TU/e

Computational and Combinatorial Geometry

Mark de Berg

TU Eindhoven

TU/e

Computational geometry: algorithms for spatial data.

... and combinatorial geometry

TU/e

Puzzle I:
Place n squares of arbitrary sizes to make the most complicated figure.

TU/e

Puzzle I:
Place n squares of arbitrary sizes to make the most complicated figure.

TU/e

Puzzle I:
Place n squares of arbitrary sizes to make the most complicated figure.

$$
n=5
$$

Figure with 20 vertices.

TU/e

Puzzle I:
Place n squares of arbitrary sizes to make the most complicated figure.

$$
n=5
$$

Figure with 20 vertices.

- Can we make a more complicated figure?
- What is the max complexity we can create as a function of n ? Can we do more than $4 n$?

TU/e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out all the pieces if we always have to cut completely through?

TU/e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out all the pieces if we always have to cut completely through?

TU/e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out all the pieces if we always have to cut completely through?

TU/e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out all the pieces if we always have to cut completely through?

TU/e

Puzzle II: Cutting glass plates.

How many cuts do we need to cut out all the pieces if we always have to cut completely through?

TU/e

Puzzle II: Cutting glass plates.

piece is cut into two fragments

How many cuts do we need to cut out all the pieces if we always have to cut completely through?

TU/e

Rest of the talk:

- Relation motion planning to union complexity

- Relation point location to glass cutting

Given

- a robot R, with start and goal position
- set S of obstacles
find collision-free path for the robot.

Simple case: 2D "triangle-robot" that cannot rotate

Simple case: 2D "triangle-robot" that cannot rotate

Simple case: 2D "triangle-robot" that cannot rotate

Find a path for the robot that only uses free positions.

Simple case: 2D "triangle-robot" that cannot rotate

Find a path for the robot that only uses free positions.

Simple case: 2D "triangle-robot" that cannot rotate

Find a path for a point that stays in the free space.

Motion planning (cont'd)

1. Decompose free space into simple cells
2. Compute a "road network" based on these cells
3. Find path in network

Find a path for a point that stays in the free space.

Motion planning (cont'd)

1. Decompose free space into simple cells
2. Compute a "road network" based on these cells
3. Find path in network

Find a path for a point

 that stays in the free space.Motion planning (cont'd)

1. Decompose free space into simple cells
2. Compute a "road network" based on these cells
3. Find path in network

Find a path for a point

 that stays in the free space.Motion planning (cont'd)

Find a path for a point that stays in the free space.

1. Decompose free space into simple cells
2. Compute a "road network" based on these cells
3. Find path in network

Computation time depends on number of cells.

Number of cells depends on how complicated the free space is.

Complexity of the free space
complexity of free space $=$ complexity of union of the obstacles How high can the complexity be if we have n "simple" obstacles (triangles, rectangles, disks, ...)

Complexity of the free space
complexity of free space $=$ complexity of union of the obstacles How high can the complexity be if we have n "simple" obstacles (triangles, rectangles, disks, ...)

Combinatorial question: what is the maximum number of vertices of the union of a collection of n objects of a certain type?

The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)
rectangles
squares
disks
triangles
equilateral triangles The union complexity of simple objects
type of objects \quad maximum union complexity ($n=$ number of objects)
rectangles
$\sim n^{2}$
squares
disks
triangles
equilateral triangles

The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)
rectangles
$\sim n^{2}$
squares
disks
triangles
equilateral triangles

TU/e

The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)
rectangles
squares
disks
triangles
equilateral triangles
$\sim n^{2}$
$4 n$

The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)
rectangles
$\sim n^{2}$
squares
$4 n$
disks
triangles
equilateral triangles

The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)
rectangles
squares
disks
triangles
equilateral triangles

$\sim n^{2}$
$4 n$

TU/e

 The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)

rectangles
squares
disks
triangles
equilateral triangles

construct graph:

- nodes $=$ circle centers
- one edge for every pair of disks defining a union vertex
graph is planar !

TU/e

 The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)

rectangles
squares
disks
triangles
equilateral triangles

$\sim n^{2}$
$4 n$

$$
6 n-12 \quad(\text { for } n>2)
$$

construct graph:

- nodes $=$ circle centers
- one edge for every pair of disks defining a union vertex
graph is planar !

