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Preface 

Tuis study has its roots in the developmental work at the project OSM (Education 

and Social Environment) that finally resulted in the publication of the textbook se­

ries 'Rekenen & Wiskunde'. Succeeding in making a mathematics curriculum that 

embodies the main characteristics of 'realistic mathematics education' could only be 

possible, under the given circumstances, with the help of a fabulous team. The heart 

of that team was formed by Frans van Galen, Jean-Marie Kraemer, Toon Meeuwis­

se, Willem Vermeulen and Lida Gravemeijer. Notably thanks to their enthusiasm 

and comradeship, the period of developing 'Rekenen & Wiskunde' has become a pe­

riod on which I look back with fondness. 

It were the discrepancies between the overall concept of 'realistic mathematics 

education' and the educationalist view on curriculum development, implementation 

and evaluation, which prevailed at the project OSM, that triggered the deliberation 

and elaboration of a 'realistic' altemative for the general-educationalist approach. 

The in tent of it all was to ex plain, justify, and work out, a domain-specific approach 

of the development of realistic mathematics education. 

Tuis endeavour, of course, was not undertaken in isolation, for there is a vivid 

community of researchers and developers that struggle with similar questions. Par­

ticularly the collective knowledge of, and the collaborative interaction with my col­

leagues at the Freudenthal lnstitute shore the outcome of this study. It has been the 

embeddedness in this community, that fostered the elaboration of the concept of de­

velopmental research. It is impossible to thank everybody by name, but I have to 

make an exception for Adrian Treffers, with whom I shared many inspiring discus­

sions. I also want to thank Rob de Jong, who's timely incitements helped me finish 

this study. 

The ultimate goal of developing realistic mathematics education is to change 

educational practice in schools. Therefore, I am grateful that I could extend my ex­

periences as developer/researcher in a research project on the use and effects of ma­

thematics textbook series (the MORE-project). I want to thank the whole team, and 

in particular Marja van den Heuvel, for all the hard work that had to be done to make 

this project a success. 

I give thanks to Sylvia Pieters and her colleagues for all their efforts to get the 

manuscript camera ready, and to Els Feijs for her proofreading of the manuscript. 

And last but not least, I want to thank my family for their support and considera­

tion, during all the years that I have invested in 'the development of realistic mathe­

matics education'. 
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On the texts 

Chapter 1 is a reproduction of an article submitted to Educational Studies in Ma­

thematics. 

Chapter 2 is a reproduction of' An lnstruction-theoretical Reflection on the Use 

ofManipulatives' in: L. Streefland (ed.) (1991). Realistic Mathematics Education in 

Primary School, On the occasion of the opening of the Freudenthal lnstitute. 

Utrecht: CD-8 Press. 

Chapter 3 is a reproduction of a chapter in T. Nunes and P. Bryant (eds.) (in 

press), How do Children learn Mathematics. Hove: Lawrence Erlbaum Ass. 

Chapter 4 is a reproduction of an article accepted for publication in the Journal 

for Research in Mathematics Education (in press). National Council of Teachers of 

Mathematics. Used with permission. 

Chapter 5 is based on the final report of an extensive research project on the 

implementation and the effects of a realistic and a mechanistic textbook series, un­

der the leadership of the authors: K. Gravemeijer, M. van den Heuvel-Panhuizen, G. 

van Donselaar, N. Ruesink, L. Streefland, W. Vermeulen, E. te Woerd and D. van 

der Ploeg (1993). Methoden in het reken-wiskundeonderwijs, een rijke context voor 

vergelijkend onderzaek (Textbook series in mathematics education, a rich situation 

for comparative research.) Utrecht: CD-8 Press. 

Chapter 6 is particulary written for this book. 

Some adaptations of the original texts have been made to ad just for overlap. Further, 

U.K. English is changed into U.S. English, but differences in style are not elimina­

ted. 
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lntroduction 

As is observed by many, it is clear that the field of educational research is in motion 

and that a multitude of research approaches is emerging. One can try to bring some 

structure in this multitude of approaches by making global distinctions. For instance, 

many of the present approaches can be captured under one of the two headings, 'ex­

planation' or 'understanding' (Bruner, 1994). Here one may think of explanation in 

terms of causa! relations between dependent and independent variables, and of un­

derstanding as making sense of what is going on. Apart from these two main per­

spectives we can discem a third, which might be labelled 'transformational research' 

(Research Advisory Committee NCTM, 1988). Research that does not focus on 

'what is' but that deals more broadly with 'what ought to be'. Tuis involves, for in­

stance, research that addresses the question of how to constitute education that meets 

certain pregiven standards or ideals. Tuis study falls into the Jatter category; it focu­

ses on the development of what is called 'realistic mathematics education' .1

The label 'realistic' refers to the approach of mathematics education that is de­

veloped in the last two decades in The Netherlands. The name is taken from a clas­

sification by Treffers (1987). He discems four approaches in mathematics educa­

tion: mechanistic, structuralistic, empiristic and realistic. The decisive criteria for 

this classification are horizontal and vertical mathematisation. The first stands for 

transforming a problem field into a mathematica! problem, the second for processing 

within the mathematica] system. 

In realistic mathematics education both horizontal and vertical mathematizing 

are used to shape the long term learning process. The mechanistic approach is the 

opposite of the real is tic approach; it is characterized by the weakness of both the ho­

rizontal and the vertical component. The structuralistic and the empiristic approach­

es are somewhere in between; with at one hand the structuralistic approach empha­

sizing vertical mathematization, and on the other hand the empirist approach stres­

sing horizontal mathematization.2

The reliance on horizontal and vertical mathematization makes the development 

of realistic mathematics education rather complicated. The students start out with si­

tuated, idiosyncratic, informal knowledge and strategies. From there they have to 

construct forma! mathematics by mathematizing contextual problems (horizontally) 

and by mathematizing solution procedures (vertically). How fitting mathematics 

education ought to be constituted is not self evident. That generates the centra! 

question of this study: How does one develop realistic mathematics education? That 

is to say, the actual focus is on curriculum development, comprising the develop­

ment of individual instructional activities, prototypical courses, textbook series and 

such. The point of this developmental work, however, is to shape the mathematics 

education that is to be realized with these materials. The way in which this question is 
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introduction 

answered is by reconstructing and reflecting upon practice; the practice of curricu­

lum developers, the practice of curriculum implementation and evaluation, and abo­

ve all the practice of developmental research. The first objective is to describe and 

clarify these practices. The second objective is to learn from these practices, to re­

flect upon them and to redescribe them in such a way that guidelines for improve­

ment become available. lt is in essence a bottom-up approach, where deliberation on 

practice is taken as a starting point for the constitution of a description on a more 

theoretica! level. 

setting 

This study has its roots in the development of a grade one through six mathematics 

curriculum. From 1977 through 1986 the author was coordinator of a team of curri­

culum developers responsible for the hereafter mentioned curriculum. A curriculum 

that was developed within a curriculum project that based itself on what is called in­

structional technology. In our perception, however, the curriculum had to be orien­

ted towards guided discovery, or better guided reinvention, and teacher autonomy. 

The project was the OSM (Education and Social Environment) project in Rotter­

dam (The Netherlands), that aimed at improving the learning results of students of 

inner city schools. The basic assumption of the project management was that these 

children would profit of highly structured educational programs, that at the same 

time would address cognitive strategies, would link up with the students lived expe­

riences, and would be activity oriented. Curriculum materials and curriculum imple­

mentation programs for mathematics, language and social development, were seen 

as the key vehicles for educational improvement. The strategy for mastery learning 

(Bioom, 1976) was taken as an example of what a highly structured curriculum 

might look like. 

The structuring should also embrace the behavior of the teacher. What one was 

looking for were teacher proof curricula. At that time the research-development-dif­

fusion (RDD) model was still en vogue, just as the strategies for instructional design. 

Gagné and Briggs ( 197 4) had recently published their principles of instructional de­

sign. In line with these dominant views, the developers were expected to use instruc­

tional design strategies, starting with an operationalization of their terminal goals, 

and consequently deriving learning sequences and instructional activities. 

Tuis instructional design strategy was orthogonal to the genera! philosophy of 

the mathematics curriculum that inspired the curriculum developers. Their source of 

inspiration was the work of the IOWO [lnstitute for Development of Mathematics 

Education]. The IOWO was the national institute for the development of mathema­

tics education in The Netherlands from 1971 through 1980. 3 lts educational philo­

sophy was based on Freudenthal's concept of mathematics as a human activity 
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main theme 

(Freudenthal, 1973). Tuis approach to mathematics education became known as rea­

Iistic mathematics education later on. The key idea here is that students should be 

given the opportunity to reinvent mathematics under the guidance of an adult. In this 

view mathematics education would be highly interactive, for the teacher would have 

to build upon the ideas of the students. Tuis is only possible if the teacher reacts to 

what the students bring to the fore, and this does not fit with the idea of a teacher 

proof curriculum. But there were more discrepancies. 

The technological approach asked for a complete description of the educational 

goals in terms of instructional objectives. In the above mentioned philosophy on ma­

thematics education, however, the instructional objectives were not the main con­

cern; the main goal was to establish a certain form of educational practice. In other 

words, the focus was not on the product but on the process. What objectives had to 

be reached was - at least for the time being - less important than the way in which 

they would be reached. Moreover, more abstract and rather global aims like 'a ma­

thematica) attitude' were to be strived for. In short, these goals for mathematics edu­

cation did not fit the instructional technologica) approach of the project. Or to put it 

the other way around: the instructional design strategies did not seem applicable for 

this kind of mathematics education. lt is this struggle between educational techno­

logy and a non-corresponding educational philosophy that ignited the search for an 

alternative for the technologica) approach of the seventies. 

main theme 

In short, the problem the group of developers were confronted with was the follo­

wing. We did embrace a philosophy of mathematics education that was incompati­

ble with the instructional design theories at hand. Tuis triggered the question: How 

does one develop realistic mathematics education? A question to which this study 

tries to give an answer. Here developing realistic mathematics education is taken in 

a broad fashion. Tuis study addresses three core elements: 

- developmental research

- textbook development

- implementation and evaluation.

Mark that the question 'How does one develop realistic mathematics education?' 

can be interpreted in two ways: as a call for description and as a request for guideli­

nes. In this study both elements are combined in the sense that the actual practice is 

taken as a point of departure for reflection and reconstruction, and from there guide­

lines, heuristics, or points of attention can be constituted. Here 'actual practice' con­

cerns the practice of doing developmental research, developing textbooks, training 

(prospective) teachers, giving teacher support and executing evaluation research. 
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Fortunately, the author had direct access to most of these practices as an inservice 

teacher trainer; as researcher/developer in a project on the professional development 

of inservice teacher trainers; as developer and developmental researcher at the 

OSM-project, at the Freudenthal Institute, and at Purdue University; and as imple­

mentation and evaluation researcher in a textbooks research project that was funded 

by the Institute for Educational Research SVO. Tuis does not mean, however, that 

this study merely reflects personal experiences. Many practices are better under­

stood as a participant observer. Apart from this, the work of the Freudenthal Institute 

as a whole -whether available in documents or in personal communication -formed 

the core of the practice that is reflected upon in this study. As such the study repre­

sents also a deliberation on the work of the Freudenthal Institute. 

set up 

Tuis book consists of six chapters that are written as independent articles -with ex­

ception of the last chapter which is written as a closing chapter. 

The set up of the book reflects in a way the chronology of the process of finding 

out how one develops realistic mathematics education. The first chapter contains a 

reconstruction of the development of the first grade curriculum. Tuis reconstruction 

incorporates both the developmental process and the underlying theory. As such, it 

offers an experiential base for an altemative approach to curriculum development, 

from which a practice of developmental research follows naturally. One of the issues 

that emerges from this reconstruction is the centra) role of instruction theoretica) de­

liberations. The thought experiments of the developers that underlie the design of the 

instructional activities take the form of micro-theories on the learning processes of 

the students. 

The second chapter that deals with the role of manipulatives (e.g. tactile and visual 

mode Is) in mathematics education can be seen as an extension of these deliberations. 

Tuis chapter reveals the limitations to the alleged role of manipulatives as mediating 

tools to gain mathematica] insight. 

Chapter 3 is a follow-up in the sense that it focuses on altemative ways to fulfil 

this mediating function. At the same time this chapter elaborates on the theory of 

realistic mathematics education and the heuristics that can be employed when deve­

loping instructional sequences. 

In chapter 4 the shift from curriculum development to developmental research is 

made. The basic idea of developmental research is illuminated and illustrated. De­

velopmental research is placed in the context of educational development that is 

thought to be broader than mere curriculum development. Educational development 

encompasses the whole innovative process -from idea through actual change in the 

classroom, and all means that are employed to establish this change. At the end of 
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this chapter the wider feedback loops incorporating everyday practice are brought to 

the fore. 

Those two elements, actual change and feedback, are the central issue in chapter 

5. Tuis chapter focuses on implementation and evaluation in the context of this in­

novative endeavor. The basis for this review is an extensive research project on the

implementation and the effects of a realistic and a mechanistic textbook series in

grades l through 3.

Finally, the book concludes with an analysis of the ways in which developmental 

research can legitimize its own results. Much of what is discussed in the earlier chap­

ters is brought together, not as a summary, but as a base for further reflection. 

notes 

This study concentrates on the development of realistic mathematics education in primary 
school, although it should be mentioned that realistic curricula for secondary education 
are developed within The Netherlands as well (De Lange, 1987; Kindt, 1993; Team W 12-
16, 1992). 

2 In connecting 'realistic' to the Dutch approach it is not claimed that no similar approaches 
are developed elsewhere. Take, for instance, the work of Kamii ( 1993), Whitney ( 1985). 

3 In 1980 the IOWO was terminated, but the research activities were continued in the Re­
search Group on Mathematics Education and Educational Computer Center (OW&OC), 
that was renamed Freudenthal Institute in 1992 to honor its founder Hans Freudenthal. 
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1 lnstructional design as a learning process 

reconstructing the development of an elementary 

school mathematics course 

introduction 

According to many specialists in the field, curriculum planning should be ap­

proached in a professional, scientific way. In the 1970s many instructional design 

theories and principles were proposed for this purpose, of which Gagné and Briggs' 

'Principles of Instructional Design' is probably the best known (Gagné and Briggs, 

197 4). These design principles are characterized by a means-ends rationality and by 

rational methods of task analysis. First, the targets are to be operationally defined, 

followed by a division of learning tasks into a number of smaller, hierarchically or­

dered steps. Application of these principles to mathematics education leads to tightly 

pre-structured courses, modelled on what is called the mechanistic approach of 

mathematics education (after Treffers, 1987). In this context Goffree (l 986) speaks 

of one-dimensional learning processes which are the result of one-dimensional de­

sign theories. 

The significance and usefulness of such instructional design theories has been 

put into perspective in the last few years. Merrill, who has been one of the prominent 

theoreticians in this area, is doubtful about the potentiality of such design theories 

(Merrill, Li and Jones, 1990a and b). Merrill et al., summarize the deficiencies of 

what they call 'first-generation instructional design theories'. They characterize the 

deficiencies in question as a Jack of coherence, of utility and of comprehensiveness, 

in the following terms: 

• coherence: the instructional analysis and design focuses on knowledge and skill
components in isolation, and not on the integrated wholes necessary for under­
standing of complex dynamic phenomena;

• utility: the prescriptions for pedagogie strategies are either superficial or Iacking al­
together;

• comprehensiveness: existing theory does not provide any means of incorporating
finegrained expertise about teaching and learning, gained from research, and ap­
plying this in the design process (Merrill et al., 1990b, p. 26).

Pieters (l 992) endorses these objections, but regards as unjustified the hope which 

Merrill et al. (1990b) attach to the second-generation design model they themselves 

propose. Tuis model assumes a completely transparent knowledge base on the part 

of the designer and is based on the principle that designing is a strictly logical pro­

cess. Research has shown, however, that 'we should regard the expert designer as 
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instructional design 

somebody who operates from a rich rather than from a logically well-organized 

knowledge base' (Pieters, 1992, p. 35). An expert designer is a 'reflective practitio­

ner' (Schön, as quoted in Pieters, 1992), in whom the processes of creating a design 

and reflecting on that design directly influence each other. 

According to Merrill et al., however, first-generation design theories offer too 

few possibilities for utilizing finegrained expertise. Tuis applies both to the use of 

previously available expertise and to the learning process of the designer. The mod­

els offer little room for the accommodation of new knowledge (Merrill et al., 1990a). 

In reports on developmental work there are, in genera}, few traces of 'finegrained ex­

pertise'. Tuis is probably the result of the dominance of technica) instruction-based 

design models under which influence 'professional developers' fee) obliged to jus­

tify their designs in terms of such mode Is. Tuis chapter examines what form of 'fine­

grained expertise' constitutes the basis for a particular instructional design, how the 

expert information is developed, and to what extent it is reflected in further devel­

opmental work. The design in question is contained in the Dutch textbook series 

'Rekenen & Wiskunde' for grade 1 (Gravemeijer, Van Galen, Kraemer, Meeuwisse 

and Vermeulen, 1983). The investigation concerns two aspects of the design, namely 

its content and the process by which it is created. 

The content involves the expertise itself, which is manifested in the develop­

ments, adjustments and revisions of the curriculum. In order to provide a point of 

reference for the reader we shall first reconstruct the global theoretica} framework 

on which the curriculum is based. The process concerns the development process; 

that is, the interaction between the framework and the finegrained expertise on the 

one hand, and the experiences gained in the developments, the adjustments and the 

revisions, on the other. 

The content analysis results in what might be called the theoretica} product of the 

development work. In our example, this is a local instruction theory for initia) arith­

metic. The process analysis serves to detect emerging patterns of activities which 

can be used for a more detailed characterization of this type of development work. 

The chapter takes the form of a reconstruction. In what follows, we shall describe 

the development process in chronological order and, simultaneously, reconstruct the 

theoretica} basis of the development work. These descriptions of the development 

work will be interspersed with 'reflections' in which salient characteristics regard­

ing content and development will be discussed. The fact that we are dealing with a 

reconstruction implies that the theoretica} basis is dated. 

At the end of the chapter this basis will be supplemented with the insights that 

have been developed since the period of analysis. The chapter concludes with a dis­

cussion of the development strategy. 
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development context 

1.1 development context 

The New Math movement in the sixties was watched with great suspicion in The 

Netherlands. Tuis critica! attitude resulted in 1970 in the foundation of the Institute 

for the Development of Mathematics Education (IOWO). Under the direction of 

Hans Freudenthal, IOWO focused on 'educational development in consultation with 

educational practitioners'. Tuis refers to the broadly based innovation approach of 

incorporating curriculum development pre- and in-service teacher training, educa­

tional research, and feedback from the schools. The design and discussion of inspir­

ing examples ('prototypes') formed the core of the innovation strategy. The proto­

types that were developed by IOWO served as a source of inspiration for textbook 

authors. Tuis resulted in four textbook series in which these new ideas were given 

concrete form (De Jong, 1986). 

