test. We expected them to demonstrate several ways to 
consider variability. After the completion of the heart rate measurements, students 
were asked to calculate their Index Ruffier-Dickson (IRD) and to reason about 
variability. 

3.3.2 Measurement Activity 2 (MA2): Identifying a Suitable Sports Program 

MA2, which consists of four tasks with several subtasks, concentrated on 
presenting and analysing data collected by students performing the Conconi Test 
(Conconi, Ferrari, Ziglio, Droghetti, & Codeca, 1987), which measures the 
threshold heart rate frequency (HRF) at which the muscles switch from aerobic to 
anaerobic combustion. Despite recent studies that have shown the Conconi test has 
limited levels of accuracy, we decided that it is a good option to offer students 
because it is still used and is suitable for students to reason about variability in 
relation to correlation and regression. 
 
The design aim for MA2 was for students to demonstrate all four ways to consider 
variability: 1) noticing, acknowledging and describing variability, 2) modelling or 
measuring variability, 3) explaining variability and 4) using investigative strategies 
to handle variability. As argued in Section 2.2, it would be important for them to 
collect and model data themselves in order to enrich their ability to interpret the 
resulting graphs (Roth & Bowen, 2003). 
 
MA2 is based on a practice of sports physiologists who identify the best training 
program for clients. Just like athletes, students had to measure their heart rate 
frequency (HRF) while increasing the intensity of their effort (power used at the 
treadmill). It is important for athletes to stay within the aerobic area, otherwise the 
muscles produce lactic acid. Training in the aerobic area under the threshold HRF 
from aerobic to anaerobic will prevent a decrease of this threshold and prevent 
muscle problems. According to Gellish, Goslin, Olson, McDonald and Moudgil 
(2007), when people increase their efforts during their training session, HRF 
increases proportionally with the power. If the power exceeds a certain point, the 
linear proportionality will disappear and the HRF will approach the peak heart rate 
(Figure 2). The upper bound where the HRF still behaves as a linear function of the 
power is called the point of deflection (Gellish et al., 2007). This is a good 
approximation for the threshold HRF which sports physiologists use to predict to 
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plan the best training program. Measuring the threshold HRF takes place indirectly 
by analysing a graphical model of the data. 

 

 
Figure 2. Model to find the threshold (based on Conconi et al., 1987). 

 
During these measurement activities, students have to collect and reason about 
variability, make tables or graphical models of the data by scatter plots, which have 
not been addressed at school before. In contrast to MA1, the students had to model 
the measurement data generated in MA2 themselves using software. For this 
modelling, it was important that students reason about variability by considering 
the particular way that their group performed the test (method), the measurement 
devices they used to collect the data (there were several different devices and some 
measured by hand) and measurement errors. We also expected that students would 
use investigative strategies for finding a trend in their data. 

3.4 Data collection and analysis 

To assess students’ reasoning about variability, their work in class was observed 
and recorded (audio and video) by the first author. Video-recorded lessons (six 
lessons of sixty minutes each) were transcribed. Data included students’ written 
work, transcripts from video recorded lessons and field notes. One girl was not 
included in the analyses because of her absence during some lessons. 
 
Using the adapted version of Wild and Pfannkuch’s (1999) framework (extended 
by Reading and Shaughnessy, 2004), we analysed students’ spoken interaction and 
studied their reasoning in depth, using the four ways to consider variability. To 
identify which considerations were at stake in the interactions between students or 

Power (Watt)

Threshold 
(Beats per 
minute) 

HRF
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between student(s) and their teacher, we developed an analysis framework (Table 
1). 

 
Table 1  
Analysis framework to identify which ways to consider variability. 
 
Code Consideration of variability Example 
NAD Noticing, acknowledging 

and describing variability 
The student implicitly refers to variability or 
explicitly describes variability. 

Mod Modelling or measuring 
variability 

The student discusses variability in relation to the 
model (e.g., between measurements of heart rate 
and level of power or between age and maximum 
heart rate). 

Exp Explaining variability The student tries to explain variability in data by 
indicating that people are different, or that the 
circumstances are not equal. 

Inv Using investigative 
strategies to handle 
variability 

The student discusses what is necessary to describe 
the variability (investigative strategy) or how to 
handle variability. For example, she represents such 
variability in a graph or table to arrive at a model or 
identify a trend, or call conditions on which the 
strategies can be used. 

 
We divided the transcripts of the classroom interaction into utterances (our unit of 
analysis) in which the researcher recognized one of the four ways to consider 
variability. This process yielded 82 analysis units (utterances). 
 
This categorization (Table 1) is neither a hierarchy nor a list of exclusive 
categories. The first category in our analysis framework (NAD) is conditional 
because acknowledging variability is prerequisite for the other three ways of 
consideration. Because we wanted unique codes for each utterance, we used code 
NAD only if no other code applied. The utterances were first categorized by the 
first author and an independent researcher who was not involved in this study, but 
an expert in mathematics education and psychology who made coding decisions 
without access to the decisions of the first author. Kappa was .66, which Cohen 
(1960) considers substantial. 

4 Results 

In each measurement activity (MA1 and MA2), we investigated the spoken 
utterances of students to identify considerations they demonstrated in their 
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reasoning when they engaged in measurement activities based on AuPPs. Table 2 
demonstrates that the measurement activities based on authentic practices 
stimulated students to reason about all four ways to consider variability. Table 2 
contains some zeros because in cases where  the teacher explicitly asked about one 
of the four ways to consider variability the reactions of the students were not 
included in the analysis, because our focus was to investigate whether students 
themselves would reason about the several ways to consider variability. In the first 
set of tasks (MA1) 37 (4 + 5 + 16 + 12) utterances were coded and in the second 
set of tasks (MA2) 45 (7 + 5 + 18 + 15). Table 2 shows that nearly all students 
noticed variability. Furthermore, the table indicates that most students attempted to 
explain or work with variability, but few tried to explicitly measure or model 
(quantify) it. 

 
Table 2 

Numbers of spoken student utterances that demonstrate reasoning about a way to 
consider variability. 
 

MA1 MA2 

Student NAD Mod Exp Inv NAD Mod Exp Inv 

Tom 0 1 1 4 0 0 0 1 

Alan 0 0 3 1 5 2 4 5 

Bert 0 2 3 2 0 0 0 0 

Jorr 2 1 2 1 0 1 4 5 

Rose 2 0 2 0 1 0 2 1 

Maxima 0 0 1 0 0 0 0 2 

Elsa 0 0 1 0 0 1 4 0 

John 0 0 2 0 0 0 0 0 

Simona 0 0 1 1 0 0 0 0 

Abel 0 1 0 2 1 1 2 1 

Eleonore 0 0 0 0 0 0 1 0 

Kai 0 0 0 1 0 0 1 0 

Total 4 5 16 12 7 5 18 15 

#students 2 4 9 7 3 3 6 6 

To give a qualitative illustration of students taking into account the four ways to 
consider variability we briefly report on their reasoning during MA1. To set the 
stage, we first sketch how the first measurement activity was introduced. We 
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wanted to involve students in the measurement activities and to become aware of 
the presence of variability around the regression line. To achieve this, the teacher 
introduced the following task at the beginning of MA1: “Consider how a sports 
physiologist could support a client in improving her condition and why it can be 
useful to measure her heart rate for that.” Most students wrote down that the HRF 
depends on the degree of power. None of the students mentioned anything about 
variability in their written text. In the next sections we provide examples of how 
MA1 helped stimulate students to reason about each of the four ways to consider 
variability. 

4.1 Noticing, acknowledging and describing variability 

In this subsection we illustrate that when students did not notice variability, very 
little support from the teacher was needed to stimulate them to reason about 
variability. Part of MA1 asked students to orally explain the difference between the 
measured IRD and the condition of their class mates. Although, in their written 
work, students mentioned several ways to consider variability, they did not 
mention aspects of variability orally. The teacher responded to this in the next 
lesson by again leading the discussion about variability. In the next excerpt, Jorr 
and Tom acknowledged variability in an informal way: 

   
T: Do you expect the same values [IRD] when you run the experiment three 

times? 
Tom: If in between the experiments you recover completely because you have time 

enough to take a rest, then the values [IRD] will be the same. 
[a few minutes later:] 
T: Some [students] say if you rest enough, you will find the same [IRD]. 
Jorr: Well, not quite exactly the same. 
T: So, you expect something close to it? 
Jorr: Yes, a small deviation. You have to take the mean. 
Tom: That is true. 

 
The observations showed that all students agreed and the teacher was satisfied that 
the students were aware of some variability in their measurements. The analysis 
indicated that students knew that measurement values need not be exactly the 
same, but sometimes did not seem to see the need to express this variability. By 
evoking a cognitive conflict (Watson, 2007), the teacher had an important role in 
stimulating them to express more precisely the difference between what they said 
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and what they observed. First, Tom expected the same values, later he agreed with 
Jorr that he expected a small deviation. Therefore, we coded these statements as 
Tom and Jorr acknowledging variability and trying to describe it informally. 

4.2 Modelling or measuring variability 

We conjectured that students would understand that a model (in this case heart rate 
versus power) is a representation of a relationship and that there would be some 
variability around any model. We give an example in which Tom considered 
variability when he described the relation between heart rate and a person’s 
physiology: 

 
Tom: Sports physiologists have devices to measure a person’s physiology. When 

you can consider the heart rate as an indicator, it should not be too high or 
too low. But it is only a partial indicator to measure the effort to do 
something. 

T: So, you say: it is an indicator. For what? 
Tom: It is an indicator for the degree of effort you must perform to do something. 

 
Tom reasoned how to measure physiology and mentioned “partial indicator” to 
refer to the model. He seemed to realize that the heart rate gives indications about a 
person’s physical condition and that fluctuations of heart rates are to be expected. 
The teacher recognized the importance of Tom’s remark because he wanted to 
make sure that students were aware that a characteristic such as heart rate could be 
used by a sports physiologist as a (simplified) measure to assess a client’s physical 
condition. 
 
MA1 confronted the students with variability around the (IRD) model. They had to 
measure heart rates and find a value by the IRD model to predict the physical 
condition of a “client.” We saw some students struggle with the relation between 
their data and the model. For example, when the teacher showed the scatter plot of 
the students’ measurements and asked if the students recognize a relation between 
the resting heart rate (H1; Figure 1) and the heart rate after the knee bending (H2), 
Bert responded with: “There are very few points.” In explaining the variability he 
seemed to realize that a small sample size would make it more difficult to 
formulate the relation and that a bigger sample size would be preferable when 
constructing a meaningful model. However, other students could recognize a trend: 
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Abel: Actually, I can see a line. But only a little. 
Kai: No. 
Abel: Yes, I do. I see no line, but I recognize a rising regression line. You have to 

make this data set real. 
T: But this is real data [the students collected it themselves]. 
Abel: But I cannot see the shape of the [regression] line. 
T:  So, you cannot say something about the relation, but can you say something 

in common? 
Abel: They [H1 and H2] are linearly proportional. 
T: But, if you know the formula for the right regression line, what can you do 

with it? 
Abel: Make a prediction. 
Jorr: If your condition is above or below the mean. 

 
Abel likely meant that there was a lot of variability in the data, but that he could 
recognize a pattern. 

4.3 Explaining variability 

For the third way to consider variability which we expected to see in students’ 
reasoning, we conjectured that students would try to explain variability by 
indicating that people are different or that the circumstances were not equal. An 
example is given by Rose who found a higher IRD than she expected: “For me it 
[IRD value] is not right. I exercise four times a week and swim and cycle every 
day.” When the teacher asked her if she could explain this result, she said that she 
had heart problems and that her heart might not work in a way that is necessary to 
measure condition by heart rates. 
 
We think that modelling their own measurements evoked students’ reasoning about 
variability. We observed that all students considered whether their measurement 
results fit the model and tried to explain any deviations from the model. Although 
all students considered themselves fit, only three of them found a result which 
corresponded with their perception of their actual condition. The fact that they 
were dissatisfied with the outcome implies that the students linked the 
measurement to the authentic context. Allen, one of the disappointed students, even 
felt a little offended by the result and used the context to explain his 
disappointment: “I have got 6.8 and am supposed not to have a good condition 
[according to the IRD]. This surprises me because I train 5 times a week.” Other 
students made similar comments, so the teacher asked what could be explanations 
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for the disappointing results. The students mentioned that the measurements were 
inaccurate. 
 
The authentic character of the measurement activities urged some students to seek 
an explanation for why data varied without being too concerned about actually 
describing the variability, because they had some contextual knowledge (Reading 
& Shaughnessy, 2004). The students mentioned several ways to explain the 
variability. Jorr mentioned the “accuracy of the measurement.” In terms of Wild 
and Pfannkuch (1999), we could say that he meant that there are “accidental” 
mistakes in the data collection process. Students regularly referred to the difference 
between people to explain the variability (Schwartz, Goldman, Vye, Barron, & 
Cognition and Technology Group at Vanderbilt, 1998). For example, Bert referred 
to a famous athlete: 

 
Kai:  Maybe stress increases your heart rate and relaxation by sports decreases 

your heart rate. 
Bert: If Louis Armstrong digs his front yard his heartbeat is the same as when an 

ordinary human is asleep.  

 
Bert probably meant cyclist Lance Armstrong, but his message was clear: People 
are not the same, or the circumstances are not the same. Students often mentioned: 
“A human is not a machine.” 
 
We suggest that indicating that people are different, or that the circumstances are 
not equal are students’ implicit ways to explain and thus deal with variability. 
Another indication that students deal with variability is found when the teacher 
asked the students the relevance for a sports physiologist to know the data of the 
whole group. Six of the students mentioned something like Kai: “Then he knows if 
the client is below or above the mean”, which was related to variability; only two 
of them mentioned variability explicitly. 

4.4 Using investigative strategies to handle variability 

We used this fourth code when the students discussed what is necessary to describe 
the variability (investigative strategy) or how to do this. For example, when the 
students tried to explain why clients’ heart rates did not fit the formula exactly, the 
authentic character of the task seemed to encourage the students to be more aware 
of variability and to link their data to the scientific context: 
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Bert: Maxima, the formula implicated that you have a bad physical condition. 

Do you smoke? 
Maxima:  No, I am just not very sporty. 
Jorr: Whether someone smokes cannot be found in the formula, but it  
 [smoking] can have an impact on the value [IRD]. 

 
Bert was apparently searching for a contextual explanation why Maxima had an 
extremely poor number to indicate her condition. We think that Bert’s remark 
suggests that the authentic character of the measurement activity made him aware 
of real variability and see the model as indicative for physical condition. We see 
this as an example to investigate a need to know more information in order to 
describe or explain the variability. However, one could also interpret Bert’s 
statement with code EXP (explaining that people are all different). We now 
discuss an example when students represented variability by a scatter plot and 
noting what was needed to find the regression line. When the teacher asked them 
what they meant by a rising regression line, students’ mathematical knowledge 
helped them to reason about the variability of their measurement results: 

 
Bert: We have very few points to draw a regression line. 
T: That is true. 
Abel: I can recognize a [regression] line. 
T: How? 

 
Bert mentioned that there were only a few data points to produce a regression line. 
He seemed to be aware that more data points makes it easier or perhaps more 
reliable to find the regression line. When the teacher asked how Abel recognized a 
regression line, Kai answered first: 

 
Kai: The regression line is the mean of all data points. 
Abel: The mean of all data points through the data points. 
Kai: With the same number of points above the line as under the line. 
Abel: It is necessary to have the same number of points above the line so that the 

overall result of deviations on the upper side is as large as the overall result at 
the bottom. 

 
We think that Abel tried to formulate a version of the “sum of residuals” when 
mentioning overall results of deviations. In this context, the sum of residuals is the 
summation of all absolute deviations of the heart rate observations from the 
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regression line. Measuring the data themselves and representing them by a graph 
seemed to encourage them to consider the deviations of their measurements from 
the IRD model even though they had not learned this idea yet. These formal 
techniques would be learned later in the course (after MA1 and MA2). 
   
There are several differences between MA1 and MA2. In MA1 students were given 
a model (the IRD formula); in MA2 they had to model their measurements and 
they were informed that the point of deflection in a scatter plot indicates the 
threshold heart rate. IRD is a simple indicator of physical condition, based on data 
from many people. MA2 was more explicitly linked to the biochemical process of 
metabolic acidosis. This meant that in MA1, students had to reason about 
variability with regard to their individual values in relation to an aggregate data set, 
whereas they could remain focused on an individual’s data in MA2 when doing 
their running test (Conconi et al., 1987). In this running test they gathered data by 
measuring the heart rates with increasing speed of the treadmill. 
 
In the following, we focus on students’ reasoning about patterns of variability 
(investigative strategy) when they were involved in MA2. Most students were able 
to find their own threshold point, but some students did not recognize a trend in 
their data just as when they struggled with comparing the Ruffier-Dickson model 
with their own variable data. Given their limited experience with statistics and the 
literature on students’ difficulties of coordinating local and global perspectives on 
data sets (Ben-Zvi & Arcavi, 2001), this should not be too surprising. What might 
have helped here is that students seemed to have an idea of what the underlying 
scientific phenomenon was they were measuring—as in the approach of Lehrer, 
Kim and Schauble (2007) in which students had a sense of the true value they were 
approximating. The teacher mentioned that the part of their graphs before the 
threshold point were not totally linear. Alan responded and mentioned the 
variability implicitly: 

 
Alan: It is not the fact that our heart rate is not linear, but the line is based on 

something we want to be linear. In my head it is correct. It is not that the 
heart rate is linear, but because we constructed a linear line as a kind of 
“guideline” [Mod]. 

T: So you say that based on this theory, these models, there must be a linear 
relation because we think that it is linear? 

Alan: Yes, we invented a linear relation with values which are not linear. 
T:  You say: there is no linear relation? 
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Alan: No, it is not completely linear. It is almost linear. 

 
In fact, Alan claims that the linearity of the model is correct, but that the actual data 
do not fit the model completely. He stressed the presence of variability and was not 
the only student who did this. Later, when they constructed a representation of their 
collected data in a scatter plot they noticed variability and named it “a margin.” 

 
Jorr: You can see this as a margin. 
T: What does this margin say to you? 
Jorr: The possible deviation for people who score poorly and those who score 

better [Exp]. 

 
Jorr used the phrase “margin” and Elsa agreed with him. She suggested not sticking 
rigidly to a formula when advising a client, but to deal with the variability and use 
a margin. In the next excerpt the students try to explain the variability: 

 
Elsa:  It has an aspect of randomness. Like a thermostat. You got a standard, but 

the value can be below or above. There is a margin of error. 
T: Error? 
Elsa: A range of errors. When the value can be found between two limits and 

between these limits it is random. 
T:  Why errors? 
Elsa: I interpret them as errors. Like a standard. It can be above or below. It 

fluctuates between them. The processes in your body are never the same. 
Kai: Your body is not a machine [Exp]. 
T: Your body is not a machine? What do you mean with that? 
Kai: I mean, your body is not always working as described by the model. 
Alan: Suppose that during training you see a beautiful woman, then your heart 

rate will become higher. 
Elsa: The treadmill is rather long. So, you can make big steps or small steps. Or 

walk a little faster and slow down a little [Exp]. 
T: Thus, we have also variability caused by methodological aspects? 
Students: Yes. 

 
Again the students explained the real variability (e.g., your body is not a machine, 
you can make big steps or small steps). In this phase the teacher tried to let the 
students reason about explanations for variability. The body not being a machine 
was mentioned multiple times; the students agreed that even if the test were done in 
a laboratory, the result would still vary. 
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5 Discussion 

As summarised in this article, variability is a key concept in statistics that typically 
does not receive the attention it deserves in statistics education. As part of a larger 
research project we have designed measurement tasks that were based on authentic 
professional practices in which correlation and regression are used. The advantage 
of measurement is that it is at the interface between context and statistics, where 
students can get a feel for where variability comes from (e.g., variability in the 
phenomenon studied versus measurement error). The assumed advantage of basing 
measurement tasks on an authentic professional practice is that students may then 
better see the need of learning about statistical modelling techniques such as 
correlation and regression and thus be motivated to learn about them. Moreover, it 
is known that students often demonstrate computational habits without realistic 
considerations when they solve word problems (Cooper & Harries, 2002). More 
recent studies indicate that more authentic tasks can help to counteract such habits 
(Verschaffel, Greer, Van Dooren, & Mukhopadhyay, 2009). 
 
