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Teachers of mathematics face a particular tension, which the authors call the planning paradox. If
teachers plan from objectives, the tasks they set are likely to be unrewarding for the pupils and
mathematically impoverished. Planning from tasks may increase pupils’ engagement but their
activity is likely to be unfocused and learning difficult to assess. By seeking inspiration from
research in the areas of curriculum design, the nature of authenticity in the classroom and the use
of tools, and by looking retrospectively at the design of computer-based tasks that have
underpinned their research for many years, the authors recognise a theme of purposeful activity,
leading to a planned appreciation of utilities for certain mathematical concepts. The authors
propose utility as a third dimension of understanding, which can be linked to purpose in the
effective design of tasks. The article concludes with a set of heuristics to guide such planning.

Preamble

There is a strong sense in which the ideas presented in this article are inspired by the
notion of the play paradox (Noss & Hoyles, 1992), which recognises an inherent
tension in the teaching–learning process. Play can facilitate learning and so there is a
desire to incorporate play-like freedom into more formal school-based learning, even
for older pupils. However, such a strategy transfers control over what is learned away
from the teacher to the pupils themselves. This is unsatisfactory if the teacher has an
agenda in which certain specific knowledge should be assimilated.

The notion of the play paradox stemmed from analysis of pupils’1 activity2 when
using computer-based microworlds. A feature of microworld design is to insert into
the microworld mathematical concepts that the designer expects pupils to concretise
through use (Wilensky, 1991). Papert (1982) has described this process as planting
nuggets of mathematical knowledge into the microworld. The designer is intending
that the pupil will stumble across these concepts whilst engaged in play-like,
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informal activity. However, Noss and Hoyles (1992) point out that ‘involvement in

the microworld can allow the learner to ignore just those mathematical nuggets that

are placed there so carefully’ (p. 451).

Noss and Hoyles (1992) recognise that their own interventions during the

research had a major impact on how the activity developed and that these

interventions were necessary to trigger reflection by the pupils. Microworlds are

generally designed to be used by pupils in ways which are relatively unstructured,

through the development of their own projects. In this article we consider a broader

range of contexts for mathematical teaching and learning, but see similar tensions

arising between the teacher’s intentions and the experiences of pupils. In particular,

we consider the design of pedagogic tasks. How might the teacher plan tasks in such

a way that pupils are likely to engage with intended mathematical knowledge in

mathematically meaningful ways?

We begin by problematising the procedure of setting learning objectives in

mathematics lessons, and later we look retrospectively at the design of tasks that

have played a significant part in our own research in order to propose two constructs

that can guide the connecting of objectives to the design of tasks.

The planning paradox

With our emphasis on task design, we reinterpret the play paradox as what we call

the planning paradox: if teachers plan from tightly focused learning objectives, the

tasks they set are likely to be unrewarding for the pupils, and mathematically

impoverished. If teaching is planned around engaging tasks the pupils’ activity may

be far richer, but it is likely to be less focused and learning may be difficult to assess.

To elaborate a little, we offer two contrasting examples. The teacher plans a lesson

which focuses on adding two-digit numbers together. The lesson proceeds with

some explanation of procedures and then a range of tasks which enables pupils to

practise this calculation. The tasks have been determined by the objective in a

narrow and constrained way, and even an imaginative teacher will find it difficult to

make the tasks interesting in more than a superficial way. Such a teacher has fallen

foul of the first part of the planning paradox.

Now consider a teacher who, as the starting point of a mathematics lesson, asks

the pupils to design their ideal bedroom. The pupils may become highly engaged in

meaningful activity, which could lead them into several areas of mathematics, but

the teacher may find it difficult to take advantage of such opportunities, or to

monitor any mathematical thinking.

We identify three levels across which a resolution of the planning paradox might

reside. At one level, there is the curriculum. The curriculum is likely to set out

essential content with which pupils are expected to engage. Rethinking how we

approach that content might offer ways of simultaneously addressing content focus

and motivation. More broadly, the ways in which a teacher contextualises

mathematical activity could support or obstruct a resolution of the planning

paradox. In particular we are interested in how contextualisation may relate school
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and ‘real-world’ experiences, and how this may stimulate a sense of purpose. Finally

we are interested in the sorts of tools that teachers offer pupils whilst they work on

the task. The affordances of tools shape the way that pupils are able to pursue the

teacher’s plans and understanding this in turn changes the way that teachers

construct the plans themselves.

