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ABSTRACT 

 
To characterise statistical inference in the workplace this paper compares a 
prototypical type of statistical inference at work, statistical process control (SPC), 
with a type of statistical inference that is better known in educational settings, 
hypothesis testing. Although there are some similarities between the reasoning 
structure involved in hypothesis testing and SPC that point to key characteristics of 
statistical inference in general, there are also crucial differences. These come to the 
fore when we characterise statistical inference within what we call a “space of 
reasons” – a conglomerate of reasons and implications, evidence and conclusions, 
causes and effects. 
 
Keywords: Statistics education research; Context; Evidence; Hypothesis testing; 

Space of reasons 
 

1. INTRODUCTION 
 

Statistical inference involves drawing conclusions that go beyond the data and having 
empirical evidence for those conclusions. These conclusions have a degree of certainty, 
whether or not quantified, accounting for the variability that is unavoidable when 
generalising beyond the immediate data to a population or a process. This is in line with 
Makar and Rubin’s (2007) analysis that key ingredients of statistical inference are 
generalisations (conclusions beyond the sample data), data as evidence, and a 
probabilistic language. An important rationale for characterising statistical inference in 
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the workplace in this paper is that such a study may indicate which types of statistical 
reasoning students might later need as employees. Our work-based analysis can inform 
discussions about what students should learn in statistics education and may complement 
recent school-based research into informal statistical inference (Bakker, Derry, & Konold, 
2006; Ben-Zvi, 2006; Pfannkuch, 2006; Rubin, Hammerman, & Konold, 2006). In 
particular, this workplace research points to types of statistical inference that are not 
typically addressed at the secondary school level and yet can be useful to employees. 

Statistics textbooks traditionally make a distinction between descriptive and 
inferential statistics to stress that students should not too easily jump from conclusions 
about samples to conclusions about a population. However, the distinction also leaves 
important types of statistical inference unaddressed: types of statistical inference (whether 
formal or informal) from samples to populations or processes that are different from the 
well-known and commonly taught inferential techniques of hypothesis testing and 
confidence interval estimation. Only a few students learn these inferential techniques 
while research in workplaces shows that many will need to draw conclusions about a 
process from a sample (e.g., Noss, Bakker, Hoyles, & Kent, 2007; Smith, 1999). For 
example, when monitoring and improving production processes, employees typically with 
little formal education are routinely supposed to draw conclusions from samples about the 
production process for which they are responsible.  

Our research in workplaces suggests that few non-graduate employees need to 
interpret results stemming from hypothesis testing or confidence interval estimation, and 
even fewer produce such results. These formal techniques are mostly not at employees’ 
disposal, and even if they are, it is often not possible or cost-effective to use them. What 
they need is to draw conclusions from samples with relatively simple techniques, and 
generally to base decisions on an awareness of the uncertainty that comes with 
generalising to a population or process. In other words, learning descriptive statistics (and 
even exploratory data analysis) does not suffice for the majority of students, while the 
aforementioned inferential techniques are, as taught in current curricula, beyond the scope 
of the vast majority.  

The goal of this paper is to characterise a type of statistical inference required in many 
work settings, and we do so by analysing an example of a widely used statistical 
technique in which statistical inferences are made: statistical process control (SPC). 
Because the theory of SPC has some similarities with sequential hypothesis testing (more 
than, say, confidence interval estimation) and because hypothesis testing is a better known 
type of statistical inference within the educational world, we compare SPC with 
hypothesis testing. The central question addressed in this paper is therefore How is the 
statistical inferential reasoning ideally involved in SPC similar and different from 
statistical inferential reasoning involved in hypothesis testing?  

To address this question we draw on data collected in our research into the 
mathematical and statistical knowledge required by intermediate-level employees in 
various industrial sectors (Tehcno-mathematical Literacies in the Workplace Project, 
2003-2007). Such employees are typically non-graduates who may be working in 
manufacturing as skilled operators or supervisory managers. 

After discussing the key ingredients of our question – statistical inference and SPC – 
we describe the origin of our empirical example and illustrate characteristics of statistical 
inference as observed in SPC. Last, we discuss the contribution that we think this 
endeavour has made to the study of statistical inference at work, the limitations of our 
exploratory approach, as well as potential implications for workplace training and school 
education and research. 
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2. THEORETICAL BACKGROUND 
 
2.1. STATISTICAL INFERENCE WITHIN A SPACE OF REASONS 
 

Our experience is that within the statistics community, “statistical inference” mostly 
connotes formal inferential techniques. However, we use the term inference here in its 
general sense of drawing conclusions, including the possibly tacit reasoning processes 
that precede and support the explicit inference from a premise to a conclusion, a 
prediction, or a conjecture. The term not only includes deduction and induction, but also 
abduction. Abduction is inference to an explanation, a method of reasoning in which a 
hypothesis is formed that may explain the data. For example, 8-year-old students in 
Paparistodemou and Meletiou-Mavrotheris’ (2007) study sometimes came up with 
abductive conjectures that would explain the data rather than inductive conclusions from 
the data – contrary to the teacher’s and researchers’ expectations. A similar observation is 
reported by Zieffler, Garfield, and delMas (2007) for college students. 

