From Exotic Options to Exotic Underlyings: Electricity, Weather and Catastrophe Derivatives

Dr. Svetlana Borovkova

Vrije Universiteit Amsterdam
History of derivatives

Derivative: a financial contract whose value is derived from some other financial instrument (stock, index, commodity, exchange rate, bond, ...)

Trading in derivatives started **May 16, 1972**, on Chicago Board of Trade (CBoT)
- **1987**: 1.1 trillion USD (10^{12})
- **1994**: 20 trillion USD
- **1998**: 33 trillion USD
- **2000**: 98 trillion USD
- **2006**: 270 (!) trillion USD

Financial Times, January 17, 2007: "... can (derivatives) market continue its monumental growth? Most (analysts) not only think it can, but believe it absolutely will".

NWD

February 2, 2007
Classic derivatives: plain vanilla options

European option: the right to buy (*call*) or sell (*put*) a financial instrument, e.g. a stock (*underlying asset*) on a specified maturity date T, at a specified strike price X.

Payoff of a call option:

$$c(T) = (S(T) - X)^+,$$

where $S(T)$ is the stock price on the date T.

An **American option** can be exercised anytime before the maturity date T.

These are the so-called **plain vanilla options**.
Black-Scholes option valuation

Main assumption: stock price $S(t)$ follows a Geometric Brownian motion:

$$\frac{dS(t)}{S(t)} = \mu dt + \sigma dW(t).$$

Discrete-time version:

$$\frac{S(t + \Delta t) - S(t)}{S(t)} = \mu \Delta t + \sigma \times N(0, \Delta t),$$

so stock returns are normally distributed, and the price itself is lognormally distributed.

The key ingredient of Black-Scholes option valuation: the risk-neutrality argument, used for construction of a replicating portfolio:

A portfolio that, at any time, consists of a call option and an appropriate amount of stocks is, on expiry date, exactly equal in value to the option’s payoff! (example)
Stock price paths

![Generated path of GBM](image1.png)

![Many generated paths of GBM](image2.png)
Risk-neutral valuation

Call option price can be expressed as the expected (discounted) payoff under the risk-neutral probability measure Q:

$$ c = e^{-rT} E_Q (S(T) - X)^+ $$

Under such risk-adjusted probability measure, the rate of return on a stock is equal to the risk-free interest rate r:

$$ \frac{dS(t)}{S(t)} = r dt + \sigma dW(t) $$

Mathematical tools: binomial trees, Itô calculus, martingale theory, change of measure, Radon-Nikodym derivative, Girsanov theorem.

NWD

February 2, 2007
Extensions of classical setup

Extensions of the celebrated Black-Scholes formula:

I. Replacing classic option payoff $(S(T) - X)^+$ by a more complicated ("exotic") payoff, which depends not only on the stock price at maturity date T but the entire stock price path during the lifetime of the option $[0, T]$.

II. More sophisticated (and more realistic!) processes for the asset price, e.g. those incorporating price jumps. picture

III. Underlying asset is not a stock or index, but a commodity (gold, oil, agricultural products), electricity, credit, house, weather or insurance (against catastrophic events) \longrightarrow "exotic underlying".
Stock price paths with jumps

Generated path of GBM plus jumps

Several generated path of GBM plus jumps

NWD

February 2, 2007
Exotic options: Asian options

The payoff is

\[(A(T) - X)^+,\]

where \(A(T)\) is the arithmetic average of daily stock prices during the lifetime of the option \([0, T]\) - very widely used options, especially in commodity markets!

Main difficulty: the main assumption of Black-Scholes model is that the stock price has a lognormal distribution, but the sum of lognormal random variables is not lognormal!

What to do?
- Replace arithmetic average by geometric average - the product of lognormal random variables is again lognormal!
- Assume the arithmetic average is lognormal, and match first few moments.
- Run a Monte Carlo simulation, in the risk-neutral world!
- An exact solution involves sophisticated mathematical tools: Laplace transform of the call price with respect to maturity.

NWD

February 2, 2007
Other exotic options

- **Barrier options**: provide the classical payoff \((S(T) - X)^+\) only if the asset price crossed (or not crossed) a pre-specified barrier \(B\) over the lifetime of the option. Can be: "up-and-in", "down-and-in", "up-and-out", "down-and-out" → clickfondsen. (picture)

- **Bermudan options**: can be exercised at any of the \(N\) given dates → ”between” American and European options

- **More exotic options**: Russian options, Parisian options, basket options, swaptions, quanto’s, volumetric (swing) options, ...
Barrier options

Upper, lower and corridor barriers

NWD

February 2, 2007
Difficulties and mathematical tools for exotic options

- Non-lognormality of the underlying value (Asian, basket options and quanto’s)
- Conditioning on some event(s) (barrier, double barrier)
- Optimization strategies and optimal stopping involved in American, Bermudan, swing and volumetric options

Tools available:

- **Risk-neutral valuation**: the option price = expected discounted payoff under the risk-neutral probability measure Q:

$$c(0) = e^{-rT} E_Q(\text{payoff})$$

- sometimes (rarely) the solution can be expressed in a closed form formula, most often it involves numerical evaluation of an integral.
Mathematical tools for exotic options

- **Monte Carlo simulations:**
 - a large number of price paths are generated under the risk-neutral probability measure Q
 - these are used to compute the option's payoffs $c_i(T)$
 - law of large numbers assures that the average payoff converges to the expected payoff under Q:
 \[
 \bar{c}(T) = \frac{1}{M} \sum_{i=1}^{M} c_i(T) \longrightarrow E_Q(\text{payoff})
 \]
 - discounted sample average gives the option price:
 \[
 \hat{c}(0) = e^{-rT} \bar{c}(T).
 \]
Commodity derivatives

Underlying asset: not stock or index but **metals** (gold, aluminium), **energy** (oil, gas) or **agricultural product** (wheat, soya, coffee, orange juice, pork bellies).

