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Abstract Our paper examines the representational nature

of number lines as they are used in instructional tasks. The

examination is informed by a so-called mathedidactical

analysis of the number line as a tool used in teaching

students mathematics. This analysis led to the identification

of a family of number line models, based on visual aspects

of number lines each reflecting different forms and func-

tions. In the article, number line tasks are unpacked to

illustrate the visual representational components of par-

ticular number line models. We illuminate how these

components of the models provide tools to locate whole

numbers and integers, operate with them, and facilitate

reasoning and understanding of underlying mathematical

concepts.

Keywords Number line � Number line tasks �
Representational aspects of number line � Subject-related

analysis � Number line as tool � Number line as structural

reference context

1 Introduction

Number lines can be a taken-for-granted part of the

mathematical landscape in many classrooms. They are

taped to desks, posted on walls, printed in books, and

shown on rulers. Because number line representations

are ubiquitous from early elementary through high

school, it is easy to assume that students and teachers

have shared understandings of what these lines repre-

sent and of what sorts of mathematical thinking they

make possible. (Strickland et al. 2005, p. 1)

The above quote describes a widespread view in mathe-

matics education; that number lines are an everyday ingre-

dient of mathematics learning and that they present a form of

representation that is obvious in both its meaning and

application. However, it cannot be assumed that students

share the same perceptions as those of their teachers (Arcavi

2003; Cobb et al. 1992; Van den Heuvel-Panhuizen 2003a).

Cobb et al. (1992) address this situation through a focus on

the ‘‘experienced instructional transparency’’ of materials.

They cite the classroom use of base-ten blocks to illustrate

their perspective. In many cases, teachers incorrectly assume

that their expert understanding of the blocks’ ‘‘transparent

instructional representation of place value notation’’ will

also be evident to students, who have not as yet internalized

this mathematical structure (ibid., p. 8). Further, the authors

note that, ‘‘the problem of explaining how students make

constructions compatible with those that the expert has in

mind seems intractable as long as we fail to make our self-

evident interpretations of external representations an object

of analysis’’ (ibid., p. 9, emphasis added). This means that

we, ourselves, as teachers or task designers or as researchers

of mathematics education must take on the responsibility for

this kind of analysis when discussing any didactical tool to be

used in mathematics education.

This analysis is also necessary for the number line

considered as a didactical tool, because research has found

student performance on basic number line tasks to be
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problematic. For example, students may have difficulty

correctly locating whole numbers when some of the regular

tick marks are not shown on the number line (Diezman

et al. 2010), using a number line incorrectly to solve simple

addition word problems (Skoumpourdi 2010) or incorrectly

interpreting whole number addition operations pre-drawn

on a number line (Ernest 1985). As Ernest (1985, p. 422)

notes, we should not assume that ‘‘because the number line

model can be used to represent enactive procedures

employed by young children its use is taken to be self-

evident to children.’’ Researchers have also cautioned that

teachers, themselves, often do not have a deep under-

standing of the representational affordances and constraints

present in the use of particular number lines within specific

task contexts (Bobis and Bobis 2005; Gray and Doritou

2008; North Carolina Department of Instruction n.d.).

In this article, we carry out a theoretical analysis of the

number line by unpacking the representational aspects of

number lines used either as tools to order whole numbers

and integers or to operate on them, or number lines used as

objects to promote reasoning and reflection about under-

lying mathematical concepts. This analysis includes issues

of visual apprehension, that is, understanding the visual

features of a number line as carriers of mathematical

meaning. In unpacking the number line, we take both a

mathematical and a didactical perspective; which we refer

to as a mathedidactical analysis.

2 Number lines considered as a representational system

A number line is more than just a figural drawing that is

constructed by a set of arbitrary rules. It is part of a

‘‘semiotic representation’’ (Duval 1999). For any mean-

ingful apprehension of a number line task to occur, it is

necessary not only to notice a line’s representational

components, but also to understand how these components

denote and convey information—how they ‘‘show the

organization of relations between the representational

units’’ (Duval 1999, p. 13).

A particular number line model is part of a representa-

tional system organized to highlight patterns of relations

among numbers and operations. Such a system consists of a

set of representational units and labeling conventions, and a

collection of rules that describes the ways of working

within this representation.

In any investigation of representation, an important

question to address is, ‘‘What is representing what and in what

ways?’’ (Kaput 1998, p. 266). Thus, it is necessary to unpack

how a number line representation visually embodies partic-

ular aspects of the complex web of mathematical meanings

ascribed to the notion of number, the structure of arithmetic

operations on numbers, and density properties of the set of

real numbers—comprising natural numbers (1, 2, 3, …),

whole numbers (0, 1, 2, 3, …), integers (…, -2, -1, 0, 2, 3,

…), rational numbers (such as �, or 0.25; 1=3 or 0.33333; 5/

11 or 0.454545), and irrational numbers (such as
p

2 and p).

The mathematical meanings that can be ascribed to a

number line vary considerably, according to an individual’s

selective focus on particular aspects of the line’s represen-

tational units (Earnest 2007). Visually, these units consist of

a line segment, which may be shown with arrows at each end

and a set of points (tick marks) placed at equal intervals along

the number line. Arcs or directed arrows drawn, between tick

marks, are additional visual features that are used to model

the operations of addition and subtraction.