We now consider each of these levels in turn, and from this discussion our own

proposal for resolving the planning paradox emerges. At each level, we identify and

discuss specific research that has influenced our thinking.

Curriculum: the contribution of ‘Realistic Mathematics Education’ (RME)

We first turn to a Dutch approach, Realistic Mathematics Education (RME), which

has for many years explored curriculum design with similar objectives to our own.

Freudenthal (1979) recognised mathematics as ‘a natural and social activity which

develops according to the growth needs of an expanding world’ (p. 324). He

criticised what he called ‘new math’, describing it as a form of ‘mathematical

abstraction, detached from meaning or context, interpreted as subject matter and

concretised in a preposterous way’ (p. 324). This begs the question of how suitable

contexts for mathematical learning can be created.

Evolving out of Freudenthal’s philosophy of mathematics, RME sets out a

curriculum based on principles (Van den Heuvel-Panhuizen, 2000) of which we

shall explicitly discuss two that have particular relevance to this article. The reality
principle relates to Freudenthal’s (1968) premise that mathematics must be learnt

‘so as to be useful’. This learning occurs throughout the process of ‘progressive

mathematization’ (Gravemeijer, 1994). In addition to this, the rich contexts that

afford mathematisation are a prerequisite of the tasks in the RME curriculum. The

guidance principle is concerned with giving students a ‘guided’ opportunity to

‘reinvent’ mathematics through teacher-led tasks that meet the intended learning

trajectories. By teachers providing tasks that allow for reinvention, pupils are able to

‘construct mathematical insights and tools by themselves’ (Van den Heuvel-

Panhuizen, 2000).

The use of ‘realistic’ within the name of the approach comes from the Dutch ‘to

imagine’: ‘zich REALISEren’ (Van den Heuvel-Panhuizen, 2000). The emphasis

within the RME approach is to offer students a context problem: a ‘problem

situation that is experientially real to [them]’ (Gravemeijer & Doorman, 1999). This

may come from a real-world scenario, a fantasy or from a pure mathematical

problem, as long as they are ‘real’ to the pupils. Gravemeijer and Doorman explain

the purpose of context problems being more than just usefulness and motivation.

They believe that context problems should be used from the very start of a course as

an anchoring point for reinventing mathematics. There are two aspects to this. The

first is to help pupils to elaborate on their informal understanding, thus leading to a

formal understanding. This is what Treffers (1987) identifies as ‘horizontal

mathematization’. It is also to preserve the connections between concepts and the

contexts which concepts describe, or ‘vertical mathematization’ (Treffers, 1987).
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We find this research most interesting in the way that it builds curricula out of
specified design principles. However, our aim is somewhat more modest though
possibly more direct. We aspire to provide teachers with tools that they can use to
construct their own approach to a predefined curriculum. Pragmatically this is the
situation in which teachers often find themselves. They may have little control over
the curriculum and, without some guiding constructs, we believe that there is little
likelihood of teachers, even those operating with an RME designed curriculum,
inventing resolutions of the planning paradox. RME may provide interesting
guidelines that might generate a coherent curriculum through a structured sequence
of tasks. For us though, there is a further concern that tasks taken in isolation should
nevertheless offer a similar coherent sense of completeness. We wish to avoid
coherence being only in the mind of the curriculum designer with the result that the
pupils experience a series of disconnected tasks. We aim instead to provide a means
by which teachers can offer meaningful tasks even when operating within a
curriculum that might for them lack the coherence of one based on RME principles.
Hence we turn our attention to the second level, that of the setting, where we discuss
attempts to introduce authenticity into the classroom.

Contextualisation: authenticity and situated cognition

In recent years, mathematics educators have taken a great interest in situated
cognition research (for example, Lave, 1988; Lave & Wenger, 1991; Nunes et al.,
1993). Such studies have drawn attention to the importance of a sense of purpose
which is characteristic of out-of-school learning contexts (street mathematics). For
example, Lave and Wenger (1991) claim that, ‘learners, as peripheral participants,
can develop a view of what the whole enterprise is about’. We are struck by the
similarities between Lave and Wenger’s descriptions of legitimate peripheral
participation, and the ways in which young pupils’ learning is described in research
into the acquisition of literacy. Teale and Sulzby (1988) include the following in a
summary of research about literacy development in early childhood: ‘Literacy
develops in real-life settings for real-life activities in order to ‘‘get things done’’.
Therefore the functions of literacy are as integral a part of learning about writing and
reading as they are to other forms of literacy’ (p. 259).