To test whether our measurement tasks did help students to consider variability in 
rich ways, this article addressed the following research question: How do 
secondary students consider variability within measurement activities based on an 
authentic professional practice? We used an analysis framework based on ways in 
which statisticians consider variability (Table 1): noticing and acknowledging 
variability, measuring and modelling variability, explaining variability and using 
investigative strategies.  With this framework we analysed how students considered 
variability and we found that students demonstrated all these ways of considering 
variability (though of course in less advanced ways than would statisticians). This 
suggests that the measurement tasks based on the authentic professional practice of 
a sports physiologist have the potential to stimulate students to consider variability 
in all these ways, provided that the teacher helped them to deepen their reasoning 
about variability. 
In more detail, analysis of the transcripts and observations showed that students 
noticed and acknowledged variability. They experienced that the data they found 
did not exactly fit the model and they tried to find explanations for this. 
Furthermore, they were concerned with a margin around the model to predict a 
client’s condition and explained the deviation of the value of condition according 
to the value obtained by the model they found. To control the variability in data the 
students suggested doing more measurements, using the same device for every 
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measurement. To identify a suitable sports program the students used investigative 
strategies by modelling the data to find the threshold point. Finally, we conclude 
that the two activities supported students to reason about the four ways to consider 
variability as described in our coding scheme. 
 
Because of the deviations from their own data and the data predicted by the model, 
students were asking themselves whether the heart rate was the key characteristic 
that is needed to measure physical condition. They decided there were more 
variables to consider, but that the heart rate can be indicative for this context about 
physical condition. The “noise” in their data urged them to consider the sources of 
variability. Also, the method of measuring was discussed, because some students 
noticed that other students did not apply the same methods. Some students tried to 
control the variability by repeated measurements, but again noticed more 
variability. 

5.1 Measurement  

As the analysis suggests, performing measurements seemed to stimulate students to 
consider variability in different relevant ways. We suggest that the students gained 
an understanding of “sensible” measurements by using measurement and 
modelling activities to find patterns, such as a trend. They found trends by 
representing, analysing and generalising their collected data in table formats as 
well as in figures. Their prior contextual knowledge helped them to acknowledge 
and deal with variability (e.g., “your body is not a machine”), but the teacher’s 
support was often needed to elicit students’ reasoning about variability. 

5.2  Authentic Practices  

We think that the authentic character of the activities supported students in 
modelling their measurement results. The transcripts suggest that students were not 
just solving a word problem, but considered variability to find an answer for a 
“real” problem. For most students, these activities based on authentic practices 
were successful in reaching the goal of supporting their reasoning about the ways 
to consider variability. Some students struggled with explaining variability in their 
measurement results, but our study suggests that the students gained awareness that 
you could use the model for sensible predictions, but that it does not precisely 
describe reality. The measurement experiences of the students, together with the 
class discussion, contributed to the students’ view that a model is a simplification 
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of reality. For some students, this was difficult to see initially and some struggled 
with the variability of the data. However, the results of this study suggest that the 
teaching and learning activities generally supported students in learning to measure 
parameters of physical condition using modelling techniques and to reason about 
variability in valuable ways.  

5.3  Limitation and future research  

As a limitation of our study, we note that only one small group of students was 
involved. We thus see this study as a proof of principle that it is promising to base 
tasks in statistics education on authentic professional practices in which statistical 
techniques are used. We think that the measurement activities can be extended to 
support students in understanding other more sophisticated types of variability as 
well, such as sampling variability. In follow-up research (AUTHORS, 2013), we 
found that basing teaching and learning strategies on authentic professional 
practices may also help students to be motivated to learn and see the point of their 
learning and to help to develop rich multifaceted concepts. Also, we suggest that 
our strategy, based on authentic professional practices in which statistics is used, 
can help students to make connections between school subjects such as 
mathematics and biology. 
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Abstract  
 
This article focuses on how to support students (aged 16-18) to develop statistical 
concepts in such a way that they can shuttle between contextual and statistical 
spheres. Shuttling involves mathematization and linking results of statistical 
modelling or computation back to the contextual problem. To realize this shuttling 
in education, designers and teachers need to help students see the purpose of tasks 
and the utility of concepts in the shuttling process. To this end we based an 
instructional unit on authentic professional practices. Two case studies were 
carried out to assess the potential of two tasks from this unit to support students’ 
concepts that underlie sampling – sample size, random process, distribution, 
confidence interval, and relationship between sample and population – and to find 
indications of what teachers should do to use this potential. Analysis of video 
recordings indicates students’ coherent development of these concepts, suggesting 
the tasks have the potential for which they were designed. The students seemed 
aware of the purposes of the tasks and could apply their statistical knowledge, but 
tended to forget to shuttle back from the statistical to the contextual sphere. This 
suggests that teachers need to help students to link back to the contextual problem 
even if tasks are based on authentic professional problems and students see the 
task’s purpose. 
 
Keywords: statistical reasoning, sampling, inferential reasoning, authentic 
practice, upper secondary education, purpose & utility 
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1 Conceptual development for shuttling between contextual and 
statistical spheres 

This paper deals with a fundamental challenge in design for mathematics and 
statistics education: to stimulate students to develop concepts in such a way that 
they can shuttle back and forth between a contextually phrased problem and 
mathematics or statistics. Many contextual problems can be solved with the help of 
mathematics or statistics. This requires a process of mathematization, from the 
“world of life” where people live and act to the “world of symbols” where reality is 
symbolized and symbols are manipulated (Freudenthal, 1991, pp. 41-42). But the 
results of mathematization (e.g., modelling) also need to be evaluated on their 
merits in the context. The literature on modelling (e.g., Galbraith & Stillman, 2006) 
and statistical thinking emphasizes the importance of such “shuttling between the 
contextual and statistical spheres” (Wild & Pfannkuch, 1999, p. 28) as a learning 
goal for mathematics and statistics education. 

From the educational literature, however, we know that such shuttling is not easily 
promoted in students. Research into school statistics reports the problems that 
students have in drawing inferences which are contextually meaningful (Makar & 
Rubin, 2009). Transfer of school mathematics to out-of-school situations is known 
to be difficult (e.g., Nunes, Schliemann, & Carraher, 1993) and the use of realistic 
contexts does not necessarily have the desired effect (Boaler, 1993). Solution-
oriented solving of story problems can lead to poor conceptual understanding of the 
domain (Hung & Jonassen, 2006). The substantive literature body on word 
problems (Palm, 2008; Verschaffel, de Corte, & Lasure, 1994) further shows that 
students often take a purely calculational approach and fall prey to suspension of 
sense-making when solving contextually phrased word problems. Ainley, Pratt and 
Hansen (2006, p. 25) even consider “the provision of authentic tasks inherently 
problematic.” They propose to focus task design on purpose and utility rather than 
authenticity. A purposeful task is one that has a meaningful outcome for the 
student, and utility is the construction of meaning for the ways in which 
mathematical concepts are useful. This focus on purpose and utility is a way out of 
what they call a “planning paradox” in task design: 

 if teachers plan from tightly focused learning objectives, the tasks they 
set are likely to be unrewarding for the pupils, and mathematically 
impoverished. If teaching is planned around engaging tasks the pupils’ 
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activity may be far richer, but it is likely to be less focused and learning 
may be difficult to assess (2006, p. 24). 

We propose that a focus on purpose and utility can go well together with 
authenticity. Research in science education has shown that a design approach in 
which tasks are based on authentic professional practices can help students see the 
purpose of what they do in classrooms and the utility of what they learn 
(Westbroek et al., 2010). However, there are potential drawbacks as well. 
Westbroek et al. based their instructional sequence in chemistry education on the 
professional practice of testing drinking and swimming water. In simulating this 
practice, students saw the purposes of what they did and the utility of what they 
learned, but they learned very little about chemistry. Such an approach may thus 
come at the expense of conceptual learning. This suggests that the planning 
paradox is not necessarily resolved by focusing on purpose and utility. Design 
should also focus on conceptual development, and this – we argue – adds particular 
requirements both to tasks and teaching. 

A narrow focus on tight conceptual learning objectives may lead to an atomistic 
approach in which specific aspects of concepts are addressed in isolation (Bakker 
& Derry, 2011). Reform attempts that engage students in richer projects aim to 
address concepts more holistically in relation to each other. In such holistic 
approaches it may be more challenging, as Ainley et al. (2006) point out with their 
planning paradox, to steer what students might learn and assess what they have 
learned. What we wanted to investigate in our research is whether it is feasible, in 
principle, to have the best of different worlds. The aim of this paper is to examine 
whether realistic tasks, inspired by authentic professional practices can support 
students’ conceptual understanding in such a way that they can shuttle between 
contextual and statistical spheres.  

2 Theoretical background 

2.1 Relation between concepts and shuttling 

Shuttling as characterized above is an informal overarching term covering several 
processes. The shuttling from context to statistics can take different forms such as 
mathematization, modelling, or the application of statistical knowledge. Shuttling 
back involves judgment of the statistical outcomes’ value for the contextual 
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problem at hand: Is this result meaningful, useful, valid? Is there a range for which 
the model holds? Under what conditions does it make sense to use this model or 
technique? 

Such shuttling requires a particular type of conceptual understanding (as opposed 
to procedural knowledge involved in calculational approaches). As Brandom 
(2000, p. 48) stated in line with his inferentialist theory:  

To grasp or understand (. . .) a concept is to have practical mastery over 
the inferences it is involved in—to know, in the practical sense of being 
able to distinguish, what follows from the applicability of a concept, and 
what it follows from. 

The consequence of this view is that the dichotomy between the contextual and 
conceptual dissipates. For example, if someone understands the concept of 
sampling (and other concepts relevant to the context), it means she knows how to 
draw inferences with this concept in concrete situations. She knows when the 
concept can be applied and what the consequences are of applying it. 
Understanding thus also includes knowing about the concept’s utility. As a 
consequence, the shuttling between what is conveniently summarized as context 
and statistics in fact requires a deep understanding of several concepts, some of 
which are statistical (cf. Bakker & Derry, 2011). This means they fall under norms 
that are common in statistical practice. From an inferentialist perspective, students 
thus need to broaden the scope of using and understanding statistical concepts 
beyond the statistical domain. It is for this reason that we focus in the following on 
conceptual development in the broad sense, thus including judgment about 
contextual problems. In short: shuttling is the main learning goal and conceptual 
development is the means to this end. 

2.2 Concepts underlying sampling 

We focus on sampling – an important yet somewhat neglected area in statistics 
education – in relation to other statistical concepts such as variability, correlation, 
regression and distribution. Sampling is considered a key aspect to the teaching of 
informal inferential reasoning (e.g., Saldanha & Thompson, 2003). Pfannkuch 
(2008, p. 1) argued: “When students are not aware of sampling their informal 
inferential reasoning is limited.” We should emphasize two related points. First, 
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concepts should not be studied in isolation (Bakker & Derry, 2011). Brandom 
(2000, p. 15-16) observes that concepts come in packages: “one cannot have any 
concepts unless one has many concepts. For the content of each concept is 
articulated by its inferential relations to other concepts. Concepts, then, must come 
in packages.” The sampling we study in this article is closely linked to correlation, 
regression, variability and distribution, but also to the contextual concern of saving 
money by avoiding unnecessary big samples. Second, concepts are often 
multifaceted. Based on Wild and Pfannkuch’s (1999) framework for statistical 
thinking, Pfannkuch (2008, p. 4) noted that students’ statistical reasoning about 
sampling involves the following five underlying concepts: sample size (in relation 
to the law of large numbers), random process, distribution, informal confidence 
interval, and relationship between sample and population. An informal confidence 
interval is “a sense of the reasonably expected variability around the expected 
value” (Shaughnessy, 2006, p. 87). 

One pedagogical approach related to sample size that informed our tasks was that 
of growing samples (Konold, & Pollatsek, 2002; Bakker, 2004, 2007). In this 
approach students start with a small sized sample and increase the sample size step 
by step. In this way they gradually develop their reasoning about sampling in 
relation to other statistical concepts such as distribution (Bakker & Derry, 2011) 
and become able to infer from a sample about a population (Ben-Zvi, Aridor, 
Makar, & Bakker, 2012). 

2.3 Basing design on authentic professional practices 

Basing tasks on situations from authentic professional practices has been studied in 
science education with some promising results (e.g., Jurdak, 2006; Prins, 2010). In 
mathematics and statistics education the potential of this approach has received 
much less attention so far. In an earlier publication (Dierdorp, Bakker, Eijkelhof, & 
Van Maanen, 2011) we argued that such an approach assisted students in making 
statistical inferences about an authentic problem, but also helped them to grasp 
ideas that underlie statistical inference such as coordinating individual and 
aggregate views on data sets, recognizing trends that extended beyond the data, 
making sense of variability, and using data as evidence when drawing inferences. 

Given the shuttling challenges mentioned in Section 1, and the required conceptual 
development, we formulate the following research question:  
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What is the potential of tasks based on authentic professional practices to 
support students in developing concepts that underlie sampling in such a 
way that they can shuttle between contextual and statistical spheres? 

3 Method 

3.1 Setting 

This research question is addressed through two case studies that were part of two 
23-lesson design-based research cycles with one group of thirteen twelfth-grade 
students and one of sixteen eleventh-grade students. The data of this paper stem 
from a four-year design-based research project (Barab & Squire, 2004; Van den 
Akker, Gravemeijer, McKenney, & Nieveen, 2006) with six design cycles, with the 
aim to investigate how students can learn to draw inferences at school level beyond 
correlated real-world data, in such a way that they experience a link between 
mathematics and the natural sciences.  

The case studies, from the fifth and sixth cycle, were situated in two pre-university 
education (VWO) schools. This educational track for Grades 7-12 (ages 12-18) is 
meant for students who have the option to go to university. Both groups had opted 
to study the school subject “Nature, Life, and Technology” (SLO, 2008) for Grades 
11 and 12 (16-18-year-olds), which the Dutch government introduced – among 
other reasons - to foster better connections between mathematics and the natural 
sciences. The first group was taught at the start of Grade 12 by the first author. All 
lessons were video recorded. The second group from another school was taught by 
another teacher at the end of Grade 11, with the first author observing and 
interviewing students (video recorded).  

The two sampling tasks that we discuss here covered three of the 23 lessons, each 
50 minutes in both schools. Students used computers with both the educational 
software tool Fathom (Finzer, 2006) for learning statistics to simulate drawing 
samples and a spreadsheet (Excel). Dutch mathematics curricula for the pre-
university track include the law of large numbers. Therefore, we can assume that 
students in grade 11 or higher have had the opportunity to learn about it. 
Correlation and regression are not part of the obligatory syllabus. Dutch curricula 
pay relatively little attention to statistics compared to curricula in countries such as 
USA, UK, Australia and New Zealand. 
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3.2 Sampling tasks 

To stimulate students to develop concepts underlying sampling such that they 
could shuttle between contextual and statistical spheres we designed two tasks 
based on authentic professional practices: a task about heart rate and a task about 
sampling the height of dykes. We followed three task design principles: (1) the task 
aims at engaging students with activities based on an authentic professional 
practice (cf. Dierdorp et al, 2011; Prins, 2010); (2) the task follows the design 
suggestion of Galbraith and Stillman (2006) to pay special attention to back and 
forth linking of mathematical solutions to the context; and (3) the purpose of the 
tasks should be clear to the students and students should see the utility of concepts 
(Ainley et al., 2006) in such a way that they could apply them in contexts. With 
these general design principles we tried to overcome the aforementioned planning 
paradox and stimulate shuttling. 

3.2.1 Heart rate task 

To stimulate students’ reasoning about sampling we drew on a professional 
practice of research on peak heart rates (PHR). Gellish et al. (2007) measured 
many people and found a different relationship between age and peak heart rate 
(PHR = 207 – 0.7A, with A as age) than the one typically used in sport 
physiotherapy (PHR = 220 – A). We provided the students with Gellish et al.’s data 
set of 908 measurements. In the Heart rate task we asked the students if we could 
do with a smaller sample: What smaller sample size would be sufficient to find a 
reliable formula that is close to the original formula based on Gellish et al.’s data 
set? We consider this a hybrid task in the sense that it is both contextual and 
statistical: It is motivated by the contextual need to save money but at the same 
time it is statistically formulated in terms of sample size. This hybridity was 
expected to support students’ shuttling between contextual and statistical spheres. 
Moreover, we anticipated that saving money would be a clear purpose, also from a 
student perspective. 

 The task is based on the instructional idea of growing samples. The idea is that, 
starting with a small sample, students could experience the limitations of what they 
can infer about the whole population from this sample. Such an approach is helpful 
in supporting coherent reasoning about sampling, distribution and other statistical 
key concepts (Bakker, 2007; Ben-Zvi et al., 2012). The Heart rate task can be seen 
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as a shrinking sample task because students started with a large data set and Gellish 
et al.’s regression line, and then investigated random sampling (with replacement) 
of decreasing sample sizes to find the smallest sample size that still produced a 
reliable model (see Figure 1). It is also important that the students discover that 
repeated samples are needed to find a trend and draw inferences. 

 
Figure 1. Fathom software with a sample of 908 peak heart rate measurements. 

We conjectured that the question about how small a sample can be and still allow a 
sufficiently reliable inference can stimulate students to reason about all five 
aforementioned concepts underlying sampling (Section 2.2) and not just one aspect 
of sampling at a time, as happens in atomistic approaches to task design. We 
expected that students would become aware that small samples of the same size 
vary due to randomness and that increasing sample size would lead to more 
stability (law of large numbers). Further, we expected that drawing scatterplots 
would help students recognize the shapes of bivariate distributions (cf. Cobb, 
McClain, & Gravemeijer, 2003) to find trends and acknowledge the need to 
consider informal confidence intervals. Finally, we conjectured that the task’s 
focus on how small the sample could be when trying to make a reliable inference 
would invite students to keep relating sample and population. 
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3.2.2 Dyke sampling task 

The second task is inspired by the practice of monitoring the height of dykes. A 
dyke is an artificial construction to prevent flooding. Dyke monitoring is essential 
for the Netherlands because large parts of the country are below sea level. A 
persistent problem is that dyke heights decrease over time. If the height falls below 
a “critical value” high sea and river water levels become a danger. 

Before the Dyke sampling task students were given authentic data, collected from 
helicopters and satellites for the detection and monitoring of surface deformation 
(quite an expensive way of monitoring dykes) and they modeled the data set with a 
linear function. The students had to draw an inference on the data set about when 
the height of a dyke should be increased, just as professional consultancy 
organizations for dyke monitoring do (see Dierdorp et al., 2011). 

 

 
Figure 2. Scatterplot of deformations with 44 measurements during 3034 days 
(more than eight years). Day = 0 is used as a reference point for comparison with 
other dyke positions.  

Like the Heart rate task, which preceded the Dyke sampling task, the latter is 
hybrid in the sense that it combines contextual and statistical concerns, thus 
stimulating students’ reasoning about sampling while promoting the shuttling 
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between contextual and statistical spheres. Pointing to the high cost of 
measurement, we asked the students what smaller sample would still have led to a 
reliable prediction of when the critical value will be reached. Because we had to 
simplify the professional practice we did not ask the students to consider the cost of 
constructing a higher dyke, or the cost of flooding. The students got 44 real data 
points of the deviations of a dyke location (Figure 2, from Delft University of 
Technology). 

The students could change the sample size and get the corresponding scatterplot 
with a regression line and a formula. They had to decide themselves which number 
of measurements was required to find a reliable prediction based on a smaller 
sample which is close to the prediction obtained by the regression line for the 
complete set of 44 measurements. The students were not told what was meant by 
“close to” or “reliable,” only that they had to save money by reducing the number 
of measurements. 

To address the research question we sought an efficient way to check if our tasks 
could in principle support students’ concepts underlying sampling in order to allow 
shuttling between context and statistics. To this end it seemed sufficient to use case 
studies of students working with these tasks. The advantage was that small 
numbers of students could be monitored more carefully than larger groups. Case 
study 1 focuses on concepts underlying sampling; case study 2 on the shuttling. 

3.3 Case study 1 

The first case study focused on a 12th-grade student, Rick (all names are 
pseudonyms), aged 17, with average marks. We chose Rick because he had 
average marks and he talked enough to be useful as an object of our study. While 
Rick worked on the tasks, we video recorded his activities and transcribed the 
spoken text. Data were also collected on the other students, which we occasionally 
draw on. 

To identify which concepts underlying sampling Rick used in the interaction with 
the teacher or his peers, we divided the transcripts into 34 fragments of interactions 
about one element of reasoning between Rick and peer student or teacher. Each 
fragment consisted of several turns, i.e. the spoken text of a person which is not 
interrupted by another person as a turn (Chi et al., 2001). The fragments had an 
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average time span of 15 seconds (SD = 8), and an average number of turns of 1.7 
(SD = 0.6). Each fragment was coded with one or more codes referring to the five 
aforementioned concepts underlying sampling (Section 2). The inter-rater 
agreement measured with Cohen’s kappa was substantial (.69) according to Cohen 
(1960). 