The way that a given number line serves as a particular

representation is also context-dependent and participant-

dependent. Saxe’s (2004) form-function framework pro-

vides a useful lens for unpacking representational aspects of

number line use. Here, form refers to a number line’s par-

ticular visual features such as the presence or absence of

points, unit intervals, and zero. How one perceives and uses

these forms determines their function. However, ‘‘confusion

is very likely to happen if the nature of the number line model

is not understood and the constituting aspects of its nature are

not clearly recognized’’ (Van den Heuvel-Panhuizen 2008,

pp. 25–26). Saxe (2004, p. 244) emphasizes the subjective

nature of representational apprehension: ‘‘[I]n themselves,

forms contain no intrinsic mathematical meaning. Rather,

the meaning of a form emerges relative to the goals of

individuals (and forms afford particular kinds of goals).’’

It is important to note that we characterize the repre-

sentational nature of a number line to be consistent with its

use as a formalized model. A number line is a figural

device, representing particular mathematical abstractions

that make it possible to think about and operate with dif-

ferent types of number.

Yet, we do not associate a number line with the word

‘‘geometric’’, because this line is not used as a shape or to

represent a spatial situation. Here, we follow Duval’s

(1999) distinction between a geometric object and a

drawing in which geometrical elements are used. Thus,

while a number line may be constituted out of geometrical

elements such as points and lines, the focus on labeling

particular numbers and carrying out specific arithmetic

operations places these objects outside a geometric register

of representation. Therefore, we consider these number

lines to be pictorial or figural, rather than geometric.

3 Mathedidactical analysis of the number line leading

to a family of number line models

The form of a number line that is selected for a particular

task should always be related to the function for which it is
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used as a model. There is not a ‘‘ubiquitous’’ number line

that fits all number-related tasks. However, many ‘‘teachers

are familiar with only the traditional number line with the

whole numbers already in place’’ (North Carolina Depart-

ment of Instruction n.d.), and students’ difficulties with

number line tasks have been observed in cases in which

there is an overreliance on using this so-called ‘‘tradi-

tional’’ form (Bobis and Bobis 2005; Diezmann et al.

2010). It is important, therefore, to unpack the represen-

tational variation inherent in the different forms within the

context of the function in which a number line is designed to

serve as a model. With that goal in mind, we developed our

classification of a family of five number line models on the

basis of the function for which a particular model is used.

3.1 Our approach in analyzing the number line

In our mathedidactical analysis of the number line we

examined, from a mathematical perspective, what mathe-

matical content is represented by the number line and, from

a didactical perspective, how this mathematical content is

presented and students’ understanding of the content is

achieved through task design and prompted student activ-

ity. The mathedidactical analysis of the number line was

based on our personal experiences as mathematics educa-

tors, a study of selected student texts for learning mathe-

matics, and a review of relevant research literature. The

goal of the analysis was to gain a better understanding of

what this figural object is, both from a mathematical and a

didactical perspective.

As we started to examine examples of number line tasks

displayed in texts and reported in the literature, we began

to identify differing accounts about the kinds of meaning

that students, teachers, and researchers are assumed to

assign to similar number line models (e.g., Diezmann et al.

2010). Such variation was also apparent in the ways that

research tasks were framed and the resulting student pro-

ductions were interpreted (c.f., Hannula 2003; Yanik et al.

2006). This range of interpretation led us to the realization

that the ‘‘number line’’ was comprised of a set of repre-

sentational ‘‘entities’’ that embodied different aspects of

number and number relations and operations.

The variety of definitions presented in the literature for

the number line representation provide further evidence of

the breadth of mathematical and didactical meanings

associated with this figural object. These definitions range

from a focus on mathematical constructs, where the num-

ber line is considered as a linear representation of number,

to functionally concrete descriptions of how to create the

figural drawing.

Devlin (2008) describes this object as a representation of

the ‘‘coherent and unified mathematical structure’’ of the

real number system. Furthermore, according to Skemp

(2002, p. 140), ‘‘[t]he number line is conceptual—it is a

mental object, though we often use diagrams to help us

think about it.’’ Moreover, the number line is infinite. ‘‘[I]n

our thoughts, we can think of a number line as going on

and on to infinity’’ (ibid.). From another perspective,

Lakoff and Núñez (2000, p. 279) describe the number line

that ‘‘you learn in grammar school’’ as being a metaphor

made up of ‘‘a conceptual blend […] of source and target

domains […] in which entities are simultaneously numbers

and points.’’

Heefer (2011, p. 865) draws attention to the meanings

that are to be assigned to the line’s figural elements, stating

that, ‘‘the number line is a representation of numbers on a

straight line where points represent integers or real num-

bers and the distance between points matches the arith-

metical difference between corresponding numbers.’’

Freudenthal (1983) goes farther and describes the line’s

representational function from a didactical perspective,

noting both a counting and a measurement interpretation.

The device beyond praise that visualizes magnitudes

and at the same time the natural numbers articulating

them is the number line. (ibid., p. 101)

How far is it from here to there on the number line?