The textbook series developed by the present author and others 1, which is published

under the Dutch title 'Rekenen & Wiskunde', belongs to this group. It has been 

adopted by approximately one-third of Dutch primary schools and is given a positive 

evaluation by specialists in the field (Feijs, De Jong, De Moor, Streefland and Tref­

fers, 1987). Formative and summative evaluations showed that the first grade cur­

riculum which was developed within the Education and Social Environment (OSM) 

project, worked well.2 The OSM project was strongly oriented towards educational

technology and targeted towards inner city schools (Slavenburg, Peters and Van Ga­

len, 1989). The project' s approach consisted of a scientific analysis of target group 

problems and a scientific approach to curriculum development. A problem analysis 

for students from underprivileged backgrounds provided an overview of the condi­

tions which curricula had to meet. These included a well-structured organization of 

the subject matter that would result in dividing content to be learned into small learn­

ing steps and accompanying this with highly structured forms of instruction. 

In practice, this methodology amounted to the use of a curriculum development 

strategy similar to the first-generation design models. As will become clear, such a 

strategy was not followed in practice when developing 'Rekenen & Wiskunde' (see 

Gravemeijer, 1983). 

frame of reference 

As was mentioned earlier, Merrill et al. (1990b) refer to 'finegrained expertise about 

teaching and learning' linked to research. Presumably, however, the types of infor­

mal knowledge that will be used or applied in curriculum development practice will 

include informal knowledge in the form of ideas about teaching and learning, about 

the school subject matter, and about the potentialities for teachers and students. In 

the case of 'Rekenen & Wiskunde' (for grade 1) this frame of reference can be de­

scribed globally by means of the following summary. 
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instructional design 

The common ideas of those who worked within the framework in and around the 

IOWO at the start of the development work - in the early '70s - included: 
- the conception of mathematics as a human activity, and the associated ideal of

learning mathematics as a 'reinvention process' (Freudenthal, 1973);
- domain specific instructional theories, such as Van Hiele's level theory (Van

Hiele, 1973), Treffers' analysis of the mathematica} thinking process (Treffers,

1978), Goffree's analysis of the counting process (Keijnemans, Jansen and Gof­

free, 1977), and Freudenthal's (1973) phenomenological analysis of the concept

of number;
- Van Gelder's 'traditional' method of arithmetic instruction (Van Gelder, 1969);
- general instruction theories, including the theories based on activity theory (Van

Parreren and Carpay, 1972; Gal'perin, 1972; Davydov, 1972), and on cognitive

psychology (Ausubel, 1968; Skemp, 1972).

Apart from the theories just mentioned, developers had existing textbooks and model 

courses at their disposal, the Jatter including in particular the prototype courses de­

veloped at the IOWO. 

In the following sections, the way in which these theories, ideas, and models are 

integrated into a development process is reconstructed. The guiding principles are, 

the idea that mathematics is a human activity, and that the learning of mathematics 

is a process of learning through reinvention. This view of mathematics education 

forms the core of the instructional design. 

1.2 basic assumptions 

philosophy of education 

Any philosophy of mathematics education can, according to Thompson ( 1984), be 

divided into the following three parts: beliefs about mathematics, beliefs about 

teaching and learning, and beliefs about mathematics education itself. However, 

these beliefs are not independent. Particularly in curriculum development, ideas 

about mathematics as well as ideas about teaching and learning are bound to be 

strongly interdependent and difficult to separate. Curriculum development involves 

a conglomeration of ideas, theories and notions. 

With 'Rekenen & Wiskunde' (hereafter called R&W), we chose to emphasize in­

struction that provided room for considerable personal contributions from the stu­

dents, and for learning theories which recognize the importance of mental con­

structs. Following Freudenthal ( 1971, 1973), the emphasis was on the idea of math­

ematics as a human activity: 
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'It is an activity of solving problems, of looking for problems, but it is also an activity 
of organizing a subject matter. Tuis can be a matter from reality which has to be or­
ganized according to mathematica! pattems if problems from reality have to be 
solved. lt can also be a mathematical matter, new or old results, ofyour own or others, 
which have to be organized according to new ideas, to be better understood, in a 
broader context, or by an axiomatic approach.' 

(Freudenthal, 1971, p. 413-414) 

Tuis organizing activity is called 'mathematizing'. 3 Mathematics education for

young children, according to Freudenthal (1973), bas to be aimed above an at math­

ematizing everyday reality. Besides the mathematization of problems which are real 

to students, there also bas to be room for the mathematization of concepts, notations, 

and problem sol ving procedures. Treffers ( 1987) makes a distinction in this connec­

tion between horizontal and vertical forms of mathematization. The former involves 

converting a contextual problem into a mathematica! problem, the Jatter involves 

taking mathematica! matter onto a higher level. Vertical mathematization can be in­

duced by setting problems that allow solutions on different mathematica! levels. 

The accompanying reinvention principle4 (Freudenthal, 1973) is regarded by the de­

velopers as a suitable altemative to the sequencing principles which characterize 

most of the first-generation design models. According to the reinvention principle, 

a learning route bas to be mapped out that allows the students to find the result by 

themselves. To do so, the curriculum developer starts with a thought experiment, 

imagining a route by which he or she could have arrived at a solution him- or herself. 

Knowledge of the history of mathematics may be used as a heuristic device in this 

process. The emphasis is on the nature of the learning process rather than on invent­

ing as such. The idea is to allow learners to come to regard the knowledge they ac­

quire as their own, private knowledge; knowledge for which they themselves are re­

sponsible. 

On the teaching side, students should be given the opportunity to build their own 

mathematica! knowledge on the basis of such a learning process. 

reflection on the basic assumptions 

Unlike the first-generation model designers, the R&W developers <lid not seek a ba­

sis for the new curriculum in genera! instruction theory. Neither <lid they take con­

crete objectives as their point of departure. Rather, the basis for the new curriculum 

was in the philosophy of education, which itself was inextricably linked to the idea 

of mathematics as a human activity. The learning of mathematics was seen as an ac­

tive process and the teaching of mathematics as a process of (guided) reinvention. In 

consequence, the designers· aims shifted from concrete objectives to the educational 

process itself. 

Note, however, that this does not imply that concrete objectives have lost their 

significance, nor that the value of a curriculum cannot be measured in terms of goals 
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to be attained. Surely, the relevance of specific skills can be a possible source of dis­

agreement, but no one will dispute that every elementary school mathematics curric­

ulum, in the end, has to result in the ability of students to deal with mathematica! as­

pects of real-life situations in a satisfactory manner. 

Another choice the development group made concemed the priority given to the 

design of learning materials. Here, priority could have been given to the process of 

influencing the beliefs held by teachers. However, these beliefs were relegated to 

second place. The reasoning bebind this choice was that it makes no sense to try to 

rouse teachers' enthusiasm for new ideas if there are no suitable instructional mate­

rials available. Tuis principle was supported by personal experiences with in-service 

courses organized by the IOWO, at which participants had expressed that they did 

not fee! competent to make adequate changes in the textbooks they used. 

The choice of priorities just outlined was, however, chiefly due to the particular 

context of the development. The OSM project was strongly oriented towards educa­

tional technology and favored a traditional 'research-development-diffusion' ap­

proach: the ultimate goal was the development of teacherproof curricula. In the 

views of the R&W developers, however, there was no place for a pre-programmed 

teaching-learning process, since the whole process would depend on the individual 

contributions of students and had to be interactively constituted between teacher and 

students. Acceptance of the ideas, as well as the knowledge and insights underlying 

these intentions, was considered essential. As a result, the developers invested a 

great deal of effort in informing and convincing teachers. Tuis happened, among 

other things, by means of in-service teacher training and systematic clarification of 

the intentions bebind the instructional activities in the teacher guides. However, all 

this took place against the judgement of the OSM-project leaders who clung on to 

the idea of teacherproof curricula and who wished to aim the in-service training at 

providing technica! information about the implementation of the curriculum. 

1.3 global framework 

Van Hiele's levels 

In the conceptualization of the first-grade curriculum Van Hiele's level theory 

(1973, 1985) played an important part. Van Hiele introduces his idea about different 

levels of thinking as the explanatory framework for many problems in mathematics 

education. He analyzed the communicative process between the teacher and student, 

and observed that the concepts used by the teacher and students are different in 

meaning. Although the same words are used, their meanings are based on different 

frames of reference. Teachers have a content-specific framework of relations at their 

disposal, students do not. It follows that discussions based on arguments which pre­

suppose the existence of such frameworks are impossible. Only if both parties have 
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the same framework at their disposal a consensus can be reached on the basis of ar­

gumentation. Content-specific frameworks constitute the core concept in Van 

Hiele's definition of the following three levels of thinking: 
- the ground level
- the first thinking level
- the second thinking level.5

At the ground level relational frameworks are as yet non-existent. Exploration of a 

subject matter area at ground level may lead to the formation of fundamental rela­

tions, which may, in turn, be interconnected in such a way that a framework is cre­

ated. As soon as the student has established such a framework the first thinking level 

has been reached. The next level is unlocked when first-level processes are accessi­

ble for reflection and thus become thinking objects for the second level. 

Tuis distinction in levels is not an absolute one. For example, the second arith­

metical level may, according to Van Hiele, be conceived of as the ground level for 

algebra. Van Hiele calls this 'level reduction'.6

the concept of number 

Van Hiele elaborates the level theory for the development of the concept of number 

in the following way (Van Hiele, 1973, p. 182-183): 
- At ground level numbers are still tied to observable quantities, and to actions in­

volving physical entities.
- At the first level the relations between numbers and quantities are the object of

investigation, and a relational framework is being created. As Van Hiele puts it:

'Whereas at ground level the concept 'four' may be tied to visible entities, e.g. to the
vertices of a square, and features as a word in the series 'one, two, three, four, five ... ',
on the first level it is a junction in a relational framework. On this level it might be
two plus two, or two times two, or possibly five minus one. In any case it has already
disengaged itself from the realm of the concrete.'

(Van Hiele, 1973, p.182) 

- On the second level the relations themselves are the object of investigation. Con­

nections are made which allow for the construction of a logical and meaningful

system.

For the authors ofR&W, the significance of the level theory did not reside in its the­

oretîcal use, for example in a sharp classification into levels, but in its practical im­

plications. First, mathematics has to start on a level at which the concepts used have 

a high degree of familiarity for the students, and, secondly, its aim has to be the cre­

ation of a relational framework. The selection of Van Hiele 's level theory also had 

consequences for the curriculum goals: rather than aiming for isolated skills or basic 

facts, courses would be aimed at the creation of relational frameworks. In more con­

crete terms, numbers up to 20 would eventually have to function as junctions in a 

relational framework. 
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structuring 

One of the principles of the OSM project was a pronounced structuring of learning 

content in order to meet the specific learning processes associated with underprivi­

leged learners. In the OSM framework structuring was linked to the idea of task 

analysis (Gagné, 1977). However, from our earlier discussion it follows that it is dif­

ficult to reconcile Gagné's task analyses with a process-oriented learning theory 

such as the level theory. Consequently, the R&W development group looked for an 

alternative sequencing principle. Tuis was found in Skemp's views on mathematics 

education (Skemp, 1972). Skemp builds on the notion of learning on the basis of 

schemata. The word schema refers to the way in which knowledge is stored in mem­

ory, as a coherent system of elementary knowledge items. Skemp bases his theory 

on cognitive psychology and adopts two main functions of schemata: first, a schema 

integrates existing knowledge, and, secondly, a schema functions as a mental aid in 

the acquisition of new knowledge. Skemp links learning on the basis of schemes to 

'relational understanding', which he opposes to 'instrumental understanding' 

(Skemp, 1976). Relational understanding refers to what we take the term 'under­

standing' to mean in mathematics: knowing how something is done and knowing 

why it can be done in that way. In daily life the term 'understanding' has additional, 

different meanings. For example, understanding a rule or procedure can be taken in 

an instrumental sense: knowing what to do, without knowing why. 

Given these distinctions, the creation of a relational framework can be interpret­

ed as the accretion, restructuring or tuning of a schema. The development of a rela­

tional framework can be characterized as a fairly gradual process of growth, that is, 

a process that can be phased. Such phasing constitutes a basis for structuring the 

learning process. In other words, structuring is interpreted as the gradual construc­

tion of a relational framework. 

These two principles, the level theory and relational understanding, form the glo­

bal background for curriculum design.Amore concrete characterization depends on 

Freudenthal 's analysis of the concept of number. 

phenomenological aspects of the concept of number 

Freudenthal be gins his analysis of the concept of number by indicating that the term 

'concept of number' is, in essence, misleading. In his view it would be more accurate 

to use the plural form 'concepts of number': 'There are many number concepts, both 

as regards content and form, from methodological, genetic, and didactic view­

points.' (Freudenthal, 1973, p. 170). He addresses different forms of access to the 

concept of number: '( ... ), we will discuss the question of its access. How do numbers 

emerge, and how are their domains and operations extended and restricted.' ( op. cit., 

p. 170). He makes five distinctions in the use of the term number, labeled as: refer­

ence number, counting number, numerosity number, measuring (or: proportional)

number and reckoning number.
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- Reference number. The only significance of reference numbers is that they are

used as a name or form of reference, as for example in referring to a bus service

as 'bus number 14'.

- Counting number. Counting number refers to the counting process; that is, in the

verbal control over a number word sequence, including the ability to count for­

ward and backward. Counting numbers develop separately from the process of

resultative counting. The number word sequence may be learned as the text of a

playing song, for example as part of the game of hide-and-seek.

- Numerosity number. What Freudenthal calls numerosity number is, broadly

speaking, equivalent to the notion of cardinal number or 'amount'. However,

Freudenthal also refers to the associated concept of equipotency. Sets are equi­

potent when they contain the same number of elements. Equipotence does not

necessarily involve counting. lt implies the existence of one-to-one correspon­

dences between sets. Y oung children are often able to compare quantities before

they can count. In this context Freudenthal describes how his grandson Bastiaan

was able to recognize the number of people present by means of the equality be­

tween the configuration of six berries on his spoon and the people around the ta­

ble: 'That's how many there are of us'. He then provided the necessary evidence

by referring to 'Grandma and Granddad', 'Mum and Dad', and 'Bastiaan and his

sister'.

- Measuringlproportional number. Tuis is the most frequently used type of num­

ber. In using numbers to describe the world around us, we mostly use the mea­

surement aspect of numbers. For example, we might say, 'Four dollars for a

pound of tomatoes? That' s expensive.' Tuis measuring function is immediately

obvious in the expression 'one pound', but measuring is also involved in the ex­

pression 'four dollars'. Tuis expression does not refer to a number of dollars as

separate entities, rather we are using the dollars as a measurement unit. Tuis ex­

ample shows that measuring numbers have a very special function: they are used

to represent proportions. Therefore, one also uses the term 'proportional num­

bers' to indicate this property.

- Reckoning number. In arithmetic books this is the number aspect that gets the

most attention. lt involves the ability to work with numbers within a system of

conventions and rules, such as 'In multiplication you can exchange the numbers'

(i.e. 16 x 2 = 2 x 16). Knowledge of these types of rules simplifies working with

numbers. The result of 16 x 2 can easily be derived from 2 x 16 = 16 + 16 = 32.

However, badly understood rules can only lead to confusion: 16 + 2 does not

yield the same result as 2 + 16.

The reckoning number was seen as a separate category. Following Van Hiele ( 1973), 

it might even be placed at the highest level of thinking. In R&W, however, 'reckon­

ing number' was used as a label for the first level, that is, to numbers as junctions in 
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a relational framework. In order to reach this level, the students would have to start 
with an exploration at ground level. 

Adding the distinctions in the concept of number made by Freudenthal would 
pro vide a wider context for this exploration. Whereas Van Hiele concentrates mainly 
on pure arithmetical relations, Freudenthal's analysis adds an extra phenomenolog­
ical dimension to the concept of number. Below we shall explain this in greater de­
tail. 

reflection on a global framework 

In R& W the idea of reinvention is worked out in such a way that the creation of a 
relational framework is linked to relational learning. Tuis approach differs funda­
mentally from traditional concept formation theory. The curriculum goal is formu­
lated in terms of a relational framework (which can also be conceived of as a cogni­
tive structure (Ausubel, 1968)). However, unlike Van Hiele's analysis, the intended 
relational frameworks are not confined to relations between numbers. The integra­
tion with Freudenthal' s phenomenological analysis of numbers also adds connec­
tions with everyday life. Tuis fits the idea of reinvention. If we assume that mathe­
matics has its origin in the need to solve everyday problems, then such problems 
should also be the starting point in the reinvention process. 

Tuis integration is expressed in the structure of the curriculum, which is two-di­
mensional. The first dimension expresses the various distinctions in the concept of 
number, the second dimension forms the developmental stages of a relational frame­
work. The starting point here is that different aspects of the concept of number de­
scribe the ground level where exploration can take place. The other assumption is 
that all these aspects contribute to the structuring of a relational framework and that 
they will be integrated in the reckoning number on the first thinking level. 7 Structur­
ing is characterized as a process of phased growth in the development of the rela­
tional framework. In this sense, too, the approach being sketched here differs funda­
mentally from the traditional one, which divides the subject matter into separate 
learning steps which are to be connected only at a later stage. Most first-generation 
design models use a top-down strategy in designing a learning sequence. The intend­
ed end goals are analyzed and divided into small steps which determine qie prereq­
uisites for the learning of a particular skill. The same approach is applied to the pre­
requisites themselves, and eventually leads to basal enabling behavior. Subsequent­
ly, the student covers the learning sequence thus designed in reverse order. 

The proposals by Van Hiele, Freudenthal, and Skemp follow a different route. It 
is the students' solution that anticipates what is to come. The problems are selected 
in such a way that promising approaches to a solution are teased out. In one form of 
reinvention or another, by a process of orientation, organization and reflection, stu­
dents form the relationships which are necessary for the construction of a relational 
framework. 
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1.4 learning structure 

Given Van Hiele's, Freudenthal's and Skemp's approach, phasing the construction 

of a framework becomes possible by restricting the exploration of the intended 

framework to a small area, for example the numbers one through six. The various 

number relations can then be explored one by one in such an area (which, in turn, 

provides a further structuring). Subsequently, the area can be extended to include 

numbers one through twelve. Finally, another extension covers the remaining num­

bers through twenty. It goes without saying that exercises have to be added to these 

explorations in order to intemalize the previously formed relations. 

resultative counting 

The division sketched above may create the impression that various aspects of the 

number concept are to be developed independently from each other. However, this 

impression is false. Counting number and numerosity number especially, are strong­

ly interwoven in resultative counting. 

