
Mark de Berg

TU Eindhoven

TU e

Computational and Combinatorial Geometry

TU e

Computational geometry: algorithms for spatial data.

motion planning dockingpoint location

. . . and combinatorial geometry

TU e

Puzzle I:

Place n squares of arbitrary sizes to make the most complicated figure.

TU e

Puzzle I:

Place n squares of arbitrary sizes to make the most complicated figure.

n = 5

TU e

Puzzle I:

Place n squares of arbitrary sizes to make the most complicated figure.

n = 5

Figure with 20 vertices.

TU e

Puzzle I:

Place n squares of arbitrary sizes to make the most complicated figure.

n = 5

Figure with 20 vertices.

• Can we make a more complicated figure?

• What is the max complexity we can create as a function of n?
Can we do more than 4n?

TU e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?

TU e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?

TU e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?

TU e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?

TU e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?

TU e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out
all the pieces if we always have to cut
completely through?

piece is cut into two fragments

TU e

Rest of the talk:

• Relation motion planning to union complexity

• Relation point location to glass cutting

TU e Motion planning

Given

• a robot R, with start and goal
position

• set S of obstacles

find collision-free path for the robot.

start

goal

TU e Motion planning

Simple case: 2D ”triangle-robot” that cannot rotate

TU e Motion planning

Simple case: 2D ”triangle-robot” that cannot rotate

free position forbidden position

Find a path for the robot
that only uses free positions.

TU e Motion planning

Simple case: 2D ”triangle-robot” that cannot rotate

free position forbidden position

Find a path for the robot
that only uses free positions.

TU e Motion planning

Simple case: 2D ”triangle-robot” that cannot rotate

free position forbidden position

Find a path for the robot
that only uses free positions.

TU e Motion planning

Simple case: 2D ”triangle-robot” that cannot rotate

free position forbidden position

Find a path for the robot
that only uses free positions.

Find a path for a point
that stays in the free space.

free space

TU e Motion planning (cont’d)

Find a path for a point
that stays in the free space.

TU e Motion planning (cont’d)

Find a path for a point
that stays in the free space.

1. Decompose free space into sim-
ple cells

2. Compute a “road network”
based on these cells

3. Find path in network

TU e Motion planning (cont’d)

Find a path for a point
that stays in the free space.

1. Decompose free space into sim-
ple cells

2. Compute a “road network”
based on these cells

3. Find path in network

TU e Motion planning (cont’d)

Find a path for a point
that stays in the free space.

1. Decompose free space into sim-
ple cells

2. Compute a “road network”
based on these cells

3. Find path in network

TU e Motion planning (cont’d)

Find a path for a point
that stays in the free space.

1. Decompose free space into sim-
ple cells

2. Compute a “road network”
based on these cells

3. Find path in network

Computation time depends on number
of cells.

Number of cells depends on how
complicated the free space is.

TU e Complexity of the free space

complexity of free space = complexity of union of the obstacles

How high can the complexity be if we have n “simple” obstacles
(triangles, rectangles, disks, . . .)

TU e Complexity of the free space

complexity of free space = complexity of union of the obstacles

How high can the complexity be if we have n “simple” obstacles
(triangles, rectangles, disks, . . .)

Combinatorial question:

what is the maximum number of vertices
of the union of a collection of n objects
of a certain type?

TU e The union complexity of simple objects

type of objects maximum union complexity (n = number of objects)

rectangles

squares

disks

triangles

equilateral triangles

TU e The union complexity of simple objects

type of objects maximum union complexity (n = number of objects)

rectangles

squares

disks

triangles

equilateral triangles

∼ n2

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

type of objects

rectangles

squares

disks

triangles

equilateral triangles

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

4n

type of objects

rectangles

squares

disks

triangles

equilateral triangles

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

construct graph:

• nodes = circle centers

• one edge for every pair of disks
defining a union vertex

graph is planar !

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

construct graph:

• nodes = circle centers

• one edge for every pair of disks
defining a union vertex

graph is planar !

6n− 12 (for n > 2)

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

6n− 12 (for n > 2)

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

∼ n2

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

6n− 12 (for n > 2)

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

∼ n2

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

6n− 12 (for n > 2)

TU e The union complexity of simple objects

maximum union complexity (n = number of objects)

∼ n2

∼ n2

We don’t know!

