Aims of the talk

- To introduce you to some key aspects of the theory of Realistic Mathematics Education (RME)
- To build up some shared vocabulary for the rest of the summer school
- To share some first experiences with Dutch math tasks

Outline

- An introduction to RME
- Six RME principles and four key concepts
 - Mathematization
 - Didactical phenomenology
 - Use of models
 - Guided reinvention
- Hands-on task analysis
- Summary

An introduction to RME

Realistic Mathematics Education is...

... a domain specific instruction theory on the teaching and learning of mathematics

... has been elaborated into a number of local instruction theories for different topics, ages, and levels

Point of departure:

Hans Freudenthal (1905-1990): Mathematics as human activity

“What humans have to learn is not mathematics as a closed system, but rather as an activity, the process of mathematizing reality and if possible even that of mathematizing mathematics.”
(Freudenthal, 1968, p. 7)
“I prefer to apply the term 'reality' to what at a certain stage common sense experiences as real.”
Freudenthal (1991, p. 17)

Why RME?
Freudenthal's opposition against "anti-didactical inversion": don’t take the end point of the mathematician's work as a starting point for teaching!

As a reaction to the obvious limitations of mechanistic and structuralistic approaches to mathematics education

Mechanistic Mathematics Education
- bare procedures and calculations
- hardly any applications
- teaching as transmission
 * atomized
 * step-by-step

Realistic Mathematics Education
1. activity principle
2. reality principle
3. level principle
4. intertextiveness principle
5. interactivity principle
6. guidance principle

The iceberg metaphor:
(Van den Heuvel-Panhuizen & Drijvers, 2014)

Seminal past RME publications
Six RME principles and key concepts

1. The activity principle
2. The reality principle
3. The level principle
4. The intertwinement principle
5. The interactivity principle
6. The guidance principle

(Van den Heuvel-Panhuizen & Drijvers, 2014)

Mathematization

Mathematics as human activity:
Doing mathematics = mathematizing

Treffers (1979): distinction between horizontal and vertical mathematization.

Example horizontal and vertical mathematization

Horizontal:
Translating a problem on fixed and variable costs (e.g., mobile phone offers) in two linear equations

Vertical:
The development of a method / theory for solving systems of two linear equations in general

Outline

- An introduction to RME
 - Six RME principles and four key concepts
 - Mathematization
 - Didactical phenomenology
 - Use of models
 - Guided reinvention
 - Hands-on task analysis
 - Summary
Six RME principles and key concepts

1. The activity principle
2. The reality principle
3. The level principle
4. The intertwinement principle
5. The interactivity principle
6. The guidance principle

(Van den Heuvel-Panhuizen & Drijvers, 2014)

Didactical phenomenology

A didactical phenomenology...
...relates mathematical thought objects to phenomena in the (physical, social, mental,...) world
...as to inform us how these mathematical thought objects may help to organize and structure phenomena in reality.

As such, it identifies phenomena that...
...beg to be organized by mathematical means
...invite students to develop the targeted mathematical concepts

These phenomena can come from real life or can be 'experientially real'

Outline
- An introduction to RME
- Six RME principles and four key concepts
 - Mathematization
 - Didactical phenomenology
 - Use of models
 - Guided reinvention
 - Hands-on task analysis
 - Summary

"I prefer to apply the term 'reality' to what at a certain stage common sense experiences as real."
Freudenthal (1991, p. 17)

What do we mean by "Realistic"?

"Realistic" may have different meanings:
- Realistic in the sense of feasible in educational practice
- Realistic in the sense of related to real life (real world, phantasy world, math world)
- Realistic in the sense of meaningful, sense making for students
- Realistic in the sense of “zich realiseren” = to realize, to be aware of, to imagine
Broad meaning and important role for models

Within RME, models are seen as representations of problem situations, which necessarily reflect essential aspects of mathematical concepts and structures that are relevant for the problem situation, but that can have different manifestations. (Van den Heuvel-Panhuizen, 2003, p. 13)

A model may be material, a situation, a sketch, a diagram, ...

The meaning and role of these models may shift during the learning process, from being situation-related to becoming more general.

