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Introduction

TT
he Penrose tilings are remarkable in that they are
non-periodic (have no translational symmetry) but
are clearly organised. Their structure, called quasi-

periodicity, can be described in several ways, including
via self-similar subdivision, tiles with matching rules, and
projection of a slice of a cubic lattice in R

5. The tilings are
also unusual for their many centres of local 5-fold and 10-
fold rotational symmetry, features shared by some Islamic
geometric patterns. This resemblance has prompted
comparison, and has led some to see precursors of the
Penrose tilings and even evidence of quasi-periodicity in
traditional Islamic designs. Bonner [2] identified three
styles of self-similarity; Makovicky [20] was inspired to
develop new variants of the Penrose tiles and later, with
colleagues [24], overlaid Penrose-type tilings on traditional
Moorish designs; more recently, Lu and Steinhardt [17]
observed the use of subdivision in traditional Islamic
design systems and overlaid Penrose kites and darts on
Iranian designs. The latter article received widespread
exposure in the world’s press, although some of the
coverage overstated and misrepresented the actual
findings.

The desire to search for examples of quasi-periodicity in
traditional Islamic patterns is understandable, but we must
take care not to project modern motivations and abstrac-
tions into the past. An intuitive knowledge of group theory
is sometimes attributed to any culture that has produced
repeating patterns displaying a wide range of symmetry
types, even though they had no abstract notion of a group.
There are two fallacies to avoid:

• abstraction: P knew about X and X is an example of Y
therefore P knew Y.

• deduction: P knew X and X implies Y therefore P knew
Y.

In both cases, it is likely that P never thought of Y at all, and
even if he had, he need not have connected it with X.

In this article I shall describe a tiling-based method for
constructing Islamic geometric designs. With skill and
ingenuity, the basic technique can be varied and elaborated
in many ways, leading to a wide variety of complex and
intricate designs. I shall also examine some traditional
designs that exhibit features comparable with quasi-periodic
tilings, use the underlying geometry to highlight similarities
and differences, and assess the evidence for the presence of
quasi-periodicity in Islamic art.

A few comments on terminology. Many of the con-
structions are based on tilings of the plane. A patch is a
subset of a tiling that contains a finite number of tiles and is
homeomorphic to a disc. I use repeat unit as a generic term
for a template that is repeated using isometries to create a
pattern; it is not so specific as period parallelogram or
fundamental domain. A design or tiling with radial sym-
metry has a single centre of finite rotational symmetry. The
other terminology follows [8] for tilings, supplemented by
[33] for substitution tilings.

Islamic Methods of Construction
Although the principles of Islamic geometric design are not
complicated, they are not well-known. Trying to recover
the principles from finished artwork is difficult, as the most
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conspicuous elements in a design are often not the
compositional elements used by the designer. Fortunately
medieval documents that reveal some of the trade secrets
have survived. The best of these documents is manuscript
scroll MS.H.1956 in the library of the Topkapi Palace,
Istanbul. The scroll itself is a series of geometric figures
drawn on individual pages, glued end to end to form a
continuous sheet about 33 cm high and almost 30 m long.
It is not a ‘how to’ manual, as there is no text, but it is more
than a pattern book as it shows construction lines. A half-
size colour reproduction can be found in [25], which also
includes annotations to show the construction lines and
marks scored into the paper with a stylus, which are not
visible in the photographs. References in this article to
numbered panels of the Topkapi Scroll use the numbering
in [25].

Islamic designs often include star motifs. These come in
a variety of forms but, in this article, we need only a few
simple shapes that correspond to the regular star polygons
of plane geometry. Taking n points equally spaced around
a circle and connecting points d intervals apart by straight
lines produces the star polygon denoted by {n/d}. This,
however, is the star of the mathematician; it is rare for an
artist to use the whole figure as an ornamental motif. More
often, the middle segments of the sides are discarded.

Many of the early Islamic designs are created by
arranging 6-, 8- or 12-point stars at the vertices of the
standard grids of squares or equilateral triangles. The more
general rhombic lattice allows other stars to be used. An
example based on {10/3} is shown in Figure 1(a). The
angles in the rhombus are 72� and 108�, both being mul-
tiples of 36�—the angle between adjacent spikes of the star.
Draw a set of circles of equal radius centred on the vertices
of the lattice and of maximal size so that there are points of
tangency. Place copies of the star motif in the circles so that
spikes fall on the edges of the lattice. This controls the
spacing and orientation of the principal motifs, but the

design is not yet complete. There are some spikes of each
motif that are not connected to a neighbouring motif but
are free and point into the residual spaces between the
circles. The lines bounding these free spikes are extended
beyond the circumcircle until they meet similarly produced
lines from nearby stars. This simple procedure bridges the
residual spaces and increases the connectivity of the star
motifs. The same pattern of interstitial filling should be
applied uniformly to all the residual spaces and the sym-
metry of the design as a whole should be preserved as far
as possible. The result is shown in Figure 1(c). In this case
the kites in the interstitial filling are congruent to those in
the star. This pattern is one of the most common decagonal
designs, and we shall name it the ‘stars and kites’ pattern for
reference.

This basic approach produces a limited range of peri-
odic designs with small repeat units and it only works for
stars with an even number of points. A more general
method that can be used with all stars, and also enables
combinations of different stars to be used in a single design,
is based on edge-to-edge tilings containing regular convex
polygons with more than four sides. Figure 1(b) shows a
tiling formed by packing decagons together, leaving non-
convex hexagonal tiles between them. After placing {10/3}
stars in each decagon tile, we use the same kind of inter-
stitial filling procedure as before to develop the pattern in
the hexagons.

