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Abstract

The field of quantum computation studies the power of computers that are based on quantum-
mechanical principles. We give a brief introduction to the model of quantum computation and
to its main success so far: Peter Shor’s efficient quantum algorithm for factoring integers.

1 Introduction

Today’s computers—both in theory (Turing machines) and practice (PCs)—are based on classical
physics. They are limited by locality (operations have only local effects) and by the classical fact
that systems can be in only one state at the time. However, modern quantum physics tells us that
the world behaves quite differently: some operations can have non-local effects and in some sense
quantum systems can be in several states simultaneously.

Quantum computation is the field that investigates the computational power and other proper-
ties of computers based on quantum-mechanical principles. Its main objective is to find quantum
algorithms that are significantly faster than any classical algorithm solving the same problem.
The field started in the early 1980s with suggestions by Paul Benioff [Ben82] and Richard Feyn-
man [Fey82, Fey85] and reached more rigorous ground when in 1985 David Deutsch defined the
universal quantum Turing machine [Deu85]. The following years saw only sparse activity, but
the field accelerated explosively after Peter Shor’s 1994 discovery of efficient quantum algorithms
for the problems of integer factorization and discrete logarithms [Sho97]. Since most of current
classical cryptography is based on the assumption that these two problems are computationally
hard, the ability to actually build and use a quantum computer would allow to break most current
cryptographic systems (notably the RSA system [RSAT78, Riv90]).

This paper is intended to be a brief and incomplete introduction to the model of quantum com-
putation and Shor’s factoring algorithm, which is widely considered to be quantum computing’s
biggest success so far.! The paper is aimed at mathematicians and computer scientists. Some
familiarity with computational complexity theory will be useful, but is not necessary for under-
standing the paper. We start with an abstract explanation of quantum mechanics in Section 2.
Section 3 explains what quantum bits and quantum memory look like, and Section 4 shows how we
can compute with quantum memory. Finally, Section 5 explains the factoring algorithm in some
detail.

!Shor’s discrete log algorithm is similar to the factoring algorithm. Important topics related to quantum compu-
tation that will go unmentioned here are Grover’s algorithm for database search, quantum information and commu-
nication complexity, teleportation, quantum error-correcting codes, quantum cryptography, and potential physical

implementations of quantum computers. The interested reader is referred to the wealth of papers available at the
Los Alamos preprint archive http://xxx.lanl.gov/archive/quant-ph.




2 Quantum Mechanics

Here we give a brief introduction to quantum mechanics. In short: a quantum state is a superpo-
sition of classical states, to which we can apply either a measurement or a unitary operation.

2.1 Superposition

Consider some physical system which can be in N different, mutually exclusive classical states. Call
these states |1),]2),...,|N). Roughly, by a “classical” state we mean a state in which the system
can be found if we observe it. A quantum state |$) is a superposition of classical states, written

|p) = ai1|1) + a2]2) + ... + an|N).

Here «; is a complex number which is called the amplitude of |i) in |¢). Intuitively, a system in
quantum state |¢) is in all classical states at the same time! It is in state |1) with amplitude a1, in
state |2) with amplitude a, and so on. Mathematically, the states [1),...,|N) form an orthonormal
basis of a Hilbert space of dimension N, and a quantum state is a vector (of norm 1, see below) in
this space.

2.2 Measurement

There are two things we can do with a quantum state: observe (measure) it, or let it evolve unitarily
without measuring it. Suppose we observe state |¢). We cannot “see” a superposition itself, but
only classical states. Accordingly, if we observe state |¢) we will see one and only one classical
state |j). Which specific |j) will we see? This is not determined in advance; the only thing we can
say is that we will see state |j) with probability |a;|?. Thus observing a quantum state induces
a probability distribution on the classical states, given by the squared amplitudes. Note that we
must have Z;-V:l |aj|? = 1, so the vector of amplitudes has (Euclidean) norm 1.