The little steps are counted. But you can also take the

‘from here to there’ between your thumb and fore-

finger, carry it back to 0 and read it off. Adding n to

m can be performed by counting but it can also be

done in one blow: the piece that is ‘accomplished’ at

n is taken between the fingertips and carried over to

m. (ibid., p. 102)

In spite of how a number line representation may be

defined, researchers have recognized the individual inter-

pretive act of engaging with a particular number line model

in the context of either a classroom or research task. As

Strickland et al. (2005, p. 1) point out, it is problematic to

assume ‘‘that number lines have intrinsic meanings or

singular interpretations.’’

Given the complexity of this representational system,

we began our analysis by addressing the following

questions.

• What does a number line represent and how does it do

this?

• How is a number line used?

• Are there different number lines?

• What are the differences among the number lines and

why are they different?

• What are the underlying conceptions of number sup-

ported by the different types of number lines?

• What are the strengths and limitations of the different

number lines?
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While synthesizing the answers to these questions, we

identified a large variety of number lines. Contrasting and

comparing various number line examples led to the

development of a classification framework to characterize

number lines in terms of (1) variations in their visual fea-

tures, (2) the type of numbers involved, (3) how numbers

and operations are represented by a number line, and (4)

the didactical support that a number line provides. We used

this framework to group the number lines according to

similar characteristics into five different types of number

lines that are commonly found in mathematics texts in

primary and middle school and in teacher education pro-

grams for these school levels.

3.2 Family of number line models

Our characterization of a family of number line models is

summarized in a form-function chart (see Appendix). In

this chart the number line models are organized into five

columns. The function of each model is to display infor-

mation about numbers and relationships among numbers

(as shown in the upper half of the chart); and to display

operations on numbers (as shown in the lower half of the

chart). The form of each number line is characterized by its

key visual features that represent numbers and operations,

and is illustrated with a visual image. In addition, for every

model, information is included about the particular math-

ematical constructs and processes that are didactically

supported by that number line. Finally, an example of an

appropriate task illustrates how each number line can be

used.

The filled number lines, in column 1, are characterized

by equidistant points, or tick marks, that represent whole

numbers. The upper image of the number line reflects the

counting sequence and facilitates counting activities,

positioning numbers, and exploring number order and

relations. The lower image shows the carrying out of whole

number calculations by counting-on or counting-back.

Although in mathematics textbooks and in research litera-

ture these filled number lines are often called a ‘‘structured

number line’’, we decided not to use this name for these

number lines, since all of the five types of number lines that

we identified in our chart can be said to be ‘‘structured’’ in

particular ways.

The empty number lines, in column 2 of the chart, focus

attention solely on the order aspects of number. The upper

image is characterized by ordered (but not necessarily

equally spaced) points on a line segment. These points,

which represent numbers, convey information about rela-

tionships related to number order. The lower image, which

features an empty line segment, shows a calculation

strategy. Starting from a freely positioned point on such a

line, students can draw a sequence of jumps to visually

represent the steps involved in carrying out a particular

calculation.

The directed-length number lines, in column 3, utilize a

measurement notion of number, where integers are repre-

sented by directed lengths—lines specified by both mag-

nitude and direction. The upper image displays numbers as

lengths measured from zero. In the lower image, addition

and subtraction operations are represented by aligning and

translating directed lengths. Directed-length lines support

arithmetic operations on integers and reasoning about the

structure of these operations.

On the rational number lines, top of column 4, the unit

interval is divided up into equal sub-intervals, and rational

numbers are represented as points or tick marks. These

lines display rational number counting sequences and

support the positioning of fractions and decimals. The

parallel rational number lines, bottom of column 4, use

sets of parallel lines with differently partitioned unit

intervals to display and reason about equivalence relations.

Numbers are represented as points or tick marks.

In the proportional and double number line models in

column 5, numbers are represented by points or tick

marks, which are proportionally positioned with respect to

given boundary values. The proportional number line is

used to display the approximate position of real numbers.

The double number line consists of a single line with a

double scale that displays paired points. Numbers above

and below a single tick mark represent a ratio and are

used to reason about a particular proportional relationship.

It is important to note that both proportional number lines

display multiplicative relationships among numbers, while

the filled and directed-length number lines display addi-

tive relationships.

The ‘‘number representation’’ rows in the chart indicate

fundamental differences in the underlying conceptions of

number that are supported by different number line

models, where numbers are associated either with points

or with directed lengths. A point representation indicates

a counting-based conception, where a number is derived

from counting discrete objects. A directed length repre-

sentation reflects a measurement-based conception, where

a number is associated with the magnitude of a continu-

ous length.

In the sections that follow we present our examination of

number line tasks. Since a task that includes the use of a

number line can serve a variety of instructional purposes,

we focus on which number lines are incorporated in which

tasks and how representational aspects of these number

lines can elicit and foster particular mathematical under-

standing. Due to space limitations in this article, we include

only examples that use the filled, empty or directed-length

number lines with tasks involving whole numbers and

integers.
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4 Understanding the representational aspects

of a number line

In this section we discuss representational aspects of

counting-based and measurement-based number lines in

relation to the ways these number lines appear in tasks.

Although such number lines at first sight appear to be very

simple models that represent, in an easy way, numbers and

operations with numbers, it is a rather complex entity of

which the constituting characteristics are not directly

reflected in its visual features.

Within the two conceptions of number, we also examine

in this section five functions of the number line’s repre-

sentational components. These functions, which are used to

carry out number line tasks, include (1) representing the

location of numbers; (2) representing order relations

among numbers; (3) representing numbers as operands in

calculations; (4) representing the process of carrying out

operations; and (5) representing the results of operations.