This change from circle to polygon may seem minor, but
it gives rise to a range of generalisations. We are no longer
restricted to a lattice arrangement of the stars—any tiling
will suffice. The tiling may contain regular polygons of
different kinds allowing different star motifs to be com-
bined in the same design; the tiling naturally determines the
relative sizes of the different stars. We can even discard the
regular star motifs that initiate the interstitial filling and seed
the pattern generation process from the tiling itself. In this
last case, we place a pair of short lines in an X configuration
at the midpoint of each edge, then extend them until they
encounter other such lines—this is similar to applying
interstitial filling to every tile. The angle that the lines make
with the edges of the tiling, the incidence angle, is a
parameter to be set by the artist and it usually takes the
same value at all edges. There is no requirement to termi-
nate the line extensions at the first point of intersection; if
there are still large empty regions in the design, or it is
otherwise unattractive, the lines can be continued until new
intersections arise.

This technique, known as ‘polygons in contact’ (PIC),
was first described in the West by Hankin [9–13], who
observed the polygonal networks scratched into the plaster
of some designs, while working in India. Many panels in
the Topkapi Scroll also show a design superimposed on its
underlying polygonal network. Although the purpose of
the networks is not documented, it does not seem unrea-
sonable to interpret them as construction lines. Bonner [2,
3] argues that PIC is the only system for which there is
evidence of historical use by designers throughout the
Islamic world. The method is versatile and can account for
a wide range of traditional patterns, but it is not universally
applicable. An alternative approach is used by Castéra [5],
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who arranges the shapes seen in the final design without
using a hidden grid.

The PIC method is illustrated in the next four figures.
Figure 2 shows two designs produced from a tiling by
regular decagons, regular pentagons, and irregular convex
hexagons. In part (b), a star motif based on {10/4} is placed
in the decagon tiles, which gives an incidence angle of 72�
for the other edges; the completed design is one of the
most widespread and frequently used of all star patterns.
Part (c) shows a design that is common in Central Asia and
based on {10/3} with an incidence angle of 54�. A {10/2} star
and an incidence angle of 36� reproduces the stars and
kites pattern. The design in Figure 3 is from [14] and con-
tains star motifs based on {7/3}; in the tiling the 7-gons are
regular but the pentagons are not. Figure 4 is based on a

tiling containing regular 9-gons and 12-gons. I have chosen
an incidence angle of 55� to make the convex 12-gon ele-
ments in the design into regular polygons and some line
segments inside the non-convex hexagonal tiles join up
without creating a corner, but, as a consequence, neither
star motif is geometrically regular. Plates 120–122 in [4] are
traditional designs based on the same tiling. Figure 5 shows
a design with 10-fold rotational symmetry based on panel
90a of the Topkapi Scroll, which Necipoğlu labels as a
design for a dome [25]. The original panel shows a template
for the figure containing one-tenth of the pattern with the
design in solid black lines superimposed on the tiling
drawn in red dotted lines. Notice that some of the tiles are
two-tenths and three-tenths sectors of a decagon. Domes
were also decorated by applying PIC to polyhedral

(a) (b)

(c)

Figure 1. The ‘stars and kites’ pattern.

38 THE MATHEMATICAL INTELLIGENCER



networks. Patterns with a lower concentration of stars were
produced by applying PIC to k-uniform tilings composed of
regular 3-, 4-, 6-, and 12-sided polygons—see plates 77, 97,
and 142 in [4] for some unusual examples.

The two designs of Figure 2 display another common
Islamic motif. In each design, a set of hexagons sur-
rounding a star has been highlighted in grey. The
enlarged star motif is called a rose and the additional
hexagons are its petals. In this case, the rose arises
because the decagon in the underlying tiling is sur-
rounded by equilateral polygons, but they can also be
constructed using a set of tangent circles around the cir-
cumcircle of the star [16] and used as compositional
elements in their own right.

You can see the PIC method in action and design your
own star patterns using Kaplan’s online Java applet [34]—
you select a tiling and the incidence angles of the star
motifs, then inference logic supplies the interstitial pattern.

The tilings used as the underlying networks for the PIC
method of construction often have a high degree of sym-
metry, and they induce orderly designs. Islamic artists also
produced designs that appear to have a more chaotic
arrangement of elements with local order on a small scale
but little long-range structure visible in the piece shown.
Panels in the Topkapi Scroll reveal that these designs, too,
have an underlying polygonal network assembled from
copies of a small set of equilateral tiles (see Figure 6)
whose angles are multiples of 36�:

(a) Underlying polygonal network

(b) Incidence angle 72° (c) Incidence angle 54°

Figure 2. A tiling and two star patterns derived from it. The petals of a rose motif
in each pattern are highlighted.
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• a rhombus with angles 72� and 108�
• a regular pentagon (angles 108�)
• a convex hexagon with angles 72� and 144�—the bobbin
• a convex hexagon with angles 108� and 144�—the

barrel
• a non-convex hexagon with angles 72� and 216�—the

bow-tie
• a convex octagon with angles 108� and 144�
• a regular decagon (angles 144�).

The motifs on the tiles are generated using the PIC method
with an incidence angle of 54�. The barrel hexagon and the

decagon have two forms of decoration. One decagon motif
is just the star {10/3} and its constituent kites are congruent
to those on the bow-tie; the other decagon motif is more
complex and the symmetry is reduced from 10-fold to
5-fold rotation.

The shapes of the tiles arise naturally when one tries to
tile with decagons and pentagons. The bow-tie and barrel
hexagons are familiar from the previous figures. The
octagon and the remaining hexagon are shapes that can be
obtained as the intersection of two overlapping decagons.
The motif on the hexagon resembles a spindle or bobbin
wound with yarn. This distinctive motif is easy to locate in a

(a) (b)

Figure 3. Design containing regular 7-point stars.

(a) (b)

Figure 4. Design containing 9- and 12-point stars.
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design, and its presence is a good indication that the design
could be constructed from these tiles.