In search of the delimitations of what counts as statistical inference, we ask the 
following question: Is the calculation of the means of two samples a statistical inference? 
In our view, this depends on the reason why they are calculated. For example, they might 
be calculated to know the difference between the two means in relation to the variation of 
the two samples. The ratio of this difference to a measure of variation (say, SD) can help 
us conclude whether the difference is big enough to be likely caused by a difference 
between two populations from which the samples were drawn. In this case, the very fact 
of attending to the calculation of the means and difference arises due to specific reasons 
related to populations.  

One way to put it is that the attention to and choice of calculations take place in the 
“space of reasons” within which people act and think, where “reasons” refer not only to 
reasons in the strict sense but also to implications, evidence, conclusions, goals, purpose, 
utility, and our knowledge of causes and effects. For the philosophical background of this 
notion, originating in the work of Wilfrid Sellars, we refer to McDowell (1996). Our 
intention behind using this technical terminology is not only to recognize that it is 
impossible to provide a complete description of any particular context in which statistical 
inference takes place, but also to recognize that contexts involve not just material but also 
ideal elements, such as reasons.  

To characterise statistical inference at work, it makes sense to make a brief 
comparison between school and workplace settings, which give rise to different spaces of 
reasons. At school, contexts are often used to learn about statistics, whereas in the 
workplace, statistics is more likely to be used to learn about the context. Paraphrasing a 
famous quote by Steen (2003, p. 55) we can observe that the workplace makes 
sophisticated use of elementary statistics whereas in the classroom we encounter 
elementary use of sophisticated statistics. Seminal research into the mathematics used on 
the street (Nunes, Schliemann, & Carraher, 1993) or in supermarkets (Lave, 1988) led to 
increasing popularity of situated cognition and socio-cultural theories. In the light of such 
research, it is likely that context plays a different role in statistical inference learned at 
school than in statistical inference used in workplaces.  

At work, statisticians and practitioners using statistics do not lose the context of an 
investigation out of sight when using statistical techniques (Wild & Pfannkuch, 1999). 
More generally, Noss and Hoyles (1996) have introduced the notion of “situated 
abstraction” to capture both the process and product of situating abstract knowledge in 
real-life situations such as workplaces. Situated abstractions gain their meaning not only 
from the mathematics from which they stem but also from the context in which they are 
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used. Ethnographic studies of workplace situations by the same authors, for example of 
nursing (Noss, Pozzi, & Hoyles, 1999), show how mathematical and contextual meanings 
such as those of “average” are fully integrated with the particular purposes for which they 
are used – in this case monitoring the blood pressure of critically ill patients.  

These studies show that a dichotomy between statistics and context is problematic 
(see also Cobb, 1999), especially in workplace situations. One difficulty with the concept 
of context is that it is not well defined. It is often used to indicate the location or setting in 
which theoretical ideas are used, but that is a too restrictive connotation for our purpose of 
characterising statistical inference at work. Given this paper’s focus, we will not try to 
define “context” but rather we will attend to the space of reasons in which statistical 
inference takes place. In this way, we hope to overcome the dichotomy between statistics 
and context that seems so deeply engrained into our thinking. 

 
2.2. STATISTICAL PROCESS CONTROL (SPC) 

 
The question addressed in this paper is how statistical inference involved in SPC is 

similar or different from hypothesis testing. We assume readers are familiar with 
hypothesis testing but perhaps less so with statistical process control (SPC). We therefore 
briefly characterize SPC (Caulcutt, 1995; Oakland, 2003) before we describe the origin of 
the empirical example of SPC (Section 3) and analyse it (Section 4). 

SPC is a process improvement technique deployed in many industrial sectors. It is 
typically used in situations where variability in items produced (or services offered) has to 
be minimal and key performance indicators need to be very close to a specific target. 
Measurements of the products can be plotted on an SPC chart so as to monitor the 
location and variability of the production process.  