Against the background of Freudenthal's analysis, the process of resultative 

counting can be seen as a synthesis of the development of counting number and nu­

merosity number. Resultative counting requires that countable objects are mapped 

one by one on the number word sequence, and that the last number is conceived as 

a cardinal number. In other words, in resultative counting the student is required, 

first, to exhaustively match one set of objects with a corresponding set of numbers, 

and, secondly, to go through a number word sequence plus the objects that are to be 

counted in a systematic fashion, and, thirdly, the student is required to know that the 

result of the counting process is independent of the manner of counting. 8

Although the aspects of number mentioned here are interwoven in the proposed 

design, the theoretica! division will be retained for purposes of clarity of description, 

especially with reference to the numerosity-number strand and the counting-number 

strand. 

the numerosity-number strand 

Two tracks are followed in the learning of addition and subtraction. One track fol­

lows the counting-number strand, with addition and subtraction as counting-on and 

counting-up/counting-back. The other track involves the numerosity-number strand, 

with the process of number-structuring is the most important principle. We shall be­

gin with the Jatter. 

The construction of a relational framework, as Van Hiele points out, is dependent 

on the formation of relationships at ground level. In the context of activities involv­

ing the structuring of quantities, Van Gelder ( 1969) gives some concrete suggestions 

for such explorations at ground level. Structuring includes the process of 'ordering' 

(i.e. dividing into equal groups, for example, into pairs), 'dividing' (into a number 
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of equal groups), and 'splitting up' (into two equal or unequal groups of arbitrary 

size). The structuring of quantities typically precedes addition and subtraction (or 

'taking together' and 'taking away'). In addition to the use of problems involving 

invisible quantities the use of Cuisenaire materials was considered for these types of 

activities. Notice that what is in fact involved here is, that the structuring of quanti­

ties has to serve as a basis for the mental structuring of numbers. 

As mentioned earlier, the exploration of relations between numbers occurs in 

phases. The first phase involves the construction of a local relational framework 

with numbers one through six, followed by the first exploration of numbers one 

through twelve at ground level, and, finally, an extension to twenty. The structuring 

of numbers one through six is immediately followed by automatization of the oper­

ations (but without the use of operator signs). However, before the automatization 

of operations for numbers one through twelve comes into effect, procedures for ad­

dition and subtraction are introduced. These procedures are based on an approach 

proposed by Davydov (1972). 

Davydov distinguishes three stages in the learning process involving addition 

(and subtraction). The core of his approach consists of the transition from re-count­

ing to successive counting (i.e., count-on and count-back). In re-counting the sum 

of, for example, 5 plus 3 is found by first counting both numbers as sets of concrete 

objects and then counting the total number of objects. By contrast, in the case of suc­

cessive counting only the second number (i.e. 3) has to be represented in concrete 

form. The first numerosity (i.e. 5) does not have to be the result of counting; the stu­

dent starts with the number 5 and, after a process of curtailment, resumes counting 

('six, seven, eight').9

In order to stimulate the transition from re-counting to successive counting the 

first number of a series is represented by a small box. The student can still go through 

the whole series preceding the first number by tapping on the box. In the case of 

5 + 3 the student applies five taps, counts 'one, two, three, four, five' and successive­

ly counts 'six, seven, eight'. Tapping is gradually abandoned and the final number 

of the first series is automatically conceived as a manipulative object in the succes­

sive counting process problem. According to Davydov the concrete counting numer­

osity is 'carried along in the mind'. 

Incorporating Davydov's procedure has several advantages. First, training for 

quick answers is postponed for a while, which prevents degeneration into mindless 

memorization. Secondly, Davydov's procedure allows the student to become famil­

iar with using the number word sequence as an aid for addition and subtraction. 

(More about this later). Thirdly, it contributes to the development of resultative 

counting by linking counting number to numerosity number. 

Another issue concerns the introduction of the operation signs ('+' and '-'). 

These are introduced in the context of a story involving a city bus, in which the stu­

dent has to check ongoing changes in the number of passengers. (Tuis context was 
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taken from a prototype course by Van den Brink, 1974). Passenger entering and 

leaving a bus provides a situation in which addition and subtraction emerge as nat­

ura} activities. The situation is used to introduce some sort of written language for 

the description of quantitative changes. The entering and leaving of passengers is de­

scribed by means of what is called a 'bus chain' (fig. 1.1). 

figure l.1: bus chain 

On the basis of this context-bound mathematical language a semi-formal arrow lan­

guage is to be developed that can also be used in other situations (fig. 1.2). 

2 
+4

figure 1.2: arrow language 

In the curriculum the arrow language is eventually replaced by standard forms of no­

tation ('2 + 4 = 6') after the equal-sign has been developed in situations involving 

statie comparison (see Van den Brink, 1984). Also, at this stage the development of 

the relational framework is supported by the structuring of numbers, among other 

things, with the aid of Cuisenaire materials. In extending the relational framework, 

strategies are co-developed which form the foundation for the basic number facts. 

However, the automatization process itself is regarded as a separate component. 

Knowledge of number relations, and the ability to form relations between num­

bers are distinguished from the ability to provide prompt answers to sums presented 

in standard '+' and ' -' notation without the aid of countable objects. In other words, 

there is a difference between the ability to explain why 7 + 8 equals 15, and the abil­

ity to provide a prompt answer. However, the latter ability does not imply that facts 

such as 7 + 8 necessarily have to be memorized. lt is sufficient that the answer is pro­

vided quickly using a speedy reasoning process. Automatized solution strategies of 

this kind have the advantage that the connection with the underlying number rela­

tions are maintained. 

the counting-number strand 

The number word sequence is not only important as a prerequisite for resultative 

counting, it also supports the process of arithmetic itself. Freudenthal ( 1973) points 

out that the child develops the number word sequence independently of the cardinal 
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aspect. Tuis not only means that most children can recite part of the number word 

sequence from an early age, it also means that they quickly learn the properties of 

the number word sequence. For example, they get to know the relative order of the 

numbers (e.g. 8 comes somewhere before 15), and are able to count-on and count­

back. The following anecdote illustrates this: 

Six-year old Onno says to his sister, who is two years older: 'When l'm eight, you wil! 
be ten' ... 'And when I am ten you wil! be twelve.' 

Knowing the number word sequence is clearly also important in operations involv­

ing cardinal numbers, such as addition and subtraction. From prototypical materials 

developed by Van den Brink (1974), the developers adopted the idea to use the num­

ber line for addition and subtraction. It was hoped that the use of the number line 

would enable the students to use counting number properties for operations involv­

ing cardinal numbers. 

An abrupt introduction of the number line would bring along the danger that the 

students would experience acting on the number line as a mere trick. The distinction 

made by Freudenthal between counting number and numerosity number shows that 

there is a problem in this area: The number line represents the number word se­

quence, and therefore the counting number, whereas the process of addition is relat­

ed to the number of bus passengers, that is, to the numerosity number. 

The solution to the problem is found in Davydov's procedure for the learning of 

addition and subtraction, which was discussed earlier (Davydov, 1972). In this pro­

cedure, counting-on and counting-back are explicitly linked to working with quan­

tities, beginning with the most elementary form of addition, namely exhaustive re­

counting. A process of shortening and intemalization of the action subsequently 

leads to the aimed final operation. 

lf we look at this process of shortening in greater detail we see that the act of 

counting becomes more and more detached from concrete objects. The objects that 

are to be counted disappear into the background, and successive counting is gradu­

ally replaced by counting-on and back (in jumps) within the number word sequence. 

Davydov's procedure offers a conscious transition from re-counting based on re­

sultative counting to the skillful use of the number word sequence as such.10 As we

observed earlier, the number line represents the number word sequence. Tuis fact 

has to be understood by the student. In the curriculum design the process of under­

standing is anticipated by means of forward and backward counting. Tuis allows for 

a men tal image of the number word sequence to be constructed as a series of ordered 

numbers, which can obviously be represented by way of a number line. The number 

line subsequently serves as a material basis for the execution of operations. Van den 

Brink (1989) calls this use of the number line a 'working model', to be distinguished 

from the use of the number line as 'reflection model'. The Jatter use represents a later 

stage in which a process of reflection takes place on the relationship between addi-
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tion and subtraction by means of visualizations along the number line (fig. 1.3). 

O 1 2 3 <l 5 6 7 8 9 10 11 12 13 ,. 

s+ ... = ... 9- ... = ... 

figure 1.3: adding and subtracting on the number line 

It is clear from the above that the counting number does not only form the basis for 

resultative counting in the curriculum design, but that there exists a longitudinal 

strand that continues to be significant in which the number word sequence as a basis 

for various counting activities. The counting-number aspect forms an important aid 

in the learning of addition and subtraction; first in the procedures of counting-on and 

counting-back, and, subsequently, in the use of the number line as a work and reflec­

tion model. 

measurement (or proportlonal) numbers 

Since this chapter is concentrated on initia} arithmetic, we shall disregard pure mea­

suring activities as well as geometry, and restrict ourselves to the concept of propor­

tions. The introduction of a qualitative concept of proportion is linked to 'proportion 

fidelity' in pictures and photographs. Even young children realize ('intuitively') that 

proportions have to be right. In the IOWO prototypes this intuitive grasp of propor­

tion is brought to consciousness by means of perceptual contradictions and extreme 

differences, in thematic subjects such as 'Madurodam' and 'Duimeliesje' (fig. 1.4) 

(see Van den Brink and Streefland, 1979). 

figure 1.4: Duimeliesje 
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The next step in the design involves the arbitrary - but proportionally faithful - as­

signment of numbers to distances and strips. The notion of proportions also plays an 

important role in qualitative counting (Keijnemans et al., 1977), which involves, 

among other things, comparisons on the basis of density, pattems, or groups (fig. 

1.5). 

More butterflies or more flowers? 

figure 1.5: qualitative counting 

The significance of this kind of activity lies not only in the subject matter but also in 

the possibilities for individual approaches and different solution levels. Together 

with one-to-one matching, qualitative counting is subsumed under the heading of 

'counting strategies'. 

The focus that is attached the notion of proportion is also reflected in the choice 

of Cuisenaire materials. The question of which numbers are represented in these ma­

terials is determined by the length of the bars. Since, in contrast to MAB and Unifix, 

the Cuisenaire materials are not articulated, counting is impossible and the student 

therefore has to go by length or color. In Cuisenaire's original conception, color is 

crucial. In our design the notion of proportion is given prominence. For example, it 

uses graphically represented Cuisenaire problems (fig. 1.6). 

s 

figure 1.6: graphically presented Cuisenaire problem 
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In fig. 1.6 the number 5 represents a sum that bas to be split into two. The bar pro­

portions make it clear that the solution is 2 + 3.11

reference and reckoning numbers 

The role of reference numbers is restricted. In the course design reference numbers 

only appear in the learning of numerals. Within that context, the specific signifi­

cance of referential numbers as labels is stressed. Tuis did not cause any problems 

for the majority of first-grade students. The reference number however can create 

confusion for young children as long as it is not distinguished from other number as­

pects. 

Finally, reckoning numbers do not fit in with the ground level. They are part of 

the relational framework that bas to be created, along with the subsequent process of 
reflection. Tuis implies that rather than having reckoning numbers distinguished by 

themselves, they coincide with the development of the relational framework. 

overview 

The learning structure is divided into a number of sections, which are, in turn, sub­

divided into learning steps that form a hierarchical structure. Fig. 1.7 represents an 

overall outline of the structure in question in which the strands sketched above are 

easily recognized. 

ref/ection on the learning structure 

The influence of available educational designs comes clearly to the fore in the pre­

ceding reconstruction. The reconstruction does not provide a format derivation from 

operational goals as is the case in many concrete instructional design theories. On 

the contrary, the concrete goals remain in the background. The basis of the course is 

determined by a selection from the (sets of) instructional activities known at the start 

of the development work. lt is notable that this selection involves a number of wide­

ly different sources. We find ideas by Van Gelder, Davydov and Cuisenaire, next to 

the prototype arrangements by IOWO members like Van den Brink, Goffree and 

Streefland. However, these educational arrangements are adjusted and fitted into an 

overall design that fulfills the initial condition of 'mathematics as a human activity'. 

To put it differently, the available educational arrangements are used as (malleable) 

building stones for a structure of educational activities that is intelligible to the de­

veloper. The selection of the building stones, the manner of incorporation, and the 

adjustment, are determined by the principle of reinvention, which functions as the 

guiding principle for the developers. The reinvention principle is well illustrated by 

Van den Brink's city-bus course, in which different descriptive instruments are used 

to describe the quantitative changes. Subsequently, the descriptive instruments be­

come more and more central and increasingly detached from reality. There are two 

mathematical processes involved in this process, namely, formalization and gener­

alization. 
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Formalization concerns the process of changing from 'everyday language' to the 

formal language of mathematics. In the case of the city buses the number of passen­

gers is first represented in ordinary language, which is followed by busstop signs and 

a line of buses, or 'bus chain'. The chain is subsequently schematized as a bare arrow 

language. Once the students have become familiar with the equal-sign they are in a 

position to handle a formal language in which even the last visible reference to 

events or dynamic situations (as represented by arrows) has disappeared; a formal 

language which is also suitable for the description of statie situations. 

Generalization refers to the extension of the area in which routines or a special lan­

guage can be used. Once the students have gained some familiarity with the (pictures 

of) busstop arrows, these arrows are also used in different situations, such as, the 

game of skittles, or the number of waiting ticket-buyers, and so forth (fig. 1.8). The 

process of generalization is accompanied by a certain formalization of the language. 

The stop-sign poles disappear and the arrows are no longer interpreted as events at 

busstops. 

�-,��I 
10 l-41 �-··· 

figure 1.8: pictures and arrows 

The importance of the reinvention approach becomes clear if we compare the 'dot 

problem' 3 + ... = 5 with the corresponding city-bus problem (fig. 1.9). 

What has happened? 

figure 1.9: realizing 

The second problem is much more accessible. The strength of the city-bus context 

lies in the fact that the students become conscious of what is happening. Thanks to 

the reinvention process they are now able to imagine a real-life context from the 

more formal notations; constructing a formal notation through reinvention automat­

ically makes backtracking possible. To put it differently, the city-bus context gives 

meaning to the mathematical activities (also see Van den Brink, 1989). 
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1.5 development and testing 

connected to practice 

Just like other first-generation design models, the development strategy for the OSM 

project requested completely developed educational materials be made available at 

the start of the trial implementation. Tuis was not the case with the trial ofR&W. At 

the start of the trial period there were instructional materials for only three to four 

weeks. Tuis was a situation, which in fact, did not change at all. During the entire 

project the preparation of instructional materials never preceded classroom imple­

mentation by very long. Tuis is as some call 'if developing with one's back against 

the wall' (Shoemaker, personal communication). The time pressure was consider­

able, but it had one advantage: experiences in the classroom could be incorporated 

immediately. Consequently, practical experience assumed great significance as a 

'feed forward'; the components of the curriculum which were still to be developed 

could be adjusted directly on the basis of classroom experiences. 

As a result of such adjustments, formal evaluation lost much of its significance. 

Before the final evaluation of a particular school year was possible, the curriculum 

would already have been adjusted in many respects. At the same time, other kinds 

of criteria carne into the picture. Not only test results, but also classroom observa­

tions provided important indications about the learning process. The areas of obser­

vation include: 
- the interest and commitment shown by students
- the presentation of context-specific arguments
- the emergence of different, or, by contrast, very specific solution strategies
- discoveries, sudden insights, and so on.

It goes without saying that these processes were not regarded as being independent 

of the instructional behavior of the teacher. Consequently, interactions between 

teacher and students also formed an area of observation. In addition, classroom ob­

servations and discussions with teachers showed whether the teachers understood or 

shared the intentions of the developers, and to what extent they considered these in­

tentions practicable. The teachers actively participated in the evaluation. They func­

tioned as participating observers and commented on instructional activities. 

It should be mentioned that not all components of the development work were 

equally strongly linked to actual classroom implementation. The initia! design of 

learning structures and the overall curriculum structure, for instance, usually took 

place earlier. In addition, there were regular discussions concerning the structure and 

form of manuals, student materials, mixed ability teaching etc. 

property arithmetic 

The core of the design for first grade mathematics may be defined as: the phased de­

velopment of a relational framework in which the numbers 1 through 20 form the 
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junctions, and which incorporates the phenomenological aspects of the number con­

cept. 

The design did not contain a structure for exploration. That is to say, the initial 

idea was to focus on relations in various situations. In the development and testing 

of the curriculum this approach tumed out to lead to rather aimless explorations. In 

the case of the numbers 1 through 6 this problem was not particularly serious since 

the number of relations is restricted. However, for the higher numbers it produced a 

situation in which the various number relations stayed too isolated from each other 

and occurred too infrequently to lead to a cumulative learning effect. 

To counteract this disadvantage of the explorative method the number line was 

inserted in the first design (following Van den Brink, 197 4). It was thought that 

counting-on and counting-back would lead to spontaneous shortening, such as 

counting in jumps and the use of 'anchoring points'. However, in our experiment 

this approach did not work, firstly, because in practice the number line invited rote 

counting rather than shortened counting (e.g., 6 + 3 is solved by finding 6, moving 

up three places and reading off the result). In addition, the detour from a real-life 

problem to the number line and back proved too long for the students in the experi­

mental classes.12 They got stuck. The result was that a new approach had to be de­

veloped. 

The solution was sought in 'property arithmetic '. By taking the logica! properties 

of addition and subtraction as starting points, the exploration of the intended rela­

tional framework could be structured. These properties can be exploited in flexible 

arithmetic, as advocated by van Gelder (1969). Flexible arithmetic is distinguished 

from standard approaches to arithmetic by a flexible use of available knowledge. For 

example, the solution to 6 + 7 is easily found by adding l to the result of 6 + 6. 

In fact, the example illustrates the use of the associative property. These, and other 

properties were utilized in the design to structure the development of relational 

frameworks, as shown in fig. 1.10. 

the commutative property: 
the associative property 
with the following special cases: 

the inverse relation 
with the following special case: 

the cancelling out 
with the following special case: 

a+b=b+a 2+7=7+2 
a + (b + c) = a + b +c = (a + b) + c 5 + 4 = 5 + 2 + 2 
a + (a + 1) = (a + a) + 1 6 + 7 = 12 + 1 
(IO+a)+b=IO+(a+b) 12+3=10+2+3= 10+5 
a-b=c�c+b=a 9-2=7�7+2=9
the inverse of a + a, 12 -6 = 6
the inverse of a + (a + 1) 13 -7 = 6
and the inverse of ( 10 + a) + b 16-4= 12
(a+p)-(b+p)=a-b 9-7=4-2
(IO+a}-(IO+b)=a-b 15- 12=5-2

figure 1.10: properties used in Rekenen & Wiskunde 

To facilitate property arithmetic, various contexts were incorporated in the curricu­

lum which served as models for the different properties. For example, the commu­

tative property was highlighted in the possible divisions of a number of passengers 

on a double-decker bus (fig. 1.11) (De Jong, Treffers and Wijdeveld, 1975). 
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---�W 
Six upstairs and two downstairs is the same as two upstairs and six downstairs. 

figure 1.11: double-decker bus 

The double-decker representation was also used to illustrate the connection between 

doubles and their closest neighbors, the 'near doubles' (fig. 1.12). 

figure 1.12: 'near doubles' 

The inverse relation was linked to the game of marbles (fig. 1.13). 