3.4 Case study 2 

We focused the second case study on what teachers may need to do to use the 
task’s potential to stimulate students to shuttle between the contextual and 
statistical spheres in a case where they did not do this by themselves. For this 
second case study on another but similar school, Sean and Kars (grade 11, aged 
17), were selected because their academic performance was similar to that of Rick. 

This second case study focuses on the Dyke sampling task, during which the 
researcher observed and interviewed the students during the task. We video 
recorded the interaction and transcribed the spoken text. To analyse what teachers 
may need to do to stimulate students to shuttle between the contextual and 
statistical spheres we divided the transcripts into three phases, and identified the 
researcher’s attempts to help them shuttle back from statistics to context. 

4 Results 

4.1 Developing concepts underlying sampling (Case 1) 

As we have argued before, the development of a concept should be understood in 
relation to other concepts (Bakker & Derry, 2011), but we qualitatively illustrate 
the five concepts underlying sampling one by one for reasons of readability. In 
4.1.6 we provide a quantitative overview. 

4.1.1 Sample size 

Two aspects of sample size emerged as Rick worked through the task, coordinating 
and interpreting the statistics in non-trivial ways within the context of analyzing 
Heart rate data. First, we expected Rick to decrease sample size step by step, but 
after his start with the large data set, he jumped to a small sample size of 50 and 
increased step by step to the large set. From the data we have of the other students 
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we know that all students grew rather than shrank their samples. Based on these 
observations we conjecture that growing samples is a more natural process for 
students than shrinking samples.  

Second, when Rick drew samples of size 50 he noticed the variability in the 
coefficients of the regression lines when taking samples of this same size. He 
mentioned that when he drew bigger samples, he would expect a formula closer to 
the original formula of the population: “It [the regression line] is moving more 
towards the true regression line.” Rick expected that when the sample size became 
big enough the regression coefficients would stabilize, possibly informally drawing 
on the law of large numbers. He also formulated it reversely as follows: 

Rick: If you sample 100 [instead of 500] cases, you get more variability. More 
deviations but the line will [still] have a negative slope. The intersection with 
the vertical axis will be different too. By changing the number of cases 
[sample size] you can monitor the effect on the regression line. 

This fragment suggests that Rick may be aware of the effect of sample size on the 
variability of coefficients and was developing a sense of the law of large numbers.  

4.1.2 Random process 

To illustrate how Rick’s conceptual understanding of sample size and law of large 
number became related to other concepts underlying sampling, we give one 
example on randomness. At first, he believed that a bigger sample size would lead 
to a more reliable regression line, but when he took a sample of size 100 he noticed 
that the regression coefficients deviated more from the original formula than those 
of the last sample of size 50. He then realized that a relatively small extension of 
sample size would not necessarily lead to a “better” formula and tried to explain 
this with the idea that the software sampled some higher peak heart rates even 
though it sampled randomly. The teacher tried to stimulate Rick to reflect on his 
former statement that a higher amount of cases would imply a formula for the 
regression line more similar to the original. Rick responded: 

Rick: But that is not always necessary because you always take a random group. 
So, you cannot expect it [the regression line] to come closer every step. But 
you could say that each time there is also variation in the difference 
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according to the real [original] line. It [software] chooses different data 
points, but eventually those points get closer together. Gradually, the line will 
become more precise. It [the slope of the regression line] will be slightly 
above the -0.7. 

Rick seemed to be clear about the fact that the randomness of the sample leads to 
unpredictable outcomes and that it is not necessarily the case that he would find a 
regression line more similar to that of the larger set when taking a slightly bigger 
sample. We see that Rick’s simulations of repeated samples (cf. Shaughnessy, 
2007) stimulated a growth in his understanding of how samples behave. 

Another aspect shown in this excerpt was that Rick, like his peers, seemed to focus 
on one characteristic of the regression line: the slope. Initially, he was searching for 
a sample size which produced a slope close to the slope of the original regression 
line (the “real line”). Later he included the intercept of the regression line, which is 
contextually relevant in relation to the critical value. The observations gave us 
indications that he focused more on the statistics than the contextual 
interpretations. It seems that he treated the coefficients as isolated numbers without 
context, excluding realistic contextual considerations about what counts as close 
given the context. 

4.1.3 Distribution 

Two aspects of distribution came to the fore: that of a somewhat stable margin 
around a regression line and the overall decrease of that margin with larger sample 
sizes. First, in the context of the heart rate task, Rick and his fellow students 
decided that a client’s peak heart rate must be within a margin of the regression 
line. When the teacher asked Rick if he expected a larger correlation when drawing 
a larger sample, he answered negatively and explained: 

Rick: You take new values each time. These are arbitrary and are not correlated to 
the regression line. When you start taking random values and do so the tenth 
time, taking random values, they are still random. Only the margin will 
become more colored. It will not be wider and will never become narrower 
and never become much wider. 
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This excerpt indicates Rick’s sense of margin. He expected the margin to be about 
the same for each sample size. Only when drawing a sample with a bigger size did 
he mention that the margin became “more colored.” He probably expected more 
points within the margin when the sample is larger, which suggests a stabilizing 
distribution. 

Second, when Rick presented his results to the whole class, and the students looked 
at his graph of the slopes obtained by growing samples, they also considered the 
shape of the bivariate distribution (Figure 3), which he decided to call “a trumpet 
shape.” He saw this shape in the Dyke sampling task as well. This time he did not 
draw the trumpet, but only mentioned: “You again see the trumpet shape”. He used 
this shape to predict the values of other slopes when taking other sample sizes. 

 

 
Figure 3. The “trumpet shape” distribution of the slopes of regression lines obtained by 

growing samples. This is a reconstruction of Rick´s drawing on the smart board. 

4.1.4 Informal confidence interval  

In both tasks, the concept of distribution seemed closely linked to that of an 
informal confidence interval. In the previous excerpt on the heart rate data Rick 
mentioned that with bigger samples the points were getting closer together. He 
entered the regression coefficients in a spreadsheet, and estimated a reasonable 
interval for each sample size (calling this the “margin”). He then found an 
acceptable margin for making a prediction for each sample size of 200, 250, 300, 
and up. In the next excerpt Rick considered a margin around an expected value: 

Rick: Till 200 it is too varied. … It could be coincidence. You can build a safety 
margin, then you go to 250. 
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T: Why this margin? 
Rick: Not everybody is the same. 

He thought that a sample size of 200 would allow him to predict a reliable 
regression line but he explained that the margin of the slopes he found at size 200 
could be small as the result of coincidence. To be safe, he suggested a sample size 
of one “step” bigger, 250. His response “Not everybody is the same” suggests that 
he thought of variability in people’s heart rates, which suggests that the context 
helped him to think of sources of variability.  

4.1.5 Relationship between sample and population 

At this point we proceed with the Dyke sampling task. As with the Heart rate task, 
Rick seemed aware of the task’s purpose: to find a smaller sample size in order to 
save money and still have a reliable formula for the regression line. He said to his 
fellow student Eline: “It [the Fathom software] plots the regression line. Then you 
are able to see how many points [measurements] can be saved and still find a 
reliable regression line.” However, Eline was still not sure whether she understood 
the task. Rick tried to explain it to her, initially with no success. Rick started to 
show her that sometimes a sample with size 2 gives a regression line with a 
positive direction instead of the negative slope of the regression line of the 
complete data set. He used this fact to show that such a small sample was not 
sufficient to get a reliable linear relationship in the context of the data that it 
describes. Eline agreed that they needed to find a negative slope and that a sample 
with size 2 made no sense. Rick then showed her samples of size 4, 6, and 8, and 
compared the formulas of the corresponding regression lines with the formula of 
the regression line of the complete data set. After a while she asked him if he was 
in search of a sample size for which the average of the regression coefficients 
found by samples of a certain size was similar to the regression coefficients of the 
regression line of the complete set. 

This episode about the reliability of a sample with a certain size indicates that Rick 
thought about the relationship between the sample and population distribution. He 
compared the results of every sample with the results of the original set and used 
words such as “similar,” “real,” “original” and “first outcomes” to refer to the data 
of the population. Some students had mathematical reasons for choosing a sample 
size of 22 (50% of the population), but Rick put forward contextual reasons, 
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considering the deviations of the deformations between sample and population over 
time: 

Rick: It depends on how much you want to save. Sample sizes 36 have no big 
deviations any more. Then you save something around 18% and the deviation 
is…. That is acceptable when you consider five years, but it depends on how 
much you want to save. Saving 8 [= 44 – 36] times [helicopter flights] would 
give almost the same results [regression coefficients]. 

The observations indicated that other students also developed some understanding 
of the relation between the sample distribution and population distribution, but they 
did not link their solutions back to the context. Many only considered the trumpet 
shape distribution of the slope to consider the sample size for making a reliable 
inference. Only Rick (and with him Eline) shuttled between the contextual and 
statistical spheres: In their informal statistical inferences they included the number 
of flights which can be saved instead of only looking at the slope of the regression 
line. This suggests that Rick’s conceptual understanding of sampling was richer 
than that of most peers’. 

4.1.6 Quantitative overview 

As a complement to the aforementioned qualitative examples, we now present a 
quantitative analysis of Rick’s spoken text (Table 1). From the rather well balanced 
distribution of codes across the different concepts underlying sampling, we 
conclude that the tasks have the potential to stimulate students’ coherent 
development of concept underlying sampling. 

Table 1 
Number of codes referring to concepts underlying sampling recognized in Rick’s spoken 
text per task (coded fragments lasted 15 seconds on average). 

Task Sample 
Size 

Random 
process 

Distribution Confidence 
Interval 

Sample/ 
Population 

Heart Rate 3 4 4 3 3 
Dyke Sampling 3 3 2 2 5 

Total: 6 7 6 5 8 
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4.1.7 Conclusions from Case 1 

The question which smaller sample sizes would have been reliable enough in the 
context of determining heart rate and dyke height levels seemed to make sense to 
Rick and his peers, although some needed extra explanation. The tasks thus seemed 
purposeful. They also have the potential to assist students in developing concepts 
underlying sampling in relation to each other and in relation to meaningful 
contexts. However, most students did not by themselves link their results back to 
the context. In a subsequent teaching experiment, we therefore carried out another 
case study to gain further insight into how a teacher can use the task’s potential to 
improve students’ shuttling between the statistical and contextual spheres. We 
focus on the Dyke sampling task because it proved hardest to help students think 
through the consequences of their answers in contextual terms. 

Table 2 
Three phases identified during the Dyke sampling task from the second case study. 

Phase Description Students… Duration 
(minutes) 

1 In the math world …work independently on the task 20 
2 Nudging to the context …are interviewed by the researcher 19 
3 Translating to the 

context 
…work independently on the 
researcher’s context question 

7 

4.2 Using the Dyke sampling task’s potential to improve students’ shuttling 
(Case 2) 

From this case study we only present the Dyke sampling task, in which the 
researcher needed to put a great deal of effort in supporting Sean, who struggled 
with linking the statistical solution back to the context. We distinguished three 
phases in Sean’s work on the task with his fellow student Kars (Table 2). 

4.2.1 Phase 1: In the math world 

During the first twenty minutes Sean and Kars worked independently on the Dyke 
sampling task. They drew a lot of samples before finding a suitable formula for the 
regression line and discussed which sample had produced an acceptable formula. 
Although all tasks were based on authentic professional contexts and the students 
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seemed to see the purpose of the task, they tended to stay in the math world 
focusing on formulas. A typical interaction looked like the following discourse: 

Sean: The slope [-0.00124, slope of the regression line at sample size 20] is almost 
the same [as the slope of the original formula, -.00123]. 

Kars: Yes, the b too [the b in the formula y = ax + b; -2.74 vs. -2.8]. 

4.2.2 Phase 2: Nudging to the context 

After about twenty minutes, the researcher discovered that Sean and Kars were 
reasoning without referencing back to the contextual problem. He tried to refocus 
their attention on the contextual meaning of their decisions in several ways. For 
example, the following question was intended to nudge them to consider the 
contextual meaning of their reasoning:  

R: When this [regression value] is -10 [millimeters] we need to heighten the dyke (see 
also Figure 2). How many measurements do you need to get the same result 
as with the original regression line? [Phase 2, 10:40] 

However, Sean and Kars stayed focused on the slope of the regression line and did 
not use the context. Often the slope was different only in the fourth decimal, and 
they thought that the formula obtained by sample size 30 (H = -0.00123d – 2.8) 
was close enough to the original formula (H = -0.00149d – 2.9). They judged this 
purely on the basis of the formula, whereas the researcher hoped they would think 
through the contextual consequences of the differences between the regression 
formulas. However, they did not. 

4.2.3 Phase 3: Translating to the context 

At the end of phase 2, the researcher again tried to narrow down the possibilities by 
asking more specifically about the difference in days between the prediction based 
on the regression line with sample size 30 and the prediction based on the original 
formula based on a sample of 44. Only then did they realize that the context asked 
for a more precise approach: 

R: What would such a small difference in coefficients mean in terms of the 
prediction? 

Sean: It differs a lot. 
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Kars: 330 [days], that is a lot. 
Sean: Yes, a lot indeed. It [formula] seemed to differ slightly but it differs too 

much. 

Because Sean and Kars were no longer satisfied with sample size 30, they decided 
to take samples of size 35, 40, and 42, each five times. For each sample they also 
calculated the difference between the corresponding calculated predicted days and 
the day when the original formula would predict the critical value of -10 mm. They 
also calculated the average of differences for each sample size. They decided that 
in this context sample size 40 was acceptable. They were disappointed that they 
only saved four measurements, but when the researcher asked how much money 
would be involved in skipping four helicopter flights, they were more satisfied. 

This last case study suggests that the students were focused primarily on the 
mathematical concepts of the tasks. The researcher repeatedly had to emphasize the 
contextual problem to stimulate the shuttling back to the contextual sphere. He had 
to ask about specific contextual consequences of difference in the formula obtained 
by their sample and the original formula to encourage them to make a meaningful 
inference within the context. This last kind of support proved necessary for 
students such as Sean and Kars who at first were satisfied with their mathematical 
solution. 

5 Conclusion and discussion 

The aim of this paper was to examine whether realistic tasks, inspired by authentic 
professional practices, can support students’ conceptual understanding in such a 
way that they can shuttle between contextual and statistical spheres. In line with 
Ainley et al. (2006) we assumed that such tasks needed to provide students with 
purpose and utility. It seems possible to use authentic problems from professional 
practices to design tasks that are purposeful from a student perspective and lead 
students to see the utility of what they learn (Westbroek et al., 2010). This may 
help students apply what they have learned. However, it is not self-evident that 
students develop rich conceptual understanding from authentic tasks because 
designers seem to have less control about what students learn conceptually. Yet 
such conceptual understanding seems necessary for students to link contextual and 
statistical considerations. 
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In response to the research question we conclude that the analyses show that the 
realistic sampling tasks, inspired by authentic professional practices, are rich and 
focused enough to stimulate reasoning about the concepts underlying sampling in a 
balanced way and in relation to each other. This seems an advantage over atomistic 
approaches to statistics education that deal with aspects of concepts one by one (cf. 
Bakker & Derry, 2011) and this seems to address Ainley et al.’s (2006) concern 
that engaging tasks are often less focused. 

In Case 1, we argued explicitly that the task suitably assisted students (in this case, 
Rick) to develop the main concepts underlying sampling (cf. Pfannkuch, 2008). In 
both cases presented, we had asked students to consider how small a sample can be 
so that the inference is still reliable. This required them to reason about sample size 
and the relation between sample and population. The issue of randomness came up 
as students wrestled with sampling variability in comparing samples with the same 
size to judge if inferences are reliable. When comparing samples of the same size, 
students generated informal confidence intervals and interpreted bivariate 
distributions. These findings align with earlier findings at the middle school level 
that tasks based on growing samples have the potential to stimulate students to 
reason about multiple facets of distribution and uncertainty (Bakker, 2007; Ben-Zvi 
et al., 2012). 

In line with Brandom’s (2000, p. 48) inferentialist perspective on concepts, 
conceptual understanding is “to have practical mastery over the inferences it is 
involved in—to know, in the practical sense of being able to distinguish, what 
follows from the applicability of a concept, and what it follows from.” This implies 
that conceptual understanding includes the ability to shuttle between contextual and 
statistical spheres. Both cases showed this to be challenging, or at least unfamiliar 
to students in school mathematics. It seems that reasoning within either the 
statistical or contextual world is easier than making connections. Developing tasks 
that have a clear purpose and lead to concepts with utility is not sufficient. For the 
students involved the purpose of the tasks was clear: to find a smaller sample size 
to save money and still have a reliable formula for the regression line. It seemed 
that they did see the utility of sampling to find such a reliable formula. 

Because for some students the tasks were not sufficient to support their shuttling 
back to the context, we explored in a second case study what types of questions 
teachers may need to ask. Asking specific questions about practical consequences 
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of mathematical issues (e.g., what would such a small difference in coefficients 
mean in terms of the prediction?) appeared to be one element which assisted the 
students in refocusing on the context sphere. It is of course possible to include such 
more specific questions in the instruction of the task, for example by stating the 
costs of a helicopter flight and asking students how much they expect to save by 
using smaller samples. However, we think it may be beneficial for the richness of 
students’ reasoning if they first think through many options themselves. In their 
study, at least, Bakker and Derry (2011) argued that sixth-grade students had 
developed rich concepts of variation which would be unlikely if the teacher had 
focused on measures of centre in well-structured problems.  

The small scale of our case studies puts limitations on the generalizability of our 
results. Yet they do suggest that the designed tasks have the potential to support 
students’ reasoning of sampling when making authentic inferences. Moreover, we 
think that the data analysis method we used in the first case study (Table 1) would 
be useful in other contexts in which designers or researchers want to know if tasks 
have the potential to stimulate reasoning with a particular coherent set of concepts. 
This seems especially important when using authentic or realistic tasks in which we 
seem to have less control over what is learned conceptually. 

We addressed a persistent design challenge and do not claim to have solved it. 
More research is needed to investigate how to support students’ conceptual 
development needed to shuttle between contextual and statistical spheres. More 
specifically, we suggest investigating teachers’ scaffolding of students’ shuttling. 
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Abstract 

Creating coherence between mathematics and science, and making these school 
subjects meaningful are still topical challenges. This study investigated how 
students made meaningful connections between mathematics, statistics, science and 
applications when they engaged in a specially developed unit. This unit is based on 
professional practices in which mathematical, statistical and scientific knowledge 
is used. The central question is to what extent professional practices can serve as 
meaningful contexts for senior high school students (aged 16-17) to help them 
make connections between mathematics, statistics, science and professional 
practices. Surveys on the opinions of students (388 before and 27 after completing 
two chapters of the unit) on the educational strategy, and student work are used to 
answer this question. The analysis of responses to surveys shows that students 
consider an educational strategy based on authentic professional practices 
meaningful. The results indicate that an educational strategy based on professional 
practices can help students to make connections between mathematics, statistics, 
science and professional practices. 

Keywords: coherence, statistical reasoning, inferential reasoning, authentic 
professional practice, upper secondary education, meaningful education 
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1 Introduction 

The purpose of this study is to determine whether senior high school students learn 
to see the connections between mathematics, statistics, science and some 
professional practices through an instructional unit based on professional practices 
in which statistics is used. Statistics is seen here as a possible bridge between 
mathematics and some of the natural sciences, because many scientists frequently 
apply statistical and mathematical techniques (Erickson, 2002). Statistics is a 
mathematical science, but not part of mathematics (Moore & Cobb, 2000), 
although statistics in most countries is part of the mathematics curriculum of 
secondary education (Gattuso, 2006). Statistics could, therefore, function as a 
bridge, so as to connect a part of mathematics with the sciences. Our question was: 
Would students also recognize this, and would it improve their learning? 

It is important that students experience coherence between different sciences. 
Mathematics and statistics provide the tools by which quantitative relationships in 
the natural sciences can be modelled, calculated, represented, and predicted, and 
the natural sciences provide relevant contexts in which mathematical and statistical 
knowledge can be applied (Davison, Miller, & Metheny, 1995). Therefore, 
international and Dutch national committees (AAAS, 1989; cTWO, 2007; Boersma 
et al., 2007; NCTM, 2000; NiNa, 2010; Apotheker et al., 2010; NRC, 1996; 
Stuurgroep-NLT, 2007) advocate the integration of mathematics and the natural 
sciences, where possible. 

