Chaos and Complexity in Economics

Cars Hommes

CeNDEF, School of Economics University of Amsterdam

18^e Nationale Wiskunde Dagen Noordwijkerhout, 3-4 Februari 2012

University of Amsterdam

Chaos and Complexity in Economics

Main Themes

- nonlinear dynamics and chaos
- financial market model with heterogeneous traders
- estimation of nonlinear switching model
- laboratory experiments and nonlinear models

Why is economics so difficult?

Isaac Newton, about 1700 *"I can predict the motion of heavenly bodies, but not the madness of crowds"*

irrationality is difficult to predict and to model

expectations are difficult to predict and to model

University of Amsterdam

Chaos and Complexity in Economics

The Traditional Rational View

Expectations are model-consistent

Milton Friedman, 1953: Irrational traders will be driven out of the market by **rational** traders, who will earn higher profits.

Robert Lucas, 1971: economic policy should be based on **rational** expectations models in macro-economics

Cars Hommes

Chaos and Complexity in Economics

University of Amsterdam

alternative, complexity, agent-based modeling approach in Economics

- bounded rationality and behavioral economics versus perfect rationality (Simon (1957) versus Lucas (1971)
- heterogeneous agents versus representative agent
- market psychology, herding behavior (Keynes (1936)) versus rationality
- markets as complex adaptive, nonlinear evolutionary systems versus representative agent model
- computational versus analytical approach

Chaos in Nonlinear Systems

quadratic example: $x_{t+1} = 4x_t(1 - x_t)$

 $x_0 = 0.1$

 $x_0 = 0.1001$

sensitive dependence on initial conditions

Cars Hommes

Chaos and Complexity in Economics

University of Amsterdam

Period-doubling Bifurcation Route to Chaos for Quadratic Map $x_{t+1} = \lambda x_t (1 - x_t)$

Chaos and Complexity in Economics

Lyapunov Exponent measuring sensitive dependence

Lyapunov exponent \equiv average rate of expansion/contraction along orbit

$$\lambda(x_0) \equiv \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln(|f'(f^i(x_0))|),$$

λ(x₀) < 0: stable periodic behaviour
 λ(x₀) > 0: chaos and sensitive dependence

University of Amsterdam

Chaos and Complexity in Economics

Chaos in Quadratic Map $x_{t+1} = \lambda x_t (1 - x_t)$

Cars Hommes

University of Amsterdam

Financial Market Model

Investors can choose between risky asset and a risk free asset

- ▶ R = 1 + r > 1: gross return on risk free asset
- risky asset pays stochastic dividends
 - ► *y_t*: stochastic **dividend** process for risky asset
 - p_t : **price** (ex div.) per share of risky asset
- price of risky asset determined by market clearing:

$$Rp_t = \sum_{h=1}^{H} n_{ht} E_{ht} (\mathbf{p}_{t+1} + \mathbf{y}_{t+1})$$

• n_{ht} : fraction of agents of type h

Chaos and Complexity in Economics

Rational Expectations (RE) fundamental benchmark

$$Rp_t = E_t(\mathbf{p}_{t+1} + \mathbf{y}_{t+1})$$

common beliefs on future earnings and prices unique bounded RE **fundamental price** p_t^* :

$$p_t^* = \frac{E_t(y_{t+1})}{R} + \frac{E_t(y_{t+2})}{R^2} + \dots$$

For special case of IID dividends, with $E(y_{t+1}) = \bar{y}$

$$p^* = \frac{\bar{y}}{R-1} = \frac{\bar{y}}{r}$$

pricing equation in **deviations** $x_t = p_t - p_t^*$ from fundamental:

$$Rx_t = E_t x_{t+1}$$

University of Amsterdam

Cars Hommes

Behavioral asset pricing model (Adaptive Belief Systems) standard asset pricing model with heterogeneous beliefs one risky asset, one risk free asset

- price of risky asset determined by market clearing
- **beliefs** about future prices given by **simple**, linear rule
- forecasting strategies updated according to discrete choice model with realized profits

equilibrium price of risky asset

$$Rp_t = \sum_{h=1}^{H} n_{ht} E_{ht}(\mathbf{p}_{t+1} + \mathbf{y}_{t+1})$$

(in **deviations** $x_t = p_t - p_t^*$ from RE-fundamental)

$$Rx_t = \sum_{h=1}^H n_{ht} E_{ht} x_{t+1}$$

University of Amsterdam

Cars Hommes

Fractions of Strategy Type h

fractions of belief types are updated in each period: discrete choice model (BH 1997,1998) with asynchronous updating:

$$n_{ht} = (1 - \delta) \frac{e^{\beta U_{h,t-1}}}{Z_{t-1}} + \delta n_{h,t-1},$$

