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Main Themes

I nonlinear dynamics and chaos

I financial market model with heterogeneous traders

I estimation of nonlinear switching model

I laboratory experiments and nonlinear models
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Why is economics so difficult?

Isaac Newton, about 1700
“I can predict the motion of heavenly bodies,
but not the madness of crowds”

irrationality is difficult to predict and to model

expectations are difficult to predict and to model

Cars Hommes University of Amsterdam

Chaos and Complexity in Economics



The Traditional Rational View
Expectations are model-consistent

Milton Friedman, 1953: Irrational traders will be driven out of the
market by rational traders, who will earn higher profits.

Robert Lucas, 1971: economic policy should be based on rational
expectations models in macro-economics
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alternative, complexity, agent-based modeling approach
in Economics

I bounded rationality and behavioral economics versus perfect
rationality (Simon (1957) versus Lucas (1971)

I heterogeneous agents versus representative agent
I market psychology, herding behavior (Keynes (1936)) versus

rationality
I markets as complex adaptive, nonlinear evolutionary systems

versus representative agent model
I computational versus analytical approach
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Chaos in Nonlinear Systems
quadratic example: xt+1 = 4xt(1− xt)
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Period-doubling Bifurcation Route to Chaos
for Quadratic Map xt+1 = λxt(1− xt)
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Lyapunov Exponent
measuring sensitive dependence

Lyapunov exponent ≡
average rate of expansion/contraction along orbit

λ(x0) ≡ lim
n→∞

1
n

n−1∑
i=0

ln(| f ′(f i(x0)) |),

I λ(x0) < 0: stable periodic behaviour
I λ(x0) > 0: chaos and sensitive dependence
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Chaos in Quadratic Map xt+1 = λxt(1− xt)
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Financial Market Model

Investors can choose between risky asset and a risk free asset
I R = 1 + r > 1: gross return on risk free asset
I risky asset pays stochastic dividends

I yt: stochastic dividend process for risky asset
I pt: price (ex div.) per share of risky asset

I price of risky asset determined by market clearing:

Rpt =
H∑

h=1

nhtEht(pt+1 + yt+1)

I nht: fraction of agents of type h
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Rational Expectations (RE) fundamental benchmark

Rpt = Et(pt+1 + yt+1)

common beliefs on future earnings and prices
unique bounded RE fundamental price p∗t :

p∗t =
Et(yt+1)

R
+

Et(yt+2)
R2 + ....

For special case of IID dividends, with E(yt+1) = ȳ

p∗ =
ȳ

R− 1
=

ȳ
r

pricing equation in deviations xt = pt − p∗t from fundamental:

Rxt = Etxt+1
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Behavioral asset pricing model (Adaptive Belief Systems)
standard asset pricing model with heterogeneous beliefs
one risky asset, one risk free asset

I price of risky asset determined by market clearing
I beliefs about future prices given by simple, linear rule
I forecasting strategies updated according to discrete choice

model with realized profits
equilibrium price of risky asset

Rpt =
H∑

h=1

nhtEht(pt+1 + yt+1)

(in deviations xt = pt − p∗t from RE-fundamental)

Rxt =
H∑

h=1

nhtEhtxt+1
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Fractions of Strategy Type h
fractions of belief types are updated in each period:
discrete choice model (BH 1997,1998) with asynchronous
updating:

nht = (1− δ)
eβUh,t−1

Zt−1
+ δnh,t−1,

where Zt−1 =
∑

eβUh,t−1 is normalization factor,
Uh,t−1 past strategy performance, e.g. (weighted average) past
profits

δ is probability of not updating
β is the intensity of choice.
β = 0: all types equal weight (in long run)
β = ∞: fraction 1− δ switches to best predictor
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Example with 4 belief types
(zero costs; memory one lag)
xe

h,t+1 = ghxt−1 + bh

g1 = 0 b1 = 0 fundamentalists
g2 = 1.1 b2 = 0.2 trend + upward bias
g3 = 0.9 b3 = −0.2 trend + downward bias
g4 = 1.21 b4 = 0 trend chaser

Rxt =
4∑

h=1
nh,t(ghxt−1 + bh)

nh,t+1 =
e

β

aσ2 (ghxt−2+bh−Rxt−1)(xt−Rxt−1)

Zt
, h = 1, 2, 3, 4
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Chaos in Financial Market Model with
Fundamentalists versus Chartists
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Chaos in Financial Market Model with
Fundamentalists versus Chartists
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Model very sensitive to noise
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Nearest Neighbor Forecasting
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S&P 500, 1871-2003 + benchmark fundamental p∗t = 1+g
1+r yt

(g constant growth rate dividends)
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Estimation 2-type model

R∗xt = nt{0.762 xt−1}+ (1 − nt){1.135 xt−1}+ ε̂t
(0.056) (0.036) (1)

nt = {1 + exp[−10.29(−0.373xt−3)(xt−1 − R∗xt−2)]}−1

(6.94)
(2)

R2 = 0.82, AIC = 3.18, AICAR(1) = 3.24, σε = 4.77, QLB(4) = 0.44
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How to model bounded rationality?

wilderness of bounded rationality:
"There is only one way you can be right, but there are many ways you
can be wrong"

I use laboratory experiments with human subjects to test a
behavioral theory of heterogeneous expectations

I fit simple complexity model to laboratory data
I test simple complexity model on real economic/financial data
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Example: Laboratory Experiments wit Human subjects
psychology – behavioral economics – computer science

Computer Screen Learning to Forecast Experiment
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Rational Expectations Benchmark

If everybody predicts
rationally fundamental
price,
then

pt = pf +
εt

1 + r
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Naive and Trend-following Expectations Benchmarks
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Prices in the Experiment with Humans
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Individual Forecasts in Experiments with Humans
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Heterogeneous Expectations Hypothesis

Heuristics Switching Model

I there are a few simple heuristics
I adaptive expectations ADA
I trend extrapolating rule STR, WTR
I anchor and adjustment rule LAA

I impact of heuristics changes over time
I agents gradually switch to heuristics that have performed better

in the recent past
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Group 5 (Convergence)

Parameters: β = 0.4, η = 0.7, δ = 0.9
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Group 6 (Constant Oscillations)

Parameters: β = 0.4, η = 0.7, δ = 0.9
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Group 7 (Dampened Oscillations)

Parameters: β = 0.4, η = 0.7, δ = 0.9
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Concluding Remarks

I chaotic financial market model mimics bubble and crash
dynamics

I simple 2-type model with fundamentalists versus chartists fits
US stock market data

I nonlinear heuristic switching model with path dependence fits
experimental data

I theory of evolutionary selection of heterogeneous expectations
fits experimental data
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