When pupils learn to read and to write their native language, they can immediately
use these skills for (some of ) the same purposes as adults: they can read for
entertainment and for information, they can write messages, lists, birthday cards, email.
The same is true for learning street mathematics, but not for learning school
mathematics. Indeed, it is clear that many pupilsdo not always understand the purposes
of even those aspects of mathematics which might be regarded as most practical, such as
measurement, when they learn them in classroom contexts (Ainley, 1991).

A possible implication is that we should attempt to offer the authenticity of street
mathematics to pupils in classrooms. Whilst we would agree with Schliemann (1995)
that ‘for meaningful mathematical learning to take place in the classroom, reflection
upon mathematical relations must be embedded in meaningful socially relevant
situations’, we see the provision of authentic tasks as inherently problematic.
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Teachers often provide pupils with tasks that may superficially offer authenticity
by resembling out-of-school activities. For example, a teacher of young pupils may
set up a play shop in the corner of the classroom to encourage some mathematical
learning. However, the structuring resources provided by this situation will be very
different from those offered when the child is really shopping with a parent. For
example, in the play-shop task, emphasis may be placed on number, and so the
prices of items on sale are simplified to an extent that even young pupils will
recognise as unrealistic. Getting the correct change will not be the same level of
concern for customers in the play shop as it is for customers in a real shop. Even with
an element of role-play, the social interactions of the play shop will not provide the
structure and constraints experienced in a real shopping trip (Brenner, 1998). In
Walkerdine’s (1988) words: ‘The practical context is a foil for the teaching of certain
mathematical relations, so that everything about the task is different from shopping.
In school mathematics the goal of the task is to compute the answer rather than to
make a purchase’ (p. 146).

Attempts to provide ‘authenticity’ through the contextualisation of school
mathematical tasks in out-of-school settings will not resolve the planning paradox.
Such settings will not ensure engagement with the task, or more importantly,
engagement with mathematical ideas. Indeed, as Cooper and Dunne’s (2000)
research has indicated, in order to engage appropriately with the mathematical focus
of a contextualised task, pupils have to understand complex but implicit rules about
the extent to which they should attend to features of the real-world setting. Adler
(2000) argues that school mathematics is necessarily a hybridisation of contextua-
lised (street) mathematics, and academic mathematics, and claims that this presents
teachers with: ‘The important challenge of whether and how to be explicit about
mathematical purposes … and thus about where meanings need to be located to
facilitate sense-making, access, and success in school mathematics’ (p. 208).
Schliemann (1995) concludes a discussion of the problems of bringing everyday
mathematics into the classroom with the statement that ‘we need school situations
that are as challenging and relevant for school children as getting the correct amount
of change is for the street seller and his customers’.

We argue that the use of ‘authentic’ settings in an attempt to capture the levels of
engagement characteristic of street mathematics within the classroom context will not
meet this challenge, and will fail to resolve the planning paradox since the more they are
shaped to have clear mathematical focus, the further removed they become from socially
meaningful contexts. In the second part of this article we will argue that an alternative
analysis of street mathematics, which focuses on the purposeful nature of mathematical
activity, and the usefulness of mathematical ideas, offers a more successful approach to
combining engagement and focus in the design of classroom tasks.

Tools: the influence of constructionism

Much situated cognition research has studied the activities of master and apprentice,
and some mathematics educators have attempted to use this model to examine the
activities of teachers and pupils (e.g. Masingila, 1993). In out-of-school situations,
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the master and the apprentice have a common goal, which in the short term is

typically to make some product (so the tailor and his apprentice may aim to make a

waistcoat), and in the longer term is to make a profit. We question whether teachers

and pupils can have such common goals. The teachers’ agenda must be to focus on

their pupils’ learning (and the pupils know this), whereas the pupils’ agenda will be

to complete the task, hopefully to the satisfaction of the teacher. Although the

production of (real or virtual) artefacts appears to be a fruitful context of meaningful

mathematical activity, this leads us to question what kinds of products teachers and

pupils might make together. We now consider approaches that do place product

creation at the forefront of pupils’ activity, though in ways which differ significantly

from the tailoring workshop. Our focus over many years has been on the use of

technology in the learning of mathematics, and so it is natural for us to look towards

the literature in that field for inspiration.