Our discussions of tasks will highlight how the visual

features of different number line models are interpreted in

terms of these features.

We unpack the various representational aspects of

number lines by analyzing a filled number line task in Sect.

4.1 and several directed-length number line tasks in Sect.

4.2. Our discussions illustrate the importance of under-

standing these representational aspects in order to make

meaningful connections between what is represented (the

mathematical concepts) and in what way it is represented

(the visual features).

4.1 Representational aspects of a filled number line

Children’s initial exposure to number line activities utilize

a counting-based conception of number, where the filled

number line is typically employed as a visual aid to support

the development of the whole number counting sequence

(Everyday Mathematics n.d.; Skoumpourdi 2010). Activi-

ties may include extending a given sequence of numbers

that are already labeled on the number line, demonstrating

skip-counting by hops of two or three along a line, and

determining the relative size of numbers by their left-to-

right ordering. Subsequent activities include modeling

whole number addition as a process of counting forward by

steps of one unit (Everyday Mathematics n.d.). Here, while

still using a filled number line, the intended instructional

emphasis may reflect a measurement-based conception of

number. However, this shift in representational meaning

may not be apparent to students.

Research reported by Earnest (2007) illustrates the

ambiguous nature of many children’s understanding of

whole number representation on a filled number line. The

tasks used in a study with grade 5 children were designed

to elicit information about how these students interpreted

both tick marks and unit intervals. Follow-up interviews

investigated whether a student located a point by noting the

number of tick marks or the spacing between those tick

marks. In his report, Earnest describes in detail an inter-

view with one particular student.

Presented with the number line shown on the left in

Fig. 1, the student quickly identified Q as 4. However,

when the line shown on the right was drawn for her, she

stated that the value of Q could be 3. Further questions

suggested that she ‘‘used the tickmark with a counting

function without regard to the distance between tickmarks’’

(Earnest 2007, p. 606).

Earnest’s results highlight the importance of including

representational awareness as part of the didactical

intention of early activities on the number line. The filled

number line, which is an instructional staple in many pri-

mary classrooms, may not be as self-evident a represen-

tation to students as teachers assume (Ernest 1985; Earnest

2007).

In his research, Earnest (2007, p. 604) asks, ‘‘for a

student learning how to engage with the number line, what

informs the relative salience of particular representational

forms over others?’’ We take this question seriously in our

analysis of particular number line tasks in terms of the

representational awareness that is highlighted in suggested

instructional contexts.

For example, consider how the task from the NCTM

Illuminations (NCTM n.d.), shown in Fig. 2, illustrates the

representational complexity of points, spaces, intervals,

and ‘‘hops’’ when a number line is used to enact whole

number addition. While the NCTM introduction to this task

states that the number line model ‘‘highlights the mea-

surement aspect of addition,’’ we note below particular

counting features of the teacher’s narrative that accompa-

nies the classroom implementation of the task. Given the

emphasis on counting used in this example, we consider

this task to employ a counting-based orientation, which

requires a filled, rather than a directed-length number line.

In the classroom demonstration, addition is modeled by

drawing arcs that span consecutive tick marks to represent

how numbers are combined to determine a given sum

through a process of counting-on. Here, we draw attention

to the ways in which the different visual features of this

particular model can be interpreted as representations of

0 1 2 Q 0 1  2 Q

Fig. 1 Interview tasks used by

Earnest (2007, p. 604)
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numbers, as arithmetic operands, as indicators of the pro-

cess of addition, and as indicators of the results of

calculations.

In the discussion that follows, we focus our analysis solely

on how the instructional context of the task emphasizes

particular representational aspects of the use of a filled

number line to model whole number addition. We do not

comment on the didactical effectiveness of this task for

promoting the development of computational understanding.

The teacher instructions suggest:

Tell the students that they will find sums using the

number line model. Then display a large number line

and a 5 ? 4 domino, that is, a domino with 5 spots on

the left side and 4 spots on the right. Then demon-

strate with a counter how a hop of 5 is taken on the

number line. You may wish to encourage students to

count aloud as the hop is made. Then make a hop of

4, starting at the place the counter landed. You might

choose to have them record what happened using the

equation notation 5 ? 4 = 9, or to informally

describe the moves this way: ‘‘If you take a hop of 5

spaces and then a hop of 4 spaces, you land on 9.’’

You may wish to highlight the fact that in this model,

spaces are counted, not points on the number line.

(NCTM n.d.) (Underlining added by authors)

Notice the choice of particular words in the suggested

classroom narration. The students are encouraged to count

aloud as a ‘‘hop of 5’’ is made, and they are reminded that

spaces are counted, not points. This particular instruction

suggests that the drawing is not in agreement with the

narration. Based on what is said here one might expect five

hops of one (a counting-based orientation) instead of a

continuous arc or ‘‘hop’’ from zero to five (a measurement-

based interpretation). Moreover, there are other ambigui-

ties in these instructions. If spaces are counted, then it

would make sense to the students to perform a count as

shown in Fig. 3, where the numbers in the squares are

assigned to each space as the count is made.

