
Mark de Berg

TU Eindhoven

TU e

Computational and Combinatorial Geometry



TU e

Computational geometry: algorithms for spatial data.

motion planning dockingpoint location

. . . and combinatorial geometry
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Puzzle I:

Place n squares of arbitrary sizes to make the most complicated figure.

n = 5

Figure with 20 vertices.

• Can we make a more complicated figure?

• What is the max complexity we can create as a function of n?
Can we do more than 4n?
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Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?
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Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?

piece is cut into two fragments
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Rest of the talk:

• Relation motion planning to union complexity

• Relation point location to glass cutting
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Given

• a robot R, with start and goal
position

• set S of obstacles

find collision-free path for the robot.

start

goal
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Simple case: 2D ”triangle-robot” that cannot rotate

free position forbidden position

Find a path for the robot
that only uses free positions.

Find a path for a point
that stays in the free space.

free space
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Find a path for a point
that stays in the free space.

1. Decompose free space into sim-
ple cells

2. Compute a “road network”
based on these cells

3. Find path in network

Computation time depends on number
of cells.

Number of cells depends on how
complicated the free space is.
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complexity of free space = complexity of union of the obstacles

How high can the complexity be if we have n “simple” obstacles
(triangles, rectangles, disks, . . . )



TU e Complexity of the free space

complexity of free space = complexity of union of the obstacles

How high can the complexity be if we have n “simple” obstacles
(triangles, rectangles, disks, . . . )

Combinatorial question:

what is the maximum number of vertices
of the union of a collection of n objects
of a certain type?
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triangles

equilateral triangles
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construct graph:

• nodes = circle centers

• one edge for every pair of disks
defining a union vertex

graph is planar !
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• nodes = circle centers

• one edge for every pair of disks
defining a union vertex

graph is planar !

6n− 12 (for n > 2)
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maximum union complexity (n = number of objects)

∼ n2

∼ n2

We don’t know!

It is more than linear, it is less than quadratic,
but we do not know the exact answer.
(We only know it is “very close to linear”.)

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

6n− 12 (for n > 2)
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A

B

C

D

p

How can we compute which region
contains the point p?
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A

B

s

p
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A

B

s

`(s) = line containing s

p above `(s) ?

• yes: p ∈ A

• no: p 6∈ A

p
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A

B

s

`(s) = line containing s

p above `(s) ?

• yes: p ∈ A

• no: p 6∈ A

p

`(s): y = ax + b

py > a · px + b ?
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A

B

s1

p

s2 yes

no

p above `(s1) ?

p above `(s2) ?

yes

no

BA

decision tree



TU e Point location (cont’d)

A

B

s1

p

s2 yes

no

p above `(s1) ?

p above `(s2) ?

yes

no

BA

decision tree

Compute decision tree once, use it to answer many queries.

A
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A
B

C

s1

s2

s3

s4

s5
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A
B

C

s1

s2

s3

s4

s5

p above `(s2)

p above `(s5)

p above `(s3) p above `(s5)

p above `(s1)p above `(s4)

yes

yes

yes

no

A

no

A

B C

C CB

no
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Combinatorial question:

How small can we keep the deci-
sion tree for a subdivision with n
segments?

Note: size of decision tree =
number of fragments into which
edges are cut
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. . . or ∼ nsize can be ∼ n2



TU e Point location (cont’d)

Combinatorial question:

How small can we keep the deci-
sion tree for a subdivision with n
segments?

Note: size of decision tree =
number of fragments into which
edges are cut

Can we find, for any subdivision with n edges, an order for creating
the decision tree such that the size of the tree is ∼ n?

Answer: no, this is impossible, but we can get ∼ n ln n.
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Trick: use a random order on the segments!
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Theorem: Expected number of cuts is at most 2n ln n.

Proof:

E[ number of cuts ] = E[
∑n

i=1 (number of cuts made by `(si)) ]

=
∑n

i=1 E[ number of cuts made by `(si) ]

Algorithm for autopartitions: randomized version

Trick: use a random order on the segments!
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How many cuts do we expect `(si) to make?

si
`(si)

sj

Algorithm for autopartitions: randomized version
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Algorithm for autopartitions: randomized version
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How many cuts do we expect `(si) to make?

si
`(si)

sj

Pr[ `(si) cuts sj ] = 1/4

Algorithm for autopartitions: randomized version



TU e

How many cuts do we expect `(si) to make?

si
`(si)

Pr = 1/3

Pr = 1/2

Pr = 1/3

Pr = 1/2
Pr = 1/4

sj

Algorithm for autopartitions: randomized version
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How many cuts do we expect `(si) to make?

si
`(si)

Pr = 1/3

Pr = 1/2

Pr = 1/3

Pr = 1/2
Pr = 1/4

sj

E[ number of cuts made by `(si) ] =
∑

j Pr[`(si) cuts sj ]

6 2 · ( 1
2 + 1

3 + · · ·+ 1
n/2 )

≈ 2 ln(n/2)

Algorithm for autopartitions: randomized version
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Theorem: Expected number of cuts is at most 2n ln n.

Proof:

E[ number of cuts ] = E[
∑n

i=1 (number of cuts made by `(si)) ]

=
∑n

i=1 E[ number of cuts made by `(si) ]

6
∑n

i=1 2 ln(n/2)

< 2n ln n

Algorithm for autopartitions: randomized version
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Computational geometry:

Combinatorial geometry:

algorithms for spatial data.

combinatorics for spatial data.

circle packings arrangements union complexity

point location motion planning docking
Many nice geometric puzzles . . .

. . . that are (sometimes) even useful !