The constructionist movement (Harel & Papert, 1991a) has proposed that tasks in

which pupils make products, generally through programming computers, are

particularly conducive to learning. Thus, in one sense the constructionists replace

the ‘waistcoat’ with a product that is programmed by the child into the computer. In

our experience (for example, as reported in Pratt & Ainley, 1997, and Ainley et al.,
2000), such programming tasks can generate activity that has some of the

characteristics of everyday activity studied in the research of situated cognitionists.

For example, teachers often become engaged in working with the child to make the

virtual product, reminiscent of the tailor and apprentice collaborating to make the

waistcoat. The task, rather than the externally set objectives, takes on the role of being

the arbiter of what counts as progress. Furthermore, any mathematical learning that

takes place is contextualised within the activity of making the product, which provides

meaning for the mathematics, but perhaps limits its apparent range of applicability.

Harel and Papert (1991b) also recognise the connection between constructionism

and situated cognition, and at the same time signal some differences in emphasis:

We see several trends in contemporary educational discussion such as ‘situated
learning’ and ‘apprenticeship learning’ … as being convergent with our approach, but
different in other respects … our emphasis [is] on developing new kinds of activities in
which children can exercise their doing/learning/thinking … [and] on project activity
which is self-directed by the student. (p. 42)

We believe that the constructionist approach recognises that the classroom is not the

marketplace, and does not attempt to place emphasis on authenticity. However, by

placing emphasis on the creation of products, it positions consideration of

meaningfulness and motivation high on the agenda for the design of tasks that are

likely to promote mathematical learning. The constructionist literature promotes the

use of microworlds, targeted domains within which pupils are able to explore safely

and freely, designed in such a way that they are likely to encounter powerful

mathematical ideas. Within the literature on microworld design, we have found a

second important idea that relates to our thinking about task design.

Microworld settings provide the possibility of pupils working with concepts that

they do not yet understand. Understanding emerges through activity. Noss and
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Hoyles and Noss (1987) have called this using before knowing. Mathematics teaching
tends to start from definitions and explanations of the mathematical ideas.
Microworlds offer the possibility of providing mathematical knowledge as ready-
built on-screen instantiations. Thus the child using the RIGHT and LEFT
commands in Logo uses angle to learn about angle. Papert (1996) refers to this idea
as the power principle and argues that it re-inverts an inversion imposed by the
conventional pedagogy in mathematics. By learning through use, pupils are
empowered to learn mathematics in much the same way as they learn naturally in
other contexts; for example, the ways in which they learn to read and write. This
approach stands in contrast to a conventional approach in which the pupil rarely
experiences using mathematics in meaningful ways.

Constructionists then advocate learning through making and in particular through
building with virtual artefacts. From the perspective of task design and our desire to
resolve the planning paradox, however, we are left with a number of unanswered
questions. Microworld designers pay very careful attention to the tools that are
offered to pupils since they can direct attention towards or away from the targeted
mathematical domain. Those designing pedagogic tasks are faced with a similar
issue. We aim to provide a vocabulary that will enable articulation and con-
ceptualisation of this concern. Teachers have a similar problem when planning tasks
and yet we do not have a sufficient vocabulary to talk about and conceptualise their
problem. The power principle asserts that pupils can learn about mathematics
through use but it provides no advice as to how teachers might facilitate this process
through task design. What is it about tasks based on making products that
encourages mathematical learning? Surely it is not the case that any product will do?

Purpose and utility

We recognise that RME principles, constructionist approaches and out-of-school
settings can provide challenging, relevant and powerful contexts for learning
mathematics. However, our analysis of where the power of these learning
environments lies suggests that it is not in the explicit features (an end product,
real-world activity) but rather in two less visible characteristics which we have called
purpose and utility. We now describe these constructs in detail, and discuss how they
may be used to inform the design of tasks in ways which offer a resolution to the
planning paradox.