The NCTM example illustrates subtle shifts in how

meaning is assigned to the filled number line’s visual

features when the filled number line is used to model whole

number arithmetic rather than to simply locate numbers. In

this example, it is necessary to think of the visual repre-

sentation in terms of a coordination between spaces and

tick marks. Spaces are bounded by tick marks and the right

most mark represents the ending value of a hop. In other

words, a ‘‘hop of 5’’ is operationalized by moving a finger

in an arc from one tick mark to the next, 5 times, on the

number line. While the finger covers the spaces, the count

is made by noting the tick mark at the end of each jump.

This ‘‘hop arc’’ stands for both the numeral 5 (constituted

from the count of five spaces) and the initial framing of the

calculation as the location of the endpoint value repre-

senting the first addend.

When the diagram’s visual features are regarded as

representations of the addition process, further shifts in

interpretation are required in the coordination of meaning

between tick marks and spaces. In particular, notice that the

beginning of the initial jump of ‘‘5’’ starts at zero, and thus

includes six tick marks over the total jump of five spaces.

Also, the jump of ‘‘4’’ moves across the tick marks rep-

resenting the whole numbers 5 through 9. To understand

why the total number of tick marks is ten and the number

of spaces is nine, means being able to recognize the sig-

nificance of spaces, endpoints of spaces, and tick marks,

and how a particular configuration of visual units can be

counted as a way to model addition on the filled number

line. Notice also how the result of this calculation is ‘‘read

off’’ the number line as the numerical value assigned to the

tick mark representing the endpoint of the second addend.

Here, the represented meaning shifts back from counting

spaces to counting the number of tick marks drawn to the

right of the zero location.

The equal spacing between tick marks can also be

interpreted as measuring ‘‘units’’ from zero and used to

locate whole numbers on the line in terms of measured

Fig. 2 Addition modeled as counting-on using a ‘‘hopping’’

metaphor

0 1 2 3 4 5 6 7 8 9 10
1 2

3
3 4 5 1 2 3

8
4

Fig. 3 Counting-on strategy

modeled as counting spaces

between tick marks
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lengths (e.g., Diezmann et al. 2010). However, the

emphasis in the above example treats the equal spaces

more as ‘‘separators’’ between tick marks, where the

equality of the spaces can be construed as representing the

regularity of the counting sequence. In the next section we

address the measurement interpretation of number in the

context of directed-length number line tasks.

4.2 Representational aspects of a directed-length

number line

The directed-length number line reflects a measurement-

based conception that affects not only how numbers are

apprehended but also how operations are represented.

Within this conception, the numerals that label tick marks

represent the values of the endpoints of directed distances

measured from zero, and numbers are interpreted as spe-

cifically oriented measured line segments, or vectors.

On the directed-length number line, rules for modeling

addition and subtraction of integers are a direct result of the

way that positive and negative integers are positioned to

the right and left of zero on the line, and the way in which

numbers are represented as vectors that have both a mag-

nitude (length) and a direction (designated by a head and a

tail).

To illustrate the manner in which the visual features of a

directed-length number line display the processes of inte-

ger addition and subtraction, we present examples taken

from American preservice mathematics texts. Comparing

the examples shown in Figs. 4 and 5 illustrates the com-

plexity of these forms of visual representation.

A commonly used model in preservice texts employs the

metaphor of ‘‘walking’’ on the number line to visually

enact integer subtraction (Billstein et al. 2010; Çemen

1993; O’Daffer et al. 1998). The walker begins by facing to

the right. Positive numbers are created by facing right and

moving forward from zero the required number of units.

Negative numbers are created by facing right and walking

backward from zero the required number of units. Sub-

traction is accomplished by turning around and then

walking either forward or backward, depending on the sign

of the subtrahend. In the case of an addition the walker

does not turn around but continues his walk either forward

or backward, depending on the sign of the number to be

added.

With respect to subtraction, the two directed-length

number line diagrams in Fig. 4 make explicit the distinc-

tion between subtraction and the value of the subtrahend,

as well as modeling the subtraction operation as the

opposite of addition. In each diagram, the walker’s

movements are represented by arrows of appropriate

lengths that are coordinated to the direction of the iconic

‘‘walker.’’

The next example of integer subtraction (see Fig. 5),

also uses a directed-length number line, but here the iconic

representation of the walker is changed into a more abstract

representation that uses arrows (vectors). Both positive and

negative numbers are represented by vectors, whose length

Fig. 4 Modeling integer

subtraction using a ‘‘walking’’

metaphor
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and direction are determined by placing the tail of the

arrow at zero and the head of the arrow at the tick mark

that represents the position of the given number on the

number line. Arrows representing positive numbers face

right and arrows representing negative numbers face left.

Once created, these number-vectors are moved back and

forth along the number line to model the processes of

integer addition and subtraction. For addition, the first

addend is positioned with its tail at zero, and its head

aligned with its respective number line tick mark. The

arrow representing the second addend is moved along the

number line until its tail is aligned with the head of the first

addend, which is noted as a tail-to-head alignment. The

result of the calculation can be read off on the number line

by the location of the head of the second addend. This

result can also be represented as an arrow with its tail at

zero and its head at the ‘‘result’’ tick mark.

Subtraction is also modeled by translating and aligning

an arrow. Subtraction begins with the arrow representing

the minuend oriented in the appropriate direction with its

tail located at zero. The subtrahend arrow is then moved to

the head of the minuend and the direction of this arrow is

reversed before its tail is aligned with the head of the

minuend. As with addition, the result of the calculation can

be read off the number line by the location of the head of

the subtrahend.