It is more than linear, it is less than quadratic,
but we do not know the exact answer.
(We only know it is “very close to linear”.)

type of objects

rectangles

squares

disks

triangles

equilateral triangles

4n

6n− 12 (for n > 2)

TU e Point location

A

B

C

D

p

How can we compute which region
contains the point p?

TU e Point location (cont’d)

A

B

s

p

TU e Point location (cont’d)

A

B

s

`(s) = line containing s

p above `(s) ?

• yes: p ∈ A

• no: p 6∈ A

p

TU e Point location (cont’d)

A

B

s

`(s) = line containing s

p above `(s) ?

• yes: p ∈ A

• no: p 6∈ A

p

`(s): y = ax + b

py > a · px + b ?

TU e Point location (cont’d)

A

B

s1

p

s2 yes

no

p above `(s1) ?

p above `(s2) ?

yes

no

BA

decision tree

TU e Point location (cont’d)

A

B

s1

p

s2 yes

no

p above `(s1) ?

p above `(s2) ?

yes

no

BA

decision tree

Compute decision tree once, use it to answer many queries.

A

TU e Point location (cont’d)

A
B

C

s1

s2

s3

s4

s5

TU e Point location (cont’d)

A
B

C

s1

s2

s3

s4

s5

p above `(s2)

p above `(s5)

p above `(s3) p above `(s5)

p above `(s1)p above `(s4)

yes

yes

yes

no

A

no

A

B C

C CB

no

TU e Point location (cont’d)

Combinatorial question:

How small can we keep the deci-
sion tree for a subdivision with n
segments?

Note: size of decision tree =
number of fragments into which
edges are cut

TU e Point location (cont’d)

TU e Point location (cont’d)

size can be ∼ n2

TU e Point location (cont’d)

. . . or ∼ nsize can be ∼ n2

TU e Point location (cont’d)

Combinatorial question:

How small can we keep the deci-
sion tree for a subdivision with n
segments?

Note: size of decision tree =
number of fragments into which
edges are cut

Can we find, for any subdivision with n edges, an order for creating
the decision tree such that the size of the tree is ∼ n?

Answer: no, this is impossible, but we can get ∼ n ln n.

TU e Algorithm for autopartitions: randomized version

Trick: use a random order on the segments!

TU e

Theorem: Expected number of cuts is at most 2n ln n.

Proof:

E[number of cuts] = E[
∑n

i=1 (number of cuts made by `(si))]

=
∑n

i=1 E[number of cuts made by `(si)]

Algorithm for autopartitions: randomized version

Trick: use a random order on the segments!

TU e

How many cuts do we expect `(si) to make?

si
`(si)

sj

Algorithm for autopartitions: randomized version

TU e

How many cuts do we expect `(si) to make?

si
`(si)

sj

Pr[`(si) cuts sj] =

Algorithm for autopartitions: randomized version

TU e

How many cuts do we expect `(si) to make?

si
`(si)

sj

Pr[`(si) cuts sj] = 1/4

Algorithm for autopartitions: randomized version

TU e

How many cuts do we expect `(si) to make?

si
`(si)

Pr = 1/3

Pr = 1/2

Pr = 1/3

Pr = 1/2
Pr = 1/4

sj

Algorithm for autopartitions: randomized version

TU e

How many cuts do we expect `(si) to make?

si
`(si)

Pr = 1/3

Pr = 1/2

Pr = 1/3

Pr = 1/2
Pr = 1/4

sj

E[number of cuts made by `(si)] =
∑

j Pr[`(si) cuts sj]

6 2 · (1
2 + 1

3 + · · ·+ 1
n/2)

≈ 2 ln(n/2)

Algorithm for autopartitions: randomized version

TU e

Theorem: Expected number of cuts is at most 2n ln n.

Proof:

E[number of cuts] = E[
∑n

i=1 (number of cuts made by `(si))]

=
∑n

i=1 E[number of cuts made by `(si)]

6
∑n

i=1 2 ln(n/2)

< 2n ln n

Algorithm for autopartitions: randomized version

TU e

Computational geometry:

Combinatorial geometry:

algorithms for spatial data.

combinatorics for spatial data.

circle packings arrangements union complexity

point location motion planning docking

TU e

Computational geometry:

Combinatorial geometry:

algorithms for spatial data.

combinatorics for spatial data.

circle packings arrangements union complexity

point location motion planning docking
Many nice geometric puzzles . . .

. . . that are (sometimes) even useful !