The promotion of irregular tiles from supplementary
shapes to compositional elements in their own right
marked a significant development in Islamic design.
Regarding the tiles as the pieces of a jigsaw allows a less
formal approach to composition. A design can be grown
organically in an unplanned manner by continually
attaching tiles to the boundary of a patch with a free choice
among the possible extensions at each step. This new
approach gave artists freedom and flexibility to assemble
the tiles in novel ways and led to a new category of designs.
It seems to have been a Seljuk innovation as examples
started to appear in Turkey and Iran in the 12th–13th
centuries. The widespread and consistent use of these
decorated tiles as a design system was recognised by Lu
and Steinhardt [17]; similar remarks appear in Bonner [2]
and the tiles are also used by Hankin [10].

Figure 7 shows small patches of tiles. There are often
multiple solutions to fill a given area. Even in the simple

combination of a bobbin with a bow-tie shown in part (a),
the positions of the tiles can be reflected in a vertical line so
that the bow-tie sits top-right instead of top-left. The patch
in part (d) can replace any decagonal tile with a conse-
quent loss of symmetry, as the bow-tie can point in any of
ten directions. Patches (b) and (c) are another pair of
interchangeable fillings with a difference in symmetry.

Figure 8 shows some traditional designs made from the
tiles. Parts (a) and (b) are from panels 50 and 62 of the
Topkapi Scroll, respectively; in both cases the original
panel shows a template with the design in solid black lines
superimposed on the tiling drawn in red dots. The designs
in parts (b), (c), and (d) are plates 173, 176, and 178 of [4].
The designs of (e) and (f) are Figures 33 and 34 from
[16]. The edges of the tilings are included in the figures to
show the underlying structure of the designs, but in the
finished product these construction lines would be erased
to leave only the interlaced ribbons. This conceals the
underlying framework and helps to protect the artist’s
method. The viewer sees the polygons of the background
outlined by the ribbons, but these are artifacts of the con-
struction, not the principal motifs used for composition.

The internal angles in the corners of the tiles are all
multiples of 36� so all the edges in a tiling will point in one
of five directions—they will all lie parallel to the sides of a
pentagon. Fitting the tiles together spontaneously produces
regular pentagons in the background of the interlacing, and
centres of local 5-fold or 10-fold rotational symmetry in the
design. This symmetry can be seen in some of the config-
urations of Figure 7. However, in patterns generated by
translation of a template, this symmetry must break down
and cannot hold for the design as a whole. This is a con-
sequence of the crystallographic restriction: the rotation
centres in a periodic pattern can only be 2-, 3-, 4- or 6-fold.
This was not proved rigorously until the 19th century but it
must surely have been understood on an intuitive level by
the Islamic pattern makers. Perhaps these tilings were
appealing precisely because they contain so many forbid-
den centres; they give the illusion that one can break free
from this law of nature. Unfortunately, when a large
enough section of a tiling is shown for the periodicity to be
apparent, any (global) rotation centres are only 2-fold, and

Figure 5. Design from panel 90a of the Topkapi Scroll.

Rhombus Pentagon Barrel (1) Octagon

Bow-tie Decagon (1)

Barrel (2)

Bobbin Decagon (2)

Figure 6. An Islamic set of prototiles.
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the symmetry type of the (undecorated) tiling is usually one
of pgg, pmm or, more commonly, cmm.

Figure 9(b) shows the design on one wall of the
Gunbad-i Kabud (Blue Tower) in Maragha, north-west
Iran; similar designs decorate the other sides of the tower.
At first sight the design appears to lack an overall
organising principle but it fits easily into the framework
shown in Figure 9(a). Centred at the bottom-right corner
of the panel is the patch of Figure 7(g) surrounded by a
ring of decagons. A similar arrangement placed at the top-
left corner abuts the first, leaving star-shaped gaps. The
rings of decagons are filled with the patch of Figure 7(d)
with the bow-ties facing outwards, except for the one on
the bottom edge of the panel, which is filled with a

decagonal tile. The star-shaped gaps are filled with the
five rhombi of Figure 7(b). The design does contain
irregularities and deviations from this basic plan, particu-
larly in the bottom-left corner of the panel. Also the
decagon in the top-left corner is filled with Figure 7(d)
rather than a decagonal tile.

Figure 9(a) can also be taken as the foundation of the
design shown in Figure 10. The centres of the rose motifs in
the centre of the figure and in the top-left corner are diag-
onally opposite corners of a rectangle that is a repeat unit for
the design. The underlying framework in this rectangle is
the same as that of the Maragha panel. The full design is
generated from this cell by reflection in the sides of the
rectangle. Note that it is the arrangement of the tiles that is

(a)

(b)

(c)

(d)

(e)

(f) 

(g)

          

Figure 7. Small patches of tiles.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Periodic designs.

(a) (b)

Figure 9. Design from the Gunbad-i Kabud, Maragha, Iran.
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reflected, not the tiles with their decorative motifs; the
interlacing of the full design remains alternating. The
boundaries of the unit rectangle are mostly covered by the
sides of tiles or mirror lines of tiles, both of which ensure
continuity of the tiling across the joins. However, in the top-
right and bottom-left corners (the cell has 2-fold rotational
symmetry about its centre), the tiles do not fit in the rect-
angle but overhang the edges. This is not a problem with
this method of generating designs: the overhanging tiles are
simply cut to fit and the reflections take care of the conti-
nuity of the ribbons. In Figure 10 this is most obvious in the
middle near the bottom where pairs of bow-ties and bob-
bins merge. The centre of the tiling can be filled with the

patch shown in Figure 7(g) but this has been discarded in
favour of a large rose motif. A different construction for this
pattern is presented by Rigby in [26].

When experimenting with the tiles of Figure 6, one soon
learns that those in the top row are more awkward to use
than the others—the 108� angles must occur in pairs
around a vertex and this limits the options. Indeed many
designs avoid these tiles altogether and are based solely
on the three shapes in the bottom row. The design in
Figure 11 is unusual in that it is largely composed of
awkward tiles (rhombi, pentagons, and octagons) together
with a few bobbins. The large star-shaped regions in the
tiling can be filled with the patch shown in Figure 7(f),

Figure 10. Design from the Karatay Madrasa, Konya, Turkey.
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continuing the use of the same set of tiles, but instead this
motif is replaced by the star {10/4}.