However, making the relationship between science and contexts clear to students 
appears to be difficult (Berlin & White, 2012). Often, students in secondary 
education do not experience the meaningfulness of science because they experience 
the learning within school subjects as a train with individual wagons, whose 
windows are blinded and only the driver on the engine knows where the journey 
goes to (Claxton, 1991). A report on alignment between mathematics and physics 
(Van de Giessen, Hengeveld, Van der Kooij, Rich, & Sonneveld, 2007), speaks in 
this context of “sectarianism”. This compartmented thinking also makes it difficult 
for students to recognize what they have learned as meaningful, and apply it to 
another subject or in other contexts (Bransford, Brown, & Cocking, 2000). More 
curricular coherence is needed. Berlin and Lee (2005) provide an overview of the 
U.S. efforts to curricular cohesion in the period 1970-2001. In this period the 
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number of publications on curricular coherence increased significantly, but the 
authors conclude that there is a need of more insight in how more cohesion can be 
achieved. 

The literature provides no univocal definition of curricular coherence (Hurley, 
2001), well understandable from the various manifestations of a curriculum ─ 
intended, implemented and attained curriculum (Van den Akker, 2009). The 
intended curriculum includes the vision that lies at the basis of the curriculum, but 
also the formal texts in which the curriculum is described. Within an intended 
curriculum coherence refers to aligning the curriculum between or within different 
school curricula. Intended cohesion must be reflected in the implemented 
curriculum that includes the interpretations of teachers and the resulting practice of 
education. A curriculum refers to the learning outcomes achieved and the 
experiences of the students. As several researchers (e.g., Newmann et al, 2001; 
Rudduck & Wallace, 1994) point out, there is very little research on coherence in 
the attained curriculum, in other words: how curricular coherence for students 
works (Frykholm & Glasson, 2005) and how students make and observe 
connections. 

Furner and Kumar (2007) underline the recommendations of Berlin and White 
(1992) and Sunal and Furner (1995) for the integration of mathematics and science 
by promoting overlapping subject matter and supporting students to search for 
patterns in data to get a more meaningful view of scientific phenomena. Sunal and 
Furner also stress the importance that school bridges the gap between school 
practice and extracurricular life. Bennett, Lubben, and Hogarth (2007) provide 
clear evidence that “context-based” education contributes to the making of 
meaningful education. The affective reactions and motivation of their students gave 
them indications that this strategy leads to better understanding of science 
education, a finding that is supported by Scott, Ametller and Mortimer (2011). 
They investigated how teachers and students make connections in meaningful 
interactions between teaching and learning of scientific concepts, but their study 
had no special attention to mathematics. 

Considering these challenges to achieve coherence and meaningful science 
education, renewal committees for science and mathematics education in the 
Netherlands advise using the so-called concept-context approach: students are 
expected to learn concepts in meaningful contexts. These contexts may be based on 
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authentic practices, such as scientific or professional practices in which scientific 
knowledge is applied. The use of these practices is a possible way to make science 
education meaningful.  

Meaningful scientific concepts and contexts involve various aspects of affective, 
cognitive and meta-cognitive nature. It is important that students see the purpose 
(“need to know”) of what they need to learn (Westbroek, 2005) and become 
motivated by the context to engage in the instructional unit (Prins, 2010). 
Engagement in the sense of motivated behaviour, according to the learning 
motivation model of Eccles et al (1993), is determined by the value that students 
assign to their task (cf. Volman, 2011). Furthermore, students recognize their 
education as more meaningful if it is authentic and if they are able to apply the 
concepts learnt (Boersma et al, 2007; Volman, 2011). Clarke (1988) argues that 
students experience lessons more meaningful when dealing with authentic contexts 
such as sporting contexts. Although several mono-disciplinary units based on 
authentic professional practices exist for biology and chemistry (Prins, 2010; 
Westra, 2008), there is little research on how the relationship between school 
subjects can be promoted by materials that are based on professional practices 
where knowledge from different sciences is integrated. 

In the current study, we define coherence between mathematics, statistics, science 
and professional practices for the attained curriculum as the ability of students to 
make sense of the contexts so that they can apply scientific and mathematical 
knowledge when solving authentic problems. This fits the definition of the 
intended curriculum in which the relationship between mathematics and science is 
seen as an interdisciplinary mix, in which connections between these disciplines 
are placed while the subject specific concepts remain recognizable (Lederman & 
Niess, 1997). 

In this article we test our assumption that education is meaningful for students and 
that students can apply their learning in other disciplines or in other contexts when 
it was based on problems in authentic professional practices. We assume a 
reciprocal relation between coherence and meaning: when students observe 
coherence between different science subjects, these subjects will have more 
meaning for them, and vice versa: meaning helps them to see coherence. We now 
first give an overview of the efforts in the Netherlands to facilitate coherence 
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between the sciences and then discuss the rationale for the choice of an 
instructional unit based on professional practices. 

2 Theoretical backgrounds 

2.1 Coherent teaching in the Netherlands 

One of the objectives of the Dutch government during the past decade was to 
promote greater coherence between school subjects, but curricular coherence is still 
fragile and needs continued attention (Boersma, Bulte, Krüger, Peter, & Seller, 
2010; Nieveen, Handelzalts, & Van Eekelen, 2011). The introduction of a new 
curriculum for upper secondary school (1998) intended, among many other aims, 
to establish such coherence. In 1999, the Sonata project (Coherent Education in 
Science and Technology) started to monitor good practice in the field of coherent 
teaching in lower secondary and in the science stream of upper secondary 
(Geraedts, Boersma, Huijs, & Eijkelhof, 2001). At the end of this project in 2004 
the team concluded that intrinsic coherence in educational practice was still a 
“white spot”. The Sonata project was continued in the Salvo project (Coherent 
Learning in Secondary Education), which among other things sought to develop 
exemplary material for an on-going learning strand about the relationships between 
quantities - a theme that lends itself to a coherent approach (Mooldijk & 
Sonneveld, 2010). A recent initiative to foster interdisciplinary cohesion is the 
introduction of Nature, Life and Technology (NLT), a new three year course in 
addition to physics, chemistry, biology and mathematics (NLT Steering 
Committee, 2007). 

Some renewal committees for science and mathematics education have published 
documents in which they tried to make visible the link between the new syllabuses 
(Boersma et al, 2010). Within these committees, there is little attention to the 
possible role of statistics in creating coherence, although statistics seems 
appropriate to let students experience such coherence. cTWO, the committee for 
mathematics, only states (2007) that it is important for students to learn that 
mathematics is indispensable in engineering and science and that it is closely 
intertwined with everyday life. Here statistics is mentioned as one of the 
integrating factors. Furthermore, in the committee reports of mathematics and 
physics, cTWO and NiNa (Van de Giessen et al, 2007; NiNa, 2010) not much is 
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written about statistics. Rather, modelling is the preferred tool for students to 
experience the coherence between the various disciplines. 

2.2 Professional practices as a basis for an instructional unit 

Authentic practices are “en vogue” as an inspiration for teaching and learning 
strategies. Educational research about science and mathematics shows how one can 
develop teaching materials based on authentic scientific or professional practices 
(eg, Lee & Songer, 2003; Westbroek, 2005). Lee and Songer used the practice of 
weather forecasting, and Westbroek used the practice of testing the water quality to 
involve students in learning chemistry. Westbroek used a profession that made the 
featuring chemical concepts for students more meaningful. A disadvantage of this 
teaching strategy is that so much emphasis will lie on the professional aspects, that 
little school knowledge is learnt. Conversely, in mathematics education contexts, if 
they already exist, usually are subordinated to the learning concepts (Boaler, 1993). 

For a good balance the steering committee “New Chemistry” advises to use the 
concept-context approach. It states that major developments in scientific research 
as well as in industry (e.g., nanotechnology) are important since they can offer 
students a meaningful curriculum based on interdisciplinary contexts (Pharmacist 
et al, 2010). The Committee “Renewal Biology Education” (CVBO) in its concept-
context approach explicitly opted for “social practices”, such as scientific or 
professional practices, as an inspiration for teaching learning strategies (Boersma et 
al, 2007). This approach is founded on the cultural-historical activity theory (Van 
Oers, 1987). 

For educational purposes, professional practices are first educationalized because 
the authentic acts are often too complicated for students. Also, professional 
practice and educational practice have different purposes. In a professional practice 
one may want to test or optimize a process, while in a teaching practice students 
have to learn something. 

We have, just as Westra (2008), chosen to offer students the concepts within 
different educationalized practices, so that they learn to apply the concepts in 
several different contexts. The underlying idea is, to reveal to students the 
relationship between mathematics, statistics, science within the contexts in which 
these disciplines function. In the present study, correlation and regression are 
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chosen as statistical concepts because these are applicable in science and the 
students have such a level that they can master them. Moreover, they receive little 
attention in the curricula at the upper secondary level. During the especially 
designed instructional unit students themselves come to the idea that they need 
statistical techniques such as correlation and regression models in order to solve the 
real problems that they are facing in the authentic professional practices (Dierdorp, 
Bakker, Eijkelhof, & Maanen, 2011) They need to handle both mathematical and 
scientific concepts. The instructional unit is called: Statistics as a bridge between 
mathematics and the natural sciences. In the unit there is a focus on the 
understanding of the new concepts, which at the same time highlight the 
connections between mathematics, statistics and the respective professional 
practices. 

2.3 Connections between mathematics, statistics, science and professional 

practice 

In accordance with the concept-context approach we have chosen to not only 
investigate disciplinary coherence, but also coherence between disciplines and their 
areas of application (contexts). Disciplinary coherence is visible in some 
disciplines such as mechanics, a part of physics with a strong mathematical 
foundation. Modelling is often an interdisciplinary activity, which is also 
recommended to students to clarify the coherence between science subjects (Van 
de Giessen et al, 2007). As a premise that underlies our investigation, we suspect 
that an educational strategy in which statistics functions in a professional practice, 
will work as a bridge between mathematics and some science (Figure 1); we see it 
as a promising approach that has received little attention in the literature. Although 
there exist direct connections between mathematics and the natural sciences (e.g., 
through differential equations), we focus in this article, as we did in the 
instructional unit, on a more indirect relationship, generated by the application of 
statistics within professional practice. In this section we discuss the relationships 
that are central to this article. 
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Figure 1. Statistics used in a professional practice as a bridge between mathematics and 
natural science (bridge metaphor).  

2.3.1 Mathematics and Statistics (MS)  

Mathematicians generally strive to abstract the mathematics from the contexts, so 
that underlying structures become clear, while statisticians precisely need to 
analyse the data (Rossman, Chance, & Medina, 2006). Mathematics looks for 
statements or theoretical underpinnings of a phenomenon, and seeks, through 
statistical analysis, for significance (Moore & Cobb, 2000). Statistics, for example 
in the form of correlation and regression, can be used to derive a mathematical 
model. Mathematical procedures such as calculation methods or solving equations 
should in turn involve the statistics to substantiate or justify. 

2.3.2 Statistics and Natural Science (SN) 

As mentioned, correlation and regression often are used for the analysis of data 
collected in a scientific experiment, with the purpose of eventually finding a model. 
In such situations, statistics provides a bridge between mathematics and natural 
science. One example in our study is the determination of the moment in the 
training of an athlete when the metabolism turns from the aerobic to the anaerobic 
phase. Data on the pulse of the athlete are collected while the training effort 
increases, and subsequently statistical techniques such as correlation and regression 
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are used to create a mathematical model with the purpose of giving optimal 
training advice (Gellish, Goslin, Olson, McDonald, & Moudgil, 2007).  

2.3.3 Professional Practice and Statistics (PS) 

Statistics is used in many professional practices. One example in our study is the 
analysis of dyke heights. All dykes sag continuously. In order to predict when a 
dyke should be raised, regularly data about the height of a dyke are collected with 
helicopters and satellites. Regression is then used to create a mathematical model 
which helps to minimize the risk of flooding. Another example is the Dutch 
Metrology Institute, the former institute of weights and measures, which works 
with regression models for calibrating measuring instruments. Comparison of the 
characteristics (correlation coefficient and regression line) of a measuring 
instrument of unknown quality with the characteristics of a calibrated instrument 
provides the Institute with a proof of the quality level of the tested instrument. 

2.3.4 Mathematics and Professional Practice (MP)  

In the previous examples of professional practices there was a clear link with 
mathematics. Galbraith and Stillmann (2006, p. 150) write: “In some cases, an 
adequate response requires arguments that integrate mathematical knowledge with 
the impact of this knowledge in the real situations to justify interpretation.” It is 
important that students understand how a model works and how mathematical 
concepts, such as solving equations, play a role in creating or interpreting the 
models. 

2.3.5 Professional Practice and Natural science (PN)  

If a professional scientist has collected experimental data and has found a 
mathematical model that represents these data, they must be interpreted in order to 
draw conclusions. In the example of dyke subsidence it is important to understand 
that landslides or erosion can be responsible for this subsidence. Also, a natural 
phenomenon such as heavy rain provides much variability around a model. These 
aspects will have to be estimated and discussed within a professional advice. It is 
important that students understand that nature does not exactly behave as the model 
does, and that there is always variability (Wild & Pfannkuch, 1999). 
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We note that the boundaries between the five links are not always sharp. 
Mathematical statistics, for example, will be located somewhere between 
mathematics and statistics, and scientific researchers are at the same time 
practitioners. 

2.4 Research questions 

To investigate whether a teaching strategy based on professional practices enables 
students to make meaningful connections between mathematics, statistics, science 
and professional practice, we have designed an instructional unit, based on three 
professional practices: a sports physiologist, an official of Public Works and Water 
Management, and an analyst at the Dutch Metrology Institute. In these three 
professional environments the professionals work with statistical techniques to 
analyse their data. To investigate to what extent the unit contributes to achieving 
our goals we propose the following main question: 

To what extent can professional practices serve as meaningful contexts to 
show students connections between mathematics, statistics, science and 
professional practices?  

To answer this question we raise two new questions: 

RQ1:  How meaningful do students find an instructional unit that is based on 
professional practices in which statistics plays a role? 

RQ2:  To what extent are students able to check within the instructional unit 
the connections between mathematics, statistics, science and 
professional practices? 

3 Method 

3.1 Educational unit 

The study presented here, is part of a larger project, which works along the lines of 
developmental research (Barab & Squire, 2004; Van den Akker, Gravemeijer, 
McKenney, & Nieveen, 2006). It consists of six design cycles with professional 
practices as a basis for teaching learning strategies. For the selection of the three 
professional practices we started with a preliminary study, which included a 
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literature review and interviews with experts, practitioners, teachers and students. 
Criteria for the selection of practices were (cf. Prins, Bulte, Pilot, & Van Driel, 
2008): 

 the practitioner uses correlation and regression in data modelling 

 the actions of at least one professional practice are educationalized into 
teaching activities, in which students can perform a short, relevant 
experiment of their own 

 for students, the professional practice is easy to recognize 

 students can see the relevance of the knowledge that the practitioner uses 

Based on each of the three professional practices we designed a section for the 
instructional unit. Section 1 (H1) is about the professional practice of a sports 
physiologist, Section 2 (H2) is about the monitoring of dyke heights and Section 3 
(H3) concerns the calibration of measuring instruments. 

3.2 Participating students 

To answer Research Question 1, we examined 415 (198 + 190 + 12 + 15) students 
(see Table 4). In 2008 they were all 5-VWO students from two schools (2x A and 
B) and in 2011, two groups which studied at the school for Nature, Life and 
Technology (NLT) (school A and C). The group (N = 15) of School A went 
through the instructional unit beginning 6 VWO. One group (school C, N = 16) 
was examined to answer RQ2. VWO stands for the Dutch secondary school type , 
grades 7-12 (5 VWO = grade 11, 6 VWO = grade 12), that gives entrance to 
selected university studies, the selection depending on the courses taken in the final 
three years of VWO. To measure the knowledge of the students, we have asked 
two groups, prior to administering the unit, if they could write a formula in which a 
regression line and the related correlation were calculated. On both questions they 
answered unanimously “no”. This was expected because the subject correlation and 
regression was not a mandatory part of the VWO curriculum. On the other hand, 
the students had already learnt in their mathematics program about statistical 
measures such as mean, median and they could calculate the standard deviation of 
a data set. 
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3.3 Measurement Instruments 

To answer Research Question 1, we used surveys. Prior to the completion of the 
instructional unit, we asked students (N = 198) in a survey (Enq_1) their opinion 
about a possible teaching-learning strategy which would be based on professional 
practices. We asked questions about the aspects that we thought to be meaningful 
for students (see Table 5). We asked for example if such a teaching-learning 
strategy would help the students to understand the usefulness of the course material 
(item 1); also if it gave them motivation to learn (item 2), and if they expected that 
the techniques they learnt would be applicable in other subjects (item 3 and 4) and 
if they find it useful when the course material goes across multiple school 
disciplines (item 5). The students could express their views on a five point scale 
from “strongly disagree” to “strongly agree”. In the next cycle the survey was 
improved (Enq_2) and shortly after administered to a new group of students in 5 
VWO (N = 190). We give the results of this second survey as far as the items are 
relevant to the research questions in this article and indicate whether the students 
think an instructional unit based on professional practices to be meaningful. 

Furthermore, we have asked the final two groups of students (N = 15, 6 VWO, 
resp. N = 16, 5 VWO) after the completion of H1 (Enq_3) and H2 (Enq_4) if they 
think to have acquired more insight in the use of statistics in the presented 
professional practices (item 6) and whether they expect the exercises in the 
instructional unit to be authentic (item 7 and 8). For organizational reasons, we 
could not ask the same questions about Chapter 3. Of four students some data are 
missing. These are reported in Table 4, with a negative number. In the analysis, we 
therefore studied 12 + 15 = 27 students. 

To answer Research Question 2 (about the connections between mathematics, 
statistics, science and professional practices), we asked students during the 
instructional unit to fully elaborate on paper their answers of the assignments. We 
have collected and analysed all this written work, which we call, from now on, the 
students' work. Next, in a posttest after the completion of the instructional unit, we 
analysed on the basis of the students' work if the students mastered the material and 
could explain the connections. The posttest involved all students. Within the 
framework of the bridge metaphor, we examine five possible connections between 
mathematics, statistics, science and professional practice (Figure 1). Table 1 shows 
which links relates to which tasks in the posttest. 
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Table 1 
Possible connections MS, MP, PS, PN, and SN to be made in the posttest (see Figure 1 for 
the meaning of the codes). 

Task MS MP P 
S 

PN SN 

Task 1 x x x x x 
Task 2 x     
Task 3 x  x   
Task 4 x  x x x 

To answer Research Question 2 (about the connections between mathematics, 
statistics, science and professional practices), we asked students during the 
instructional unit to fully elaborate on paper their answers of the assignments. We 
have collected and analysed all this written work, which we call, from now on, the 
students’ work. Next, in a posttest after the completion of the instructional unit, we 
analysed on the basis of the students’ work if the students mastered the material 
and could explain the connections. The posttest involved all students. Within the 
framework of the bridge metaphor, we examine five possible connections between 
mathematics, statistics, science and professional practice (Figure 1). Table 1 shows 
which links relates to which tasks in the posttest. 

In the analysis of the students’ work and the posttest, we investigated whether the 
instructional unit contributes to the links that students perceive between 
mathematics (M), Statistics (S), professional practice (P) and natural science (N). 
We developed an analytical model (see Figure 1 and Tables 2 and 3) for analysing 
the written response. With this we have distinguished the students work of the last 
group (N = 16) about elements M, S, P and N (Table 2) and the students answers 
coded with MS, MP, PS, PN and/or SN (Table 3).  

3.4 Data analysis 

In the analysis of the surveys we compared the same relative frequency of relevant 
items at Enq_2, Enq_3, and Enq_4. Enq_2 also contained an open question, where 
the students were invited to explain why they do, or do not, appreciate professional 
practices as the basis of the curriculum. The answers are coded as positive, 
negative or inconclusive. The inter-rater reliability was measured using Cohen's 
kappa (Cohen, 1960) and proved to be very high (.91). 
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Table 2 
Definitions of the considered elements. 
 

Element Examples 

M The student indicates that calculations must be carried or used. 
 The student performs a calculation. 
 The student gives a mathematical relationship between two quantities. 
 The student uses formulas. 

S The student interprets or refers to a graph or table using the data. 
 The student uses a statistical term (e.g., mean, variation, SD, residual, etc.). 
 The student mentions a methodological aspect (e.g., representativeness, 

keeping certain conditions constant, etc.). 