Purpose, as we use the term, refers to the perceptions of the pupil rather than to
any uses of mathematics outside the classroom context. We define a purposeful task
as one that has a meaningful outcome for the pupil, in terms of an actual or virtual
product, or the solution of an engaging problem. There is considerable evidence of
the problematic nature of pedagogic materials which contextualise mathematics in
supposedly real-world settings, but fail to provide purpose to which the learner can
relate, either in terms of the overall task, or the ways in which mathematical ideas are
used within it (see, for example, Cooper & Dunne, 2000; Ainley, 2000).

The purpose of a task, as perceived by pupils, may be quite distinct from any
objectives identified by the teacher. In a classroom situation, this may be true in a
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trivial sense: pupils may construct the purpose of any task in ways other than those

intended by the teacher (Ainley, 1991). However, we are saying something more

than this: within our framework for task design, purpose is a distinct element that

needs to be considered separately from, but in parallel with, learning objectives.

Alongside purpose, we identify a second feature of the learning which takes place

in both constructionist approaches and out-of-school settings, which we have called

the utility of mathematical ideas. By this we mean that the learning of mathematics

encompasses not just the ability to carry out procedures, but the construction of

meaning for the ways in which those mathematical ideas are useful. At first glance,

the need for mathematical learning to include this feature may seem obvious, but

even a brief look at the typical content of school mathematics makes it clear that

opportunities to appreciate utility are not common, even within tasks which relate to

real-world settings. For example, what understanding of the utility of multiplication

and division might learners be expected to develop from questions such as these (all

taken from the English National Numeracy Strategy Framework [Department for

Education and Skills, 1999])?

A beetle has 6 legs. How many legs have 9 beetles?

196 children and 15 adults went on a school trip. Buses seat 57 people. How many

buses were needed?

Four people paid £72 for football tickets. What was the cost of each ticket? How much

change did they get from £100?

Within our framework, purpose and utility are closely connected. Appreciation of

the utility of mathematical ideas can best be developed within purposeful tasks, and

consideration of the need to plan for such opportunities is an important factor in the

resolution of the planning paradox. A focus on purpose in isolation may produce

tasks which are rich and motivating, but fall foul of the second part of the planning

paradox, by lacking mathematical focus. Within pedagogic tasks that are designed to

have purpose for learners, we have found that it is possible to plan for opportunities

for learners to appreciate the utility of mathematical concepts and techniques. Whilst

engaged in a purposeful task, learners may learn to use a particular mathematical

idea in ways that allow them to understand how and why that idea is useful, by

applying it in that purposeful context. This parallels closely the way in which

mathematical ideas are learnt in out-of-school settings.

Illustrative tasks designed with purpose and utility

We offer two examples to clarify the related constructs of purpose and utility.

The spinner task

A task which we have used on a number of occasions is that of designing a paper

spinner (Ainley et al., 2000). In this task the purpose for the pupils is clear: to make a

spinner that will stay in the air for as long as possible. In investigating aspects of the
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design, for example, by changing the length of the wings, pupils record results of test

flights on a spreadsheet (the wing length and time of flight). Their activity offers

opportunities to use a number of mathematical ideas, including measurement of

length and time, decimal notation, graphing and the use of measures of average.

From these we now describe two examples of utility.

Initially it is difficult for pupils to see patterns in the numerical data on the

spreadsheet, partly because the data is not usually collected in a systematic way,

and partly because of experimental inaccuracy. Using a scatter graph to display

the results at intervals during the experiment makes it easier to see emerging

patterns in the time of flight as the wing length varies. Information from the scatter

graph is used to make conjectures about the effects of changing the wing length, and

which spinners will prove most efficient, and also to identify further areas for

experimental investigation. Using a scatter graph in this purposeful way offers

opportunities to learn about the conventions of this particular graph, but also to

understand that graphing is an analytical tool, which can inform the process of doing

an experiment: that is, the pupils are given clear opportunities to construct a utility of

graphing.

Discussion of the experimental inaccuracies in the activity leads to the

introduction of the idea of taking the mean value of several experiments with

each wing length to produce a ‘better’ graph. This can be done quickly and

easily using the ‘Average’ function of the spreadsheet. Pupils are able to use their

everyday knowledge of the meaning of ‘average’ to understand enough about this

process to appreciate a utility of average (which does indeed produce a clearer

graph), even though they do not know the detail of how the mean was calculated.

Thus they learn about the mathematical idea of average through using averages in a

purposeful task.