Once a design has been constructed, it can be finished
in different ways according to context and the materials
used. In some of the accompanying figures, the regions
have been given a proper 2-colouring (chessboard shad-
ing), in others the lines have been made into interlaced
ribbons. The basic line drawing can also be used by itself as
when it is inscribed in plaster.

What is Quasi-Periodicity?
The discovery of crystalline metal alloys with 5-fold sym-
metry in their diffraction patterns caused great excitement
in the 1980s. Sharp spots in a diffraction pattern are evi-
dence of long-range order which, at that time, was
synonymous with periodicity, but 5-fold rotations are
incompatible with the crystallographic restriction so a new
kind of phenomenon had been observed. The novel solids

became known as quasi-crystals and the underlying order
as quasi-periodicity. For crystallographers, the production
of sharply defined points in a diffraction pattern is a
defining characteristic of quasi-periodicity. In the study of
the decorative arts, however, the term ‘quasi-periodic’ is
used somewhat informally and does not have an agreed
definition. Readers should be aware of this potential source
of confusion when comparing papers. For the tilings and
the related geometric designs discussed in this article, one
option is to impose a homogeneity condition on the dis-
tribution of local configurations of tiles (this is weaker than
the crystallographic definition). This and other properties
will be illustrated through the following example.

The example is constructed from the patches shown in
Figure 12. The patches are chosen only to demonstrate the
technique and not for any artistic merit—the unbalanced
distribution of bow-ties leads to poor designs. Any patch
tiled by bow-ties, bobbins, and decagons can be converted

Figure 11. Design from the Sultan Han, Kayseri, Turkey.

(a) (b) (c)

Figure 12. Subdivisions of three tiles into smaller copies of the same three tiles.
The scale factor is 1

2 7þ
ffiffiffi

5
p� �

� 4:618.
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into a larger such patch by subdividing each tile as shown
in the figure and then scaling the result to enlarge the small
tiles to the size of the originals. This process of ‘subdivide
and enlarge’ is called inflation. Each side of each com-
posite tile is formed from two sides of small tiles and the
major diagonal of a small bobbin; in the inflated tiling the
half-bobbins pair up to form complete tiles.

Let P0 be a single decagon and let Pi+1 be the patch
obtained by inflating Pi for all i 2 N . Figure 12(b) shows P1

and Figure 13 shows P2. We can iterate the inflation process
to tile arbitrarily large regions of the plane. Furthermore,
because P1 contains a decagon in the centre, Pi+1 contains a
copy of Pi in the middle. Therefore Pi+1 is an extension of Pi,
and by letting i go to infinity we can extend the patch to a
tiling, P?, of the whole plane. Notice that the symmetry of
the initial patch is preserved during inflation so P? will have
a global centre of 10-fold symmetry and hence cannot be
periodic.

In general, inflation only provides the ability to create
arbitrarily large patches that need not be concentric, so
some work is required to show that the limit exists and it is
a tiling of the plane [19]. Two tilings are said to be locally
indistinguishable if a copy of any patch from one tiling
occurs in the other tiling, and vice versa. The family of
substitution tilings defined by the prototiles and subdivi-
sions shown in Figure 12 is the set of all tilings that are
locally indistinguishable from P?. There are, in fact, an

uncountable number of tilings in the family but any patch
in any one of them will be contained in some Pn.

The basic combinatorial properties of a substitution til-
ing based on a finite set of n prototiles T1,...,Tn can be
encoded in an n 9 n matrix: the entry in column j of row i
is the number of small Ti in a composite Tj. For the example
here with the tiles in the order bow-tie, bobbin, decagon,
this substitution matrix is

10 5 20
7 11 25
0 2 11

 !

:

A matrix is said to be primitive if some power of it has only
positive non-zero entries. If a substitution matrix is primi-
tive then the patch of tiles produced by repeated inflation
of any tile will eventually contain copies of all the proto-
tiles. Properties of the tiling can be derived from the
algebraic properties of a primitive matrix. For example,
the largest eigenvalue is the square of the scale factor of the
inflation and the corresponding eigenvector contains
the relative frequencies of the prototiles in a full tiling of the
plane; the corresponding eigenvector of the transposed
matrix contains the relative areas of the three proto-
tiles. In our example the frequency eigenvector is
5þ 5

ffiffiffi

5
p

; 5þ 7
ffiffiffi

5
p

; 4
� �

. Since some of the ratios between
the entries are irrational, any substitution tiling made from
these subdivisions is non-periodic [30, 31].

Figure 13. A step in the construction of a quasi-periodic tiling.
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Although our substitution tilings have no translational
symmetry, they do share some properties with periodic
tilings. First each tiling is edge-to-edge; it is constructed
from a finite number of shapes of tile, each of which occurs
in a finite number of orientations; there are finitely many
ways to surround a vertex. The tiling is said to have finite
local complexity. For primitive substitution tilings this has an
important consequence: given any patch X in the tiling there
is some number R such that a disc of radius R placed any-
where on the tiling will contain a copy of X. A tiling with this
property is called repetitive. This means that copies of any
finite portion of the tiling can be found evenly distributed
throughout the tiling. You cannot determine which part of
the tiling is shown in any finite diagram of it.

For the purposes of this article, a tiling is called quasi-
periodic if it is non-periodic, has finite local complexity,
and is repetitive. By extension we can call an Islamic design
constructed using the PIC method quasi-periodic if its
underlying polygonal network is a quasi-periodic tiling.
Unfortunately, it is impossible to tell from any finite subset
of a tiling whether it is quasi-periodic or not. So, in order to
assert that a tiling could be quasi-periodic, we need to
identify a process such as inflation that could have been
used to generate the piece shown and can also be used to
generate a complete quasi-periodic tiling.