Suppose we observe |¢) and see classical state |j) as a result. Then |¢) itself has “disappeared”,
and all that is left is [j). In other words, observing |¢) “collapses” the quantum superposition |¢)
to the classical state |j) which we saw, and all “information” that might have been contained in
the amplitudes «; is gone.

2.3 Unitary Evolution

Instead of measuring |¢), we can also apply some operation on it, i.e. change the state to some

) = Bil1) + B2|2) + ... + BN |N).

Quantum mechanics only allows linear operations to be applied to quantum states. What this

means is: if we view a state like |¢) as an N-dimensional vector (asi,...,ay)”, then applying an
operation which changes |¢) to 1) correspond to multiplying |¢) with an N x N matrix U:
a1 b
U : = :
an BN

Because measuring |1) should also give a probability distribution, we have Z;V:l |3j1> = 1. This
implies that the operation U must preserve the norm of vectors, and hence must be a unitary



transformation.A matrix U is unitary if its inverse U~' equals its conjugate transpose U*. This
is equivalent to saying that U always maps a vector of norm 1 to a vector of norm 1. Because
a unitary transformation always has an inverse, it follows that any (non-measuring) operation on
quantum states must be reversible. On the other hand, a measurement is clearly non-reversible,
because we cannot reconstruct |¢) from the observed classical state |j).

3 Quantum Memory

In classical computation the unit of information is a bit, which can be 0 or 1. In quantum compu-
tation, this unit is a quantum bit (qubit), which is a superposition of 0 and 1. Consider a system
with 2 basis states, call them |0) and |1). A single qubit can be in any superposition

apl0) + an[1), |aol® + Jeu|* = 1.

Similarly we can think of systems of more than 1 qubit. For instance, a 2-qubit system has 4 basis
states: |0)|0), |0)|1), [1)]0), [1)|1). Here for instance |1)|0) means that the first qubit is in its basis
state |1), the second is in its basis state |0).

More generally, a register of n qubits has 2" basis states, each of the form [b1)|bs) ... |b,), with
b; € {0,1}. We can abbreviate this to |[biby...b,). Since bitstrings of length n can be viewed as
numbers between 0 and 2" —1, we can also write the basis states as numbers |0), 1), ]2),...,]|2" — 1).
A quantum register of n qubits can be in any superposition

2n -1
apl0) + ap|l) + ...+ agn_1]2" — 1), Z o = 1.
j=0

Note that we need 2" complex numbers to completely specify the state of an m-qubit system,
whereas we need only n bits to specify the state of a classical n-bit system. Thus quantum memory
can contain vastly more information (in some sense) than classical memory. The art of quantum
computing is to use this information for interesting computational purposes.

4 Quantum Computation

Below we explain how a quantum computer can apply computational steps to its register of qubits.
Two equivalent models exist for this: the quantum Turing machine [Deu85, BV97] and the quantum
circuit model [Deu89, Yao93]. We only explain the latter, which is more popular among researchers.

4.1 Classical Circuits

In classical complexity theory, a Boolean circuit is a finite directed acyclic graph with AND, OR,
and NOT gates. It has n input nodes, which contain the n input bits (n > 0). The internal nodes
are AND, OR, and NOT gates, and there are one or more designated output nodes. The initial
input bits are fed into AND, OR, and NOT gates according to the circuit, and eventually the output
nodes assume some value (see figure 1). We say that a circuit computes some Boolean function
f:{0,1}™ — {0, 1}™ if the output nodes get the right value f(z) for every input z € {0, 1}".

A circuit family is a set C = {C,,} of circuits, one for each input size n. Each circuit has one
output bit. Such a family recognizes or decides a language L C {0,1}* if, for every n and every
input z € {0,1}", the circuit C,, outputs 1 if z € L and outputs 0 otherwise. Such a circuit
family is uniformly polynomial if there is a deterministic Turing machine that outputs C, given
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Figure 1: A classical (left) and a quantum (right) circuit. Uy and U, are 1-qubit gates.

n as input using space logarithmic in n (this implies time polynomial in n). Note that the size
(number of gates) of the circuits C), can then grow at most polynomially with n. It is known that
uniformly polynomial circuit families are equal in power to polynomial-time deterministic Turing
machines: a language L can be decided by a uniformly polynomial circuit family iff L € P [Pap94,
Theorem 11.5].