If you break even you have gained as much as you have lost. 

figure 1.13: game of marbles 

The approach above implied that the number relations on which attention was fo­

cused were selected on base of a theoretica! analysis. The only exception in this re­

spect was the use of doubles (3 + 3 = 6, 4 + 4 = 8, etc.). The developers knew from 

experience that most children acquire doubles more quickly than other basic facts. 13

reflection on development and testing: micro-didactica/ deliberation 

The described details of the course show how it is developed through interaction 

with practical experiences. Tuis method does not involve a fully worked out curric­

ulum which is subsequently tested in practice. In the trial period, sufficient curricu­

lum materials are prepared for a few weeks of teaching. Tuis leads to the feedfor­

ward process mentioned earlier, and to the erosion of formative product evaluation. 

The course is adjusted before test results can be collected. As new components of 
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the curriculum are elaborated, classroom factors are constantly taken into account. 

As a consequence, process evaluation gains in significance. However, process eval­

uation is not only aimed at the achievement of learning results, but also at the imple­

mentation of the program. Through the close connections with classroom implemen­

tation, the manageability of the instructional activities are taken into account from 

the start; indeed, under the influence of the feedforward mechanism, the effects on 

classroom implementation are anticipated from the start. 

The basic philosophy governing the program naturally remains the leading prin­

ciple. The practical development work is in genera! determined by the learning 

structure for grade 1 and the philosophy of mathematics education. To make detailed 

choices the developers have to fall back upon this philosophy. However, we may 

wonder whether such a genera! philosophy is sufficient to develop an internally con­

sistent curriculum. The question becomes even more interesting when it is realized 

that the R&W textbook series is generally appreciated because of its consistently 

sound structure (Feijs et al., 1987). Tuis prompts the question of what makes this 

consistency possible. 

The context of the OSM project undoubtedly has contributed to it. The project 

strategy lays down the requirements to which the curricula must conform in order to 

be effective for students with poorer socio-economie backgrounds. The require­

ments in question concern, inter alia, the structuring of subject matter by means of 

small learning steps. Tuis requirement forces the developers to carefully think 

through the kind of learning process intended in the instructional program. These 

processes of reflection and structuring assume a specific character, since the struc­

turing process is linked to the IOWO philosophy. A synthesis is attempted by orga­

nizing relational learning as the stepwise construction of a relational framework. 

Tuis means that the developers have to possess a fairly detailed picture of what goes 

on in the minds of students. In this sense structured relational learning forms a full­

fledged alternative of the task-analysis approach.14

The practical details of the relational approach depend on a clear, common phi­

losophy of the development team. In this case the philosophy is inspired by the IO­

WO, which leads to what is nowadays called a realistic approach (Treffers, 1987). 

At the same time, the R&W team, influenced by the OSM project, also developed a 

pragmatic approach. Tuis pragmatic-realistic approach resulted in what might be 

called the core principle of this particular development activity, namely, the princi­

ple that reflection andjustification (within the development team) always takes place 

in terms of 'micro-theories' about the mechanism of the proposed teaching activi­

ties. Within these micro-theories, assumptions about what goes on in the minds of 

students occupy an important place. These assumptions depend, firstly, on the frame 

of reference of the developers, the set of ideas, theories, and notions mentioned ear­

lier; and, secondly, they depend on the developers' detailed knowledge of the stu­

dents' previous learning experience. 
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1.6 revision 

Revisions were further removed from teaching practice than trial implementations. 

The curriculum was mostly revised from behind office desks on the basis of experi­

ences with trial implementations. Contacts with the schools were maintained by 

school counsellors, who passed on their own experiences, as well as remarks made 

by teachers, on to the developers. Observation forms and the like were used in the 

process, which were discussed at monthly meetings (see Vermeulen, without year). 

On the basis of this information the curriculum was revised a second time, followed 

by yet another revision on behalf of the commercial version. 

automatization 

Shortly after the course was introduced into more project schools, following the trial 

round, criticisms were voiced by the schools conceming the late introduction of a 

forma! notation. Tuis late introduction restricted teachers considerably in their abil­

ity to make students practice. There was also critici sm of the slow start of the autom­

atization process. It was feit that basic number facts should be systematically intro­

duced as early as possible, in the first grade. 

In order to meet these wishes, a book with exercises was developed which con­

tains a number of problems which could be used to work on number relations before 

the operator signs were introduced. Most part of the book, however, contains hierar­

chically ordered exercises for the learning of the (majority of the) addition and sub­

traction facts up to 20. The hierarchy is based on property arithmetic, as incorporated 

in the curriculum. The reason for this structure is that not all number facts need to 

be memorized, provided that they can be derived quickly. In order to achieve this, 

property arithmetic is introduced. 

The exercises are ordered according to the prerequisite knowledge, that the 

leamer must acquire to be able to apply a particular strategy to a given problem (fig. 

I. I 4). For example, in order to be able to solve 6 + 7 by means of 6 + 6 + I the stu­

dent must know that 6 + 6 = 12. One drawback of the design of the exercise book is

the fact that the hierarchy more or less predetermines which strategy the students has

to apply to a given problem.
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type of problem 

a-b, a> 10, b$I0, a-b> IO

�, a+b, a>IO 

a+b, a=I0 

a-b, a=2b or a=2b+l, b<l O

�I a+b, la-bl-1, a,b<to l î
a+b, a<l O, b=a 1 

a-b, 6<a$I0,b>a-b 1 

a=b+ .. , 6< a<IO 

a-b, 6<a$10, b=(O),l,2,3 

� j 6<a+b$l l , a=(0),l,2,3 

6<a+b$I l ,  b=(0),1,2,3 

a-b, a$6

� I a+b$6, a<b 

a+b$6,�b 

example 

18-3

12+3

10+5

9-4

6+7

4+4

9-6

1 9=5+ ...

1 7-2

1 2+6

1 6+2 

1 6-4

1 1+3

1 4+1 

revision 

strategy 

8-3=5 -> 18-3=15

2+3=5 -> 12+3=15

5+4=9 -> 9-4=5 

6+6=12 -> 6+7=13 

3+6=9 -> 9-6=3 

5+2=7 -> 7-2=5 

2+6=6+2 

2+4=6 -> 6-4=2 

1+3=3+1 

figure 1.14: global learning hierarchy for the basic facts 

reflection on the revision 

The significance of learning-theoretica! reflection becomes clear in the approach of 
automatization. The mental activities which Iie at the basis of the mastery of the ba­
sic r.mmber facts - such as the derivation of facts in addition to the reproduction of 
known facts - are explicitly included in the design. Tuis process of reflection also 
underlines the importance of knowing facts as a basis for the derivation of (new) 
facts. The structure of the automatization program therefore acquires some features 
of task analysis - even though the individual steps remain significant for the stu­
dents. As a consequence, the approach to basic facts clearly deviates from the rest of 
the curriculum. Seen against the basic curriculum philosophy, the basic number facts 
program is tightly structured and the solution strategies are highly preprogrammed. 

On the other hand, it seems essential that flexible arithrnetic is not only a matter 
of thinking strategies but also of adequate basic knowledge. The application of in-
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fonnal strategies for the derivation of number facts presupposes knowledge of more 

basic number facts from which the intended knowledge can be derived. It is precise­

ly this principle that is made visible by the learning hierarchy that has just been out­

lined. At this point, we reach the boundaries of the ideal of problem-oriented instruc­

tion. At some moment in time, progress in the learning process is bound to be seri­

ously impeded if instruction does not allow room for the intemalization of specific 

knowledge. 

1.7 implementation 

After the course was tried out in three classes at two schools, the revised version was 

implemented at some 20 project schools. These schools were in a different situation 

than the experimental schools. The practice-connected nature of the development 

work meant that the teachers in the experimental classes were closely involved in the 

development work. lt also meant that these teachers acquired the necessary expertise 

in the area of innovation. Such expertise could not be assumed to exist in the new 

schools. For this reason, in-service training courses were developed for these 

schools, followed by targeted guidance. 

In-service training sessions were interspersed with periods in which the teachers 

had to carry out observation assignments and practical tasks. Following Goffree 

( 1979), a great deal of attention was given to mathematica! tasks for the teachers' 

level: the teachers' reflections on their own solution processes and their own class­

room experiences are assumed to foster adaptive and thoughtful use of the textbook 

series (Vermeulen, without year). Once the commercial version of the book was dis­

tributed, such elaborate fonns of in-service training were no Jonger possible. How­

ever, the original in-service training courses were reworked into a more concise 

introductory course (Vermeulen, 1986), which is still in use. 

reflection on the implementation 

The implementation of the program has been a constant source of dispute between 

the R&W group and the OSM project management. The Jatter took the view that the 

curriculum should not be too teacher dependent, for the following two reasons. First­

ly, the dissemination process would be jeopardized, since wide-scale distribution of 

textbooks would fail if their use was dependent on extensive in-service teacher train­

ing. Secondly, teacher dependency would lead to problems with the summative eval­

uation in that high teacher dependency would result in an undesirable variation in 

the use of the curriculum. 

The developers objected that this type of mathematics education was teacher de­

pendent. The key idea is that teachers build upon the students' responses and initia­

tives, for which they must rely on their own judgement. Use of the instructional ma-
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terial as intended is, therefore, only possible if teachers share the body of ideas 

adopted by the developers. The developers were also not convinced by the evalua­

tion argument either, since the project contained no control groups. How can the ef­

fects of the curriculum on learning achievements be determined if one does not al­

low for any variation in the utilization of those curricula? The learning results cannot 

possibly be explained statistically by means of an independent variable without any 

variance. 

With hindsight we can see that the assumed teacher dependency <lid not impede 

commercial distribution, since R& W has been acquired by about one-third of all 

Dutch schools. However, the in-service teacher training which the authors consid­

ered of such importance did not materialize. It is not inconceivable, therefore, that 

teacher dependence may obstruct the successful implementation of the intended 

form of pragmatic-realistic mathematics education. 15

1.8 in retrospect 

The result of the development work is a course in simple arithmetic, in which the 

aim for the leamer is to create a relational framework with numbers as junctions. 

Following Van Hiele's level theory, an exploration of number relations at a level ac­

cessible to the Ieamer serves as a starting point of the learning process. The scope of 

the exploration is, inter alia, determined by Freudenthal 's analysis of the various as­

pects of the number concept. The course is structured by means of phasing the ex­

ploration of the framework under the following conditions: 

a taking into account number size and the phenomenological aspects of the num­

ber concept, 

b letting the structure of the framework be supported by solution strategies which 

are based on property arithmetic, and 

c constructing a learning hierarchy for addition and subtraction facts up to 20. 

Following the idea of guided reinvention, explorations of number relations, proper­

ties and notations are introduced to the students by means of real-life contexts which 

allow those relations, properties and notations to be (re)invented. Tuis concerns lo­

cal as well as global processes of mathematization. An example of the latter is the 

development of the forma! notation by means of the arrow language in the bus con­

text, whereas an example of loc al mathematization can be found in the double-deck­

er bus context. 16

In addition to its merits, this particular design, of course, has its drawbacks also. 

The first point, which was already apparent during the finishing of the commercial 

version, is the lack of attention for informal strategies. Especially Ter Heege's 

( 1985) research pertaining to multiplication tab les was enlightning to the designers. 
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Ter Hee ge found, while going back to Brownell and Chazal ( 1935), that many stu­

dents develop arithmetical shortcuts to derive the table products. These findings fit 

nicely with the instructional approach chosen for R&W grades 2 and 3, where at­

tempts are made to stimulate the students to derive the table products. The important 

difference between the two, however, is that the strategies and anchoring points used 

in R&W are created by the developers, whereas, Ter Heege presents the strategies 

of the students themselves. The developers realized that they had neglected the chil­

dren's own solution strategies up to that point. Tuis is also true for the addition and 

subtraction facts up to 20. Already at an earlier stage, researchers from the Dutch 

'Kwantiwijzer' project pointed to the fact that there are students who systematically 

use the number five as reference point (Van den Berg and Van Eerde, personal com­

munication; see also Van den Berg and Van Eerde, 1985). They attribute this strat­

egy to finger arithmetic, which stimulates the practice of structuring sums around the 

numbers five and ten; for example 8 is represented as 5 plus 3 and 9 as 10 minus 1. 

Finally, the clinical interviews conducted by Groenewegen and Gravemeijer ( 1988) 

show that the R&W students sometimes use self-invented strategies which are not 

dealt with in the instructional activities. At the same time, it also appears from liter­

ature studied within the same context, that a number of strategies offered in the 

course fit in well with what children do spontaneously. However, this does not apply 

to the use of the inverse relation. 

Internationally there has been interest for some time in informal strategies for 

arithmetic up to 20. Research shows that students make intelligent use of the oppor­

tunities offered by numbers and contexts (Ginsburg, 1977). Addition is often execut­

ed as forward counting, with some of the students consistently taking the greater 

number as a starting point (Groen and Parkman, 1972; Resnick and Ford, 1981 ). The 

tasks are interpreted in such a way that a minimum of counting steps suffices; which 

also points to the students' spontaneous use of the comrnutative property (also see 

Baroody, Ginsburg and Waxman, 1983). 

A similar shortcut is used in subtraction, which is solved by the alternative use of 

counting-back and counting-up. Depending on the numbers involved, the interpre­

tation is chosen which yields the least work in counting (Woods, Resnick and Groen, 

1975). In fact, this latter process involves a broad interpretation of subtraction. For 

exarnple, once the problem 9 - 7 = ... has been solved by rneans of counting-up, the 

student has in fact solved the problem 7 +? = 9. Tuis can be interpreted as a com­

parison: How rnuch is 9 more than 7? 

In R&W, it is hoped the students will use the inverse relation between addition and 

subtraction, but in practice they rarely do. It also appears that they do not use the pos­

sibility of counting-up (Groenewegen and Gravemeijer, 1988). The research litera­

ture also shows that students rarely spontaneously use the inverse relation (e.g. see 

Baroody et al., 1983). Besides the forma! character of this relation, the difficulty 

could lie in the requirement to search for an addition fact whose first term is un-
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known; that is, a - b = ? is converted by inversion into ? + b = a. It is possible that 

solving b + ? = a is easier. Indeed, this is what students do when they use simple for­

ward counting.17

The fact that R&W students do not use counting-up as a strategy in this context 

could be explained, on the one hand, by the emphasis that is given to inversion. On 

the other hand, it means that subtraction is interpreted too narrowly (see also Gray, 

1991). Following the Davydov approach, subtraction tied to counting-back and 

counting-up is omitted. Moreover, the type of contexts that are presented in R&W 

do not evoke this strategy. In other research it appears, for example, that the count­

up strategy is even used spontaneously for two-digit subtraction problems, provided 

the problems are presented in suitable contexts (Carpenter and Moser, 1983; Grave­

meijer et al., 1993; Vuunnans, 1991 ). In other words, there exist specific contexts 

which invite counting-up. However, such contexts are absent from R&W for grade 

l . Comparative contexts which give rise to question such as 'how much more' or 

'how much Jess' were removed from the course in view of the fact that students 

could not handle the language used. Not only were the words 'more' and 'less' con­

fused, but the associated concepts were also confused with 'most' and 'least'. An in­

teresting alternative in this context could possibly be the concept of 'two-sided sub­

traction' (Veltman, 1993), in which subtraction can be explained either as 'taking 

away from the beginning', or as 'taking away from the end'. Students are confronted 

with either of these two forms in splitting a number of beads on a chain (fig. 1.15). 

··�··::xxo ..
taking away from the end taking away from the beginning 

figure l.15: double sided subtraction: 9 - 7 

The oversight with regard to infonnal strategies is further manifested in R&W when 

one-sided contexts are used. Nearly every contextualized problem is constructed 

with a prior motive: the student is supposed to learn something specific every time. 

The number of problems which allow for a variety of solution strategies is restricted. 

As a matter of fact, the learning track is almost completely fixed. Tuis is shown in 

its most extreme form in the hierarchy for the basic number facts. Tuis hierarchy is 

incompatible with the idea of flexible arithmetic and the students' own contribu­

tions. The 'guided' in 'guided reinvention' dominates 'reinvention' with a ven­

geance in this context. In fact, the whole process is distinctly Socratic in character 

(Freudenthal, 1973). 

In the last few years, a concentrated search has been conducted for ways to stim­

ulate the use of shortcuts and anchoring points in calculations up to 20, while at the 

same time leaving space for individual solution strategies. An interesting proposal 
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in this connection is the one by Treffers (Treffers, De Moor and Feijs, 1989; Tref­
fers, 1990), which involves a so-called arithmetic rack with sets of five colored 
beads (fig. 1.16). 
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figure 1 .16: the arithmetic rack 

Numbers up to 20 are represented by shifting the required number of beads to the 
left. Tuis can be done in two ways: by filling the upper bar, or by filling both bars. 
In the first case the fives configuration can be used, in the second case doubling or 
near- doubling prompts itself as the obvious procedure (whether combined with the 
fives pattems or not). A comparison can also be made with what is left on the other 
side. All these references can be used in addition and subtraction, with the aid of the 
arithmetic rack. Tuis makes a flexible use of reference points possible (see chapter 
2). 

1.9 discussion 

Looking back, we see that the development work was guided by a particular philos­
ophy of mathematics education. What mattered in the end is that the course be orga­
nized in such a way that a student's conviction about a particular solution strategy is 
bascd on his or her own judgement. Tuis philosophy manifests itself in the reinven­
tion principle, in relational learning, and in the use of levels and didactical phenom­
enology. 

The content of the curriculum is obtained by using sets of instructional activities 
that are already available. As a result, the first stage of the development work con­
sists of selecting, fitting and adapting the available instructional activities. For the 
most part, the selection involves prototypes specifically developed by the IOWO, 
but it also includes activities from completely different sources which also fit. 

The elaboration of the design has mostly taken place during the stage of the trial 
implementation. Already at that stage, the initial design had been adjusted where 
necessary. The short period between development and trial made it possible for prac­
tical experiences in the trial classes to be reflected in the development work. In con­
nection to this we spoke of a process of feedforward, in which experiences with cer­
tain education activities have consequences for activities that are still to be devel­
oped. 
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assimilation, adaptation and adjustment 

The formative evaluation, unlike that of first-generation design models, is not forma! 

in character. As a consequence of the theory-oriented nature of the development 

work, the empirica! information is interpreted in terms of that theoretica! framework, 

and no forma! rules are followed in the decision making process. 