The diagrams in Fig. 5 model integer operations using

the tail-to-head alignment of directed lengths (vectors).

The diagram on the left, taken from Adding it up (Kilpa-

trick et al. 2001, p. 92), models the addition of a positive

and a negative integer. Notice that the result of the oper-

ation (dotted line vector) is represented here as a directed

length measured from zero to the head of the second

addend.

The diagram on the right, based on an example from a

preservice text (Sonnabend 1993), models the subtraction

of two negative integers. Notice that the arrow representing

‘‘-3’’ is shown facing to the right, which is the result of

having its direction reversed under subtraction. Here, the

result is represented by the value of the endpoint located at

the head of the subtrahend.

In Fig. 4, numbers are created by ‘‘walking’’ a speci-

fied length, either moving forward for positive numbers or

moving backward for negative numbers. In this iconic

representation, the visual elements resemble an actual

drawing of a person who creates a visible path by his or

her movements. In contrast, in Fig. 5 numbers are rep-

resented by more abstract lengths, and the rule for rep-

resenting an integer is identical for both positive and

negative numbers, that is: create an arrow by locating the

tail of the vector at zero and the head at the appropriate

tick mark on the number line. As such, this form of

representation is at an indexical level (Peirce 1998). At

this level, unlike numbers represented by numerals (which

are symbolic), the magnitude of each arrow still maintains

a link to a real-world context as a countable set of units

of length.

Commonalities between the two models for addition and

subtraction of integers relate to a fundamental relationship

between subtraction and addition—that is, subtracting a

number produces the same result as adding its inverse. In

the walking metaphor, this relationship is modeled by

having the person turn around before completing the

operation. In the same way, in the arrow model, the sub-

trahend is always reversed before being aligned with the

head of the minuend.

The visual features of the walking metaphor create a set

of rules tightly tied to a specific context. In contrast, in the

directed-length arrow model the visible features are more

abstract. This makes the latter number line model more

generally applicable and, thus, a more powerful tool. An

example of this power is also given in Fig. 10.

5 Using number lines as tools to operate and reason

with numbers

The discussion in Sect. 4 focused on unpacking the rep-

resentational aspects of the filled and directed-length

number line models within the contexts of specific number

line tasks. Section 5 shifts to an examination of how these

representational aspects provide constraints or affordances

- 2 – (-3) = 1

1. Measure out -2 (left-directed vector)
2. Reverse direction of -3 vector
3. Place tail of -3 vector at head of -2 vector 
4. Answer is located at head of -3 vector 

-3 -2 -1 0 1 2 3 4 5 6-5 -4 -3 -2 -1 0 1 2 3 4 5

3 +(– 5) = -2

1. Measure out 3 (right-directed vector)
2. Place tail of -5 vector at head of 3 vector
3. Answer is measured from 0 to head

of -5 vector

-
-

Fig. 5 Modeling integer

subtraction using vectors
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to the ways in which such tasks can be used as tools to

operate and reason with numbers.

5.1 Using the number line as a rule-governed or non-

rule-governed tool for adding or subtracting whole

numbers

In this section we examine how the use of particular

number line models and the tasks in which they are

involved promote either a fixed or a flexible way of adding

or subtracting whole numbers. Tasks that steer towards an

algorithmic solution tend to restrict the exploration and

deepening of key concepts, while open-ended tasks

encourage a growing understanding of underlying mathe-

matical constructs and relations (Selter 1998).

The particular set of tasks shown in Fig. 6 is excerpted

from a student activity page from an American grade 1 text

(Maletsky and Roby 2004, p. 318). The complete activity

consists of eighteen vertically aligned calculations that

require students to subtract with crossing the ten, followed

by a task in which the students have to write the number

sentence ‘‘11 - 4 = 7’’ that belongs to the number line

drawing on the right.

On this activity page, the filled number line is used as a

rule-governed tool to model whole number subtraction. To

enact the process, the minuend is located by its numerically

labeled tick mark. Subtraction is performed by counting

back from this point, until the count matches the value of

the subtrahend. The answer is then identified as the number

associated with the tick mark reached on the last count.

Gray and Doritou (2008) note a similar emphasis on a

counting forward or back type of procedural use of the

filled number line in British primary instruction.

This kind of use of the filled number line provides few

opportunities for students’ conceptual development. In tasks

like the above there is little left for the students to do but

follow the directions. Students are not invited to think about

the operation of subtraction itself or to explore how number

facts can be used in ‘‘smart’’ ways to promote informal, but

meaningful alternatives to rule-bound calculation processes

(Van den Heuvel-Panhuizen 2008). In such a fixed task, the

diagram becomes a kind of figural algorithm or counting

tool. Because of its explicit, procedural approach, the

activity tends to promote what Cobb et al. (1992, p. 5)

describe as an ‘‘algorithmatization of mathematics and the

disappearance of conceptual meaning.’’

Such closed tasks are typical of a traditional approach to

education. It is assumed that students transfer learning from

the results of carrying out a mathematical procedure that

has been pre-structured into the material or task interface.

Freudenthal (1991) uses the term anti-didactical inversion

to refer to this approach to education. Here, the world of

mathematics is imposed on the students in a ready-made

way. They are not allowed to create this world for them-

selves by mathematically organizing and structuring rich

contexts.