Examples of didactical models

- Empty number line (for arithmetic operations)
- Chocolate bar (for ratios)
- Ratio table (for operations with ratios)
- Pizza model (for fractions)
- Arrow chains (for functions)
- Tree model (for expresssions)
- Abacus (for calculations)

Model of – model for: emergent modeling

Models of informal mathematical activity develop into models for mathematical reasoning (Streefland, 1985; Gravemeijer et al., 2000; Van den Heuvel-Panhuizen, 2003)

Emergent modelling

Situational level Activity in the task setting. Interpretations and solutions depend on understanding of how to act in the (often out of school) settings

Emergent modelling (ctnd)

Referential level Referential activity, in which models refer to activity in the setting of instructional activities (posed mostly in school)

Emergent modelling (ctnd)

General level General activity, in which models focus on situation-independent interpretations and solutions
Emergent modelling (final)

Formal level
Reasoning with conventional symbolizations, which is no longer dependent on the support of models

Outline

- An introduction to RME
- Six RME principles and four key concepts
 - Mathematics
 - Didactical phenomenology
 - Use of models
 - Guided reinvention
- Hands-on task analysis
- Summary

Guided reinvention

Reinvention:
Reconstructing and developing a mathematical concept in a natural way in a given problem situation.

Guidance:
Students need guidance (from books, peers, teacher) to ascertain convergence towards common mathematical standards

Tension between reinvention and guidance?

Guided reinvention heuristics

Think how you would approach a problem situation if it were new to you, ‘think how you might have figured it out yourself’
(Gravemeijer 1994, p. 179)

See what you can learn from the historical development of a mathematical concept for educational design
Hands-on task analysis

See the three tasks from Dutch math text books. Please work on them in the following way:

- Work each of the tasks individually as a student.
- Discuss the realistic qualities of the context of each of the tasks in pairs from the perspective of RME.
- Fill in the table.

In total 20 minutes, so less than 7 minutes per task!

Task A: Extending the lawn

The lawn in Mr. Jones’ garden measures 15 by 20 meters. Mr. Jones decides to extend the lawn. To two sides he adds a strip of equal width of \(x \) meters. See Figure 7.16.

a. Show that the area of the enlarged lawn is represented by
\[
\text{Area} = x^2 + 35x + 300
\]

b. The new lawn has an area of 374 m². Set up an equation and calculate the width of the strip.

Task B: Melting ice

An ice cube with edges of 30 mm long starts to melt down slowly. Every minute, the edges get 1.5 mm shorter. The volume of the ice cube is described by the formula
\[
V = (30 - 1.5 t)^3,\quad \text{where } V \text{ stands for the volume in mm}^3 \text{ and } t \text{ for the time in minutes.}
\]

a. Calculate the volume of the ice cube when \(t = 0 \).

b. What are meaningful values for \(t \)? And for \(V \)?

c. Plot and sketch that part of the graph for which the variables are meaningful.

d. Trace the graph with the cursor and investigate after how many minutes the volume is less than 10 000 mm³. Provide your answer with a precision of one decimal.

Task C: Cutting a parabola

A parabola is intersected by a straight line. The line is moved upwards. The midpoint of the intersection points seems to move over a vertical line. Is this really the case?
Discussion on the tasks

What is your opinion on the realistic qualities of the contexts in tasks A, B and C?

Inventory of opinions

<table>
<thead>
<tr>
<th>Realistic quality of the context</th>
<th>--</th>
<th>--</th>
<th>-/+</th>
<th>+</th>
<th>++</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lawn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The ice cube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The parabola</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contexts in mathematics education ...

... can be quite artificial
... may lack opportunities for mathematization
... should not necessarily be taken from daily life

Misunderstanding: "RME means that tasks start with a real-life story"

Realistic contexts in RME

An appropriate context ...
... is meaningful for students
... can be a real-life situation, but can also emerge from the world of science or mathematics itself
... should take into account the skills, competences and interests of the students

Outline

- An introduction to RME
- Six RME principles and four key concepts
 - Mathematization
 - Didactical phenomenology
 - Use of models
 - Guided reinvention
- Hands-on task analysis
- Summary

Summary

- RME is a domain specific instruction theory on the teaching and learning of mathematics
- ‘Reality’ refers to what at a certain stage common sense experiences as real, in the sense of meaningful
- Mathematics is a human activity, you do mathematics through mathematization
Six RME principles and key concepts

1. The activity principle
2. The reality principle
3. The level principle
4. The intertwinement principle
5. The interactivity principle
6. The guidance principle

(Van den Heuvel-Panhuizen & Drijvers, 2014)

Key words in our vocabulary:

Students' learning of mathematics can be fostered through:

- Mathematization
- Didactical phenomenology
- Use of models
- Guided reinvention