Similarly we can consider randomized circuits. These receive, in addition to the n input bits,
also some random bits (“coin flips”) as input. A randomized circuit computes a function f if it
successfully outputs the right answer f(x) with probability at least 2/3 for every x (probability taken
over the values of the random bits; the 2/3 may be replaced by any 1/2 + €). Randomized circuits
are equal in power to randomized Turing machines: a language L can be decided by a uniformly
polynomial randomized circuit family iff . € BPP, where BPP (“Bounded-error Probabilistic
Polynomial time”) is the class of languages that can efficiently be recognized by randomized Turing
machines with small error probability. Clearly P C BPP. It is unknown whether this inclusion is
strict.

4.2 Quantum Circuits

A quantum circuit (also called quantum network or quantum gate array) generalizes the idea of
classical circuit families, replacing the AND, OR, and NOT gates by quantum gates. A quantum
gate is a unitary transformation on a small (usually 1, 2, or 3) number of qubits. Mathematically,
these gates can be composed by taking tensor products (if gates are applied in parallel to different
parts of the register) and ordinary products (if gates are applied sequentially).

A simple but widely used example of a 1-qubit gate is the Hadamard transform, specified by:

)
1 1
HI1) = —10) - 2|1
If we apply H to initial state |0) and then observe, we have equal probability of observing |0) or
|1). Similarly, applying H to |1) and observing gives equal probability of |0) or |1). However, if we
apply H to the superposition (1/4/2)|0) 4+ (1/4/2)|1) then we obtain [0): the positive and negative
amplitudes for |1) cancel out! This effect is called interference, and is analogous to interference
patterns between light or sound waves. Note that if we apply H to each bit in a register of n zeroes,
we obtain (1/1/27) > we{o1}n |Z), which is a superposition of all n-bit strings.
An example of a 2-qubit gate is the controlled-not gate C. This negates the second bit b of its
input if the first bit is 1, and does nothing if the first bit is 0:

C10)[b) = [0)[b)
C[1)[b) = [1)[1 - b)

HI0) = %OH%H

4



As in the classical case, a quantum circuit is a finite directed acyclic graph of input leaves,
gates, and output nodes (see figure 1). There are n leaves that contain the input (as classical bits);
in addition we may have some more input leaves which are initially 0 (“workspace”). The internal
nodes of the quantum circuit are quantum gates that each operate on at most 2 qubits of the state.
It is known that the set of all 1-qubit operations together with the 2-qubit controlled-not gate
is universal [BBCT95], meaning that any other unitary transformation can be built from them.
Allowing all 1-qubit gates is not very realistic from an implementational point of view, as there are
uncountably many of them. However, the model is usually restricted, only allowing a small finite
set of 1-qubit gates from which all other 1-qubit gates can be well approximated. The gates in the
circuit transform the initial state vector into a final state, which will generally be a superposition.
We observe some dedicated output bits of this final state to (probabilistically) obtain an answer.

The classical classes P and BPP can now be generalized as follows. EQP (“Exact Quantum
Polynomial time”) is the class of languages that can be recognized with success probability 1 by
uniformly polynomial quantum circuits. BQP (“Bounded-error Quantum Polynomial time”) is
the class of languages that can be recognized with success probability at least 2/3 by uniformly
polynomial quantum circuits. It can be shown that P C EQP and BPP C BQP. The main open
question of quantum complexity theory is whether these inclusions are strict.