The number line can also be used as a non-rule-gov-

erned tool, as shown by the set of empty number line

diagrams in Fig. 7, which are used to display solution

strategies for the problem ‘‘14 - 6 = ?’’ Here the didac-

tical situation draws its power from the number line’s open

representation. Instead of consisting of pre-planned mate-

rials, the open-ended task encourages students to mathe-

matize the activity from within their existing levels of

knowledge (Selter 1998; Van den Heuvel-Panhuizen

2008).

Fig. 6 Student activity page

displaying a counting-back

subtraction structure
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The number line provides a representational potential

that supports thinking flexibly about numerical and

operational relationships. In the first diagram, the prob-

lem ‘‘14 - 6 = ?’’ is solved by first jumping back to 10

and then jumping back the remaining 2. In the second

diagram the knowledge of number doubles prompts the

strategy in which a backwards jump of 7 is followed by

a forward jump of 1 that compensates for the over-jump.

In the third diagram the problem is solved by skip

counting by 2 s from 6 to reach 14, producing a result of

8. In each case, the empty number line is used to record

a sequence of operations that reflects a student’s personal

way of decomposing and combining numbers to find the

result.

Both the closed task (Fig. 6) and the open-ended task

(Fig. 7) elicit counting or jumping actions on a number line

to model subtraction with crossing the ten. However, from

a didactical perspective, the tasks are very different in

terms of developing students’ calculational fluency. The

task in Fig. 6 encourages a fixed, rule-governed approach

to arithmetic in which procedural skills and number sense

are not integrated. Here, the answer to a given calculation

can be read directly off the number line. In contrast, the

empty-number line subtraction in Fig. 7 encourages stu-

dents to operate more flexibly with numbers, and consider

how they can be combined in a variety of ways to achieve

the desired result.

By facilitating an array of solution strategies, the empty

number line invites students to reflect on and further

develop mathematical concepts and connections (Selter

1998). Selter’s study evidenced that number line models

can direct student activity. Similarly, in another study

(Peltenburg et al. 2010) it was found that tools in general

can make a difference. When in a digital environment

children were provided with manipulatives, they showed a

clear preference for direct subtraction procedures (taking

away), whereas when they were provided a number line

tool, indirect addition or subtraction procedures (e.g. add-

ing on) were frequently used as well.

5.2 Reasoning about the nature of the results obtained

by adding or subtracting whole numbers

A number line may also be used as a structural reference

context (Steinbring 1997) to construct connections between

the visual features of a particular number line model and

underlying mathematical relations and structures. Here, the

representational function of the number line shifts from a

model of a particular task to a model for reasoning about

the more abstract mathematical concepts implicit in the

problem situation (Streefland 1993; Van den Heuvel-Pan-

huizen 2003b).

The pair of diagrams shown in Fig. 8 illustrates how the

empty number line can serve as both a model for a par-

ticular problem and as a structural reference context for

reflecting on the nature of the results that are represented

on the number line. These diagrams were produced by

students in a fourth-grade German class following a

sequence of lessons designed to introduce the empty

number line (Dettmer-Kratzin 1997, p. 50). In an earlier

class discussion, the students established that it was nec-

essary to preserve numerical order when positioning

numbers on an empty number line, but that equivalent

spatial distances need not be maintained.

In spite of this earlier discussion, when the students

were asked to solve the problem ‘‘544 ? 296’’, one student

drew the diagram shown on the left in Fig. 8 to represent

his solution strategy of ‘‘544 ? 300 - 4’’. It was not until

the teacher questioned his organization that other students

examined the diagram more critically. Upon further

directed discussion, it was agreed that his drawing violated

the ‘‘main rule’’ of the empty number line; preserving

numerical order. The diagram on the right was then drawn

to model the calculation steps within the representational

constraints of the empty number line’s form.

A further examination of the students’ diagrams illus-

trates how reasoning about more general properties of the

results of whole number addition and subtraction can be

promoted. In particular, the number line requirement of

left-to-right order makes visible, in the right-hand diagram,

important arithmetic characteristics, namely that addition

of whole numbers results in a sum greater than either

addend; and subtraction of a number produces a difference

less than the minuend. These characteristics are only

implicit in the symbolic representation ‘‘544 ? 300 -

4 = 844’’. In fact, the linear left-to-right syntax of this

Fig. 7 Using the empty number line to solve ‘‘14 - 6’’ in different

ways
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number sentence provides no structural reference context

from which students can begin to construct meaning for the

relations that exist among the values of the operands and

the result for any arithmetic operation.

5.3 Conceptualizing subtraction

The number line can also serve as a structural reference

context for thinking about the concept of subtraction. Tasks

can be designed to illustrate that learning to calculate is

more than simply learning a particular calculation proce-

dure. It also requires an understanding of number rela-

tionships and properties of operations (see also Van den

Heuvel-Panhuizen and Treffers 2009).

Consider our constructed examples of directed-length

number lines shown in Fig. 9. The question below each

number sentence frames the different ways in which the

operation ‘‘3 - (-2) = ?’’ may be conceptualized.

In Fig. 9a, subtraction is expressed symbolically in a

left-to-right order. The problem in Fig. 9b asks for the

missing addend. In Fig. 9c the directed distance between

the two operands is requested.