 

 
 

Figure 1. Part of an SPC chart on airtightness of cars  
 
Figure 1 is part of an authentic SPC chart we collected in a car company. It shows the 

airtightness of a series of cars being tested as they came off the production line. On the 
left is the control chart with individual measurements; on the right a “sideways 
histogram” that is used to monitor the distribution of the measurements. The mean of this 
part of the process is 116.19 (in some unit of pressure that the employee we interviewed 
could not tell us). The dotted lines below and above the mean line are called the lower 
control limit (here LCL = 94.55) and the upper control limit (here UCL = 137.88), 
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respectively. These control limits are defined as follows: the lower control limit (LCL) is 
the mean – 3 SDs; the upper control limit (UCL) is the mean + 3 SDs. The use of these 
control limits is based on two assumptions: 

1. The particular measure of items produced is distributed normally (this might be 
the means of subsamples) – this is checked with the sideways histogram,  

2. data are independent and identically distributed. 
If the assumptions are fulfilled we can assume that about 99.7% of all measurements 

will be within +/- 3 SDs of the mean. (Various techniques have been suggested for 
approximating this standard deviation calculation in a manner accessible to the employee 
on the production line.) Control limits are also called action limits, because non-
conforming points (i.e., points outside the control limits, or exhibiting certain trends) are 
reasons for action. The action usually involves just checking, but sometimes goes on to 
include adjustments of settings or even stopping the production process for detailed 
investigation. 

The assumption about 99.7% being between the control limits only holds if the mean 
of the process does not change, that is if there is only common-cause (random) variation. 
However, any special cause, such as the supply of different sealing material or a problem 
with the machine or measurement system, can lead to the process drifting off target. In 
that case, the cause needs to be identified and addressed. There are probability-based rules 
for detecting potential trends in such charts. For example, the chance of seven consecutive 
points on either side of the mean has a probability of only 2×(1/2)7 = 1/64 = 0.016, an 
occurrence that is therefore unlikely to have been caused by random common-cause 
effects (this rule can be seen as a binomial hypothesis test). In such cases, one assumes 
that it signals a special cause (to be identified by abductive inference). In this way, control 
charts can be useful to detect deviations from the normal or target situation and remove 
the special cause before the process creeps out of control. Other rules on unnatural 
patterns include the following: One point outside of control limits; a trend of six points in 
a row increasing or decreasing; 14 points in a row that alternate up and down.  

The idea of using control limits is that they predict process variation so one can stay 
well within specification limits, limits that are imposed by law, by customer requirements, 
or by senior managers and engineers in the company. Even if data points are occasionally 
outside the control limits, they will then not surpass any of the specification limits (the 
spec limits are not shown in Figure 1). If the control limits are well within the spec limits, 
the process is said to be stable and capable. If the process is stable, control limits can be 
calculated in preliminary studies, after which the process only needs to be monitored. 
These are in short the theoretical ideas behind the industrial statistics of SPC or, in other 
words, part of the space of reasons in which SPC takes place. 

 
3. AN EMPIRICAL EXAMPLE OF STATISTICAL INFERENCE IN SPC 

 
3.1. ORIGIN OF THE EXAMPLE 
 

The example that we use to compare statistical inference involved in SPC with 
hypothesis testing stems from the Techno-mathematical Literacies in the Workplace 
research project. The project goals were to identify the mathematical and statistical 
knowledge required by intermediate-level employees in financial and manufacturing 
sectors, and based on these to design learning opportunities that would support employees 
in developing such knowledge. In manufacturing companies (pharmaceuticals and 
packaging) we have identified SPC as an important technique that is widely used and yet 
difficult for employees to understand and use due to the statistical knowledge required 
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(Hoyles, Bakker, Kent, & Noss, 2007). Contact with a high-level manager from a car 
company gave us the opportunity to investigate how process improvement techniques 
were actually used and trained on the shopfloor in automotive manufacturing.  

We spent 18 researcher days in this particular car company. First, we interviewed the 
manager in charge of process improvement as well as the SPC experts and their managers. 
Shopfloor employees explained to us their control charts on the shopfloor. We also 
attended and evaluated their SPC course. Moreover, we distributed a questionnaire to 
twelve course participants (ten responded), and carried out three one-hour follow-up 
interviews with participants. Some of the operators, shift leaders and course participants 
had had little or no formal education since they were 16. Our data collection in this 
company included audio recordings, workplace artefacts such as SPC charts, notes made 
during training courses, a questionnaire, and trainers’ PowerPoint presentations. In 
collecting data, we made sure in our interviews that we obtained different views of the 
same workplace activity, from the viewpoints of shopfloor employees, shopfloor 
supervisors, trainers, more senior managers, and statistical consultants.  

In analysing data, we triangulated interpretations of the raw data sources (audio 
transcripts, photographs of workplaces, artefacts such as graphs) amongst the project 
team. We have also carried out design-based research so as to enhance existing SPC 
training, but will not report on it here. 

 
3.2. AIRTIGHTNESS OF CARS 

 
Our empirical example of SPC stems from an area of the production process where 

the airtightness of cars that are almost ready to leave the factory is checked. Kevin, an 
operator with no formal education since he was 16, is responsible for this. We cite him to 
sketch part of the space of reasons in which SPC is used and to give an example of non-
statistical inference in terms of causes and effects: 

If the car is too airtight you will get a problem with the windows misting up all the 
time; also the doors will not shut. You need to lose some sort of air otherwise the door 
is just so airtight you would have to run at it and give it a good push. 