Multi-level Designs
Some panels of the Topkapi Scroll show designs of differ-
ent scales superimposed on one another. This interplay of
designs on multiple scales is a feature of some large Islamic
designs found on buildings where viewers experience a
succession of patterns as they approach. From a distance,

large-scale forms with high contrast dominate but, closer in,
these become too large to perceive and smaller forms take
over. Early methods to achieve this transition from big and
bold through medium range to fine and delicate were
simple, often just a matter of progressively filling voids in
the background to leave a design with no vacant spaces.
(There is a secondary pattern of this form on the Gunbad-i
Kabud.) Differences in size and level of detail were
expressed using variation in density, depth of carving,
colour and texture. Later designs are more ambitious and
use the same style on more than one scale. It is even
possible to re-use the same pattern.

Designs that can be read on several scales are often
referred to as self-similar but this term itself has multiple
levels of meaning. In its strictest sense it means scale
invariant: there is a similarity transformation (an isometry
followed by an enlargement) that maps the design onto
itself. The transformation can be weakened to a topological
equivalence—for example the homeomorphisms in iter-
ated function systems leading to fractals. In a weaker sense
still, it means only that motifs of different scales resemble
each other in style or composition but are not replicas. We
shall use the term hierarchical for multi-level designs of
this latter form.

In panel 28 of the Topkapi Scroll three drawings are
superimposed on the same figure: a small-scale polygonal
network is drawn in red dots, the corresponding small-
scale design is drawn in a solid black line, and a large-scale
design is added in a solid red line. The polygonal network
corresponding to the large-scale design is not shown but
can be deduced—the two polygonal networks are shown
superimposed in Figure 14(a). The other parts of the figure

(a) Panel 28 (b) Panel 31

(c) Panel 32 (d) Panel 34

Figure 14. Underlying 2-level polygonal networks of panels from the Topkapi
Scroll.
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show the polygonal networks underlying three more 2-
level designs from the scroll, but neither of the networks is
shown in these panels, only the finished 2-level designs in
black and red.

Superimposing the large- and small-scale polygonal
networks of these panels reveals subdivisions of some of
the tiles: a rhombus in panel 28, two pentagons in panel 32,
and a bobbin in panel 34. In all cases, the side of a com-
posite tile is formed from the sides of two small tiles and
the diagonal of a small decagon. We can also identify the
fragments of the large-scale polygons cropped by the
boundaries of the panels. These panels are not arbitrarily
chosen parts of a design—they are templates to be repe-
ated by reflection in the sides of the boundary rectangle.
Although a superficial glance at Figure 14(d) might suggest
that the large-scale network is a bobbin surrounded by six
pentagons, a configuration that can be seen in the small-
scale network, reflection in the sides generates rhombi,
pentagons, and barrels. The large-scale design generated
by panel 31 is shown in Figure 8(g). Panel 28 appears to be
truncated on the right and is perhaps limited by the avail-
able space. If it had 2-fold rotational symmetry about the
centre of the large rhombus, the large-scale design would
be that of Figure 8(h). A consistent choice of subdivision
emerges in all four panels and the subdivisions of the five

tiles used are shown in Figure 15. I believe this has not
been reported before.

Figure 16 shows my 2-level design based on panel 32.
The composite tiles generate the large-scale design (shown
in grey) and the small tiles generate a small-scale design
(black and white) that fills its background regions. The
barrel tile has two forms of decoration: I have used the
simple motif for the large-scale design and the other motif
on the small-scale design. Completing the small-scale
design in the centre of a composite pentagon is problem-
atic. For a pentagon of this scale, only a partial subdivision
is possible: once the half-decagons have been placed,
one is forced to put pentagons at the corners; only a
pentagon or a barrel can be adjacent to the corner penta-
gons, and both cases lead to small areas that cannot be
tiled. The grey area in Figure 15(b) indicates one such
essential hole. I have chosen a slightly different filling from
the one in the Topkapi Scroll. The large-scale design is that
of Figure 2(c).

Figure 17 gives a similar treatment to panel 34. It con-
tains four copies of the template rectangle shown in
Figure 14(d), two direct and two mirror images. In this
case, the large-scale pattern is expressed using shading of
the regions. Examples of both styles can be found on
buildings in Isfahan, Iran.

(a)

(b)

(c)

(d)

(e)

Figure 15. Subdivisions derived from the Topkapi Scroll. The scale factor is
3þ
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The bow-tie is notable by its absence from Figure 15. It
suffers the same fate as the pentagon: the tiles at its two
ends are forced and its waist cannot be tiled. (The large-
scale polygonal network underlying panel 29 of the scroll
has a quarter of a bow-tie in the top right corner sur-
rounded by pieces of decagons, but it is not based on
subdivision in the same way as the others.)

In Figure 16 the visible section of the large-scale design
can also be found as a configuration in the small-scale
design. However, larger sections reveal that the pattern is
not scale invariant. This is a general limitation of these
subdivisions. It is not possible to use the subdivisions of
Figure 15 as the basis of a substitution tiling because,

without subdivisions of the pentagon and bow-tie, the
inflation process cannot be iterated.