In Fig. 9a, the equation expresses subtraction as ‘‘taking

away’’, yet applying the rule of ‘‘change the direction of

the subtrahend arrow’’ produces a diagram that seems to

represent addition. The visual representation reminds us

that subtracting a negative number is equivalent to adding a

positive number, a property of subtraction not evident in

the symbolic equation. In Fig. 9b, the diagram represents

an ‘‘adding on’’ solution. This approach is similar to that in

Fig. 9c, where finding the difference is interpreted on the

number line as counting the units between the heads of the

arrows representing the subtrahend and minuend.

The structure of subtraction can be expressed even more

abstractly, as shown by the diagram in Fig. 10 (Dr. Math

2001). Here, numbers are represented by tick marks on an

empty number line, where neither a zero location nor a unit

interval is specified. On this empty number line, A and

B represent any real number and only order aspects of

numbers are important: A is represented as less than B.

Subtraction is defined in terms of the missing addend as

the distance ‘‘traveled’’ to move from the subtrahend to the

minuend. For the equation B - A = ?, the operation is

diagramed as A ? ? = B (shown as the lower arrow in

Fig. 10; here, the missing addend is a positive number). For

the equation A - B = ? (the lesser number minus the

greater number), the operation is diagrammed as

B ? ? = A (shown as the upper arrow in Fig. 10; here, the

missing addend is a negative number). Since the values of

A and B are unspecified, it is impossible to locate them by

544                               844                         840

+300 -4

544                840          844

+300

-4

Fig. 8 Students’ alternative

empty number line models for

finding ‘‘544 ? 296’’

(a)  3 – (-2) = ?

5 units

“Where do I end up 
on the number line?”

(b)  -2 + ? = 3

“How many units must I 
cover and in what direction?”

(c)   How much greater is 3 than -2?

“How far is it from -2 to 3?”

-3  -2 -1 0  1  2  3 4 5 6 -3 -2 -1 0 1 2 3 4 5 6

3 -2 -1 0 1 2 3 4 5 6

5 units

Fig. 9 Alternative ways to

represent and conceptualize a

given subtraction operation

Fig. 10 Representation of the concept of subtraction as a directed

difference
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directed distances measured from zero. Instead, they are

indicated by tick marks and the missing addend is repre-

sented as a vector, or a directed distance.

The level of abstraction in the diagram supports rea-

soning about the structure of subtraction, rather than

focusing simply on finding results. Note that, whatever the

sign of the two numbers, subtracting a lesser from a greater

number always produces a positive value, represented by a

right-facing arrow, and subtracting a greater from a lesser

number yields a left-facing arrow, or a negative value.

6 Summary

The visual aspects of a number line diagram are relatively

straightforward, consisting of a set of tick marks displayed

along a line segment. It was only when we began to

carefully examine these visual features as objects of anal-

ysis from a representational perspective that we became

aware of the range and complexity of mathematical

meanings that can be supported by this common didactical

tool.

One aspect of this complexity relates to how the visual

features of the filled and the directed-length number lines

are interpreted within either a counting-based or a mea-

surement-based conception of number. Understanding the

distinctions between these two conceptions helps to clarify

the conventions for representing and the rules for operating

with whole numbers and integers on either the filled or the

directed-length number line.

Our analysis of number line tasks also examined how

representational aspects of different number line models

can direct student activity. Comparisons of the use of either

the filled or the empty number line illuminate how the

presence or absence of equally-spaced tick marks promotes

more fixed or flexible engagement with addition and sub-

traction tasks.

The representational aspects of the number line models

can also be exploited to promote reflective engagement

with mathematical constructs. We presented examples of

tasks in which the number line served as a structural ref-

erence context that shifted the number line from being a

model of a particular context to that of a model for rea-

soning about underlying mathematical relations and struc-

ture. In these examples, the representational constraints of

each type of number line were used to highlight important

abstract concepts.

We suggest that an explicit representational analysis of

the visual features of different number line models can

inform the manner in which these didactical tools can be

used in classrooms and in research to support and inves-

tigate children’s reasoning about numbers and operations.

While the filled number line frequently appears in early

grade instruction as a way to introduce students to whole

number sequences, the emphasis in this model on discrete

counting may impede further conceptual understanding.

The empty number line has been suggested as an effective

model to move students forward (North Carolina Depart-

ment of Instruction n.d.).

The classroom use of various number line tasks is

anything but straightforward. Teachers must become aware

of the representational nuances and types of meaning that

are both explicit and implicit within the contexts of specific

number line tasks, and care must be taken to understand the

limitations and affordances of each type of model within

particular learning trajectories (Bobis and Bobis 2005; Van

den Heuvel-Panhuizen 2008). Additionally, the results of

research investigating students’ problematic use of partic-

ular number line models (e.g., Diezmann et al. 2010;

Earnest 2007) highlights the importance of explicitly

attending to students’ development of appropriate repre-

sentational apprehension.

As a final comment, we note that this article addresses

only a small corner of the wide variety of number line

models employed throughout the k-12 curriculum. Moving

into middle school and beyond, as students encounter

rational numbers, investigate proportional relationships,

and later study algebra, concerns of representational

awareness must be continually addressed to enable these

students to confidently employ different number line

models as they are contextually embedded within a variety

of classroom tasks.
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