P The students mention an observed physical variable (e.g., weight, age). 
 The student makes a link between two physiological variables (e.g., heart rate 

and intensity of training). 

N The students mention a quantity from a natural (e.g., weight, age). 
 The student performs a connection between two scientific properties (e.g., 

heart rate and intensity of training). 

Multiple codes per response were possible, what was needed given the research 
question, but what affected the inter-rater reliability (Cohen’s kappa), which was 
measured on the basis of 150 student responses. The measured value of kappa (.61) 
is considered by Cohen (1988) as still substantial. The first task of the unit was 
similar to the first task of the posttest for a comparison between relationships that 
students make at the beginning and end of the instructional unit. The work of two 
students was not complete. These are not included in the analysis. 

Multiple codes per response were possible, what was needed given the research 
question, but making it difficult to get a high kappa. On the basis of 150 student 
responses, we have the inter-rater reliability measured by Cohen’s kappa. The 
measured value (.61) by Cohen (1988) is seen as substantial. The first task of the 
unit was similar to the first task of the posttest for a comparison between 
relationships that students make at the beginning and end of the instructional unit. 
The work of two students is not complete. These are not included in the analysis. 
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Table 3 
Codes used to code students’ work and task 1 from the posttest. 

Code Explanation 

MS The student involves mathematical techniques in the interpretation of the 
graphical representation of the data. 

MP The student involves mathematical techniques in formulating a sport 
physiological advice. 

PS The student uses statistical techniques to formulate a sport physiological 
advice. 

PN The student works with a physical/biological variable in the sports 
physiological advice. 

SN The student explains statistical results from the underlying 
physical/biological aspects. 

 
Table 4 
Numbers of students surveyed in the analyses of 2008 and 2011 (in brackets the number of 
students in the group and the number of students whose information was not complete). 

  RQ1 RQ2 

School Year Enq_1 Enq_2 Enq_3 Enq_4 Student 

work/posttest 

Posttest 

A 2008 (June) 198      

A, B 2008 (Nov.)  190     

A 2011  
 12  

(15 – 3) 

12  

(15 – 3) 
  

C 2011  
 15  

(16 – 1) 

15  

(16 – 1) 

14 

(16 – 2) 
16 

 Total: 198 190 27 27 14 16 

4 Results 

4.1 RQ1: To what extent is education based on a professional meaningful for 

students? 

The first item of the survey was: “With a professional practice as a basis for the 
curriculum I see the usefulness of the curriculum” of Enq_2 (N = 190). The 
response shows that prior to the unit most students (+ and + + added: 53 + 11 = 
64%) expected to see the usefulness (Table 5). 123 respondents out of 190 gave an 
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optional explanation. Of the explanations 103 were positive, 12 negative and 8 
unclear. Examples of positive explanations are as follows: 

•  “Because I often can’t see the usefulness of certain subjects.” 
•  “You see at least its usefulness [curriculum] in it.” 
•  “It [the professional practice] gives better understanding of your ultimate 

goal.” 
 
Table 5 
Percentage score of 8 items from Enq_2 (N = 190), Enq_3 (N = 27) and Enq_4 (N = 27). 
In this table the abbreviations “-”, “-”, “0”, “+” and “+ +” refer to “Strongly disagree” 
to “strongly agree”. 

 
 Item Aspect 

meaningfulness
Question-

naire 
-- - 0 + ++ 

1 With a professional practice as a basis for 
the curriculum I see the usefulness of the 
curriculum. 

useful Enq_2 2 5 30 53 11 

Enq_3 0 0 26 67 7 

Enq_4 0 15 11 63 11 

2 If the techniques of the curriculum can be 
used by professionals, it motivates me to 
learn these techniques. 

motivation Enq_2 2 8 24 51 15 

Enq_3 4 4 37 48 7 

Enq_4 4 7 33 52 4 

3 I think I might be able to use the technique 
to determine a regression line in more school 
subjects. 

apply Enq_2 4 4 19 56 16 

Enq_3 7 7 15 52 19 

Enq_4 4 7 4 70 15 

4 I think that the technique of correlation and 
regression is needed within each of the 
natural sciences. 

apply Enq_2 2 7 46 37 8 

Enq_3 0 15 15 59 11 

Enq_4 4 11 19 56 11 

5 I find it interesting when I learn something 
about another subject, such as biology or 
physics, when I follow a statistics unit. 

connection Enq_2 14 24 29 27 6 

Enq_3 4 22 26 37 11 

Enq_4 7 11 37 37 7 

6 I have gained more insight into how 
statistics can be used by a sports physiologist 
/ official of Ministry Water management 

connection Enq_3 0 11 11 67 11 

Enq_4 0 4 15 74 7 

7 I think determining a threshold point in the 
practice of a physiologist is done the same 
way as in the lessons. 

authenticity Enq_3 0 37 33 26 4 

8 I think that the determination of the date on 
which action should be taken to heighten a 
dyke is in reality the same as in the lessons. 

authenticity Enq_4 15 19 37 26 4 
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One negative coded response was: “No, I think it is not effective.” Another student 
also made explicitly clear that coherence was important to her: “I would like to see 
professional practices as the basis for curriculum, because now I can easily make 
connections between different subjects.” We concluded that the results of Enq_2 
indicates that most students, prior to the unit, see the point of using professional 
practices. Because this also was an outcome of Enq_1, we had sufficient reasons to 
develop the instructional unit. 

From Enq_3 it appeared that students who went through the instructional unit, 
considered the teaching learning strategy also as useful after the completion of H1 
of the instructional unit. These students (67% + 7% = 74%) were even more 
positive (+ and + + added). Even after H2, which taught the mathematical 
foundation of correlation and regression, the majority (74%) of the students gave 
still a positive response (Enq_4). A binomial sign test to assess responses per 
student to Enq_3 and Enq_4 yielded p = 0.60. So we do not observe a change 
which is statistically significant. This indicates that the opinions of students did not 
change significantly, not even after the mathematical-theoretical approach of H2 
which had the risk that students would not directly see its usefulness. 

The answers to the items 2 to 8 show a positive inclination. Only the item about the 
authenticity of the lesson activities related to professional practice (items 7 and 8) 
is scored in a wider range. This finding is consistent with our observation that the 
students were aware of the fact that the professional practices are educationalized. 
A sports physiologist does not limited herself/himself to just the heart rate, as it is 
presented in the instructional unit, but she/he in preparing an advice also involves 
other variables. 

4.2 Research Question 2: Relations between the natural sciences and 

professional practices 

4.2.1 Comparison of the connections made by students 

In this section we discuss the extent to which students have learnt to make 
connections. The first task of the instructional unit and of the posttest was: 
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Sports physiologists often determine the threshold point of the heartbeat 
of their clients. 
a. What do we mean in this case, with threshold? 
b. Why is it important to measure this threshold point? 

Comparison of the responses to this task shows that the students after the 
completion of the instructional unit, often saw a link between science disciplines 
and professional practice more clearly than at the start of the unit (Table 6). Only 
the relationship between mathematics and the professional practice (MP) shows 
just a negligible increase. At the beginning, the relationship between mathematics 
and statistics (MS) is not detected, and after working through the unit it clearly 
was. In this task, we assumed that the students would develop a mathematical 
model for the measurements (MS). Seven students did so. Three of them made a 
drawing such as Jan’s in Figure 2. 

Table 6 
Number of students who submitted links between mathematics (M), professional practices 
(P), Statistics (S) and the natural sciences (N), for the preliminary task of the instructional 
unit and during the posttest (N = 16). 

 

Code Introductional 
task 

Posttest 

MS 0 7 
MP 2 3 
PS 5 13 
PN 4 13 
SN 1 12 

Three students explicitly linked the model shown in Figure 2 with the advice that a 
sports physiologist can give to her/his client (MP). Most students (13) associated 
statistical techniques (e.g. regression line for the linear portion) with the 
physiological advice (PS). These thirteen involved the scientific terms aerobic and 
anaerobic combustion with their advice (PN). They wrote that if training takes 
place too often in the anaerobic section (above the threshold, “omslagpunt” in 
Figure 2), the threshold point goes down, in which case acidification starts earlier. 
So an athlete should train slightly below the threshold point. Twelve students 
linked their physiological advice with the data obtained during the testing of clients 
(SN). 
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Figure 2. Jan’s 
illustration of the model for the determination of the threshold point between 
aerobic and anaerobic metabolism. 

4.2.2 The extent to which students made connections in the posttest 

In Table 7 the post tests are the average student scores per order. The students were 
sufficiently able to apply concepts from the instructional unit: the average score 
was 64%. 

Table 7 
Connections MS, MP, PS, PN and SN made in the tasks of the posttest and scores of the 
final group (N =16). 

 

Task MS MP PS PN SN Max. 
score 

Mean Score 
(SD) 

% Score 

Task 1 x x x x x 2 1,1 (0,6) 55 
Task 2 x     9 6,3 (1,8) 69 
Task 3 x  x   16 11,0 (3,3) 69 
Task 4 x  x x x 11 6,1 (2,3) 55 

Task 2 was about the relationship between mathematics and statistics. The task 
assessed what students had learnt in H2 about the mathematical background of 
correlation and regression. In this task, we asked the students to describe the 
sequence of steps by which the least squares method determines the coefficients of 
the regression line. Eight students did this perfectly, four made a small mistake, 
and no one had a completely wrong answer. Also we asked them to explain the 
least squares method. This was the trickiest part of task 2 (mean score 53%). 
Furthermore we presented in task 2 to the students in a random order steps from the 
method of finding a normal equation. The students had learned to draw a 
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scatterplot of points (di, Hi) with d for day and H for deviation and represent a 
regression line by 

bdaH 
^

, with a and b as regression coefficients. 

Further, they had learned to calculate the distance from a point to the regression 

line (residual) with: ii Hbda  . Using the least squares method the students 

were able to find the best fit for the regression line by minimizing the sum of 
residual squares:  

2

1

)( i

n

i HbdaS    

Derivations to a and b gave them a system of two normal equations 










 
  

ii

iiii

Hbnda

Hddbda 2

  

The students had learned to calculate all the sigma’s and were able to solve the 
system.  

In task 2 we asked them to write the steps for finding a normal equation in the 
correct order and to explain each step. Most students were able to write the steps in 
the proper order, but their explanations sometimes were rather weak (See Figure 3). 

 
 
 
 
 
 
 
 

Figure 3. Part of a student’s response on task 2 of the posttest. 

In task 3 the students were given 44 measurements of dyke-deformations. To test 
whether students could explain the MS-relation, they had to calculate the time 
where raising the dyke could no longer be avoided. Apart of some sloppiness all 



Chapter 5 

 

144 
 

students could calculate the correlation. Except for one student, all students could 
determine the formula for the regression line. 

In task 3, the relation with the professional practice was very important (PS). 
Because, when only the regression line is used for the calculation of the day when 
the embankment is to be incremented, then it is too late: there are also points below 
the regression line. The assignment required that students would take a safety 
margin. Five did not. A student used Excel for this margin (see Figure 4). 

 

 
 
 
 
 
 

 
 
Figure 4. Excel output by one of the students. The upper line is the regression line. 
The lower line is constructed by subtracting three times the SD of the residuals 
from the regression values (According to a discussion about the rules of thump for 
a normal distribution). 

The other students adapted a well-known formula. By applying statistical know 
how to a mathematical model (regression line), the students showed that they also 
saw the connection between mathematics and statistics (MS). The fourth task 
coincided with the chapter on the calibration of measuring instruments. The 
students were given a new context in which, for nine samples of blood serum, the 
concentration of iron and the corresponding absorption were given. Except for one 
student, they all could determine the calibration line (regression line). To 
emphasize the relation with the natural sciences as these are taught at school, points 
were deducted if incorrect letters for the variables were used. Also, the students 
were asked to determine the iron concentration of a patient of which the measured 
absorbance of a blood sample was given. Thirteen students did this correctly. The 
other three had problems in connecting the scientific terms to the statistical concept 
of regression line (SN and PN). 



Statistics as a bridge between mathematics and the natural sciences 

145 
 

In task 4 students were also facing a new context for them: atomic absorption 
spectrometry. The students were given the data (the amount of added silver and the 
absorption) of nine blood samples. Most students (15) were able to determine the 
regression line, but only two students were able to perform the steps necessary to 
calculate the concentration of the original sample. In this task the students were 
required to combine at the same time mathematical, statistical and natural sciences 
with professional techniques (MS, PS, PN and SN). 

5 Conclusion and discussion 

In answer to the first Research Question, we conclude that many students 
experience an instructional unit based on professional practices as meaningful. 
Both surveys, one prior to the experiments and the other after the completion of the 
unit, indicates that students widely appreciated such an educational strategy. They 
indicated that they see the need for a curriculum that is based on professional 
practices, that such an instructional strategy motivates them, and that they think to 
be able to apply what they had learnt also in other disciplines. The opinions of the 
students were more divided about the authenticity of the teaching material, which 
is well understandable because the professional practices were first 
educationalized, especially by taking away some of the complexity. 

In the study presented here, we argued that coherence is not enough to understand 
relationships. When making connections, it is also important that students master 
the concepts and are able to apply them. In answer to our second Research 
Question, we conclude that the students after the completion of the unit clearly 
made more connections between mathematics, statistics, natural science and 
professional practice than at the start of the module. The relationship between 
mathematics and the professional practice is recognized in the students’ answers 
not so strongly as the other connections. This is understandable because in this 
instructional unit the connection between mathematics and the professional 
practice (MP) was in accordance with the design, which presents the connection 
primarily via statistics; there was no a direct connection designed between 
mathematics and the professional practice. We assume that our analysis model can 
be easily adapted for connections between other school subjects and professional 
practices. Also, we conclude that our instructional unit helped the students to apply 
the new concepts in other disciplines. The analysis of the posttest with tasks in 
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which various connections were involved, shows that students were able to apply 
the learned concepts. They were also able to make required connections. In 
reaching this conclusion, we must remember that the measured inter-rater 
reliability is acceptable although still quite low (0.61). We attribute this to the fact 
that for each item multiple codes were possible. Furthermore, the boundaries 
between the five areas are not always clear (2.3). Also, note that the other 
coder/researcher had only the transcripts and had not been involved in acquiring 
the data.  

The answer to the main question is that we designed an example of an instructional 
unit based on professional practices which was not only meaningful for most of the 
students, but also after the completion of the unit, caused a relevant increase in the 
number of times that students made connections between mathematics, statistics, 
natural science and some professional practices. Although the literature (e.g., 
Berlin & White, 2011) indicates that it is difficult to make the relationship between 
science and contexts clear to the students, the design on the basis of professional 
practices, with a focus on meaning from a student’s perspective, seems a promising 
direction to take. Further research is needed to investigate whether and when 
professional practices in other situations can help to improve curricular coherence. 
This also asks for comparative research. Also, further research along the lines of 
Dam, Janssen and van Driel (2012) is needed in order to implement education 
based on authentic professional practices and to better understand the role of the 
teacher. 
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1 Introduction 

The purpose of this research project was to investigate how to support upper-
secondary school students’ learning and understanding of statistical correlation and 
regression models in such a way that they can apply the techniques in new 
situations and experience coherence between mathematics and the natural sciences. 
In line with this purpose our main research question was:  

What are characteristics of a valid and effective teaching and learning 
strategy to teach students about correlation and regression in such a way that 
they experience coherence between mathematics and the natural sciences? 

In order to collect data for answering this question we designed a teaching and 
learning strategy for upper-secondary school students (Grade 11 and 12, aged 16-
18 years) and investigated trials at three similar Dutch schools (pre-university 
track: VWO). Doing so, we wanted to contribute to a school subject that was a new 
one at that time in the Netherlands: NLT (Nature, Life and Technology; see 
Eijkelhof & Kruger, 2009). Three teachers volunteered to participate in this study. 
The background of the first teacher (also the principal researcher) is mathematics 
and biology, the second teacher is a mathematician and the third teacher’s 
background is physics and mathematics. We tested the evolving teaching and 
learning strategy in four studies.  

Our first study (Chapter 2) sets out to investigate how to support students’ informal 
inferential reasoning when they learn about correlation and regression in the 
context of use by professionals. Furthermore, we focus the next two studies each 
on a specific aspect necessary for reasoning about informal inferential reasoning, 
such as variability and measurement (Chapter 3) and students’ ability to reference 
back and forth (“shuttling”) between the context and statistics when engaged in 
sampling tasks (Chapter 4). From here, in relation to informal inferential reasoning 
we zoom out in our fourth study (Chapter 5) to study more broadly to what extent 
students experience the coherence between mathematics and the natural sciences, 
with statistical concepts and modelling techniques as the bridging tools. In sections 
6.2 to 6.5 we summarize the main findings of these studies and discuss the 
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contribution to the knowledge base with respect to the support of students’ learning 
and understanding of correlation and regression. In the last sections (6.6 to 6.11) 
we focus on considerations, limitations and future research suggestions which we 
could not address in Chapters 2 to 5.  

2 How to support students to make inferences beyond correlated 
data? (Chapter 2) 

The research question for our first study was: How does a teaching and learning 
strategy based on authentic practices support students in making statistical 
inferences about authentic problems with the help of correlation and linear 
regression? The focus of this study was the support of students’ ability to draw 
informal inferences. To analyse this ability we used the students’ written work. In a 
matrix we compared the observed responses by students with the hypothesized well 
informed responses. In this manner we investigated to what extent the students 
were able to draw informal inferences. 

The results indicated that our teaching and learning strategy inspired by authentic 
professional practices had advantages and also produced new challenges. Students 
generally saw the practical value of correlation and regression and many of them 
were able to draw realistic inferences. We concluded that a teaching and learning 
strategy with statistical core ideas embedded in authentic professional practices can 
help students to make more and better informal statistical inferences. Another 
advantage of our strategy was that it helped students to understand that 
practitioners in many fields use these techniques in their daily professional work 
and to realize that they could use these techniques in many situations themselves at 
school or in a future academic study. 

However, in the more complex context of monitoring heights of dikes students 
struggled to see the need to account for variability. It is a challenge for the designer 
to appropriately modify the level of complexity of the authentic problems and tools 
for student use. It also appeared necessary to provide the teacher with enough 
information, because the teacher’s own knowledge of the context is important in 
supporting the reasoning of students. For example, inferences about when to 
heighten dikes depend on more variables than just the regression results on dike 
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deformations. It is necessary to indicate clearly that these measurements are only 
part of the total issue.  

3 Supporting students to reason about variability (Chapter 3) 

In the second study we asked: How do secondary students consider variability 
within measurement activities based on authentic professional practices? In this 
study we investigated how students in Grade 12, aged 17-18, consider variability 
using context-rich measurement tasks. To investigate whether students 
demonstrated key components of reasoning about variability: noticing and 
acknowledging variability, measuring and modelling variability, explaining 
variability and using investigative strategies, we adapted a framework from Wild 
and Pfannkuch, (1999). 

We concluded that the measurement activities supported students to reason about 
the four components of variability as described in our framework and that the use 
of measurement tasks based on authentic professional practices is a promising 
design strategy to scaffold students' statistical reasoning about variability.  

4 Supporting students in developing the concepts that underlie 
sampling (Chapter 4) 

In the third study we asked: What is the potential of tasks based on authentic 
professional practices to support students in developing concepts that underlie 
sampling in such a way that they can shuttle between contextual and statistical 
spheres? This study focused on the aim that students should (a) see the purpose of 
tasks and the utility of concepts and (b) be able to mathematize authentic problems 
and apply concepts in context. We designed two activities based on the authentic 
practice of a physiotherapist and carried out two case studies to test the potential of 
these tasks to support students’ concepts that underlie sampling and to investigate 
what teachers should do to exploit this potential. An additional persistent challenge 
is to support students to shuttle between contextual and statistical spheres. Analysis 
of video recordings focused on five concepts that underlie sampling (inspired by 
Pfannkuch, 2008), which are important for students’ statistical reasoning about 
sampling: sample size, random process, distribution, intuitive confidence interval 
and relationship between sample and population.  
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The analyses showed that in order to support students’ shuttling between 
contextual and statistical spheres, realistic sampling tasks inspired by authentic 
professional practices can be helpful. This suggests an advantage over atomistic 
approaches to provide students with statistical concepts one by one (cf. Bakker & 
Derry, 2011).  