One uniquely quantum-mechanical effect that we can use for building quantum algorithms is
quantum parallelism. Suppose we have a classical algorithm that computes some function f :
{0,1}™ — {0,1}™. Then we can build a quantum circuit U that maps |z)|0) — |z)|f(x)) for every
x € {0,1}". Suppose we apply U to a superposition of all inputs z (which is easy to build using
the Hadamard transform):

1 1
U<¢2—n > |x>|0>)=¢2—n S l)lf).

z€{0,1}n z€{0,1}"

We applied U just once, but the final superposition contains f(z) for all 2" input values ! However,
by itself this is not very useful, since observing the final superposition will give just one random
|z)| f(z)). All other information will be lost.

A second important effect that can be used is entanglement, which refers to quantum correlations
between different qubits. For instance, consider a 2-qubit register that is in the state

1 1
\/§|OO> + \/§|11>'

Initially neither of the two qubits has a classical value |0) or |1). However, if we measure the
first qubit and observe, say, a |0), then the whole state collapses to |00). Thus observing only the
first qubit immediately fixes also the second, unobserved qubit to a classical value. Therefore this
system is called entangled. Since the two qubits that make up the register may be far apart, this
example illustrates some of the non-local effects that quantum systems can exhibit.

5 Shor’s Factoring Algorithm

Probably the most important quantum algorithm so far is Shor’s factoring algorithm [Sho97]. It
can find a factor of a composite number N in 6((log N)?) steps, which is polynomial in the length
log N of the input (the O-notation ignores some log log-factors). On the other hand, it is widely
conjectured that a classical (deterministic or randomized) computer cannot factor N in polynomial



time—in fact, much of modern cryptography is based on this conjecture. The best known classical
randomized algorithms run in time roughly

o(log N)*
where oo = 1/3 for a heuristic upper bound [LL93] and a = 1/2 for a rigorous upper bound [LP92].
In terms of complexity classes: factoring (rather, the decision problem equivalent to it) is in BQP
but is widely believed not to be in BPP. If the latter belief is true, the quantum computer would be
the first counterexample to the “strong” Church-Turing thesis, which states that all “reasonable”
models of computation are polynomially equivalent (see [EB90] and [Pap94, p.31,36]).

5.1 Reduction to Period-Finding

Shor’s algorithm finds a factor by finding the period of some sequence. We first show how efficient
period-finding suffices for efficient factoring. Suppose we want to find factors of the composite
number N > 1. Randomly choose some integer z € {2,..., N — 1}. If the greatest common divisor
of z and N is greater than 1, then this gcd will be a non-trivial factor of N, so then we are done.
If gcd(z, N) = 1, then consider the sequence

1 =2z" mod N, 2! mod N,z% mod N,...

This sequence will cycle after a while: there is a least 0 < r < N such that 2" = 1 mod N. This
r is called the period of the sequence. It can be shown that with probability > 1/4, r is even and
2"/2 +1 and 2'/? — 1 are not multiples of N. In that case:

7 = lmod N <

(337"/2 2 = Imod N <—

@2+ 1)(z"*-1) = Omod N <=
(qu/2 + 1)(;1;’"/2 —1) = kN for some k.

Note that k > 0 because both "/24+1 > 0 and 2"/2 =1 > 0 ( > 1). Hence 2"/ 4+ 1 or 2"/? — 1 will
share a factor with N. Because z'/2+1 and z"/2 —1 are not multiples of N this factor will be < N,
and in fact both these numbers will share a non-trivial factor with N. Accordingly, if we have r
then we can efficiently (in O(log N) steps) compute the greatest common divisors ged(z'/2 + 1, N)
and ged(2"/2 — 1, N), and both of these two numbers will be non-trivial factors of N. If we are
unlucky we might have chosen an z that does not give a factor (which we can detect efficiently),
but trying a few different random z gives a high probability of finding a factor.

Thus the problem of factoring reduces to finding r. We will show how the quantum Fourier
transform enables us to do this.

5.2 The Quantum Fourier Transform

For some number ¢, let Z, = {0,...,q — 1}. For each a € Z, define a function x, : Z, — C by

oriah
a .,

Xa(b) =€

The set of basis states {|a) | a € Z;} is called the standard basis. An alternative orthonormal basis,
called the Fourier basis, is the set {|x,) | a € Z;} defined by

> Xa(b)[b).

