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The theory of Realistic Mathematics Education pdesi
principles that can be applied to task designhis paper, we investigate
how these principles apply to the design of onkasks. To do so, we
present examples of tasks on algebra, calculugyanchetry designed in
the Digital Mathematics Environment. As a resulge gonclude that the
principles of guided reinvention, didactical phersmology, and emergent
modeling can inform and guide digital design, h#ttsome aspects work
out differently compared to the design of paper-pedcil tasks.
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Introduction

Task design is widely recognized as an importaat,domplex and subtle
activity. Based on the experience of skilled designdesign guidelines and heuristics
have been identified (e.g., see Watson & Mason6R0®hereas the design and use
of digital content nowadays plays an increasinghpartant role in mathematics
education, most of these design principles arecbaseand applied to the design of
paper-and-pencil tasks. The question, thereforbpws such design principles apply
to digital design, and how the rich experience lamolwledge in the field of designing
paper-and-pencil tasks can be transferred to tbe aidigital design.

To address this question, we limit ourselves tedhprinciples that emerge
from the theory of Realistic Mathematics Educatammd may inform design: guided
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reinvention, didactical phenomenology, and emergantleling. We revisit some
tasks designed in the Freudenthal Institute’s Bigathematics Environment in the
field of algebra, calculus and geometry education.

RME Design Principles

Realistic Mathematics EducatiofRME) is a domain-specific instruction
theory for the teaching and learning of mathema#cgording to RME, mathematics
should be seen as an activity (Freudenthal, 19413), students, rather than being
receivers of ready-made mathematics, should beeaptrticipants in the educational
process, in which they develop mathematical toal$ iasights by themselves. This
point of departure led to the following RME prinkgp that inform task design: guided
reinvention, didactical phenomenology, and emergeodeling (Freudenthal, 1973;
Gravemeijer, 1994; Van den Heuvel-Panhuizen, 1996).

According to the principle ofjuided reinventionstudents should be given
the opportunity to experience a process similah&b by which a given mathematical
topic was invented. Even if this primarily is adkang principle, it has consequences
for task design: tasks or sets of tasks — should invite students to agwv&heir own’
mathematics. This process, however, needs guidaooe the teacher, to help to
further develop sensible directions, to leave ‘dead streets’ and to ascertain
convergence towards shared knowledge accordinghéo standards within the
mathematical community.

Didactical phenomenologgoncerns the relation between the thought object
—the ‘nooumenon’- and the phenomenon —the ‘phaimam’e from the perspective
of teaching and learning. In particular, it addessthe question how mathematical
‘thought objects’ can help in organizing and stauictg phenomena in reality. The
challenge for the task designer, then, is to finchsmeaningful phenomena that beg
to be organized and structured by the targetedenatical knowledge.

According to theemergent modelingerspective, a model may play different
roles during different phases of activity. Initigla model is context-specific: it refers
to a meaningful problem situation that is expeialyt real for the student, and is a
model of that situation. Then, through working witie model, it gradually acquires a
more generic character and develops into a modeh&ihematical reasoning that is
possible because of the development of new matheahabjects in a more abstract
framework of mathematical relations that the mastalts to refer to. This notion is
elaborated into a four-level structure that repnesdevels of mathematical activity
(Gravemeijer, 1994). For the task designer, théleinge is to find suitable situations
that ask for the development of such models, almveor a process of progressive
abstraction.

While applying these RME principles to the desi§paper-and-pencil tasks
is not straightforward, their use for the design digital content is even more
challenging. Although early research on the us@raphing calculators identified
opportunities for an RME-based teaching approachv@s & Doorman, 1996), later
studies describe the tension between RME princigtesthe integration of computer
algebra software (Drijvers, 2000). Apparently, thatch between RME and ICT is
not self-evident.

The Digital Mathematics Environment

As technology for teaching mathematics the Fredd#nnstitute’sDigital
Mathematics Environment{DME) is used. The DME integrates a content
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management system, a learning management systeranaadthoring environment.