We concluded that it seems possible, not only in science education (e.g., 
Westbroek, Klaassen, Bulte, & Pilot, 2010) but also in statistics education, to use 
authentic problems from professional practices to design tasks that are purposeful 
from a student perspective and lead students to see the utility of what they learn. 
This may help students to apply what they have learned in new situations. 
However, it is not self-evident that students develop rich conceptual understanding 
from authentic tasks because designers seem to have less control about what 
students learn conceptually. Yet such conceptual understanding seems necessary 
for students to link contextual and statistical considerations. Wild and Pfannkuch 
(1999) studied professional statisticians’ reasoning and noted that these 
professionals are involved in a “continual shuttling backwards and forwards between 
thinking in the context sphere and the statistical sphere” (1999, p. 228). When students 
are involved with contextual authentic questions data analysis pushes them into the 
statistical sphere where students can develop statistical concepts. However, the 
analysing results propels them back to the context to find a meaning for those results. 
Such shuttling helps the students to see the tasks’ purpose and the concepts’ utility 
and contributes to their ability to mathematize authentic problems and apply 
concepts in meaningful contexts. 

5 Coherence between school subjects (Chapter 5) 

The research question in our final study was: To what extent can professional 
practices serve as meaningful contexts to show students connections between 
mathematics, statistics, science and professional practices? This study was looking 
for ways to promote coherence in the learning outcomes: how can students 
integrate knowledge from mathematics and the natural sciences when they practice 
informal inferential reasoning about solutions of authentic problems and how do 
they value such an approach? Such experience of coherence is important for 
students to appreciate contexts as meaningful to learn statistical concepts and 
shuttle between contextual and statistical spheres (see 6.4). In particular Ben-Zvi 
and Garfield (2010) claim, with regard to informal inferential reasoning, that 
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statistics can be viewed as an intermediary discipline that connects mathematics 
and science. We developed an analytical model to investigate students’ ability to 
integrate mathematics, statistics, science and professional practices and analysed 
students’ responses to questionnaires and tasks before and after the lessons. 

This analysis showed that our designed instructional unit is found meaningful by 
most students. The unit motivated them and they believed to be able to apply the 
learned concepts also in other school subjects. We also argued that meaningfulness 
alone is not sufficient for students to make connections between school subjects. 
For making connections, it is also important that students master the concepts and 
are able to apply them. We suggest that it is important to monitor more often 
whether students are able to make connections and we assume that our method of 
analysing can be adapted for measuring connections that students make between 
other school subjects and other contexts. Here we note that monitoring on the basis 
of this model is difficult because the boundaries of the school subjects are not 
always very clear. 

6 Answer to the main research question 

Based on the four studies we conclude that our strategy to teach students about 
correlation and regression seems valid and effective. It seems valid because we 
designed the strategy in line with prevailing epistemological ideas of the involved 
school subjects (e.g., mathematics: calculate standard deviation, statistics: produce 
a formula for the regression line, biology: aerobic respiration, geometry: reasons 
for subsidence, physics: operation of a thermometer). It seems effective because 
the involved students learned to solve real-world problems by correctly using 
correlation and regression models. They also appeared to understand the concepts 
and process of modelling and were able to combine mathematical and statistical 
techniques with concepts of the natural sciences when solving real-world problems. 
In Table 1, we give our design characteristics for a teaching and learning strategy 
and refer to evidence in our studies. 
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Table 1 
Characteristics of our teaching and learning strategy and research questions in 
corresponding Chapters 2. 

 Characteristics of the teaching and 
learning strategy 

RQ1 
(Ch 2) 

RQ2 
(Ch 3) 

RQ3 
(Ch 4) 

RQ4 
(Ch 5) 

1 The strategy is inspired by reality, such as 
by authentic professional practices. 

x x x x 

2 The strategy’s level of the authentic 
problems’ complexity and tools is modified 
for students’ use. 

x x x x 

3 The strategy is focused on informal 
inferential reasoning. 

x x x x 

4 The strategy engages students to learn about 
variability and measurement. 

x x   

5 The strategy engages students with their 
own measurements. 

x x   

6 The strategy provokes students to shuttle 
between contextual and statistical spheres 
by means of tasks with a clear purpose and 
teacher directions. 

x  x  

7 The strategy provides students with realistic 
sampling tasks. 

x x x x 

8 The strategy is multi-disciplinary. x   x 

9 The strategy activates students’ feelings of 
coherence between the involved school 
subjects. 

x   x 

Our study built upon the work of researchers (Edelson & Reiser, 2006; Prins, 2010; 
Westbroek, 2005; Westra, 2008) who have studied how to inspire science 
education by authentic professional practices. The choices we made were that we 
focused on statistics and informal inferential reasoning and investigated senior 
secondary school students. In their research on informal inferential reasoning Pratt, 
Ainley, Kent, Levinson, Yogui and Kapadia (2011) elaborated on the element of 
risk when students learn about statistics. With regard to informal inferential 
reasoning, we underestimated how complex risk is when operating within the 
context of dyke maintenance. By educationalizing this authentic professional 
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practice we probably over-simplified the practice. Issues such as the acceptability 
of flooding risks, the considerations of safety margins already included in critical 
values defined by the Ministry of Transport and for example what variability in sea 
water levels we can expect, are still open to elaboration in future research.  

Another contribution to the knowledge of educational strategies inspired by 
authentic professional practices is that we found evidence for a possibility to 
overcome the problems with respect to the planning paradox. A conclusion of 
Ainley, Pratt and Hansen (2006) was that engaging context-rich tasks are often less 
focused on mathematics. In our study we argue that tasks about statistics based on 
authentic professional practices can have the potential of being engaging for 
students while at the same time developing concepts relevant for their school 
subjects. 

In line with Brandom’s (2000, p. 48) inferentialist perspective on concepts, 
conceptual understanding can be characterized as follows: “To grasp or understand 
a concept is to have practical mastery over the inferences it is involved in—to 
know, in the practical sense of being able to distinguish, what follows from the 
applicability of a concept and what it follows from.” From this perspective 
conceptual understanding includes the ability to shuttle between contextual and 
statistical spheres. Our study showed that this shuttling is challenging, or at least 
unfamiliar to students in school mathematics. It seems that reasoning within either 
the statistical or contextual world is easier than making connections. Developing 
tasks that have a clear purpose and lead to concepts with utility is not sufficient: the 
teacher is needed to lead the process of shuttling. 

7 Design research 

The purpose of the design research (see Chapter 1: 7.1) of this thesis was to test 
and improve our conjectures formulated in the Hypothetical Learning Trajectory, 
but also to develop an understanding of how the strategy works. In terms of 
Nieveen, McKenney and Van den Akker (2006) our study is not a validation study 
but a development study. In the first two columns of Table 2 we summarize the 
educational engineering research cycle based on Nieveen, et al., (2006). In the last 
column we mention where to find the items in this dissertation. 
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Table 2 
Educational research cycle based on Nieveen et al. (2006). 

 Development study Evidence in 

Design aim To solve educational problems Chapter 1 

Quality focus of design Practicality of intervention Chapters 2, 3, 4 and 5 

Knowledge claim Broadly applicable design principles Section 6.6 

Methodological 
emphasis 

Iterative development with formative 
evaluation in various user settings 

Chapters 2, 3, 4 and 5 

Practical contribution Implemented interventions in several 
contexts/classrooms 

Chapters 2, 3, 4 and 5 

 

A design research approach is a constant struggle to develop both educational 
materials and a theory. The design of the educational materials is only a side 
product, but to investigate how it works it has to be developed first. When the 
iterative process reveals how it works or should work, adaptations are necessary. 
Thus, when testing our theory we implicitly tested our educational materials. 

In future research it may be easier to investigate our theory because the educational 
materials will need less attention, so the focus can rather be on theory development 
regarding our teaching and learning strategy. In the next sections we give 
suggestions for future research. 

8 The practicality of our study 

The possible impact of our study for educational practice is multiple. Its scientific 
findings are directly applicable to educational practice. The practicality (Nieveen, 
McKenney, & Van den Akker, 2006) of our study implies an effective intervention: 
we have developed an instructional unit and a research based student test that are 
realistically usable in the setting of secondary schools. Also, we developed a set of 
design characteristics (see Table 1) as criteria for designers of similar teaching and 
learning strategies. Our unit helps students to understand and reason about 
correlation and regression and provokes them to reason about topics from the 
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natural sciences. To understand and apply the statistics, the students had to use the 
mathematical knowledge and skills they had already acquired and also to expand 
their mathematical knowledge (see Chapter 5). In addition, students needed 
knowledge from the natural sciences. For example, in the unit’s chapter about the 
sport physiologist (see Chapter 3) the students needed to understand the difference 
between aerobic and anaerobic respiration. During one of the macrocycles two 
students who also took biology as a school subject volunteered to give a detailed 
presentation about this difference. This presentation is an example of how the 
instructional unit may provoke students to be engaged and involved in several 
knowledge domains. 

 

Figure 1. Layers of formative evaluation (Tessmer, 1993). 

As a limitation for the practicality of this study one should take into account that 
we describe research results from three schools and focus on two schools and two 
teachers. The scale of our implementation seems small, due to our pragmatic 
approach. In scaling up from a small target group to a larger audience, we followed 
the layers of formative evaluation of Tessmer (1993) (see Figure 1). 

After our self-evaluation we had expert reviews at several moments and a one-to-
one trial with two students before testing the materials in a small group. Only after, 
did we have several cycles in complete classes. The reasons for not involving more 
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teachers is that the researcher had an intense research focus and that the teaching 
inspired by authentic practices requires an extensive preparation of the teacher. 

Future research in relation to the practicality is recommended. We suggest that an 
extensive accompanying instruction set for teachers should be developed and tested 
and that the teaching and learning strategy should be tested in more schools.  

9 Researcher, designer and teacher integrated in one person 

The main researcher of this thesis had a complicated task. He was supposed to have 
an “inner triangulated” view, because he was at the same time both researcher and 
designer, as well as teacher in some studies. Especially at the start of the project it 
was a challenge to have a research focus rather than a teaching focus. It was 
necessary to make a mind shift from “How can I teach the student …” to “How can 
I investigate how the student …” In every macrocycle that followed, this shift 
became easier. The researcher initially acted as teacher to investigate whether the 
ideas worked, but in all cases another teacher was deployed in the next macrocycle. 
An advantage of the complicated role of the researcher was that lines were short 
and that the researcher had an optimal focus during the next macrocycle when the 
other teacher was teaching. 

A limitation of the approach to integrate the roles of researcher, designer and 
teacher in one person is that his influence becomes large and that results might 
depend in an implicit manner on the characteristics of the teacher-researcher (e.g. 
the fact that he was enthusiastic about the project and that he was better informed 
than an average teacher could be, even after considerable instruction and training.)  

Future research with more teachers involved should answer the question of whether 
our strategy works for other teachers. Teacher preparation seems to be important 
because knowledge of authentic professional practices is not trivial for each 
teacher. The teachers involved in our study already had much knowledge of the 
authentic practices, but spent a lot of time in preparing the lessons. As mentioned 
before, we suggest that an extensive accompanying instruction set is required. 
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10 Educational change 

The research presented in this thesis has connections with educational change 
planned by the Dutch government. Within this context of curricular innovation, we 
wanted to design a new way of teaching and learning statistics and simultaneously 
show students coherence between school subjects. The project was funded through 
DUDOC, which was established in 2007 by the Science and Technology Platform 
with the support of the Ministry of Education (Knippels, Goedhart, & Plomp, 
2008). The DUDOC board consisted of representatives of the Dutch curriculum 
innovation committees of mathematics and science subjects and was led by an 
independent Chairman. DUDOC gave twenty teachers the possibility to do 
educational research with a PhD as the intended outcome. DUDOC specifically 
targeted teachers because the Ministry wanted to bridge the gap between the 
academic world and school practice. Educational change should receive an impulse 
from these twenty teacher researchers. However, it is not easy to change the daily 
organization and culture of schools. Fullan (2007, pp. 291) claimed:  

It will be necessary to build an instructional system that is based on 
personalization (connecting to the unique needs of each student) and 
precision (connecting in a way that is geared specifically to the student’s 
needs in a timely fashion). 

Fullan also stressed that the change must not be a fast one. Our project fits this 
statement well; we made several small and in-depth contributions and expect more 
to be needed before change at a broader level can be observed.  

We designed an instructional unit based on authentic professional practices to 
motivate and show students why they have to learn the concepts, through not only 
offering exercises, but also making the students reason about the concepts to 
provide better understanding. Several students used the concepts of correlation and 
regression learned in our unit in tasks from other school subjects. Nowadays, upper 
secondary school students in the Netherlands have to do a small (i.e. 80 hours) 
research project. We experienced that six students of the last investigated group (N 
= 16) used the correlation and regression techniques from our instructional unit for 
their research. In this timely fashion our instructional unit met the needs of several 
students.  
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With respect to educational change, a limitation of our study is that the conclusions 
formulated in this Chapter 6 show how our intervention “works” for one particular 
case. One may wonder whether the conclusions about our rather specific strategy 
can be generalized, for example to other parts of mathematics and also to other 
school systems and other countries. Changing societies may need other approaches. 
Our new way of teaching correlation and regression in secondary school was 
validated by triangulation involving literature, expert reviews, students’ opinions, 
teacher’s conduct and observations made by the researchers. For example, we 
asked a physiotherapist to review our instructional unit chapter about his 
profession. Also, we discussed the instructional unit with expert statistician Prof.dr. 
Richard Gill. He explained that in real forecasting the margin around the regression 
line is not linear but hyperbolic, an theorem discussed and proven in Appendix A. 
As a simplification of the authentic practice we decided a linear margin would be 
acceptable as a first step. As a next step, the teacher can discuss the fact that safety 
margins for the far future have to be larger than for the near future. We expect 
students to know this from weather predictions, but the proof of the hyperbolic 
shape transcends the secondary school curriculum. 

Future research may concern the practical issue of the length (19 lessons) of our 
instructional unit. In view of the Dutch mathematics curriculum, it was too long as 
a chapter in a mathematics textbook and therefore we decided to design it as an 
instructional NLT unit. At the time, NLT was a rather new school subject. Another 
advantage of housing the units within NLT is that we were able to involve several 
subjects from the natural sciences, since that is precisely the key philosophy of 
NLT. Now, we could ask students a lot of “Why,” “What” and “How” questions. 
Initially, many students did not like this because they were not used to these 
questions, but afterwards they claimed that discussions (provoked by why, what 
and how) were very informative. The instructional unit has reached a final version, 
but still contains tasks which may require further investigations. For use in 
mathematics classes we would like to know whether an adapted, shorter version 
would also work.  

Another direction of future research could be to find out whether our combination 
of authentic practices and integration with the natural sciences may also be possible 
in other branches of mathematics education. We think that there are challenging 
possibilities in mathematical modelling and optimization.  
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11 Education based on authentic professional practices 

In our study, statistics used in authentic professional practices acts as a bridge for 
students between mathematics and the natural sciences (Chapter 5). Students 
experienced that the authentic contexts urged them to look beyond the data 
(Chapter 2), explain variability (Chapter 3), or look more closely at the results 
when sampling (Chapter 4). The fact that the authentic contexts were based on 
professional practices was a stimulus to learn for students. Many students said or 
wrote: “Now I know why I have to learn this” (Chapter 5). In this way we 
addressed a pressing problem in mathematics education: the perceived irrelevance 
and lack of motivation for the subject (Claxton, 1991). Our solution is in line with 
Makar and Confrey (2007) who argue that students who engage in statistical 
inquiry with a compelling purpose, such as modelling experiences with authentic 
data, gain a deeper understanding of data analysis, the context itself and modelling. 

A challenge in basing teaching strategies on authentic professional practices is that 
the practices must be educationalized, yet still have to give the students the feeling 
that the activities are authentic. In our strategy most activities are authentic, but in 
reality professionals go much further, in the questions they ask, the instruments 
they use and in the depth of their investigations. The tasks in our activities are 
small and less complicated compared to real authentic professional practice. The 
reason for this is that professionals and students have different aims. Students have 
to learn something and professionals want to obtain results that count. Professional 
practices have a cultural history with its own knowledge and values and students 
are confronted with the practice only once.  

Another limitation of our instructional unit based on authentic professional 
practices was that it was carefully designed to realize the bridge of statistics and we 
have only worked out one way of realizing a bridge between mathematics and the 
natural sciences. We did not investigate the direct connection between mathematics 
and the natural sciences, nor using another field as a bridge between mathematics 
and a natural science. Also, we analysed student work to investigate whether the 
instructional unit supported the students to identify links between mathematics 
(M), Statistics (S), professional practice (P) and natural science (N). We developed 
an analytical model (see Figure 2). With this we categorized the students’ work 
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about elements M, S, P and N and coded the connections that students made 
between the four elements with MS, MP, PS, PN and SN.  

 

Figure 2. Statistics used in a professional practice as a bridge between 
mathematics and natural science (bridge metaphor from Dierdorp et al., 2013). 

However, the boundaries of the elements M, S, P and N for our bridge metaphor 
were not always clear. Sometimes it was difficult to attribute a code because of the 
apparent overlap of the four elements. For example, defining the difference 
between mathematics and statistics is not trivial. Furthermore, we did not 
investigate the direct connection between mathematics to the natural sciences. We 
did not do this, because we were interested in how students experience statistics as 
an intermediary between mathematics and the natural sciences.  

Future research to involve the direct connection between mathematics and the 
natural sciences would be interesting, for instance to replace statistics with another 
topic, such as mechanics and investigate whether our model fits the new situation, 
or to replace mathematics and natural sciences. Our model might fit the new 
situation, but research has to be done to investigate this. Often it seems that every 
participant (students, teachers, curriculum specialists, even governmental officials) 
acknowledges that a huge gap exists between school subjects like mathematics and 
natural science, but we presume that research such as ours can help to fill the gaps.  

We designed a strategy that provoked or inspired students to learn about statistics 
and that stimulated them to use it in other practices. Our study shows that such a 
strategy works to teach students statistical techniques, that they can learn to 
understand the mathematical background, use mathematical tools and that the 
natural sciences offer powerful contexts to evoke students’ interests to learn and 

PS 
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reason about statistics. Maybe our metaphor is a bridge too far to be used in such 
new situations, but we think that we found evidence that statistics can bridge the 
gap between mathematics and the natural sciences as it were a bridge over troubled 
water (cf. Simon & Garfunkel, 1970, track 1). 
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Summary 

One of the key challenges in mathematics and science education in secondary 
school is to realise coherence between these school subjects. The idea explored in 
this PhD thesis is that statistical modelling is one of the possible ways to let 
students experience the connections between mathematics on which statistical 
modelling techniques are based, and scientific contexts in which they can be 
applied. One set of techniques that receive rather little attention in education and in 
the literature is that of correlation and regression, despite their frequent use in 
many disciplines and fields of work. 

Many professionals use correlation and linear regression models to draw inferences 
about real-world situations. However, for secondary school students, the relevance 
of these techniques is less obvious. When taught – in the Netherlands it is not 
mandatory – it is often limited to the techniques practised with unrealistically 
“clean” data sets. Learning is then focused on the mathematical apparatus and 
isolated numbers, whereas the raison d'être of the technique is its usefulness in 
process analysis. So, coherence is directly visible when correlation and regression 
are presented as the mathematical domain in which processes that are observed in 
the sciences have their natural place. Because students increasingly need to do 
small science research projects, it is relevant for them to learn and understand 
correlation and regression models and to apply such models in new situations and 
different school subjects. 

The purpose of this PhD project was to find out how to support upper-secondary 
school students’ learning and understanding of correlation and regression models in 
such a way that they can apply the techniques in new situations and experience 
coherence between mathematics and the natural sciences. We addressed the 
following main research question: “What are characteristics of a valid and effective 
teaching and learning strategy to teach students about correlation and regression in 
such a way that they experience coherence between mathematics and the natural 
sciences?” By “valid” we mean that the strategy must be in line with prevailing 
epistemological ideas of the school subjects involved, such as calculate standard 
deviation (mathematics), understand aerobic metabolism (biology), or produce a 
formula for a regression line (statistics). We consider the strategy effective if 
students can correctly apply correlation and regression models to solve real-world 
problems. 
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Statistical modelling with correlation and regression in scientific or professional 
practices involves several steps. Variables related to the phenomena at stake need 
to be measured. The data form a sample that can be analysed by means of statistical 
techniques. With understanding of modelling techniques, sampling, variability and 
related statistical concepts, students can model the phenomena, and then shuttle 
back to the implications for the professional practices. By experiencing such steps 
students can learn about the modelling cycle.  

Basing our strategy on professional practices in which science and statistical 
modelling are used, we assumed that students could learn to see the connections 
between these professional practices, mathematics, statistics and science. In line 
with recent research in science education we expected that a teaching and learning 
strategy becomes meaningful for students when such strategy is based on authentic 
professional practices, because in relevant situations theory and application are not 
separated. Therefore, we decided to design a teaching and learning strategy based 
on authentic professional practices.  