To check whether the airtightness is within specification, Kevin blows air into the car, 
which is measured in cubic feet per minute, and he reads off the pressure this causes. 
Mostly the measurements are fine, but occasionally they are out of specification. This is 
where contextual reasoning is used: “As soon as I turn the gauge on it kicks in normally at 
around 60-70 Pascal. If it kicks in at around 30 I know full well that we have got a big 
leak somewhere.” (Trying to understand what the numbers meant here was challenging to 
us, because he kept using different units for both air speed and pressure such as cubic feet 
per minute, litres per second, Pascal, weight per cm2.) 

Kevin has learned the probability-based rules on trends and patterns, but does not 
know the probabilistic origin of them. Applying the seven-in-a-row-above-or-below-the-
mean rule, he faced particular cases where data points were too high. Abductive reasoning 
was used to explain the data running high: The sealing material from a particular batch 
turned out to be different—a special cause—but there was no reason to stop the process. 
The data points were not outside the control limits and the cause was found. If customers 
complained, the story would have been different, of course. Having sealing material 
leading to a slightly different air pressure can be seen as a constraint, and such a 
constraint can be framed as a reason that is dominant over others (in many situations one 
would try and bring the process back to the target line again). 

Like hypothesis testing, SPC leaves room for two types of errors. The first is that non-
conforming data points or trends are observed in the control chart whereas nothing is 
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wrong with the process. Purely by chance this happens regularly: Even if the probability 
of each individual unnatural pattern is smaller than, say, 0.05, the probability that at least 
one of about ten such rules finds a pattern is much bigger. The second type of error is that 
the data points do not show anything special whereas there is something wrong. Kevin 
gave us one example: 

My main failure at the moment is on estates [station wagons] on the left hand rear 
wheel arch. (…) In two of the cases the car was not out of spec but I was going round 
doing my checks to make sure there were no unusual leak paths and we found that 
they had missed some sealing. So although the car was in spec I raised an AP 
[Assigned Person, who is responsible for doing the investigation] and still got all the 
investigations done because there was an unusual leak path. 
Thorough knowledge of the work process is required to interpret the implications of 

certain observations, for example how to measure and what to do about the problem. For 
example, certain leaks are allowed whereas others are not: 

You just have to go round [the car] and check [the air] is all coming out the normal 
places, like your door handles. Every door handle has got a massive air leak on, so 
you allow for that. At the bottom of your windows they let a lot of air out, but then 
when you start going to your wheel arches and underneath the car, there are certain 
places where maybe a plug is missing or you have a robot sealer skip. 

Kevin knows that the most likely cause for a robot to skip a seal is when colleagues have 
switched it off and then back again; the robot then always skips a seal. If this is detected 
then a judgement has to be made whether the car should be sent back for an extra seal; 
this judgement is most likely made on both contextual and statistical grounds. 

From such examples we were convinced that Kevin knew the process very well: He 
knew what to look for, what might cause it, what implications it has, what to do about the 
problem and so on. In terms of the space of reasons involved, he was aware of many 
reasons and conclusions, causes and effects that were linked by—we think—the right 
inferential relationships. However, when statistical issues were involved he felt less 
comfortable, for example when interpreting the control limits he and his colleagues 
received from a central office:  

What [the office] actually said to us is that it should have been 120 [weight per] cm 
squared +/- 3 sigma. It is very, very complicated because they gave us a lot of specs 
[actually control limits] to work on and it did not mean a lot to anybody in this 
company. We asked the questions to all the different people and no one could give us 
a definite, here’s what you work off, this this this. So what we did, we went to [an 
SPC trainer] and said, “here is all our data for this year.” 
This quote also illustrates the division of labour and knowledge that is omnipresent in 

companies, and also a relevant feature of how people inhabit a space of reasons. Nobody 
knows everything that is relevant to producing a car. Each person is aware of a part, and 
his or her awareness is layered: Some reasons (in the wide sense) may be known well 
whereas others might be known in fragmented ways, only implicitly, or not at all.  

Another example of the division of labour relates to the “assigned person” (AP) 
above. As soon as Kevin “raised an AP” he had done his job, and the problem was not his 
responsibility anymore. A third example is that Kevin and his colleagues fill in their 
charts, but know that it is the job of the SPC department (who are responsible for training 
and technical support) to calculate the mean and control limits from their data. This 
example illustrates that employees need not know all the statistical reasons behind SPC 
but do need to know something about the division of labour itself, and some of the 
statistical reasons to be able to communicate with others (team members, managers, 
suppliers) about their data and correctly fill in and interpret the control charts.  
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We were curious to what extent the SPC chart made sense to Kevin. When one of us 
(Res.) asked if the sideways histogram (to the right in Figure 1) helped him, he said: 

 
K.: It does and it doesn’t because it just gives us an idea of where we are 

working. I mean that [histogram] is just little boxes to colour in for me [he 
laughs]. 