Mending gadgets

By way of further illustration of purpose and utility, consider a microworld designed

for pupils to construct probabilistic meanings (Pratt, 2000). This microworld

consisted of various gadgets, small computational simulations of everyday random

generators such as coins, spinners and dice. The gadgets were programmed in such a

way that some contained a bias. For example, the dice gadget was programmed to

generate more sixes than a fair dice would. The pupils were challenged to play with

the gadgets and decide which were working correctly. The notion of ‘working

correctly’ was intentionally vague though the researcher expected that the pupils

might regard a biased gadget as working incorrectly. The gadgets could be opened

up to reveal the workings box. For example, the workings box for the dice gadget

read: choose-from [1 2 3 4 5 6 6 6]. The workings box could be edited by the child

and so provided a means for the child to control the operation of the gadget. At the

same time, the workings box represented the probability distribution. Other tools

included facilities to generate many results quickly and to graph those results as a pie

chart or as a pictogram.
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When the pupils found a gadget that they felt was not working properly, they

were further challenged to use the tools in order to ‘mend’ the gadget. This task

was purposeful for the pupils as they found the aim of mending familiar, concrete

and challenging. At the same time, the tools with which they had to operate

required them to engage with a representation of distribution and to contrast

the consequences of using large numbers of trials versus using small numbers of

trials.

The pupils began to articulate how the appearance of the graphs was controlled by

the numbers of trials, and by the workings box. In this sense, they constructed

utilities (albeit highly situated ones) for crucial probabilistic notions. Mathe-

maticians and statisticians recognise the central importance of the law of large
numbers. This law specifies how, if a random experiment is repeated many times, the

actual outcomes, as a proportion of the number of trials, gradually settle down to the

‘theoretical’ probabilities of those outcomes. These probabilities make up what is

referred to as the distribution. The task of mending the gadgets seemed not only to

provide motivation but also targeted that purposeful activity on two centrally

important concepts in probability.

A third dimension of learning

We wish to emphasise here that the opportunity to understand the utility of these

ideas arises because of the purposeful nature of the task set, and of the learners’

activity in response to these tasks. Without the underlying purpose of producing an

efficient spinner or mending gadgets, concepts such as graphing, average and the law

of large numbers might only have been introduced in a disconnected, isolated

fashion. The usefulness of these concepts might have been described through

imagined applications, but may not have been experienced in ways that allowed

learners to construct rich meanings for the mathematical ideas.

It is widely recognised that constructing meaning for a mathematical idea

involves many related elements. The distinction is often made between those

elements relating to procedures or techniques, and those concerned with

conceptual or relational understanding. At this grain size, we still find Skemp’s

(1976) seminal ideas on instrumental and relational understanding powerful.

We propose here a third cluster of elements: those relating to the utility of an

idea, why that idea is useful, how it can be used and what it can be used for. We

argue that a rich understanding of a mathematical idea involves all three of these

elements.

Let us offer a quick illustration of the relationship between instrumental, relational

and utility-focused understanding. Consider a pupil who is learning about the

subtraction of numbers. The pupil may hold an instrumental understanding of

subtraction based on the routine execution of an algorithm, such as decomposition.

That understanding may have been influenced by the teacher’s initial emphasis on

many examples and paper and pencil calculations. On the other hand, the pupil may

appreciate the role of place value in subtraction algorithms. Such a relational
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understanding would provide a means of appreciating errors in executing an

algorithm and even inventing alternative algorithms, and may have been influenced

by the teacher’s explanation and the use of concrete materials. Neither of these types

of understanding, though, offers the pupil an appreciation of why he should be at all

interested in subtraction. In contrast, a pupil may recognise the power of subtraction

to calculate efficiently the remaining target in a darts-based game. An appreciation of

such a utility is, we believe, an important and often ignored aspect of mathematical

understanding. Skemp might have argued that it is in fact part of relational

understanding, but, even if that is the case, it is sufficiently significant, in our view, to

merit attention that it has not yet received.

We conjecture that understanding mathematical ideas without an understanding

of their utility leads to significantly impoverished learning. Unlike street

mathematics, ideas in school mathematics are frequently learnt in contexts where

they are divorced from aspects of utility. Within the classroom, opportunities to

understand utility can only be provided through purposeful tasks.