Main differences:

- Underlying asset price is **NO LONGER GBM**, but can have (picture)
 - seasonalities
 - mean-reversion
 - price jumps

- We **cannot costlessly hold a commodity** until option’s maturity (either must pay storage costs or completely impossible (agricultural commodities)).

NWD

February 2, 2007
Mean-reverting diffusion process (model for e.g. oil price)
Commodity prices

Crude oil, Natural Gas and Soybean
Crude oil: April 1994 - May 2004
Natural Gas: January 1997 - April 2004
Soybean: October 1998 - October 2001

NWD

February 2, 2007
Exotic underlyings: Electricity

Leap in difficulty: totally different CLASS of markets and derivatives: *exotic underlyings.*

Newly liberalized electricity markets, where electricity is traded as any other commodity.

US: PJM (Pennsylvania-New Jersey-Maryland), COB (California-Oregon Border)

Europe: Nordpool (Scandinavia), EEX (Germany), APX (Netherlands), UKPX (UK)

in the next few years also Italy, France, Belgium,

BUT: Electricity is a totally new type of commodity! (*picture*)

- seasonality
- high volatility
- non-elasticity of demand → *price spikes*
- limited transportability
- non-storability!

NWD

February 2, 2007
Three major European power exchanges:

APX, UKPX and EEX

APX: Amsterdam Power Exchange
UKPX: UK Power Exchange, London
EEX: European Energy Exchange, Leipzig, Germany

All prices for 2001-2004:
Yearly seasonalities

The yearly seasonal component:

\[f(t) = \sum_{k=1}^{2} (A_k \sin(2\pi kt) + B_k \cos(2\pi kt)) \]
Weekly pattern

Here we plotted price premia corresponding to a particular weekday, starting on Monday.
Electricity derivatives (cont’d)

Main problems:

- Realistic models for electricity price is needed.
- Option replication is impossible because electricity cannot be stored!
- Other, new types of options: volumetric options, swing options, flexible supply contracts...

New tools:

- Levy processes (pure jump processes), regime switching models, jump diffusions;
- Risk management with natural gas and weather derivatives;
- Power plants as real options.
Catastrophe (insurance) derivatives

Before 1993: reinsurance.
December 1993: introduction of catastrophe insurance futures and options (CAT) on Chicago Board of Trade.

- The payoff of a CAT derivative is paid if there was a large amount in insurance claims in a certain area, over a certain period.

- This happens in case of a catastrophic event, such as a hurricane, tornado or an earthquake.

- The payoff is based on the PCS (Property Claim Service) Index.
Use of CAT derivatives

- **Insurer** will buy CAT futures or CAT call options.

- **Sellers** of CAT derivatives: construction companies, reinsurance companies, speculators willing to take risk for profits.

CAT derivatives = perfect diversification instrument, the so-called zero-beta assets: low correlation to financial markets, investors willing to diversify their portfolios will buy/sell CAT futures and options.

Mathematical difficulties: seasonalities, spikes in case of a catastrophic event, no tradable underlying value, insurance versus financial valuation ...
Weather derivatives

Underlying value - any measurable weather factor: temperature, precipitation, snowfall, ...

Most popular: measures of temperature closely reflecting energy demand:
HDD (heating degree days) and CDD (cooling degree days):

\[HDD(day \, t) = \max(18^\circ C - AVT(t), 0); \quad CDD(day \, t) = \max(AVT(t) - 18^\circ C, 0), \]

\(AVT(t) \) is the average temperature on the day \(t \).

- HDDs/CDDs are summed over a period
- The term of a contract may be a full year of a season:
 - ”Heating”: November-March
 - ”Cooling”: May-September
- The payoff depends on ”strike” and the number of HDD’s or CDD’s exceeding the strike times a nominal amount.
Using and valuing weather derivatives

Users: Energy, Agriculture, Construction, Tourism, Leisure, Transport, Retail, ...

Fundamental difficulty: the underlying asset (e.g. temperature) is NOT TRADED \Rightarrow options cannot be hedged, i.e. replicated with the underlying asset.

Two existing approaches:

- **Actuarial**, or insurance method: uses historical statistical distributions of the weather variable \Rightarrow requires a large diversified weather derivatives portfolio, plus extensive historical weather databases are needed.
- **Financial option theory**: more in line with financial markets, but the underlying asset is not traded, so option replication does not hold!

Weather insurance: low probability, high risk events (e.g. avalanche destroying a skiing resort).

Weather derivatives: high probability, lower risk events (e.g. no snow, such as this winter (2006-2007) \Rightarrow low or no profits for a skiing resort).

NWD

February 2, 2007
Conclusions

- A single mathematical development (Black-Scholes option pricing theory) solely gave rise to an entire multi-trillion finance industry of derivatives!

- Sophisticated mathematical tools are needed to deal with exotic derivatives, realistic asset price models, exotic underlyings.

- New classes of derivatives are growing and establishing their importance in enterprize-wide risk management and in the financial marketplace.

- "Bermuda triangle" is formed by the energy, weather and insurance derivatives.