1
Xa) = —=
1 ez,
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The quantum Fourier transform (QFT) is the unitary transformation that maps the standard basis
to the Fourier basis:

QFT: |a) = |xa)-

It is known that if ¢ is smooth (meaning that all factors of ¢ are O(log q), for instance ¢ is a power
of 2), then the QFT can be implemented on a quantum computer using O((logq)?) elementary
gates [Cop94, Cle94, CEMMOI8|.

5.3 Easy Case: r Divides ¢

Assume we have picked a random z as in Section 5.1, and we want to find the corresponding period
r. We can always efficiently pick some smooth ¢ such that N? < ¢ < 2N? (for instance take g
a power of 2). The QFT for Z, can be implemented using O((log q)?) = O((log N)?) elementary
gates.

We will first assume that the unknown r divides ¢, in which case everything works out smoothly.

It is known that in O((log N)?2) steps we can compute the transformation |a)|0) — |a)|z® mod N)
using the Schonhage-Strassen algorithm for fast multiplication (see [Knu97]). We now find r as
follows. Start with |0)|0), two registers of [logq]| and [log N'| zeroes, respectively. Apply the QFT

to the first register to build
1=

—Z\ )|0).

Then compute £* mod N in quantum parallel:

1 &
%ZM |z* mod N).
a=0

Observing the second register gives some x° mod N, with s < r. Note that because r divides ¢, the a
of the form a = jr+s (0 < j < ¢q/r) are exactly the a for which % mod N equals the observed value
2® mod N. Thus the first register collapses to a superposition of |s), |r + s), |2r + s),...,|¢ —r + )
and the second register collapses to the classical state |z® mod N). We can now ignore the second

register, and have in the first:
q/r—1

\/7 Z l7r + s).
q/r—1

_77‘+S b q/r—1 . jrb
\/7 Z Z 27 ) b \/_Z 2m— ( Z 627rz p ) |b>

7 =0 =0

Applying the QFT again gives

Using that Z;‘;Ul a’ = (1 —a")/(1 — a) for a # 1, we compute:

b
q/r—1 b q/r—1 Q/T ifeQm@ =1

212 Z 27rz— rb\ 4/7
e q — - 27wi —=
Z ( > 1 (e i ) __amib ) ;b
= = q

Note that >/ = 1 iff rb/q is an integer iff b is a multiple of ¢/r. Accordingly, we are left
with a superposition where only the multiples of ¢/r have non-zero amplitude. Observing this final



superposition gives some random multiple b = ¢q/r, with ¢ a random number 0 < ¢ < r. Thus we

get a b such that
b ¢

=

q r

where b and ¢ are known and ¢ and r are unknown. There are ¢(r) € Q(r/loglog r) numbers smaller
than r which are coprime to r [HW79, Theorem 328], so ¢ will be coprime to r with probability
Q(1/loglogr). Accordingly, an expected number of O(loglog N) repetitions of the procedure of
this section suffices to obtain a b = cq/r with ¢ coprime to r. Once we have such a b, we can obtain
r as the denominator by writing b/¢q in lowest terms.

5.4 Hard Case: r Does not Divide ¢

In case r does not divide ¢ (which is actually quite likely), it can be shown that applying exactly
the same algorithm will still yield with high probability a b such that

with b, ¢ known and ¢,r unknown. Two distinct fractions, each with denominator < N, must be
at least 1/N2 > 1/q apart.2 Therefore c/r is the only fraction with denominator < N at distance
< 1/2q from b/q. Applying continued-fraction expansion (see [HW79, Chapter X]) to b/q efficiently
gives us the fraction with denominator < N that is closest to b/g. This fraction must be ¢/r. Again,
with good probability ¢ and r will be coprime, in which case writing ¢/r in lowest terms gives r.
The whole algorithm finds a factor of N in expected time O((log N)?2).
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