In first-generation design models, empirica! testing fulfills the role of a referee. 

Decision rules are to be constructed in advance with regard to a subsequent forma­

tive evaluation. These rules determine what has to be done with the curriculum in 

the case of certain empirica! findings, usually in the form of test results. In the de­

velopment work sketched in the previous sections, the influence of empirica! find­

ings is more indirect, in that, the findings are interpreted first. Explanations are 

sought for unexpected results, so that empirica! findings provide arguments for ad­

justments. 

In practice, the findings are more often due to classroom experiences - as in the 

case of problems with number line arithmetic - than to testing results. That is, with 

intensive observations and productive contacts with experimental schools, there is a 

great deal of information obtained prior to when tests are administered. Sometimes 

this leads to the postponement of tests with problematic components. The tests of ten 

serve as checks on the components which are assumed to be sound. 

Another characteristic of curriculum development which is based to a large de­

gree on arguments and various theories, is that it is open to new ideas. New insights 

from literature or other sources can be accommodated quickly if they appropriately 

fit with the overall philosophy of the developers. Tuis is certainly true for those ideas 

that are developed within the wider circle of realistic mathematics education. A good 

example of this connection is the way in which Ter Heege's (1985) research results 

are received. 

Tuis whole process of assimilation, adaptation, adjustment and interpretation 

may be seen as a learning process for the developers. It may perhaps best be charac­

terized as the 'gathering' of knowledge. lt is a process that takes place not only with­

in one development project, but one that transcends individual projects. It should, 

therefore, be seen in a wider historica! framework. In this way realistic mathematics 

itself builds on older teaching methods in arithmetic. For example, Freudenthal' s di­

vision of various aspects of the number concept is based on an earlier division first 

proposed by Diesterweg and Heuser in 1830 (Radatz and Schipper, 1983). On the 

other hand, we see how developments in R&W are reflected in arithmetic textbook 

series as well as in prototype development. In this sense, this type of development 

work differs fundamentally from first-generation design models, which are often 

largely based on the idea that development models determine the quality of devel­

opment work. lt is not surprising, therefore, that these models are by nature so in­

flexible. Tuis fits with the idea that the quality of the development work can be guar­

anteed by the quality of the design model. 
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We already mentioned in the beginning of the chapter that Goffree (1986) char­

acterizes these first-generation design models as one-dimensional design theories 

that leave little room for the personal views of the developer. 

development of ideas 

By contrast, in Goffree's altemative model, the learning process of the developer is 

centra!. Goffree (with reference to Schön) argues in favor of 'reflection-in-action'. 

That is, during the development process the developer reflects on the development 

work, which benefits the developer, the development process and the development 

product. Reflection-in-action fits with the type of development process which Gof­

free characterizes as 'development of ideas' or 'idea analysis', as follows: 

'In the case of idea analysis ( ... ) the structure of the subject matter does not guide the 
development, but rather the following three factors: 
- the intuitive notions and infonnal strategies of the students
- the full-blown mathematica) concepts and procedures that fit with such notions
- situations in which notion and informal work methods can be developed into full-

blown concepts and procedures.'
(Goffree, 1986,p. 15) 

The concept of idea analysis comes from Lesh, who conducted research on domain­

specific problem-solving strategies (Lesh and Landau, 1983). He examined ways in 

which mathematica! ideas function in students. Ris assumption is that ideas develop; 

that is, they do not come out of the blue. His research shows that students who are 

confronted with a problem try to get insight into the context of that problem. Such 

conceptualizations of problem situations appear to undergo certain developments. 

The students start off with some vague, unstable concepts, which develop further 

and further (Lesh, 1985). The position of the developer at the start of the develop­

ment work is comparable to that of the problem-solving student. The developer, too, 

starts with vague, unstable notions. During the development work, a refinement of 

these vague notions is effected by means of reflection-in-action. In this process of 

development ( or analysis) of ideas, enough room is left for the utilization of notions 

about instructional methods or pre-scientific experiences; for the use of reality in the 

form of rich contexts and for the possibility of making pedagogical inventions. This 

concept of idea analysis fits wel! with the development process described in this 

chapter. 

The different approaches examined (the design-model approach and the idea 

analysis approach) can be seen as examples of top-down and bottom-up procedures 

respectively. The technological instructional design models emphasize the idea of a 

design model. A formal, rational analysis provides a genera] design model which is 

subsequently applied to concrete contexts. The quality of the development work in 

this approach mainly depends on the quality of the design model. Consequently, 

progress is sought in attempts to improve the design model. 
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The idea analysis approach clearly works from the bottom-up. Whereas knowl­

edge of the subject, knowledge of specific educational arrangements, and knowl­

edge of local instructional design theories are taken for granted in the rational-tech­

nological approach. These forms of 'domain knowledge' constitute the hard core of 

the idea analysis: they are gradually, step by step, extended during the development 

process. In other words, the rational technologica] approach aims for a comprehen­

sive, generally valid and definitive solution, whereas the idea analysis has a much 

more modest profile. Moreover, the latter approach fits much better with what de­

velopers actually do. In this sense, too, it is a bottom-up approach. Instead of telling 

developers what to do, the starting point is the way in which developers work in 

practice. 

trom development practice to development strategy 

As Goffree's analysis shows, the R&W group's approach is not unique in The Neth­

erlands. A good deal of development work carried out in The Netherlands in the area 

of realistic mathematica! education is comparable to the R&W approach (Goffree, 

1985; Kindt, 1993; De Lange, 1987; Nelissen, 1987; Streefland, 1990; Team Wl2-

l6, 1992). The current Mathematics in Context project, in which curriculum materi­

als are developed in cooperation with the University of Wisconsin-Madison, is also 

conducted along the same lines (Romberg, in press). 

The above-mentioned development activities vary from research and theory de­

velopment to craftsmanship development work, and are all accompanied by lively 

exchanges of ideas and experiences. In this way prototype designs can, through the 

use of textbooks, be reflected in educational practice and in the same way experienc­

es from everyday teaching practice can benefit further prototype development. The 

development approach outlined here is a modest one. It is restricted to a specific sub­

ject matter area, within which gradual progress is aimed for. The strength of the ap­

proach lies in its gradual nature, which guarantees continuity and a cumulative 

build-up of knowledge. Furthermore, the considerable number of associated devel­

opment activities makes it possible for a particular development strategy and its as­

sociated educational theory to be made into an object of reflection (for example, see 

Gravemeijer, in press; De Lange, 1987; Streefland, 1990; Treffers, 1987 and 1991 a). 

The development work outlined in this chapter combines a phenomenological 

analysis, the reinvention principle and Van Hiele's level theory.18 (In fact, only Van

Hiele's ground level and first level are part of the course. But a basis is laid for the 

second level.) Since then, these three elements - phenomenology, reinvention and 

level structure - have been elaborated further (Treffers, 1987), and worked out as a 

heurisitics for development work (see chapter 3). 

Taking into account these elaborative efforts, we may conclude that the bottom­

up approach has developed into a full-fledged strategy for the development of real­

istic mathematics education. This does not mean, however, that such a strategy is ca-
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pable of being developed for other subjects, nor that all strategies should be molded 

to the same pattem. 

notes 

The original development group consisted off. van Galen, J.M. Kraemer, T. Meeuwisse, 
W. Vermeulen and K. Gravemeijer (coordination and final editing). K. Buys cooperated
on the commercial version.

2 The formative evaluation showed that in genera! more than 80 percent of the students had 
mastered at least 80 percent of the items in each of the different learning steps (De Bondt, 
1979). 
The summative evaluation showed that 90 percent of the students solved the final test 
problems correctly (Slavenburg, J 986). Additional research (Groenewegen and Grave­
meijer, 1988) showed that mastery of the various types of 'basic facts' lay between 71 per­
cent and 98 percent. 
Further, the learning hierarchy for these facts was confirrned on its principal points by this 
research with the aid of a hierarchy validation procedure developed by Novillis ( 1976). 

3 Mathematizing literally means making more mathematica!. In this context more mathe­
matica! can be related to the characteristics of mathematics itself: generality, certainty, ex­
actitude and conciseness. 

4 In subsequent publications, Freudenthal uses the term 'guided reinvention' to express 
more clearly the fact that teachers and textbooks have a clear role in the learning process. 
In practice, there will often be an area of tension between guidance and reinvention. 

5 We will use the division into ground, first and second levels, although Van Hiele also uses 
the terms first, second and third levels. 

6 As seen from the point of view of the learner. 
7 Whereas Piaget's work led to a one-sided emphasis on cardinal numbers in the so-called 

New Math textbooks, a much broader conception of number is chosen here under Freu­
denthal 's influence. Tuis broader view was manifested especially in renewed attention to 
counting and measuring. 

8 In practice, different strategies will undoubtedly be followed. For example, small num­
bers are usually identified directly, whereas for the larger numbers, richer strategies can 
be used. However, what concerns us here is a content analysis of the principle that forms 
the basis of resultative counting. 

9 At that time, the R&W group was not familiar with the large amount of research in which 
similar strategies are put forward (e.g. Groen and Parkman, 1972; Resnick and Ford, 
1981). 

10 In retrospect we can state that here the verba! number word sequence functions at first as 
a model of the objects to be counted. Later, the number word sequence functions as a 
model for counting in jumps as a method for determining either the sum of two numbers, 
or their difference. 

11 Tuis solution can be checked by means of real objects, for example by arranging bars or 
'whities' (small unit size cubes). The assignments are, therefore, always doable for the 
students and the material is self-correcting. Tuis was regarded as important for the target 
group. The use of Cuisenaire materials also appears to fit in with the structure proposed 
by Gal 'perin ( 1972), which procedes from material actions, via verba! actions to interior­
ization. lt is also assumed that leamers will readily abandon the fairly sophisticated ma­
terials when they no longer need them. 

12 With hindsight we can state that the problems with the number line were partly caused by 
the type of number line and by the way in which it was used (see Treffers, 199lb and 
Gravemeijer, 1994). 

13 Tuis is confirmed in the research literature (Groen and Parkman, 1972). 
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14 Note that whereas the emphasis in structured relational learning is on reconstruction, it is 
on reproduction in task analysis. In a genera! sense, the former fits with Freudenthal 's idea 
of constitution of mental objects as an alternative for concept attainment (Freudenthal, 
1983). 

15 Research with users of comparable textbooks shows that this type of education makes 
high demands on micro-didactic and pedagogical skills (Gravemeijer et al., 1993). Fur­
thermore, other research (Desforges and Cockburn, 1987) shows that there are social pro­
cesses with even this type of education. This is presumably due to the fact that the didac­
tica! contract (Brousseau, 1990; Eibers, 1988) between teachers and students is altered 
without the students having been informed. In order to meet this problem the approach of 
Cobb, Yackel and Wood (1992) might be incorporated. This approach focuses explicitly 
on the development of social norms that fit in with the new type of mathematics educa­
tion. 

16 Note that horizontal as well as vertical mathematization are involved here. The context 
consists of a story about real double-decker buses which is made real in the form of a 
staged 'math play' (Van den Brink, 1989). In this play the students crawl under or on top 
of a table, which serves as a double-decker bus. Realistic drawings and diagrams of dou­
ble-decker buses and their passenger distributions are the initia! models of this real-life 
context. Here we have a case of horizontal mathematization. 
However, after frequent use the double-decker diagrams assume their own significance 
and they start functioning as models for logica! argumentation about number relations. 
This transition may be characterized as a vertical mathematization process. The process 
can be clarified by the way in which the commutative property is brought forward in this 
type of context. 
In the beginning, the learner has to gain the insight that if a number of passengers can be 
divided into an x number upstairs and a y number downstairs, there is also a possibility of 
an x number downstairs and a y number upstairs. Only after the context is interpreted as 
an addition involving x and y does the commutative property become visible. This prop­
erty really beg ins to function if the learner solves x + y through y + x. The idea is that this 
latter process is facilitated by thinking about the double-decker bus, which is a model for 
the following inference: 'If you calculate 6 + 2 instead of 2 + 6 you get the same result, 
because it does not matter for the result whether you exchange 6 and 2'. 

17 A broad interpretation of subtraction can possibly have a facilitating effect, since in 'tak­
ing away from above' the inverse of a - b =? is ?+ b = a, whereas in 'taking away from 
below' it is b + ? = a.

18 We interpret the level theory in a very global sense in this context and ignore the question 
of whether horizontal or vertical 'décalage' takes place (allowing ourselves the use of 
some neo- Piagetian terms (Case, 1980)). Also, the fact that the theory as such admits of 
a structuralist interpretation is hidden by the link with the phenomenological aspects of 
the concept of number. 
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6 Developmental research revisited 

introduction 

There was a time when 'instructional design' was a popular subject for research and 

theory forming (see Creemers and Hoeben, 1988). Tuis subject has long since lost 

its popularity. Only as an auxiliary science in vocational training does instructional 

design still seem to flourish (Nijhof, 1993; Romiszowski, 1981 ). The meager suc­

cess of the design models made researchers wary and the conviction took root that 

design is an opaque, chaotic creative process that is inaccessible to science. In recent 

years, however, design has again begun to attract interest. Only now it is no Jonger 

a direct attempt to find prescriptive models for improving the quality of the design 

process but has become design as a research method. More and more researchers are 

setting out along the path of constructional research (Brown, 1992; Cobb, Perlwitz 

and Underwood, 1992; Lampert, 1990; Steffe, 1983). Whereas, in the 1960s and 

'70s, the emphasis lay on scientific knowledge as input for design activity, now at­

tention has shifted to scientific knowledge as output. 

So the yield after many years of developmental research in the area of realistic 

mathematics education is more than merely a collection of realistic math units. The 

result of all this research also includes a domain-specific educational theory. The 

question is, however, how does one legitimize this theory? Is the developmental re­

search upon which it rests sufficient to justify the theory, or is something else nec­

essary? One can, of course, always attempt to test the educational theory in evalua­

tion research. But in evaluation research one mainly tests the practical significance 

of the theory: what are the results of the curricula based on this domain-specific in­

struction theory? 

Developmental research should be able to provide a more direct foundation. lf 

developmental research is to fulfill this function, then both the substance of said re­

search and its product must be clear. Tuis demands reflection upon and reconstruc­

tion of the practice of developmental research. Developmental research is not, after 

all, a strictly regulated methodology 1 but, rather, a manner of working that has 

grown through being put into practice. Only by reflecting on such practice can it take 

shape as a method. 2 Tuis process demonstrates a genera! principle of realistic theory

forming: choose a starting point that lies in practice and in theories of practice. Tuis 

is what occurred in the first chapter, where the developmental practice of the 

'Rekenen & Wiskunde' textbook series was taken as a starting point for an analysis. 

Tuis led to a characterization of developmental work as theory-guided bricolage in 

chapter4. 

Furthermore theory-guided bricolage was used to characterize developmental re-
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search in practice. Actual practice as a starting point was also the foundation for 

Treffers' ( 1987) reconstruction of practice theories as a domain-specific instruction 

theory. Theory development with respect to in-service teacher training has taken 

place in the same manner. By experimenting with in-service teacher training cours­

es, a solid foundation was laid for reflection on in-service teacher training (De Moor, 

1980; Gravemeijer, 1987; Gravemeijer and De Moor, 1988; Van Galen et al., 1990, 

1991, 1992). In the meantime, moreover, it has become evident that one must first 

know more about educational practice before providing implementation support (see 

Van den Heuvel-Panhuizen, 1993). 

In the end, the basic philosophy of mathematics as a human activity also has its 

roots in actual practice. Not, it is true, in experiences with this type of education (the 

idea was there before the education), but in personal experience. Freudenthal ( 1973) 

justifies his view of mathematics and mathematics education by referring to his own 

manner of doing mathematics. He defends the reinvention principle with, among 

other things, the claim that this is the way he himself leams mathematics. Tuis is the 

way in which he becomes familiar with other people's mathematics proofs. He uses 

clues in the proof to reinvent how he might have discovered it himself. The centra! 

principle of realistic mathematics education - 'mathematics can and should be 

learned on one' s own authority, through one' s own mental activities' - sterns from 

reflecting on his own learning process. The conviction that, not only is this way pos­

sible but, in fact, necessary is based on an analysis of existing educational practice. 

In this chapter I will endeavor to elaborate further upon the concept of developmen­

tal research. The manner in which I do so is in keeping with what I have described 

above. I have chosen my starting point in the actual practice of developmental re­

search. From there I will go in search of precise functions and characteristics, after 

which I will examine how this research approach can be developed further. The 

guideline for this exercise is the role developmental research can play in legitimizing 

the educational theory produced by the research. Keeping the potential of legitimiz­

ing the realistic instruction theory in mind, the following section will first discuss 

the possibility of it being tested in evaluation research. 

6.1 evaluation research 

Two decades of developmental research whose guideline was the principle of real­

istic mathematics education have eventually led to the development of a domain­

specific theory for realistic mathematics education. But what can now be said con­

ceming the validity of this theory? In other words: researchers from the realistic 

camp may well be convinced of the correctness of this theory, but how can this re­

alistic educational theory be legitimized extemally? 
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By external legitimization I mean legitimization to outsiders, as distinguished 

from legitimization within the realistic camp, or internal legitimization. External le­

gitimization can take place by: 
- testing the theory in evaluation research, and by
- using the internal legitimization for this purpose.

The first manner will be discussed in this section. The realistic instruction theory 

can, for example, be evaluated by examining the results achieved using realistic 

mathematics textbooks. The results of this type of research, however, give rise to 

some debate, as described in chapter 5. The debate here touches the weak spot of this 

type of evaluation research. There is always room for criticism where the results of 

such research are concerned. The research situation is so complex that it is impossi­

ble to keep track of all the potentially significant variables. The result is, therefore, 

that the choices made and actual operationalization are open to debate.3 And this

only has to do with research into curricula. When the theory behind the mathematics 

textbook series is at issue, then the discussion becomes even more complex. The the­

ory, after all, is tested very indirectly. All in all, the result is that an isolated research 

project is not very persuasive. Tuis type of research only becomes convincing when 

a series of research projects point in the same direction. Ideally, each successive re­

search project should try to take into account. the criticism leveled at previous 

projects. By this means, a sequence of research projects would emerge which could 

subsequently address all possible criticisms. 

My suspicions are that the realistic curricula in The Netherlands will surpass 

their competitors in the area of learning results. The findings of the PPON-research 

(Wijnstra, 1988) are quite convincing. It would seem that the realistic approach is a 

qualified success. The primary objective for me, however, is the reform and revision 

of the education itself. The MORE-project, discussed in chapter 5, demonstrates 

how difficult it is to put the realistic theory into practice. The MORE-project also 

shows the direct influence exerted by subject matter content and structure. The pos­

itive PPON results can be explained by the revisions made in subject matter content 

and structure. Evidently, revision of the subject matter has a positive influence on 

the learning results, even when the realistic instruction theory is only put into prac­

tice to a limited degree. 