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Amsterdam

where $Z_{t-1} = \sum e^{\beta U_{h,t-1}}$ is normalization factor, $U_{h,t-1}$ past strategy performance, e.g. (weighted average) past profits

- δ is probability of not updating
- β is the **intensity of choice**.
- $\beta = 0$: all types equal weight (in long run)
- $\beta = \infty$: fraction 1δ switches to best predictor

Example with 4 belief types

(zero costs; memory one lag) $x_{h,t+1}^e = g_h x_{t-1} + b_h$

$$g_1 = 0 \qquad b_1 = 0 \qquad \text{fundamentalists} \\ g_2 = 1.1 \qquad b_2 = 0.2 \qquad \text{trend + upward bias} \\ g_3 = 0.9 \qquad b_3 = -0.2 \qquad \text{trend + downward bias} \\ g_4 = 1.21 \qquad b_4 = 0 \qquad \text{trend chaser}$$

$$Rx_{t} = \sum_{h=1}^{4} n_{h,t} (g_{h} x_{t-1} + b_{h})$$

$$n_{h,t+1} = \frac{\beta_{a\sigma^{2}}(g_{h} x_{t-2} + b_{h} - Rx_{t-1})(x_{t} - Rx_{t-1})}{Z_{t}}, \quad h = 1, 2, 3, 4$$

University of Amsterdam

< • • • **•**

Cars Hommes

Chaos in Financial Market Model with Fundamentalists versus Chartists

Cars Hommes

University of Amsterdam

Chaos in Financial Market Model with Fundamentalists versus Chartists

Cars Hommes

Model very sensitive to noise

Cars Hommes

University of Amsterdam

Nearest Neighbor Forecasting

University of Amsterdam

Cars Hommes

S&P 500, 1871-2003 + benchmark fundamental $p_t^* = \frac{1+g}{1+r}y_t$ (g constant growth rate dividends)

Cars Hommes

University of Amsterdam

Estimation 2-type model

$$R^* x_t = n_t \{ \mathbf{0.762} x_{t-1} \} + (1 - n_t) \{ \mathbf{1.135} x_{t-1} \} + \hat{\epsilon}_t$$
(0.056)
(0.036)
(1)

$$n_t = \{1 + \exp[-10.29(-0.373x_{t-3})(x_{t-1} - R^*x_{t-2})]\}^{-1}$$
(2)

 $R^2 = 0.82, AIC = 3.18, AIC_{AR(1)} = 3.24, \sigma_{\epsilon} = 4.77, Q_{LB}(4) = 0.44$

Cars Hommes

How to model bounded rationality?

wilderness of bounded rationality:

"There is only one way you can be right, but there are many ways you can be wrong"

- use laboratory experiments with human subjects to test a behavioral theory of heterogeneous expectations
- fit simple complexity model to laboratory data
- ► test simple complexity model on real economic/financial data

Example: Laboratory Experiments wit Human subjects psychology – behavioral economics – computer science

Computer Screen Learning to Forecast Experiment

Cars Hommes

University of Amsterdam

Rational Expectations Benchmark

If everybody predicts rationally fundamental price, then

$$p_t = p^f + \frac{\varepsilon_t}{1+r}$$

Rational expectations

Cars Hommes

Chaos and Complexity in Economics

University of Amsterdam

Naive and Trend-following Expectations Benchmarks

Cars Hommes

Chaos and Complexity in Economics

University of Amsterdam

Prices in the Experiment with Humans

Cars Hommes

University of Amsterdam

Individual Forecasts in Experiments with Humans

Cars Hommes

Heterogeneous Expectations Hypothesis

Heuristics Switching Model

- there are a few simple heuristics
 - adaptive expectations ADA
 - trend extrapolating rule STR, WTR
 - anchor and adjustment rule LAA
- impact of heuristics changes over time
- agents gradually switch to heuristics that have performed better in the recent past

Group 5 (Convergence)

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

University of Amsterdam

Cars Hommes

Group 6 (Constant Oscillations)

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

University of Amsterdam

Cars Hommes

Group 7 (Dampened Oscillations)

Parameters: $\beta = 0.4, \eta = 0.7, \delta = 0.9$

University of Amsterdam

Cars Hommes

Concluding Remarks

- chaotic financial market model mimics bubble and crash dynamics
- simple 2-type model with fundamentalists versus chartists fits US stock market data
- nonlinear heuristic switching model with path dependence fits experimental data
- theory of evolutionary selection of heterogeneous expectations fits experimental data