Res.: It’s not just supposed to be for little boxes to colour in. What could it tell 
you? 

K.: It tells you where about you are working. If you are running high or 
running low, but I concentrate on this [time series to the left] more 
because this tells me more than that [histogram]. That [histogram] will 
just give us an idea. Obviously you are supposed to get the peak in the 
middle behind the average line but that will tell us if we are running on 
average. I can look at the chart but to look at the histogram, I mean the 
obvious reason is that it will tell us if we are running just above the 
average or just below the average. (…) Really that should be in a nice 
spike right in the middle, right down the average line [he is probably 
describing the expected bell shape with the mode near the target line]. 

 
From such episodes we concluded that Kevin had a functional understanding of 

average (in relation to a target), variation (should be within certain limits) and distribution 
(roughly bell shaped) in relation to the mechanisms underlying the process. Such concepts 
are core in understanding and applying SPC. However, he kept calling control limits 
“spec limits,” a phenomenon we have observed many times (Hoyles et al., 2007). As 
stated before, understanding control limits requires some understanding of standard 
deviations and the basics of the probabilistic rules in relation to the normal distribution. 
Crucially, despite their name, control limits are derived directly from the data, whereas 
spec limits are imposed externally. The trainers told us that this lack of understanding 
sometimes caused problems in communication between different groups in the company. 

The second line in the quote above (“boxes to colour in”) hints at a culture in which 
employees have to do things but not always know why. In fact, Kevin told us: “If you ask 
too many questions you end up doing a deep dive issue yourself, so really you are better 
just dropping a couple of slight hints and letting everybody else argue over it.” The 
picture that emerged from such interviews is that employees tend to be aware of only that 
small part of the space of reasons that is directly relevant to their involvement in 
producing cars. However, to solve non-standard problems awareness of a larger part—
including statistical reasons—is required, especially during nightshifts when few 
engineers or managers are around. 

As another illustration of the importance of knowledge and how it is divided or 
distributed, we mention one finding from the interviews with three participants in an SPC 
course. We were surprised that the trainer asked participants to estimate standard 
deviations and calculate control limits by hand. Our impression was that they had only a 
limited idea what they were doing, and were actually hindered by the calculations rather 
than helped in their understanding. All participants we interviewed, however, appreciated 
having done the calculations once, just to know that these were done by the SPC 
department. Where our notion of understanding was focused on the statistical concepts 
involved in calculating the control limits, their take on understanding was knowing about 
how labour and knowledge were divided. Apart from being happy that these calculations 
were not part of their own work, they were also satisfied to note that the limits were not 
“conjured up” by management, but calculated on their data. In other words, we realised 
we had to enhance our notion of “understanding SPC” to a much wider notion in which 
the ways knowledge is distributed is taken into account. This implies that it is useful for 
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employees to know when statistical inferences are made by others, and who these others 
are.  
 

4. REFLECTIONS 
 
To characterise statistical inference at work—the goal of this paper—we compare 

SPC with a form of statistical inference that is more widely known in education, 
hypothesis testing (4.1), and characterise the space of reasons in which SPC takes place 
more generally (4.2). 

 
4.1. A COMPARISON OF HYPOTHESIS TESTING AND SPC 

 
As we show below, the logic of SPC theory resembles that of hypothesis testing in 

some ways, but also differs from it in others. We start with the similarities to identify 
some candidate characteristics of statistical inference more generally. 

1. In both types of statistical inference, the construct of interest has to be measured. 
In the airtightness example, the construct was air pressure in the car when 
blowing in air at a certain volume per time unit; this pressure was used as a 
measure of airtightness. Samples are used to predict some feature of a population 
or process. 

2. Both approaches aim to detect differences, for example between hypothetical 
(expected, targeted) and the real measures of the population or process. In SPC 
the key idea is to detect trends in processes such as shifting means before 
measurements exceed specification limits.  

3. The equivalent of a null hypothesis in SPC is “the process is stable” (there is no 
“significant” difference between the targeted measures and the real). This means 
that there is only common-cause variation: The mean and variability do not 
change much. The alternative hypothesis would then be “there is a change in the 
process” with a special cause, leaving unspecified what this cause might be. In 
this sense SPC shows more similarities to Fisher’s view on hypothesis testing 
than that of Pearson and Neyman, because Fisher did not require alternative 
hypotheses to be specified in advance (for the different views on hypothesis 
testing see for example Batanero, 2000; Biehler, 1982; Christensen, 2005).  