That is, if we take the MORE data as a yardstick. The question is, however, 

whether this data can be generalized so simply. There are two obvious limitations. 

In the first place, the MORE-project involved a specific textbook and, in the second 

place, specific grades - first, second and third. Whether the realistic theory would be 

expressed better in higher grades cannot be directly predicted. But it does seem rea­

sonable to assume that the textbook is of influence. The textbook in question had a 

limited teacher's guide. Moreover, the theoretica! elaboration was not optima! (Feijs, 

De Jong, De Moor, Streefland and Treffers, 1987; Van den Heuvel, 1991). In gen-
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eral, it may be assumed that a more complete and better structured guide will Iead to 

a better implementation (Van den Akker, 1988). On this assumption, a better imple­

mentation may be expected with a textbook series such as 'Rekenen & Wiskunde'. 

Preliminary results of a research project that compares the use of the textbooks, 

'Wereld in Getallen' and 'Reken & Wiskunde' seem to affirm this hypothesis (De 

Vos, 1994). Anecdotal support for this idea can be found in journalistic observations 

in a national Dutch newspaper. 

'The text in the arithmetic book looks familiar: 
Margriet is bicycling from Hilversum to Arnhem. She leaves at eight o'clock. After 
one and a half hours she sees a road sign, which shows that she still has 45 of the 75 
kilometers to go. 
'l'm making good progress', she thinks. 
But the question, 'what time will she be in Arnhem?' is missing. 
Nico Schilder, a teacher at the 'Zuidwester' school in Volendam asks the class some­
thing else instead: 'Why does Margriet think she's making progress?' 
It is the beginning of an educative discussion. 
Jaap knows: 'Because she's bicycling fast.' 
'How fast?' 
'Twenty kilometers per hour.' 
'Which of you thinks that's fast?' 
Most of the class does. It depends whether Margriet has the wind with her or against 
her. Arnold doesn't think it's so fast; he says he usually bicycles thirty kilometers per 
hour. Thirty. This is disputed by his classmates. That's as fast as a moped, they say. 
How fast are the bicyclists in the Tour de France? How can you measure your speed 
yourself? Without realizing it, the students are involved with the connection between 
time and distance. 
How late Margriet gets to Arnhem is mentioned in passing. The answer is less impor­
tant than the arithmetic itself.' 

(Paul Stapel, 1989) 

Tuis is not only an example of good implementation, it also shows the kind of sup­

port a textbook can offer. The teacher's guide to the 'Rekenen & Wiskunde' text­

book, in which this lesson appears, contains an extensive description of this activity 

(Gravemeijer et al., 1987). 

Here, among other things, are responses the students might give to the question 'Why 
does Margriet think she's making progress?' The guide also deals with the question 
of whether Margriet is bicycling fast or slowly. In addition, the guide suggests paying 
attention to the fact that the concept of 'average speed' suggests steady speed, al­
though this need not be the case. Finally, the guide indicates the possibility of working 
with ratios: 30 km in 1 ! hours, so 15 km in i hour and, therefore, 45 km in ( 1 ! + i) 
hour. 

It is clear that the textbook can play an important role (see also Meeuwisse, 1985; 

Kraemer, 1988). And if we assume that the quality of the teacher's guide will, in­

deed, be decisive, then we may ask ourselves whether this 'direction by the guide' 

might not be expanded further. Tuis would certainly seem possible if one chose a 

more directed form of realistic mathematics education. The emphasis should then be 

shifted from the form of open discussion to a form of interaction where the teacher 
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is more dominant. Treffers commented informally on this, calling it 'explanation on 

a variety of levels'. The teacher's explanation should provide footholds for all stu­

dents by, for instance, discussing a variety of solution strategies and then re lating 

them to one another. The students not only would be able to recognize their own so­

lution strategy, but would be able to progress a step further if they saw the relation 

to other strategies. Such prepared explanations could be included as examples in the 

teacher's guide to a textbook. The teacher could use such an explanation not only as 

an example, but also as background information. 

If evaluation research repeatedly reveals a lag between the intentions and the im­

plementation of realistic mathematics education, the realistic educational theory will 

lose much of its practical significance. The question of the scientific legitimization 

of the educational theory will no longer be as relevant if it appears that the theory is 

impracticable for the average teacher. In other words, evaluation research may well 

offer an indirect assessment of the instruction theory, but this does not make the re­

sults any less important. Any indication of problems surrounding the implementa­

tion should be taken seriously. For the time being, two paths are available for im­

proving the implementation: 
- directly influence the teachers' views, knowledge, insight and skills (as argued

in chapter 5);
- choose a more directed form of realistic mathematics education and adapt the

textbooks accordingly.

My preference as yet is for the first option, even though it is much more difficult to 

put into practice, and probably not feasible in the short term. On the other hand, a 

more directed approach might provide a good basis for growing towards a more 

open form of realistic mathematics education. 

6.2 internal legitimization 

Being a combination of development and research, developmental research bas a 

dual function that I would like to refer to as production and justification. Here the 

emphasis is on the legitimization aspect. What is it that you justify in developmental 

research? A course or, better, the choices upon which the course is based. In devel­

opment, one is constantly making choices. Not every choice is equally important; 

numerous details also demand attention, of course. But some of the choices are cru­

cial. These are the choices that reflect fundamental ideas regarding mathematics ed­

ucation. Among these are, for instance: the choice of the initial contexts, the choice 

of contexts for application, the choice of models, the form of notation, planning, and 

so on. Moments of reflection and increasing awareness belong on this list, too, just 

as do the central points for a class discussion and for the individual productions. 

The result of developmental work is a prototypical course. The result of research 
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is a description of the course on a meta-level (a local instruction theory) and a justi­

fication. The justification goes something like: 'Tuis course satisfies the basic prin­

ciples of realistic mathematics education, because .. .' Tuis is followed by a line of 

reasoning supported by a theoretica} analysis, empirica} data and the interpretation 

of this data. A justification of this nature usually contains: an analysis of the area of 

subject matter, an intrinsically substantiated characterization of the structure and 

content of the course, paradigmatic examples ( of student work and interaction) and 

a reflection on the realistic caliber of the whole. A balanced reflection will mention 

any negative characteristics in addition to positive ones. 

If the developer fails to note any negative aspects, it is likely that others will do 

so. At an early stage, the prototype designs will come to the attention of interested 

parties. The idea will be taken in hand and many will get right to work. Tuis will sig­

nificantly expand the subjective research experience of the developmental research­

er. In genera], the researcher will not have taken elaborate methodological measures 

to ensure theoretica] 'reproducibility' of the research results. Instead, however, there 

will be actual repetitions of the experiment conducted by others. Each person will 

repeat the experiment in his or her own way and under different circumstances, 

which will serve to broaden the empirica! basis. 

The new prototype will become the subject of discussion among the experts in 

the domain of mathematics education. Tuis group consists not only of developers 

and researchers but, also, of school counsellors, textbook authors, teacher trainers 

and teachers. Discussion among such people will include topics such as: effectivity, 

feasibility, theoretica! quality in the light of the realistic objectives, etc. Eventually, 

an inter-subjective agreement regarding the value of the prototype will come forth. 

This process strongly resembles the one described by Ernest (1991) in his analysis 

of how new insights into mathematics acquire a scientific status. 

A characteristic and essential facet of this process is a certain homogeneity of the 

group in question. In order to carry on a respectable discussion and to arrive at a con­

sensus, it is necessary to have a communal frame of reference. Tuis also demon­

strates at the same time the limitations of the value judgments and claims. Because 

of the communal frame of reference, the various members of the group will interpret 

the same phenomenon in (more or less) the same way, giving rise to the danger of 

systematic errors. Not that this is anything new - every research group must contend 

with this problem. Take, for example, Piaget's conservation experiments. The tests 

have been repeated numerous times and, for many years, this only led to confirma­

tion of the earlier results. Eventually, however, Margareth Donaldson arrived at a 

different explanation, one she saw confirmed by experiments (Donaldson, 1978). 

In my opinion, there are no objective facts as such that can be attached to un­

equivocal conclusions; an interpretative theory is always necessary. Let me offer a 

more extensive example of the connection between theory and empiricism. The fol­

lowing example from Gould ( 1992) has to do with research in paleontology. 
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For many years there has been discussion about the cause of the extinction of the di­
nosaurs. Was it the result of a catastrophe or was it, instead, a gradual process? Until 
recently, it was indisputably accepted that the cause was a gradual process. Tuis hy­
pothesis was confirmed by geological research. No dinosaur bones - or the bones of 
other anima! species that became extinct during that period - could be found in the 
earth layers dating from the period before the presumed meteor impact that caused the 
extinction. The time of extinction, moreover, varied depending upon the species. 
Powerful geological arguments, however, for the occurrence of an extremely large 
meteor impact made the researchers begin to doubt the correctness of their findings. 
The accepted empirica! data became, once again, the focal point of discussion and 
gave rise to an altemative interpretation. 
Uncommon species and badly preserved fossils do not appear in every stratum; once 
in every 100 feet is no exception. So it is qui te possible to find fossils only in strata 
dating from far before the actual extinction. Indeed, in the case of a catastrophe, the 
strata will vary in which the most recent fossils are found. The most uncommon spe­
cies and badly preserved fossils !ie the lowest and the more common species and well 
preserved fossils the highest. 
Tuis gives the impression of a gradual process of extinction, which is why the empir­
ica! evidence that no catastrophe had taken place held up for years. New research was 
begun. If the impact theory was correct, then fossil remains should indeed be found 
somewhere in the strata in question. The new assignment was akin to searching for a 
needle in a haystack. The search was almost immediately successful, and the evidence 
in favor of the catastrophe theory continues to grow. Only now can one see what was 
not seen before, thanks to the willingness to view things from a different perspective. 

Tuis example shows that building a research community carries with it the danger 

of one-sidedness. Blind spots may appear but remain unnoticed by the members of 

the research community. On the other hand, it is also true that such a research com­

munity is the basis for growth. Tuis is, after all, the way in which research programs 

work (Kuhn, 1970; Lakatos, 1978). Keeping this danger of bias in mind, now return 

to the progress of the research in the realistic research community. 

As time goes by, more and more prototypes are developed, improved, or even re­

placed. Within the group, a theory of practice gradually forms regarding the charac­

teristics of curricula that fulfill the realistic demands. The next step in the process is 

to reflect on this knowledge. Tuis is how Treffers (l 987) constructed his domain­

specific instruction theory. What are the claims of this theory? In principle, the the­

ory only says: this is what we do. lt is, after all, a description of curricula character­

istics developed within the realistic movement. Implicitly, the theory also professes: 

there is a system to what we do, and what we are doing makes sense. Or, to put it 

more pointedly: the realistic theory of education claims that it describes education 

that fulfills the centra! realistic idea of 'learning mathematics on one's own author­

ity, through one's own mental activities'. 

How is the educational theory legitimized? In the first place, through the collect­

ed developmental research. lt is a generalization of the choices on which the proto­

types are based. In addition, the communal learning process of the realistic commu­

nity provides a second legitimization. It should be taken for granted that the experi­

ments with and discussions regarding the prototypes will lead to inter-subjective 
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agreement. Moreover, those involved must feel at home under the umbrella instruc­
tion theory. After all, if the realistic instruction theory does, indeed, actually charac­
terize the experts' theory in practice, then these experts should be able to identify 
themselves within it. This does not mean that the instruction theory has to be a per­
fect mirror image. There are, of course, individual differences. Moreover, organiz­
ing the theory and embedding it in a larger theoretical framework also involves add­
ing something to the theories of the experts. 

If we take a step back then we must, of course, acknowledge that the instruction 
theory does have more pretentions after all. The underlying idea is that the realistic 
instruction theory can serve as an altemative for other instruction theories and is (ac­
cording to its proponents), in fact, better. At first glance, such a belief would seem 
easy to maintain inside the realistic camp, but this is not as self-evident as one would 
imagine. It requires - at the very least - internal consistency, usefalness and pro­

gression. The success of the realistic approach in The Netherlands is partly due to 
the fact that, inside the realistic camp, the developments of the past twenty years 
have been seen as consistent and useful, and that the new developments are viewed 
as progress. 

6.3 developmental research clarified 

As mentioned at the beginning of this chapter, the methods for extemally legitimiz­
ing the results of developmental research are evaluational research and expansion of 
the intemal legitimization. In my opinion, the Jatter is the correct manner. Curricu­
lum evaluation can be very useful, but is primarily of significance- its very title says 
it all - for evaluating curricula. In any case, theory evaluation only takes place indi­
rectly. 

In principle, developmental research offers the potential for a much more direct 
manner of evaluation. There is room within the broad concept of educational devel­
opment for different types of research: developmental research, implementation re­
search and curriculum evaluation. Each can have its own function and its own re­
search design and methods. In this way, developmental research occupies an inde­
pendent place alongside other foundational research, such as psychological research 
on learning, child development, and social interaction. Not that I wish to isolate de­
velopmental research. Interaction with psychological research, implementation re­
search and evaluation research is, in fact, essential for productive developmental re­
search. 4 

The question is now: how can we strengthen the role of developmental research 
as a foundational research? The first step, I would think, is to clarify the method, 
which is my objective in this section. For outsiders, developmental research is an im­
penetrable process. Evidently, something is going on as theory-guided bricolage, but 
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certain questions still remain: 5

- how does the developer get her or his ideas?
- what procedures are used?
- which criteria does the researcher use to make adjustments?
- how does the researcher evaluate his or her own standpoints?

I will now discuss these questions one by one. First of all, where do the ideas come 

from? 

heuristics and design principtes 

Developmental research is a creative process in which implicit knowledge plays an 

important role. Tuis does not mean that ideas simply fall out of the sky, nor that how 

they arose needs no comment. I have already indicated the role of domain-specific 

knowledge (e.g. in chapters l and 3). The researcher may be expected to have come 

prepared and, therefore, to be in possession of thorough domain-specific knowledge. 

Before the researcher dives into the cyclical process of invention, experimenta­

tion and reflection, he or she will make an analysis of the situation: Why are the ex­

isting curricula unsatisfactory? In this analysis, the demands which the new course 

is expected to meet will become visible. After all, the new course must give conso­

lation where the old ones were remiss. 

Alongside this analysis, a genera! concept of a course must develop before the 

actual experiments can begin. Both the problem analysis and the design of a genera] 

course design rest to a great degree on the domain knowledge of the researcher. The 

constitution of a genera] course design does not, however, take place undirected. The 

researcher can use the theory of realistic mathematics education by applying the cen­

tra! principles mentioned in chapter 3 heuristically. These are: the reinvention prin­

ciple, the didactic phenomenology and the mediating models. 

The guideline of the reinvention principle is: 'think how you might have figured 

it out yourself'. 

Reinvention can be viewed ontologically, taking the history of mathematics as a 

basis. But there is another access route. Children's spontaneous solution strategies 

can also be used to put the developer on the track of a possible reinvention-route 

(Streefland, 1985; Gravemeijer, 1991 ). 

Didactic phenomenology points to applications as a possible source. Following 

on the idea that mathematics developed as increasing mathematisation of what were 

originally solutions to practical problems, it may be concluded that the starting 

points for the reinvention process can be found in current applications. The develop­

er should therefore analyze application situations with an eye to their didactic use in 

the reinvention process. Streefland ( 1993) adds to this the principle of exploiting the 

context by different variations of shifting. In this way, the links between the various 

learning strands can also come to light, enabling the developer to make use of the 

intertwined learning strands. 
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Mediating models are deployed in realistic mathematics education in order to 

connect informal and forma! knowledge with one another. Or, in other words, to 

serve as a catalyst for a growth process in which the forma} knowledge evolves from 

the informal knowledge. The developer must therefore search for ways to model the 

students' informal strategies so that models, diagrams, manners of notation, and 

suchlike evolve which can then be used to generalize and formalize the informal 

knowledge and strategies. In this plan, the models are first linked to contexts. Refer­

ring to the context gives them meaning. Providing variety in the kinds of problems 

will aid independence and the ability to generalize, so that the same models can then 

function as a basis for further formalization. In this way, the reinvention process is 

structured along four levels, which have to do not only with actual models but also 

with concepts, strategies and manners of notation. These levels may be outlined as 

follows: 

I the level of the situations, where domain-specific, situational knowledge and 

strategies are used within the context of the situation 

2 a referential level, where models and strategies refer to the situation described in 

the problem 

3 a genera! level, where a mathematica! focus on strategies dominates the refer­

ence to the context 

4 the level of forma! arithmetic, where one works with conventional procedures 

and notations. 

The concrete level requires some clarification. What do we precisely mean by 'real­

ity'? The reality outside school can hardly be brought into the classroom. An attempt 

is made, however, to make this reality as authentic as possible. Bus rides, for in­

stance, can first be performed as arithmetic play-acting (Van den Brink, 1989). The 

reality of a realistic context should not, by the way, be identified with everyday re­

ality outside school. Realistic mathematics education has to do with situations that 

are 'experientially real' to the students. These may be everyday situations, but they 

may also be fantasy worlds in which the students can immerse themselves. And -

last but not least- it may be the mathematics itself that is experientially real (see also 

Davis and Hersh, 1981 ). The objective of realistic mathematics education is that the 

mathematics developed by the students themselves be experientially real. Freu­

denthal (1991) spoke in this context of a developing 'common sense'. The mathe­

matics developed in realistic mathematics education should be experienced by the 

students as common sense.6

Use of the above-mentioned heuristics means that preparatory research must be 

conducted. The didactical-phenomenology heuristic entails, for instance, presenting 

selected application problems to (a few) students in order to see whether their solu­

tions are insightful. The usefulness of the chosen models can also be tested before­

hand. Moreover, in accordance with the principle of theory-guided bricolage used 
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by the researcher in making a global design, all available designs and experiences 

that are useful can be utilized. Two principles of a different kind can be borrowed 

from the analysis of developmental work found in chapter 1. 

The first principle involves the planning of long-term learning processes (see 

also Streefland, 1985). The focus of realistic mathematics education is not simply on 

local success with small units of subject matter. Guided reinvention entails a gradual 

structuring of the subject matter. Reconstruction of the development of the unit for 

arithmetic up to twenty in chapter 1 showed how thinking in terms of learning 

strands guided the developmental work. 

The second principle that emerged in chapter 1 was the idea of the phased struc­

turing of a relational network. In this particular case, the construction of a network 

of numerical relationships was phased and structured by linking the research on the 

numbers up to twenty with strategies for deriving numerical relationships (cf. also 

Greeno, 1991; Mclntosh, Reys and Reys, 1992). 

theory-guided bricolage 

The second question was: What procedures does the researcher use in developmen­

tal research? The answer is roughly: various forms of 'theory-guided bricolage'. 

Tuis concept was introduced in chapter 4 as a description of professional develop­

mental work in the early days of the realistic textbooks. The emphasis at that time 

was strongly on fitting and adapting whatever was available in educational designs. 