A Design from the Alhambra
The design illustrated in Figure 18 forms the major part of a
large panel in the Museum of the Alhambra—see [24] for a
photograph. The panel has been assembled from fragments
uncovered in 1958, but the original would have been from
the 14th century. The lower part of the figure shows the
finished design and the upper part shows a polygonal
network that I propose as the underlying framework. The
principal compositional element of the framework is a
decagon surrounded by ten pentagons, which gives rise to

Figure 16. A 2-level design based on panel 32 of the Topkapi Scroll.
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the 10-fold rose recurring as a leitmotif in the final design.
Copies of this element are placed in two rings, visible in the
top left of the figure—an inner ring of ten and an outer ring
of twenty; adjacent elements share two pentagons. The
connections between the inner and outer rings are of two
kinds. The shaded rhombi contain the translation unit from
the familiar periodic design of Figure 2(b). The construc-
tion of the design in the remaining spaces is shown in
Figure 19: in part (b) the design is seen to be a subset of the
configuration of pentagonal motifs of part (a), whereas (c)
shows the same design over a network that includes half-
barrels and one-tenth decagons—the polygons used in
Figure 18. The edges in the resulting polygonal network
are of two lengths, which are related as the side and
diagonal of a pentagonal tile. The final design can be
generated from this network using a generalisation of the
PIC method: the short edges have incidence angle 72� and
the long edges have incidence angle 36�. A 20-fold rose is
placed in the centre; the tips of alternate petals meet 10-
fold roses, and lines forming the tips of the intermediate
petals are extended until they meet other lines in the pat-
tern. The reconstructed rectangular panel also has
quadrants of 20-fold roses placed in the four corners, a
common feature of such panels that reflects the fact that
most are subsets of periodic patterns. However, the quad-
rants are misaligned and are also the most heavily restored
areas of the panel. I have omitted them from the figure.

This design is unusual in the large number of straight
lines it contains that run across the figure almost uninter-
rupted. The marks in the bottom right corner of Figure 18
indicate the heights of horizontal lines; there are five fam-
ilies of parallels separated by angles of 36�. In some quasi-
periodic tilings it is possible to decorate the prototiles with
line segments that join up across the edges of the tiling to
produce a grid of continuous straight lines that extend over
the whole plane. These lines are called Ammann bars. The
intervals between consecutive parallel Ammann bars come
in two sizes, traditionally denoted by S and L (short and
long). They form an irregular sequence that does not
repeat itself and never contains two adjacent Ss or three
adjacent Ls.

The lines in Figure 18 are not genuine Amman bars.
Those marked with an asterisk do not align properly across
the full width of the piece shown but deviate so that the S
and L intervals switch sides. (Structural defects of this kind
have been observed in quasicrystals, where they are
known as phasons). The periodic design in Figure 2(b) has
similar lines but its sequences repeat: the vertical ‘Ammann
bars’ give sequence SLSL, the lines 36� from vertical
give SLLSLL, and those 72� from vertical are not properly
aligned.

Makovicky et al [24] propose Figure 18 as an example
of a quasi-periodic design. They try to find a structural
connection between it and the cartwheel element of the

Figure 17. A 2-level design based on panel 34 of the Topkapi Scroll.
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Penrose tiling. After acknowledging that attempts to match
kites and darts are problematic, they try to match it with a
variant of the Penrose tiles, one discovered by Makovicky

[20] as he studied the Maragha pattern shown in
Figure 9(b). Their boldest assertion is Conclusion 6
[24, p. 125]:

The non-periodic cartwheel decagonal pattern from the
excavations in the Alhambra and from the Moroccan
localities is based on a modified Penrose non-periodic
tiling derived recently as ‘PM1 tiling’ by Makovicky…
We conclude that a symmetrized PM1-like variety of
Penrose tiling must have been known to the Merinid and
Nasrid artesans (mathematicians) and was undoubtedly
contained in their more advanced pattern collections.

Elsewhere in the paper, the authors are more cautious and
realistic about the nature of their speculation. They offer an
alternative construction based on an underlying radially
symmetric network of rhombi whose vertices lie in the
centres of the decagonal tiles [24, Fig. 23].

Figure 18. Construction of panel 4584 in the Museum of the Alhambra.

(a) (b) (c)

Figure 19.
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In order to classify a pattern as periodic or radially
symmetric, we must have a large enough sample to be able
to identify a template and the rules for its repetition. Sim-
ilarly, to classify a pattern as quasi-periodic, we must
describe a constructive process that allows us to see the
given patch as part of a quasi-periodic structure covering
the whole plane. It is not sufficient that geometric features
of a design, such as rotation centres, can be shown to align
with those of a familiar quasi-periodic tiling within a finite
fragment. We need to find a procedure built on elements of
the design. The set of tiles underlying Figure 18 and the set
P2 shown in Figure 13 are both large patches with 10-fold
symmetry, but only in the second case do we know how to
extend it quasi-periodically.

In my opinion, the design strategy underlying the
Alhambra pattern does not require an understanding of
Penrose-type tilings, and is based on little more than the
desire to place large symmetric motifs (roses) in a radially
symmetric pattern and fill the gaps. The construction out-
lined at the start of this section produces the complete
design using methods and motifs believed to have been
used by Islamic artists. The general structure has the same
feel as Figure 5. The ‘Ammann bars’ are an artifact of the
construction, although the structure of the design may have
evolved and been selected to enhance their effect. They
would also have helped to maintain accurate alignment of
elements during its construction.

Designs from Isfahan
Figure 20 shows a 2-level design that, like the Topkapi
Scroll examples above, is based on subdivision. The large-
scale design is the stars and kites pattern derived from the
bow-tie and decagon tiling of Figure 1(b). The subdivisions
of the bow-tie and decagon used to generate the small-
scale design are shown in Figures 21(a) and (c) with

the large-scale pattern added in grey. The side of a
composite tile is formed from the diagonals of two bob-
bins and one decagon. The pattern cannot be scale
invariant: the polygonal network for the large-scale design
contains a bow-tie surrounded by four decagons but this
local arrangement does not occur in the small-scale
network.

These subdivisions were derived by Lu and Steinhardt
[17] from three hierarchical designs found on buildings in
Isfahan. The grey areas in Figure 22 mark out the sections
of the large-scale polygonal network underlying these
designs: the rectangular strip runs around the inside of a
portal in the Friday Mosque, the triangular section is one of
a pair of mirror-image spandrels from the Darb-i Imam
(shrine of the Imams), and the arch is a tympanum from a
portal, also from the Darb-i Imam—see [17, 35] for photo-
graphs. Bonner [2] gives an alternative subdivision scheme
for the Darb-i Imam arch using the tiling of Figure 2(a) as
the basis for the large-scale design.