4. In SPC, probability-based rules are used such as “seven points on either side of 
the mean may point to a special cause.” The choice of 7 seems to be based on 
practical effectiveness rather than theoretical significance of the 1/64 probability. 

5. Possible errors in SPC resemble type I and II errors: Non-conforming points 
might be due to chance, and special causes might still not be detected by 
probability-based rules. In the airtightness example, Kevin noted leaks even when 
the measurements did not give reasons to think so. 

These five points illustrate that the theory of SPC has an inferential structure that is in 
some respects similar to that of hypothesis testing. When comparing with Makar and 
Rubin’s (2007) three key characteristics of statistical inference, we can observe that all 
three are covered. Point 1 covers the issue of generalisation beyond the immediate data; 
data as evidence is a key point in both SPC and hypothesis testing; and points 4 and 5 hint 
at a probabilistic language.  

The question arises whether the other similarities add anything specific or new. The 
first point on measurement is characteristic of statistical investigation in general, not only 
of statistical inference, and can therefore be excluded as a key feature of statistical 
inference. Points 2 and 3 are more interesting, because they point to something that is 
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relevant to statistical inference but not explicitly covered in Makar and Rubin’s list: The 
comparison of data with a model. In hypothesis testing we mostly compare the data 
measures with those of a hypothetical distribution; in SPC we compare data measures 
with those of a targeted distribution. What is underlying this is the view that data can be 
seen as model plus residuals or signal plus noise (Konold & Pollatsek, 2002). 

Apart from the aforementioned similarities, there are also differences:  
1. In the commonly used logic of hypothesis testing, the goal is to reject the null 

hypothesis. In SPC, however, the null hypothesis (the process being stable) is the 
desirable situation. 

2. Hypothesis testing is focused on a single measurement of a statistic that is 
compared with the sampling distribution of that statistic. SPC, however, has a 
time dimension that is not typical of hypothesis testing. In fact, SPC could be seen 
as involving a series of different tests. In loose terms, we can say that SPC is 
focused on generalisations about a process rather than a population, though 
technically it is of course possible to frame a process as generating a population 
of measurements, many of which are still to come. 

3. The focus of SPC is on the need for action, and the goal is to monitor special 
causes rather than to estimate the probability of a conditional statement which is 
the end result of hypothesis testing. 

4. Hypothesis testing is mostly a formalised form of inductive inference. But in SPC 
the crucial inference to be made is to detect the special cause, which is in fact a 
form of abductive inference (finding an explanation for an anomaly in the data), 
which cannot be formalised. 

5. In hypothesis testing one temporarily suppresses contextual information, whereas 
with SPC employees constantly use their contextual knowledge of the process to 
interpret data points. There may be perfectly good reasons to let the data be off 
target. For example, changing the process might be too expensive and not 
necessary for quality. In hypothesis testing, context should only be attended to 
before and after carrying out the statistical test, but not during the test. This means 
that the use of contextual information is much more “disciplined” (a term 
introduced by Pratt at the SRTL-5 conference) in hypothesis testing than in SPC. 

This illustrates how the two types of inference are subject to different norms. 
Hypothesis testing is supposed to be independent of specific features of the situation, and 
contextual “noise” is left out during the calculations, whereas SPC is pragmatic. 
Hypothesis testing has become standardised whereas SPC is used in loose ways and often 
in non-standard ways. For instance, we have observed SPC use that we had not 
anticipated based on the SPC literature; for example, the use of control charts particularly 
when processes were unstable, whereas the literature typically recommends using SPC for 
stable processes (e.g., Oakland, 2003). Of course, hypothesis testing is sometimes used in 
loose or non-standard ways too, for example if conditions do not apply or if p-values do 
not tell what people really want to know (cf., Abelson, 1995).  

 
4.2. SPACE OF REASONS AT WORK 

 
To further characterise statistical inference at work, we address the space of reasons 

involved, in particular in SPC. Let us mention a few features we think are relevant. 
1. A space of reasons encompasses what can be analytically distinguished as 

contextual and statistical reasons. The key issue however is that a holistic view on such 
reasons does not prioritise any of them a priori. Contextual or statistical reasons are 



140 

 

 

prioritised depending on whatever is required to reach a goal, such as delivering cars that 
are airtight enough and not too airtight. 

In workplace statistical inference contextual reasons can be put into the foreground 
where statistical reasons might point in a different direction. In the case of the sealing 
material leading to airtightness being off-target, contextual constraints, particularly cost of 
implementation balanced against resulting productivity gains, led Kevin and his 
colleagues not to re-centre the process to its target. Such constraints emphasise the 
significance of one reason over another and hence form the background (part of the space 
of reasons) constituting attentiveness to one concern over another and hence to the taking 
of certain actions rather than others.  