In the same chapter, theory-guided bricolage was also used to describe develop­

mental research. lt was noted here that, in developmental research, this has to do 

with a different modality. In developmental research, the theoretica! charge is more 

important and the emphasis lies more on growth: growth of knowledge in an itera­

tive process of theory-guided adaptation, improvement and expansion. Tuis section 

will deal with three aspects: the long-term perspective for theory development in de­

velopmental research, the theoretically based construction of a preliminary design, 

and the cyclical process of invention, experimentation and reflection on a micro-lev­

el. 

Theory-guided bricolage as 'A Never Ending Story'. The goal of developmental 

research is to develop a domain-specific instruction theory, but without a deadline 

involved. Not only is theory development through developmental research a long­

term process, but it knows no time limitations. Theory development is seen as 'A 

Never Ending Story', not because realistic mathematics education is an unattainable 

utopia, but because it is a living thing. Objectives of mathematics education evolve, 

while the conditions under which the education is given also change. As far as the 

objectives are concerned, at this moment we can see a shift in the direction of 'math­

ematica} literacy' as an educational objective. Education itself is directly influenced 

by social change, which then influences the expectations and behavior of the stu­

dents. In addition, the availability of new technologies is of increasing influence. 
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The realistic educational theory is rooted in concrete educational activities and, al­
though the theory will become more and more absorbed as time passes, it will also 
have to be adapted to new developments. It is this unlimited perspective that attract­
ed Hoeben (1994) to use the term 'relaxed developmental research'. As far as theory 
development is concemed, developmental research is, on the whole, indeed relaxed. 
There are no unrealistic expectations and, each research project produces its own 
modest contribution. But if we look at the actual circumstances surrounding most 
developmental research, then the term 'relaxed' is misplaced. With a few excep­
tions,7 developmental research in The Netherlands is a by-product of developmental 
work. Developmcntal research, on the whole, is not recognized as a subsidizable 
form of research. The primary objective, for instance, of many of the research 
projects conducted by the Freudenthal Institute is the development of educational 
material or curricula. In practice, this is always accompanied by one form or another 
of developmental research. No status quo developmental work is conducted; it is al­
ways a matter of innovative, ground-breaking developmental work - and that re­
quires developmental research. The nature of the work is such that the time available 
for actual realization of the research component is often Iimited. The fact that this 
research still yields so much is due to the coherence of the various research activi­
ties. There is a community of developers and researchers who let themselves be 
guided by the same theoretica! starting points. And, thanks to a continuous dis­
course, each new project can be built on previously acquired knowledge. It is the 
combination of continuity and graduation (together with the productivity of the 
guiding theory) that makes theory development through developmental research a 
success. 

Theory-guided bricolage as the basis for a theoretically based preliminary de­

sign. As the theory development progresses, the theory as a means of guiding as­
sumes more significance, particularly for developmental research. Tuis means that 
the constitution of the preliminary design begins to carry more and more weight. 
Whereas the selection and adaptation of available instructional activities played an 
important role in the early phase of the textbook development, now it is the overall 
design of a course that acquires a pronounced constructional character in develop­
mental research. In a focused search process resting on genera! educational and psy­
chological knowledge, knowledge of research results, theoretica! knowledge of the 
subject, and above-mentioned heuristics and development principles, a course de­
sign can be invented that is truly new. Development of the arithmetic-rack can serve 
as an example of this kind of focused design activity. 

The objective was to support the use of strategies for deriving facts when learning the 
basic facts for arithmetic up to 20. This was also one of the objectives of the first grade 
course in the 'Rekenen & Wiskunde' textbook, discussed in chapter 1. Construction 
of the differentiated strategies was mainly of a rational nature; the strategies were de-
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veloped from the observer's point of view. Use of doubling was an exception. Later, 
the five referenced strategies were added when, upon investigation, these appeared as 
spontaneous solution strategies (informal comments by Van den Berg and Van Eerde, 
pers. comm.). Some of the strategies mentioned above were found to conform with 
the informal strategies seen in reaction time analysis and in research based on clinical 
interviews (Groenewegen and Gravemeijer, 1988). Tuis was not found to be true, 
however, of the use of the inverse relation when solving subtraction problems; the 
spontaneous tendency of the students was to 'count on' strategy. Another strategy, 
which received no attent ion in 'Rekenen & Wiskunde', was that of compensation; for 
instance, one can calculate 7 + 5 by means of 6 + 6, which is found via (7 -
1)+(5+ 1). 
Research into the support of informal strategies for learning the basic automatisms re­
ceived a new impulse in the project 'Nieuwe Media' (Van Galen et al., 1991). At that 
time the research of Hatano ( 1982) was generating a great deal of attention. Tuis re­
search introduced manipulatives based on the five-structure. Simultaneously, atten­
tion was drawn to the natura! character of the five-structure. Apparently, the five­
structure could be found in the number words of many African Ianguages (Zaslovsky, 
1984). The Japanese approach did not, however, fit the realistic principles. Working 
with Hatano's 5-tiles was based too much on a fixed methodology. The answer to 
each problem had to be found via a translation into a five-structure. The same draw­
back was true of Fletcher's 5-frames (Fletcher, 1988). Within and around the Nieuwe 
Media group arose discussion regarding the use of manipulatives to help the weaker 
students especially. The possible altematives were: 

the 10-boxes used in second grade 'Rekenen & Wiskunde', which are similar to 
Wirtz' (1980) '10-frames'; 
the numerical images in older arithmetic approaches (Radatz and Schipper, 
1983); 

the idea of using a string of beads or an abacus. 

The basic concept was that appropriate numerical images could support the mental 
structuring of numbers. Take the 10-boxes as an example. In each box one can fit ten 
blocks, in two rows of five. The structure of the box makes it possible, in principle, to 
determine how many blocks are in the box without counting. Because exactly five 
blocks fit in lengthwise, one can teil by the proportionate length between the empty 
and full sections how many blocks there are in a row. Tuis can then be used to deter­
mine the total number of blocks (fig. 6.1 ). 

figure 6.1: 10-box 

A drawback to the boxes was that little support was given to 'bridging' ten. A string 
of beads arranged in groups of five would appear to be more appropriate. Tuis idea 
meshed with experiences involving the abacus. As mentioned in chapter three, a spe­
cial abacus was developed for the third grade of 'Rekenen & Wiskunde'. Tuis abacus 
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consisted of twenty beads per rod with alternating colors every five beads: light, dark, 
light, dark. The point of these colors was that the students would easily be able to read 
the amounts, eliminating the need to count individual beads (fig. 6.2). 

figure 6.2: abacus with five-structure 

The students would then be able to apply their knowledge of the basic facts. In prac­
tice, however, the students developed strategies suited specifically to the five-struc­
ture (Van Galen, 1983 ). For this reason the abacus was introduced in the second grade 
as an aid in 'bridging' ten. Only the rightmost rod was used for this purpose. By using 
a string of beads instead, a more manageable aid would be available. Moreover, sub­
traction could then be done in two ways: the number to be subtracted could either be 
slid to the left or the right (fig. 6.3). 

figure 6.3: take away from the beginning or the end 

The 'take away from the beginning' meshed nicely with the informal strategy of 
counting for solving subtraction problems. The disadvantage of the string of beads, 
however, was that doubling could not be represented. Tuis was possible, however, on 
the 5-boxes or 10-boxes, by arranging them strategically. But then manipulation did 
acquire a somewhat forced character. 

So the search was for material that would combine the advantages of the string of 
beads with the opportunity to use doubles as reference points. Tuis led to the invention 
of the arithmetic rack (Treffers, 1991 ). The string of beads was, as it were, cut into 
two strings of ten beads, one of which was then placed under the other (fig. 6.4). ln­
stead of two separate strings, two rods of beads were used, making a kind of elongated 
abacus. 

--------.-;I 
figure 6.4: the arithmetic rack 

The principle of 'those shifted to the left count' is now true of both rods. Tuis means 
that one can work in two different ways: 

first use all the beads on the upper rod and then continue with the beads on the 
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lower rod, or 
2 use beads on both the upper and lower rods. 

In the first case we carry on just as with a string of twenty beads. Tuis supports the 
'bridging' ten. The 'take away from the beginning' cannot actually be carried out, but 
one can cover a number of beads at the left (fig. 6.5). 

________ ·· ..... ·---�,
............. 1 

figure 6.5: '9- 6' 

The second manner is good for representing doubles and almost doubles. Tuis repre­
sentation is also suitable for the informal strategy of compensation (fig. 6.6). 

1.--.. �.@,':�.·,,
···.----.--.- .. --- ..... . . . +: ""1·:..; 

W:�
.... -e-- o:x:o::i"'.; 1 ................ �:>-=-----------_-____ -___ -____ ..... _�-

figure 6.6: '4 + 6 = 5 + 5' 

Small experiments with individual students revealed the practical value of the arith­
metic rack. The researchers, however, were not satisfied until the use of the arithmetic 
rack could also be theoretically integrated into the realistic approach. The model-heu­
ristic sent the researchers in search of situations that could be modeled using the arith­
metic rack. An initia) situation was found in Van den Brink's double-decker bus con­
text (Van den Brink, 1989). Passengers on a double-decker bus can be arranged in var­
ious ways on the two decks. The number of passengers above and below can be 
illustrated on the rods of the arithmetic rack. Note that the relation between the beads 
and the passengers is of a fairly forma! nature; the beads represent the number of pas­
sengers, not the passengers themselves. So it doesn 't matter which bead is shifted 
when a passenger gets off the bus, as long as the total decreases by one. 
On the whole, we can characterize the place of the arithmetic rack as follows. With 
the introduction of the arithmetic rack the students are (or become) familiar with the 
idea that you can find the answer to an arithmetic problem by using concrete objects. 
So the arithmetic rack provides a standard set of countable objects. As the students 
become more familiar with the numerical relationships connecting the numbers under 
twenty, the bead pattems begin to acquire an independent significance. The first seven 
beads on a rod now represent seven as 'five plus two'. Using this knowledge, the an­
swer to 7 + 6 can easily be found via 'five plus two plus five plus one is ten plus three.' 
In other words, a shift occurs from manipulating beads on the arithmetic rack as a rep­
resentation of addition and subtraction of amounts to (thinking of) manipulation on 
the arithmetic rack as a model for forma! arithmetic. 

Tuis example shows how significant the initia! phase of developmental research can 

be if plenty of knowledge is present. Tuis does not mean that an educational exper­

iment is redundant in such a case. Practical elaboration and testing re main necessary. 

An effective execution is only possible in conjunction with classroom experiments. 

Moreover, the overall design has the character of a collection of hypotheses that are 

tested in the educational experiment. The thorough process of deliberation ensures 

185 



developmental research revisited 

that the researchers will begin the educational experiment with a favorable and well­

founded overall design. In contrast, Lampert's educational experiments (Lampert, 

1986, 1989, 1990) would seem to have a more exploratory character. 

Theory-guided bricolage on a micro-level.Whenever various versions of a unit are 

tried out one after the other, this may be called a cyclical process on a meso-level. 

The testing of the unit, however, consists itself of a collection of mini-cycles. Al­

though the experiment does start with an overall preliminary design, this is expanded 

and adapted in a cyclical process of inventing, testing, and reflecting on educational 

activities. One might call this a small-scale empirica! cycle. Freudenthal (1988) 

speaks in this context of 'thought-experiment' and 'educational-experiment'. That 

which is thought up behind the desk is then tried out and adapted in the classroom. 

The researcher goes in search of signs that confirm the expectations of the thought­

experiment, as well as signs pointing to the contrary. Moreover, the researcher keeps 

his or her eyes open for new possibilities. The short cycles lead to what in chapter 

one was called 'feed-forward'. Whenever the development of educational material 

and its testing in the classroom follow upon one another's heels, it is possible to react 

immediately to the classroom experiences.8 In the material still to be developed, one

can take previous successes and failures into account. In my opinion, a centra! prin­

ciple in the guiding of the bricolage process on a micro-level is the micro-didactic 

deliberation on the learning process. As noted in chapter 1, the discussions on didac­

tic topics in the 'Rekenen & Wiskunde' development group were carried out on the 

basis of 'micro-theories about the mechanism of the proposed instructional activi­

ties'. And this is how it ought to be. Terms such as 'educational development' and 

'instruction-theory' could leave the impression that education is viewed solely from 

the supply side. Nothing is less true. The whole point is the student's own mental 

activities. These are centra! to the developmental work. 

criteria 

The third question was: Which criteria does the researcher use to make adjustments? 

The criteria used by the researchers to make assessments and to carry out adjust­

ments are taken from the theory for realistic mathematics education. In practice, they 

flow from the heuristics outlined above. The heuristics lead to a preliminary furnish­

ing of the unit, which is based on the expectations derived from the heuristics. 

The reinvention principle assumes that the students' own solutions will pave the 

way towards reinvention. That is, the students' solutions must actually express a va­

riety of solution levels. These solution levels must, moreover, provide a good reflec­

tion of the learning path to be followed. The learning path must, as it were, be visible 

in the students' solutions. Tuis requirement of a dispersion of solution levels is not 

only significant as a forma] characteristic of the reinvention concept. Longitudinal 

dispersion (in solution levels within the planned learning path) and transversal dis-
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persion (over students) are also necessary in order to offer the teacher a chance of 

success. Guided reinvention assumes that the teacher will find a modus operandi for 

reconciling guidance and self-reliant invention with one another. A productive class­

room discussion is only possible when there is a difference both in the solutions of 

various students and in solution level. If the students all use the same solution pro­

cedure, then there can be no discussion. If all solutions are on the same level, then 

the teacher bas no other choice than to exert a strong guiding influence. 

A related criterion is that the reinvention path not only be traveled upwards, but 

also downwards. When the students are faced with a new problem that presents dif­

ficulties, they should spontaneously take a step backwards in their own learning his­

tory. They can then solve the problem on a lower level. Tuis should not be seen, by 

the way, as a conscious step backwards. It is expected of the students that they ap­

proach new problems as situations to be mathematised. Tuis means that, in such a 

case, they will choose a 'bottom-up' approach, beginning by getting a sense of the 

problem and then seeing what they can do with their already acquired knowledge. 

Nor is it true, however, that the student approaches a problem as a blank slate. When 

structuring the problem, the student is also guided by strategies and techniques with 

which she or he is already familiar. The student shuttles back and forth, as it were, 

between the problem and the available knowledge (see also chapter 3). On which 

level the connection will eventually be made depends upon the complexity of the 

problem and the familiarity of the student with the solution procedure. 

The didactica[ phenomenology requires the researcher to go in search of appro­

priate context problems. The suitability of the context problems is thereby automat­

ically a criterion. Tuis bas to do primarily with the relation between the context and 

the students' spontaneous solution strategies. Do the students indeed make use of the 

footholds offered by the context? Do they apply their own domain-specific knowl­

edge? And, at least as important, do the solutions they carne up with offer possibil­

ities for vertical mathematization? Tuis last question, by the way, can be answered 

empirically as wel!. 

Another aspect of the phenomenology involves the applicability. Solutions will, 

in the first phase, be local. Each problem is approached as a new problem and the 

solutions will contain clear context-specific elements. After a time, the communal 

must begin to prevail and a more broadly applicable piece of mathematics must de­

velop. Whether the knowledge developed in this manner can truly be broadly ap­

plied is an important criterion for the researcher. The didactica! phenomenology out­

lines the area of application to be considered for research. 

The level structure and the related role of models also provide the necessary cri­

teria. The criteria for mediating models was mentioned in chapter three as: 'natural­

ness', 'vertical power' and 'breadth of application'. Characteristic of the bottom-up 

approach to mode Is is that the mode Is spring from the students' own activities. It is 

in this sense that there must be naturalness. Tuis can become visible in various ways. 
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The best, of course, is when the students (re )in vent the models on their own. In cases 

where the model is presented, one requirement is that it fit in with the informal strat­

egies demonstrated by the students. Another indication of naturalness would be 

when the student easily adopts the model and spontaneously applies it to new situa­

tions. 

In my opinion, it is essential that the model offers the students the opportunity to 

be faithful to their own solution procedures. In other words: the model must not dic­

tate to the students how they should proceed but, instead, must follow the students' 

thought processes (Gravemeijer, 1993). Tuis should become evident through, 

among other things, flexible use of the models. 'Vertical power' may be deemed to 

be present if the students abbreviate and schematize their way of working on their 

own. The level shift from 'referenced' to 'genera)' is crucial here. Tuis can be seen 

from the (Jack of) connection between the structure of the problems and the structure 

of the solution strategies. Another important indication of vertical power is when the 

students themselves bring up the matter of the efficiency of an approach. The matter 

of applicability was already raised by the didactic phenomenology. I used the term 

'breadth of application' specifically for models in order to indicate that students 

were able to deal with a model in all sorts of application situations. In closing, the 

following is a summary of the criteria mentioned above: 
- reflection of the learning path in the students' solutions
- longitudinal and transversal dispersion of solutions
- bottom-up problem solving
- use of footholds offered by the context
- situation-specific solutions with vertical perspective
- applicability
- naturalness, vertical power and breadth of application of models
- spontaneous abbreviations
- shift from context-bound to solution-focused
- flexibility.

Tuis list is, of course, incomplete in the sense that it is not exhaustive. Moreover, the 

categories are not mutually exclusive. And yet, it does offer a representative picture 

of the criteria used by developmental researchers in the field of mathematics educa­

tion. For the sake of completeness I should like to point out that these criteria not 

only serve as a gauge of the expectations arising from the thought-experiment. They 

also make up the searchlight for discovering students' insightful approaches. 

evaluation 

The fourth question was: How does the researcher evaluate his or her own stand­

points? This question requires a differentiated answer. Some standpoints, namely, 

are not to be discussed. One of these is the realistic starting point that mathematics 
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can be learned on one's own authority through one's own mental activity. Tuis 

standpoint is not open to discussion; it functions, as it were, as the core of a research 

program. The objective of realistic mathematics education is to develop education 

that enables students to learn mathematics in this way. In this sense, developmental 

research is related to physics research as viewed by Barnes (1982). In a period of 

'normal science' (Kuhn, 1970), the work of a physics researcher consists of recon­

ciling the theory and the phenomena being investigated with one another. The point 

is to expand the theory's area of application. Tuis means that the phenomena must 

be interpreted in such a way that they lie within the theory. If the researcher does not 

succeed in doing this, then it is the researcher who bas failed, not the theory. Tuis is 

at any rate the case as long as 'normal science' is involved, according to Bames. 