The mosaic in the Darb-i Imam tympanum differs from
the symmetrically perfect construction of Figure 20 in sev-
eral places. For example a bow-tie/bobbin combination
like Figure 7(a) in the top right corner of the central com-
posite bow-tie is flipped; bow-tie/bobbin combinations in
the corners of the upper composite decagon are also flip-
ped; a decagon at the lower end of the curved section of
the boundary on each side is replaced by Figure 7(d). The
modifications to the composite decagon appear to be
deliberate as the same change is applied uniformly in all
corners. Replacing the small decagons may make it easier
to fit the mosaic into its alcove. The bow-tie anomaly is
possibly a mistake by the craftsman.

If we want to use the Isfahan subdivisions as the basis of
a substitution tiling, we need to construct a companion
subdivision of the bobbin tile. In doing so we should

Figure 20. A 2-level design modelled on the Darb-i Imam, Isfahan.
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emulate the characteristics of the two samples—properties
such as the mirror symmetry of the subdivisions, and the
positions of the tiles in relation to the grey lines. Notice that
focal points such as corners or intersections of the grey
lines are always located in the centres of decagons, and the
interconnecting paths pass lengthwise through bow-ties.
Figure 21(b) shows my solution: it satisfies some of these
criteria, but it is spoilt by the fact that some of the corners of
the grey lines are so close together that decagons centred
on them overlap, and there is a conflict between running
the path through a bow-tie and achieving mirror symmetry

at the two extremes. This extra subdivision enables the
inflation process to be performed, but the resulting tilings
are probably of mathematical interest only. The large scale
factor for the subdivisions yields a correspondingly large
growth rate for the inflation. After two inflations of a
decagon the patch would contain about 15000 tiles; for
comparison, the patch shown in Figure 13 contains about
1500 tiles.

Lu and Steinhardt use the Isfahan patterns in their dis-
cussion of quasi-periodicity. Commenting on the spandrel,
they say [17, p. 1108]:

(a)

(b)

(c)

Figure 21. Subdivisions (a) and (c) are derived from designs on buildings in
Isfahan [17]. The scale factor is 4þ 2
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The Darb-i Imam tessellation is not embedded in a
periodic framework and can, in principle, be extended
into an infinite quasiperiodic pattern.
By this they mean that the visible fragment of the large-

scale design is small enough that no translational symmetry
is immediately apparent and so the patch could be part of a
non-periodic tiling. If we only have access to a finite piece
of any tiling, it is impossible to decide whether it is periodic
without further information on its local or global structure.
Although the lack of conspicuous periodicity in the Darb-i
Imam design could be interpreted as a calculated display of
ambiguity on the part of the artist, to me it seems more
likely to be the result of choices influenced by aesthetic
qualities of the design, and the relative sizes of the tesserae
in the small-scale pattern and the area to be filled. The fact
that the same periodic tiling is a basis for all three Isfahan
designs makes it a good candidate for the underlying
organising principle. Translation in one direction is visible
in the Friday Mosque pattern.

Lu and Steinhardt also observe that the medieval artists
did not subdivide a single large tile but instead used a patch
containing a few large tiles arranged in a configuration that
does not appear in the small-scale network. They then
remark [17, p. 1108]:

This arbitrary and unnecessary choice means that,
strictly speaking, the tiling is not self-similar, although
repeated application of the subdivision rule would
nonetheless lead to [a non-periodic tiling].

This gives the impression that, if the medieval craftsmen
had wanted to, they could have started with a single tile
and inflated it until it covered the available space. But we
must beware of seeing modern abstractions in earlier work.
There is no evidence that medieval craftsmen understood
the process of inflation. The mosaics require only one level
of subdivision, and they do not contain a subdivision of the
bobbin that would be needed to iterate the inflation.

In my opinion the Isfahan patterns, like the 2-level
designs in the Topkapi Scroll, are best explained as an
application of subdivision to generate a small-scale filling
of a periodic large-scale design. Furthermore, the choice of
the large-scale design seems far from arbitrary: it is one of
the oldest and most ubiquitous decagonal star patterns, and

as such it would have been very familiar to medieval
viewers and recognised even from a small section.

Connections with Penrose Tilings
The use of subdivision and inflation to produce quasi-
periodic tilings with forbidden rotation centres came to
prominence in the 1970s with investigations following the
discovery of small aperiodic sets of tiles, the Penrose kite
and dart being the most famous example. Penrose tilings
have local 5-fold and 10-fold rotation centres and the fact
that some Islamic designs share these unusual symmetry
properties has prompted several people to explore the
connections between the two [1, 17, 20, 24, 27].

Figure 23 shows subdivisions of the kite and dart into
the bow-tie, bobbin, and decagon tiles. As in earlier
examples, the sides of the kite and dart lie on mirror lines
of the tiles. Using this substitution, any Penrose tiling can
be converted into a design in the Islamic style [27]. Fur-
thermore, because the kite and dart are an aperiodic set,
such a design will be non-periodic.

The transition can also proceed in the other direction.
Figure 24 shows subdivisions of the three Islamic tiles into
kites and darts. Two of the patches are familiar to students
of Penrose tilings: (a) is the long bow-tie component of
Conway worms and (b) is the hub of the cartwheel tiling.
Notice also that (b) is assembled from (a) and (c) in the
manner of Figure 7(d).

Kites and darts come with matching rules to prohibit the
construction of periodic tilings when the tiles are assem-
bled like a jigsaw. In Figure 24 the two corners at the
‘wings’ of each dart and the two corners on the mirror line
of each kite are decorated with grey sectors; the matching
rule is that grey corners may only be placed next to other
grey corners. This prevents, for example, the bow-tie and
the decagon in the figure from being assembled in the stars
and kites pattern: it is not possible to place two bow-ties on
opposite corners of a decagon.