TU/e

 The union complexity of simple objectstype of objects maximum union complexity ($n=$ number of objects)
rectangles
squares
disks
triangles
equilateral triangles
$\sim n^{2}$
$4 n$
$6 n-12 \quad($ for $n>2)$

The union complexity of simple objects
type of objects \quad maximum union complexity ($n=$ number of objects)
rectangles
squares
disks
triangles
equilateral triangles

The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)
rectangles
squares
disks
triangles
$\sim n^{2}$
$4 n$
$6 n-12 \quad($ for $n>2)$
$\sim n^{2}$
equilateral triangles

TU/e

 The union complexity of simple objects
type of objects maximum union complexity ($n=$ number of objects)

rectangles
squares
disks
triangles
equilateral triangles
$\sim n^{2}$
$4 n$
$6 n-12 \quad($ for $n>2)$
$\sim n^{2}$
We don't know!
It is more than linear, it is less than quadratic, but we do not know the exact answer. (We only know it is "very close to linear".)

How can we compute which region contains the point p ?

Point location (cont'd)

Point location (cont'd)

Point location (cont'd)

decision tree

decision tree

Compute decision tree once, use it to answer many queries.

Point location (cont'd)

Combinatorial question:

How small can we keep the decision tree for a subdivision with n segments?

Note: size of decision tree $=$ number of fragments into which edges are cut
size can be $\sim n^{2}$

size can be $\sim n^{2}$
... or $\sim n$

Point location (cont'd)

Combinatorial question:

How small can we keep the decision tree for a subdivision with n segments?

Note: size of decision tree $=$ number of fragments into which edges are cut

Can we find, for any subdivision with n edges, an order for creating the decision tree such that the size of the tree is $\sim n$?

Answer: no, this is impossible, but we can get $\sim n \ln n$.

Algorithm for autopartitions: randomized version

Trick: use a random order on the segments!

Algorithm for autopartitions: randomized version

Trick: use a random order on the segments!

Theorem: Expected number of cuts is at most $2 n \ln n$.
Proof:
$E[$ number of cuts $]=E\left[\sum_{i=1}^{n}\right.$ (number of cuts made by $\left.\left.\ell\left(s_{i}\right)\right)\right]$
$=\sum_{i=1}^{n} E\left[\right.$ number of cuts made by $\left.\ell\left(s_{i}\right)\right]$

Algorithm for autopartitions: randomized version

How many cuts do we expect $\ell\left(s_{i}\right)$ to make?

How many cuts do we expect $\ell\left(s_{i}\right)$ to make?

$$
\operatorname{Pr}\left[\ell\left(s_{i}\right) \text { cuts } s_{j}\right]=
$$

How many cuts do we expect $\ell\left(s_{i}\right)$ to make?

$$
\operatorname{Pr}\left[\ell\left(s_{i}\right) \text { cuts } s_{j}\right]=1 / 4
$$

How many cuts do we expect $\ell\left(s_{i}\right)$ to make?

Algorithm for autopartitions: randomized version

How many cuts do we expect $\ell\left(s_{i}\right)$ to make?

$E\left[\right.$ number of cuts made by $\left.\ell\left(s_{i}\right)\right]=\sum_{j} \operatorname{Pr}\left[\ell\left(s_{i}\right)\right.$ cuts $\left.s_{j}\right]$
$\leqslant 2 \cdot\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n / 2}\right)$
$\approx 2 \ln (n / 2)$

Algorithm for autopartitions: randomized version

Theorem: Expected number of cuts is at most $2 n \ln n$.
Proof:
$E[$ number of cuts $]=E\left[\sum_{i=1}^{n}\left(\right.\right.$ number of cuts made by $\left.\left.\ell\left(s_{i}\right)\right)\right]$
$=\sum_{i=1}^{n} E\left[\right.$ number of cuts made by $\left.\ell\left(s_{i}\right)\right]$
$\leqslant \quad \sum_{i=1}^{n} 2 \ln (n / 2)$
$<2 n \ln n$

TU/e

Computational geometry: algorithms for spatial data.

point location

motion planning

docking

Combinatorial geometry: combinatorics for spatial data.

circle packings

arrangements

union complexity

TU/e

Computational geometry: algorithms for spatial data.