The examples we have given of tasks designed using the constructs of purpose and

utility exemplify the role of technology in supporting a shift in pedagogic emphasis,

which we see as lying at the heart of opportunity for powerful mathematical learning

offered by this approach. Mathematical ideas (such as average, graphing,

distribution or geometrical construction) are rich and complex, composed of

different elements, which here we categorise very roughly as procedures (techniques

and algorithms, specific rules of formulae), relationships (links within mathematics,

internal structure and consistency), and utilities (why, how and when the idea may be

useful). As a pupil constructs meaning for a new mathematical idea, mental

connections will be made with existing knowledge, but the pedagogic emphasis

placed on the different elements will affect the ways in which those links are made.

It is generally acknowledged that pedagogic approaches that focus mainly, or

exclusively, on procedures will result in impoverished learning. However, even

approaches that emphasise relationships tend to give little attention to utilities. The

pedagogic tradition, embodied in textbooks around the world, is to begin with

procedures and relationships, and to address utilities as the final stage in the

pedagogic sequence (if at all). We suggest that this results in mathematical

knowledge becoming isolated as weak connections are made to the pupil’s existing

knowledge of the contexts in which it may be usefully applied.

In learning mathematics in out-of-school contexts, we believe that immediate

connections between the learner’s existing knowledge and the utilities of the new

idea are established in ways which enrich mathematical learning. In school

mathematics, the initial links are generally made to procedures and relationships.

Pedagogic design based on the framework of purpose and utility, with the support of

technology, inverts the pedagogic tradition of school mathematics by placing the

emphasis primarily on the utilities of a new mathematical idea. Thus the learner is

able to construct meanings that are shaped by strong connections to the application

of that idea: in Lave and Wenger’s terms, to develop a view of what the whole

enterprise is about.
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This inversion is made possible largely (though not exclusively) by the power of
technology to offer opportunities for using a mathematical idea before you learn
about its procedures and relationships. Technology affords the possibility of
pursuing purposeful tasks by working with mathematical tools, instantiated on the
screen, whilst simultaneously coming to appreciate the utility of those tools, in ways
which lead to powerful mathematical learning. Ongoing research is developing and
refining this framework for the design of pedagogic tasks in various areas of the
mathematics curriculum.

Resolving the planning paradox

The two constructs of purpose and utility offer a framework for task design that may
resolve the planning paradox. Designing tasks that are purposeful for learners
ensures that the activity will be rich and motivating. Such purposeful tasks provide
opportunities to learn about the utility of particular ideas, which will give the focus
that may otherwise be absent.

However, the design of tasks that offer both purpose and utility is challenging. It
requires the teacher to imagine the trajectory of a pupil’s activity, taking both a
mathematical and a learner-centred perspective. In order to tease out aspects of the
design of such tasks, we will discuss our own struggle to create a task with purpose
and utility in a particular environment (for an extended discussion of this task, see
Pratt & Ainley, 1997).

As part of a long-term project, a group of pupils in our research school had been
given access to dynamic geometry software (the original version of Cabri Geometry).
This software provides the basic components of geometry, such as lines, points,
circles, and tools for construction, but allows the user to create dynamic images
which can be dragged around on the screen. The pupils had explored the software
with little intervention from their teacher, but had effectively used it as a drawing
package. The pupils had explored many of the features of the software, and
produced impressive drawings, but had actually made no use of the construction
tools, and so had not engaged with the important mathematical idea of construction.

Geometry is fundamentally about properties of shapes and the relationships
between them. A shape that is constructed might be seen as a figure that has been
defined through the declaration of various properties and relationships. Thus, a
square that has been merely drawn will soon lose it shape when one vertex is
dragged. This is because the ‘squareness’ of the shape has not been established as a
set of predefined properties in creating the shape. On the other hand, a shape which
has been constructed as a square will remain a square even if the vertices are dragged
to different positions. This is because the equality of the sides and the right angles
has been built into the definition of the shape through the way that it was created.

For these pupils, their (self-selected) tasks were purposeful, with clear end
products (drawings of a football pitch, a clown, and motorcycle and rider), but we
felt that the pupils were not learning any mathematics. We wanted to design a task
that pointed them towards the utility of construction whilst at the same time being
seen as purposeful. This proved problematic. It was easy to design tasks that
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involved construction (such as creating a square which couldn’t be ‘messed up’) but
such tasks had no purpose for the pupils—except to satisfy the teacher. We knew
that the pupils found creating drawings purposeful, but for such tasks placing points
by eye, rather than constructing them, was perfectly satisfactory.