Recent research in statistics education focuses on statistical inference, defined as 
probabilistically expressed generalisations from data. It is acknowledged that 
informal statistical inference is important, not only for future citizens and 
employees, but also as preparation for more formal inferential reasoning. In line 
with this research we started the teaching and learning strategy with informal 
inferential reasoning and worked towards more formal techniques in the second 
half of the strategy. In drawing informal inferences, the focus is on reasoning and 
conceptual understanding and less on statistical procedures. An explicit link 
between statistical inferences and tendency (regression line) is the 
acknowledgement of a mechanism or tendency that extends beyond the data at 
hand as an important idea to draw inferences. We focus on tendencies that can be 
modelled by means of correlation or regression. 

To answer the research question we designed a teaching and learning strategy 
based on authentic professional practices. In our investigations we focused on four 
related aspects. After a broad focus on informal inferential reasoning (1), we 
zoomed in on specific concepts required for inferential reasoning: variability in 
measurement data (2) and sampling (3). Measurement and sampling are also 
important interfaces between mathematics and science. Last we zoomed out and 
focused more broadly on the coherence between mathematics, statistics, science 
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and professional practices (4). We tested our teaching and learning strategy in four 
studies, each with its own research question: 

1. How does a teaching and learning strategy based on authentic practices 
support students in making statistical inferences about authentic problems 
with the help of correlation and linear regression? 

2. How do secondary students consider variability within measurement 
activities based on authentic professional practices? 

3. What is the potential of tasks based on authentic professional practices to 
support students in developing concepts that underlie sampling in such a 
way that they can shuttle between contextual and statistical spheres? 

4. To what extent can professional practices serve as meaningful contexts to 
show students connections between mathematics, statistics, science and 
professional practices? 

In this thesis we formulated a set of selection criteria for authentic practices related 
to correlation and regression modelling activities. On the basis of these criteria we 
chose the professional practices of sports physiologists, researchers who monitor 
dyke heights, and calibrators of measurement devices. As part of the teaching and 
learning strategy we designed three chapters for an instructional unit, each inspired 
by one of the three authentic professional practices. The intention of the first 
chapter (measuring physical condition) was to introduce conceptual ideas in an 
informal way. It stimulated students’ motivation to learn about correlation and 
regression to predict students’ own threshold point between aerobic and anaerobic 
metabolism in order to improve their physical condition. The intention of the 
second chapter (monitoring dyke heights) was to engage students in a more formal 
approach to the concepts and techniques in order to predict the moment to heighten 
dykes to prevent flooding, and the third chapter (calibrating) to give the students 
the possibility to apply what they had learned in a new situation calibrating 
measurement devices. We tested different aspects of our strategy in the four studies 
(Chapters 2 to 5).  
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Students’ informal inferential reasoning 

Chapter 2 reports on supporting students to draw informal inferences using 
correlation and regression models. We developed a data analysis matrix to analyse 
this ability and used the students’ written work and transcripts of student 
interactions. In the matrix we compared the observed student responses with the 
hypothesized responses. In this manner we investigated how our strategy supported 
students in making informal inferences about authentic problems with the help of 
correlation and regression models.  

The findings indicate that our teaching and learning strategy inspired by authentic 
professional practices has advantages but also produces new challenges. Most 
students saw the practical value of correlation and regression, and many of them 
were able to draw realistic inferences. The teaching and learning strategy with 
statistical core ideas embedded in authentic professional practices seemed effective 
to help students to make informal statistical inferences. Another advantage of the 
strategy was that it helped students to understand that practitioners in many fields 
use these techniques in their professional work and to realise that they could use 
these techniques in many situations themselves at school or in a future academic 
study. A challenge for students was that they did not know how to deal with the 
variability that should be taken into account when making predictions. For 
example, they often forgot to consider the variability when predicting the moment 
to heighten the dyke, by only using the regression line. Considering the variability 
around the regression line is crucial given the risk of flooding. We therefore saw a 
need to pay more attention to variability in the next cycle of design-based research. 

Students’ reasoning about variability through measurement activities 

Chapter 3 presents our investigation of how students reason about variability when 
engaged with measurement tasks using correlation and regression models. An 
advantage of involving students in measurement activities is that it invites them to 
make connections between the real world and the world of data. Also, 
measurement activities seem suitable for teaching about variability in 
interdisciplinary contexts. 
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We analysed students’ spoken utterances to get insight into the ways how students 
in Grade 12, aged 17-18, consider variability when engaged in context-rich 
measurement activities. To investigate how students reason about variability, we 
adapted a framework of Wild and Pfannkuch (1999) based on how statisticians 
consider variability: noticing and acknowledging variability, measuring and 
modelling variability, explaining variability, and using investigative strategies. 
 
We concluded that students considered variability in all of these ways, though of 
course in less advanced ways than statisticians would do. We proposed that the 
authentic character of the activities supported students in modelling their 
measurement results and analyse these with the help of techniques such as finding 
a trend in order to find a meaningful answer for an authentic problem and consider 
the role of variability in several ways. 

Students’ conceptual development of sampling for shuttling between 
context and statistics  

Chapter 4 focuses on a key aspect of informal inferential reasoning and a way to 
connect professional contexts, mathematics and science: sampling. Many 
professionals are engaged with sampling in their professional practices. However, 
sampling is another somewhat neglected area in statistics education. We 
investigated if students would see the purpose of sampling tasks and the utility of 
concepts. Also, we investigated if students would be able to mathematize authentic 
problems and apply concepts in context. We designed two sampling tasks requiring 
correlation and regression models, based on an authentic professional practice of a 
sports physiologist. We carried out two case studies to test the potential of these 
tasks to support students’ concepts that underlie sampling, and to investigate what 
teachers should do to exploit this potential. We investigated if students made the 
connection forth and back (shuttling) between the real world (contextual sphere) 
and data (statistical sphere). 

The analyses showed that in order to support students’ shuttling between 
contextual and statistical spheres, realistic sampling tasks inspired by authentic 
professional practices can be effective. Such shuttling helped the students to see the 
tasks’ purpose and the concepts’ utility, and contributes to students’ ability to 
mathematize authentic problems and apply concepts in meaningful contexts. 
However, shuttling back seemed rather a challenge for students. The teacher subtly 
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tried to stimulate shuttling back, but was unsuccessful and had to ask explicitly for 
the meaning of their answers in relation to the context. After that the students 
acknowledged the importance of shuttling back. Despite the authentic nature of the 
problems used in the unit, it still seems necessary for teachers to support students 
in shuttling back. 

Coherence between mathematics and the natural sciences 

Chapter 5 reports on how students integrate knowledge from mathematics and the 
natural sciences when they practise informal inferential reasoning about solutions 
of authentic problems, and how they value such an approach. As mentioned before 
we assumed that a teaching and learning strategy becomes meaningful for students 
when such a strategy is based on authentic professional practices. However, in this 
study we suggested that that meaningful alone is not sufficient for students to make 
connections between school subjects. For making connections, it is also important 
that students master the concepts and are able to apply them. We investigated more 
broadly to what extent students experienced the coherence between mathematics 
and the natural sciences, with statistical concepts and modelling techniques as the 
bridging tools.  

We developed an analytical model to investigate students’ ability to integrate 
mathematics, statistics, science and professional practices, and analysed students’ 
responses to questionnaires and tasks before and after the lessons. We concluded 
that our designed instructional unit as part of the teaching and learning strategy is 
found meaningful by most students. The strategy motivated them and they showed 
to be able to apply the learned concepts also in other school subjects.  

Conclusion and discussion 

Our conclusion to the main research question is that our teaching and learning 
strategy for correlation and regression seems valid and effective. It seems valid 
because we designed the strategy in line with prevailing epistemological ideas of 
the involved school subjects. It seems effective because the involved students 
learned to solve real-world problems by correctly using correlation and regression 
models. They also appeared to understand the modelling process and statistical 
concepts involved, and were able to combine mathematical and statistical 
techniques with concepts of the natural sciences when solving real-world problems. 



Summary 

 

177 
 

We think that students who engage in education of correlation and regression 
models based on authentic professional practices with a compelling purpose can 
gain an understanding of data analysis and modelling. We argued that tasks about 
statistics based on such practices can have the potential to be engaging for students 
while they develop concepts relevant for their school subjects. 

Limitations and future research 

As a limitation of this research one should take into account that we described 
research results of three schools and that we have to be careful with 
generalizations. We suggest that extensive accompanying instruction guidelines for 
teachers need to be developed, and that the teaching and learning strategy should 
be tested in more schools. Future research with more teachers involved should give 
an answer to the question if our strategy works for other teachers and what support 
they need. It would further be interesting to investigate if a similar design strategy 
would work for other parts of mathematics (e.g., mathematical modelling and 
optimization), other school systems and other countries.  

Our strategy based on authentic professional practices inspired students to learn 
about statistics and stimulated them to use it in other situations, such as school 
science projects. Our study shows that such strategy can be effective to teach 
students statistical techniques, that they can learn to understand the mathematical 
background, use mathematical tools, and that the natural sciences offer powerful 
contexts to motivate students to learn and reason about statistics. We hope that 
future research will make learning for students more and more meaningful and 
interesting in such a way that they experience more coherence between school 
subjects. 
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Samenvatting 

Een belangrijke uitdaging voor de wiskunde en de natuurwetenschappelijke vakken 
in het voortgezet onderwijs is het realiseren van samenhang tussen deze disciplines. 
In dit proefschrift hebben we onderzocht of statistisch modelleren een manier is om 
leerlingen samenhang te laten ervaren tussen wiskunde, waarop statistische 
modelleertechnieken zijn gebaseerd, en de natuurwetenschappelijke contexten 
waarin ze kunnen worden toegepast. Sommige van zulke technieken, die nog 
weinig aandacht hebben gekregen in de literatuur, hebben betrekking op correlatie 
en regressie, hoewel deze beide technieken gebruikt worden binnen tal van 
disciplines en beroepen. 

In de praktijk worden correlatie en lineaire regressiemodellen veelvuldig gebruikt 
om conclusies te trekken over onderzoek in de praktijk. Voor middelbare 
scholieren is de relevantie van deze technieken echter minder evident. Als deze 
technieken al onderwezen worden – hetgeen in Nederland niet verplicht is – wordt 
het onderwijs hierin vaak beperkt tot het leren van de technieken, waarbij vaak 
gebruikgemaakt wordt van onrealistische "schone" datasets. Leren is dan vaak 
gericht op technieken, terwijl de raison d’être van de techniek gelegen is in de 
uitkomst  van het modelleerproces. Als de technieken die nodig zijn voor het leren 
van correlatie en regressie worden gepresenteerd als het wiskundige domein waarin 
de in de natuurwetenschappen waargenomen processen hun natuurlijke plaats 
hebben, lijkt het mogelijk dat voor de leerlingen samenhang zichtbaar wordt. Mede 
omdat de leerlingen op school steeds vaker kleine wetenschappelijke 
onderzoeksprojecten uitvoeren, is het voor hen van belang om over correlatie en 
regressie te leren en dergelijke technieken toe te passen in nieuwe situaties en 
verschillende schoolvakken. 

Het doel van dit promotieonderzoek was inzicht te verkrijgen in de wijze waarop 
scholieren uit de bovenbouw van het vwo ondersteund kunnen worden om over 
correlatie en regressie te leren op een zodanige wijze dat ze de technieken in 
nieuwe situaties kunnen toepassen en samenhang tussen wiskunde en de 
natuurwetenschappen kunnen ervaren. De hoofdonderzoeksvraag die we stelden, 
was:  

Wat zijn de kenmerken van een valide en effectieve onderwijsleerstrategie 
om leerlingen correlatie en regressie te onderwijzen op een zodanige 
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wijze dat ze samenhang tussen wiskunde en de natuurwetenschappen 
ervaren? 

Met ‘valide’ bedoelen we dat de strategie in overeenstemming moet zijn met de 
epistemologische ideeën die binnen de betrokken disciplines gangbaar zijn, zoals 
bijvoorbeeld het berekenen van de standaarddeviatie (wiskunde), het begrijpen van 
aerobe stofwisseling (biologie), of het produceren van een formule voor een 
regressielijn (statistiek). Wij beschouwen de strategie als effectief als leerlingen de 
juiste correlatie- en regressiemodellen kunnen toepassen bij het oplossen van reële 
problemen. 

Statistisch modelleren in een al dan niet wetenschappelijke beroepspraktijk omvat 
verschillende stappen. Variabelen die verband houden met de verschijnselen waar 
het om gaat, moeten worden gemeten. De gegevens vormen een steekproef en 
kunnen worden geanalyseerd met behulp van statistische technieken. Door gebruik 
van modelleringstechnieken, steekproeven, variabiliteit en andere relevante 
statistische begrippen, kunnen leerlingen de verschijnselen modelleren, en 
vervolgens terugkoppelen naar de gevolgen voor de beroepspraktijk. Door 
dergelijke stappen te zetten, kunnen leerlingen iets leren over een modelleercyclus. 

We hebben onze strategie gebaseerd op beroepspraktijken waarin 
wetenschappelijke en statistische modellen worden gebruikt en zijn ervan 
uitgegaan dat leerlingen hierdoor worden gestimuleerd om samenhang te leren zien 
tussen deze beroepspraktijken, wiskunde, statistiek en natuurwetenschappen. In lijn 
met recent onderzoek in het natuurwetenschappelijk onderwijs hebben we 
aangenomen dat een dergelijke strategie, waarbij theorie en toepassing in relevante 
situaties niet van gescheiden zijn, voor leerlingen betekenisvol wordt. Daarom 
hebben we besloten om een onderwijsleerstrategie te ontwerpen die gebaseerd is op 
authentieke beroepspraktijken. 

Recent onderzoek in statistiekonderwijs richt zich op “statistische inferenties” 
(gevolgtrekkingen), gedefinieerd als probabilistische generalisaties op basis van 
data. Informele statistische inferenties zijn niet alleen belangrijk voor toekomstige 
burgers en werknemers, maar ook als voorbereiding op een meer formele 
inferentiële wijze van redeneren. Aansluitend op dergelijk onderzoek zijn wij in 
onze onderwijsleerstrategie ermee begonnen leerlingen te laten kennismaken met 
“informeel inferentieel redeneren” en hebben we toegewerkt naar meer formele 
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technieken in de tweede helft van de strategie. Bij het opstellen van informele 
inferenties, ligt de focus op kunnen redeneren en op begripsmatig begrip, en 
minder op statistische procedures. In educatief onderzoek naar informeel 
inferentieel redeneren spreekt men dan ook van de noodzaak om een mechanisme 
of een trend te herkennen waarbij men “voorbij” de data kijkt als een belangrijk 
idee om conclusies te trekken. Dit betekent dat je conclusies trekt die niet meteen 
in de data te zien zijn, maar wel hieruit te destilleren zijn. Wij richten ons in dit 
onderzoek op trendverschijnselen die kunnen worden gemodelleerd door middel 
van correlatie of regressie. 

Om de onderzoeksvraag te kunnen beantwoorden hebben we een 
onderwijsleerstrategie ontworpen op basis van authentieke beroepspraktijken, 
waarbij het mogelijk was om onderdelen van de beroepspraktijk te didactiseren en 
te laten aansluiten bij begrippen van het wiskundig en natuurwetenschappelijk 
curriculum van de middelbare school. In ons onderzoek hebben we ons gericht op 
vier aspecten. Na een brede focus op informeel inferentieel redeneren (1), hebben 
we ingezoomd op specifieke begrippen die nodig zijn voor inferentieel redeneren: 
variabiliteit in meetgegevens (2) en steekproeven nemen (3). Meten en 
steekproeven nemen zijn activiteiten op het raakvlak tussen de wiskunde en de 
natuurwetenschappen. Ten slotte hebben wij uitgezoomd door ons meer in het 
algemeen op de samenhang te richten tussen wiskunde, statistiek, 
natuurwetenschap en beroepspraktijken (4). We hebben onze onderwijsleerstrategie 
getest in vier studies, die elk een eigen onderzoeksvraag hadden: 

1. Op welke manier kan een onderwijsleerstrategie die is gebaseerd op 
authentieke beroepspraktijken, leerlingen ondersteunen bij het maken van 
statistische inferenties over authentieke problemen waarbij gebruikgemaakt 
wordt van correlatie en regressie? 

2. Hoe houden vwo-scholieren rekening met variabiliteit als zij 
meetactiviteiten uitvoeren die gebaseerd zijn op authentieke 
beroepspraktijken?  

3. Wat is het potentieel van taken op basis van authentieke beroepspraktijken 
om leerlingen te ondersteunen in het ontwikkelen van begrippen die ten 
grondslag liggen aan steekproeven, op een zodanige manier dat ze kunnen 
‘pendelen’ tussen context en statistiek? 
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4. In hoeverre kunnen beroepspraktijken als betekenisvolle contexten 
fungeren om leerlingen verbanden te laten leggen tussen wiskunde, 
statistiek, natuurwetenschappen en beroepspraktijken? 

In dit proefschrift hebben we een aantal selectiecriteria geformuleerd voor 
authentieke beroepspraktijken waarin men gebruikmaakt van correlatie- en 
regressiemodellering. Op basis van deze criteria hebben we ervoor gekozen om 
binnen onze onderwijsleerstrategie de hoofdstukken van het in de klas te gebruiken 
en special daarvoor ontworpen lesmateriaal te baseren op de beroepspraktijken van 
sportfysiologen (1), onderzoekers die dijkhoogten monitoren (2), en laboranten die 
meetapparaten kalibreren (3). De bedoeling van het eerste hoofdstuk van het 
lesmateriaal (meten van fysieke conditie) was om de begrippen op een informele 
manier te introduceren. Het had als doel om de motivatie van leerlingen om te leren 
over correlatie en regressie te bevorderen, waarbij ze hun eigen drempelwaarde 
tussen het aerobe en anaerobe metabolisme moesten voorspellen met als doel hun 
fysieke conditie te verbeteren. De bedoeling van het tweede hoofdstuk (monitoren 
van dijkhoogten) was om leerlingen te betrekken bij een meer formele benadering 
van de begrippen en technieken om het moment te kunnen voorspellen waarop 
dijken verhoogd moeten worden om overstromingen te voorkomen, en het derde 
hoofdstuk (kalibreren) had als doel om de leerlingen datgene wat ze geleerd hadden 
in een nieuwe situatie (kalibreren meetapparaten) te laten toepassen. De 
verschillende aspecten van onze strategie hebben we in vier studies getest 
(Hoofdstukken 2 tot en met 5). 

Informeel inferentieel redeneren van leerlingen 

Hoofdstuk 2 beschrijft hoe leerlingen worden geholpen om aan de hand van 
correlatie- en regressiemodellen informele inferenties te trekken. We hebben een 
data-analyse matrix ontwikkeld om dit vermogen te analyseren en hebben zowel 
het schriftelijk werk van de leerlingen gebruikt als de transcripties van hun 
interacties. In de matrix hebben we de feitelijke antwoorden van leerlingen 
vergeleken met die welke we hadden verwacht. Op deze manier hebben we 
onderzocht hoe onze strategie leerlingen ondersteunt bij het maken van informele 
inferenties over authentieke problemen met behulp van correlatie- en regressie-
modellen. 
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De bevindingen wijzen erop dat onze onderwijsleerstrategie geïnspireerd op 
authentieke beroepspraktijken voordelen biedt, maar ook een nieuwe uitdaging 
betekent. De meeste leerlingen zagen de praktische waarde van correlatie en 
regressie voor een beroepspraktijk, en velen van hen schenen in staat om 
realistische conclusies te trekken. De onderwijsleerstrategie leek effectief om 
leerlingen te helpen informele statistische inferenties te maken. Een ander voordeel 
van de strategie was dat leerlingen tot het inzicht kwamen dat deskundigen op veel 
terreinen in hun professionele werk gebruikmaken van deze technieken en dat ze 
zelf deze technieken in veel situaties op school of in een toekomstige academische 
studie zouden kunnen gebruiken. Een uitdaging voor de leerlingen was dat ze niet 
wisten hoe ze moesten omgaan met de variabiliteit waarmee rekening moet worden 
gehouden bij het maken van voorspellingen. Zo vergaten ze bijvoorbeeld vaak om 
bij het voorspellen van het moment waarop een dijk verhoogd moest worden, 
rekening te houden met de variabiliteit en gebruikten ze alleen de regressielijn bij 
hun voorspellingen. Rekening houden met variabiliteit rond de regressielijn is 
cruciaal vanwege het risico van overstromingen, maar is vanwege het authentieke 
karakter van het probleem nogal complex. We hebben het dan ook noodzakelijk 
geacht om vanaf de tweede ronde waarin we het lesmateriaal met leerlingen 
uittestten meer aandacht te besteden aan variabiliteit.  