The content consists of online modules in the faimlava applets. The learning
management system offers means to distribute cbateaong students and to monitor
student progress.

The authoring tool is the DME’s design environmeAuthors, such as
teachers, text book authors, or educators, cathastol for adapting existing online
modules or for designing new ones, based on egistiaterials and basic tools such
as graphing and equation editing facilities. Wihiksigning, the author can split up
the screens in different windows, add applicatiand tasks, and design feedback.
Knowledge of the underlying Java programming lamggues not required; rather, an
intuitive and mathematical interface makes thetdigilesign accessible to a wide
audience (Figure 1).
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Figure 1 The Digital Mathematics Environment AuihgrTool

Examples of the results of digital design using@E’s authoring tool can
be found at www.fi.uu.nl/dwo/demo/en. In this papee will briefly discuss some
examples from algebra, calculus and geometry frben gerspective of the above
RME principles.

Digital Tasks for Algebra

As an example of the design of digital tasks fayeldka, we consider the
work by Bokhove, available at www.fi.uu.nl/dwo/vdhd@he digital tasks focus on
solving polynomial equations. However, the onlineitat go beyond procedural
practice and also focus on the development of syrsbose and strategic skills
(Bokhove & Drijvers, 2010, 2012). Crucial factorsthe design are the sequencing of
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the tasks (with sometimes thou-provoking equations) and the design eedback,
and its timing and fadinop particula.
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Figure 2 Solving an equation with unexpected ditties (Bokhove & Drijvers, 2010, 201

Figure 2 shows an exemplary equation in line 1, and a glg student’
work in lines 24. The feedback just refers to the ebraic equivalence of tt
subsequent equations the student enters; no fdedbagarovidet on the problen
solving strategy. This can be seen as a manifestaif the guided reinventic
heuristic: this combination of task and tool pre@sdhe opportunitfor students to
reinvent efficient ways of solving equations. Ewely, students can contini
entering equivalent equations without coming closer the solution, but thi
exploration space is supposed to elicit a wistefticiency

From the didactici phenomenology perspective, this task may seem
poor: what is the phenomenon at stake that woultivate students to engage
mathematics? In defense of this, one can arguetlieatarget group of this onlir
module consists of students in grad¢, who were to do the national examinat
soon, and who were familiar with the ‘world of pogmial equations’. Thi
familiarity makes that these tasks can be apprpf@ the mathematization of t
field and the development of new problem solvinglegies.

Data shows that students work easily with this iof online tasks (Tacom
Drijvers, & Boon, 2011)Instrumental genesis, the processleveloping schemes
usetools to solve the tasks (Artigue, 2002), was aneasto a much lesser extent tl
in the case of computer algek(Drijvers, 2002;Drijvers et al., 2012). Apparentl
using CAS puts higher demands on instrumental geresd this is something take
into account as a designer

Digital Tasks on Functions and Calculu

As an example of the design of digital tasks (pre-)calculus we consider
the online module Function and Arrow Chain, available at
www.fi.uu.nl/dwofprootoo/en. The digital tasks focusn the development
conceptual understanding of the notion of fions, where a function is seen as
input-output assignment, as a dynamic process -variation, and as a mathemati
object with different representations (Doorman let 2012). A crucial factor in th
design is sequencing the tasks so these fur models emerge in a natural way
increasing complexity and abstracti
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A function as an input-output
assignment: braking distance as
a function of velocity
Investigation of the co-variation
of velocity and braking distance
through tracing the graph
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Figure 3 Different views on function in the Funetiand Arrow Chain module

Figure 3 shows some screens from this module, inclwithe function
gradually develops from a numerical input-outpugiea, to a process of co-variation
and, finally, a mathematical object that is partaofamily of functions that can be
compared. This sequence of screen shots reflez@ntiergent modeling heuristic: the
context, in this case one of a vehicle’'s brakingfatice as a function of its velocity,
leads to function models of increasing complexityg abstraction. The digital tool
supports this development by means of offeringrgkes of increasing richness and
an increasing repertoire of connected function esgntations. Of course, this
approach requires a context that is suitable fes #mergent modeling process.
Finding such a context is a question of didactdenomenology.