Eventually, we came upon the idea of harnessing the pupils’ interest in drawing by
setting them the task of producing a ‘drawing kit’ for younger pupils to use. This
entailed them writing macros (short sequences of instructions) to produce a range of
basic shapes (triangles, squares, diamonds etc.) from which young pupils could
create their own pictures. For this task, there was a real purpose behind constructing
a square which could be reproduced many times and manipulated without
being messed up by the younger pupils. As the pupils worked on making their
drawing kits, the utility of construction for producing ‘perfect’ robust shapes became
clear.

The design of the drawing kit task embodies some elements which we offer here as
heuristics for creating purposeful tasks that have the potential to associate that
purpose with defined utilities.

(a) It has an explicit end product that the pupils cared about. This is a common
feature in all our examples. In the first case, the pupils were attempting to
design a spinner that would perform optimally, and, in the second case, the
pupils were mending gadgets that they felt should operate in certain normative
ways. In each case it was critical that the design process involved the use of tools
that somehow represented the mathematical concept. In the drawing kit task,
the pupils used the geometric construction tools in Cabri. For the spinners task,
the tool used was the spreadsheet-generated scatter graph, and for the mending
task, the pupils used the workings box, which represented the distribution.

(b) It involves making something for another audience to use. In the case of the
drawing kit, the fact that the pupils for whom the product is intended were
younger added an implicit further dimension. The product to be made can
focus directly on the concept with which you want the pupils to engage.
However, the focus shifts from the teacher teaching the pupil to the pupil
teaching others. In the mending gadgets task, a similar strategy was used. The
pupils were told that the programmer of the gadgets was in the process of
building the software (which was in fact true) and would like the pupils’
opinions about which gadgets were working properly. The pupils were
ostensibly mending the gadgets for the programmer. We have observed this
heuristic being applied elsewhere in the constructionist literature. For example,
Kafai and Harel (1991a, b) report how pupils first created products for other
pupils to learn from and then became consultants when another class engaged
in similar activity (see also McClain & Cobb, 2001).

(c) It was well focused, but still contained opportunities for pupils to make meaningful
decisions. Although most of the drawing kits produced contained a similar set of
basic shapes, many groups added their own designs, such as wheels or roofs. In
the spinner task, the pupils made their own decision on what data to collect next
in their experiment though they were required to make use of the scatter graph
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in order to make that decision. In the case of mending the gadgets, the pupils
came to the problem with prior conceptions of how such random generators
should work. They tested out their personal conjectures, which were sometimes
found to be naive.

We do not claim that these are the only means of designing tasks that link purpose
and utility. The spinners task is an optimisation problem and such questions are
often sufficiently intriguing to generate purposeful activity. We have seen also
examples in the literature of pupils arguing from a particular point of view and this
apparently captured the interest of the pupils involved (see, for example, McClain &
Cobb, 2001; Ben-Zvi & Arcavi, 2001).

In conclusion then, we have provided an expressive, though non-exhaustive, set of
heuristics for task design. As a final remark, we wish to comment on the observation
that all of our examples are technology-based. This is not entirely happenstance.
Technology affords a particularly powerful means of making mathematics quasi-
concrete. The impact of the power principle is to enable pupils to learn mathematics
through use. In turn they are able to construct utilities, which we conjecture is an
especially meaningful way to first encounter new mathematical concepts. We wish to
emphasise, however, the significance of our notion of utility. Whereas the power
principle explains how technology can re-invert the traditional pedagogy, the
purpose–utility linkage offers a means for thinking about why such an inversion
should have an impact on learning. At the same time, this linkage provides a
construct for elaborating task-design; we see our set of heuristics as a first attempt in
this direction. Although inspired through the use of technology, these heuristics are
not tied to that technology. Indeed, technology offers the specific danger that if the
task is not well designed then the utility might be trivialised to button-pressing, a
danger that can be avoided by proper consideration of the purpose–utility linkage.

Notes

1. We have chosen to use the term ‘pupils’ rather than ‘children’, ‘students’ or ‘learners’, since
this term seems to best capture the full age range involved in formal schooling.

2. For clarity, within this theoretical paper, we use the term ‘task’ for what is set by the teacher,
and reserve the term ‘activity’ for what subsequently takes place in the classroom setting.
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