Redeneren van leerlingen over variabiliteit veroorzaakt door meetactiviteiten  

In hoofdstuk 3 onderzoeken we hoe leerlingen in hun redeneringen omgaan met 
variabiliteit wanneer zij aan taken werken waarbij zij metingen uitvoeren en de 
verkregen data analyseren met correlatie- en regressiemodellen. Leerlingen 
meetactiviteiten laten uitvoeren heeft het voordeel dat het hen in staat stelt om 
relaties te leggen tussen de reële natuurwetenschappelijke contexten (“real world”) 
en de wereld van de data. Ook lijken meetactiviteiten geschikt te zijn om in 
interdisciplinaire contexten variabiliteit te onderwijzen. 
 
Wij hebben de mondelinge uitspraken van leerlingen geanalyseerd om inzicht te 
krijgen in de manieren waarop leerlingen met variabiliteit omgaan tijdens context-
rijke meetactiviteiten. Om dit te onderzoeken hebben wij het raamwerk bewerkt 
van Wild en Pfannkuch (1999), dat gebaseerd is op hoe statistici variabiliteit zien: 
“aandacht voor en erkenning van variabiliteit”, “meting en modellering van 
variabiliteit”, “verklaring van variabiliteit”, en “gebruik van onderzoeks-
strategieën”. We hebben dit onderzocht omdat bij informeel inferentieel redeneren 
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het voor leerlingen belangrijk en misschien zelfs noodzakelijk is om goed om te 
gaan met variabiliteit. Onze verwachting was dat door het authentieke karakter van 
de activiteiten de leerlingen beter in staat zouden zijn hun meetresultaten te 
modelleren en te analyseren met behulp van technieken, zoals het vinden van een 
trend om een betekenisvol antwoord te vinden voor een authentiek probleem. Het 
zou hen ook helpen om op verschillende manieren de rol van variabiliteit te 
bestuderen. We hebben geconcludeerd dat leerlingen, hoewel natuurlijk op een 
minder hoog niveau dan statistici, op alle aspecten van het raamwerk in hun 
redeneren rekening hielden met variabiliteit. 
 
De begripsmatige ontwikkeling van leerlingen om steekproeven te trekken 
teneinde tussen context en statistiek te kunnen ‘pendelen’ 

Hoofdstuk 4 richt zich op een essentieel aspect van het informeel inferentieel 
redeneren en op een methode om professionele contexten, wiskunde en 
natuurwetenschappen met elkaar te verbinden: steekproeven nemen. Veel 
deskundigen houden zich in hun vak met steekproeven bezig. Maar ook 
steekproeven vormen een enigszins verwaarloosd gebied binnen het 
statistiekonderwijs. We hebben onderzocht of leerlingen het doel van 
steekproeftaken en het nut van de onderliggende begrippen zouden zien. Ook 
hebben we onderzocht of leerlingen in staat zouden zijn om authentieke problemen 
te mathematiseren en de begrippen in een context te kunnen toepassen. We hebben 
twee steekproeftaken ontworpen, gebaseerd op een authentieke beroepspraktijk van 
een sport-fysioloog waarbij correlatie- en regressiemodellen gebruikt moesten 
worden.  

We hebben twee case studies uitgevoerd om na te gaan wat het potentieel is van 
deze taken om leerlingen steun te bieden bij het leren van begrippen die ten 
grondslag liggen aan steekproeven, en om te onderzoeken wat leraren moeten doen 
om dit potentieel te benutten. We hebben onderzocht of de leerlingen ‘pendelden’, 
dat wil zeggen de relatie legden tussen de realiteit (“contextual sphere”) en de data 
(“statistiscal sphere”) en omgekeerd. 

De analyses tonen aan dat om het pendelen van leerlingen tussen contextuele en 
statistiek te ondersteunen, realistische steekproeftaken geïnspireerd op authentieke 
beroepspraktijken effectief kunnen zijn. Dergelijk pendelen hielp de leerlingen om 
het doel van de taken en het nut van de begrippen te zien, en droeg bij aan het 
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vermogen van de leerlingen om authentieke problemen te mathematiseren en de 
begrippen in betekenisvolle contexten toe te passen. Voor de leerlingen was de 
terugweg bij het pendelen niet gemakkelijk. De onderzoeker probeerde subtiel deze 
terugkoppeling te stimuleren, maar zijn poging mislukte en hij moest uitdrukkelijk 
vragen naar de betekenis van hun antwoorden in relatie tot de context. Daarna 
zagen de leerlingen het belang in van het terugkoppelen. Ondanks het authentieke 
karakter van de opdrachten in het lesmateriaal, lijkt het nog steeds noodzakelijk dat 
leraren leerlingen ondersteunen bij het terugkoppelen van hun antwoorden naar de 
context.  

Samenhang tussen wiskunde en de natuurwetenschappen 

Hoofdstuk 5 doet verslag van de manier waarop leerlingen kennis uit de wiskunde 
en de natuurwetenschappen integreren, als ze oefenen met informeel inferentieel 
redeneren met betrekking tot oplossingen van authentieke problemen. Ook 
beschrijft dit hoofdstuk hoe ze een dergelijke aanpak waarderen. Zoals al eerder 
gezegd zijn we ervan uitgegaan dat een onderwijsleerstrategie voor leerlingen 
betekenisvol gemaakt kan worden, als zij gebaseerd is op gedidactiseerde 
authentieke beroepspraktijken. We gebruikten ”betekenisvol” als term om 
relevante affectieve en metacognitieve aspecten van leren samen te nemen (nut, 
motivatie, toepassing, zien van verbanden, authenticiteit). In deze studie hebben we 
bovendien de gedachte geopperd dat een betekenisvolle strategie alleen niet 
voldoende is om leerlingen verbanden te laten leggen tussen disciplines. Daarvoor 
is het ook belangrijk dat leerlingen de begrippen beheersen en in staat zijn om ze 
toe te passen. Ook onderzochten we meer in het algemeen in hoeverre leerlingen de 
samenhang ervoeren tussen wiskunde en de natuurwetenschappen, met statistische 
begrippen en modelleertechnieken als instrumenten voor het leggen van verbanden.  

We hebben een analytisch model ontwikkeld om het vermogen te onderzoeken 
verbanden te leggen tussen wiskunde, statistiek, natuurwetenschappen en 
beroepspraktijken, en hebben voor en na de lessen de antwoorden van leerlingen 
geanalyseerd die betrekking hadden op vragenlijsten en opdrachten uit het 
lesmateriaal. Onze conclusie was dat het door ons ontworpen lesmateriaal als 
onderdeel van de onderwijsleerstrategie door de meeste leerlingen als betekenisvol 
werd ervaren. De strategie motiveerde hen en ze lieten zien de geleerde begrippen 
te kunnen toepassen, ook bij andere disciplines. 
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Conclusie en discussie 

Onze conclusie ten aanzien van de hoofdonderzoeksvraag is dat onze 
onderwijsleerstrategie voor het onderwijs van correlatie en regressie valide en 
effectief lijkt. Zij lijkt valide, omdat het ontwerp van de strategie in lijn is met de 
gangbare epistemologische ideeën van de betrokken disciplines. Zij lijkt effectief 
omdat de betrokken de leerlingen geleerd hebben om authentieke problemen op te 
lossen door correct gebruik te maken van correlatie- en regressiemodellen. De 
leerlingen lijken ook het modelleerproces en de gebruikte statistische begrippen te 
begrijpen en zijn in staat om bij het oplossen van echte problemen, wiskundige en 
statistische technieken te combineren met de begrippen uit de 
natuurwetenschappen. Wij denken dat leerlingen  door het leren van correlatie- en 
regressiemodellen op basis van authentieke beroepspraktijken met een aansprekend 
doel inzicht in data-analyse en modellering kunnen krijgen. We hebben betoogd dat 
opdrachten met betrekking tot statistiek op basis van dergelijke praktijken het 
potentieel hebben om leerlingen te motiveren wanneer ze relevante begrippen voor 
de betrokken disciplines ontwikkelen.  

De kenmerken die ertoe bij lijken te dragen dat leerlingen samenhang tussen 
wiskunde en de natuurwetenschappen ervaren zijn: 

1. De strategie is gebaseerd op authentieke beroepspraktijken. Hiertoe 
dienen wel, voordat ze in het onderwijs ingezet kunnen worden, 
onderdelen van de beroepspraktijken gedidactiseerd te worden 
(specifiek in ons geval betrof dit de selectie en redactie van problemen 
die met correlatie en regressie onderzocht kunnen worden). 

2. De strategie biedt de leerlingen lesmateriaal dat ze uitnodigt om  
inferentieel te redeneren, zowel formeel als informeel (zie bij-
voorbeeld Hoofdstuk 2). 

3. De strategie biedt de leerlingen een balans tussen de te leren 
begrippen en de onderliggende context. Een aandachtspunt daarbij is 
het pendelen tussen de begrippen en de context (zie Hoofdstuk 3). 

4. De strategie bevat activiteiten voor leerlingen waarbij zij zelf data 
verzamelen en analyseren (zie bijvoorbeeld Hoofdstuk 4). 
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Beperkingen en vervolgonderzoek 

Bij dit onderzoek moet worden aangetekend dat de onderzoeksresultaten slechts 
drie scholen betreffen en dat we voorzichtig zijn met generalisaties. Wij stellen 
voor om voorafgaand aan mogelijk invoering in het onderwijs eerst nauwkeurige 
begeleidende instructies voor leraren te ontwikkelen., en de strategie eerst in meer 
scholen te testen. Toekomstig onderzoek met meer deelnemende leraren moet een 
antwoord geven op de vraag of onze strategie werkt voor andere leraren en welke 
steun zij nodig hebben. Het zou verder interessant zijn om te onderzoeken of een 
soortgelijk ontwerpstrategie zou werken voor andere delen van de wiskunde 
(bijvoorbeeld bij wiskundig modelleren en optimalisering), andere schoolsystemen 
en andere landen. 

Onze strategie inspireerde leerlingen om te leren over statistiek en stimuleerde hen 
om de geleerde begrippen te gebruiken in andere situaties, zoals bij projecten voor 
natuurwetenschappelijke vakken. Onze studie laat zien dat een dergelijke strategie 
effectief kan zijn om leerlingen statistische technieken te onderwijzen, dat ze 
wiskundige achtergronden leren begrijpen, wiskundige technieken leren gebruiken, 
en dat de natuurwetenschappen geschikte contexten bieden om hen te motiveren 
om over statistiek te leren en te redeneren. We hopen dat toekomstig onderwijs het 
leren van leerlingen in toenemende mate betekenisvol en interessant maakt zodat 
ze meer het nut van de te leren begrippen inzien, beter in staat zijn deze begrippen 
toe te passen en meer samenhang tussen de disciplines op school ervaren.  
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1. Future forecasts 
 
In our instructional unit we intended students to consider a safety margin around 
the regression line when predicting the moment to heighten a dyke (chapter two of 
the instructional unit). Because some students remembered the “rules of thumb” 
for a normal distribution, the students were initially inclined to take a linear 
margin. We decided that a linear margin was an acceptable way for students to 
consider the risks involved. However, when we discussed this with statistician Prof. 
dr. Richard Gill, he explained that in real forecasting the margin around the 
regression line is not linear but hyperbolic, a theorem discussed and proven in this 
appendix. As a simplification of the authentic practice we decided a linear margin 
would be acceptable as a first step. As a next step, the teacher can discuss the fact 
that safety margins for the far future have to be larger than for the near future. We 
expect students to know this from weather predictions, but the proof of the 
hyperbolic shape transcends the secondary school curriculum. 
 
Time is the undependable variable when making future forecasts based on the 
regression line. The magnitude of the forecast error depends on whether the 
formula of the regression line is known at xt with  1 t T   and when the forecast 

is to be made at X with X x
T

 . In our case of dyke monitoring we get a regression 

line 0 0H a b d e
t t t
   with 1 44t   H for deviations of dyke heights and d for 

days at moment t.  For 44t  we use the estimated equation 1 1 .tH a b d
t

    

The forecast error with 44t   is: 

t tH H  0 0( )a b d e
t t

  - 1 1( )a b d
t

 0 1 0 1( ) ( )a a b b d e
t t

      

The variance of this forecast error is 
2 2( )f t tE H H    2

0 1 0 1[( ) ( ) ]E a a b b d e
t t

    =

2 2 2 2
0 1 0 1 0 1 0 1 0 1 0 1[( ) ( ) 2( )( ) 2( ) 2( ) ]t t t t t tE a a b b d e a a b b d a a e b b d e           

2 2 2 2
0 1 0 1 0 1 0 1 0 1 0 1( ) ( ) ( ) 2 [( )( ) ] 2 [( ) ] 2 [( ) ]t t t t t tE a a E b b d E e E a a b b d E a a e E b b d e            
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While we use the assumptions: 
  ( ) 0E e   

2 2( )E e  (from H!) 

( )t tE d d  

we can rewrite the variance to: 2 2 2
1 1 1 1( ) ( ) 2 ( , )f t tV a V b d Cov a b d       

 
Johnson, Johnson, and Buse (1987, p. 384) claim that after tedious but 
straightforward manipulations can be written as 

 
 

2

2 2 2
2

1

1
( ) 1 44

t

f t t T

t

d d
E H H T

T d d
 

          
 the number of 

measurements. 
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2. Manipulations 
 

To produce the manipulations by ourselves we use the definitions from Rice (1995, 
p. 513): 

  

 
2 2

1
1 2

2

1 1

( )

T

tt

T T

t tt t

d
V a

T d d




 





 

  

 
2

1 2
2

1 1

( )
T T

t tt t

T
V b

T d d



 




 
 

 
2

1
1 1 2

2

1 1

( , )

T

tt

T T

t tt t

d
Cov a b

T d d




 



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Figure 1. Hyperbolic f of deformation during time in days. 

This implies a nonlinear safety margin for the dyke deformations (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Nonlinear safety margin for the dyke deformations. 
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Instructional unit: Statistics as Bridge between Mathematics and 
Science – Table of contents  

1 The sports physiologist and statistics 

1.1 Measuring condition (pp. 5-10) 

Introduction of the authentic professional practice of a sports physiologist, 
who advises clients on how to improve their physical condition. Students learn 
to measure their fellow students’ heart rates and to model their data to find a 
measure for their physical condition. 
 
 
 
 
 
 
 
 
 
 
Figure 1. Students measuring physical condition using a sphygmomanometer 
(right figure). 

1.1.1 Scatterplots 

Introduction of scatterplots to visualize the relation between two variables. 
 

 
Figure 2. Scatterplot to visualize the relation between Age and the peak heart rate. 
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1.2 The role of statistics in improving condition (pp. 6-18) 

1.2.1 Heart rate and condition 

Physiological background information on the relation between heart rates and 
physical condition. 

1.2.2 The threshold point 

Background on the threshold point as the heart rate someone can maintain 
over a longer period of time without the muscles reaching the metabolic 
threshold (between aerobic and anaerobic metabolism). Also background on 
training schemes based on the threshold point.  
 

 
Figure 3. Model to predict the threshold point. 

1.2.3 General equations and variation 

Introduction of some common formulas for the peak heart rate depending on 
age). Students compare these with their own modelling results; an informal 
introduction to variability. 
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1.3 Statistics and individual improvement of condition (pp. 19-23) 

Tasks for students to reason about how to determine their own threshold 
points in a gym. 

1.3.1 Model of the heart rate 

Introduction of the model of the relationship between the heart rate and power 
output when using a treadmill. Tasks to understand the model. 

1.3.2 The Conconi Test to determine the threshold point 

Activity for students with the Conconi Test to determine the threshold point of 
a fellow student using linear regression. A regression line is drawn by eye-
balling. 
 

1.4 Scatterplot (pp. 24-35) 

Introductory tasks about variability in relation to scatterplots. 

1.4.1 Data variation 

Tasks to investigate variables other than the heart rate in relation to physical 
condition. Students practise with scatterplots and have to reason about 
variability. 

1.4.2 Correlation and regression  

Correlation (positive, negative and absent) is introduced and students practise 
with it informally.  

 
In the last two research cycles we included at this point a sampling task to confront 
students with variability and “shuttling” between the contextual and statistical 
spheres. 
 

2 Statistics and water  management 

The professional practice of monitoring dyke heights is introduced. Students 
see a video with accompanying questions and get information on dykes 
constructed in order to prevent flooding (pp. 36-38). 
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2.1 Monitoring heights of dykes (pp. 39-42) 

2.1.1 How do you decide when to heighten a dyke?  

Introduction of scatterplots as a means to decide when to heighten a dyke. 
Students are asked how such scatterplots can help and to reason about the 
variability around the regression line. 

2.1.2 Levee Patrollers  

Students learn how to recognize and explain problems with dykes. When in 
practice data analysis predicts problems at a dyke position, a Levee Patroller is 
sent to investigate the situation. Students play an interactive game which is 
used to train real Levee Patrollers. This game involves a virtual dyke with a 
lot of problems and heavy weather. The intention is to detect, report and 
explain the problems.  

2.2 Regression lines (pp. 43-50) 

2.2.1 Recognizing a trend  

Students get real data of dyke heights and are asked to find a trend. 
Again students have to reason about regression lines and variability around 
regression lines in relation to this professional practice to draw inferences 
about when to heighten a dyke. 

2.2.2 Regression lines and Excel  

Students learn to use Excel for plotting scatterplots, and learn to produce 
relevant basic calculations with Excel, such as sum, mean etcetera.  

2.2.3 Regression lines and residuals 

Students learn to use Excel to calculate residuals. 

2.2.4 A measurement for variation 

Students learn to calculate the standard deviation using Excel. 

2.2.5 Variation and safety margin 

Students reason about safety margins and how to include them in their Excel 
drawings and calculations. 
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2.3 Regression coefficients (pp. 51-70) 

2.3.1 The central point  

Student learn to use Excel to determine the central point  ,d H of correlated 

data with d as number of days and H  as deformation of heights. 

2.3.2 Calculations using sigma-notation for summation  

Introduction of the sigma notation (∑). Student practise with calculations with 
sigmas. 

2.3.3 The least square method  

Student use special software (TI-Nspire) to draw a scatterplot and have to 
draw the best possible line. Using the sum of squares option of the software 
they improve their regression line before using the option of showing the 
software’s regression line. Students have to understand and reason about the 
least square method. 
 

 
 
Figure  4. Screenshot TI-Nspire 
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2.3.4 Regression coefficients  

Students practise with derivations. Students learn how to find a system of 
normal equations by calculating the derivatives of the sum of squares. By 
solving the system the regression coefficients are determined. 

2.3.5 Excel and regression coefficients  

Students learn how to use Excel to produce the regression coefficients. 
 

 
Figure 5. Screenshot Excel to instruct the students how to calculate the regression 
coefficients with the Linest function (Dutch: Lijnsch). 

2.4 Correlation coefficient (pp. 71-76) 

2.4.1 A measure for a relation  

Mathematical background on correlation and how to use Excel to calculate the 
correlation. In the last task of this section the students get data of three dyke 
positions. They are asked to decide which position has to be heightened first 
(there is only money to heighten one position). When students draw 
scatterplots it is obvious that one position could wait. To decide which of the 
two other positions has to be heightened they first have to use correlation and 
regression. 
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In the last two research cycles we included at this point another sampling task to 
confront students with variability and “shuttling” between the contextual and 
statistical spheres. 

2.5 Reflection (p. 77) 

In this section we asked the students to make connections between the first two 
chapters. We asked explicitly how the techniques learned in chapter two could be 
used in chapter 1 where they constructed regression lines by eye-balling. 

3 The role of correlation and regression in laboratories 

3.1 Calibration (pp. 78-87) 

Introduction of the professional practice of calibrating thermometers. Students 
practise with “precision” (small variability) and “correctness” (correct average in 
repeated measures). Students learn when it is possible to calibrate an instrument 
and the role of correlation and regression. In this chapter there are no examples of 
how to use correlation and regression. Students can show whether they are able to 
apply their knowledge in this new situation. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Pictures to show the difference between precise and correct. 
 

3.2 Extra Tasks (pp. 88-93) 

Some tasks to use correlation and regression in activities from other professional 
practices in laboratories. 



 

 



 

 