2. A space of reasons includes reasons informing both statements (claims, judgements, 
etc.) and actions (decisions etc.). Statistical tests in educational settings are mostly 
focused on testing the veracity of statements. Employees, as the SPC examples illustrate, 
are often more concerned with the right action. Of course, better knowledge can lead to 
better decisions, but their focus is on meeting targets and being (more) efficient and 
productive, and it is these goals that constitute the normative background in which one 
concern figures as dominant and demanding of attention over another.  

3. A space of reasons can be analysed at both a collective and an individual level. At 
an individual level we can focus on the reasons, implications, causes, and effects that a 
person is responsive to. Being responsive to reasons does not entail full awareness but 
only that judgements are made within such a space of reasons. At the collective level, we 
can envision the space of reasons as being constitutive of the community, practice, 
activity system, or context in which the inferences are made.  

4. A space of reasons is necessarily normative. Some forms of drawing conclusions 
are culturally more acceptable than others. If someone makes a statement, we expect him 
or her to believe it and to able to give evidence for it. In scientific research (whether or 
not using formal statistical inference) the norm of credibility or even truth is important. 
But in a company the most important norm might be quality of the products or services 
defined in relation to efficiency and appeal to customers. Such norms have a major impact 
on what counts as evidence, inference, or conclusion.  

So what have we gained by focusing on spaces of reasons instead of context, for 
example? First of all, we think that by starting with a space of reasons, we can 
temporarily overcome the distinction between statistics and context that is so deeply 
engrained in our thinking. This is particularly beneficial in situations in which it is no 
longer clear what is statistical or contextual. For example, in some plants of the factory, 
SPC has become part of the shopfloor “context,” and in ideal cases, employees seamlessly 
coordinate what can be analytically separated as statistical and contextual reasons. 

Second, when studying statistical inference it makes sense to focus on reasoning, and 
by highlighting “reasons,” which we use as short for premises, conclusions, evidence, 
motives, purpose, utility, our knowledge of causes and effects, and so forth, we bring 
something to the fore that might be ignored if we strictly interpret “context” as location or 
setting. 
 

5. DISCUSSION 
 

5.1. A FEW OBSERVATIONS 
 
This paper’s goal was to characterise statistical inference at work and point to a type 

of statistical inference typically neglected in school-based educational research. We did so 
by comparing statistical process control as a commonly used technique for process 
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improvement in industry with hypothesis testing. Next, we analysed the wider space of 
reasons in which statistical inference takes place. It turned out that there are 
commonalities that point to characteristics of statistical inference more generally. In 
addition to Makar and Rubin’s (2007) three characteristics—generalisation, data as 
evidence, and probabilistic language—we also specified a fourth characteristic: 
comparing data with models, in particular, measures of the data with measures of a 
hypothetical or targeted distribution. 

There are also differences. Firstly, SPC is pragmatic and focused on action. Secondly, 
there is a clearer place for abduction, whereas formal statistical inference tends to focus 
on induction. A third observation from our research in several companies is that 
inferences are mostly about processes rather than populations (see also Frick, 1998). In 
manufacturing sectors, data are mostly monitored to ensure that all items produced are 
within specification and to improve current production processes. When items are non-
conforming or even fall out of specification, should the production process be stopped or 
is it more sensible to keep going? Stopping a car production line costs thousands of 
pounds per minute! In this setting, inferences are generally not based on formal statistical 
tests, but involve both statistical and contextual reasoning with a clear goal: maintaining 
the production process at a required accuracy or efficiency, or improving it. 

The airtightness example emphasises constraints of available resources and the 
importance of the division of labour and knowledge. One advantage of using the notion of 
a space of reasons is that it helps to see human judgement as involving all such reasons 
including those that are beyond the more visible formal results of applying a statistical 
technique. Judging the consequences of having a batch of sealing material leading to a 
slightly different air pressure is one such example. 

The adjective “informal” that is sometimes used in front of “statistical inference” does 
not seem to be suitable to characterise statistical inference at work. The theory of SPC is 
in fact formal to a certain extent: There are many books on the market on how to control 
production processes according to this theory. Hence, many people around the globe use 
SPC in somewhat similar ways. In that sense, SPC is more formal than, say, many 
intuitive forms of reasoning that young students display when they draw their first 
conclusions from data. 

It could well be argued that what we emphasise as characteristics of the space of 
reasons in which statistical inference at work takes place applies to formal statistical 
inference as well. Indeed, we actually think that formal inferential techniques are used in 
such a way that we tend to forget that these techniques are used within a certain scientific 
space of reasons with particular norms and purposes, and that contextual knowledge is 
actually highly important in interpreting results of formal inference – despite the air of 
independence of contextual specificities that typically comes with significance tests. 
Moreover, we also face division of labour when using formal statistical inference: Even 
when we write research questions ourselves, collect the data ourselves, we use statistical 
software that others have programmed and most likely use statistical techniques that 
others have developed, before we arrive at our research conclusions. Hence we think that 
our analysis of statistical inference at work may shed light on statistical inference more 
generally. 