In an online calculus course for university freshiibe co-variation idea is
supported by a Geogebra applet for tracing grapisw(fi.uu.nl/dwo/sk/en/).
However, in the context of this intensive and sipemiod remedial course, the
emergent modeling design heuristics was exploited tesser extent than was the
case for the Function and Arrow Chain course.

Digital Tasks for Geometry

An example of the design of digital tasks for getynas the module
available at www.fi.uu.nl/dwo/dpict/en/. The diditéasks focus on exploring,
discovering, and proving properties of bisectotstuales and medians in triangles.
The latter aspect, the proving, provides a paiuicdesign challenge: how to design
tasks that offer support and guidance for a progff leave room for reinvention?
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Three medians intersecting in one point

In this task you will prove that the three medians of a triangle always
intersect in one point. To do so, imagine a triangle in which the three
medians do not meet in one point, as shown in the figure. You will prove
that the figure is not correct and that such a triangle, therefore, does not
exist.

E Tick Item (a) in the figure and complete:
F s the midpoint of AB, So area(MAFC) =area(a | )

m Deselect ltem (a) in the figure and tick item (b). Please complete:
Dis the midpoint of BC, so area(ACDS)=area(s | )
In a similar way we find that area(ACES) =area(s | |)

and area(DAFS)=area(s | |). ™ ttem (a)
[~ ltermn ()
Deselect ltem (b) in the figure and tick item (c). ¥ Item ()

gl o |

Explain why the blue triangle, the green triangle and the red triangle
have equal areas. (Hint: [])

Figure 4 Proving that three medians of a trianglersect in one point

While reading the proving task shown in Figure t4should be noted that
Dutch grade 8 students, the target group for thaglute, have little experience in
proving, and, therefore, need strong guidance:stingcture of the proof and the
corresponding sequence of images is suggestee siublents. Still, writing down the
final argument in the reasoning, as is requestedsk c, is very difficult to them. The
design principle of guided reinvention is easier@pply to tasks in which students
explore the properties of bisectors, altitudes aratlians in triangles: the dragging
options of the dynamic geometry system, in thigdasogebra, in collaboration with
DME'’s feedback, provide a strong learning environtria which students can really
experience the geometrical situation and discdwetdrgeted properties.

In the case of this online module, classroom olzgems show that attention
needs to be paid to students’ and teachers’ ingtntamhgenesis: the interplay between
Geogebra and the DME in this module is powerfulibotay also be demanding and
initially complex to novice users.

Conclusion

In this short paper, we set out to investigate dpplication of the RME
principles of guided reinvention, didactical phemmology, and emergent modeling
for the case of the design of digital tasks indhéne DME. To do so, we considered
three exemplary tasks. The first example, the tasksolving a relatively complex
equation, shows that guided reinvention in thisaamcerns the development of new
problem solving strategies, invited by tasks thatrmot be solved with the strategies
available so far. The didactical phenomenology iséiarhere does not lead to the use
of real life contexts, but rather takes the worgolynomial equations as a point of
departure. In the second example, a real life contén this case the stopping
distance situation does form the starting point. Emergent modelingriséics are
manifest in the gradual abstraction of the studewiesv on function. The third
example on geometrical proof again takes a guideat/ention perspective, in which
the designers chose strong guidance. Again, thectiall phenomenology here does
not lead to a real life problem situation, but tprablem in the world of geometry,
that is expected to be experientially real to tiuelents.
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What can we conclude about the three RME principtes their application
to digital design? The principle of guided reinventseems to apply well to digital
design. ICT offers opportunities for exploratiordanvestigation, and in this way for
reinvention. The design choice to confront studeits unexpected examples can be
seen as a way to invite reinvention as well. Inegah this guided reinvention
approach might suffer from constraints of the tetbgy that may limit the students’
exploration space, such as requirements for inputdits and styles, and pre-designed
tools that may incorporate too much guidance.