No mechanistic situation will, therefore, ever be considered in developmental re­

search in the area of realistic mathematics education. Tuis kind of irrefutable core is 

both the strength and the weakness of every research program. Obviously, the oper­

ationalization of this axiom does leave some room for interpretation. The situation 

is not as rigid as all that. In genera}, for instance, it is not assumed that training and 

imprinting are forbidden, as long as an insightful basis is first laid and 'the sources 

of the insight are held open'. The realistic core is translated into criteria such as those 

listed above. During the development of a prototype, the findings are evaluated 

against these criteria. Starting points that are open to discussion involve the concrete 

choices made in the prototype. These are the choices that are evaluated against the 

above-mentioned criteria. The example of the development of a unit for multiplica­

tion, which is discussed in the following section, demonstrates that developmental 

researchers are, indeed, willing in actual practice to retreat from earlier standpoints. 

6.4 external persuasiveness 

Developmental research can be seen as the researchers' learning process. Tuis is also 

why it is so difficult to transfer the yield of developmental research. The researchers 

must describe their learning process in such a way that it can be traced by outsiders. 

In ethnographic research this is called 'trackability' (see chapter 4). The outsider 

must be able to trace the train of thought.9 Making the aspects of developmental re­

search outlined above more explicit will certainly be of help here. In addition, it is, 

of course, important that the researchers make their own learning process conscious. 

Tuis can be done by taking logbook notes in which an attempt is made to record 're­

flection-in-action' (Goffree, 1986). Eventually, the researchers need to ask them­

selves: What have I learned? and: Why do I believe this to be true? 

In answering the first question, it may be helpful for the developers to describe 

their 'starting theory' from the beginning of the research (Wijers, 1989). Where the 

second question is concemed, if we succeeded in objectifying the answer to it, de-
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velopmental research could be considerably reinforced. Another way to increase the 

persuasiveness of developmental research is to broaden the theoretica! base. These 

two ways of increasing the persuasiveness of developmental research will be elabo­

rated upon in the following section. 

objectification 

I will first discuss the various ways of objectifying the answer. Due to practical con­

siderations, no distinction will be made here between measures that are already 

present in examples of developmental research and new suggestions. At first glance, 

the sole point of objectification would appear to be the reinforcement of the empir­

ica! base. At least as important, however, is the objectification of the interpretation 

(or analysis) of the empirica! data. In developmental research we find, namely, cru­

cial moments which the researchers experience as 'Aha-Erlebnissen'. Tuis Aha-ex­

perience has a great deal to do with the reference framework of the person involved. 

Often, it is possible to share this insight with those who are like-minded. Outsiders, 

however, find it generally incomprehensible why so much significance is attached 

to a specific observation. In order to make the significance of this observation acces­

sible to others, the researcher must endeavor to make the theory underlying this ob­

servation as explicit as possible. Let me take the following example as an illustra­

tion. 

During a lecture at a symposium on developmental research, Treffers (1993) de­
scribed 'Els' error' as a crucial moment in the development of a unit on multiplica­
tion. The unit in question is based upon the so-called 'intersection model'. In this 
model a number is illustrated by a corresponding number of parallel lines. The num­
bers which are to be multiplied are illustrated by two groups of perpendicularly inter­
secting lines. 

8 X 12 

8 

12 

figure 6.7: intersection model for multiplication 

The product of the two numbers corresponds with the number of intersections formed 
in this way (fig. 6.7). Tuis intersection model was introduced using a simple context. 
Large numbers soon have to be dealt with, which compels the student to find a sys­
tematic approach. A smart approach is to use the decimal structure of the numbers to 
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group the lines in bunches of ten (fig. 6.8a). 

15 X 24 15 X 24 

10 
10 

5 5 

10 10 4 
10 10 4 

figure 6.8a: decimal structure figure 6.8b: schematization 

Once you know that there are ten lines in a bunch, then you no longer need to draw 
all ten. You can then replace them with a thicker line, which stands for ten lines. In 
this way, the illustration acquires a structure. Four sub-areas are created that corre­
spond with four sub-products (see fig. 6.8b). The standard algorithm begins to come 
into view. 

The developmental research was progressing nicely and schematization of the lines 
was occurring quite spontaneously. The researchers were satisfied ... until Els' error 
occurred. The students had been given a simple application problem, but Els did not 
use the intersection model to solve it. lnstead, she chose an entirely different solution 
strategy that was, moreover, incorrect. 

The problem is: 

Next door Jives a family consisting of a father, a mother and a son. The son is 
14 years old. The father is four times as old as his son. 
>> How old is the father?

Els draws an intersection model that corresponds to 14 x 14 (fig. 6.9a). 

'o 

10 

l/ 

\ '\o 
�6 

figure 6.9a: Els' intersection model 

She says: Now it is added two times. 

136 
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Toen she adds 196 and 196 (fig. 6.9b) and she says: Now it is added four times. 

figure 6.9b: Els' addition 

But one week later she had mastered her own solution strategy, which worked well 
for her (fig. 6.10). 

figure 6.10: Els' strategy 

The researchers realized with a shock that they were on the wrong track. The result 
was that they abandoned the intersection model and switched to repeated addition. 
Treffers (1993) used this example in order to demonstrate to relative outsiders that 
crucial empirica! facts are of an entirely different nature in developmental research 
than in conventional curriculum research. The example failed to persuade researchers 
from outside the circle of arithmetic experts (Kanselaar, 1993; Eibers, 1993). How 
can you derive such sweeping conclusions from one incident, was their reaction. 

I will attempt to reconstruct why this incident could, indeed, acquire such signifi­
cance. The researcher's own domain-specific knowledge offers the first foothold. The 
strategies used by Els are very natura! ones; the doubling present in her first solution 
was used by the ancient Egyptians. Doubling and repeated addition are informal strat­
egies known to occur quite often. Evidently, the intersection model lacks the natural­
ness present in the other strategies (criterion of naturalness). The realistic theory of 
education also plays a role in this interpretation. Tuis course was based on the rein­
vention principle, developed in a form of progressive mathematization. The idea be­
hind this is that one links up with the student's own level and that the student regards 
the progressive steps of mathematization as a natura! expansion of her/his domain. 
The student should also be able to retrace her/his steps when necessary. Tuis was 
mentioned earlier as one of the criteria for the researcher. One expects the student to 
change level spontaneously when confronted with an unsolvable problem. In the in-
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mentioned earlier as one of the criteria for the researcher. One expects the student to 
change level spontaneously when confronted with an unsolvable problem. In the in­
tersection unit, this means that the student steps back to the drawing of separate lines. 
Els, however, did not use this strategy. 

Another aspect of the realistic standpoints concerns applicability. The phenomeno­
logical analysis indicates which areas of application must be taken into account. The 
intersection model is a didactic elaboration of the area model that plays an important 
role in countless application problems. Tuis was one of the reasons that this model 
was expected to guarantee a broad applicability. But this did not turn out to be the 
case. The criterion of breadth of applicability was not fulfilled. Tuis can be under­
stood if we lay the context problem and the model next to each other. The phenome­
nological structure of the context problem is so different from the structure of the 
model that the link can only be made on a forma! level. If we want the students to have 
a model at their disposal that can also be used in such application situations, then the 
intersection model is not the right one.10 By contrast, repeated addition can be used
to model a multiplication situation that is characterized by an area model. Moreover, 
as mentioned before, repeated addition is a natura! strategy. New research for this unit 
was then begun from this standpoint (Treffers, 1979). 

Alongside the objectification of the analysis or interpretation of data, I also men­

tioned the objectification of the empirica} observations themselves. A few simple 

measures can easily be taken. For instance, the researcher can collect information on 

specific characteristics of the research population and the research situation. A test 

can be administered at the beginning and at the end of the project. The experimental 

lessons can be recorded on video or audio cassette, or else drawn up in lesson pro­

tocols. But the problem lies in the developmental research itself. Due to the com­

plexity of this evolutionary development and research process, it is simply not pos­

sible to report exhaustively on each and every experience, deliberation and adjust­

ment. Tuis problem, however, does not only occur in realistic circles. Verschaffel 

( 1993) points out the existence of an international community of researchers who are 

grappling with the same problem. The study of learning and teaching mathematics 

has, namely, grown to become an intemationally recognized scientific terrain (see 

also Kilpatrick, 1992; Wittman, 1994).11 The development of this research commu­

nity was accompanied by an increasing diversification and liberalization of the 

methods of research and analysis (see also Walker, 1992; Romberg, 1992; De Corte, 

Oreer and Verschaffel, in press). Tuis does not, however, mean that the methodolog­

ical problems have thereby disappeared. 

'lndeed, as soon as the researchers left the familiar, smooth methodological paths and 
took to new roads, they ran into all sorts of (unforeseen) problems in connection with 
the collection, analysis, interpretation and reporting of data, to which no answers 
could be found in the classica! methodological guides, but for which they still hoped 
to find a scientifically satisfying solution. It is, therefore, not so surprising that re­
searchers began to apply themselves more and more urgently to these methodological 
matters.' 

(Verschaffel, 1993, p. 11-12) 

Verschaffel follows here in the footsteps ofLesh and Landau, who observe, in 1983: 
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'that formerly useful, borrowed methodologies are frequently inconsistent with the 
purposes and assumptions underlying the newly emerging theoretica! perspectives' 

(Lesh and Landau, 1983, p. 1) 

To which they add: 

'Major mathematics education research projects ... have had to engage in the devel­
opment of research methodologies as wel! as in the generation of knowledge related 
to the improvement of mathematics instruction.' 

They mention, in this context, the use of standardized questions. Their argument is 

that the whole idea of a standardized question is useless if one is starting from a the­

ory that assumes that: 

'two students frequently interpret a single problem situation or stimulus in quite dif­
ferent ways' and that 'two responses that appear identical may be produced using 
completely different solution paths' 

(Lesh and Landau, 1983, p. 2) 

Verschaffel refers to Schoenfeld, Brown and Saxe, who carne to the conclusion that 

the arsenal of research methods and techniques that they had acquired during their 

training was not sufficient for studying the complex phenomena surrounding the 

learning and teaching of mathematics. 

Schoenfeld (1992) endeavors to arrive at a methodology for analyzing video­

tapes by analyzing and systematizing his own method of working. Here we find our­

selves on familiar ground: choose your starting point for theory forming in the prac­

tice of the activity itself. As examples of newly developed methods, Verschaffel 

(1993, p. 11 and 13) mentions clinica] interviews, ethnographic methods, micro-ge­

netic analyses and constructive research projects such as Steffe' s (1991) teaching 

experiment, Lampert' s ( 1986) education experiment and the developmental research 

at the Freudenthal lnstitute. In addition, Verschaffel mentions the Dutch contribu­

tion to specific research techniques, such as the technique of mutual observation 

(Van den Brink, 1981) and the technique of 'students as textbook authors' (Van den 

Brink, 1987). The Jatter is an example of the more genera! technique of using free 

productions (Van den Brink, 1989; Streefland, 1990) . 12 In addition, I should Iike to

point out the development of tests geared to realistic mathematics education (De 

Lange, in press; De Lange, Burrill and Van Reeuwijk, 1993; Van den Heuvel, 1990). 

theoretica/ basis 

The power of persuasiveness of developmental research will increase as the research 

results become more embedded in a broad theoretica! framework. Tuis idea is not 

new. It has to do, in fact, with what is a rather common manner of working in real­

istic circles (see for example Streefland, 1980; Treffers, 1987). I will, therefore, refer 

to this idea only briefly. Concretely, it means that the researcher demonstrates-par­

ticularly in the documentation - how the research results relate to generally accepted 

theories. Tuis does not mean that the researcher's findings must be made to agree 
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with these theories. An argument with a general theory may prove quite enlighten­

ing. Chapters 2 and 3, for instance, show that activity theory and information pro­

cessing result in educational approaches that do not do justice to the central principle 

of realistic mathematics education. Constructivism, on the other hand, fits the real­

istic approach much better. The central principle of constructivism is that each per­

son constructs his or her own know ledge, and that direct transfer of knowledge is not 

possible. This idea of independent construction of knowledge supports the central 

realistic principle. 

The realistic instruction theory indicates how instruction can be developed that en­

ables the independent construction of knowledge and focuses it as well. Socio-con­

structivism provides a frame of reference that enables an effective deliberation of re­

alistic mathematics education. Points of interest here are the interpretation of in­

structional tasks and the social norms that guide the interaction between teacher and 

students. In addition to psychological research, curriculum research is, of course, 

important as well. Informal feedback and the feedback acquired from implementa­

tion and evaluation research were mentioned in chapter 4 as feedback-loops. Imple­

mentation and evaluation research from an innovation perspective can provide a par­

ticularly valuable contribution. The MORE research project can serve here as an ex­

ample (see chapter 5). In contrast with the research of cognitive psychologists, the 

analyses of the learning processes in developmental research of ten remain rather su­

perficial. Here, too, lies an interesting way of increasing the scientific yield of de­

velopmental research. In collaboration with other researchers, developmental re­

search can be expanded by using cognitive psychological and social psychological 

research into the inherent learning and interactive processes. This type of research is 

now being conducted by Cobb, Yackel and Gravemeijer (Cobb and Yackel, 1993).13

Tuis particular research project takes a close look at the role played by models, such 

as the arithmetic rack and the empty number line, in the transition from 'model of' 

to 'model for'. With the support of the results from this type of research, the eluci­

datory power of developmental research can increase further. After all, this has to do 

with research into the 'mini-theories on the functioning of instructional activities.' 

6.5 conclusion 

The above is an outline of developmental research and of how it is related to other 

sorts of research. I have demonstrated how developmental research functions as an 

intemal legitimization of local and domain-specific instruction theories within the 

circle of realistic oriented researchers. I have also endeavored to illuminate develop­

mental research with an eye to the extemal legitimization - the legitimization for 

outsiders. Finally, I have discussed possibilities for reinforcing the extemal persua-
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siveness. Tuis extensive analysis of developmental research can be justified by the 

practical and theoretical significance of such research. Developmental research is an 

elaborated example of the transformational research requested by the Research Ad­

visory Committee NCTM (I 988): the kind of research that is needed to bring about 

educational change in mathematics education. 

Furthermore, the analysis shows the remarkable character of this type of re­

search. In summary, we can say, it is evolutionary, stratified and reflexive. 

It is evolutionary in the sense that theory development is gradual, iterative and 

cumulative. 

It is stratified in the sense that theory development takes place at different levels: 
- at the level of the instructional activities (micro theories)
- at the level of the course (local instruction theories)

at the level of the domain-specific instruction theory.

It is reflexive in the sense that theory development is fostered by reflexive rela­

tions between the aforementioned levels. 

The Dutch developmental research in the area of mathematics education has, af­

ter all, resulted in theory forming and instructional materials which have received in­

ternational attention. Tuis can be seen, for instance, in the participation by the Freu­

denthal Institute in three projects financed by the National Science Foundation of the 

United States. Verschaffel's analysis quoted above demonstrates that research relat­

ed to developmental research is on the rise. It would seem that, nearly twenty-five 

years after the foundation of the Institute for Development of Mathematics Educa­

tion (IOWO), developmental research is finally receiving the recognition it de­

serves. 

notes 

Mark that the label 'developmental research' does not have a singular meaning in the 
Netherlands. Already a few years ago Van Eerde ( 1988) Iisted various interpretations, and 
since then new approaches have emerged (e.g. Van den Akker, 1993). In this text 'devel­
opmental research' refers to the concept employed at the Freudenthal institute. 

2 Other, kindred, researchers do, for that matter, follow the same approach in developing 
new research methods (Whitenack and Cobb, 1994; Schoenfeld, 1992). 

3 Moreover, the statistica! techniques used in this kind of research are criticized, too (De 
Leeuw, 1988). 

4 An example of a fruitful interaction between psychological research and developmental 
research is shown in the work of Beishuizen. His research on mental strategies in the num­
ber domain 20-100 brought the NIO and JOJO strategies to the fore (Beishuizen, 1985). 
This influenced the way the hundred square was used in the textbook series 'Rekenen & 
Wiskunde'. That again led to new research (Beishuizen, 1993). The distinction between 
N 10 and JO 10 strategies was also integrated in the developmental research on the so 
called 'empty number line' (Treffers and De Moor, 1990). The idea of an empty number 
line was subsequently the core of a new research project by Beishuizen (Boekaerts and 
Beishuizen, 1991) that is being carried out in collaboration with Treffers. 

5 These questions carne to the fore in the contributions of Eibers (1993), Kanselaar (1993) 
and Koster (1993) to a symposium on developmental research. 
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6 Goffree (1993, 42) expresses Freudenthal's beliefs regarding the relation between math-
ematics and common sense as follows: 

By the activity of mathematizing in rea/istic situations, interactively with others and 
reflectively, common sense is continually brought to a higher state. Tuis implies that 
it can be applied more intensely in more situations. Initially one has a lot of 'natura!' 
common sense but when challenged by rich contexts, inspired by the opportunity to 
make inventions oneself and guided by someone who knows about mathematics when 
looking for more certainty, then common sense will be enriched with mathematics. 
The essential means to integration of common sense and mathematics or, if you like, 
to assimilation of the Jatter into the former, is rejlection. Mind you, mathematizing 
can very well take place in a mathematica[ context. For mathematicians also use their 
common sense in particular when working on the boundaries of their science. 

7 Examples of this type of exception are the dissertation researches ofStreefland (l 988) and 
Van den Brink (1989). 

8 Tuis manner of working close to the classroom also improves the practical quality of the 
product. By keeping an eye on manageability and implementability, future problems with 
implementation can be anticipated. Anticipating the implementation is, of course, partic­
ularly important in textbook development. And yet, this aspect should not be neglected in 
prototype development either. Moreover, anticipating implementation problems may, in 
fact, form an explicit area of attention in prototype development. One must keep in mind, 
however, that the involvement and expertise achieved by the teachers in such a situation 
cannot be transferred without further ado to new implementation situations. 

9 Trackability in this way replaces reproducibility as the criterion for reliability. In the same 
way, the actual repetition of the research experiment, conducted by others under different 
conditions, can ensure extemal validity as a nuanced generalizability (see chapter 4). 

10 Later on, research was found in the research literature in which the same conclusions are 
drawn. Students familiar with the intersection model did not apply it when asked to figure 
out how many coins cover a rectangular table (Maclntosh, 1979). 

11 Tuis development is also expressed in a great number of research joumals, in which psy­
chologists and educational researchers, as well as mathematicians and mathematics edu­
cators publish articles (e.g. Joumal for Research in Mathematics Education, Educational 
Studies in Mathematics, Joumal for Mathematica! Behavior, For the Learning of Mathe­
matics, Zeitschrift für Didaktik der Mathematik, Recherches en Didactique de Mathéma­
tiques, Tijdschrift voor Nascholing en Onderzoek van het Reken-Wiskundeonderwijs.) 

12 In addition to using new techniques as such, a combination of techniques can also be con­
sidered, in accordance with the triangulation principle. 

13 Other examples are the collaboration between Beishuizen (Department of Educational 
Studies, RUL (University of Leiden)) and Treffers, and between Eibers (Department of 
Genera! Social Sciences, RU (University of Utrecht)) and Streefland. 
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