 
5.2. LIMITATIONS 

 
With the choice of SPC as a prototypical example of statistical inference commonly 

used in industry, we have restricted ourselves to one type of statistical inference. It is 
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perfectly possible that the analysis of other statistical techniques, perhaps in other 
workplaces, would lead to additional or other characteristics. 

Another limitation of our research seems inherent to workplace studies: As outsiders 
it is extremely hard to gain access to companies: Time is money. Hence the companies we 
have studied form a convenience sample, and our time with employees, whether in 
interviews or training courses, was short compared to much research in school settings. 
This explains why we have not been able to do any workshadowing to the extent that we 
could observe employees actually solve problems by using SPC charts. Nor were we 
allowed to videotape employees or ask them to take tests to identify their level of 
statistical understanding. We were confined to stories told by managers, operators, and 
engineers, which meant that we had little opportunity to study inference in action and that 
we were not able to draw many generalised conclusions. 

 
5.3. IMPLICATIONS FOR FUTURE RESEARCH AND EDUCATION 

 
The aforementioned limitations naturally lead to implications for future research: It 

would be interesting to study more types of statistical inference in several workplaces, 
preferably in action. Another recommendation for future research is to characterise more 
generally what employees exactly need to know in different sectors of work. It is, for 
instance, hard to pinpoint to which level of formality, and in what sense, employees need 
to understand statistical concepts. Of course, they need to understand what the sources of 
variation are and what variation looks like in graphs (cf., Noss et al., 2007; Wild & 
Pfannkuch, 1999); they need to reason with a notion of distribution, mean versus target, 
spread, and measures of spread; they need to be able to interpret graphs, and so forth. 
Working with machines, employees need to know about causes and effects, but also how 
independent variables influence a dependent one. In short, employees need to know the 
key aspects of the model at stake, that is, the relationships between relevant variables and 
the causes and effects of changing those variables. The model need not be purely 
statistical or mathematical (Bakker, Hoyles, Kent, & Noss, 2006): Kevin’s model of the 
variables of air volume and pressure were related to airtightness of cars was context 
specific. Yet we suggest adding the understanding of such a—possibly situated—model to 
Rubin et al.’s (2006) list of statistical ideas underpinning statistical inference. 

Despite the advocated integration of statistical and contextual knowledge in practice, 
the statistics courses that we have observed and heard about in industry generally provide 
participants with little opportunity to connect what they have learned about statistics to 
their practice. Newly acquired statistical knowledge thus often stays separated from the 
rich contextual knowledge employees have of their work processes, instead of being 
perceived as an organic part of a space of reasons. 

A more theoretical implication for research is the need to explore the consequences of 
framing educational research in terms of spaces of reasons and the tradition of 
inferentialism from which such philosophical constructs stem. They may provide us with 
a useful perspective on training in workplaces. Instead of primarily asking ourselves 
which statistical theory employees need to learn, we should perhaps ask, “How can 
employees become adept in their workplace’s space of reasons? How can the reasons they 
attend to be enhanced by knowledge of quality improvement strategies?” In another paper 
we report on how we have tried this in our first design experiments (Hoyles et al., 2007).  

Formulating potential implications of workplace research for school education is a 
tricky business. As Säljö (2003) notes, one should not make the mistake to try and copy 
workplace situations in school education. School is a different system with different goals 
than workplaces. Nor should we necessarily adapt our language: School and workplace 
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situations are constituted by very different spaces of reasons. The following implications 
therefore have to be interpreted only as a tentative list for discussion purposes: 

1. Not only in workplace training but also in school settings, we should acknowledge 
the importance of context knowledge, real-world constraints, actions, and responsibility, 
and not confine the theory and learning activities to clean noise-free examples. What is 
required, also when teaching hypothesis testing, is to emphasise that drawing on context 
knowledge is disciplined. This might mean that courses that introduce formal statistical 
inference to students ideally also spend time afterwards on how formal statistical tests are 
actually used in practice, within a wider space of reasons. 

2. We should pay attention to the mechanisms that cause variation, because then 
variation becomes easier for students to understand (cf., Wild & Pfannkuch, 1999). Yet 
there is a need to generalise and become familiar with statistical measures that can be 
applied in many other situations. 

3. In our view, school-based educational research should pay attention to student 
understanding of processes in addition to populations because our anecdotal evidence 
suggests that many employees will deal with processes and not just with populations. The 
production of widgets at school (e.g., Konold & Lehrer, in press) might be a useful 
context to learn about many relevant statistical ideas. 
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