The markings on the kites and darts in Figure 24 endow
the composite tiles with a matching rule of their own. Each
side of a composite tile has a single grey spot that divides
its length in the golden ratio; we decorate each side with an
arrow pointing towards the short section. Instead of
defining the matching rule at the vertices of the tiling, as

Figure 22. Sections of the bow-tie and decagon tiling
used in the Isfahan patterns.

Figure 23. Subdivisions of the Penrose kite and dart.
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with the Penrose example previously described, we place
constraints on the edges of the tiling: the arrows on the two
sides forming an edge of the tiling must point in the same
direction. With these markings and matching rule, the bow-
tie and bobbin are an aperiodic set. To prove this note that
the subdivisions in Figure 25 show that we can tile the
plane by inflation, and that any periodic tiling by bow-ties
and bobbins could be converted into a periodic tiling by
kites and darts but this is impossible. The substitution
matrix for these marked tiles is associated with the Fibo-
nacci sequence and the ratio of bobbins to bow-ties in a
substitution tiling is the golden ratio. Notice that a hori-
zontal line running through the centre of a composite
bow-tie passes lengthwise through the small bow-ties and
short-ways across the small bobbins. Inflation produces a
longer line with the same properties, and a substitution
tiling will contain arbitrarily long such lines. Any infinite
lines must be parallel as they cannot cross each other.
These lines inherit their own 1-dimensional substitution
rule.

Conclusions
In the preceding sections I have described methods for
constructing Islamic geometric patterns, given a brief
introduction to the modern mathematics of substitution
tilings, and analysed some traditional Islamic designs. The
conclusions I reached during the course of the discussion
are isolated and summarised here:

1. It is possible to construct quasi-periodic tilings from the
set of prototiles used by Islamic artists (Figure 6).
Examples can be generated as substitution tilings based

on inflation or using a matching rule with marked
versions of the tiles.

2. Islamic artists did use subdivision to produce hierarchi-
cal designs. There are examples illustrating the method
in the Topkapi Scroll, and three designs on buildings in
Isfahan can be explained using this technique. Indeed,
their prototiles are remarkable in their capacity to form
subdivisions of themselves in so many ways.

3. There is no evidence that the Islamic artists iterated the
subdivision process—all the designs I am aware of have
only two levels. This is to some degree a practical
issue: the scale factor between the small-scale and
large-scale designs is usually large and the area of the
design comparatively small. With the subdivisions used
in the Topkapi Scroll, iteration is impossible as composite
versions of the pentagon and bow-tie do not exist.

4. There is no evidence that the Islamic artists used matching
rules. Ammann bars are the nearest thing to a form of
decoration that could have been used to enforce non-
periodicity. Similar lines that appear on some designs are
a by-product of the construction, not an input to the
design process, although the designs may have been
selected because this feature was found attractive.

5. The designs analysed in this article do not provide
evidence that Islamic artists were aware of a process that
can produce quasi-periodic designs. They are periodic,
generated by reflections in the sides of a rectangle, or
are large designs with radial symmetry. The multi-level
designs are hierarchical, not scale invariant.

In this article I have concentrated on designs with local
5-fold symmetry. In Spain and Morocco there are analo-
gous designs with local 8-fold symmetry, including some
fine 2-level designs in the Patio de las Doncellas in the
Alcazar, Seville—see [22] for photographs. The geometry of
the polygonal networks underlying these designs is
grounded on the

ffiffiffi
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system of proportions rather than the
golden ratio. Plans of muqarnas (corbelled ceilings built by
stacking units in tiers and progressively reducing the size of
the central hole to produce a stalactite-like dome) some-
times display similar features. These networks have a
strong resemblance to the Ammann–Beenker quasi-
periodic tiling composed of squares and 45�–135� rhombi
[33]. This tiling is another substitution tiling that can be
generated by subdivision and inflation; the tiles can also be
decorated with line segments to produce Ammann bars.
Similar claims to those assessed in this article have been
made for some of the Islamic 8-fold designs [2, 6, 22, 23].

To me, it seems most likely that the Islamic interest in
subdivision was for the production of multi-level designs.
Islamic artists were certainly familiar with generating
designs by applying reflection, rotation and translation to
repeat a template. They probably had an intuitive under-
standing of the crystallographic restriction and a feeling
that global 5-fold and 10-fold rotation centres are somehow
incompatible with periodicity. They did have the tools
available to construct quasi-periodic designs but not the
theoretical framework to appreciate the possibility or sig-
nificance of doing so.

(a) (b) (c)

Figure 24. Patches of Penrose kites and darts.

(a) (b)

Figure 25. Subdivisions of marked tiles that preserve
the markings. The scale factor is 1
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1996.
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Sociedad Española Mineralogı́a 19 (1996) 1–26.

23. E. Makovicky and P. Fenoll Hach-Alı́, ‘The stalactite dome of the

Sala de Dos Hermanas—an octagonal tiling?’, Boletı́n Sociedad
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http://tilings.math.uni-bielefeld.de/

34. C. S. Kaplan, taprats, computer-generated Islamic star patterns,

http://www.cgl.uwaterloo.ca/*csk/washington/taprats/

35. P. J. Lu and P. J. Steinhardt, Supporting online material for [17],

http://www.sciencemag.org/cgi/content/full/315/5815/1106/DC1

36. D. Wade, Pattern in Islamic Art: The Wade Photo-Archive,

http://www.patterninislamicart.com/

56 THE MATHEMATICAL INTELLIGENCER

http://archnet.org/library/images/
http://tilings.math.uni-bielefeld.de/
http://www.cgl.uwaterloo.ca/$\sim$csk/washington/taprats/
http://www.sciencemag.org/cgi/content/full/315/5815/1106/DC1
http://www.patterninislamicart.com/

	The Search �for Quasi-Periodicity in Islamic 5-fold Ornament
	Introduction
	Islamic Methods of Construction
	What is Quasi-Periodicity?
	Multi-level Designs
	A Design from the Alhambra
	Designs from Isfahan
	Connections with Penrose Tilings
	Conclusions
	Acknowledgments
	Bibliography



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