The didactical phenomenology heuristics is alsauatslle for digital design,
but it seems that the phenomena that play a cenlein the task do not necessarily
come from real life: ICT already forms a meaningfubrld’ on its own for the
student, in addition to the world of mathematicavidg a real life context as an
entrance to these two worlds may lead to cogniterload. This is a question to be
considered carefully in the design process.

Emergent modeling can be a fruitful design hewsstor digital design. As
in the case of paper-and-pencil design, the matedsl to lend themselves for further
development towards increasing mathematical alisira@and complexity. Specific
for the case of digital design is that these emgrgnodels need to be supported by
the digital tools available, for example by an &asing repertoire of representations
and techniques in the digital environment, or lye@asing options to dynamically use
these representations, connect them, and switevebatthem (Duval, 2006).

As an overall conclusion, this brief explorationtbé issue suggests that the
three RME principles are valuable for digital desigven if some appropriation is
needed compared to the design of paper-and-pes&i t such as taking into account
the constraints of the digital tools and the fdwttthe technological environment
forms an additional ‘world’ to the student. Theniséer of skills, developed in the ICT
environment, to paper-and-pencil, for example, magd specific attention, as well as
the instrumental genesis involved in the learnir@cess.

References

Artigue, M. (2002). Learning mathematics in a CAfvieonment: The genesis of a reflection about
instrumentation and the dialectics between teclhaitd conceptual worknternational
Journal of Computers for Mathematical Learning245-274.

Bokhove, C., & Drijvers, P. (2012). Effects of féeatk in an online algebra interventidrechnology,
knowledge and learning, Online First
http://www.springerlink.com/content/c5v8pg33730p230MUD=MP.

Bokhove, C., & Drijvers, P. (2010). Symbol senshawor in digital activitiesFor the learning of
mathematics, 3@), 43-49.

Boon, P. (2009). A designer speaks: Designing adhra software for 3D geometrizducational
Designer, 12). Retrieved June, 19th, 2012, from
http://www.educationaldesigner.org/ed/volumel/i2éadicle7/

Doorman, M., Drijvers, P., Gravemeijer, K., Boon, & Reed, H. (2012). Tool use and the
development of the function concept: from repeatddulations to functional thinking.
International Journal of Science and Mathematicsi€tion, online first

Drijvers, P. (2000). Students encountering obssagéng a CASInternational Journal of Computers
for Mathematical Learning, (3), 189-209.

Drijvers, P., & Doorman, M. (1996). The graphicsatator in mathematics educatiojournal of
Mathematical Behavior, 14), 425-440.

Drijvers, P., Godino, J.D., Font, V., & Trouche,(R012). One episode, two lenses; A reflective
analysis of student learning with computer algébym instrumental and onto-semiotic
perspectivesEducational Studies in Mathematics, online first

Duval, R. (2006). A cognitive analysis of probleaiomprehension in a learning of mathematics.
Educational Studies in Mathematics, 803-131.

61



hal-00834054, version 1 - 14 Jun 2013

Theme A — P. Drijvers et al.

Freudenthal, H. (1973Mathematics as an Educational TaSlordrecht: Reidel Publishing Company.

Gravemeijer, K.P.E. (1994Developing Realistic Mathematics Educatidhrecht: CD-3 Press /
Freudenthal Institute.

Tacoma, S., Drijvers, P. & Boon, P. (2011). The 0Ufa Digital Environment to Improve First Year
Science Students’ Symbol Sendeurnal of Computers in Mathematics and Science
Teaching, 3(4), 403-428.

Van den Heuvel-Panhuizen, M. (1998ssessment and realistic mathematics educatitmecht: CD-

3 Press / Freudenthal Institute, Utrecht University

Watson, A., & Mason, J. (2006). Seeing an exerassa single mathematical object: Using variation to

structure sense-makinlathematical Thinking and Learning(2, 91-111.

62



